1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Peephole optimize the CFG.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/Support/CFG.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/Statistic.h"
34 STATISTIC(NumSpeculations
, "Number of speculative executed instructions");
36 /// SafeToMergeTerminators - Return true if it is safe to merge these two
37 /// terminator instructions together.
39 static bool SafeToMergeTerminators(TerminatorInst
*SI1
, TerminatorInst
*SI2
) {
40 if (SI1
== SI2
) return false; // Can't merge with self!
42 // It is not safe to merge these two switch instructions if they have a common
43 // successor, and if that successor has a PHI node, and if *that* PHI node has
44 // conflicting incoming values from the two switch blocks.
45 BasicBlock
*SI1BB
= SI1
->getParent();
46 BasicBlock
*SI2BB
= SI2
->getParent();
47 SmallPtrSet
<BasicBlock
*, 16> SI1Succs(succ_begin(SI1BB
), succ_end(SI1BB
));
49 for (succ_iterator I
= succ_begin(SI2BB
), E
= succ_end(SI2BB
); I
!= E
; ++I
)
50 if (SI1Succs
.count(*I
))
51 for (BasicBlock::iterator BBI
= (*I
)->begin();
52 isa
<PHINode
>(BBI
); ++BBI
) {
53 PHINode
*PN
= cast
<PHINode
>(BBI
);
54 if (PN
->getIncomingValueForBlock(SI1BB
) !=
55 PN
->getIncomingValueForBlock(SI2BB
))
62 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
63 /// now be entries in it from the 'NewPred' block. The values that will be
64 /// flowing into the PHI nodes will be the same as those coming in from
65 /// ExistPred, an existing predecessor of Succ.
66 static void AddPredecessorToBlock(BasicBlock
*Succ
, BasicBlock
*NewPred
,
67 BasicBlock
*ExistPred
) {
68 assert(std::find(succ_begin(ExistPred
), succ_end(ExistPred
), Succ
) !=
69 succ_end(ExistPred
) && "ExistPred is not a predecessor of Succ!");
70 if (!isa
<PHINode
>(Succ
->begin())) return; // Quick exit if nothing to do
73 for (BasicBlock::iterator I
= Succ
->begin();
74 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
75 PN
->addIncoming(PN
->getIncomingValueForBlock(ExistPred
), NewPred
);
78 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
79 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
81 /// Assumption: Succ is the single successor for BB.
83 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
84 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
86 DOUT
<< "Looking to fold " << BB
->getNameStart() << " into "
87 << Succ
->getNameStart() << "\n";
88 // Shortcut, if there is only a single predecessor it must be BB and merging
90 if (Succ
->getSinglePredecessor()) return true;
92 typedef SmallPtrSet
<Instruction
*, 16> InstrSet
;
95 // Make a list of all phi nodes in BB
96 BasicBlock::iterator BBI
= BB
->begin();
97 while (isa
<PHINode
>(*BBI
)) BBPHIs
.insert(BBI
++);
99 // Make a list of the predecessors of BB
100 typedef SmallPtrSet
<BasicBlock
*, 16> BlockSet
;
101 BlockSet
BBPreds(pred_begin(BB
), pred_end(BB
));
103 // Use that list to make another list of common predecessors of BB and Succ
104 BlockSet CommonPreds
;
105 for (pred_iterator PI
= pred_begin(Succ
), PE
= pred_end(Succ
);
107 if (BBPreds
.count(*PI
))
108 CommonPreds
.insert(*PI
);
110 // Shortcut, if there are no common predecessors, merging is always safe
111 if (CommonPreds
.empty())
114 // Look at all the phi nodes in Succ, to see if they present a conflict when
115 // merging these blocks
116 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
117 PHINode
*PN
= cast
<PHINode
>(I
);
119 // If the incoming value from BB is again a PHINode in
120 // BB which has the same incoming value for *PI as PN does, we can
121 // merge the phi nodes and then the blocks can still be merged
122 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
123 if (BBPN
&& BBPN
->getParent() == BB
) {
124 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
126 if (BBPN
->getIncomingValueForBlock(*PI
)
127 != PN
->getIncomingValueForBlock(*PI
)) {
128 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
129 << Succ
->getNameStart() << " is conflicting with "
130 << BBPN
->getNameStart() << " with regard to common predecessor "
131 << (*PI
)->getNameStart() << "\n";
135 // Remove this phinode from the list of phis in BB, since it has been
139 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
140 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
142 // See if the incoming value for the common predecessor is equal to the
143 // one for BB, in which case this phi node will not prevent the merging
145 if (Val
!= PN
->getIncomingValueForBlock(*PI
)) {
146 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
147 << Succ
->getNameStart() << " is conflicting with regard to common "
148 << "predecessor " << (*PI
)->getNameStart() << "\n";
155 // If there are any other phi nodes in BB that don't have a phi node in Succ
156 // to merge with, they must be moved to Succ completely. However, for any
157 // predecessors of Succ, branches will be added to the phi node that just
158 // point to itself. So, for any common predecessors, this must not cause
160 for (InstrSet::iterator I
= BBPHIs
.begin(), E
= BBPHIs
.end();
162 PHINode
*PN
= cast
<PHINode
>(*I
);
163 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
165 if (PN
->getIncomingValueForBlock(*PI
) != PN
) {
166 DOUT
<< "Can't fold, phi node " << *PN
->getNameStart() << " in "
167 << BB
->getNameStart() << " is conflicting with regard to common "
168 << "predecessor " << (*PI
)->getNameStart() << "\n";
176 /// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
177 /// branch to Succ, and contains no instructions other than PHI nodes and the
178 /// branch. If possible, eliminate BB.
179 static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
181 // Check to see if merging these blocks would cause conflicts for any of the
182 // phi nodes in BB or Succ. If not, we can safely merge.
183 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
185 DOUT
<< "Killing Trivial BB: \n" << *BB
;
187 if (isa
<PHINode
>(Succ
->begin())) {
188 // If there is more than one pred of succ, and there are PHI nodes in
189 // the successor, then we need to add incoming edges for the PHI nodes
191 const SmallVector
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
193 // Loop over all of the PHI nodes in the successor of BB.
194 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
195 PHINode
*PN
= cast
<PHINode
>(I
);
196 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
197 assert(OldVal
&& "No entry in PHI for Pred BB!");
199 // If this incoming value is one of the PHI nodes in BB, the new entries
200 // in the PHI node are the entries from the old PHI.
201 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
202 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
203 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
)
204 // Note that, since we are merging phi nodes and BB and Succ might
205 // have common predecessors, we could end up with a phi node with
206 // identical incoming branches. This will be cleaned up later (and
207 // will trigger asserts if we try to clean it up now, without also
208 // simplifying the corresponding conditional branch).
209 PN
->addIncoming(OldValPN
->getIncomingValue(i
),
210 OldValPN
->getIncomingBlock(i
));
212 // Add an incoming value for each of the new incoming values.
213 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
)
214 PN
->addIncoming(OldVal
, BBPreds
[i
]);
219 if (isa
<PHINode
>(&BB
->front())) {
220 SmallVector
<BasicBlock
*, 16>
221 OldSuccPreds(pred_begin(Succ
), pred_end(Succ
));
223 // Move all PHI nodes in BB to Succ if they are alive, otherwise
225 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
226 if (PN
->use_empty()) {
227 // Just remove the dead phi. This happens if Succ's PHIs were the only
228 // users of the PHI nodes.
229 PN
->eraseFromParent();
233 // The instruction is alive, so this means that BB must dominate all
234 // predecessors of Succ (Since all uses of the PN are after its
235 // definition, so in Succ or a block dominated by Succ. If a predecessor
236 // of Succ would not be dominated by BB, PN would violate the def before
237 // use SSA demand). Therefore, we can simply move the phi node to the
239 Succ
->getInstList().splice(Succ
->begin(),
240 BB
->getInstList(), BB
->begin());
242 // We need to add new entries for the PHI node to account for
243 // predecessors of Succ that the PHI node does not take into
244 // account. At this point, since we know that BB dominated succ and all
245 // of its predecessors, this means that we should any newly added
246 // incoming edges should use the PHI node itself as the value for these
247 // edges, because they are loop back edges.
248 for (unsigned i
= 0, e
= OldSuccPreds
.size(); i
!= e
; ++i
)
249 if (OldSuccPreds
[i
] != BB
)
250 PN
->addIncoming(PN
, OldSuccPreds
[i
]);
254 // Everything that jumped to BB now goes to Succ.
255 BB
->replaceAllUsesWith(Succ
);
256 if (!Succ
->hasName()) Succ
->takeName(BB
);
257 BB
->eraseFromParent(); // Delete the old basic block.
261 /// GetIfCondition - Given a basic block (BB) with two predecessors (and
262 /// presumably PHI nodes in it), check to see if the merge at this block is due
263 /// to an "if condition". If so, return the boolean condition that determines
264 /// which entry into BB will be taken. Also, return by references the block
265 /// that will be entered from if the condition is true, and the block that will
266 /// be entered if the condition is false.
269 static Value
*GetIfCondition(BasicBlock
*BB
,
270 BasicBlock
*&IfTrue
, BasicBlock
*&IfFalse
) {
271 assert(std::distance(pred_begin(BB
), pred_end(BB
)) == 2 &&
272 "Function can only handle blocks with 2 predecessors!");
273 BasicBlock
*Pred1
= *pred_begin(BB
);
274 BasicBlock
*Pred2
= *++pred_begin(BB
);
276 // We can only handle branches. Other control flow will be lowered to
277 // branches if possible anyway.
278 if (!isa
<BranchInst
>(Pred1
->getTerminator()) ||
279 !isa
<BranchInst
>(Pred2
->getTerminator()))
281 BranchInst
*Pred1Br
= cast
<BranchInst
>(Pred1
->getTerminator());
282 BranchInst
*Pred2Br
= cast
<BranchInst
>(Pred2
->getTerminator());
284 // Eliminate code duplication by ensuring that Pred1Br is conditional if
286 if (Pred2Br
->isConditional()) {
287 // If both branches are conditional, we don't have an "if statement". In
288 // reality, we could transform this case, but since the condition will be
289 // required anyway, we stand no chance of eliminating it, so the xform is
290 // probably not profitable.
291 if (Pred1Br
->isConditional())
294 std::swap(Pred1
, Pred2
);
295 std::swap(Pred1Br
, Pred2Br
);
298 if (Pred1Br
->isConditional()) {
299 // If we found a conditional branch predecessor, make sure that it branches
300 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
301 if (Pred1Br
->getSuccessor(0) == BB
&&
302 Pred1Br
->getSuccessor(1) == Pred2
) {
305 } else if (Pred1Br
->getSuccessor(0) == Pred2
&&
306 Pred1Br
->getSuccessor(1) == BB
) {
310 // We know that one arm of the conditional goes to BB, so the other must
311 // go somewhere unrelated, and this must not be an "if statement".
315 // The only thing we have to watch out for here is to make sure that Pred2
316 // doesn't have incoming edges from other blocks. If it does, the condition
317 // doesn't dominate BB.
318 if (++pred_begin(Pred2
) != pred_end(Pred2
))
321 return Pred1Br
->getCondition();
324 // Ok, if we got here, both predecessors end with an unconditional branch to
325 // BB. Don't panic! If both blocks only have a single (identical)
326 // predecessor, and THAT is a conditional branch, then we're all ok!
327 if (pred_begin(Pred1
) == pred_end(Pred1
) ||
328 ++pred_begin(Pred1
) != pred_end(Pred1
) ||
329 pred_begin(Pred2
) == pred_end(Pred2
) ||
330 ++pred_begin(Pred2
) != pred_end(Pred2
) ||
331 *pred_begin(Pred1
) != *pred_begin(Pred2
))
334 // Otherwise, if this is a conditional branch, then we can use it!
335 BasicBlock
*CommonPred
= *pred_begin(Pred1
);
336 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CommonPred
->getTerminator())) {
337 assert(BI
->isConditional() && "Two successors but not conditional?");
338 if (BI
->getSuccessor(0) == Pred1
) {
345 return BI
->getCondition();
351 /// DominatesMergePoint - If we have a merge point of an "if condition" as
352 /// accepted above, return true if the specified value dominates the block. We
353 /// don't handle the true generality of domination here, just a special case
354 /// which works well enough for us.
356 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
357 /// see if V (which must be an instruction) is cheap to compute and is
358 /// non-trapping. If both are true, the instruction is inserted into the set
359 /// and true is returned.
360 static bool DominatesMergePoint(Value
*V
, BasicBlock
*BB
,
361 std::set
<Instruction
*> *AggressiveInsts
) {
362 Instruction
*I
= dyn_cast
<Instruction
>(V
);
364 // Non-instructions all dominate instructions, but not all constantexprs
365 // can be executed unconditionally.
366 if (ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(V
))
371 BasicBlock
*PBB
= I
->getParent();
373 // We don't want to allow weird loops that might have the "if condition" in
374 // the bottom of this block.
375 if (PBB
== BB
) return false;
377 // If this instruction is defined in a block that contains an unconditional
378 // branch to BB, then it must be in the 'conditional' part of the "if
380 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PBB
->getTerminator()))
381 if (BI
->isUnconditional() && BI
->getSuccessor(0) == BB
) {
382 if (!AggressiveInsts
) return false;
383 // Okay, it looks like the instruction IS in the "condition". Check to
384 // see if its a cheap instruction to unconditionally compute, and if it
385 // only uses stuff defined outside of the condition. If so, hoist it out.
386 switch (I
->getOpcode()) {
387 default: return false; // Cannot hoist this out safely.
388 case Instruction::Load
: {
389 // We can hoist loads that are non-volatile and obviously cannot trap.
390 if (cast
<LoadInst
>(I
)->isVolatile())
392 // FIXME: A computation of a constant can trap!
393 if (!isa
<AllocaInst
>(I
->getOperand(0)) &&
394 !isa
<Constant
>(I
->getOperand(0)))
397 // Finally, we have to check to make sure there are no instructions
398 // before the load in its basic block, as we are going to hoist the loop
399 // out to its predecessor.
400 BasicBlock::iterator IP
= PBB
->begin();
401 while (isa
<DbgInfoIntrinsic
>(IP
))
403 if (IP
!= BasicBlock::iterator(I
))
407 case Instruction::Add
:
408 case Instruction::Sub
:
409 case Instruction::And
:
410 case Instruction::Or
:
411 case Instruction::Xor
:
412 case Instruction::Shl
:
413 case Instruction::LShr
:
414 case Instruction::AShr
:
415 case Instruction::ICmp
:
416 case Instruction::FCmp
:
417 if (I
->getOperand(0)->getType()->isFPOrFPVector())
418 return false; // FP arithmetic might trap.
419 break; // These are all cheap and non-trapping instructions.
422 // Okay, we can only really hoist these out if their operands are not
423 // defined in the conditional region.
424 for (User::op_iterator i
= I
->op_begin(), e
= I
->op_end(); i
!= e
; ++i
)
425 if (!DominatesMergePoint(*i
, BB
, 0))
427 // Okay, it's safe to do this! Remember this instruction.
428 AggressiveInsts
->insert(I
);
434 /// GatherConstantSetEQs - Given a potentially 'or'd together collection of
435 /// icmp_eq instructions that compare a value against a constant, return the
436 /// value being compared, and stick the constant into the Values vector.
437 static Value
*GatherConstantSetEQs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
438 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
439 if (Inst
->getOpcode() == Instruction::ICmp
&&
440 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_EQ
) {
441 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
443 return Inst
->getOperand(0);
444 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
446 return Inst
->getOperand(1);
448 } else if (Inst
->getOpcode() == Instruction::Or
) {
449 if (Value
*LHS
= GatherConstantSetEQs(Inst
->getOperand(0), Values
))
450 if (Value
*RHS
= GatherConstantSetEQs(Inst
->getOperand(1), Values
))
458 /// GatherConstantSetNEs - Given a potentially 'and'd together collection of
459 /// setne instructions that compare a value against a constant, return the value
460 /// being compared, and stick the constant into the Values vector.
461 static Value
*GatherConstantSetNEs(Value
*V
, std::vector
<ConstantInt
*> &Values
){
462 if (Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
463 if (Inst
->getOpcode() == Instruction::ICmp
&&
464 cast
<ICmpInst
>(Inst
)->getPredicate() == ICmpInst::ICMP_NE
) {
465 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1))) {
467 return Inst
->getOperand(0);
468 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Inst
->getOperand(0))) {
470 return Inst
->getOperand(1);
472 } else if (Inst
->getOpcode() == Instruction::And
) {
473 if (Value
*LHS
= GatherConstantSetNEs(Inst
->getOperand(0), Values
))
474 if (Value
*RHS
= GatherConstantSetNEs(Inst
->getOperand(1), Values
))
482 /// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
483 /// bunch of comparisons of one value against constants, return the value and
484 /// the constants being compared.
485 static bool GatherValueComparisons(Instruction
*Cond
, Value
*&CompVal
,
486 std::vector
<ConstantInt
*> &Values
) {
487 if (Cond
->getOpcode() == Instruction::Or
) {
488 CompVal
= GatherConstantSetEQs(Cond
, Values
);
490 // Return true to indicate that the condition is true if the CompVal is
491 // equal to one of the constants.
493 } else if (Cond
->getOpcode() == Instruction::And
) {
494 CompVal
= GatherConstantSetNEs(Cond
, Values
);
496 // Return false to indicate that the condition is false if the CompVal is
497 // equal to one of the constants.
503 static void EraseTerminatorInstAndDCECond(TerminatorInst
*TI
) {
504 Instruction
* Cond
= 0;
505 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
506 Cond
= dyn_cast
<Instruction
>(SI
->getCondition());
507 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
508 if (BI
->isConditional())
509 Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
512 TI
->eraseFromParent();
513 if (Cond
) RecursivelyDeleteTriviallyDeadInstructions(Cond
);
516 /// isValueEqualityComparison - Return true if the specified terminator checks
517 /// to see if a value is equal to constant integer value.
518 static Value
*isValueEqualityComparison(TerminatorInst
*TI
) {
519 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
520 // Do not permit merging of large switch instructions into their
521 // predecessors unless there is only one predecessor.
522 if (SI
->getNumSuccessors() * std::distance(pred_begin(SI
->getParent()),
523 pred_end(SI
->getParent())) > 128)
526 return SI
->getCondition();
528 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
))
529 if (BI
->isConditional() && BI
->getCondition()->hasOneUse())
530 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition()))
531 if ((ICI
->getPredicate() == ICmpInst::ICMP_EQ
||
532 ICI
->getPredicate() == ICmpInst::ICMP_NE
) &&
533 isa
<ConstantInt
>(ICI
->getOperand(1)))
534 return ICI
->getOperand(0);
538 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
539 /// decode all of the 'cases' that it represents and return the 'default' block.
541 GetValueEqualityComparisonCases(TerminatorInst
*TI
,
542 std::vector
<std::pair
<ConstantInt
*,
543 BasicBlock
*> > &Cases
) {
544 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
545 Cases
.reserve(SI
->getNumCases());
546 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
547 Cases
.push_back(std::make_pair(SI
->getCaseValue(i
), SI
->getSuccessor(i
)));
548 return SI
->getDefaultDest();
551 BranchInst
*BI
= cast
<BranchInst
>(TI
);
552 ICmpInst
*ICI
= cast
<ICmpInst
>(BI
->getCondition());
553 Cases
.push_back(std::make_pair(cast
<ConstantInt
>(ICI
->getOperand(1)),
554 BI
->getSuccessor(ICI
->getPredicate() ==
555 ICmpInst::ICMP_NE
)));
556 return BI
->getSuccessor(ICI
->getPredicate() == ICmpInst::ICMP_EQ
);
560 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
561 /// in the list that match the specified block.
562 static void EliminateBlockCases(BasicBlock
*BB
,
563 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &Cases
) {
564 for (unsigned i
= 0, e
= Cases
.size(); i
!= e
; ++i
)
565 if (Cases
[i
].second
== BB
) {
566 Cases
.erase(Cases
.begin()+i
);
571 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
574 ValuesOverlap(std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C1
,
575 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > &C2
) {
576 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > *V1
= &C1
, *V2
= &C2
;
578 // Make V1 be smaller than V2.
579 if (V1
->size() > V2
->size())
582 if (V1
->size() == 0) return false;
583 if (V1
->size() == 1) {
585 ConstantInt
*TheVal
= (*V1
)[0].first
;
586 for (unsigned i
= 0, e
= V2
->size(); i
!= e
; ++i
)
587 if (TheVal
== (*V2
)[i
].first
)
591 // Otherwise, just sort both lists and compare element by element.
592 std::sort(V1
->begin(), V1
->end());
593 std::sort(V2
->begin(), V2
->end());
594 unsigned i1
= 0, i2
= 0, e1
= V1
->size(), e2
= V2
->size();
595 while (i1
!= e1
&& i2
!= e2
) {
596 if ((*V1
)[i1
].first
== (*V2
)[i2
].first
)
598 if ((*V1
)[i1
].first
< (*V2
)[i2
].first
)
606 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
607 /// terminator instruction and its block is known to only have a single
608 /// predecessor block, check to see if that predecessor is also a value
609 /// comparison with the same value, and if that comparison determines the
610 /// outcome of this comparison. If so, simplify TI. This does a very limited
611 /// form of jump threading.
612 static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst
*TI
,
614 Value
*PredVal
= isValueEqualityComparison(Pred
->getTerminator());
615 if (!PredVal
) return false; // Not a value comparison in predecessor.
617 Value
*ThisVal
= isValueEqualityComparison(TI
);
618 assert(ThisVal
&& "This isn't a value comparison!!");
619 if (ThisVal
!= PredVal
) return false; // Different predicates.
621 // Find out information about when control will move from Pred to TI's block.
622 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
623 BasicBlock
*PredDef
= GetValueEqualityComparisonCases(Pred
->getTerminator(),
625 EliminateBlockCases(PredDef
, PredCases
); // Remove default from cases.
627 // Find information about how control leaves this block.
628 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > ThisCases
;
629 BasicBlock
*ThisDef
= GetValueEqualityComparisonCases(TI
, ThisCases
);
630 EliminateBlockCases(ThisDef
, ThisCases
); // Remove default from cases.
632 // If TI's block is the default block from Pred's comparison, potentially
633 // simplify TI based on this knowledge.
634 if (PredDef
== TI
->getParent()) {
635 // If we are here, we know that the value is none of those cases listed in
636 // PredCases. If there are any cases in ThisCases that are in PredCases, we
638 if (ValuesOverlap(PredCases
, ThisCases
)) {
639 if (isa
<BranchInst
>(TI
)) {
640 // Okay, one of the successors of this condbr is dead. Convert it to a
642 assert(ThisCases
.size() == 1 && "Branch can only have one case!");
643 // Insert the new branch.
644 Instruction
*NI
= BranchInst::Create(ThisDef
, TI
);
646 // Remove PHI node entries for the dead edge.
647 ThisCases
[0].second
->removePredecessor(TI
->getParent());
649 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
650 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
652 EraseTerminatorInstAndDCECond(TI
);
656 SwitchInst
*SI
= cast
<SwitchInst
>(TI
);
657 // Okay, TI has cases that are statically dead, prune them away.
658 SmallPtrSet
<Constant
*, 16> DeadCases
;
659 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
660 DeadCases
.insert(PredCases
[i
].first
);
662 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
663 << "Through successor TI: " << *TI
;
665 for (unsigned i
= SI
->getNumCases()-1; i
!= 0; --i
)
666 if (DeadCases
.count(SI
->getCaseValue(i
))) {
667 SI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
671 DOUT
<< "Leaving: " << *TI
<< "\n";
677 // Otherwise, TI's block must correspond to some matched value. Find out
678 // which value (or set of values) this is.
679 ConstantInt
*TIV
= 0;
680 BasicBlock
*TIBB
= TI
->getParent();
681 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
682 if (PredCases
[i
].second
== TIBB
) {
684 TIV
= PredCases
[i
].first
;
686 return false; // Cannot handle multiple values coming to this block.
688 assert(TIV
&& "No edge from pred to succ?");
690 // Okay, we found the one constant that our value can be if we get into TI's
691 // BB. Find out which successor will unconditionally be branched to.
692 BasicBlock
*TheRealDest
= 0;
693 for (unsigned i
= 0, e
= ThisCases
.size(); i
!= e
; ++i
)
694 if (ThisCases
[i
].first
== TIV
) {
695 TheRealDest
= ThisCases
[i
].second
;
699 // If not handled by any explicit cases, it is handled by the default case.
700 if (TheRealDest
== 0) TheRealDest
= ThisDef
;
702 // Remove PHI node entries for dead edges.
703 BasicBlock
*CheckEdge
= TheRealDest
;
704 for (succ_iterator SI
= succ_begin(TIBB
), e
= succ_end(TIBB
); SI
!= e
; ++SI
)
705 if (*SI
!= CheckEdge
)
706 (*SI
)->removePredecessor(TIBB
);
710 // Insert the new branch.
711 Instruction
*NI
= BranchInst::Create(TheRealDest
, TI
);
713 DOUT
<< "Threading pred instr: " << *Pred
->getTerminator()
714 << "Through successor TI: " << *TI
<< "Leaving: " << *NI
<< "\n";
716 EraseTerminatorInstAndDCECond(TI
);
723 /// ConstantIntOrdering - This class implements a stable ordering of constant
724 /// integers that does not depend on their address. This is important for
725 /// applications that sort ConstantInt's to ensure uniqueness.
726 struct ConstantIntOrdering
{
727 bool operator()(const ConstantInt
*LHS
, const ConstantInt
*RHS
) const {
728 return LHS
->getValue().ult(RHS
->getValue());
733 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
734 /// equality comparison instruction (either a switch or a branch on "X == c").
735 /// See if any of the predecessors of the terminator block are value comparisons
736 /// on the same value. If so, and if safe to do so, fold them together.
737 static bool FoldValueComparisonIntoPredecessors(TerminatorInst
*TI
) {
738 BasicBlock
*BB
= TI
->getParent();
739 Value
*CV
= isValueEqualityComparison(TI
); // CondVal
740 assert(CV
&& "Not a comparison?");
741 bool Changed
= false;
743 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
744 while (!Preds
.empty()) {
745 BasicBlock
*Pred
= Preds
.back();
748 // See if the predecessor is a comparison with the same value.
749 TerminatorInst
*PTI
= Pred
->getTerminator();
750 Value
*PCV
= isValueEqualityComparison(PTI
); // PredCondVal
752 if (PCV
== CV
&& SafeToMergeTerminators(TI
, PTI
)) {
753 // Figure out which 'cases' to copy from SI to PSI.
754 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > BBCases
;
755 BasicBlock
*BBDefault
= GetValueEqualityComparisonCases(TI
, BBCases
);
757 std::vector
<std::pair
<ConstantInt
*, BasicBlock
*> > PredCases
;
758 BasicBlock
*PredDefault
= GetValueEqualityComparisonCases(PTI
, PredCases
);
760 // Based on whether the default edge from PTI goes to BB or not, fill in
761 // PredCases and PredDefault with the new switch cases we would like to
763 SmallVector
<BasicBlock
*, 8> NewSuccessors
;
765 if (PredDefault
== BB
) {
766 // If this is the default destination from PTI, only the edges in TI
767 // that don't occur in PTI, or that branch to BB will be activated.
768 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
769 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
770 if (PredCases
[i
].second
!= BB
)
771 PTIHandled
.insert(PredCases
[i
].first
);
773 // The default destination is BB, we don't need explicit targets.
774 std::swap(PredCases
[i
], PredCases
.back());
775 PredCases
.pop_back();
779 // Reconstruct the new switch statement we will be building.
780 if (PredDefault
!= BBDefault
) {
781 PredDefault
->removePredecessor(Pred
);
782 PredDefault
= BBDefault
;
783 NewSuccessors
.push_back(BBDefault
);
785 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
786 if (!PTIHandled
.count(BBCases
[i
].first
) &&
787 BBCases
[i
].second
!= BBDefault
) {
788 PredCases
.push_back(BBCases
[i
]);
789 NewSuccessors
.push_back(BBCases
[i
].second
);
793 // If this is not the default destination from PSI, only the edges
794 // in SI that occur in PSI with a destination of BB will be
796 std::set
<ConstantInt
*, ConstantIntOrdering
> PTIHandled
;
797 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
798 if (PredCases
[i
].second
== BB
) {
799 PTIHandled
.insert(PredCases
[i
].first
);
800 std::swap(PredCases
[i
], PredCases
.back());
801 PredCases
.pop_back();
805 // Okay, now we know which constants were sent to BB from the
806 // predecessor. Figure out where they will all go now.
807 for (unsigned i
= 0, e
= BBCases
.size(); i
!= e
; ++i
)
808 if (PTIHandled
.count(BBCases
[i
].first
)) {
809 // If this is one we are capable of getting...
810 PredCases
.push_back(BBCases
[i
]);
811 NewSuccessors
.push_back(BBCases
[i
].second
);
812 PTIHandled
.erase(BBCases
[i
].first
);// This constant is taken care of
815 // If there are any constants vectored to BB that TI doesn't handle,
816 // they must go to the default destination of TI.
817 for (std::set
<ConstantInt
*, ConstantIntOrdering
>::iterator I
=
819 E
= PTIHandled
.end(); I
!= E
; ++I
) {
820 PredCases
.push_back(std::make_pair(*I
, BBDefault
));
821 NewSuccessors
.push_back(BBDefault
);
825 // Okay, at this point, we know which new successor Pred will get. Make
826 // sure we update the number of entries in the PHI nodes for these
828 for (unsigned i
= 0, e
= NewSuccessors
.size(); i
!= e
; ++i
)
829 AddPredecessorToBlock(NewSuccessors
[i
], Pred
, BB
);
831 // Now that the successors are updated, create the new Switch instruction.
832 SwitchInst
*NewSI
= SwitchInst::Create(CV
, PredDefault
,
833 PredCases
.size(), PTI
);
834 for (unsigned i
= 0, e
= PredCases
.size(); i
!= e
; ++i
)
835 NewSI
->addCase(PredCases
[i
].first
, PredCases
[i
].second
);
837 EraseTerminatorInstAndDCECond(PTI
);
839 // Okay, last check. If BB is still a successor of PSI, then we must
840 // have an infinite loop case. If so, add an infinitely looping block
841 // to handle the case to preserve the behavior of the code.
842 BasicBlock
*InfLoopBlock
= 0;
843 for (unsigned i
= 0, e
= NewSI
->getNumSuccessors(); i
!= e
; ++i
)
844 if (NewSI
->getSuccessor(i
) == BB
) {
845 if (InfLoopBlock
== 0) {
846 // Insert it at the end of the function, because it's either code,
847 // or it won't matter if it's hot. :)
848 InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
849 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
851 NewSI
->setSuccessor(i
, InfLoopBlock
);
860 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
861 /// BB2, hoist any common code in the two blocks up into the branch block. The
862 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
863 static bool HoistThenElseCodeToIf(BranchInst
*BI
) {
864 // This does very trivial matching, with limited scanning, to find identical
865 // instructions in the two blocks. In particular, we don't want to get into
866 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
867 // such, we currently just scan for obviously identical instructions in an
869 BasicBlock
*BB1
= BI
->getSuccessor(0); // The true destination.
870 BasicBlock
*BB2
= BI
->getSuccessor(1); // The false destination
872 BasicBlock::iterator BB1_Itr
= BB1
->begin();
873 BasicBlock::iterator BB2_Itr
= BB2
->begin();
875 Instruction
*I1
= BB1_Itr
++, *I2
= BB2_Itr
++;
876 while (isa
<DbgInfoIntrinsic
>(I1
))
878 while (isa
<DbgInfoIntrinsic
>(I2
))
880 if (I1
->getOpcode() != I2
->getOpcode() || isa
<PHINode
>(I1
) ||
881 isa
<InvokeInst
>(I1
) || !I1
->isIdenticalTo(I2
))
884 // If we get here, we can hoist at least one instruction.
885 BasicBlock
*BIParent
= BI
->getParent();
888 // If we are hoisting the terminator instruction, don't move one (making a
889 // broken BB), instead clone it, and remove BI.
890 if (isa
<TerminatorInst
>(I1
))
891 goto HoistTerminator
;
893 // For a normal instruction, we just move one to right before the branch,
894 // then replace all uses of the other with the first. Finally, we remove
895 // the now redundant second instruction.
896 BIParent
->getInstList().splice(BI
, BB1
->getInstList(), I1
);
897 if (!I2
->use_empty())
898 I2
->replaceAllUsesWith(I1
);
899 BB2
->getInstList().erase(I2
);
902 while (isa
<DbgInfoIntrinsic
>(I1
))
905 while (isa
<DbgInfoIntrinsic
>(I2
))
907 } while (I1
->getOpcode() == I2
->getOpcode() && I1
->isIdenticalTo(I2
));
912 // Okay, it is safe to hoist the terminator.
913 Instruction
*NT
= I1
->clone();
914 BIParent
->getInstList().insert(BI
, NT
);
915 if (NT
->getType() != Type::VoidTy
) {
916 I1
->replaceAllUsesWith(NT
);
917 I2
->replaceAllUsesWith(NT
);
921 // Hoisting one of the terminators from our successor is a great thing.
922 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
923 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
924 // nodes, so we insert select instruction to compute the final result.
925 std::map
<std::pair
<Value
*,Value
*>, SelectInst
*> InsertedSelects
;
926 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
) {
928 for (BasicBlock::iterator BBI
= SI
->begin();
929 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
930 Value
*BB1V
= PN
->getIncomingValueForBlock(BB1
);
931 Value
*BB2V
= PN
->getIncomingValueForBlock(BB2
);
933 // These values do not agree. Insert a select instruction before NT
934 // that determines the right value.
935 SelectInst
*&SI
= InsertedSelects
[std::make_pair(BB1V
, BB2V
)];
937 SI
= SelectInst::Create(BI
->getCondition(), BB1V
, BB2V
,
938 BB1V
->getName()+"."+BB2V
->getName(), NT
);
939 // Make the PHI node use the select for all incoming values for BB1/BB2
940 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
941 if (PN
->getIncomingBlock(i
) == BB1
|| PN
->getIncomingBlock(i
) == BB2
)
942 PN
->setIncomingValue(i
, SI
);
947 // Update any PHI nodes in our new successors.
948 for (succ_iterator SI
= succ_begin(BB1
), E
= succ_end(BB1
); SI
!= E
; ++SI
)
949 AddPredecessorToBlock(*SI
, BIParent
, BB1
);
951 EraseTerminatorInstAndDCECond(BI
);
955 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
956 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
957 /// (for now, restricted to a single instruction that's side effect free) from
958 /// the BB1 into the branch block to speculatively execute it.
959 static bool SpeculativelyExecuteBB(BranchInst
*BI
, BasicBlock
*BB1
) {
960 // Only speculatively execution a single instruction (not counting the
961 // terminator) for now.
962 Instruction
*HInst
= NULL
;
963 Instruction
*Term
= BB1
->getTerminator();
964 for (BasicBlock::iterator BBI
= BB1
->begin(), BBE
= BB1
->end();
966 Instruction
*I
= BBI
;
968 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
969 if (I
== Term
) break;
979 // Be conservative for now. FP select instruction can often be expensive.
980 Value
*BrCond
= BI
->getCondition();
981 if (isa
<Instruction
>(BrCond
) &&
982 cast
<Instruction
>(BrCond
)->getOpcode() == Instruction::FCmp
)
985 // If BB1 is actually on the false edge of the conditional branch, remember
986 // to swap the select operands later.
988 if (BB1
!= BI
->getSuccessor(0)) {
989 assert(BB1
== BI
->getSuccessor(1) && "No edge from 'if' block?");
996 // br i1 %t1, label %BB1, label %BB2
1005 // %t3 = select i1 %t1, %t2, %t3
1006 switch (HInst
->getOpcode()) {
1007 default: return false; // Not safe / profitable to hoist.
1008 case Instruction::Add
:
1009 case Instruction::Sub
:
1010 // FP arithmetic might trap. Not worth doing for vector ops.
1011 if (HInst
->getType()->isFloatingPoint()
1012 || isa
<VectorType
>(HInst
->getType()))
1015 case Instruction::And
:
1016 case Instruction::Or
:
1017 case Instruction::Xor
:
1018 case Instruction::Shl
:
1019 case Instruction::LShr
:
1020 case Instruction::AShr
:
1021 // Don't mess with vector operations.
1022 if (isa
<VectorType
>(HInst
->getType()))
1024 break; // These are all cheap and non-trapping instructions.
1027 // If the instruction is obviously dead, don't try to predicate it.
1028 if (HInst
->use_empty()) {
1029 HInst
->eraseFromParent();
1033 // Can we speculatively execute the instruction? And what is the value
1034 // if the condition is false? Consider the phi uses, if the incoming value
1035 // from the "if" block are all the same V, then V is the value of the
1036 // select if the condition is false.
1037 BasicBlock
*BIParent
= BI
->getParent();
1038 SmallVector
<PHINode
*, 4> PHIUses
;
1039 Value
*FalseV
= NULL
;
1041 BasicBlock
*BB2
= BB1
->getTerminator()->getSuccessor(0);
1042 for (Value::use_iterator UI
= HInst
->use_begin(), E
= HInst
->use_end();
1044 // Ignore any user that is not a PHI node in BB2. These can only occur in
1045 // unreachable blocks, because they would not be dominated by the instr.
1046 PHINode
*PN
= dyn_cast
<PHINode
>(UI
);
1047 if (!PN
|| PN
->getParent() != BB2
)
1049 PHIUses
.push_back(PN
);
1051 Value
*PHIV
= PN
->getIncomingValueForBlock(BIParent
);
1054 else if (FalseV
!= PHIV
)
1055 return false; // Inconsistent value when condition is false.
1058 assert(FalseV
&& "Must have at least one user, and it must be a PHI");
1060 // Do not hoist the instruction if any of its operands are defined but not
1061 // used in this BB. The transformation will prevent the operand from
1062 // being sunk into the use block.
1063 for (User::op_iterator i
= HInst
->op_begin(), e
= HInst
->op_end();
1065 Instruction
*OpI
= dyn_cast
<Instruction
>(*i
);
1066 if (OpI
&& OpI
->getParent() == BIParent
&&
1067 !OpI
->isUsedInBasicBlock(BIParent
))
1071 // If we get here, we can hoist the instruction. Try to place it
1072 // before the icmp instruction preceding the conditional branch.
1073 BasicBlock::iterator InsertPos
= BI
;
1074 if (InsertPos
!= BIParent
->begin())
1076 // Skip debug info between condition and branch.
1077 while (InsertPos
!= BIParent
->begin() && isa
<DbgInfoIntrinsic
>(InsertPos
))
1079 if (InsertPos
== BrCond
&& !isa
<PHINode
>(BrCond
)) {
1080 SmallPtrSet
<Instruction
*, 4> BB1Insns
;
1081 for(BasicBlock::iterator BB1I
= BB1
->begin(), BB1E
= BB1
->end();
1082 BB1I
!= BB1E
; ++BB1I
)
1083 BB1Insns
.insert(BB1I
);
1084 for(Value::use_iterator UI
= BrCond
->use_begin(), UE
= BrCond
->use_end();
1086 Instruction
*Use
= cast
<Instruction
>(*UI
);
1087 if (BB1Insns
.count(Use
)) {
1088 // If BrCond uses the instruction that place it just before
1089 // branch instruction.
1096 BIParent
->getInstList().splice(InsertPos
, BB1
->getInstList(), HInst
);
1098 // Create a select whose true value is the speculatively executed value and
1099 // false value is the previously determined FalseV.
1102 SI
= SelectInst::Create(BrCond
, FalseV
, HInst
,
1103 FalseV
->getName() + "." + HInst
->getName(), BI
);
1105 SI
= SelectInst::Create(BrCond
, HInst
, FalseV
,
1106 HInst
->getName() + "." + FalseV
->getName(), BI
);
1108 // Make the PHI node use the select for all incoming values for "then" and
1110 for (unsigned i
= 0, e
= PHIUses
.size(); i
!= e
; ++i
) {
1111 PHINode
*PN
= PHIUses
[i
];
1112 for (unsigned j
= 0, ee
= PN
->getNumIncomingValues(); j
!= ee
; ++j
)
1113 if (PN
->getIncomingBlock(j
) == BB1
||
1114 PN
->getIncomingBlock(j
) == BIParent
)
1115 PN
->setIncomingValue(j
, SI
);
1122 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1123 /// across this block.
1124 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock
*BB
) {
1125 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1128 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1129 if (isa
<DbgInfoIntrinsic
>(BBI
))
1131 if (Size
> 10) return false; // Don't clone large BB's.
1134 // We can only support instructions that do not define values that are
1135 // live outside of the current basic block.
1136 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
1138 Instruction
*U
= cast
<Instruction
>(*UI
);
1139 if (U
->getParent() != BB
|| isa
<PHINode
>(U
)) return false;
1142 // Looks ok, continue checking.
1148 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1149 /// that is defined in the same block as the branch and if any PHI entries are
1150 /// constants, thread edges corresponding to that entry to be branches to their
1151 /// ultimate destination.
1152 static bool FoldCondBranchOnPHI(BranchInst
*BI
) {
1153 BasicBlock
*BB
= BI
->getParent();
1154 PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition());
1155 // NOTE: we currently cannot transform this case if the PHI node is used
1156 // outside of the block.
1157 if (!PN
|| PN
->getParent() != BB
|| !PN
->hasOneUse())
1160 // Degenerate case of a single entry PHI.
1161 if (PN
->getNumIncomingValues() == 1) {
1162 FoldSingleEntryPHINodes(PN
->getParent());
1166 // Now we know that this block has multiple preds and two succs.
1167 if (!BlockIsSimpleEnoughToThreadThrough(BB
)) return false;
1169 // Okay, this is a simple enough basic block. See if any phi values are
1171 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1173 if ((CB
= dyn_cast
<ConstantInt
>(PN
->getIncomingValue(i
))) &&
1174 CB
->getType() == Type::Int1Ty
) {
1175 // Okay, we now know that all edges from PredBB should be revectored to
1176 // branch to RealDest.
1177 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1178 BasicBlock
*RealDest
= BI
->getSuccessor(!CB
->getZExtValue());
1180 if (RealDest
== BB
) continue; // Skip self loops.
1182 // The dest block might have PHI nodes, other predecessors and other
1183 // difficult cases. Instead of being smart about this, just insert a new
1184 // block that jumps to the destination block, effectively splitting
1185 // the edge we are about to create.
1186 BasicBlock
*EdgeBB
= BasicBlock::Create(RealDest
->getName()+".critedge",
1187 RealDest
->getParent(), RealDest
);
1188 BranchInst::Create(RealDest
, EdgeBB
);
1190 for (BasicBlock::iterator BBI
= RealDest
->begin();
1191 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
1192 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1193 PN
->addIncoming(V
, EdgeBB
);
1196 // BB may have instructions that are being threaded over. Clone these
1197 // instructions into EdgeBB. We know that there will be no uses of the
1198 // cloned instructions outside of EdgeBB.
1199 BasicBlock::iterator InsertPt
= EdgeBB
->begin();
1200 std::map
<Value
*, Value
*> TranslateMap
; // Track translated values.
1201 for (BasicBlock::iterator BBI
= BB
->begin(); &*BBI
!= BI
; ++BBI
) {
1202 if (PHINode
*PN
= dyn_cast
<PHINode
>(BBI
)) {
1203 TranslateMap
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1205 // Clone the instruction.
1206 Instruction
*N
= BBI
->clone();
1207 if (BBI
->hasName()) N
->setName(BBI
->getName()+".c");
1209 // Update operands due to translation.
1210 for (User::op_iterator i
= N
->op_begin(), e
= N
->op_end();
1212 std::map
<Value
*, Value
*>::iterator PI
=
1213 TranslateMap
.find(*i
);
1214 if (PI
!= TranslateMap
.end())
1218 // Check for trivial simplification.
1219 if (Constant
*C
= ConstantFoldInstruction(N
)) {
1220 TranslateMap
[BBI
] = C
;
1221 delete N
; // Constant folded away, don't need actual inst
1223 // Insert the new instruction into its new home.
1224 EdgeBB
->getInstList().insert(InsertPt
, N
);
1225 if (!BBI
->use_empty())
1226 TranslateMap
[BBI
] = N
;
1231 // Loop over all of the edges from PredBB to BB, changing them to branch
1232 // to EdgeBB instead.
1233 TerminatorInst
*PredBBTI
= PredBB
->getTerminator();
1234 for (unsigned i
= 0, e
= PredBBTI
->getNumSuccessors(); i
!= e
; ++i
)
1235 if (PredBBTI
->getSuccessor(i
) == BB
) {
1236 BB
->removePredecessor(PredBB
);
1237 PredBBTI
->setSuccessor(i
, EdgeBB
);
1240 // Recurse, simplifying any other constants.
1241 return FoldCondBranchOnPHI(BI
) | true;
1248 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1249 /// PHI node, see if we can eliminate it.
1250 static bool FoldTwoEntryPHINode(PHINode
*PN
) {
1251 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1252 // statement", which has a very simple dominance structure. Basically, we
1253 // are trying to find the condition that is being branched on, which
1254 // subsequently causes this merge to happen. We really want control
1255 // dependence information for this check, but simplifycfg can't keep it up
1256 // to date, and this catches most of the cases we care about anyway.
1258 BasicBlock
*BB
= PN
->getParent();
1259 BasicBlock
*IfTrue
, *IfFalse
;
1260 Value
*IfCond
= GetIfCondition(BB
, IfTrue
, IfFalse
);
1261 if (!IfCond
) return false;
1263 // Okay, we found that we can merge this two-entry phi node into a select.
1264 // Doing so would require us to fold *all* two entry phi nodes in this block.
1265 // At some point this becomes non-profitable (particularly if the target
1266 // doesn't support cmov's). Only do this transformation if there are two or
1267 // fewer PHI nodes in this block.
1268 unsigned NumPhis
= 0;
1269 for (BasicBlock::iterator I
= BB
->begin(); isa
<PHINode
>(I
); ++NumPhis
, ++I
)
1273 DOUT
<< "FOUND IF CONDITION! " << *IfCond
<< " T: "
1274 << IfTrue
->getName() << " F: " << IfFalse
->getName() << "\n";
1276 // Loop over the PHI's seeing if we can promote them all to select
1277 // instructions. While we are at it, keep track of the instructions
1278 // that need to be moved to the dominating block.
1279 std::set
<Instruction
*> AggressiveInsts
;
1281 BasicBlock::iterator AfterPHIIt
= BB
->begin();
1282 while (isa
<PHINode
>(AfterPHIIt
)) {
1283 PHINode
*PN
= cast
<PHINode
>(AfterPHIIt
++);
1284 if (PN
->getIncomingValue(0) == PN
->getIncomingValue(1)) {
1285 if (PN
->getIncomingValue(0) != PN
)
1286 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
1288 PN
->replaceAllUsesWith(UndefValue::get(PN
->getType()));
1289 } else if (!DominatesMergePoint(PN
->getIncomingValue(0), BB
,
1290 &AggressiveInsts
) ||
1291 !DominatesMergePoint(PN
->getIncomingValue(1), BB
,
1292 &AggressiveInsts
)) {
1297 // If we all PHI nodes are promotable, check to make sure that all
1298 // instructions in the predecessor blocks can be promoted as well. If
1299 // not, we won't be able to get rid of the control flow, so it's not
1300 // worth promoting to select instructions.
1301 BasicBlock
*DomBlock
= 0, *IfBlock1
= 0, *IfBlock2
= 0;
1302 PN
= cast
<PHINode
>(BB
->begin());
1303 BasicBlock
*Pred
= PN
->getIncomingBlock(0);
1304 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1306 DomBlock
= *pred_begin(Pred
);
1307 for (BasicBlock::iterator I
= Pred
->begin();
1308 !isa
<TerminatorInst
>(I
); ++I
)
1309 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1310 // This is not an aggressive instruction that we can promote.
1311 // Because of this, we won't be able to get rid of the control
1312 // flow, so the xform is not worth it.
1317 Pred
= PN
->getIncomingBlock(1);
1318 if (cast
<BranchInst
>(Pred
->getTerminator())->isUnconditional()) {
1320 DomBlock
= *pred_begin(Pred
);
1321 for (BasicBlock::iterator I
= Pred
->begin();
1322 !isa
<TerminatorInst
>(I
); ++I
)
1323 if (!AggressiveInsts
.count(I
) && !isa
<DbgInfoIntrinsic
>(I
)) {
1324 // This is not an aggressive instruction that we can promote.
1325 // Because of this, we won't be able to get rid of the control
1326 // flow, so the xform is not worth it.
1331 // If we can still promote the PHI nodes after this gauntlet of tests,
1332 // do all of the PHI's now.
1334 // Move all 'aggressive' instructions, which are defined in the
1335 // conditional parts of the if's up to the dominating block.
1337 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1338 IfBlock1
->getInstList(),
1340 IfBlock1
->getTerminator());
1343 DomBlock
->getInstList().splice(DomBlock
->getTerminator(),
1344 IfBlock2
->getInstList(),
1346 IfBlock2
->getTerminator());
1349 while (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin())) {
1350 // Change the PHI node into a select instruction.
1352 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfFalse
);
1354 PN
->getIncomingValue(PN
->getIncomingBlock(0) == IfTrue
);
1356 Value
*NV
= SelectInst::Create(IfCond
, TrueVal
, FalseVal
, "", AfterPHIIt
);
1357 PN
->replaceAllUsesWith(NV
);
1360 BB
->getInstList().erase(PN
);
1365 /// isTerminatorFirstRelevantInsn - Return true if Term is very first
1366 /// instruction ignoring Phi nodes and dbg intrinsics.
1367 static bool isTerminatorFirstRelevantInsn(BasicBlock
*BB
, Instruction
*Term
) {
1368 BasicBlock::iterator BBI
= Term
;
1369 while (BBI
!= BB
->begin()) {
1371 if (!isa
<DbgInfoIntrinsic
>(BBI
))
1375 if (isa
<PHINode
>(BBI
) || &*BBI
== Term
|| isa
<DbgInfoIntrinsic
>(BBI
))
1380 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1381 /// to two returning blocks, try to merge them together into one return,
1382 /// introducing a select if the return values disagree.
1383 static bool SimplifyCondBranchToTwoReturns(BranchInst
*BI
) {
1384 assert(BI
->isConditional() && "Must be a conditional branch");
1385 BasicBlock
*TrueSucc
= BI
->getSuccessor(0);
1386 BasicBlock
*FalseSucc
= BI
->getSuccessor(1);
1387 ReturnInst
*TrueRet
= cast
<ReturnInst
>(TrueSucc
->getTerminator());
1388 ReturnInst
*FalseRet
= cast
<ReturnInst
>(FalseSucc
->getTerminator());
1390 // Check to ensure both blocks are empty (just a return) or optionally empty
1391 // with PHI nodes. If there are other instructions, merging would cause extra
1392 // computation on one path or the other.
1393 if (!isTerminatorFirstRelevantInsn(TrueSucc
, TrueRet
))
1395 if (!isTerminatorFirstRelevantInsn(FalseSucc
, FalseRet
))
1398 // Okay, we found a branch that is going to two return nodes. If
1399 // there is no return value for this function, just change the
1400 // branch into a return.
1401 if (FalseRet
->getNumOperands() == 0) {
1402 TrueSucc
->removePredecessor(BI
->getParent());
1403 FalseSucc
->removePredecessor(BI
->getParent());
1404 ReturnInst::Create(0, BI
);
1405 EraseTerminatorInstAndDCECond(BI
);
1409 // Otherwise, figure out what the true and false return values are
1410 // so we can insert a new select instruction.
1411 Value
*TrueValue
= TrueRet
->getReturnValue();
1412 Value
*FalseValue
= FalseRet
->getReturnValue();
1414 // Unwrap any PHI nodes in the return blocks.
1415 if (PHINode
*TVPN
= dyn_cast_or_null
<PHINode
>(TrueValue
))
1416 if (TVPN
->getParent() == TrueSucc
)
1417 TrueValue
= TVPN
->getIncomingValueForBlock(BI
->getParent());
1418 if (PHINode
*FVPN
= dyn_cast_or_null
<PHINode
>(FalseValue
))
1419 if (FVPN
->getParent() == FalseSucc
)
1420 FalseValue
= FVPN
->getIncomingValueForBlock(BI
->getParent());
1422 // In order for this transformation to be safe, we must be able to
1423 // unconditionally execute both operands to the return. This is
1424 // normally the case, but we could have a potentially-trapping
1425 // constant expression that prevents this transformation from being
1427 if (ConstantExpr
*TCV
= dyn_cast_or_null
<ConstantExpr
>(TrueValue
))
1430 if (ConstantExpr
*FCV
= dyn_cast_or_null
<ConstantExpr
>(FalseValue
))
1434 // Okay, we collected all the mapped values and checked them for sanity, and
1435 // defined to really do this transformation. First, update the CFG.
1436 TrueSucc
->removePredecessor(BI
->getParent());
1437 FalseSucc
->removePredecessor(BI
->getParent());
1439 // Insert select instructions where needed.
1440 Value
*BrCond
= BI
->getCondition();
1442 // Insert a select if the results differ.
1443 if (TrueValue
== FalseValue
|| isa
<UndefValue
>(FalseValue
)) {
1444 } else if (isa
<UndefValue
>(TrueValue
)) {
1445 TrueValue
= FalseValue
;
1447 TrueValue
= SelectInst::Create(BrCond
, TrueValue
,
1448 FalseValue
, "retval", BI
);
1452 Value
*RI
= !TrueValue
?
1453 ReturnInst::Create(BI
) :
1454 ReturnInst::Create(TrueValue
, BI
);
1456 DOUT
<< "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1457 << "\n " << *BI
<< "NewRet = " << *RI
1458 << "TRUEBLOCK: " << *TrueSucc
<< "FALSEBLOCK: "<< *FalseSucc
;
1460 EraseTerminatorInstAndDCECond(BI
);
1465 /// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1466 /// and if a predecessor branches to us and one of our successors, fold the
1467 /// setcc into the predecessor and use logical operations to pick the right
1469 static bool FoldBranchToCommonDest(BranchInst
*BI
) {
1470 BasicBlock
*BB
= BI
->getParent();
1471 Instruction
*Cond
= dyn_cast
<Instruction
>(BI
->getCondition());
1472 if (Cond
== 0) return false;
1475 // Only allow this if the condition is a simple instruction that can be
1476 // executed unconditionally. It must be in the same block as the branch, and
1477 // must be at the front of the block.
1478 BasicBlock::iterator FrontIt
= BB
->front();
1479 // Ignore dbg intrinsics.
1480 while(isa
<DbgInfoIntrinsic
>(FrontIt
))
1482 if ((!isa
<CmpInst
>(Cond
) && !isa
<BinaryOperator
>(Cond
)) ||
1483 Cond
->getParent() != BB
|| &*FrontIt
!= Cond
|| !Cond
->hasOneUse()) {
1487 // Make sure the instruction after the condition is the cond branch.
1488 BasicBlock::iterator CondIt
= Cond
; ++CondIt
;
1489 // Ingore dbg intrinsics.
1490 while(isa
<DbgInfoIntrinsic
>(CondIt
))
1492 if (&*CondIt
!= BI
) {
1493 assert (!isa
<DbgInfoIntrinsic
>(CondIt
) && "Hey do not forget debug info!");
1497 // Cond is known to be a compare or binary operator. Check to make sure that
1498 // neither operand is a potentially-trapping constant expression.
1499 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(0)))
1502 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Cond
->getOperand(1)))
1507 // Finally, don't infinitely unroll conditional loops.
1508 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
1509 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
1510 if (TrueDest
== BB
|| FalseDest
== BB
)
1513 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1514 BasicBlock
*PredBlock
= *PI
;
1515 BranchInst
*PBI
= dyn_cast
<BranchInst
>(PredBlock
->getTerminator());
1517 // Check that we have two conditional branches. If there is a PHI node in
1518 // the common successor, verify that the same value flows in from both
1520 if (PBI
== 0 || PBI
->isUnconditional() ||
1521 !SafeToMergeTerminators(BI
, PBI
))
1524 Instruction::BinaryOps Opc
;
1525 bool InvertPredCond
= false;
1527 if (PBI
->getSuccessor(0) == TrueDest
)
1528 Opc
= Instruction::Or
;
1529 else if (PBI
->getSuccessor(1) == FalseDest
)
1530 Opc
= Instruction::And
;
1531 else if (PBI
->getSuccessor(0) == FalseDest
)
1532 Opc
= Instruction::And
, InvertPredCond
= true;
1533 else if (PBI
->getSuccessor(1) == TrueDest
)
1534 Opc
= Instruction::Or
, InvertPredCond
= true;
1538 DOUT
<< "FOLDING BRANCH TO COMMON DEST:\n" << *PBI
<< *BB
;
1540 // If we need to invert the condition in the pred block to match, do so now.
1541 if (InvertPredCond
) {
1543 BinaryOperator::CreateNot(PBI
->getCondition(),
1544 PBI
->getCondition()->getName()+".not", PBI
);
1545 PBI
->setCondition(NewCond
);
1546 BasicBlock
*OldTrue
= PBI
->getSuccessor(0);
1547 BasicBlock
*OldFalse
= PBI
->getSuccessor(1);
1548 PBI
->setSuccessor(0, OldFalse
);
1549 PBI
->setSuccessor(1, OldTrue
);
1552 // Clone Cond into the predecessor basic block, and or/and the
1553 // two conditions together.
1554 Instruction
*New
= Cond
->clone();
1555 PredBlock
->getInstList().insert(PBI
, New
);
1556 New
->takeName(Cond
);
1557 Cond
->setName(New
->getName()+".old");
1559 Value
*NewCond
= BinaryOperator::Create(Opc
, PBI
->getCondition(),
1560 New
, "or.cond", PBI
);
1561 PBI
->setCondition(NewCond
);
1562 if (PBI
->getSuccessor(0) == BB
) {
1563 AddPredecessorToBlock(TrueDest
, PredBlock
, BB
);
1564 PBI
->setSuccessor(0, TrueDest
);
1566 if (PBI
->getSuccessor(1) == BB
) {
1567 AddPredecessorToBlock(FalseDest
, PredBlock
, BB
);
1568 PBI
->setSuccessor(1, FalseDest
);
1575 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1576 /// predecessor of another block, this function tries to simplify it. We know
1577 /// that PBI and BI are both conditional branches, and BI is in one of the
1578 /// successor blocks of PBI - PBI branches to BI.
1579 static bool SimplifyCondBranchToCondBranch(BranchInst
*PBI
, BranchInst
*BI
) {
1580 assert(PBI
->isConditional() && BI
->isConditional());
1581 BasicBlock
*BB
= BI
->getParent();
1583 // If this block ends with a branch instruction, and if there is a
1584 // predecessor that ends on a branch of the same condition, make
1585 // this conditional branch redundant.
1586 if (PBI
->getCondition() == BI
->getCondition() &&
1587 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1588 // Okay, the outcome of this conditional branch is statically
1589 // knowable. If this block had a single pred, handle specially.
1590 if (BB
->getSinglePredecessor()) {
1591 // Turn this into a branch on constant.
1592 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1593 BI
->setCondition(ConstantInt::get(Type::Int1Ty
, CondIsTrue
));
1594 return true; // Nuke the branch on constant.
1597 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1598 // in the constant and simplify the block result. Subsequent passes of
1599 // simplifycfg will thread the block.
1600 if (BlockIsSimpleEnoughToThreadThrough(BB
)) {
1601 PHINode
*NewPN
= PHINode::Create(Type::Int1Ty
,
1602 BI
->getCondition()->getName() + ".pr",
1604 // Okay, we're going to insert the PHI node. Since PBI is not the only
1605 // predecessor, compute the PHI'd conditional value for all of the preds.
1606 // Any predecessor where the condition is not computable we keep symbolic.
1607 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1608 if ((PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator())) &&
1609 PBI
!= BI
&& PBI
->isConditional() &&
1610 PBI
->getCondition() == BI
->getCondition() &&
1611 PBI
->getSuccessor(0) != PBI
->getSuccessor(1)) {
1612 bool CondIsTrue
= PBI
->getSuccessor(0) == BB
;
1613 NewPN
->addIncoming(ConstantInt::get(Type::Int1Ty
,
1616 NewPN
->addIncoming(BI
->getCondition(), *PI
);
1619 BI
->setCondition(NewPN
);
1624 // If this is a conditional branch in an empty block, and if any
1625 // predecessors is a conditional branch to one of our destinations,
1626 // fold the conditions into logical ops and one cond br.
1627 BasicBlock::iterator BBI
= BB
->begin();
1628 // Ignore dbg intrinsics.
1629 while (isa
<DbgInfoIntrinsic
>(BBI
))
1635 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(BI
->getCondition()))
1640 if (PBI
->getSuccessor(0) == BI
->getSuccessor(0))
1642 else if (PBI
->getSuccessor(0) == BI
->getSuccessor(1))
1643 PBIOp
= 0, BIOp
= 1;
1644 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(0))
1645 PBIOp
= 1, BIOp
= 0;
1646 else if (PBI
->getSuccessor(1) == BI
->getSuccessor(1))
1651 // Check to make sure that the other destination of this branch
1652 // isn't BB itself. If so, this is an infinite loop that will
1653 // keep getting unwound.
1654 if (PBI
->getSuccessor(PBIOp
) == BB
)
1657 // Do not perform this transformation if it would require
1658 // insertion of a large number of select instructions. For targets
1659 // without predication/cmovs, this is a big pessimization.
1660 BasicBlock
*CommonDest
= PBI
->getSuccessor(PBIOp
);
1662 unsigned NumPhis
= 0;
1663 for (BasicBlock::iterator II
= CommonDest
->begin();
1664 isa
<PHINode
>(II
); ++II
, ++NumPhis
)
1665 if (NumPhis
> 2) // Disable this xform.
1668 // Finally, if everything is ok, fold the branches to logical ops.
1669 BasicBlock
*OtherDest
= BI
->getSuccessor(BIOp
^ 1);
1671 DOUT
<< "FOLDING BRs:" << *PBI
->getParent()
1672 << "AND: " << *BI
->getParent();
1675 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1676 // branch in it, where one edge (OtherDest) goes back to itself but the other
1677 // exits. We don't *know* that the program avoids the infinite loop
1678 // (even though that seems likely). If we do this xform naively, we'll end up
1679 // recursively unpeeling the loop. Since we know that (after the xform is
1680 // done) that the block *is* infinite if reached, we just make it an obviously
1681 // infinite loop with no cond branch.
1682 if (OtherDest
== BB
) {
1683 // Insert it at the end of the function, because it's either code,
1684 // or it won't matter if it's hot. :)
1685 BasicBlock
*InfLoopBlock
= BasicBlock::Create("infloop", BB
->getParent());
1686 BranchInst::Create(InfLoopBlock
, InfLoopBlock
);
1687 OtherDest
= InfLoopBlock
;
1690 DOUT
<< *PBI
->getParent()->getParent();
1692 // BI may have other predecessors. Because of this, we leave
1693 // it alone, but modify PBI.
1695 // Make sure we get to CommonDest on True&True directions.
1696 Value
*PBICond
= PBI
->getCondition();
1698 PBICond
= BinaryOperator::CreateNot(PBICond
,
1699 PBICond
->getName()+".not",
1701 Value
*BICond
= BI
->getCondition();
1703 BICond
= BinaryOperator::CreateNot(BICond
,
1704 BICond
->getName()+".not",
1706 // Merge the conditions.
1707 Value
*Cond
= BinaryOperator::CreateOr(PBICond
, BICond
, "brmerge", PBI
);
1709 // Modify PBI to branch on the new condition to the new dests.
1710 PBI
->setCondition(Cond
);
1711 PBI
->setSuccessor(0, CommonDest
);
1712 PBI
->setSuccessor(1, OtherDest
);
1714 // OtherDest may have phi nodes. If so, add an entry from PBI's
1715 // block that are identical to the entries for BI's block.
1717 for (BasicBlock::iterator II
= OtherDest
->begin();
1718 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1719 Value
*V
= PN
->getIncomingValueForBlock(BB
);
1720 PN
->addIncoming(V
, PBI
->getParent());
1723 // We know that the CommonDest already had an edge from PBI to
1724 // it. If it has PHIs though, the PHIs may have different
1725 // entries for BB and PBI's BB. If so, insert a select to make
1727 for (BasicBlock::iterator II
= CommonDest
->begin();
1728 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
1729 Value
*BIV
= PN
->getIncomingValueForBlock(BB
);
1730 unsigned PBBIdx
= PN
->getBasicBlockIndex(PBI
->getParent());
1731 Value
*PBIV
= PN
->getIncomingValue(PBBIdx
);
1733 // Insert a select in PBI to pick the right value.
1734 Value
*NV
= SelectInst::Create(PBICond
, PBIV
, BIV
,
1735 PBIV
->getName()+".mux", PBI
);
1736 PN
->setIncomingValue(PBBIdx
, NV
);
1740 DOUT
<< "INTO: " << *PBI
->getParent();
1742 DOUT
<< *PBI
->getParent()->getParent();
1744 // This basic block is probably dead. We know it has at least
1745 // one fewer predecessor.
1750 /// SimplifyCFG - This function is used to do simplification of a CFG. For
1751 /// example, it adjusts branches to branches to eliminate the extra hop, it
1752 /// eliminates unreachable basic blocks, and does other "peephole" optimization
1753 /// of the CFG. It returns true if a modification was made.
1755 /// WARNING: The entry node of a function may not be simplified.
1757 bool llvm::SimplifyCFG(BasicBlock
*BB
) {
1758 bool Changed
= false;
1759 Function
*M
= BB
->getParent();
1761 assert(BB
&& BB
->getParent() && "Block not embedded in function!");
1762 assert(BB
->getTerminator() && "Degenerate basic block encountered!");
1763 assert(&BB
->getParent()->getEntryBlock() != BB
&&
1764 "Can't Simplify entry block!");
1766 // Remove basic blocks that have no predecessors... or that just have themself
1767 // as a predecessor. These are unreachable.
1768 if (pred_begin(BB
) == pred_end(BB
) || BB
->getSinglePredecessor() == BB
) {
1769 DOUT
<< "Removing BB: \n" << *BB
;
1770 DeleteDeadBlock(BB
);
1774 // Check to see if we can constant propagate this terminator instruction
1776 Changed
|= ConstantFoldTerminator(BB
);
1778 // If there is a trivial two-entry PHI node in this basic block, and we can
1779 // eliminate it, do so now.
1780 if (PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin()))
1781 if (PN
->getNumIncomingValues() == 2)
1782 Changed
|= FoldTwoEntryPHINode(PN
);
1784 // If this is a returning block with only PHI nodes in it, fold the return
1785 // instruction into any unconditional branch predecessors.
1787 // If any predecessor is a conditional branch that just selects among
1788 // different return values, fold the replace the branch/return with a select
1790 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
1791 if (isTerminatorFirstRelevantInsn(BB
, BB
->getTerminator())) {
1792 // Find predecessors that end with branches.
1793 SmallVector
<BasicBlock
*, 8> UncondBranchPreds
;
1794 SmallVector
<BranchInst
*, 8> CondBranchPreds
;
1795 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1796 TerminatorInst
*PTI
= (*PI
)->getTerminator();
1797 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
)) {
1798 if (BI
->isUnconditional())
1799 UncondBranchPreds
.push_back(*PI
);
1801 CondBranchPreds
.push_back(BI
);
1805 // If we found some, do the transformation!
1806 if (!UncondBranchPreds
.empty()) {
1807 while (!UncondBranchPreds
.empty()) {
1808 BasicBlock
*Pred
= UncondBranchPreds
.back();
1809 DOUT
<< "FOLDING: " << *BB
1810 << "INTO UNCOND BRANCH PRED: " << *Pred
;
1811 UncondBranchPreds
.pop_back();
1812 Instruction
*UncondBranch
= Pred
->getTerminator();
1813 // Clone the return and add it to the end of the predecessor.
1814 Instruction
*NewRet
= RI
->clone();
1815 Pred
->getInstList().push_back(NewRet
);
1817 BasicBlock::iterator BBI
= RI
;
1818 if (BBI
!= BB
->begin()) {
1819 // Move region end info into the predecessor.
1820 if (DbgRegionEndInst
*DREI
= dyn_cast
<DbgRegionEndInst
>(--BBI
))
1821 DREI
->moveBefore(NewRet
);
1824 // If the return instruction returns a value, and if the value was a
1825 // PHI node in "BB", propagate the right value into the return.
1826 for (User::op_iterator i
= NewRet
->op_begin(), e
= NewRet
->op_end();
1828 if (PHINode
*PN
= dyn_cast
<PHINode
>(*i
))
1829 if (PN
->getParent() == BB
)
1830 *i
= PN
->getIncomingValueForBlock(Pred
);
1832 // Update any PHI nodes in the returning block to realize that we no
1833 // longer branch to them.
1834 BB
->removePredecessor(Pred
);
1835 Pred
->getInstList().erase(UncondBranch
);
1838 // If we eliminated all predecessors of the block, delete the block now.
1839 if (pred_begin(BB
) == pred_end(BB
))
1840 // We know there are no successors, so just nuke the block.
1841 M
->getBasicBlockList().erase(BB
);
1846 // Check out all of the conditional branches going to this return
1847 // instruction. If any of them just select between returns, change the
1848 // branch itself into a select/return pair.
1849 while (!CondBranchPreds
.empty()) {
1850 BranchInst
*BI
= CondBranchPreds
.back();
1851 CondBranchPreds
.pop_back();
1853 // Check to see if the non-BB successor is also a return block.
1854 if (isa
<ReturnInst
>(BI
->getSuccessor(0)->getTerminator()) &&
1855 isa
<ReturnInst
>(BI
->getSuccessor(1)->getTerminator()) &&
1856 SimplifyCondBranchToTwoReturns(BI
))
1860 } else if (isa
<UnwindInst
>(BB
->begin())) {
1861 // Check to see if the first instruction in this block is just an unwind.
1862 // If so, replace any invoke instructions which use this as an exception
1863 // destination with call instructions, and any unconditional branch
1864 // predecessor with an unwind.
1866 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
1867 while (!Preds
.empty()) {
1868 BasicBlock
*Pred
= Preds
.back();
1869 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator())) {
1870 if (BI
->isUnconditional()) {
1871 Pred
->getInstList().pop_back(); // nuke uncond branch
1872 new UnwindInst(Pred
); // Use unwind.
1875 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Pred
->getTerminator()))
1876 if (II
->getUnwindDest() == BB
) {
1877 // Insert a new branch instruction before the invoke, because this
1878 // is now a fall through...
1879 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
1880 Pred
->getInstList().remove(II
); // Take out of symbol table
1882 // Insert the call now...
1883 SmallVector
<Value
*,8> Args(II
->op_begin()+3, II
->op_end());
1884 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
1885 Args
.begin(), Args
.end(),
1887 CI
->setCallingConv(II
->getCallingConv());
1888 CI
->setAttributes(II
->getAttributes());
1889 // If the invoke produced a value, the Call now does instead
1890 II
->replaceAllUsesWith(CI
);
1898 // If this block is now dead, remove it.
1899 if (pred_begin(BB
) == pred_end(BB
)) {
1900 // We know there are no successors, so just nuke the block.
1901 M
->getBasicBlockList().erase(BB
);
1905 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1906 if (isValueEqualityComparison(SI
)) {
1907 // If we only have one predecessor, and if it is a branch on this value,
1908 // see if that predecessor totally determines the outcome of this switch.
1909 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1910 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI
, OnlyPred
))
1911 return SimplifyCFG(BB
) || 1;
1913 // If the block only contains the switch, see if we can fold the block
1914 // away into any preds.
1915 BasicBlock::iterator BBI
= BB
->begin();
1916 // Ignore dbg intrinsics.
1917 while (isa
<DbgInfoIntrinsic
>(BBI
))
1920 if (FoldValueComparisonIntoPredecessors(SI
))
1921 return SimplifyCFG(BB
) || 1;
1923 } else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1924 if (BI
->isUnconditional()) {
1925 BasicBlock::iterator BBI
= BB
->getFirstNonPHI();
1927 BasicBlock
*Succ
= BI
->getSuccessor(0);
1928 // Ignore dbg intrinsics.
1929 while (isa
<DbgInfoIntrinsic
>(BBI
))
1931 if (BBI
->isTerminator() && // Terminator is the only non-phi instruction!
1932 Succ
!= BB
) // Don't hurt infinite loops!
1933 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
, Succ
))
1936 } else { // Conditional branch
1937 if (isValueEqualityComparison(BI
)) {
1938 // If we only have one predecessor, and if it is a branch on this value,
1939 // see if that predecessor totally determines the outcome of this
1941 if (BasicBlock
*OnlyPred
= BB
->getSinglePredecessor())
1942 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI
, OnlyPred
))
1943 return SimplifyCFG(BB
) || 1;
1945 // This block must be empty, except for the setcond inst, if it exists.
1946 // Ignore dbg intrinsics.
1947 BasicBlock::iterator I
= BB
->begin();
1948 // Ignore dbg intrinsics.
1949 while (isa
<DbgInfoIntrinsic
>(I
))
1952 if (FoldValueComparisonIntoPredecessors(BI
))
1953 return SimplifyCFG(BB
) | true;
1954 } else if (&*I
== cast
<Instruction
>(BI
->getCondition())){
1956 // Ignore dbg intrinsics.
1957 while (isa
<DbgInfoIntrinsic
>(I
))
1960 if (FoldValueComparisonIntoPredecessors(BI
))
1961 return SimplifyCFG(BB
) | true;
1966 // If this is a branch on a phi node in the current block, thread control
1967 // through this block if any PHI node entries are constants.
1968 if (PHINode
*PN
= dyn_cast
<PHINode
>(BI
->getCondition()))
1969 if (PN
->getParent() == BI
->getParent())
1970 if (FoldCondBranchOnPHI(BI
))
1971 return SimplifyCFG(BB
) | true;
1973 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1974 // branches to us and one of our successors, fold the setcc into the
1975 // predecessor and use logical operations to pick the right destination.
1976 if (FoldBranchToCommonDest(BI
))
1977 return SimplifyCFG(BB
) | 1;
1980 // Scan predecessor blocks for conditional branches.
1981 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
1982 if (BranchInst
*PBI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
1983 if (PBI
!= BI
&& PBI
->isConditional())
1984 if (SimplifyCondBranchToCondBranch(PBI
, BI
))
1985 return SimplifyCFG(BB
) | true;
1987 } else if (isa
<UnreachableInst
>(BB
->getTerminator())) {
1988 // If there are any instructions immediately before the unreachable that can
1989 // be removed, do so.
1990 Instruction
*Unreachable
= BB
->getTerminator();
1991 while (Unreachable
!= BB
->begin()) {
1992 BasicBlock::iterator BBI
= Unreachable
;
1994 // Do not delete instructions that can have side effects, like calls
1995 // (which may never return) and volatile loads and stores.
1996 if (isa
<CallInst
>(BBI
) && !isa
<DbgInfoIntrinsic
>(BBI
)) break;
1998 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(BBI
))
1999 if (SI
->isVolatile())
2002 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
))
2003 if (LI
->isVolatile())
2006 // Delete this instruction
2007 BB
->getInstList().erase(BBI
);
2011 // If the unreachable instruction is the first in the block, take a gander
2012 // at all of the predecessors of this instruction, and simplify them.
2013 if (&BB
->front() == Unreachable
) {
2014 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(BB
), pred_end(BB
));
2015 for (unsigned i
= 0, e
= Preds
.size(); i
!= e
; ++i
) {
2016 TerminatorInst
*TI
= Preds
[i
]->getTerminator();
2018 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
2019 if (BI
->isUnconditional()) {
2020 if (BI
->getSuccessor(0) == BB
) {
2021 new UnreachableInst(TI
);
2022 TI
->eraseFromParent();
2026 if (BI
->getSuccessor(0) == BB
) {
2027 BranchInst::Create(BI
->getSuccessor(1), BI
);
2028 EraseTerminatorInstAndDCECond(BI
);
2029 } else if (BI
->getSuccessor(1) == BB
) {
2030 BranchInst::Create(BI
->getSuccessor(0), BI
);
2031 EraseTerminatorInstAndDCECond(BI
);
2035 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
2036 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2037 if (SI
->getSuccessor(i
) == BB
) {
2038 BB
->removePredecessor(SI
->getParent());
2043 // If the default value is unreachable, figure out the most popular
2044 // destination and make it the default.
2045 if (SI
->getSuccessor(0) == BB
) {
2046 std::map
<BasicBlock
*, unsigned> Popularity
;
2047 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2048 Popularity
[SI
->getSuccessor(i
)]++;
2050 // Find the most popular block.
2051 unsigned MaxPop
= 0;
2052 BasicBlock
*MaxBlock
= 0;
2053 for (std::map
<BasicBlock
*, unsigned>::iterator
2054 I
= Popularity
.begin(), E
= Popularity
.end(); I
!= E
; ++I
) {
2055 if (I
->second
> MaxPop
) {
2057 MaxBlock
= I
->first
;
2061 // Make this the new default, allowing us to delete any explicit
2063 SI
->setSuccessor(0, MaxBlock
);
2066 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2068 if (isa
<PHINode
>(MaxBlock
->begin()))
2069 for (unsigned i
= 0; i
!= MaxPop
-1; ++i
)
2070 MaxBlock
->removePredecessor(SI
->getParent());
2072 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
)
2073 if (SI
->getSuccessor(i
) == MaxBlock
) {
2079 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(TI
)) {
2080 if (II
->getUnwindDest() == BB
) {
2081 // Convert the invoke to a call instruction. This would be a good
2082 // place to note that the call does not throw though.
2083 BranchInst
*BI
= BranchInst::Create(II
->getNormalDest(), II
);
2084 II
->removeFromParent(); // Take out of symbol table
2086 // Insert the call now...
2087 SmallVector
<Value
*, 8> Args(II
->op_begin()+3, II
->op_end());
2088 CallInst
*CI
= CallInst::Create(II
->getCalledValue(),
2089 Args
.begin(), Args
.end(),
2091 CI
->setCallingConv(II
->getCallingConv());
2092 CI
->setAttributes(II
->getAttributes());
2093 // If the invoke produced a value, the Call does now instead.
2094 II
->replaceAllUsesWith(CI
);
2101 // If this block is now dead, remove it.
2102 if (pred_begin(BB
) == pred_end(BB
)) {
2103 // We know there are no successors, so just nuke the block.
2104 M
->getBasicBlockList().erase(BB
);
2110 // Merge basic blocks into their predecessor if there is only one distinct
2111 // pred, and if there is only one distinct successor of the predecessor, and
2112 // if there are no PHI nodes.
2114 if (MergeBlockIntoPredecessor(BB
))
2117 // Otherwise, if this block only has a single predecessor, and if that block
2118 // is a conditional branch, see if we can hoist any code from this block up
2119 // into our predecessor.
2120 pred_iterator
PI(pred_begin(BB
)), PE(pred_end(BB
));
2121 BasicBlock
*OnlyPred
= *PI
++;
2122 for (; PI
!= PE
; ++PI
) // Search all predecessors, see if they are all same
2123 if (*PI
!= OnlyPred
) {
2124 OnlyPred
= 0; // There are multiple different predecessors...
2129 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(OnlyPred
->getTerminator()))
2130 if (BI
->isConditional()) {
2131 // Get the other block.
2132 BasicBlock
*OtherBB
= BI
->getSuccessor(BI
->getSuccessor(0) == BB
);
2133 PI
= pred_begin(OtherBB
);
2136 if (PI
== pred_end(OtherBB
)) {
2137 // We have a conditional branch to two blocks that are only reachable
2138 // from the condbr. We know that the condbr dominates the two blocks,
2139 // so see if there is any identical code in the "then" and "else"
2140 // blocks. If so, we can hoist it up to the branching block.
2141 Changed
|= HoistThenElseCodeToIf(BI
);
2143 BasicBlock
* OnlySucc
= NULL
;
2144 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
);
2148 else if (*SI
!= OnlySucc
) {
2149 OnlySucc
= 0; // There are multiple distinct successors!
2154 if (OnlySucc
== OtherBB
) {
2155 // If BB's only successor is the other successor of the predecessor,
2156 // i.e. a triangle, see if we can hoist any code from this block up
2157 // to the "if" block.
2158 Changed
|= SpeculativelyExecuteBB(BI
, BB
);
2163 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2164 if (BranchInst
*BI
= dyn_cast
<BranchInst
>((*PI
)->getTerminator()))
2165 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2166 if (BI
->isConditional() && isa
<Instruction
>(BI
->getCondition())) {
2167 Instruction
*Cond
= cast
<Instruction
>(BI
->getCondition());
2168 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2169 // 'setne's and'ed together, collect them.
2171 std::vector
<ConstantInt
*> Values
;
2172 bool TrueWhenEqual
= GatherValueComparisons(Cond
, CompVal
, Values
);
2173 if (CompVal
&& CompVal
->getType()->isInteger()) {
2174 // There might be duplicate constants in the list, which the switch
2175 // instruction can't handle, remove them now.
2176 std::sort(Values
.begin(), Values
.end(), ConstantIntOrdering());
2177 Values
.erase(std::unique(Values
.begin(), Values
.end()), Values
.end());
2179 // Figure out which block is which destination.
2180 BasicBlock
*DefaultBB
= BI
->getSuccessor(1);
2181 BasicBlock
*EdgeBB
= BI
->getSuccessor(0);
2182 if (!TrueWhenEqual
) std::swap(DefaultBB
, EdgeBB
);
2184 // Create the new switch instruction now.
2185 SwitchInst
*New
= SwitchInst::Create(CompVal
, DefaultBB
,
2188 // Add all of the 'cases' to the switch instruction.
2189 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
)
2190 New
->addCase(Values
[i
], EdgeBB
);
2192 // We added edges from PI to the EdgeBB. As such, if there were any
2193 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2194 // the number of edges added.
2195 for (BasicBlock::iterator BBI
= EdgeBB
->begin();
2196 isa
<PHINode
>(BBI
); ++BBI
) {
2197 PHINode
*PN
= cast
<PHINode
>(BBI
);
2198 Value
*InVal
= PN
->getIncomingValueForBlock(*PI
);
2199 for (unsigned i
= 0, e
= Values
.size()-1; i
!= e
; ++i
)
2200 PN
->addIncoming(InVal
, *PI
);
2203 // Erase the old branch instruction.
2204 EraseTerminatorInstAndDCECond(BI
);