Re-apply 70645, converting ScalarEvolution to use
[llvm/msp430.git] / lib / Bitcode / Reader / BitcodeReader.cpp
blobfe20f7258783093c2ebdb8543e1b104c5d86a7f0
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/AutoUpgrade.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/OperandTraits.h"
27 using namespace llvm;
29 void BitcodeReader::FreeState() {
30 delete Buffer;
31 Buffer = 0;
32 std::vector<PATypeHolder>().swap(TypeList);
33 ValueList.clear();
35 std::vector<AttrListPtr>().swap(MAttributes);
36 std::vector<BasicBlock*>().swap(FunctionBBs);
37 std::vector<Function*>().swap(FunctionsWithBodies);
38 DeferredFunctionInfo.clear();
41 //===----------------------------------------------------------------------===//
42 // Helper functions to implement forward reference resolution, etc.
43 //===----------------------------------------------------------------------===//
45 /// ConvertToString - Convert a string from a record into an std::string, return
46 /// true on failure.
47 template<typename StrTy>
48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49 StrTy &Result) {
50 if (Idx > Record.size())
51 return true;
53 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54 Result += (char)Record[i];
55 return false;
58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59 switch (Val) {
60 default: // Map unknown/new linkages to external
61 case 0: return GlobalValue::ExternalLinkage;
62 case 1: return GlobalValue::WeakAnyLinkage;
63 case 2: return GlobalValue::AppendingLinkage;
64 case 3: return GlobalValue::InternalLinkage;
65 case 4: return GlobalValue::LinkOnceAnyLinkage;
66 case 5: return GlobalValue::DLLImportLinkage;
67 case 6: return GlobalValue::DLLExportLinkage;
68 case 7: return GlobalValue::ExternalWeakLinkage;
69 case 8: return GlobalValue::CommonLinkage;
70 case 9: return GlobalValue::PrivateLinkage;
71 case 10: return GlobalValue::WeakODRLinkage;
72 case 11: return GlobalValue::LinkOnceODRLinkage;
73 case 12: return GlobalValue::AvailableExternallyLinkage;
77 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
78 switch (Val) {
79 default: // Map unknown visibilities to default.
80 case 0: return GlobalValue::DefaultVisibility;
81 case 1: return GlobalValue::HiddenVisibility;
82 case 2: return GlobalValue::ProtectedVisibility;
86 static int GetDecodedCastOpcode(unsigned Val) {
87 switch (Val) {
88 default: return -1;
89 case bitc::CAST_TRUNC : return Instruction::Trunc;
90 case bitc::CAST_ZEXT : return Instruction::ZExt;
91 case bitc::CAST_SEXT : return Instruction::SExt;
92 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
93 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
94 case bitc::CAST_UITOFP : return Instruction::UIToFP;
95 case bitc::CAST_SITOFP : return Instruction::SIToFP;
96 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
97 case bitc::CAST_FPEXT : return Instruction::FPExt;
98 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
99 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
100 case bitc::CAST_BITCAST : return Instruction::BitCast;
103 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
104 switch (Val) {
105 default: return -1;
106 case bitc::BINOP_ADD: return Instruction::Add;
107 case bitc::BINOP_SUB: return Instruction::Sub;
108 case bitc::BINOP_MUL: return Instruction::Mul;
109 case bitc::BINOP_UDIV: return Instruction::UDiv;
110 case bitc::BINOP_SDIV:
111 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
112 case bitc::BINOP_UREM: return Instruction::URem;
113 case bitc::BINOP_SREM:
114 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
115 case bitc::BINOP_SHL: return Instruction::Shl;
116 case bitc::BINOP_LSHR: return Instruction::LShr;
117 case bitc::BINOP_ASHR: return Instruction::AShr;
118 case bitc::BINOP_AND: return Instruction::And;
119 case bitc::BINOP_OR: return Instruction::Or;
120 case bitc::BINOP_XOR: return Instruction::Xor;
124 namespace llvm {
125 namespace {
126 /// @brief A class for maintaining the slot number definition
127 /// as a placeholder for the actual definition for forward constants defs.
128 class ConstantPlaceHolder : public ConstantExpr {
129 ConstantPlaceHolder(); // DO NOT IMPLEMENT
130 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
131 public:
132 // allocate space for exactly one operand
133 void *operator new(size_t s) {
134 return User::operator new(s, 1);
136 explicit ConstantPlaceHolder(const Type *Ty)
137 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
138 Op<0>() = UndefValue::get(Type::Int32Ty);
141 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
142 static inline bool classof(const ConstantPlaceHolder *) { return true; }
143 static bool classof(const Value *V) {
144 return isa<ConstantExpr>(V) &&
145 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
149 /// Provide fast operand accessors
150 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
154 // FIXME: can we inherit this from ConstantExpr?
155 template <>
156 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
161 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
162 if (Idx == size()) {
163 push_back(V);
164 return;
167 if (Idx >= size())
168 resize(Idx+1);
170 WeakVH &OldV = ValuePtrs[Idx];
171 if (OldV == 0) {
172 OldV = V;
173 return;
176 // Handle constants and non-constants (e.g. instrs) differently for
177 // efficiency.
178 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
179 ResolveConstants.push_back(std::make_pair(PHC, Idx));
180 OldV = V;
181 } else {
182 // If there was a forward reference to this value, replace it.
183 Value *PrevVal = OldV;
184 OldV->replaceAllUsesWith(V);
185 delete PrevVal;
190 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
191 const Type *Ty) {
192 if (Idx >= size())
193 resize(Idx + 1);
195 if (Value *V = ValuePtrs[Idx]) {
196 assert(Ty == V->getType() && "Type mismatch in constant table!");
197 return cast<Constant>(V);
200 // Create and return a placeholder, which will later be RAUW'd.
201 Constant *C = new ConstantPlaceHolder(Ty);
202 ValuePtrs[Idx] = C;
203 return C;
206 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
207 if (Idx >= size())
208 resize(Idx + 1);
210 if (Value *V = ValuePtrs[Idx]) {
211 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
212 return V;
215 // No type specified, must be invalid reference.
216 if (Ty == 0) return 0;
218 // Create and return a placeholder, which will later be RAUW'd.
219 Value *V = new Argument(Ty);
220 ValuePtrs[Idx] = V;
221 return V;
224 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
225 /// resolves any forward references. The idea behind this is that we sometimes
226 /// get constants (such as large arrays) which reference *many* forward ref
227 /// constants. Replacing each of these causes a lot of thrashing when
228 /// building/reuniquing the constant. Instead of doing this, we look at all the
229 /// uses and rewrite all the place holders at once for any constant that uses
230 /// a placeholder.
231 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
232 // Sort the values by-pointer so that they are efficient to look up with a
233 // binary search.
234 std::sort(ResolveConstants.begin(), ResolveConstants.end());
236 SmallVector<Constant*, 64> NewOps;
238 while (!ResolveConstants.empty()) {
239 Value *RealVal = operator[](ResolveConstants.back().second);
240 Constant *Placeholder = ResolveConstants.back().first;
241 ResolveConstants.pop_back();
243 // Loop over all users of the placeholder, updating them to reference the
244 // new value. If they reference more than one placeholder, update them all
245 // at once.
246 while (!Placeholder->use_empty()) {
247 Value::use_iterator UI = Placeholder->use_begin();
249 // If the using object isn't uniqued, just update the operands. This
250 // handles instructions and initializers for global variables.
251 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
252 UI.getUse().set(RealVal);
253 continue;
256 // Otherwise, we have a constant that uses the placeholder. Replace that
257 // constant with a new constant that has *all* placeholder uses updated.
258 Constant *UserC = cast<Constant>(*UI);
259 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
260 I != E; ++I) {
261 Value *NewOp;
262 if (!isa<ConstantPlaceHolder>(*I)) {
263 // Not a placeholder reference.
264 NewOp = *I;
265 } else if (*I == Placeholder) {
266 // Common case is that it just references this one placeholder.
267 NewOp = RealVal;
268 } else {
269 // Otherwise, look up the placeholder in ResolveConstants.
270 ResolveConstantsTy::iterator It =
271 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
272 std::pair<Constant*, unsigned>(cast<Constant>(*I),
273 0));
274 assert(It != ResolveConstants.end() && It->first == *I);
275 NewOp = operator[](It->second);
278 NewOps.push_back(cast<Constant>(NewOp));
281 // Make the new constant.
282 Constant *NewC;
283 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
284 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
285 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
286 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
287 UserCS->getType()->isPacked());
288 } else if (isa<ConstantVector>(UserC)) {
289 NewC = ConstantVector::get(&NewOps[0], NewOps.size());
290 } else if (isa<ConstantExpr>(UserC)) {
291 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
292 NewOps.size());
293 } else {
294 assert(isa<MDNode>(UserC) && "Must be a metadata node.");
295 NewC = MDNode::get(&NewOps[0], NewOps.size());
298 UserC->replaceAllUsesWith(NewC);
299 UserC->destroyConstant();
300 NewOps.clear();
303 delete Placeholder;
308 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
309 // If the TypeID is in range, return it.
310 if (ID < TypeList.size())
311 return TypeList[ID].get();
312 if (!isTypeTable) return 0;
314 // The type table allows forward references. Push as many Opaque types as
315 // needed to get up to ID.
316 while (TypeList.size() <= ID)
317 TypeList.push_back(OpaqueType::get());
318 return TypeList.back().get();
321 //===----------------------------------------------------------------------===//
322 // Functions for parsing blocks from the bitcode file
323 //===----------------------------------------------------------------------===//
325 bool BitcodeReader::ParseAttributeBlock() {
326 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
327 return Error("Malformed block record");
329 if (!MAttributes.empty())
330 return Error("Multiple PARAMATTR blocks found!");
332 SmallVector<uint64_t, 64> Record;
334 SmallVector<AttributeWithIndex, 8> Attrs;
336 // Read all the records.
337 while (1) {
338 unsigned Code = Stream.ReadCode();
339 if (Code == bitc::END_BLOCK) {
340 if (Stream.ReadBlockEnd())
341 return Error("Error at end of PARAMATTR block");
342 return false;
345 if (Code == bitc::ENTER_SUBBLOCK) {
346 // No known subblocks, always skip them.
347 Stream.ReadSubBlockID();
348 if (Stream.SkipBlock())
349 return Error("Malformed block record");
350 continue;
353 if (Code == bitc::DEFINE_ABBREV) {
354 Stream.ReadAbbrevRecord();
355 continue;
358 // Read a record.
359 Record.clear();
360 switch (Stream.ReadRecord(Code, Record)) {
361 default: // Default behavior: ignore.
362 break;
363 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
364 if (Record.size() & 1)
365 return Error("Invalid ENTRY record");
367 // FIXME : Remove this autoupgrade code in LLVM 3.0.
368 // If Function attributes are using index 0 then transfer them
369 // to index ~0. Index 0 is used for return value attributes but used to be
370 // used for function attributes.
371 Attributes RetAttribute = Attribute::None;
372 Attributes FnAttribute = Attribute::None;
373 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
374 // FIXME: remove in LLVM 3.0
375 // The alignment is stored as a 16-bit raw value from bits 31--16.
376 // We shift the bits above 31 down by 11 bits.
378 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
379 if (Alignment && !isPowerOf2_32(Alignment))
380 return Error("Alignment is not a power of two.");
382 Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
383 if (Alignment)
384 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
385 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
386 Record[i+1] = ReconstitutedAttr;
388 if (Record[i] == 0)
389 RetAttribute = Record[i+1];
390 else if (Record[i] == ~0U)
391 FnAttribute = Record[i+1];
394 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
395 Attribute::ReadOnly|Attribute::ReadNone);
397 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
398 (RetAttribute & OldRetAttrs) != 0) {
399 if (FnAttribute == Attribute::None) { // add a slot so they get added.
400 Record.push_back(~0U);
401 Record.push_back(0);
404 FnAttribute |= RetAttribute & OldRetAttrs;
405 RetAttribute &= ~OldRetAttrs;
408 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
409 if (Record[i] == 0) {
410 if (RetAttribute != Attribute::None)
411 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
412 } else if (Record[i] == ~0U) {
413 if (FnAttribute != Attribute::None)
414 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
415 } else if (Record[i+1] != Attribute::None)
416 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
419 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
420 Attrs.clear();
421 break;
428 bool BitcodeReader::ParseTypeTable() {
429 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
430 return Error("Malformed block record");
432 if (!TypeList.empty())
433 return Error("Multiple TYPE_BLOCKs found!");
435 SmallVector<uint64_t, 64> Record;
436 unsigned NumRecords = 0;
438 // Read all the records for this type table.
439 while (1) {
440 unsigned Code = Stream.ReadCode();
441 if (Code == bitc::END_BLOCK) {
442 if (NumRecords != TypeList.size())
443 return Error("Invalid type forward reference in TYPE_BLOCK");
444 if (Stream.ReadBlockEnd())
445 return Error("Error at end of type table block");
446 return false;
449 if (Code == bitc::ENTER_SUBBLOCK) {
450 // No known subblocks, always skip them.
451 Stream.ReadSubBlockID();
452 if (Stream.SkipBlock())
453 return Error("Malformed block record");
454 continue;
457 if (Code == bitc::DEFINE_ABBREV) {
458 Stream.ReadAbbrevRecord();
459 continue;
462 // Read a record.
463 Record.clear();
464 const Type *ResultTy = 0;
465 switch (Stream.ReadRecord(Code, Record)) {
466 default: // Default behavior: unknown type.
467 ResultTy = 0;
468 break;
469 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
470 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
471 // type list. This allows us to reserve space.
472 if (Record.size() < 1)
473 return Error("Invalid TYPE_CODE_NUMENTRY record");
474 TypeList.reserve(Record[0]);
475 continue;
476 case bitc::TYPE_CODE_VOID: // VOID
477 ResultTy = Type::VoidTy;
478 break;
479 case bitc::TYPE_CODE_FLOAT: // FLOAT
480 ResultTy = Type::FloatTy;
481 break;
482 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
483 ResultTy = Type::DoubleTy;
484 break;
485 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
486 ResultTy = Type::X86_FP80Ty;
487 break;
488 case bitc::TYPE_CODE_FP128: // FP128
489 ResultTy = Type::FP128Ty;
490 break;
491 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
492 ResultTy = Type::PPC_FP128Ty;
493 break;
494 case bitc::TYPE_CODE_LABEL: // LABEL
495 ResultTy = Type::LabelTy;
496 break;
497 case bitc::TYPE_CODE_OPAQUE: // OPAQUE
498 ResultTy = 0;
499 break;
500 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
501 if (Record.size() < 1)
502 return Error("Invalid Integer type record");
504 ResultTy = IntegerType::get(Record[0]);
505 break;
506 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
507 // [pointee type, address space]
508 if (Record.size() < 1)
509 return Error("Invalid POINTER type record");
510 unsigned AddressSpace = 0;
511 if (Record.size() == 2)
512 AddressSpace = Record[1];
513 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
514 break;
516 case bitc::TYPE_CODE_FUNCTION: {
517 // FIXME: attrid is dead, remove it in LLVM 3.0
518 // FUNCTION: [vararg, attrid, retty, paramty x N]
519 if (Record.size() < 3)
520 return Error("Invalid FUNCTION type record");
521 std::vector<const Type*> ArgTys;
522 for (unsigned i = 3, e = Record.size(); i != e; ++i)
523 ArgTys.push_back(getTypeByID(Record[i], true));
525 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
526 Record[0]);
527 break;
529 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N]
530 if (Record.size() < 1)
531 return Error("Invalid STRUCT type record");
532 std::vector<const Type*> EltTys;
533 for (unsigned i = 1, e = Record.size(); i != e; ++i)
534 EltTys.push_back(getTypeByID(Record[i], true));
535 ResultTy = StructType::get(EltTys, Record[0]);
536 break;
538 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
539 if (Record.size() < 2)
540 return Error("Invalid ARRAY type record");
541 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
542 break;
543 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
544 if (Record.size() < 2)
545 return Error("Invalid VECTOR type record");
546 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
547 break;
550 if (NumRecords == TypeList.size()) {
551 // If this is a new type slot, just append it.
552 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
553 ++NumRecords;
554 } else if (ResultTy == 0) {
555 // Otherwise, this was forward referenced, so an opaque type was created,
556 // but the result type is actually just an opaque. Leave the one we
557 // created previously.
558 ++NumRecords;
559 } else {
560 // Otherwise, this was forward referenced, so an opaque type was created.
561 // Resolve the opaque type to the real type now.
562 assert(NumRecords < TypeList.size() && "Typelist imbalance");
563 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
565 // Don't directly push the new type on the Tab. Instead we want to replace
566 // the opaque type we previously inserted with the new concrete value. The
567 // refinement from the abstract (opaque) type to the new type causes all
568 // uses of the abstract type to use the concrete type (NewTy). This will
569 // also cause the opaque type to be deleted.
570 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
572 // This should have replaced the old opaque type with the new type in the
573 // value table... or with a preexisting type that was already in the
574 // system. Let's just make sure it did.
575 assert(TypeList[NumRecords-1].get() != OldTy &&
576 "refineAbstractType didn't work!");
582 bool BitcodeReader::ParseTypeSymbolTable() {
583 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
584 return Error("Malformed block record");
586 SmallVector<uint64_t, 64> Record;
588 // Read all the records for this type table.
589 std::string TypeName;
590 while (1) {
591 unsigned Code = Stream.ReadCode();
592 if (Code == bitc::END_BLOCK) {
593 if (Stream.ReadBlockEnd())
594 return Error("Error at end of type symbol table block");
595 return false;
598 if (Code == bitc::ENTER_SUBBLOCK) {
599 // No known subblocks, always skip them.
600 Stream.ReadSubBlockID();
601 if (Stream.SkipBlock())
602 return Error("Malformed block record");
603 continue;
606 if (Code == bitc::DEFINE_ABBREV) {
607 Stream.ReadAbbrevRecord();
608 continue;
611 // Read a record.
612 Record.clear();
613 switch (Stream.ReadRecord(Code, Record)) {
614 default: // Default behavior: unknown type.
615 break;
616 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
617 if (ConvertToString(Record, 1, TypeName))
618 return Error("Invalid TST_ENTRY record");
619 unsigned TypeID = Record[0];
620 if (TypeID >= TypeList.size())
621 return Error("Invalid Type ID in TST_ENTRY record");
623 TheModule->addTypeName(TypeName, TypeList[TypeID].get());
624 TypeName.clear();
625 break;
630 bool BitcodeReader::ParseValueSymbolTable() {
631 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
632 return Error("Malformed block record");
634 SmallVector<uint64_t, 64> Record;
636 // Read all the records for this value table.
637 SmallString<128> ValueName;
638 while (1) {
639 unsigned Code = Stream.ReadCode();
640 if (Code == bitc::END_BLOCK) {
641 if (Stream.ReadBlockEnd())
642 return Error("Error at end of value symbol table block");
643 return false;
645 if (Code == bitc::ENTER_SUBBLOCK) {
646 // No known subblocks, always skip them.
647 Stream.ReadSubBlockID();
648 if (Stream.SkipBlock())
649 return Error("Malformed block record");
650 continue;
653 if (Code == bitc::DEFINE_ABBREV) {
654 Stream.ReadAbbrevRecord();
655 continue;
658 // Read a record.
659 Record.clear();
660 switch (Stream.ReadRecord(Code, Record)) {
661 default: // Default behavior: unknown type.
662 break;
663 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
664 if (ConvertToString(Record, 1, ValueName))
665 return Error("Invalid TST_ENTRY record");
666 unsigned ValueID = Record[0];
667 if (ValueID >= ValueList.size())
668 return Error("Invalid Value ID in VST_ENTRY record");
669 Value *V = ValueList[ValueID];
671 V->setName(&ValueName[0], ValueName.size());
672 ValueName.clear();
673 break;
675 case bitc::VST_CODE_BBENTRY: {
676 if (ConvertToString(Record, 1, ValueName))
677 return Error("Invalid VST_BBENTRY record");
678 BasicBlock *BB = getBasicBlock(Record[0]);
679 if (BB == 0)
680 return Error("Invalid BB ID in VST_BBENTRY record");
682 BB->setName(&ValueName[0], ValueName.size());
683 ValueName.clear();
684 break;
690 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
691 /// the LSB for dense VBR encoding.
692 static uint64_t DecodeSignRotatedValue(uint64_t V) {
693 if ((V & 1) == 0)
694 return V >> 1;
695 if (V != 1)
696 return -(V >> 1);
697 // There is no such thing as -0 with integers. "-0" really means MININT.
698 return 1ULL << 63;
701 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
702 /// values and aliases that we can.
703 bool BitcodeReader::ResolveGlobalAndAliasInits() {
704 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
705 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
707 GlobalInitWorklist.swap(GlobalInits);
708 AliasInitWorklist.swap(AliasInits);
710 while (!GlobalInitWorklist.empty()) {
711 unsigned ValID = GlobalInitWorklist.back().second;
712 if (ValID >= ValueList.size()) {
713 // Not ready to resolve this yet, it requires something later in the file.
714 GlobalInits.push_back(GlobalInitWorklist.back());
715 } else {
716 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
717 GlobalInitWorklist.back().first->setInitializer(C);
718 else
719 return Error("Global variable initializer is not a constant!");
721 GlobalInitWorklist.pop_back();
724 while (!AliasInitWorklist.empty()) {
725 unsigned ValID = AliasInitWorklist.back().second;
726 if (ValID >= ValueList.size()) {
727 AliasInits.push_back(AliasInitWorklist.back());
728 } else {
729 if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
730 AliasInitWorklist.back().first->setAliasee(C);
731 else
732 return Error("Alias initializer is not a constant!");
734 AliasInitWorklist.pop_back();
736 return false;
740 bool BitcodeReader::ParseConstants() {
741 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
742 return Error("Malformed block record");
744 SmallVector<uint64_t, 64> Record;
746 // Read all the records for this value table.
747 const Type *CurTy = Type::Int32Ty;
748 unsigned NextCstNo = ValueList.size();
749 while (1) {
750 unsigned Code = Stream.ReadCode();
751 if (Code == bitc::END_BLOCK)
752 break;
754 if (Code == bitc::ENTER_SUBBLOCK) {
755 // No known subblocks, always skip them.
756 Stream.ReadSubBlockID();
757 if (Stream.SkipBlock())
758 return Error("Malformed block record");
759 continue;
762 if (Code == bitc::DEFINE_ABBREV) {
763 Stream.ReadAbbrevRecord();
764 continue;
767 // Read a record.
768 Record.clear();
769 Value *V = 0;
770 switch (Stream.ReadRecord(Code, Record)) {
771 default: // Default behavior: unknown constant
772 case bitc::CST_CODE_UNDEF: // UNDEF
773 V = UndefValue::get(CurTy);
774 break;
775 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
776 if (Record.empty())
777 return Error("Malformed CST_SETTYPE record");
778 if (Record[0] >= TypeList.size())
779 return Error("Invalid Type ID in CST_SETTYPE record");
780 CurTy = TypeList[Record[0]];
781 continue; // Skip the ValueList manipulation.
782 case bitc::CST_CODE_NULL: // NULL
783 V = Constant::getNullValue(CurTy);
784 break;
785 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
786 if (!isa<IntegerType>(CurTy) || Record.empty())
787 return Error("Invalid CST_INTEGER record");
788 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
789 break;
790 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
791 if (!isa<IntegerType>(CurTy) || Record.empty())
792 return Error("Invalid WIDE_INTEGER record");
794 unsigned NumWords = Record.size();
795 SmallVector<uint64_t, 8> Words;
796 Words.resize(NumWords);
797 for (unsigned i = 0; i != NumWords; ++i)
798 Words[i] = DecodeSignRotatedValue(Record[i]);
799 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
800 NumWords, &Words[0]));
801 break;
803 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
804 if (Record.empty())
805 return Error("Invalid FLOAT record");
806 if (CurTy == Type::FloatTy)
807 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
808 else if (CurTy == Type::DoubleTy)
809 V = ConstantFP::get(APFloat(APInt(64, Record[0])));
810 else if (CurTy == Type::X86_FP80Ty) {
811 // Bits are not stored the same way as a normal i80 APInt, compensate.
812 uint64_t Rearrange[2];
813 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
814 Rearrange[1] = Record[0] >> 48;
815 V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange)));
816 } else if (CurTy == Type::FP128Ty)
817 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
818 else if (CurTy == Type::PPC_FP128Ty)
819 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
820 else
821 V = UndefValue::get(CurTy);
822 break;
825 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
826 if (Record.empty())
827 return Error("Invalid CST_AGGREGATE record");
829 unsigned Size = Record.size();
830 std::vector<Constant*> Elts;
832 if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
833 for (unsigned i = 0; i != Size; ++i)
834 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
835 STy->getElementType(i)));
836 V = ConstantStruct::get(STy, Elts);
837 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
838 const Type *EltTy = ATy->getElementType();
839 for (unsigned i = 0; i != Size; ++i)
840 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
841 V = ConstantArray::get(ATy, Elts);
842 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
843 const Type *EltTy = VTy->getElementType();
844 for (unsigned i = 0; i != Size; ++i)
845 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
846 V = ConstantVector::get(Elts);
847 } else {
848 V = UndefValue::get(CurTy);
850 break;
852 case bitc::CST_CODE_STRING: { // STRING: [values]
853 if (Record.empty())
854 return Error("Invalid CST_AGGREGATE record");
856 const ArrayType *ATy = cast<ArrayType>(CurTy);
857 const Type *EltTy = ATy->getElementType();
859 unsigned Size = Record.size();
860 std::vector<Constant*> Elts;
861 for (unsigned i = 0; i != Size; ++i)
862 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
863 V = ConstantArray::get(ATy, Elts);
864 break;
866 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
867 if (Record.empty())
868 return Error("Invalid CST_AGGREGATE record");
870 const ArrayType *ATy = cast<ArrayType>(CurTy);
871 const Type *EltTy = ATy->getElementType();
873 unsigned Size = Record.size();
874 std::vector<Constant*> Elts;
875 for (unsigned i = 0; i != Size; ++i)
876 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
877 Elts.push_back(Constant::getNullValue(EltTy));
878 V = ConstantArray::get(ATy, Elts);
879 break;
881 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
882 if (Record.size() < 3) return Error("Invalid CE_BINOP record");
883 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
884 if (Opc < 0) {
885 V = UndefValue::get(CurTy); // Unknown binop.
886 } else {
887 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
888 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
889 V = ConstantExpr::get(Opc, LHS, RHS);
891 break;
893 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
894 if (Record.size() < 3) return Error("Invalid CE_CAST record");
895 int Opc = GetDecodedCastOpcode(Record[0]);
896 if (Opc < 0) {
897 V = UndefValue::get(CurTy); // Unknown cast.
898 } else {
899 const Type *OpTy = getTypeByID(Record[1]);
900 if (!OpTy) return Error("Invalid CE_CAST record");
901 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
902 V = ConstantExpr::getCast(Opc, Op, CurTy);
904 break;
906 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
907 if (Record.size() & 1) return Error("Invalid CE_GEP record");
908 SmallVector<Constant*, 16> Elts;
909 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
910 const Type *ElTy = getTypeByID(Record[i]);
911 if (!ElTy) return Error("Invalid CE_GEP record");
912 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
914 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
915 break;
917 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
918 if (Record.size() < 3) return Error("Invalid CE_SELECT record");
919 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
920 Type::Int1Ty),
921 ValueList.getConstantFwdRef(Record[1],CurTy),
922 ValueList.getConstantFwdRef(Record[2],CurTy));
923 break;
924 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
925 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
926 const VectorType *OpTy =
927 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
928 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
929 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
930 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
931 V = ConstantExpr::getExtractElement(Op0, Op1);
932 break;
934 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
935 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
936 if (Record.size() < 3 || OpTy == 0)
937 return Error("Invalid CE_INSERTELT record");
938 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
939 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
940 OpTy->getElementType());
941 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
942 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
943 break;
945 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
946 const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
947 if (Record.size() < 3 || OpTy == 0)
948 return Error("Invalid CE_SHUFFLEVEC record");
949 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
950 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
951 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
952 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
953 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
954 break;
956 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
957 const VectorType *RTy = dyn_cast<VectorType>(CurTy);
958 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
959 if (Record.size() < 4 || RTy == 0 || OpTy == 0)
960 return Error("Invalid CE_SHUFVEC_EX record");
961 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
962 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
963 const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
964 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
965 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
966 break;
968 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
969 if (Record.size() < 4) return Error("Invalid CE_CMP record");
970 const Type *OpTy = getTypeByID(Record[0]);
971 if (OpTy == 0) return Error("Invalid CE_CMP record");
972 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
973 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
975 if (OpTy->isFloatingPoint())
976 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
977 else if (!isa<VectorType>(OpTy))
978 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
979 else if (OpTy->isFPOrFPVector())
980 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
981 else
982 V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
983 break;
985 case bitc::CST_CODE_INLINEASM: {
986 if (Record.size() < 2) return Error("Invalid INLINEASM record");
987 std::string AsmStr, ConstrStr;
988 bool HasSideEffects = Record[0];
989 unsigned AsmStrSize = Record[1];
990 if (2+AsmStrSize >= Record.size())
991 return Error("Invalid INLINEASM record");
992 unsigned ConstStrSize = Record[2+AsmStrSize];
993 if (3+AsmStrSize+ConstStrSize > Record.size())
994 return Error("Invalid INLINEASM record");
996 for (unsigned i = 0; i != AsmStrSize; ++i)
997 AsmStr += (char)Record[2+i];
998 for (unsigned i = 0; i != ConstStrSize; ++i)
999 ConstrStr += (char)Record[3+AsmStrSize+i];
1000 const PointerType *PTy = cast<PointerType>(CurTy);
1001 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1002 AsmStr, ConstrStr, HasSideEffects);
1003 break;
1005 case bitc::CST_CODE_MDSTRING: {
1006 if (Record.size() < 2) return Error("Invalid MDSTRING record");
1007 unsigned MDStringLength = Record.size();
1008 SmallString<8> String;
1009 String.resize(MDStringLength);
1010 for (unsigned i = 0; i != MDStringLength; ++i)
1011 String[i] = Record[i];
1012 V = MDString::get(String.c_str(), String.c_str() + MDStringLength);
1013 break;
1015 case bitc::CST_CODE_MDNODE: {
1016 if (Record.empty() || Record.size() % 2 == 1)
1017 return Error("Invalid CST_MDNODE record");
1019 unsigned Size = Record.size();
1020 SmallVector<Constant*, 8> Elts;
1021 for (unsigned i = 0; i != Size; i += 2) {
1022 const Type *Ty = getTypeByID(Record[i], false);
1023 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], Ty));
1025 V = MDNode::get(&Elts[0], Elts.size());
1026 break;
1030 ValueList.AssignValue(V, NextCstNo);
1031 ++NextCstNo;
1034 if (NextCstNo != ValueList.size())
1035 return Error("Invalid constant reference!");
1037 if (Stream.ReadBlockEnd())
1038 return Error("Error at end of constants block");
1040 // Once all the constants have been read, go through and resolve forward
1041 // references.
1042 ValueList.ResolveConstantForwardRefs();
1043 return false;
1046 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1047 /// remember where it is and then skip it. This lets us lazily deserialize the
1048 /// functions.
1049 bool BitcodeReader::RememberAndSkipFunctionBody() {
1050 // Get the function we are talking about.
1051 if (FunctionsWithBodies.empty())
1052 return Error("Insufficient function protos");
1054 Function *Fn = FunctionsWithBodies.back();
1055 FunctionsWithBodies.pop_back();
1057 // Save the current stream state.
1058 uint64_t CurBit = Stream.GetCurrentBitNo();
1059 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1061 // Set the functions linkage to GhostLinkage so we know it is lazily
1062 // deserialized.
1063 Fn->setLinkage(GlobalValue::GhostLinkage);
1065 // Skip over the function block for now.
1066 if (Stream.SkipBlock())
1067 return Error("Malformed block record");
1068 return false;
1071 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1072 // Reject multiple MODULE_BLOCK's in a single bitstream.
1073 if (TheModule)
1074 return Error("Multiple MODULE_BLOCKs in same stream");
1076 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1077 return Error("Malformed block record");
1079 // Otherwise, create the module.
1080 TheModule = new Module(ModuleID);
1082 SmallVector<uint64_t, 64> Record;
1083 std::vector<std::string> SectionTable;
1084 std::vector<std::string> GCTable;
1086 // Read all the records for this module.
1087 while (!Stream.AtEndOfStream()) {
1088 unsigned Code = Stream.ReadCode();
1089 if (Code == bitc::END_BLOCK) {
1090 if (Stream.ReadBlockEnd())
1091 return Error("Error at end of module block");
1093 // Patch the initializers for globals and aliases up.
1094 ResolveGlobalAndAliasInits();
1095 if (!GlobalInits.empty() || !AliasInits.empty())
1096 return Error("Malformed global initializer set");
1097 if (!FunctionsWithBodies.empty())
1098 return Error("Too few function bodies found");
1100 // Look for intrinsic functions which need to be upgraded at some point
1101 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1102 FI != FE; ++FI) {
1103 Function* NewFn;
1104 if (UpgradeIntrinsicFunction(FI, NewFn))
1105 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1108 // Force deallocation of memory for these vectors to favor the client that
1109 // want lazy deserialization.
1110 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1111 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1112 std::vector<Function*>().swap(FunctionsWithBodies);
1113 return false;
1116 if (Code == bitc::ENTER_SUBBLOCK) {
1117 switch (Stream.ReadSubBlockID()) {
1118 default: // Skip unknown content.
1119 if (Stream.SkipBlock())
1120 return Error("Malformed block record");
1121 break;
1122 case bitc::BLOCKINFO_BLOCK_ID:
1123 if (Stream.ReadBlockInfoBlock())
1124 return Error("Malformed BlockInfoBlock");
1125 break;
1126 case bitc::PARAMATTR_BLOCK_ID:
1127 if (ParseAttributeBlock())
1128 return true;
1129 break;
1130 case bitc::TYPE_BLOCK_ID:
1131 if (ParseTypeTable())
1132 return true;
1133 break;
1134 case bitc::TYPE_SYMTAB_BLOCK_ID:
1135 if (ParseTypeSymbolTable())
1136 return true;
1137 break;
1138 case bitc::VALUE_SYMTAB_BLOCK_ID:
1139 if (ParseValueSymbolTable())
1140 return true;
1141 break;
1142 case bitc::CONSTANTS_BLOCK_ID:
1143 if (ParseConstants() || ResolveGlobalAndAliasInits())
1144 return true;
1145 break;
1146 case bitc::FUNCTION_BLOCK_ID:
1147 // If this is the first function body we've seen, reverse the
1148 // FunctionsWithBodies list.
1149 if (!HasReversedFunctionsWithBodies) {
1150 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1151 HasReversedFunctionsWithBodies = true;
1154 if (RememberAndSkipFunctionBody())
1155 return true;
1156 break;
1158 continue;
1161 if (Code == bitc::DEFINE_ABBREV) {
1162 Stream.ReadAbbrevRecord();
1163 continue;
1166 // Read a record.
1167 switch (Stream.ReadRecord(Code, Record)) {
1168 default: break; // Default behavior, ignore unknown content.
1169 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
1170 if (Record.size() < 1)
1171 return Error("Malformed MODULE_CODE_VERSION");
1172 // Only version #0 is supported so far.
1173 if (Record[0] != 0)
1174 return Error("Unknown bitstream version!");
1175 break;
1176 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
1177 std::string S;
1178 if (ConvertToString(Record, 0, S))
1179 return Error("Invalid MODULE_CODE_TRIPLE record");
1180 TheModule->setTargetTriple(S);
1181 break;
1183 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
1184 std::string S;
1185 if (ConvertToString(Record, 0, S))
1186 return Error("Invalid MODULE_CODE_DATALAYOUT record");
1187 TheModule->setDataLayout(S);
1188 break;
1190 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
1191 std::string S;
1192 if (ConvertToString(Record, 0, S))
1193 return Error("Invalid MODULE_CODE_ASM record");
1194 TheModule->setModuleInlineAsm(S);
1195 break;
1197 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
1198 std::string S;
1199 if (ConvertToString(Record, 0, S))
1200 return Error("Invalid MODULE_CODE_DEPLIB record");
1201 TheModule->addLibrary(S);
1202 break;
1204 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
1205 std::string S;
1206 if (ConvertToString(Record, 0, S))
1207 return Error("Invalid MODULE_CODE_SECTIONNAME record");
1208 SectionTable.push_back(S);
1209 break;
1211 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
1212 std::string S;
1213 if (ConvertToString(Record, 0, S))
1214 return Error("Invalid MODULE_CODE_GCNAME record");
1215 GCTable.push_back(S);
1216 break;
1218 // GLOBALVAR: [pointer type, isconst, initid,
1219 // linkage, alignment, section, visibility, threadlocal]
1220 case bitc::MODULE_CODE_GLOBALVAR: {
1221 if (Record.size() < 6)
1222 return Error("Invalid MODULE_CODE_GLOBALVAR record");
1223 const Type *Ty = getTypeByID(Record[0]);
1224 if (!isa<PointerType>(Ty))
1225 return Error("Global not a pointer type!");
1226 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1227 Ty = cast<PointerType>(Ty)->getElementType();
1229 bool isConstant = Record[1];
1230 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1231 unsigned Alignment = (1 << Record[4]) >> 1;
1232 std::string Section;
1233 if (Record[5]) {
1234 if (Record[5]-1 >= SectionTable.size())
1235 return Error("Invalid section ID");
1236 Section = SectionTable[Record[5]-1];
1238 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1239 if (Record.size() > 6)
1240 Visibility = GetDecodedVisibility(Record[6]);
1241 bool isThreadLocal = false;
1242 if (Record.size() > 7)
1243 isThreadLocal = Record[7];
1245 GlobalVariable *NewGV =
1246 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1247 isThreadLocal, AddressSpace);
1248 NewGV->setAlignment(Alignment);
1249 if (!Section.empty())
1250 NewGV->setSection(Section);
1251 NewGV->setVisibility(Visibility);
1252 NewGV->setThreadLocal(isThreadLocal);
1254 ValueList.push_back(NewGV);
1256 // Remember which value to use for the global initializer.
1257 if (unsigned InitID = Record[2])
1258 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1259 break;
1261 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
1262 // alignment, section, visibility, gc]
1263 case bitc::MODULE_CODE_FUNCTION: {
1264 if (Record.size() < 8)
1265 return Error("Invalid MODULE_CODE_FUNCTION record");
1266 const Type *Ty = getTypeByID(Record[0]);
1267 if (!isa<PointerType>(Ty))
1268 return Error("Function not a pointer type!");
1269 const FunctionType *FTy =
1270 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1271 if (!FTy)
1272 return Error("Function not a pointer to function type!");
1274 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1275 "", TheModule);
1277 Func->setCallingConv(Record[1]);
1278 bool isProto = Record[2];
1279 Func->setLinkage(GetDecodedLinkage(Record[3]));
1280 Func->setAttributes(getAttributes(Record[4]));
1282 Func->setAlignment((1 << Record[5]) >> 1);
1283 if (Record[6]) {
1284 if (Record[6]-1 >= SectionTable.size())
1285 return Error("Invalid section ID");
1286 Func->setSection(SectionTable[Record[6]-1]);
1288 Func->setVisibility(GetDecodedVisibility(Record[7]));
1289 if (Record.size() > 8 && Record[8]) {
1290 if (Record[8]-1 > GCTable.size())
1291 return Error("Invalid GC ID");
1292 Func->setGC(GCTable[Record[8]-1].c_str());
1294 ValueList.push_back(Func);
1296 // If this is a function with a body, remember the prototype we are
1297 // creating now, so that we can match up the body with them later.
1298 if (!isProto)
1299 FunctionsWithBodies.push_back(Func);
1300 break;
1302 // ALIAS: [alias type, aliasee val#, linkage]
1303 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1304 case bitc::MODULE_CODE_ALIAS: {
1305 if (Record.size() < 3)
1306 return Error("Invalid MODULE_ALIAS record");
1307 const Type *Ty = getTypeByID(Record[0]);
1308 if (!isa<PointerType>(Ty))
1309 return Error("Function not a pointer type!");
1311 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1312 "", 0, TheModule);
1313 // Old bitcode files didn't have visibility field.
1314 if (Record.size() > 3)
1315 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1316 ValueList.push_back(NewGA);
1317 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1318 break;
1320 /// MODULE_CODE_PURGEVALS: [numvals]
1321 case bitc::MODULE_CODE_PURGEVALS:
1322 // Trim down the value list to the specified size.
1323 if (Record.size() < 1 || Record[0] > ValueList.size())
1324 return Error("Invalid MODULE_PURGEVALS record");
1325 ValueList.shrinkTo(Record[0]);
1326 break;
1328 Record.clear();
1331 return Error("Premature end of bitstream");
1334 bool BitcodeReader::ParseBitcode() {
1335 TheModule = 0;
1337 if (Buffer->getBufferSize() & 3)
1338 return Error("Bitcode stream should be a multiple of 4 bytes in length");
1340 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1341 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1343 // If we have a wrapper header, parse it and ignore the non-bc file contents.
1344 // The magic number is 0x0B17C0DE stored in little endian.
1345 if (isBitcodeWrapper(BufPtr, BufEnd))
1346 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1347 return Error("Invalid bitcode wrapper header");
1349 StreamFile.init(BufPtr, BufEnd);
1350 Stream.init(StreamFile);
1352 // Sniff for the signature.
1353 if (Stream.Read(8) != 'B' ||
1354 Stream.Read(8) != 'C' ||
1355 Stream.Read(4) != 0x0 ||
1356 Stream.Read(4) != 0xC ||
1357 Stream.Read(4) != 0xE ||
1358 Stream.Read(4) != 0xD)
1359 return Error("Invalid bitcode signature");
1361 // We expect a number of well-defined blocks, though we don't necessarily
1362 // need to understand them all.
1363 while (!Stream.AtEndOfStream()) {
1364 unsigned Code = Stream.ReadCode();
1366 if (Code != bitc::ENTER_SUBBLOCK)
1367 return Error("Invalid record at top-level");
1369 unsigned BlockID = Stream.ReadSubBlockID();
1371 // We only know the MODULE subblock ID.
1372 switch (BlockID) {
1373 case bitc::BLOCKINFO_BLOCK_ID:
1374 if (Stream.ReadBlockInfoBlock())
1375 return Error("Malformed BlockInfoBlock");
1376 break;
1377 case bitc::MODULE_BLOCK_ID:
1378 if (ParseModule(Buffer->getBufferIdentifier()))
1379 return true;
1380 break;
1381 default:
1382 if (Stream.SkipBlock())
1383 return Error("Malformed block record");
1384 break;
1388 return false;
1392 /// ParseFunctionBody - Lazily parse the specified function body block.
1393 bool BitcodeReader::ParseFunctionBody(Function *F) {
1394 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1395 return Error("Malformed block record");
1397 unsigned ModuleValueListSize = ValueList.size();
1399 // Add all the function arguments to the value table.
1400 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1401 ValueList.push_back(I);
1403 unsigned NextValueNo = ValueList.size();
1404 BasicBlock *CurBB = 0;
1405 unsigned CurBBNo = 0;
1407 // Read all the records.
1408 SmallVector<uint64_t, 64> Record;
1409 while (1) {
1410 unsigned Code = Stream.ReadCode();
1411 if (Code == bitc::END_BLOCK) {
1412 if (Stream.ReadBlockEnd())
1413 return Error("Error at end of function block");
1414 break;
1417 if (Code == bitc::ENTER_SUBBLOCK) {
1418 switch (Stream.ReadSubBlockID()) {
1419 default: // Skip unknown content.
1420 if (Stream.SkipBlock())
1421 return Error("Malformed block record");
1422 break;
1423 case bitc::CONSTANTS_BLOCK_ID:
1424 if (ParseConstants()) return true;
1425 NextValueNo = ValueList.size();
1426 break;
1427 case bitc::VALUE_SYMTAB_BLOCK_ID:
1428 if (ParseValueSymbolTable()) return true;
1429 break;
1431 continue;
1434 if (Code == bitc::DEFINE_ABBREV) {
1435 Stream.ReadAbbrevRecord();
1436 continue;
1439 // Read a record.
1440 Record.clear();
1441 Instruction *I = 0;
1442 switch (Stream.ReadRecord(Code, Record)) {
1443 default: // Default behavior: reject
1444 return Error("Unknown instruction");
1445 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
1446 if (Record.size() < 1 || Record[0] == 0)
1447 return Error("Invalid DECLAREBLOCKS record");
1448 // Create all the basic blocks for the function.
1449 FunctionBBs.resize(Record[0]);
1450 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1451 FunctionBBs[i] = BasicBlock::Create("", F);
1452 CurBB = FunctionBBs[0];
1453 continue;
1455 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
1456 unsigned OpNum = 0;
1457 Value *LHS, *RHS;
1458 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1459 getValue(Record, OpNum, LHS->getType(), RHS) ||
1460 OpNum+1 != Record.size())
1461 return Error("Invalid BINOP record");
1463 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1464 if (Opc == -1) return Error("Invalid BINOP record");
1465 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1466 break;
1468 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
1469 unsigned OpNum = 0;
1470 Value *Op;
1471 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1472 OpNum+2 != Record.size())
1473 return Error("Invalid CAST record");
1475 const Type *ResTy = getTypeByID(Record[OpNum]);
1476 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1477 if (Opc == -1 || ResTy == 0)
1478 return Error("Invalid CAST record");
1479 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1480 break;
1482 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1483 unsigned OpNum = 0;
1484 Value *BasePtr;
1485 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1486 return Error("Invalid GEP record");
1488 SmallVector<Value*, 16> GEPIdx;
1489 while (OpNum != Record.size()) {
1490 Value *Op;
1491 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1492 return Error("Invalid GEP record");
1493 GEPIdx.push_back(Op);
1496 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1497 break;
1500 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1501 // EXTRACTVAL: [opty, opval, n x indices]
1502 unsigned OpNum = 0;
1503 Value *Agg;
1504 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1505 return Error("Invalid EXTRACTVAL record");
1507 SmallVector<unsigned, 4> EXTRACTVALIdx;
1508 for (unsigned RecSize = Record.size();
1509 OpNum != RecSize; ++OpNum) {
1510 uint64_t Index = Record[OpNum];
1511 if ((unsigned)Index != Index)
1512 return Error("Invalid EXTRACTVAL index");
1513 EXTRACTVALIdx.push_back((unsigned)Index);
1516 I = ExtractValueInst::Create(Agg,
1517 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1518 break;
1521 case bitc::FUNC_CODE_INST_INSERTVAL: {
1522 // INSERTVAL: [opty, opval, opty, opval, n x indices]
1523 unsigned OpNum = 0;
1524 Value *Agg;
1525 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1526 return Error("Invalid INSERTVAL record");
1527 Value *Val;
1528 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1529 return Error("Invalid INSERTVAL record");
1531 SmallVector<unsigned, 4> INSERTVALIdx;
1532 for (unsigned RecSize = Record.size();
1533 OpNum != RecSize; ++OpNum) {
1534 uint64_t Index = Record[OpNum];
1535 if ((unsigned)Index != Index)
1536 return Error("Invalid INSERTVAL index");
1537 INSERTVALIdx.push_back((unsigned)Index);
1540 I = InsertValueInst::Create(Agg, Val,
1541 INSERTVALIdx.begin(), INSERTVALIdx.end());
1542 break;
1545 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1546 // obsolete form of select
1547 // handles select i1 ... in old bitcode
1548 unsigned OpNum = 0;
1549 Value *TrueVal, *FalseVal, *Cond;
1550 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1551 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1552 getValue(Record, OpNum, Type::Int1Ty, Cond))
1553 return Error("Invalid SELECT record");
1555 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1556 break;
1559 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1560 // new form of select
1561 // handles select i1 or select [N x i1]
1562 unsigned OpNum = 0;
1563 Value *TrueVal, *FalseVal, *Cond;
1564 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1565 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1566 getValueTypePair(Record, OpNum, NextValueNo, Cond))
1567 return Error("Invalid SELECT record");
1569 // select condition can be either i1 or [N x i1]
1570 if (const VectorType* vector_type =
1571 dyn_cast<const VectorType>(Cond->getType())) {
1572 // expect <n x i1>
1573 if (vector_type->getElementType() != Type::Int1Ty)
1574 return Error("Invalid SELECT condition type");
1575 } else {
1576 // expect i1
1577 if (Cond->getType() != Type::Int1Ty)
1578 return Error("Invalid SELECT condition type");
1581 I = SelectInst::Create(Cond, TrueVal, FalseVal);
1582 break;
1585 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1586 unsigned OpNum = 0;
1587 Value *Vec, *Idx;
1588 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1589 getValue(Record, OpNum, Type::Int32Ty, Idx))
1590 return Error("Invalid EXTRACTELT record");
1591 I = new ExtractElementInst(Vec, Idx);
1592 break;
1595 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1596 unsigned OpNum = 0;
1597 Value *Vec, *Elt, *Idx;
1598 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1599 getValue(Record, OpNum,
1600 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1601 getValue(Record, OpNum, Type::Int32Ty, Idx))
1602 return Error("Invalid INSERTELT record");
1603 I = InsertElementInst::Create(Vec, Elt, Idx);
1604 break;
1607 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1608 unsigned OpNum = 0;
1609 Value *Vec1, *Vec2, *Mask;
1610 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1611 getValue(Record, OpNum, Vec1->getType(), Vec2))
1612 return Error("Invalid SHUFFLEVEC record");
1614 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1615 return Error("Invalid SHUFFLEVEC record");
1616 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1617 break;
1620 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1621 // VFCmp/VICmp
1622 // or old form of ICmp/FCmp returning bool
1623 unsigned OpNum = 0;
1624 Value *LHS, *RHS;
1625 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1626 getValue(Record, OpNum, LHS->getType(), RHS) ||
1627 OpNum+1 != Record.size())
1628 return Error("Invalid CMP record");
1630 if (LHS->getType()->isFloatingPoint())
1631 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1632 else if (!isa<VectorType>(LHS->getType()))
1633 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1634 else if (LHS->getType()->isFPOrFPVector())
1635 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1636 else
1637 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1638 break;
1640 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1641 // Fcmp/ICmp returning bool or vector of bool
1642 unsigned OpNum = 0;
1643 Value *LHS, *RHS;
1644 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1645 getValue(Record, OpNum, LHS->getType(), RHS) ||
1646 OpNum+1 != Record.size())
1647 return Error("Invalid CMP2 record");
1649 if (LHS->getType()->isFPOrFPVector())
1650 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1651 else
1652 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1653 break;
1655 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1656 if (Record.size() != 2)
1657 return Error("Invalid GETRESULT record");
1658 unsigned OpNum = 0;
1659 Value *Op;
1660 getValueTypePair(Record, OpNum, NextValueNo, Op);
1661 unsigned Index = Record[1];
1662 I = ExtractValueInst::Create(Op, Index);
1663 break;
1666 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1668 unsigned Size = Record.size();
1669 if (Size == 0) {
1670 I = ReturnInst::Create();
1671 break;
1674 unsigned OpNum = 0;
1675 SmallVector<Value *,4> Vs;
1676 do {
1677 Value *Op = NULL;
1678 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1679 return Error("Invalid RET record");
1680 Vs.push_back(Op);
1681 } while(OpNum != Record.size());
1683 const Type *ReturnType = F->getReturnType();
1684 if (Vs.size() > 1 ||
1685 (isa<StructType>(ReturnType) &&
1686 (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1687 Value *RV = UndefValue::get(ReturnType);
1688 for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1689 I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1690 CurBB->getInstList().push_back(I);
1691 ValueList.AssignValue(I, NextValueNo++);
1692 RV = I;
1694 I = ReturnInst::Create(RV);
1695 break;
1698 I = ReturnInst::Create(Vs[0]);
1699 break;
1701 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1702 if (Record.size() != 1 && Record.size() != 3)
1703 return Error("Invalid BR record");
1704 BasicBlock *TrueDest = getBasicBlock(Record[0]);
1705 if (TrueDest == 0)
1706 return Error("Invalid BR record");
1708 if (Record.size() == 1)
1709 I = BranchInst::Create(TrueDest);
1710 else {
1711 BasicBlock *FalseDest = getBasicBlock(Record[1]);
1712 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1713 if (FalseDest == 0 || Cond == 0)
1714 return Error("Invalid BR record");
1715 I = BranchInst::Create(TrueDest, FalseDest, Cond);
1717 break;
1719 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1720 if (Record.size() < 3 || (Record.size() & 1) == 0)
1721 return Error("Invalid SWITCH record");
1722 const Type *OpTy = getTypeByID(Record[0]);
1723 Value *Cond = getFnValueByID(Record[1], OpTy);
1724 BasicBlock *Default = getBasicBlock(Record[2]);
1725 if (OpTy == 0 || Cond == 0 || Default == 0)
1726 return Error("Invalid SWITCH record");
1727 unsigned NumCases = (Record.size()-3)/2;
1728 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1729 for (unsigned i = 0, e = NumCases; i != e; ++i) {
1730 ConstantInt *CaseVal =
1731 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1732 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1733 if (CaseVal == 0 || DestBB == 0) {
1734 delete SI;
1735 return Error("Invalid SWITCH record!");
1737 SI->addCase(CaseVal, DestBB);
1739 I = SI;
1740 break;
1743 case bitc::FUNC_CODE_INST_INVOKE: {
1744 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1745 if (Record.size() < 4) return Error("Invalid INVOKE record");
1746 AttrListPtr PAL = getAttributes(Record[0]);
1747 unsigned CCInfo = Record[1];
1748 BasicBlock *NormalBB = getBasicBlock(Record[2]);
1749 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1751 unsigned OpNum = 4;
1752 Value *Callee;
1753 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1754 return Error("Invalid INVOKE record");
1756 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1757 const FunctionType *FTy = !CalleeTy ? 0 :
1758 dyn_cast<FunctionType>(CalleeTy->getElementType());
1760 // Check that the right number of fixed parameters are here.
1761 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1762 Record.size() < OpNum+FTy->getNumParams())
1763 return Error("Invalid INVOKE record");
1765 SmallVector<Value*, 16> Ops;
1766 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1767 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1768 if (Ops.back() == 0) return Error("Invalid INVOKE record");
1771 if (!FTy->isVarArg()) {
1772 if (Record.size() != OpNum)
1773 return Error("Invalid INVOKE record");
1774 } else {
1775 // Read type/value pairs for varargs params.
1776 while (OpNum != Record.size()) {
1777 Value *Op;
1778 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1779 return Error("Invalid INVOKE record");
1780 Ops.push_back(Op);
1784 I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1785 Ops.begin(), Ops.end());
1786 cast<InvokeInst>(I)->setCallingConv(CCInfo);
1787 cast<InvokeInst>(I)->setAttributes(PAL);
1788 break;
1790 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1791 I = new UnwindInst();
1792 break;
1793 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1794 I = new UnreachableInst();
1795 break;
1796 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1797 if (Record.size() < 1 || ((Record.size()-1)&1))
1798 return Error("Invalid PHI record");
1799 const Type *Ty = getTypeByID(Record[0]);
1800 if (!Ty) return Error("Invalid PHI record");
1802 PHINode *PN = PHINode::Create(Ty);
1803 PN->reserveOperandSpace((Record.size()-1)/2);
1805 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1806 Value *V = getFnValueByID(Record[1+i], Ty);
1807 BasicBlock *BB = getBasicBlock(Record[2+i]);
1808 if (!V || !BB) return Error("Invalid PHI record");
1809 PN->addIncoming(V, BB);
1811 I = PN;
1812 break;
1815 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1816 if (Record.size() < 3)
1817 return Error("Invalid MALLOC record");
1818 const PointerType *Ty =
1819 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1820 Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1821 unsigned Align = Record[2];
1822 if (!Ty || !Size) return Error("Invalid MALLOC record");
1823 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1824 break;
1826 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1827 unsigned OpNum = 0;
1828 Value *Op;
1829 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1830 OpNum != Record.size())
1831 return Error("Invalid FREE record");
1832 I = new FreeInst(Op);
1833 break;
1835 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1836 if (Record.size() < 3)
1837 return Error("Invalid ALLOCA record");
1838 const PointerType *Ty =
1839 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1840 Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1841 unsigned Align = Record[2];
1842 if (!Ty || !Size) return Error("Invalid ALLOCA record");
1843 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1844 break;
1846 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1847 unsigned OpNum = 0;
1848 Value *Op;
1849 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1850 OpNum+2 != Record.size())
1851 return Error("Invalid LOAD record");
1853 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1854 break;
1856 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1857 unsigned OpNum = 0;
1858 Value *Val, *Ptr;
1859 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1860 getValue(Record, OpNum,
1861 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1862 OpNum+2 != Record.size())
1863 return Error("Invalid STORE record");
1865 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1866 break;
1868 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1869 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1870 unsigned OpNum = 0;
1871 Value *Val, *Ptr;
1872 if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1873 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1874 OpNum+2 != Record.size())
1875 return Error("Invalid STORE record");
1877 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1878 break;
1880 case bitc::FUNC_CODE_INST_CALL: {
1881 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1882 if (Record.size() < 3)
1883 return Error("Invalid CALL record");
1885 AttrListPtr PAL = getAttributes(Record[0]);
1886 unsigned CCInfo = Record[1];
1888 unsigned OpNum = 2;
1889 Value *Callee;
1890 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1891 return Error("Invalid CALL record");
1893 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1894 const FunctionType *FTy = 0;
1895 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1896 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1897 return Error("Invalid CALL record");
1899 SmallVector<Value*, 16> Args;
1900 // Read the fixed params.
1901 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1902 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1903 Args.push_back(getBasicBlock(Record[OpNum]));
1904 else
1905 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1906 if (Args.back() == 0) return Error("Invalid CALL record");
1909 // Read type/value pairs for varargs params.
1910 if (!FTy->isVarArg()) {
1911 if (OpNum != Record.size())
1912 return Error("Invalid CALL record");
1913 } else {
1914 while (OpNum != Record.size()) {
1915 Value *Op;
1916 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1917 return Error("Invalid CALL record");
1918 Args.push_back(Op);
1922 I = CallInst::Create(Callee, Args.begin(), Args.end());
1923 cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1924 cast<CallInst>(I)->setTailCall(CCInfo & 1);
1925 cast<CallInst>(I)->setAttributes(PAL);
1926 break;
1928 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1929 if (Record.size() < 3)
1930 return Error("Invalid VAARG record");
1931 const Type *OpTy = getTypeByID(Record[0]);
1932 Value *Op = getFnValueByID(Record[1], OpTy);
1933 const Type *ResTy = getTypeByID(Record[2]);
1934 if (!OpTy || !Op || !ResTy)
1935 return Error("Invalid VAARG record");
1936 I = new VAArgInst(Op, ResTy);
1937 break;
1941 // Add instruction to end of current BB. If there is no current BB, reject
1942 // this file.
1943 if (CurBB == 0) {
1944 delete I;
1945 return Error("Invalid instruction with no BB");
1947 CurBB->getInstList().push_back(I);
1949 // If this was a terminator instruction, move to the next block.
1950 if (isa<TerminatorInst>(I)) {
1951 ++CurBBNo;
1952 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1955 // Non-void values get registered in the value table for future use.
1956 if (I && I->getType() != Type::VoidTy)
1957 ValueList.AssignValue(I, NextValueNo++);
1960 // Check the function list for unresolved values.
1961 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1962 if (A->getParent() == 0) {
1963 // We found at least one unresolved value. Nuke them all to avoid leaks.
1964 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1965 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1966 A->replaceAllUsesWith(UndefValue::get(A->getType()));
1967 delete A;
1970 return Error("Never resolved value found in function!");
1974 // Trim the value list down to the size it was before we parsed this function.
1975 ValueList.shrinkTo(ModuleValueListSize);
1976 std::vector<BasicBlock*>().swap(FunctionBBs);
1978 return false;
1981 //===----------------------------------------------------------------------===//
1982 // ModuleProvider implementation
1983 //===----------------------------------------------------------------------===//
1986 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1987 // If it already is material, ignore the request.
1988 if (!F->hasNotBeenReadFromBitcode()) return false;
1990 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1991 DeferredFunctionInfo.find(F);
1992 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1994 // Move the bit stream to the saved position of the deferred function body and
1995 // restore the real linkage type for the function.
1996 Stream.JumpToBit(DFII->second.first);
1997 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
1999 if (ParseFunctionBody(F)) {
2000 if (ErrInfo) *ErrInfo = ErrorString;
2001 return true;
2004 // Upgrade any old intrinsic calls in the function.
2005 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2006 E = UpgradedIntrinsics.end(); I != E; ++I) {
2007 if (I->first != I->second) {
2008 for (Value::use_iterator UI = I->first->use_begin(),
2009 UE = I->first->use_end(); UI != UE; ) {
2010 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2011 UpgradeIntrinsicCall(CI, I->second);
2016 return false;
2019 void BitcodeReader::dematerializeFunction(Function *F) {
2020 // If this function isn't materialized, or if it is a proto, this is a noop.
2021 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2022 return;
2024 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2026 // Just forget the function body, we can remat it later.
2027 F->deleteBody();
2028 F->setLinkage(GlobalValue::GhostLinkage);
2032 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2033 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2034 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2035 ++I) {
2036 Function *F = I->first;
2037 if (F->hasNotBeenReadFromBitcode() &&
2038 materializeFunction(F, ErrInfo))
2039 return 0;
2042 // Upgrade any intrinsic calls that slipped through (should not happen!) and
2043 // delete the old functions to clean up. We can't do this unless the entire
2044 // module is materialized because there could always be another function body
2045 // with calls to the old function.
2046 for (std::vector<std::pair<Function*, Function*> >::iterator I =
2047 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2048 if (I->first != I->second) {
2049 for (Value::use_iterator UI = I->first->use_begin(),
2050 UE = I->first->use_end(); UI != UE; ) {
2051 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2052 UpgradeIntrinsicCall(CI, I->second);
2054 if (!I->first->use_empty())
2055 I->first->replaceAllUsesWith(I->second);
2056 I->first->eraseFromParent();
2059 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2061 return TheModule;
2065 /// This method is provided by the parent ModuleProvde class and overriden
2066 /// here. It simply releases the module from its provided and frees up our
2067 /// state.
2068 /// @brief Release our hold on the generated module
2069 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2070 // Since we're losing control of this Module, we must hand it back complete
2071 Module *M = ModuleProvider::releaseModule(ErrInfo);
2072 FreeState();
2073 return M;
2077 //===----------------------------------------------------------------------===//
2078 // External interface
2079 //===----------------------------------------------------------------------===//
2081 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2083 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2084 std::string *ErrMsg) {
2085 BitcodeReader *R = new BitcodeReader(Buffer);
2086 if (R->ParseBitcode()) {
2087 if (ErrMsg)
2088 *ErrMsg = R->getErrorString();
2090 // Don't let the BitcodeReader dtor delete 'Buffer'.
2091 R->releaseMemoryBuffer();
2092 delete R;
2093 return 0;
2095 return R;
2098 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2099 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2100 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2101 BitcodeReader *R;
2102 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2103 if (!R) return 0;
2105 // Read in the entire module.
2106 Module *M = R->materializeModule(ErrMsg);
2108 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2109 // there was an error.
2110 R->releaseMemoryBuffer();
2112 // If there was no error, tell ModuleProvider not to delete it when its dtor
2113 // is run.
2114 if (M)
2115 M = R->releaseModule(ErrMsg);
2117 delete R;
2118 return M;