Teach getZeroExtendExpr and getSignExtendExpr to use trip-count
[llvm/msp430.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blob1cbf91fd7a44025fe3caebd6f4833b131a882ee3
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Support/CFG.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/Statistic.h"
28 #include <algorithm>
29 #include <functional>
30 #include <set>
31 #include <map>
32 using namespace llvm;
34 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
36 /// SafeToMergeTerminators - Return true if it is safe to merge these two
37 /// terminator instructions together.
38 ///
39 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
40 if (SI1 == SI2) return false; // Can't merge with self!
42 // It is not safe to merge these two switch instructions if they have a common
43 // successor, and if that successor has a PHI node, and if *that* PHI node has
44 // conflicting incoming values from the two switch blocks.
45 BasicBlock *SI1BB = SI1->getParent();
46 BasicBlock *SI2BB = SI2->getParent();
47 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
49 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
50 if (SI1Succs.count(*I))
51 for (BasicBlock::iterator BBI = (*I)->begin();
52 isa<PHINode>(BBI); ++BBI) {
53 PHINode *PN = cast<PHINode>(BBI);
54 if (PN->getIncomingValueForBlock(SI1BB) !=
55 PN->getIncomingValueForBlock(SI2BB))
56 return false;
59 return true;
62 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
63 /// now be entries in it from the 'NewPred' block. The values that will be
64 /// flowing into the PHI nodes will be the same as those coming in from
65 /// ExistPred, an existing predecessor of Succ.
66 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
67 BasicBlock *ExistPred) {
68 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
69 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
70 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
72 PHINode *PN;
73 for (BasicBlock::iterator I = Succ->begin();
74 (PN = dyn_cast<PHINode>(I)); ++I)
75 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
78 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
79 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
80 ///
81 /// Assumption: Succ is the single successor for BB.
82 ///
83 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
84 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
86 DOUT << "Looking to fold " << BB->getNameStart() << " into "
87 << Succ->getNameStart() << "\n";
88 // Shortcut, if there is only a single predecessor it must be BB and merging
89 // is always safe
90 if (Succ->getSinglePredecessor()) return true;
92 typedef SmallPtrSet<Instruction*, 16> InstrSet;
93 InstrSet BBPHIs;
95 // Make a list of all phi nodes in BB
96 BasicBlock::iterator BBI = BB->begin();
97 while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
99 // Make a list of the predecessors of BB
100 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
101 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
103 // Use that list to make another list of common predecessors of BB and Succ
104 BlockSet CommonPreds;
105 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
106 PI != PE; ++PI)
107 if (BBPreds.count(*PI))
108 CommonPreds.insert(*PI);
110 // Shortcut, if there are no common predecessors, merging is always safe
111 if (CommonPreds.empty())
112 return true;
114 // Look at all the phi nodes in Succ, to see if they present a conflict when
115 // merging these blocks
116 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
117 PHINode *PN = cast<PHINode>(I);
119 // If the incoming value from BB is again a PHINode in
120 // BB which has the same incoming value for *PI as PN does, we can
121 // merge the phi nodes and then the blocks can still be merged
122 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
123 if (BBPN && BBPN->getParent() == BB) {
124 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
125 PI != PE; PI++) {
126 if (BBPN->getIncomingValueForBlock(*PI)
127 != PN->getIncomingValueForBlock(*PI)) {
128 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
129 << Succ->getNameStart() << " is conflicting with "
130 << BBPN->getNameStart() << " with regard to common predecessor "
131 << (*PI)->getNameStart() << "\n";
132 return false;
135 // Remove this phinode from the list of phis in BB, since it has been
136 // handled.
137 BBPHIs.erase(BBPN);
138 } else {
139 Value* Val = PN->getIncomingValueForBlock(BB);
140 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
141 PI != PE; PI++) {
142 // See if the incoming value for the common predecessor is equal to the
143 // one for BB, in which case this phi node will not prevent the merging
144 // of the block.
145 if (Val != PN->getIncomingValueForBlock(*PI)) {
146 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
147 << Succ->getNameStart() << " is conflicting with regard to common "
148 << "predecessor " << (*PI)->getNameStart() << "\n";
149 return false;
155 // If there are any other phi nodes in BB that don't have a phi node in Succ
156 // to merge with, they must be moved to Succ completely. However, for any
157 // predecessors of Succ, branches will be added to the phi node that just
158 // point to itself. So, for any common predecessors, this must not cause
159 // conflicts.
160 for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
161 I != E; I++) {
162 PHINode *PN = cast<PHINode>(*I);
163 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
164 PI != PE; PI++)
165 if (PN->getIncomingValueForBlock(*PI) != PN) {
166 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
167 << BB->getNameStart() << " is conflicting with regard to common "
168 << "predecessor " << (*PI)->getNameStart() << "\n";
169 return false;
173 return true;
176 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
177 /// branch to Succ, and contains no instructions other than PHI nodes and the
178 /// branch. If possible, eliminate BB.
179 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
180 BasicBlock *Succ) {
181 // Check to see if merging these blocks would cause conflicts for any of the
182 // phi nodes in BB or Succ. If not, we can safely merge.
183 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
185 DOUT << "Killing Trivial BB: \n" << *BB;
187 if (isa<PHINode>(Succ->begin())) {
188 // If there is more than one pred of succ, and there are PHI nodes in
189 // the successor, then we need to add incoming edges for the PHI nodes
191 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
193 // Loop over all of the PHI nodes in the successor of BB.
194 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
195 PHINode *PN = cast<PHINode>(I);
196 Value *OldVal = PN->removeIncomingValue(BB, false);
197 assert(OldVal && "No entry in PHI for Pred BB!");
199 // If this incoming value is one of the PHI nodes in BB, the new entries
200 // in the PHI node are the entries from the old PHI.
201 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
202 PHINode *OldValPN = cast<PHINode>(OldVal);
203 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
204 // Note that, since we are merging phi nodes and BB and Succ might
205 // have common predecessors, we could end up with a phi node with
206 // identical incoming branches. This will be cleaned up later (and
207 // will trigger asserts if we try to clean it up now, without also
208 // simplifying the corresponding conditional branch).
209 PN->addIncoming(OldValPN->getIncomingValue(i),
210 OldValPN->getIncomingBlock(i));
211 } else {
212 // Add an incoming value for each of the new incoming values.
213 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
214 PN->addIncoming(OldVal, BBPreds[i]);
219 if (isa<PHINode>(&BB->front())) {
220 SmallVector<BasicBlock*, 16>
221 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
223 // Move all PHI nodes in BB to Succ if they are alive, otherwise
224 // delete them.
225 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
226 if (PN->use_empty()) {
227 // Just remove the dead phi. This happens if Succ's PHIs were the only
228 // users of the PHI nodes.
229 PN->eraseFromParent();
230 continue;
233 // The instruction is alive, so this means that BB must dominate all
234 // predecessors of Succ (Since all uses of the PN are after its
235 // definition, so in Succ or a block dominated by Succ. If a predecessor
236 // of Succ would not be dominated by BB, PN would violate the def before
237 // use SSA demand). Therefore, we can simply move the phi node to the
238 // next block.
239 Succ->getInstList().splice(Succ->begin(),
240 BB->getInstList(), BB->begin());
242 // We need to add new entries for the PHI node to account for
243 // predecessors of Succ that the PHI node does not take into
244 // account. At this point, since we know that BB dominated succ and all
245 // of its predecessors, this means that we should any newly added
246 // incoming edges should use the PHI node itself as the value for these
247 // edges, because they are loop back edges.
248 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
249 if (OldSuccPreds[i] != BB)
250 PN->addIncoming(PN, OldSuccPreds[i]);
254 // Everything that jumped to BB now goes to Succ.
255 BB->replaceAllUsesWith(Succ);
256 if (!Succ->hasName()) Succ->takeName(BB);
257 BB->eraseFromParent(); // Delete the old basic block.
258 return true;
261 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
262 /// presumably PHI nodes in it), check to see if the merge at this block is due
263 /// to an "if condition". If so, return the boolean condition that determines
264 /// which entry into BB will be taken. Also, return by references the block
265 /// that will be entered from if the condition is true, and the block that will
266 /// be entered if the condition is false.
269 static Value *GetIfCondition(BasicBlock *BB,
270 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
271 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
272 "Function can only handle blocks with 2 predecessors!");
273 BasicBlock *Pred1 = *pred_begin(BB);
274 BasicBlock *Pred2 = *++pred_begin(BB);
276 // We can only handle branches. Other control flow will be lowered to
277 // branches if possible anyway.
278 if (!isa<BranchInst>(Pred1->getTerminator()) ||
279 !isa<BranchInst>(Pred2->getTerminator()))
280 return 0;
281 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
282 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
284 // Eliminate code duplication by ensuring that Pred1Br is conditional if
285 // either are.
286 if (Pred2Br->isConditional()) {
287 // If both branches are conditional, we don't have an "if statement". In
288 // reality, we could transform this case, but since the condition will be
289 // required anyway, we stand no chance of eliminating it, so the xform is
290 // probably not profitable.
291 if (Pred1Br->isConditional())
292 return 0;
294 std::swap(Pred1, Pred2);
295 std::swap(Pred1Br, Pred2Br);
298 if (Pred1Br->isConditional()) {
299 // If we found a conditional branch predecessor, make sure that it branches
300 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
301 if (Pred1Br->getSuccessor(0) == BB &&
302 Pred1Br->getSuccessor(1) == Pred2) {
303 IfTrue = Pred1;
304 IfFalse = Pred2;
305 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
306 Pred1Br->getSuccessor(1) == BB) {
307 IfTrue = Pred2;
308 IfFalse = Pred1;
309 } else {
310 // We know that one arm of the conditional goes to BB, so the other must
311 // go somewhere unrelated, and this must not be an "if statement".
312 return 0;
315 // The only thing we have to watch out for here is to make sure that Pred2
316 // doesn't have incoming edges from other blocks. If it does, the condition
317 // doesn't dominate BB.
318 if (++pred_begin(Pred2) != pred_end(Pred2))
319 return 0;
321 return Pred1Br->getCondition();
324 // Ok, if we got here, both predecessors end with an unconditional branch to
325 // BB. Don't panic! If both blocks only have a single (identical)
326 // predecessor, and THAT is a conditional branch, then we're all ok!
327 if (pred_begin(Pred1) == pred_end(Pred1) ||
328 ++pred_begin(Pred1) != pred_end(Pred1) ||
329 pred_begin(Pred2) == pred_end(Pred2) ||
330 ++pred_begin(Pred2) != pred_end(Pred2) ||
331 *pred_begin(Pred1) != *pred_begin(Pred2))
332 return 0;
334 // Otherwise, if this is a conditional branch, then we can use it!
335 BasicBlock *CommonPred = *pred_begin(Pred1);
336 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
337 assert(BI->isConditional() && "Two successors but not conditional?");
338 if (BI->getSuccessor(0) == Pred1) {
339 IfTrue = Pred1;
340 IfFalse = Pred2;
341 } else {
342 IfTrue = Pred2;
343 IfFalse = Pred1;
345 return BI->getCondition();
347 return 0;
351 /// DominatesMergePoint - If we have a merge point of an "if condition" as
352 /// accepted above, return true if the specified value dominates the block. We
353 /// don't handle the true generality of domination here, just a special case
354 /// which works well enough for us.
356 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
357 /// see if V (which must be an instruction) is cheap to compute and is
358 /// non-trapping. If both are true, the instruction is inserted into the set
359 /// and true is returned.
360 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
361 std::set<Instruction*> *AggressiveInsts) {
362 Instruction *I = dyn_cast<Instruction>(V);
363 if (!I) {
364 // Non-instructions all dominate instructions, but not all constantexprs
365 // can be executed unconditionally.
366 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
367 if (C->canTrap())
368 return false;
369 return true;
371 BasicBlock *PBB = I->getParent();
373 // We don't want to allow weird loops that might have the "if condition" in
374 // the bottom of this block.
375 if (PBB == BB) return false;
377 // If this instruction is defined in a block that contains an unconditional
378 // branch to BB, then it must be in the 'conditional' part of the "if
379 // statement".
380 if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
381 if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
382 if (!AggressiveInsts) return false;
383 // Okay, it looks like the instruction IS in the "condition". Check to
384 // see if its a cheap instruction to unconditionally compute, and if it
385 // only uses stuff defined outside of the condition. If so, hoist it out.
386 switch (I->getOpcode()) {
387 default: return false; // Cannot hoist this out safely.
388 case Instruction::Load: {
389 // We can hoist loads that are non-volatile and obviously cannot trap.
390 if (cast<LoadInst>(I)->isVolatile())
391 return false;
392 // FIXME: A computation of a constant can trap!
393 if (!isa<AllocaInst>(I->getOperand(0)) &&
394 !isa<Constant>(I->getOperand(0)))
395 return false;
397 // Finally, we have to check to make sure there are no instructions
398 // before the load in its basic block, as we are going to hoist the loop
399 // out to its predecessor.
400 BasicBlock::iterator IP = PBB->begin();
401 while (isa<DbgInfoIntrinsic>(IP))
402 IP++;
403 if (IP != BasicBlock::iterator(I))
404 return false;
405 break;
407 case Instruction::Add:
408 case Instruction::Sub:
409 case Instruction::And:
410 case Instruction::Or:
411 case Instruction::Xor:
412 case Instruction::Shl:
413 case Instruction::LShr:
414 case Instruction::AShr:
415 case Instruction::ICmp:
416 case Instruction::FCmp:
417 if (I->getOperand(0)->getType()->isFPOrFPVector())
418 return false; // FP arithmetic might trap.
419 break; // These are all cheap and non-trapping instructions.
422 // Okay, we can only really hoist these out if their operands are not
423 // defined in the conditional region.
424 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
425 if (!DominatesMergePoint(*i, BB, 0))
426 return false;
427 // Okay, it's safe to do this! Remember this instruction.
428 AggressiveInsts->insert(I);
431 return true;
434 /// GatherConstantSetEQs - Given a potentially 'or'd together collection of
435 /// icmp_eq instructions that compare a value against a constant, return the
436 /// value being compared, and stick the constant into the Values vector.
437 static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
438 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
439 if (Inst->getOpcode() == Instruction::ICmp &&
440 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
441 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
442 Values.push_back(C);
443 return Inst->getOperand(0);
444 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
445 Values.push_back(C);
446 return Inst->getOperand(1);
448 } else if (Inst->getOpcode() == Instruction::Or) {
449 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
450 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
451 if (LHS == RHS)
452 return LHS;
455 return 0;
458 /// GatherConstantSetNEs - Given a potentially 'and'd together collection of
459 /// setne instructions that compare a value against a constant, return the value
460 /// being compared, and stick the constant into the Values vector.
461 static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
462 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
463 if (Inst->getOpcode() == Instruction::ICmp &&
464 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
465 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
466 Values.push_back(C);
467 return Inst->getOperand(0);
468 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
469 Values.push_back(C);
470 return Inst->getOperand(1);
472 } else if (Inst->getOpcode() == Instruction::And) {
473 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
474 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
475 if (LHS == RHS)
476 return LHS;
479 return 0;
482 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
483 /// bunch of comparisons of one value against constants, return the value and
484 /// the constants being compared.
485 static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
486 std::vector<ConstantInt*> &Values) {
487 if (Cond->getOpcode() == Instruction::Or) {
488 CompVal = GatherConstantSetEQs(Cond, Values);
490 // Return true to indicate that the condition is true if the CompVal is
491 // equal to one of the constants.
492 return true;
493 } else if (Cond->getOpcode() == Instruction::And) {
494 CompVal = GatherConstantSetNEs(Cond, Values);
496 // Return false to indicate that the condition is false if the CompVal is
497 // equal to one of the constants.
498 return false;
500 return false;
503 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
504 Instruction* Cond = 0;
505 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
506 Cond = dyn_cast<Instruction>(SI->getCondition());
507 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
508 if (BI->isConditional())
509 Cond = dyn_cast<Instruction>(BI->getCondition());
512 TI->eraseFromParent();
513 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
516 /// isValueEqualityComparison - Return true if the specified terminator checks
517 /// to see if a value is equal to constant integer value.
518 static Value *isValueEqualityComparison(TerminatorInst *TI) {
519 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
520 // Do not permit merging of large switch instructions into their
521 // predecessors unless there is only one predecessor.
522 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
523 pred_end(SI->getParent())) > 128)
524 return 0;
526 return SI->getCondition();
528 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
529 if (BI->isConditional() && BI->getCondition()->hasOneUse())
530 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
531 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
532 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
533 isa<ConstantInt>(ICI->getOperand(1)))
534 return ICI->getOperand(0);
535 return 0;
538 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
539 /// decode all of the 'cases' that it represents and return the 'default' block.
540 static BasicBlock *
541 GetValueEqualityComparisonCases(TerminatorInst *TI,
542 std::vector<std::pair<ConstantInt*,
543 BasicBlock*> > &Cases) {
544 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
545 Cases.reserve(SI->getNumCases());
546 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
547 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
548 return SI->getDefaultDest();
551 BranchInst *BI = cast<BranchInst>(TI);
552 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
553 Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
554 BI->getSuccessor(ICI->getPredicate() ==
555 ICmpInst::ICMP_NE)));
556 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
560 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
561 /// in the list that match the specified block.
562 static void EliminateBlockCases(BasicBlock *BB,
563 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
564 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
565 if (Cases[i].second == BB) {
566 Cases.erase(Cases.begin()+i);
567 --i; --e;
571 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
572 /// well.
573 static bool
574 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
575 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
576 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
578 // Make V1 be smaller than V2.
579 if (V1->size() > V2->size())
580 std::swap(V1, V2);
582 if (V1->size() == 0) return false;
583 if (V1->size() == 1) {
584 // Just scan V2.
585 ConstantInt *TheVal = (*V1)[0].first;
586 for (unsigned i = 0, e = V2->size(); i != e; ++i)
587 if (TheVal == (*V2)[i].first)
588 return true;
591 // Otherwise, just sort both lists and compare element by element.
592 std::sort(V1->begin(), V1->end());
593 std::sort(V2->begin(), V2->end());
594 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
595 while (i1 != e1 && i2 != e2) {
596 if ((*V1)[i1].first == (*V2)[i2].first)
597 return true;
598 if ((*V1)[i1].first < (*V2)[i2].first)
599 ++i1;
600 else
601 ++i2;
603 return false;
606 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
607 /// terminator instruction and its block is known to only have a single
608 /// predecessor block, check to see if that predecessor is also a value
609 /// comparison with the same value, and if that comparison determines the
610 /// outcome of this comparison. If so, simplify TI. This does a very limited
611 /// form of jump threading.
612 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
613 BasicBlock *Pred) {
614 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
615 if (!PredVal) return false; // Not a value comparison in predecessor.
617 Value *ThisVal = isValueEqualityComparison(TI);
618 assert(ThisVal && "This isn't a value comparison!!");
619 if (ThisVal != PredVal) return false; // Different predicates.
621 // Find out information about when control will move from Pred to TI's block.
622 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
623 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
624 PredCases);
625 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
627 // Find information about how control leaves this block.
628 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
629 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
630 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
632 // If TI's block is the default block from Pred's comparison, potentially
633 // simplify TI based on this knowledge.
634 if (PredDef == TI->getParent()) {
635 // If we are here, we know that the value is none of those cases listed in
636 // PredCases. If there are any cases in ThisCases that are in PredCases, we
637 // can simplify TI.
638 if (ValuesOverlap(PredCases, ThisCases)) {
639 if (isa<BranchInst>(TI)) {
640 // Okay, one of the successors of this condbr is dead. Convert it to a
641 // uncond br.
642 assert(ThisCases.size() == 1 && "Branch can only have one case!");
643 // Insert the new branch.
644 Instruction *NI = BranchInst::Create(ThisDef, TI);
646 // Remove PHI node entries for the dead edge.
647 ThisCases[0].second->removePredecessor(TI->getParent());
649 DOUT << "Threading pred instr: " << *Pred->getTerminator()
650 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
652 EraseTerminatorInstAndDCECond(TI);
653 return true;
655 } else {
656 SwitchInst *SI = cast<SwitchInst>(TI);
657 // Okay, TI has cases that are statically dead, prune them away.
658 SmallPtrSet<Constant*, 16> DeadCases;
659 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
660 DeadCases.insert(PredCases[i].first);
662 DOUT << "Threading pred instr: " << *Pred->getTerminator()
663 << "Through successor TI: " << *TI;
665 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
666 if (DeadCases.count(SI->getCaseValue(i))) {
667 SI->getSuccessor(i)->removePredecessor(TI->getParent());
668 SI->removeCase(i);
671 DOUT << "Leaving: " << *TI << "\n";
672 return true;
676 } else {
677 // Otherwise, TI's block must correspond to some matched value. Find out
678 // which value (or set of values) this is.
679 ConstantInt *TIV = 0;
680 BasicBlock *TIBB = TI->getParent();
681 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
682 if (PredCases[i].second == TIBB) {
683 if (TIV == 0)
684 TIV = PredCases[i].first;
685 else
686 return false; // Cannot handle multiple values coming to this block.
688 assert(TIV && "No edge from pred to succ?");
690 // Okay, we found the one constant that our value can be if we get into TI's
691 // BB. Find out which successor will unconditionally be branched to.
692 BasicBlock *TheRealDest = 0;
693 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
694 if (ThisCases[i].first == TIV) {
695 TheRealDest = ThisCases[i].second;
696 break;
699 // If not handled by any explicit cases, it is handled by the default case.
700 if (TheRealDest == 0) TheRealDest = ThisDef;
702 // Remove PHI node entries for dead edges.
703 BasicBlock *CheckEdge = TheRealDest;
704 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
705 if (*SI != CheckEdge)
706 (*SI)->removePredecessor(TIBB);
707 else
708 CheckEdge = 0;
710 // Insert the new branch.
711 Instruction *NI = BranchInst::Create(TheRealDest, TI);
713 DOUT << "Threading pred instr: " << *Pred->getTerminator()
714 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
716 EraseTerminatorInstAndDCECond(TI);
717 return true;
719 return false;
722 namespace {
723 /// ConstantIntOrdering - This class implements a stable ordering of constant
724 /// integers that does not depend on their address. This is important for
725 /// applications that sort ConstantInt's to ensure uniqueness.
726 struct ConstantIntOrdering {
727 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
728 return LHS->getValue().ult(RHS->getValue());
733 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
734 /// equality comparison instruction (either a switch or a branch on "X == c").
735 /// See if any of the predecessors of the terminator block are value comparisons
736 /// on the same value. If so, and if safe to do so, fold them together.
737 static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
738 BasicBlock *BB = TI->getParent();
739 Value *CV = isValueEqualityComparison(TI); // CondVal
740 assert(CV && "Not a comparison?");
741 bool Changed = false;
743 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
744 while (!Preds.empty()) {
745 BasicBlock *Pred = Preds.back();
746 Preds.pop_back();
748 // See if the predecessor is a comparison with the same value.
749 TerminatorInst *PTI = Pred->getTerminator();
750 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
752 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
753 // Figure out which 'cases' to copy from SI to PSI.
754 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
755 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
757 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
758 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
760 // Based on whether the default edge from PTI goes to BB or not, fill in
761 // PredCases and PredDefault with the new switch cases we would like to
762 // build.
763 SmallVector<BasicBlock*, 8> NewSuccessors;
765 if (PredDefault == BB) {
766 // If this is the default destination from PTI, only the edges in TI
767 // that don't occur in PTI, or that branch to BB will be activated.
768 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
769 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
770 if (PredCases[i].second != BB)
771 PTIHandled.insert(PredCases[i].first);
772 else {
773 // The default destination is BB, we don't need explicit targets.
774 std::swap(PredCases[i], PredCases.back());
775 PredCases.pop_back();
776 --i; --e;
779 // Reconstruct the new switch statement we will be building.
780 if (PredDefault != BBDefault) {
781 PredDefault->removePredecessor(Pred);
782 PredDefault = BBDefault;
783 NewSuccessors.push_back(BBDefault);
785 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
786 if (!PTIHandled.count(BBCases[i].first) &&
787 BBCases[i].second != BBDefault) {
788 PredCases.push_back(BBCases[i]);
789 NewSuccessors.push_back(BBCases[i].second);
792 } else {
793 // If this is not the default destination from PSI, only the edges
794 // in SI that occur in PSI with a destination of BB will be
795 // activated.
796 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
797 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
798 if (PredCases[i].second == BB) {
799 PTIHandled.insert(PredCases[i].first);
800 std::swap(PredCases[i], PredCases.back());
801 PredCases.pop_back();
802 --i; --e;
805 // Okay, now we know which constants were sent to BB from the
806 // predecessor. Figure out where they will all go now.
807 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
808 if (PTIHandled.count(BBCases[i].first)) {
809 // If this is one we are capable of getting...
810 PredCases.push_back(BBCases[i]);
811 NewSuccessors.push_back(BBCases[i].second);
812 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
815 // If there are any constants vectored to BB that TI doesn't handle,
816 // they must go to the default destination of TI.
817 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
818 PTIHandled.begin(),
819 E = PTIHandled.end(); I != E; ++I) {
820 PredCases.push_back(std::make_pair(*I, BBDefault));
821 NewSuccessors.push_back(BBDefault);
825 // Okay, at this point, we know which new successor Pred will get. Make
826 // sure we update the number of entries in the PHI nodes for these
827 // successors.
828 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
829 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
831 // Now that the successors are updated, create the new Switch instruction.
832 SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
833 PredCases.size(), PTI);
834 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
835 NewSI->addCase(PredCases[i].first, PredCases[i].second);
837 EraseTerminatorInstAndDCECond(PTI);
839 // Okay, last check. If BB is still a successor of PSI, then we must
840 // have an infinite loop case. If so, add an infinitely looping block
841 // to handle the case to preserve the behavior of the code.
842 BasicBlock *InfLoopBlock = 0;
843 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
844 if (NewSI->getSuccessor(i) == BB) {
845 if (InfLoopBlock == 0) {
846 // Insert it at the end of the function, because it's either code,
847 // or it won't matter if it's hot. :)
848 InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
849 BranchInst::Create(InfLoopBlock, InfLoopBlock);
851 NewSI->setSuccessor(i, InfLoopBlock);
854 Changed = true;
857 return Changed;
860 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
861 /// BB2, hoist any common code in the two blocks up into the branch block. The
862 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
863 static bool HoistThenElseCodeToIf(BranchInst *BI) {
864 // This does very trivial matching, with limited scanning, to find identical
865 // instructions in the two blocks. In particular, we don't want to get into
866 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
867 // such, we currently just scan for obviously identical instructions in an
868 // identical order.
869 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
870 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
872 BasicBlock::iterator BB1_Itr = BB1->begin();
873 BasicBlock::iterator BB2_Itr = BB2->begin();
875 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
876 while (isa<DbgInfoIntrinsic>(I1))
877 I1 = BB1_Itr++;
878 while (isa<DbgInfoIntrinsic>(I2))
879 I2 = BB2_Itr++;
880 if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
881 isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
882 return false;
884 // If we get here, we can hoist at least one instruction.
885 BasicBlock *BIParent = BI->getParent();
887 do {
888 // If we are hoisting the terminator instruction, don't move one (making a
889 // broken BB), instead clone it, and remove BI.
890 if (isa<TerminatorInst>(I1))
891 goto HoistTerminator;
893 // For a normal instruction, we just move one to right before the branch,
894 // then replace all uses of the other with the first. Finally, we remove
895 // the now redundant second instruction.
896 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
897 if (!I2->use_empty())
898 I2->replaceAllUsesWith(I1);
899 BB2->getInstList().erase(I2);
901 I1 = BB1_Itr++;
902 while (isa<DbgInfoIntrinsic>(I1))
903 I1 = BB1_Itr++;
904 I2 = BB2_Itr++;
905 while (isa<DbgInfoIntrinsic>(I2))
906 I2 = BB2_Itr++;
907 } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
909 return true;
911 HoistTerminator:
912 // Okay, it is safe to hoist the terminator.
913 Instruction *NT = I1->clone();
914 BIParent->getInstList().insert(BI, NT);
915 if (NT->getType() != Type::VoidTy) {
916 I1->replaceAllUsesWith(NT);
917 I2->replaceAllUsesWith(NT);
918 NT->takeName(I1);
921 // Hoisting one of the terminators from our successor is a great thing.
922 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
923 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
924 // nodes, so we insert select instruction to compute the final result.
925 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
926 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
927 PHINode *PN;
928 for (BasicBlock::iterator BBI = SI->begin();
929 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
930 Value *BB1V = PN->getIncomingValueForBlock(BB1);
931 Value *BB2V = PN->getIncomingValueForBlock(BB2);
932 if (BB1V != BB2V) {
933 // These values do not agree. Insert a select instruction before NT
934 // that determines the right value.
935 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
936 if (SI == 0)
937 SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
938 BB1V->getName()+"."+BB2V->getName(), NT);
939 // Make the PHI node use the select for all incoming values for BB1/BB2
940 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
941 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
942 PN->setIncomingValue(i, SI);
947 // Update any PHI nodes in our new successors.
948 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
949 AddPredecessorToBlock(*SI, BIParent, BB1);
951 EraseTerminatorInstAndDCECond(BI);
952 return true;
955 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
956 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
957 /// (for now, restricted to a single instruction that's side effect free) from
958 /// the BB1 into the branch block to speculatively execute it.
959 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
960 // Only speculatively execution a single instruction (not counting the
961 // terminator) for now.
962 Instruction *HInst = NULL;
963 Instruction *Term = BB1->getTerminator();
964 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
965 BBI != BBE; ++BBI) {
966 Instruction *I = BBI;
967 // Skip debug info.
968 if (isa<DbgInfoIntrinsic>(I)) continue;
969 if (I == Term) break;
971 if (!HInst)
972 HInst = I;
973 else
974 return false;
976 if (!HInst)
977 return false;
979 // Be conservative for now. FP select instruction can often be expensive.
980 Value *BrCond = BI->getCondition();
981 if (isa<Instruction>(BrCond) &&
982 cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
983 return false;
985 // If BB1 is actually on the false edge of the conditional branch, remember
986 // to swap the select operands later.
987 bool Invert = false;
988 if (BB1 != BI->getSuccessor(0)) {
989 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
990 Invert = true;
993 // Turn
994 // BB:
995 // %t1 = icmp
996 // br i1 %t1, label %BB1, label %BB2
997 // BB1:
998 // %t3 = add %t2, c
999 // br label BB2
1000 // BB2:
1001 // =>
1002 // BB:
1003 // %t1 = icmp
1004 // %t4 = add %t2, c
1005 // %t3 = select i1 %t1, %t2, %t3
1006 switch (HInst->getOpcode()) {
1007 default: return false; // Not safe / profitable to hoist.
1008 case Instruction::Add:
1009 case Instruction::Sub:
1010 // FP arithmetic might trap. Not worth doing for vector ops.
1011 if (HInst->getType()->isFloatingPoint()
1012 || isa<VectorType>(HInst->getType()))
1013 return false;
1014 break;
1015 case Instruction::And:
1016 case Instruction::Or:
1017 case Instruction::Xor:
1018 case Instruction::Shl:
1019 case Instruction::LShr:
1020 case Instruction::AShr:
1021 // Don't mess with vector operations.
1022 if (isa<VectorType>(HInst->getType()))
1023 return false;
1024 break; // These are all cheap and non-trapping instructions.
1027 // If the instruction is obviously dead, don't try to predicate it.
1028 if (HInst->use_empty()) {
1029 HInst->eraseFromParent();
1030 return true;
1033 // Can we speculatively execute the instruction? And what is the value
1034 // if the condition is false? Consider the phi uses, if the incoming value
1035 // from the "if" block are all the same V, then V is the value of the
1036 // select if the condition is false.
1037 BasicBlock *BIParent = BI->getParent();
1038 SmallVector<PHINode*, 4> PHIUses;
1039 Value *FalseV = NULL;
1041 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1042 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1043 UI != E; ++UI) {
1044 // Ignore any user that is not a PHI node in BB2. These can only occur in
1045 // unreachable blocks, because they would not be dominated by the instr.
1046 PHINode *PN = dyn_cast<PHINode>(UI);
1047 if (!PN || PN->getParent() != BB2)
1048 return false;
1049 PHIUses.push_back(PN);
1051 Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1052 if (!FalseV)
1053 FalseV = PHIV;
1054 else if (FalseV != PHIV)
1055 return false; // Inconsistent value when condition is false.
1058 assert(FalseV && "Must have at least one user, and it must be a PHI");
1060 // Do not hoist the instruction if any of its operands are defined but not
1061 // used in this BB. The transformation will prevent the operand from
1062 // being sunk into the use block.
1063 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1064 i != e; ++i) {
1065 Instruction *OpI = dyn_cast<Instruction>(*i);
1066 if (OpI && OpI->getParent() == BIParent &&
1067 !OpI->isUsedInBasicBlock(BIParent))
1068 return false;
1071 // If we get here, we can hoist the instruction. Try to place it
1072 // before the icmp instruction preceding the conditional branch.
1073 BasicBlock::iterator InsertPos = BI;
1074 if (InsertPos != BIParent->begin())
1075 --InsertPos;
1076 // Skip debug info between condition and branch.
1077 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1078 --InsertPos;
1079 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1080 SmallPtrSet<Instruction *, 4> BB1Insns;
1081 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1082 BB1I != BB1E; ++BB1I)
1083 BB1Insns.insert(BB1I);
1084 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1085 UI != UE; ++UI) {
1086 Instruction *Use = cast<Instruction>(*UI);
1087 if (BB1Insns.count(Use)) {
1088 // If BrCond uses the instruction that place it just before
1089 // branch instruction.
1090 InsertPos = BI;
1091 break;
1094 } else
1095 InsertPos = BI;
1096 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1098 // Create a select whose true value is the speculatively executed value and
1099 // false value is the previously determined FalseV.
1100 SelectInst *SI;
1101 if (Invert)
1102 SI = SelectInst::Create(BrCond, FalseV, HInst,
1103 FalseV->getName() + "." + HInst->getName(), BI);
1104 else
1105 SI = SelectInst::Create(BrCond, HInst, FalseV,
1106 HInst->getName() + "." + FalseV->getName(), BI);
1108 // Make the PHI node use the select for all incoming values for "then" and
1109 // "if" blocks.
1110 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1111 PHINode *PN = PHIUses[i];
1112 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1113 if (PN->getIncomingBlock(j) == BB1 ||
1114 PN->getIncomingBlock(j) == BIParent)
1115 PN->setIncomingValue(j, SI);
1118 ++NumSpeculations;
1119 return true;
1122 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1123 /// across this block.
1124 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1125 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1126 unsigned Size = 0;
1128 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1129 if (isa<DbgInfoIntrinsic>(BBI))
1130 continue;
1131 if (Size > 10) return false; // Don't clone large BB's.
1132 ++Size;
1134 // We can only support instructions that do not define values that are
1135 // live outside of the current basic block.
1136 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1137 UI != E; ++UI) {
1138 Instruction *U = cast<Instruction>(*UI);
1139 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1142 // Looks ok, continue checking.
1145 return true;
1148 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1149 /// that is defined in the same block as the branch and if any PHI entries are
1150 /// constants, thread edges corresponding to that entry to be branches to their
1151 /// ultimate destination.
1152 static bool FoldCondBranchOnPHI(BranchInst *BI) {
1153 BasicBlock *BB = BI->getParent();
1154 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1155 // NOTE: we currently cannot transform this case if the PHI node is used
1156 // outside of the block.
1157 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1158 return false;
1160 // Degenerate case of a single entry PHI.
1161 if (PN->getNumIncomingValues() == 1) {
1162 FoldSingleEntryPHINodes(PN->getParent());
1163 return true;
1166 // Now we know that this block has multiple preds and two succs.
1167 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1169 // Okay, this is a simple enough basic block. See if any phi values are
1170 // constants.
1171 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1172 ConstantInt *CB;
1173 if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1174 CB->getType() == Type::Int1Ty) {
1175 // Okay, we now know that all edges from PredBB should be revectored to
1176 // branch to RealDest.
1177 BasicBlock *PredBB = PN->getIncomingBlock(i);
1178 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1180 if (RealDest == BB) continue; // Skip self loops.
1182 // The dest block might have PHI nodes, other predecessors and other
1183 // difficult cases. Instead of being smart about this, just insert a new
1184 // block that jumps to the destination block, effectively splitting
1185 // the edge we are about to create.
1186 BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
1187 RealDest->getParent(), RealDest);
1188 BranchInst::Create(RealDest, EdgeBB);
1189 PHINode *PN;
1190 for (BasicBlock::iterator BBI = RealDest->begin();
1191 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1192 Value *V = PN->getIncomingValueForBlock(BB);
1193 PN->addIncoming(V, EdgeBB);
1196 // BB may have instructions that are being threaded over. Clone these
1197 // instructions into EdgeBB. We know that there will be no uses of the
1198 // cloned instructions outside of EdgeBB.
1199 BasicBlock::iterator InsertPt = EdgeBB->begin();
1200 std::map<Value*, Value*> TranslateMap; // Track translated values.
1201 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1202 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1203 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1204 } else {
1205 // Clone the instruction.
1206 Instruction *N = BBI->clone();
1207 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1209 // Update operands due to translation.
1210 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1211 i != e; ++i) {
1212 std::map<Value*, Value*>::iterator PI =
1213 TranslateMap.find(*i);
1214 if (PI != TranslateMap.end())
1215 *i = PI->second;
1218 // Check for trivial simplification.
1219 if (Constant *C = ConstantFoldInstruction(N)) {
1220 TranslateMap[BBI] = C;
1221 delete N; // Constant folded away, don't need actual inst
1222 } else {
1223 // Insert the new instruction into its new home.
1224 EdgeBB->getInstList().insert(InsertPt, N);
1225 if (!BBI->use_empty())
1226 TranslateMap[BBI] = N;
1231 // Loop over all of the edges from PredBB to BB, changing them to branch
1232 // to EdgeBB instead.
1233 TerminatorInst *PredBBTI = PredBB->getTerminator();
1234 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1235 if (PredBBTI->getSuccessor(i) == BB) {
1236 BB->removePredecessor(PredBB);
1237 PredBBTI->setSuccessor(i, EdgeBB);
1240 // Recurse, simplifying any other constants.
1241 return FoldCondBranchOnPHI(BI) | true;
1245 return false;
1248 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1249 /// PHI node, see if we can eliminate it.
1250 static bool FoldTwoEntryPHINode(PHINode *PN) {
1251 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1252 // statement", which has a very simple dominance structure. Basically, we
1253 // are trying to find the condition that is being branched on, which
1254 // subsequently causes this merge to happen. We really want control
1255 // dependence information for this check, but simplifycfg can't keep it up
1256 // to date, and this catches most of the cases we care about anyway.
1258 BasicBlock *BB = PN->getParent();
1259 BasicBlock *IfTrue, *IfFalse;
1260 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1261 if (!IfCond) return false;
1263 // Okay, we found that we can merge this two-entry phi node into a select.
1264 // Doing so would require us to fold *all* two entry phi nodes in this block.
1265 // At some point this becomes non-profitable (particularly if the target
1266 // doesn't support cmov's). Only do this transformation if there are two or
1267 // fewer PHI nodes in this block.
1268 unsigned NumPhis = 0;
1269 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1270 if (NumPhis > 2)
1271 return false;
1273 DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
1274 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
1276 // Loop over the PHI's seeing if we can promote them all to select
1277 // instructions. While we are at it, keep track of the instructions
1278 // that need to be moved to the dominating block.
1279 std::set<Instruction*> AggressiveInsts;
1281 BasicBlock::iterator AfterPHIIt = BB->begin();
1282 while (isa<PHINode>(AfterPHIIt)) {
1283 PHINode *PN = cast<PHINode>(AfterPHIIt++);
1284 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1285 if (PN->getIncomingValue(0) != PN)
1286 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1287 else
1288 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1289 } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1290 &AggressiveInsts) ||
1291 !DominatesMergePoint(PN->getIncomingValue(1), BB,
1292 &AggressiveInsts)) {
1293 return false;
1297 // If we all PHI nodes are promotable, check to make sure that all
1298 // instructions in the predecessor blocks can be promoted as well. If
1299 // not, we won't be able to get rid of the control flow, so it's not
1300 // worth promoting to select instructions.
1301 BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1302 PN = cast<PHINode>(BB->begin());
1303 BasicBlock *Pred = PN->getIncomingBlock(0);
1304 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1305 IfBlock1 = Pred;
1306 DomBlock = *pred_begin(Pred);
1307 for (BasicBlock::iterator I = Pred->begin();
1308 !isa<TerminatorInst>(I); ++I)
1309 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1310 // This is not an aggressive instruction that we can promote.
1311 // Because of this, we won't be able to get rid of the control
1312 // flow, so the xform is not worth it.
1313 return false;
1317 Pred = PN->getIncomingBlock(1);
1318 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1319 IfBlock2 = Pred;
1320 DomBlock = *pred_begin(Pred);
1321 for (BasicBlock::iterator I = Pred->begin();
1322 !isa<TerminatorInst>(I); ++I)
1323 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1324 // This is not an aggressive instruction that we can promote.
1325 // Because of this, we won't be able to get rid of the control
1326 // flow, so the xform is not worth it.
1327 return false;
1331 // If we can still promote the PHI nodes after this gauntlet of tests,
1332 // do all of the PHI's now.
1334 // Move all 'aggressive' instructions, which are defined in the
1335 // conditional parts of the if's up to the dominating block.
1336 if (IfBlock1) {
1337 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1338 IfBlock1->getInstList(),
1339 IfBlock1->begin(),
1340 IfBlock1->getTerminator());
1342 if (IfBlock2) {
1343 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1344 IfBlock2->getInstList(),
1345 IfBlock2->begin(),
1346 IfBlock2->getTerminator());
1349 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1350 // Change the PHI node into a select instruction.
1351 Value *TrueVal =
1352 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1353 Value *FalseVal =
1354 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1356 Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1357 PN->replaceAllUsesWith(NV);
1358 NV->takeName(PN);
1360 BB->getInstList().erase(PN);
1362 return true;
1365 /// isTerminatorFirstRelevantInsn - Return true if Term is very first
1366 /// instruction ignoring Phi nodes and dbg intrinsics.
1367 static bool isTerminatorFirstRelevantInsn(BasicBlock *BB, Instruction *Term) {
1368 BasicBlock::iterator BBI = Term;
1369 while (BBI != BB->begin()) {
1370 --BBI;
1371 if (!isa<DbgInfoIntrinsic>(BBI))
1372 break;
1375 if (isa<PHINode>(BBI) || &*BBI == Term || isa<DbgInfoIntrinsic>(BBI))
1376 return true;
1377 return false;
1380 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1381 /// to two returning blocks, try to merge them together into one return,
1382 /// introducing a select if the return values disagree.
1383 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1384 assert(BI->isConditional() && "Must be a conditional branch");
1385 BasicBlock *TrueSucc = BI->getSuccessor(0);
1386 BasicBlock *FalseSucc = BI->getSuccessor(1);
1387 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1388 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1390 // Check to ensure both blocks are empty (just a return) or optionally empty
1391 // with PHI nodes. If there are other instructions, merging would cause extra
1392 // computation on one path or the other.
1393 if (!isTerminatorFirstRelevantInsn(TrueSucc, TrueRet))
1394 return false;
1395 if (!isTerminatorFirstRelevantInsn(FalseSucc, FalseRet))
1396 return false;
1398 // Okay, we found a branch that is going to two return nodes. If
1399 // there is no return value for this function, just change the
1400 // branch into a return.
1401 if (FalseRet->getNumOperands() == 0) {
1402 TrueSucc->removePredecessor(BI->getParent());
1403 FalseSucc->removePredecessor(BI->getParent());
1404 ReturnInst::Create(0, BI);
1405 EraseTerminatorInstAndDCECond(BI);
1406 return true;
1409 // Otherwise, figure out what the true and false return values are
1410 // so we can insert a new select instruction.
1411 Value *TrueValue = TrueRet->getReturnValue();
1412 Value *FalseValue = FalseRet->getReturnValue();
1414 // Unwrap any PHI nodes in the return blocks.
1415 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1416 if (TVPN->getParent() == TrueSucc)
1417 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1418 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1419 if (FVPN->getParent() == FalseSucc)
1420 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1422 // In order for this transformation to be safe, we must be able to
1423 // unconditionally execute both operands to the return. This is
1424 // normally the case, but we could have a potentially-trapping
1425 // constant expression that prevents this transformation from being
1426 // safe.
1427 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1428 if (TCV->canTrap())
1429 return false;
1430 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1431 if (FCV->canTrap())
1432 return false;
1434 // Okay, we collected all the mapped values and checked them for sanity, and
1435 // defined to really do this transformation. First, update the CFG.
1436 TrueSucc->removePredecessor(BI->getParent());
1437 FalseSucc->removePredecessor(BI->getParent());
1439 // Insert select instructions where needed.
1440 Value *BrCond = BI->getCondition();
1441 if (TrueValue) {
1442 // Insert a select if the results differ.
1443 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1444 } else if (isa<UndefValue>(TrueValue)) {
1445 TrueValue = FalseValue;
1446 } else {
1447 TrueValue = SelectInst::Create(BrCond, TrueValue,
1448 FalseValue, "retval", BI);
1452 Value *RI = !TrueValue ?
1453 ReturnInst::Create(BI) :
1454 ReturnInst::Create(TrueValue, BI);
1456 DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1457 << "\n " << *BI << "NewRet = " << *RI
1458 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1460 EraseTerminatorInstAndDCECond(BI);
1462 return true;
1465 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1466 /// and if a predecessor branches to us and one of our successors, fold the
1467 /// setcc into the predecessor and use logical operations to pick the right
1468 /// destination.
1469 static bool FoldBranchToCommonDest(BranchInst *BI) {
1470 BasicBlock *BB = BI->getParent();
1471 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1472 if (Cond == 0) return false;
1475 // Only allow this if the condition is a simple instruction that can be
1476 // executed unconditionally. It must be in the same block as the branch, and
1477 // must be at the front of the block.
1478 BasicBlock::iterator FrontIt = BB->front();
1479 // Ignore dbg intrinsics.
1480 while(isa<DbgInfoIntrinsic>(FrontIt))
1481 ++FrontIt;
1482 if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1483 Cond->getParent() != BB || &*FrontIt != Cond || !Cond->hasOneUse()) {
1484 return false;
1487 // Make sure the instruction after the condition is the cond branch.
1488 BasicBlock::iterator CondIt = Cond; ++CondIt;
1489 // Ingore dbg intrinsics.
1490 while(isa<DbgInfoIntrinsic>(CondIt))
1491 ++CondIt;
1492 if (&*CondIt != BI) {
1493 assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1494 return false;
1497 // Cond is known to be a compare or binary operator. Check to make sure that
1498 // neither operand is a potentially-trapping constant expression.
1499 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1500 if (CE->canTrap())
1501 return false;
1502 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1503 if (CE->canTrap())
1504 return false;
1507 // Finally, don't infinitely unroll conditional loops.
1508 BasicBlock *TrueDest = BI->getSuccessor(0);
1509 BasicBlock *FalseDest = BI->getSuccessor(1);
1510 if (TrueDest == BB || FalseDest == BB)
1511 return false;
1513 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1514 BasicBlock *PredBlock = *PI;
1515 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1517 // Check that we have two conditional branches. If there is a PHI node in
1518 // the common successor, verify that the same value flows in from both
1519 // blocks.
1520 if (PBI == 0 || PBI->isUnconditional() ||
1521 !SafeToMergeTerminators(BI, PBI))
1522 continue;
1524 Instruction::BinaryOps Opc;
1525 bool InvertPredCond = false;
1527 if (PBI->getSuccessor(0) == TrueDest)
1528 Opc = Instruction::Or;
1529 else if (PBI->getSuccessor(1) == FalseDest)
1530 Opc = Instruction::And;
1531 else if (PBI->getSuccessor(0) == FalseDest)
1532 Opc = Instruction::And, InvertPredCond = true;
1533 else if (PBI->getSuccessor(1) == TrueDest)
1534 Opc = Instruction::Or, InvertPredCond = true;
1535 else
1536 continue;
1538 DOUT << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB;
1540 // If we need to invert the condition in the pred block to match, do so now.
1541 if (InvertPredCond) {
1542 Value *NewCond =
1543 BinaryOperator::CreateNot(PBI->getCondition(),
1544 PBI->getCondition()->getName()+".not", PBI);
1545 PBI->setCondition(NewCond);
1546 BasicBlock *OldTrue = PBI->getSuccessor(0);
1547 BasicBlock *OldFalse = PBI->getSuccessor(1);
1548 PBI->setSuccessor(0, OldFalse);
1549 PBI->setSuccessor(1, OldTrue);
1552 // Clone Cond into the predecessor basic block, and or/and the
1553 // two conditions together.
1554 Instruction *New = Cond->clone();
1555 PredBlock->getInstList().insert(PBI, New);
1556 New->takeName(Cond);
1557 Cond->setName(New->getName()+".old");
1559 Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1560 New, "or.cond", PBI);
1561 PBI->setCondition(NewCond);
1562 if (PBI->getSuccessor(0) == BB) {
1563 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1564 PBI->setSuccessor(0, TrueDest);
1566 if (PBI->getSuccessor(1) == BB) {
1567 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1568 PBI->setSuccessor(1, FalseDest);
1570 return true;
1572 return false;
1575 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1576 /// predecessor of another block, this function tries to simplify it. We know
1577 /// that PBI and BI are both conditional branches, and BI is in one of the
1578 /// successor blocks of PBI - PBI branches to BI.
1579 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1580 assert(PBI->isConditional() && BI->isConditional());
1581 BasicBlock *BB = BI->getParent();
1583 // If this block ends with a branch instruction, and if there is a
1584 // predecessor that ends on a branch of the same condition, make
1585 // this conditional branch redundant.
1586 if (PBI->getCondition() == BI->getCondition() &&
1587 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1588 // Okay, the outcome of this conditional branch is statically
1589 // knowable. If this block had a single pred, handle specially.
1590 if (BB->getSinglePredecessor()) {
1591 // Turn this into a branch on constant.
1592 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1593 BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1594 return true; // Nuke the branch on constant.
1597 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1598 // in the constant and simplify the block result. Subsequent passes of
1599 // simplifycfg will thread the block.
1600 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1601 PHINode *NewPN = PHINode::Create(Type::Int1Ty,
1602 BI->getCondition()->getName() + ".pr",
1603 BB->begin());
1604 // Okay, we're going to insert the PHI node. Since PBI is not the only
1605 // predecessor, compute the PHI'd conditional value for all of the preds.
1606 // Any predecessor where the condition is not computable we keep symbolic.
1607 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1608 if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1609 PBI != BI && PBI->isConditional() &&
1610 PBI->getCondition() == BI->getCondition() &&
1611 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1612 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1613 NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1614 CondIsTrue), *PI);
1615 } else {
1616 NewPN->addIncoming(BI->getCondition(), *PI);
1619 BI->setCondition(NewPN);
1620 return true;
1624 // If this is a conditional branch in an empty block, and if any
1625 // predecessors is a conditional branch to one of our destinations,
1626 // fold the conditions into logical ops and one cond br.
1627 BasicBlock::iterator BBI = BB->begin();
1628 // Ignore dbg intrinsics.
1629 while (isa<DbgInfoIntrinsic>(BBI))
1630 ++BBI;
1631 if (&*BBI != BI)
1632 return false;
1635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1636 if (CE->canTrap())
1637 return false;
1639 int PBIOp, BIOp;
1640 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1641 PBIOp = BIOp = 0;
1642 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1643 PBIOp = 0, BIOp = 1;
1644 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1645 PBIOp = 1, BIOp = 0;
1646 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1647 PBIOp = BIOp = 1;
1648 else
1649 return false;
1651 // Check to make sure that the other destination of this branch
1652 // isn't BB itself. If so, this is an infinite loop that will
1653 // keep getting unwound.
1654 if (PBI->getSuccessor(PBIOp) == BB)
1655 return false;
1657 // Do not perform this transformation if it would require
1658 // insertion of a large number of select instructions. For targets
1659 // without predication/cmovs, this is a big pessimization.
1660 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1662 unsigned NumPhis = 0;
1663 for (BasicBlock::iterator II = CommonDest->begin();
1664 isa<PHINode>(II); ++II, ++NumPhis)
1665 if (NumPhis > 2) // Disable this xform.
1666 return false;
1668 // Finally, if everything is ok, fold the branches to logical ops.
1669 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1671 DOUT << "FOLDING BRs:" << *PBI->getParent()
1672 << "AND: " << *BI->getParent();
1675 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1676 // branch in it, where one edge (OtherDest) goes back to itself but the other
1677 // exits. We don't *know* that the program avoids the infinite loop
1678 // (even though that seems likely). If we do this xform naively, we'll end up
1679 // recursively unpeeling the loop. Since we know that (after the xform is
1680 // done) that the block *is* infinite if reached, we just make it an obviously
1681 // infinite loop with no cond branch.
1682 if (OtherDest == BB) {
1683 // Insert it at the end of the function, because it's either code,
1684 // or it won't matter if it's hot. :)
1685 BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
1686 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1687 OtherDest = InfLoopBlock;
1690 DOUT << *PBI->getParent()->getParent();
1692 // BI may have other predecessors. Because of this, we leave
1693 // it alone, but modify PBI.
1695 // Make sure we get to CommonDest on True&True directions.
1696 Value *PBICond = PBI->getCondition();
1697 if (PBIOp)
1698 PBICond = BinaryOperator::CreateNot(PBICond,
1699 PBICond->getName()+".not",
1700 PBI);
1701 Value *BICond = BI->getCondition();
1702 if (BIOp)
1703 BICond = BinaryOperator::CreateNot(BICond,
1704 BICond->getName()+".not",
1705 PBI);
1706 // Merge the conditions.
1707 Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1709 // Modify PBI to branch on the new condition to the new dests.
1710 PBI->setCondition(Cond);
1711 PBI->setSuccessor(0, CommonDest);
1712 PBI->setSuccessor(1, OtherDest);
1714 // OtherDest may have phi nodes. If so, add an entry from PBI's
1715 // block that are identical to the entries for BI's block.
1716 PHINode *PN;
1717 for (BasicBlock::iterator II = OtherDest->begin();
1718 (PN = dyn_cast<PHINode>(II)); ++II) {
1719 Value *V = PN->getIncomingValueForBlock(BB);
1720 PN->addIncoming(V, PBI->getParent());
1723 // We know that the CommonDest already had an edge from PBI to
1724 // it. If it has PHIs though, the PHIs may have different
1725 // entries for BB and PBI's BB. If so, insert a select to make
1726 // them agree.
1727 for (BasicBlock::iterator II = CommonDest->begin();
1728 (PN = dyn_cast<PHINode>(II)); ++II) {
1729 Value *BIV = PN->getIncomingValueForBlock(BB);
1730 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1731 Value *PBIV = PN->getIncomingValue(PBBIdx);
1732 if (BIV != PBIV) {
1733 // Insert a select in PBI to pick the right value.
1734 Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1735 PBIV->getName()+".mux", PBI);
1736 PN->setIncomingValue(PBBIdx, NV);
1740 DOUT << "INTO: " << *PBI->getParent();
1742 DOUT << *PBI->getParent()->getParent();
1744 // This basic block is probably dead. We know it has at least
1745 // one fewer predecessor.
1746 return true;
1750 /// SimplifyCFG - This function is used to do simplification of a CFG. For
1751 /// example, it adjusts branches to branches to eliminate the extra hop, it
1752 /// eliminates unreachable basic blocks, and does other "peephole" optimization
1753 /// of the CFG. It returns true if a modification was made.
1755 /// WARNING: The entry node of a function may not be simplified.
1757 bool llvm::SimplifyCFG(BasicBlock *BB) {
1758 bool Changed = false;
1759 Function *M = BB->getParent();
1761 assert(BB && BB->getParent() && "Block not embedded in function!");
1762 assert(BB->getTerminator() && "Degenerate basic block encountered!");
1763 assert(&BB->getParent()->getEntryBlock() != BB &&
1764 "Can't Simplify entry block!");
1766 // Remove basic blocks that have no predecessors... or that just have themself
1767 // as a predecessor. These are unreachable.
1768 if (pred_begin(BB) == pred_end(BB) || BB->getSinglePredecessor() == BB) {
1769 DOUT << "Removing BB: \n" << *BB;
1770 DeleteDeadBlock(BB);
1771 return true;
1774 // Check to see if we can constant propagate this terminator instruction
1775 // away...
1776 Changed |= ConstantFoldTerminator(BB);
1778 // If there is a trivial two-entry PHI node in this basic block, and we can
1779 // eliminate it, do so now.
1780 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1781 if (PN->getNumIncomingValues() == 2)
1782 Changed |= FoldTwoEntryPHINode(PN);
1784 // If this is a returning block with only PHI nodes in it, fold the return
1785 // instruction into any unconditional branch predecessors.
1787 // If any predecessor is a conditional branch that just selects among
1788 // different return values, fold the replace the branch/return with a select
1789 // and return.
1790 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1791 if (isTerminatorFirstRelevantInsn(BB, BB->getTerminator())) {
1792 // Find predecessors that end with branches.
1793 SmallVector<BasicBlock*, 8> UncondBranchPreds;
1794 SmallVector<BranchInst*, 8> CondBranchPreds;
1795 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1796 TerminatorInst *PTI = (*PI)->getTerminator();
1797 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1798 if (BI->isUnconditional())
1799 UncondBranchPreds.push_back(*PI);
1800 else
1801 CondBranchPreds.push_back(BI);
1805 // If we found some, do the transformation!
1806 if (!UncondBranchPreds.empty()) {
1807 while (!UncondBranchPreds.empty()) {
1808 BasicBlock *Pred = UncondBranchPreds.back();
1809 DOUT << "FOLDING: " << *BB
1810 << "INTO UNCOND BRANCH PRED: " << *Pred;
1811 UncondBranchPreds.pop_back();
1812 Instruction *UncondBranch = Pred->getTerminator();
1813 // Clone the return and add it to the end of the predecessor.
1814 Instruction *NewRet = RI->clone();
1815 Pred->getInstList().push_back(NewRet);
1817 BasicBlock::iterator BBI = RI;
1818 if (BBI != BB->begin()) {
1819 // Move region end info into the predecessor.
1820 if (DbgRegionEndInst *DREI = dyn_cast<DbgRegionEndInst>(--BBI))
1821 DREI->moveBefore(NewRet);
1824 // If the return instruction returns a value, and if the value was a
1825 // PHI node in "BB", propagate the right value into the return.
1826 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1827 i != e; ++i)
1828 if (PHINode *PN = dyn_cast<PHINode>(*i))
1829 if (PN->getParent() == BB)
1830 *i = PN->getIncomingValueForBlock(Pred);
1832 // Update any PHI nodes in the returning block to realize that we no
1833 // longer branch to them.
1834 BB->removePredecessor(Pred);
1835 Pred->getInstList().erase(UncondBranch);
1838 // If we eliminated all predecessors of the block, delete the block now.
1839 if (pred_begin(BB) == pred_end(BB))
1840 // We know there are no successors, so just nuke the block.
1841 M->getBasicBlockList().erase(BB);
1843 return true;
1846 // Check out all of the conditional branches going to this return
1847 // instruction. If any of them just select between returns, change the
1848 // branch itself into a select/return pair.
1849 while (!CondBranchPreds.empty()) {
1850 BranchInst *BI = CondBranchPreds.back();
1851 CondBranchPreds.pop_back();
1853 // Check to see if the non-BB successor is also a return block.
1854 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1855 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1856 SimplifyCondBranchToTwoReturns(BI))
1857 return true;
1860 } else if (isa<UnwindInst>(BB->begin())) {
1861 // Check to see if the first instruction in this block is just an unwind.
1862 // If so, replace any invoke instructions which use this as an exception
1863 // destination with call instructions, and any unconditional branch
1864 // predecessor with an unwind.
1866 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1867 while (!Preds.empty()) {
1868 BasicBlock *Pred = Preds.back();
1869 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1870 if (BI->isUnconditional()) {
1871 Pred->getInstList().pop_back(); // nuke uncond branch
1872 new UnwindInst(Pred); // Use unwind.
1873 Changed = true;
1875 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1876 if (II->getUnwindDest() == BB) {
1877 // Insert a new branch instruction before the invoke, because this
1878 // is now a fall through...
1879 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1880 Pred->getInstList().remove(II); // Take out of symbol table
1882 // Insert the call now...
1883 SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1884 CallInst *CI = CallInst::Create(II->getCalledValue(),
1885 Args.begin(), Args.end(),
1886 II->getName(), BI);
1887 CI->setCallingConv(II->getCallingConv());
1888 CI->setAttributes(II->getAttributes());
1889 // If the invoke produced a value, the Call now does instead
1890 II->replaceAllUsesWith(CI);
1891 delete II;
1892 Changed = true;
1895 Preds.pop_back();
1898 // If this block is now dead, remove it.
1899 if (pred_begin(BB) == pred_end(BB)) {
1900 // We know there are no successors, so just nuke the block.
1901 M->getBasicBlockList().erase(BB);
1902 return true;
1905 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1906 if (isValueEqualityComparison(SI)) {
1907 // If we only have one predecessor, and if it is a branch on this value,
1908 // see if that predecessor totally determines the outcome of this switch.
1909 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1910 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1911 return SimplifyCFG(BB) || 1;
1913 // If the block only contains the switch, see if we can fold the block
1914 // away into any preds.
1915 BasicBlock::iterator BBI = BB->begin();
1916 // Ignore dbg intrinsics.
1917 while (isa<DbgInfoIntrinsic>(BBI))
1918 ++BBI;
1919 if (SI == &*BBI)
1920 if (FoldValueComparisonIntoPredecessors(SI))
1921 return SimplifyCFG(BB) || 1;
1923 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1924 if (BI->isUnconditional()) {
1925 BasicBlock::iterator BBI = BB->getFirstNonPHI();
1927 BasicBlock *Succ = BI->getSuccessor(0);
1928 // Ignore dbg intrinsics.
1929 while (isa<DbgInfoIntrinsic>(BBI))
1930 ++BBI;
1931 if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
1932 Succ != BB) // Don't hurt infinite loops!
1933 if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1934 return true;
1936 } else { // Conditional branch
1937 if (isValueEqualityComparison(BI)) {
1938 // If we only have one predecessor, and if it is a branch on this value,
1939 // see if that predecessor totally determines the outcome of this
1940 // switch.
1941 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1942 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1943 return SimplifyCFG(BB) || 1;
1945 // This block must be empty, except for the setcond inst, if it exists.
1946 // Ignore dbg intrinsics.
1947 BasicBlock::iterator I = BB->begin();
1948 // Ignore dbg intrinsics.
1949 while (isa<DbgInfoIntrinsic>(I))
1950 ++I;
1951 if (&*I == BI) {
1952 if (FoldValueComparisonIntoPredecessors(BI))
1953 return SimplifyCFG(BB) | true;
1954 } else if (&*I == cast<Instruction>(BI->getCondition())){
1955 ++I;
1956 // Ignore dbg intrinsics.
1957 while (isa<DbgInfoIntrinsic>(I))
1958 ++I;
1959 if(&*I == BI) {
1960 if (FoldValueComparisonIntoPredecessors(BI))
1961 return SimplifyCFG(BB) | true;
1966 // If this is a branch on a phi node in the current block, thread control
1967 // through this block if any PHI node entries are constants.
1968 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1969 if (PN->getParent() == BI->getParent())
1970 if (FoldCondBranchOnPHI(BI))
1971 return SimplifyCFG(BB) | true;
1973 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1974 // branches to us and one of our successors, fold the setcc into the
1975 // predecessor and use logical operations to pick the right destination.
1976 if (FoldBranchToCommonDest(BI))
1977 return SimplifyCFG(BB) | 1;
1980 // Scan predecessor blocks for conditional branches.
1981 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1982 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1983 if (PBI != BI && PBI->isConditional())
1984 if (SimplifyCondBranchToCondBranch(PBI, BI))
1985 return SimplifyCFG(BB) | true;
1987 } else if (isa<UnreachableInst>(BB->getTerminator())) {
1988 // If there are any instructions immediately before the unreachable that can
1989 // be removed, do so.
1990 Instruction *Unreachable = BB->getTerminator();
1991 while (Unreachable != BB->begin()) {
1992 BasicBlock::iterator BBI = Unreachable;
1993 --BBI;
1994 // Do not delete instructions that can have side effects, like calls
1995 // (which may never return) and volatile loads and stores.
1996 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
1998 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
1999 if (SI->isVolatile())
2000 break;
2002 if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2003 if (LI->isVolatile())
2004 break;
2006 // Delete this instruction
2007 BB->getInstList().erase(BBI);
2008 Changed = true;
2011 // If the unreachable instruction is the first in the block, take a gander
2012 // at all of the predecessors of this instruction, and simplify them.
2013 if (&BB->front() == Unreachable) {
2014 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2015 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2016 TerminatorInst *TI = Preds[i]->getTerminator();
2018 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2019 if (BI->isUnconditional()) {
2020 if (BI->getSuccessor(0) == BB) {
2021 new UnreachableInst(TI);
2022 TI->eraseFromParent();
2023 Changed = true;
2025 } else {
2026 if (BI->getSuccessor(0) == BB) {
2027 BranchInst::Create(BI->getSuccessor(1), BI);
2028 EraseTerminatorInstAndDCECond(BI);
2029 } else if (BI->getSuccessor(1) == BB) {
2030 BranchInst::Create(BI->getSuccessor(0), BI);
2031 EraseTerminatorInstAndDCECond(BI);
2032 Changed = true;
2035 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2036 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2037 if (SI->getSuccessor(i) == BB) {
2038 BB->removePredecessor(SI->getParent());
2039 SI->removeCase(i);
2040 --i; --e;
2041 Changed = true;
2043 // If the default value is unreachable, figure out the most popular
2044 // destination and make it the default.
2045 if (SI->getSuccessor(0) == BB) {
2046 std::map<BasicBlock*, unsigned> Popularity;
2047 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2048 Popularity[SI->getSuccessor(i)]++;
2050 // Find the most popular block.
2051 unsigned MaxPop = 0;
2052 BasicBlock *MaxBlock = 0;
2053 for (std::map<BasicBlock*, unsigned>::iterator
2054 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2055 if (I->second > MaxPop) {
2056 MaxPop = I->second;
2057 MaxBlock = I->first;
2060 if (MaxBlock) {
2061 // Make this the new default, allowing us to delete any explicit
2062 // edges to it.
2063 SI->setSuccessor(0, MaxBlock);
2064 Changed = true;
2066 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2067 // it.
2068 if (isa<PHINode>(MaxBlock->begin()))
2069 for (unsigned i = 0; i != MaxPop-1; ++i)
2070 MaxBlock->removePredecessor(SI->getParent());
2072 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2073 if (SI->getSuccessor(i) == MaxBlock) {
2074 SI->removeCase(i);
2075 --i; --e;
2079 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2080 if (II->getUnwindDest() == BB) {
2081 // Convert the invoke to a call instruction. This would be a good
2082 // place to note that the call does not throw though.
2083 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2084 II->removeFromParent(); // Take out of symbol table
2086 // Insert the call now...
2087 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
2088 CallInst *CI = CallInst::Create(II->getCalledValue(),
2089 Args.begin(), Args.end(),
2090 II->getName(), BI);
2091 CI->setCallingConv(II->getCallingConv());
2092 CI->setAttributes(II->getAttributes());
2093 // If the invoke produced a value, the Call does now instead.
2094 II->replaceAllUsesWith(CI);
2095 delete II;
2096 Changed = true;
2101 // If this block is now dead, remove it.
2102 if (pred_begin(BB) == pred_end(BB)) {
2103 // We know there are no successors, so just nuke the block.
2104 M->getBasicBlockList().erase(BB);
2105 return true;
2110 // Merge basic blocks into their predecessor if there is only one distinct
2111 // pred, and if there is only one distinct successor of the predecessor, and
2112 // if there are no PHI nodes.
2114 if (MergeBlockIntoPredecessor(BB))
2115 return true;
2117 // Otherwise, if this block only has a single predecessor, and if that block
2118 // is a conditional branch, see if we can hoist any code from this block up
2119 // into our predecessor.
2120 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
2121 BasicBlock *OnlyPred = *PI++;
2122 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
2123 if (*PI != OnlyPred) {
2124 OnlyPred = 0; // There are multiple different predecessors...
2125 break;
2128 if (OnlyPred)
2129 if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
2130 if (BI->isConditional()) {
2131 // Get the other block.
2132 BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2133 PI = pred_begin(OtherBB);
2134 ++PI;
2136 if (PI == pred_end(OtherBB)) {
2137 // We have a conditional branch to two blocks that are only reachable
2138 // from the condbr. We know that the condbr dominates the two blocks,
2139 // so see if there is any identical code in the "then" and "else"
2140 // blocks. If so, we can hoist it up to the branching block.
2141 Changed |= HoistThenElseCodeToIf(BI);
2142 } else {
2143 BasicBlock* OnlySucc = NULL;
2144 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2145 SI != SE; ++SI) {
2146 if (!OnlySucc)
2147 OnlySucc = *SI;
2148 else if (*SI != OnlySucc) {
2149 OnlySucc = 0; // There are multiple distinct successors!
2150 break;
2154 if (OnlySucc == OtherBB) {
2155 // If BB's only successor is the other successor of the predecessor,
2156 // i.e. a triangle, see if we can hoist any code from this block up
2157 // to the "if" block.
2158 Changed |= SpeculativelyExecuteBB(BI, BB);
2163 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2164 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2165 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2166 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2167 Instruction *Cond = cast<Instruction>(BI->getCondition());
2168 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2169 // 'setne's and'ed together, collect them.
2170 Value *CompVal = 0;
2171 std::vector<ConstantInt*> Values;
2172 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2173 if (CompVal && CompVal->getType()->isInteger()) {
2174 // There might be duplicate constants in the list, which the switch
2175 // instruction can't handle, remove them now.
2176 std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2177 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2179 // Figure out which block is which destination.
2180 BasicBlock *DefaultBB = BI->getSuccessor(1);
2181 BasicBlock *EdgeBB = BI->getSuccessor(0);
2182 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2184 // Create the new switch instruction now.
2185 SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2186 Values.size(), BI);
2188 // Add all of the 'cases' to the switch instruction.
2189 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2190 New->addCase(Values[i], EdgeBB);
2192 // We added edges from PI to the EdgeBB. As such, if there were any
2193 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2194 // the number of edges added.
2195 for (BasicBlock::iterator BBI = EdgeBB->begin();
2196 isa<PHINode>(BBI); ++BBI) {
2197 PHINode *PN = cast<PHINode>(BBI);
2198 Value *InVal = PN->getIncomingValueForBlock(*PI);
2199 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2200 PN->addIncoming(InVal, *PI);
2203 // Erase the old branch instruction.
2204 EraseTerminatorInstAndDCECond(BI);
2205 return true;
2209 return Changed;