1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/CallingConv.h"
21 #include "llvm/Constants.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/VectorExtras.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/ADT/SmallSet.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include "llvm/Support/CommandLine.h"
45 DisableMMX("disable-mmx", cl::Hidden
, cl::desc("Disable use of MMX"));
47 // Forward declarations.
48 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
51 X86TargetLowering::X86TargetLowering(X86TargetMachine
&TM
)
52 : TargetLowering(TM
) {
53 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
54 X86ScalarSSEf64
= Subtarget
->hasSSE2();
55 X86ScalarSSEf32
= Subtarget
->hasSSE1();
56 X86StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
60 RegInfo
= TM
.getRegisterInfo();
63 // Set up the TargetLowering object.
65 // X86 is weird, it always uses i8 for shift amounts and setcc results.
66 setShiftAmountType(MVT::i8
);
67 setBooleanContents(ZeroOrOneBooleanContent
);
68 setSchedulingPreference(SchedulingForRegPressure
);
69 setShiftAmountFlavor(Mask
); // shl X, 32 == shl X, 0
70 setStackPointerRegisterToSaveRestore(X86StackPtr
);
72 if (Subtarget
->isTargetDarwin()) {
73 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
74 setUseUnderscoreSetJmp(false);
75 setUseUnderscoreLongJmp(false);
76 } else if (Subtarget
->isTargetMingw()) {
77 // MS runtime is weird: it exports _setjmp, but longjmp!
78 setUseUnderscoreSetJmp(true);
79 setUseUnderscoreLongJmp(false);
81 setUseUnderscoreSetJmp(true);
82 setUseUnderscoreLongJmp(true);
85 // Set up the register classes.
86 addRegisterClass(MVT::i8
, X86::GR8RegisterClass
);
87 addRegisterClass(MVT::i16
, X86::GR16RegisterClass
);
88 addRegisterClass(MVT::i32
, X86::GR32RegisterClass
);
89 if (Subtarget
->is64Bit())
90 addRegisterClass(MVT::i64
, X86::GR64RegisterClass
);
92 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
94 // We don't accept any truncstore of integer registers.
95 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
96 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
97 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
98 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
99 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
100 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
102 // SETOEQ and SETUNE require checking two conditions.
103 setCondCodeAction(ISD::SETOEQ
, MVT::f32
, Expand
);
104 setCondCodeAction(ISD::SETOEQ
, MVT::f64
, Expand
);
105 setCondCodeAction(ISD::SETOEQ
, MVT::f80
, Expand
);
106 setCondCodeAction(ISD::SETUNE
, MVT::f32
, Expand
);
107 setCondCodeAction(ISD::SETUNE
, MVT::f64
, Expand
);
108 setCondCodeAction(ISD::SETUNE
, MVT::f80
, Expand
);
110 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
112 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
113 setOperationAction(ISD::UINT_TO_FP
, MVT::i8
, Promote
);
114 setOperationAction(ISD::UINT_TO_FP
, MVT::i16
, Promote
);
116 if (Subtarget
->is64Bit()) {
117 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
118 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
120 if (!UseSoftFloat
&& !NoImplicitFloat
&& X86ScalarSSEf64
) {
121 // We have an impenetrably clever algorithm for ui64->double only.
122 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
124 // We have faster algorithm for ui32->single only.
125 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
127 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
131 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
133 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
134 setOperationAction(ISD::SINT_TO_FP
, MVT::i8
, Promote
);
136 if (!UseSoftFloat
&& !NoImplicitFloat
) {
137 // SSE has no i16 to fp conversion, only i32
138 if (X86ScalarSSEf32
) {
139 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
140 // f32 and f64 cases are Legal, f80 case is not
141 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
143 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Custom
);
144 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
147 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
148 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Promote
);
151 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
152 // are Legal, f80 is custom lowered.
153 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
154 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
156 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
158 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
159 setOperationAction(ISD::FP_TO_SINT
, MVT::i8
, Promote
);
161 if (X86ScalarSSEf32
) {
162 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Promote
);
163 // f32 and f64 cases are Legal, f80 case is not
164 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
166 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Custom
);
167 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
170 // Handle FP_TO_UINT by promoting the destination to a larger signed
172 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
173 setOperationAction(ISD::FP_TO_UINT
, MVT::i8
, Promote
);
174 setOperationAction(ISD::FP_TO_UINT
, MVT::i16
, Promote
);
176 if (Subtarget
->is64Bit()) {
177 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
178 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
180 if (X86ScalarSSEf32
&& !Subtarget
->hasSSE3())
181 // Expand FP_TO_UINT into a select.
182 // FIXME: We would like to use a Custom expander here eventually to do
183 // the optimal thing for SSE vs. the default expansion in the legalizer.
184 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
186 // With SSE3 we can use fisttpll to convert to a signed i64.
187 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
190 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
191 if (!X86ScalarSSEf64
) {
192 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
193 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
196 // Scalar integer divide and remainder are lowered to use operations that
197 // produce two results, to match the available instructions. This exposes
198 // the two-result form to trivial CSE, which is able to combine x/y and x%y
199 // into a single instruction.
201 // Scalar integer multiply-high is also lowered to use two-result
202 // operations, to match the available instructions. However, plain multiply
203 // (low) operations are left as Legal, as there are single-result
204 // instructions for this in x86. Using the two-result multiply instructions
205 // when both high and low results are needed must be arranged by dagcombine.
206 setOperationAction(ISD::MULHS
, MVT::i8
, Expand
);
207 setOperationAction(ISD::MULHU
, MVT::i8
, Expand
);
208 setOperationAction(ISD::SDIV
, MVT::i8
, Expand
);
209 setOperationAction(ISD::UDIV
, MVT::i8
, Expand
);
210 setOperationAction(ISD::SREM
, MVT::i8
, Expand
);
211 setOperationAction(ISD::UREM
, MVT::i8
, Expand
);
212 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
213 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
214 setOperationAction(ISD::SDIV
, MVT::i16
, Expand
);
215 setOperationAction(ISD::UDIV
, MVT::i16
, Expand
);
216 setOperationAction(ISD::SREM
, MVT::i16
, Expand
);
217 setOperationAction(ISD::UREM
, MVT::i16
, Expand
);
218 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
219 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
220 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
221 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
222 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
223 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
224 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
225 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
226 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
227 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
228 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
229 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
231 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
232 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
233 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
234 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
235 if (Subtarget
->is64Bit())
236 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
237 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Legal
);
238 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Legal
);
239 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
240 setOperationAction(ISD::FP_ROUND_INREG
, MVT::f32
, Expand
);
241 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
242 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
243 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
244 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
246 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
247 setOperationAction(ISD::CTTZ
, MVT::i8
, Custom
);
248 setOperationAction(ISD::CTLZ
, MVT::i8
, Custom
);
249 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
250 setOperationAction(ISD::CTTZ
, MVT::i16
, Custom
);
251 setOperationAction(ISD::CTLZ
, MVT::i16
, Custom
);
252 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
253 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
254 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
255 if (Subtarget
->is64Bit()) {
256 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
257 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
258 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
261 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
262 setOperationAction(ISD::BSWAP
, MVT::i16
, Expand
);
264 // These should be promoted to a larger select which is supported.
265 setOperationAction(ISD::SELECT
, MVT::i1
, Promote
);
266 setOperationAction(ISD::SELECT
, MVT::i8
, Promote
);
267 // X86 wants to expand cmov itself.
268 setOperationAction(ISD::SELECT
, MVT::i16
, Custom
);
269 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
270 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
271 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
272 setOperationAction(ISD::SELECT
, MVT::f80
, Custom
);
273 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
274 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
275 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
276 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
277 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
278 setOperationAction(ISD::SETCC
, MVT::f80
, Custom
);
279 if (Subtarget
->is64Bit()) {
280 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
281 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
283 // X86 ret instruction may pop stack.
284 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
285 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
288 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
289 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
290 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
291 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
292 if (Subtarget
->is64Bit())
293 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
294 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
295 if (Subtarget
->is64Bit()) {
296 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
297 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
298 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
299 setOperationAction(ISD::ExternalSymbol
, MVT::i64
, Custom
);
301 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
302 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
303 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
304 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
305 if (Subtarget
->is64Bit()) {
306 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
307 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
308 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
311 if (Subtarget
->hasSSE1())
312 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
314 if (!Subtarget
->hasSSE2())
315 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Expand
);
317 // Expand certain atomics
318 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i8
, Custom
);
319 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i16
, Custom
);
320 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
321 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
323 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i8
, Custom
);
324 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i16
, Custom
);
325 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
326 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
328 if (!Subtarget
->is64Bit()) {
329 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i64
, Custom
);
330 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
331 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
332 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i64
, Custom
);
333 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i64
, Custom
);
334 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i64
, Custom
);
335 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i64
, Custom
);
338 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
339 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
340 // FIXME - use subtarget debug flags
341 if (!Subtarget
->isTargetDarwin() &&
342 !Subtarget
->isTargetELF() &&
343 !Subtarget
->isTargetCygMing()) {
344 setOperationAction(ISD::DBG_LABEL
, MVT::Other
, Expand
);
345 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
348 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
349 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
350 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
351 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
352 if (Subtarget
->is64Bit()) {
353 setExceptionPointerRegister(X86::RAX
);
354 setExceptionSelectorRegister(X86::RDX
);
356 setExceptionPointerRegister(X86::EAX
);
357 setExceptionSelectorRegister(X86::EDX
);
359 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
360 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i64
, Custom
);
362 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
364 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
366 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
367 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
368 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
369 if (Subtarget
->is64Bit()) {
370 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
371 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
373 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
374 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
377 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
378 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
379 if (Subtarget
->is64Bit())
380 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
381 if (Subtarget
->isTargetCygMing())
382 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
384 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
386 if (!UseSoftFloat
&& X86ScalarSSEf64
) {
387 // f32 and f64 use SSE.
388 // Set up the FP register classes.
389 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
390 addRegisterClass(MVT::f64
, X86::FR64RegisterClass
);
392 // Use ANDPD to simulate FABS.
393 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
394 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
396 // Use XORP to simulate FNEG.
397 setOperationAction(ISD::FNEG
, MVT::f64
, Custom
);
398 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
400 // Use ANDPD and ORPD to simulate FCOPYSIGN.
401 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
402 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
404 // We don't support sin/cos/fmod
405 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
406 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
407 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
408 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
410 // Expand FP immediates into loads from the stack, except for the special
412 addLegalFPImmediate(APFloat(+0.0)); // xorpd
413 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
415 // Floating truncations from f80 and extensions to f80 go through memory.
416 // If optimizing, we lie about this though and handle it in
417 // InstructionSelectPreprocess so that dagcombine2 can hack on these.
419 setConvertAction(MVT::f32
, MVT::f80
, Expand
);
420 setConvertAction(MVT::f64
, MVT::f80
, Expand
);
421 setConvertAction(MVT::f80
, MVT::f32
, Expand
);
422 setConvertAction(MVT::f80
, MVT::f64
, Expand
);
424 } else if (!UseSoftFloat
&& X86ScalarSSEf32
) {
425 // Use SSE for f32, x87 for f64.
426 // Set up the FP register classes.
427 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
428 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
430 // Use ANDPS to simulate FABS.
431 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
433 // Use XORP to simulate FNEG.
434 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
436 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
438 // Use ANDPS and ORPS to simulate FCOPYSIGN.
439 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
440 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
442 // We don't support sin/cos/fmod
443 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
444 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
446 // Special cases we handle for FP constants.
447 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
448 addLegalFPImmediate(APFloat(+0.0)); // FLD0
449 addLegalFPImmediate(APFloat(+1.0)); // FLD1
450 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
451 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
453 // SSE <-> X87 conversions go through memory. If optimizing, we lie about
454 // this though and handle it in InstructionSelectPreprocess so that
455 // dagcombine2 can hack on these.
457 setConvertAction(MVT::f32
, MVT::f64
, Expand
);
458 setConvertAction(MVT::f32
, MVT::f80
, Expand
);
459 setConvertAction(MVT::f80
, MVT::f32
, Expand
);
460 setConvertAction(MVT::f64
, MVT::f32
, Expand
);
461 // And x87->x87 truncations also.
462 setConvertAction(MVT::f80
, MVT::f64
, Expand
);
466 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
467 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
469 } else if (!UseSoftFloat
) {
470 // f32 and f64 in x87.
471 // Set up the FP register classes.
472 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
473 addRegisterClass(MVT::f32
, X86::RFP32RegisterClass
);
475 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
476 setOperationAction(ISD::UNDEF
, MVT::f32
, Expand
);
477 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
478 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
480 // Floating truncations go through memory. If optimizing, we lie about
481 // this though and handle it in InstructionSelectPreprocess so that
482 // dagcombine2 can hack on these.
484 setConvertAction(MVT::f80
, MVT::f32
, Expand
);
485 setConvertAction(MVT::f64
, MVT::f32
, Expand
);
486 setConvertAction(MVT::f80
, MVT::f64
, Expand
);
490 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
491 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
493 addLegalFPImmediate(APFloat(+0.0)); // FLD0
494 addLegalFPImmediate(APFloat(+1.0)); // FLD1
495 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
496 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
497 addLegalFPImmediate(APFloat(+0.0f
)); // FLD0
498 addLegalFPImmediate(APFloat(+1.0f
)); // FLD1
499 addLegalFPImmediate(APFloat(-0.0f
)); // FLD0/FCHS
500 addLegalFPImmediate(APFloat(-1.0f
)); // FLD1/FCHS
503 // Long double always uses X87.
505 addRegisterClass(MVT::f80
, X86::RFP80RegisterClass
);
506 setOperationAction(ISD::UNDEF
, MVT::f80
, Expand
);
507 setOperationAction(ISD::FCOPYSIGN
, MVT::f80
, Expand
);
510 APFloat
TmpFlt(+0.0);
511 TmpFlt
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
513 addLegalFPImmediate(TmpFlt
); // FLD0
515 addLegalFPImmediate(TmpFlt
); // FLD0/FCHS
516 APFloat
TmpFlt2(+1.0);
517 TmpFlt2
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
519 addLegalFPImmediate(TmpFlt2
); // FLD1
520 TmpFlt2
.changeSign();
521 addLegalFPImmediate(TmpFlt2
); // FLD1/FCHS
525 setOperationAction(ISD::FSIN
, MVT::f80
, Expand
);
526 setOperationAction(ISD::FCOS
, MVT::f80
, Expand
);
530 // Always use a library call for pow.
531 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
532 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
533 setOperationAction(ISD::FPOW
, MVT::f80
, Expand
);
535 setOperationAction(ISD::FLOG
, MVT::f80
, Expand
);
536 setOperationAction(ISD::FLOG2
, MVT::f80
, Expand
);
537 setOperationAction(ISD::FLOG10
, MVT::f80
, Expand
);
538 setOperationAction(ISD::FEXP
, MVT::f80
, Expand
);
539 setOperationAction(ISD::FEXP2
, MVT::f80
, Expand
);
541 // First set operation action for all vector types to either promote
542 // (for widening) or expand (for scalarization). Then we will selectively
543 // turn on ones that can be effectively codegen'd.
544 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
545 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
546 setOperationAction(ISD::ADD
, (MVT::SimpleValueType
)VT
, Expand
);
547 setOperationAction(ISD::SUB
, (MVT::SimpleValueType
)VT
, Expand
);
548 setOperationAction(ISD::FADD
, (MVT::SimpleValueType
)VT
, Expand
);
549 setOperationAction(ISD::FNEG
, (MVT::SimpleValueType
)VT
, Expand
);
550 setOperationAction(ISD::FSUB
, (MVT::SimpleValueType
)VT
, Expand
);
551 setOperationAction(ISD::MUL
, (MVT::SimpleValueType
)VT
, Expand
);
552 setOperationAction(ISD::FMUL
, (MVT::SimpleValueType
)VT
, Expand
);
553 setOperationAction(ISD::SDIV
, (MVT::SimpleValueType
)VT
, Expand
);
554 setOperationAction(ISD::UDIV
, (MVT::SimpleValueType
)VT
, Expand
);
555 setOperationAction(ISD::FDIV
, (MVT::SimpleValueType
)VT
, Expand
);
556 setOperationAction(ISD::SREM
, (MVT::SimpleValueType
)VT
, Expand
);
557 setOperationAction(ISD::UREM
, (MVT::SimpleValueType
)VT
, Expand
);
558 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Expand
);
559 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::SimpleValueType
)VT
, Expand
);
560 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
,Expand
);
561 setOperationAction(ISD::INSERT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
, Expand
);
562 setOperationAction(ISD::FABS
, (MVT::SimpleValueType
)VT
, Expand
);
563 setOperationAction(ISD::FSIN
, (MVT::SimpleValueType
)VT
, Expand
);
564 setOperationAction(ISD::FCOS
, (MVT::SimpleValueType
)VT
, Expand
);
565 setOperationAction(ISD::FREM
, (MVT::SimpleValueType
)VT
, Expand
);
566 setOperationAction(ISD::FPOWI
, (MVT::SimpleValueType
)VT
, Expand
);
567 setOperationAction(ISD::FSQRT
, (MVT::SimpleValueType
)VT
, Expand
);
568 setOperationAction(ISD::FCOPYSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
569 setOperationAction(ISD::SMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
570 setOperationAction(ISD::UMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
571 setOperationAction(ISD::SDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
572 setOperationAction(ISD::UDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
573 setOperationAction(ISD::FPOW
, (MVT::SimpleValueType
)VT
, Expand
);
574 setOperationAction(ISD::CTPOP
, (MVT::SimpleValueType
)VT
, Expand
);
575 setOperationAction(ISD::CTTZ
, (MVT::SimpleValueType
)VT
, Expand
);
576 setOperationAction(ISD::CTLZ
, (MVT::SimpleValueType
)VT
, Expand
);
577 setOperationAction(ISD::SHL
, (MVT::SimpleValueType
)VT
, Expand
);
578 setOperationAction(ISD::SRA
, (MVT::SimpleValueType
)VT
, Expand
);
579 setOperationAction(ISD::SRL
, (MVT::SimpleValueType
)VT
, Expand
);
580 setOperationAction(ISD::ROTL
, (MVT::SimpleValueType
)VT
, Expand
);
581 setOperationAction(ISD::ROTR
, (MVT::SimpleValueType
)VT
, Expand
);
582 setOperationAction(ISD::BSWAP
, (MVT::SimpleValueType
)VT
, Expand
);
583 setOperationAction(ISD::VSETCC
, (MVT::SimpleValueType
)VT
, Expand
);
584 setOperationAction(ISD::FLOG
, (MVT::SimpleValueType
)VT
, Expand
);
585 setOperationAction(ISD::FLOG2
, (MVT::SimpleValueType
)VT
, Expand
);
586 setOperationAction(ISD::FLOG10
, (MVT::SimpleValueType
)VT
, Expand
);
587 setOperationAction(ISD::FEXP
, (MVT::SimpleValueType
)VT
, Expand
);
588 setOperationAction(ISD::FEXP2
, (MVT::SimpleValueType
)VT
, Expand
);
591 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
592 // with -msoft-float, disable use of MMX as well.
593 if (!UseSoftFloat
&& !DisableMMX
&& Subtarget
->hasMMX()) {
594 addRegisterClass(MVT::v8i8
, X86::VR64RegisterClass
);
595 addRegisterClass(MVT::v4i16
, X86::VR64RegisterClass
);
596 addRegisterClass(MVT::v2i32
, X86::VR64RegisterClass
);
597 addRegisterClass(MVT::v2f32
, X86::VR64RegisterClass
);
598 addRegisterClass(MVT::v1i64
, X86::VR64RegisterClass
);
600 setOperationAction(ISD::ADD
, MVT::v8i8
, Legal
);
601 setOperationAction(ISD::ADD
, MVT::v4i16
, Legal
);
602 setOperationAction(ISD::ADD
, MVT::v2i32
, Legal
);
603 setOperationAction(ISD::ADD
, MVT::v1i64
, Legal
);
605 setOperationAction(ISD::SUB
, MVT::v8i8
, Legal
);
606 setOperationAction(ISD::SUB
, MVT::v4i16
, Legal
);
607 setOperationAction(ISD::SUB
, MVT::v2i32
, Legal
);
608 setOperationAction(ISD::SUB
, MVT::v1i64
, Legal
);
610 setOperationAction(ISD::MULHS
, MVT::v4i16
, Legal
);
611 setOperationAction(ISD::MUL
, MVT::v4i16
, Legal
);
613 setOperationAction(ISD::AND
, MVT::v8i8
, Promote
);
614 AddPromotedToType (ISD::AND
, MVT::v8i8
, MVT::v1i64
);
615 setOperationAction(ISD::AND
, MVT::v4i16
, Promote
);
616 AddPromotedToType (ISD::AND
, MVT::v4i16
, MVT::v1i64
);
617 setOperationAction(ISD::AND
, MVT::v2i32
, Promote
);
618 AddPromotedToType (ISD::AND
, MVT::v2i32
, MVT::v1i64
);
619 setOperationAction(ISD::AND
, MVT::v1i64
, Legal
);
621 setOperationAction(ISD::OR
, MVT::v8i8
, Promote
);
622 AddPromotedToType (ISD::OR
, MVT::v8i8
, MVT::v1i64
);
623 setOperationAction(ISD::OR
, MVT::v4i16
, Promote
);
624 AddPromotedToType (ISD::OR
, MVT::v4i16
, MVT::v1i64
);
625 setOperationAction(ISD::OR
, MVT::v2i32
, Promote
);
626 AddPromotedToType (ISD::OR
, MVT::v2i32
, MVT::v1i64
);
627 setOperationAction(ISD::OR
, MVT::v1i64
, Legal
);
629 setOperationAction(ISD::XOR
, MVT::v8i8
, Promote
);
630 AddPromotedToType (ISD::XOR
, MVT::v8i8
, MVT::v1i64
);
631 setOperationAction(ISD::XOR
, MVT::v4i16
, Promote
);
632 AddPromotedToType (ISD::XOR
, MVT::v4i16
, MVT::v1i64
);
633 setOperationAction(ISD::XOR
, MVT::v2i32
, Promote
);
634 AddPromotedToType (ISD::XOR
, MVT::v2i32
, MVT::v1i64
);
635 setOperationAction(ISD::XOR
, MVT::v1i64
, Legal
);
637 setOperationAction(ISD::LOAD
, MVT::v8i8
, Promote
);
638 AddPromotedToType (ISD::LOAD
, MVT::v8i8
, MVT::v1i64
);
639 setOperationAction(ISD::LOAD
, MVT::v4i16
, Promote
);
640 AddPromotedToType (ISD::LOAD
, MVT::v4i16
, MVT::v1i64
);
641 setOperationAction(ISD::LOAD
, MVT::v2i32
, Promote
);
642 AddPromotedToType (ISD::LOAD
, MVT::v2i32
, MVT::v1i64
);
643 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
644 AddPromotedToType (ISD::LOAD
, MVT::v2f32
, MVT::v1i64
);
645 setOperationAction(ISD::LOAD
, MVT::v1i64
, Legal
);
647 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i8
, Custom
);
648 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i16
, Custom
);
649 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i32
, Custom
);
650 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f32
, Custom
);
651 setOperationAction(ISD::BUILD_VECTOR
, MVT::v1i64
, Custom
);
653 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v8i8
, Custom
);
654 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i16
, Custom
);
655 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i32
, Custom
);
656 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v1i64
, Custom
);
658 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f32
, Custom
);
659 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i8
, Custom
);
660 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i16
, Custom
);
661 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v1i64
, Custom
);
663 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i16
, Custom
);
665 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Expand
);
666 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Expand
);
667 setOperationAction(ISD::SELECT
, MVT::v8i8
, Promote
);
668 setOperationAction(ISD::SELECT
, MVT::v4i16
, Promote
);
669 setOperationAction(ISD::SELECT
, MVT::v2i32
, Promote
);
670 setOperationAction(ISD::SELECT
, MVT::v1i64
, Custom
);
673 if (!UseSoftFloat
&& Subtarget
->hasSSE1()) {
674 addRegisterClass(MVT::v4f32
, X86::VR128RegisterClass
);
676 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
677 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
678 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
679 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
680 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
681 setOperationAction(ISD::FNEG
, MVT::v4f32
, Custom
);
682 setOperationAction(ISD::LOAD
, MVT::v4f32
, Legal
);
683 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
684 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
685 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
686 setOperationAction(ISD::SELECT
, MVT::v4f32
, Custom
);
687 setOperationAction(ISD::VSETCC
, MVT::v4f32
, Custom
);
690 if (!UseSoftFloat
&& Subtarget
->hasSSE2()) {
691 addRegisterClass(MVT::v2f64
, X86::VR128RegisterClass
);
693 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
694 // registers cannot be used even for integer operations.
695 addRegisterClass(MVT::v16i8
, X86::VR128RegisterClass
);
696 addRegisterClass(MVT::v8i16
, X86::VR128RegisterClass
);
697 addRegisterClass(MVT::v4i32
, X86::VR128RegisterClass
);
698 addRegisterClass(MVT::v2i64
, X86::VR128RegisterClass
);
700 setOperationAction(ISD::ADD
, MVT::v16i8
, Legal
);
701 setOperationAction(ISD::ADD
, MVT::v8i16
, Legal
);
702 setOperationAction(ISD::ADD
, MVT::v4i32
, Legal
);
703 setOperationAction(ISD::ADD
, MVT::v2i64
, Legal
);
704 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
705 setOperationAction(ISD::SUB
, MVT::v16i8
, Legal
);
706 setOperationAction(ISD::SUB
, MVT::v8i16
, Legal
);
707 setOperationAction(ISD::SUB
, MVT::v4i32
, Legal
);
708 setOperationAction(ISD::SUB
, MVT::v2i64
, Legal
);
709 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
710 setOperationAction(ISD::FADD
, MVT::v2f64
, Legal
);
711 setOperationAction(ISD::FSUB
, MVT::v2f64
, Legal
);
712 setOperationAction(ISD::FMUL
, MVT::v2f64
, Legal
);
713 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
714 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
715 setOperationAction(ISD::FNEG
, MVT::v2f64
, Custom
);
717 setOperationAction(ISD::VSETCC
, MVT::v2f64
, Custom
);
718 setOperationAction(ISD::VSETCC
, MVT::v16i8
, Custom
);
719 setOperationAction(ISD::VSETCC
, MVT::v8i16
, Custom
);
720 setOperationAction(ISD::VSETCC
, MVT::v4i32
, Custom
);
722 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Custom
);
723 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Custom
);
724 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
725 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
726 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
728 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
729 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; ++i
) {
730 MVT VT
= (MVT::SimpleValueType
)i
;
731 // Do not attempt to custom lower non-power-of-2 vectors
732 if (!isPowerOf2_32(VT
.getVectorNumElements()))
734 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
735 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
739 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
740 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
741 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Custom
);
742 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Custom
);
743 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
744 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Custom
);
746 if (Subtarget
->is64Bit()) {
747 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
748 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Custom
);
751 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
752 for (unsigned VT
= (unsigned)MVT::v16i8
; VT
!= (unsigned)MVT::v2i64
; VT
++) {
753 setOperationAction(ISD::AND
, (MVT::SimpleValueType
)VT
, Promote
);
754 AddPromotedToType (ISD::AND
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
755 setOperationAction(ISD::OR
, (MVT::SimpleValueType
)VT
, Promote
);
756 AddPromotedToType (ISD::OR
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
757 setOperationAction(ISD::XOR
, (MVT::SimpleValueType
)VT
, Promote
);
758 AddPromotedToType (ISD::XOR
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
759 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Promote
);
760 AddPromotedToType (ISD::LOAD
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
761 setOperationAction(ISD::SELECT
, (MVT::SimpleValueType
)VT
, Promote
);
762 AddPromotedToType (ISD::SELECT
, (MVT::SimpleValueType
)VT
, MVT::v2i64
);
765 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
767 // Custom lower v2i64 and v2f64 selects.
768 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
769 setOperationAction(ISD::LOAD
, MVT::v2i64
, Legal
);
770 setOperationAction(ISD::SELECT
, MVT::v2f64
, Custom
);
771 setOperationAction(ISD::SELECT
, MVT::v2i64
, Custom
);
775 if (Subtarget
->hasSSE41()) {
776 // FIXME: Do we need to handle scalar-to-vector here?
777 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
779 // i8 and i16 vectors are custom , because the source register and source
780 // source memory operand types are not the same width. f32 vectors are
781 // custom since the immediate controlling the insert encodes additional
783 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
784 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
785 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
786 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
788 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Custom
);
789 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Custom
);
790 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
791 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
793 if (Subtarget
->is64Bit()) {
794 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Legal
);
795 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
799 if (Subtarget
->hasSSE42()) {
800 setOperationAction(ISD::VSETCC
, MVT::v2i64
, Custom
);
803 // We want to custom lower some of our intrinsics.
804 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
806 // Add/Sub/Mul with overflow operations are custom lowered.
807 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
808 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
809 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
810 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
811 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
812 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
813 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
814 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
815 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
816 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
817 setOperationAction(ISD::UMULO
, MVT::i32
, Custom
);
818 setOperationAction(ISD::UMULO
, MVT::i64
, Custom
);
820 if (!Subtarget
->is64Bit()) {
821 // These libcalls are not available in 32-bit.
822 setLibcallName(RTLIB::SHL_I128
, 0);
823 setLibcallName(RTLIB::SRL_I128
, 0);
824 setLibcallName(RTLIB::SRA_I128
, 0);
827 // We have target-specific dag combine patterns for the following nodes:
828 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
829 setTargetDAGCombine(ISD::BUILD_VECTOR
);
830 setTargetDAGCombine(ISD::SELECT
);
831 setTargetDAGCombine(ISD::SHL
);
832 setTargetDAGCombine(ISD::SRA
);
833 setTargetDAGCombine(ISD::SRL
);
834 setTargetDAGCombine(ISD::STORE
);
835 if (Subtarget
->is64Bit())
836 setTargetDAGCombine(ISD::MUL
);
838 computeRegisterProperties();
840 // FIXME: These should be based on subtarget info. Plus, the values should
841 // be smaller when we are in optimizing for size mode.
842 maxStoresPerMemset
= 16; // For @llvm.memset -> sequence of stores
843 maxStoresPerMemcpy
= 16; // For @llvm.memcpy -> sequence of stores
844 maxStoresPerMemmove
= 3; // For @llvm.memmove -> sequence of stores
845 allowUnalignedMemoryAccesses
= true; // x86 supports it!
846 setPrefLoopAlignment(16);
850 MVT
X86TargetLowering::getSetCCResultType(MVT VT
) const {
855 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
856 /// the desired ByVal argument alignment.
857 static void getMaxByValAlign(const Type
*Ty
, unsigned &MaxAlign
) {
860 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
861 if (VTy
->getBitWidth() == 128)
863 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
864 unsigned EltAlign
= 0;
865 getMaxByValAlign(ATy
->getElementType(), EltAlign
);
866 if (EltAlign
> MaxAlign
)
868 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
869 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
870 unsigned EltAlign
= 0;
871 getMaxByValAlign(STy
->getElementType(i
), EltAlign
);
872 if (EltAlign
> MaxAlign
)
881 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
882 /// function arguments in the caller parameter area. For X86, aggregates
883 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
884 /// are at 4-byte boundaries.
885 unsigned X86TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
886 if (Subtarget
->is64Bit()) {
887 // Max of 8 and alignment of type.
888 unsigned TyAlign
= TD
->getABITypeAlignment(Ty
);
895 if (Subtarget
->hasSSE1())
896 getMaxByValAlign(Ty
, Align
);
900 /// getOptimalMemOpType - Returns the target specific optimal type for load
901 /// and store operations as a result of memset, memcpy, and memmove
902 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
905 X86TargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned Align
,
906 bool isSrcConst
, bool isSrcStr
) const {
907 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
908 // linux. This is because the stack realignment code can't handle certain
909 // cases like PR2962. This should be removed when PR2962 is fixed.
910 if (!NoImplicitFloat
&& Subtarget
->getStackAlignment() >= 16) {
911 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE2() && Size
>= 16)
913 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE1() && Size
>= 16)
916 if (Subtarget
->is64Bit() && Size
>= 8)
921 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
923 SDValue
X86TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
924 SelectionDAG
&DAG
) const {
925 if (usesGlobalOffsetTable())
926 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
927 if (!Subtarget
->isPICStyleRIPRel())
928 // This doesn't have DebugLoc associated with it, but is not really the
929 // same as a Register.
930 return DAG
.getNode(X86ISD::GlobalBaseReg
, DebugLoc::getUnknownLoc(),
935 //===----------------------------------------------------------------------===//
936 // Return Value Calling Convention Implementation
937 //===----------------------------------------------------------------------===//
939 #include "X86GenCallingConv.inc"
941 /// LowerRET - Lower an ISD::RET node.
942 SDValue
X86TargetLowering::LowerRET(SDValue Op
, SelectionDAG
&DAG
) {
943 DebugLoc dl
= Op
.getDebugLoc();
944 assert((Op
.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
946 SmallVector
<CCValAssign
, 16> RVLocs
;
947 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
948 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
949 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), RVLocs
);
950 CCInfo
.AnalyzeReturn(Op
.getNode(), RetCC_X86
);
952 // If this is the first return lowered for this function, add the regs to the
953 // liveout set for the function.
954 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
955 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
956 if (RVLocs
[i
].isRegLoc())
957 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
959 SDValue Chain
= Op
.getOperand(0);
961 // Handle tail call return.
962 Chain
= GetPossiblePreceedingTailCall(Chain
, X86ISD::TAILCALL
);
963 if (Chain
.getOpcode() == X86ISD::TAILCALL
) {
964 SDValue TailCall
= Chain
;
965 SDValue TargetAddress
= TailCall
.getOperand(1);
966 SDValue StackAdjustment
= TailCall
.getOperand(2);
967 assert(((TargetAddress
.getOpcode() == ISD::Register
&&
968 (cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::EAX
||
969 cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::R9
)) ||
970 TargetAddress
.getOpcode() == ISD::TargetExternalSymbol
||
971 TargetAddress
.getOpcode() == ISD::TargetGlobalAddress
) &&
972 "Expecting an global address, external symbol, or register");
973 assert(StackAdjustment
.getOpcode() == ISD::Constant
&&
974 "Expecting a const value");
976 SmallVector
<SDValue
,8> Operands
;
977 Operands
.push_back(Chain
.getOperand(0));
978 Operands
.push_back(TargetAddress
);
979 Operands
.push_back(StackAdjustment
);
980 // Copy registers used by the call. Last operand is a flag so it is not
982 for (unsigned i
=3; i
< TailCall
.getNumOperands()-1; i
++) {
983 Operands
.push_back(Chain
.getOperand(i
));
985 return DAG
.getNode(X86ISD::TC_RETURN
, dl
, MVT::Other
, &Operands
[0],
992 SmallVector
<SDValue
, 6> RetOps
;
993 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
994 // Operand #1 = Bytes To Pop
995 RetOps
.push_back(DAG
.getConstant(getBytesToPopOnReturn(), MVT::i16
));
997 // Copy the result values into the output registers.
998 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
999 CCValAssign
&VA
= RVLocs
[i
];
1000 assert(VA
.isRegLoc() && "Can only return in registers!");
1001 SDValue ValToCopy
= Op
.getOperand(i
*2+1);
1003 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1004 // the RET instruction and handled by the FP Stackifier.
1005 if (VA
.getLocReg() == X86::ST0
||
1006 VA
.getLocReg() == X86::ST1
) {
1007 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1008 // change the value to the FP stack register class.
1009 if (isScalarFPTypeInSSEReg(VA
.getValVT()))
1010 ValToCopy
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f80
, ValToCopy
);
1011 RetOps
.push_back(ValToCopy
);
1012 // Don't emit a copytoreg.
1016 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1017 // which is returned in RAX / RDX.
1018 if (Subtarget
->is64Bit()) {
1019 MVT ValVT
= ValToCopy
.getValueType();
1020 if (ValVT
.isVector() && ValVT
.getSizeInBits() == 64) {
1021 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, ValToCopy
);
1022 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
)
1023 ValToCopy
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, ValToCopy
);
1027 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), ValToCopy
, Flag
);
1028 Flag
= Chain
.getValue(1);
1031 // The x86-64 ABI for returning structs by value requires that we copy
1032 // the sret argument into %rax for the return. We saved the argument into
1033 // a virtual register in the entry block, so now we copy the value out
1035 if (Subtarget
->is64Bit() &&
1036 DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1037 MachineFunction
&MF
= DAG
.getMachineFunction();
1038 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1039 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1041 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1042 FuncInfo
->setSRetReturnReg(Reg
);
1044 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1046 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::RAX
, Val
, Flag
);
1047 Flag
= Chain
.getValue(1);
1050 RetOps
[0] = Chain
; // Update chain.
1052 // Add the flag if we have it.
1054 RetOps
.push_back(Flag
);
1056 return DAG
.getNode(X86ISD::RET_FLAG
, dl
,
1057 MVT::Other
, &RetOps
[0], RetOps
.size());
1061 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1062 /// appropriate copies out of appropriate physical registers. This assumes that
1063 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1064 /// being lowered. The returns a SDNode with the same number of values as the
1066 SDNode
*X86TargetLowering::
1067 LowerCallResult(SDValue Chain
, SDValue InFlag
, CallSDNode
*TheCall
,
1068 unsigned CallingConv
, SelectionDAG
&DAG
) {
1070 DebugLoc dl
= TheCall
->getDebugLoc();
1071 // Assign locations to each value returned by this call.
1072 SmallVector
<CCValAssign
, 16> RVLocs
;
1073 bool isVarArg
= TheCall
->isVarArg();
1074 bool Is64Bit
= Subtarget
->is64Bit();
1075 CCState
CCInfo(CallingConv
, isVarArg
, getTargetMachine(), RVLocs
);
1076 CCInfo
.AnalyzeCallResult(TheCall
, RetCC_X86
);
1078 SmallVector
<SDValue
, 8> ResultVals
;
1080 // Copy all of the result registers out of their specified physreg.
1081 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1082 CCValAssign
&VA
= RVLocs
[i
];
1083 MVT CopyVT
= VA
.getValVT();
1085 // If this is x86-64, and we disabled SSE, we can't return FP values
1086 if ((CopyVT
== MVT::f32
|| CopyVT
== MVT::f64
) &&
1087 ((Is64Bit
|| TheCall
->isInreg()) && !Subtarget
->hasSSE1())) {
1088 cerr
<< "SSE register return with SSE disabled\n";
1092 // If this is a call to a function that returns an fp value on the floating
1093 // point stack, but where we prefer to use the value in xmm registers, copy
1094 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1095 if ((VA
.getLocReg() == X86::ST0
||
1096 VA
.getLocReg() == X86::ST1
) &&
1097 isScalarFPTypeInSSEReg(VA
.getValVT())) {
1102 if (Is64Bit
&& CopyVT
.isVector() && CopyVT
.getSizeInBits() == 64) {
1103 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1104 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1105 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1106 MVT::v2i64
, InFlag
).getValue(1);
1107 Val
= Chain
.getValue(0);
1108 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1109 Val
, DAG
.getConstant(0, MVT::i64
));
1111 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1112 MVT::i64
, InFlag
).getValue(1);
1113 Val
= Chain
.getValue(0);
1115 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, CopyVT
, Val
);
1117 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1118 CopyVT
, InFlag
).getValue(1);
1119 Val
= Chain
.getValue(0);
1121 InFlag
= Chain
.getValue(2);
1123 if (CopyVT
!= VA
.getValVT()) {
1124 // Round the F80 the right size, which also moves to the appropriate xmm
1126 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, VA
.getValVT(), Val
,
1127 // This truncation won't change the value.
1128 DAG
.getIntPtrConstant(1));
1131 ResultVals
.push_back(Val
);
1134 // Merge everything together with a MERGE_VALUES node.
1135 ResultVals
.push_back(Chain
);
1136 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, TheCall
->getVTList(),
1137 &ResultVals
[0], ResultVals
.size()).getNode();
1141 //===----------------------------------------------------------------------===//
1142 // C & StdCall & Fast Calling Convention implementation
1143 //===----------------------------------------------------------------------===//
1144 // StdCall calling convention seems to be standard for many Windows' API
1145 // routines and around. It differs from C calling convention just a little:
1146 // callee should clean up the stack, not caller. Symbols should be also
1147 // decorated in some fancy way :) It doesn't support any vector arguments.
1148 // For info on fast calling convention see Fast Calling Convention (tail call)
1149 // implementation LowerX86_32FastCCCallTo.
1151 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1153 static bool CallIsStructReturn(CallSDNode
*TheCall
) {
1154 unsigned NumOps
= TheCall
->getNumArgs();
1158 return TheCall
->getArgFlags(0).isSRet();
1161 /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1162 /// return semantics.
1163 static bool ArgsAreStructReturn(SDValue Op
) {
1164 unsigned NumArgs
= Op
.getNode()->getNumValues() - 1;
1168 return cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3))->getArgFlags().isSRet();
1171 /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1172 /// the callee to pop its own arguments. Callee pop is necessary to support tail
1174 bool X86TargetLowering::IsCalleePop(bool IsVarArg
, unsigned CallingConv
) {
1178 switch (CallingConv
) {
1181 case CallingConv::X86_StdCall
:
1182 return !Subtarget
->is64Bit();
1183 case CallingConv::X86_FastCall
:
1184 return !Subtarget
->is64Bit();
1185 case CallingConv::Fast
:
1186 return PerformTailCallOpt
;
1190 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1191 /// given CallingConvention value.
1192 CCAssignFn
*X86TargetLowering::CCAssignFnForNode(unsigned CC
) const {
1193 if (Subtarget
->is64Bit()) {
1194 if (Subtarget
->isTargetWin64())
1195 return CC_X86_Win64_C
;
1196 else if (CC
== CallingConv::Fast
&& PerformTailCallOpt
)
1197 return CC_X86_64_TailCall
;
1202 if (CC
== CallingConv::X86_FastCall
)
1203 return CC_X86_32_FastCall
;
1204 else if (CC
== CallingConv::Fast
)
1205 return CC_X86_32_FastCC
;
1210 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1211 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1213 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op
) {
1214 unsigned CC
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1215 if (CC
== CallingConv::X86_FastCall
)
1217 else if (CC
== CallingConv::X86_StdCall
)
1223 /// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1224 /// in a register before calling.
1225 bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit
, bool IsTailCall
) {
1226 return !IsTailCall
&& !Is64Bit
&&
1227 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1228 Subtarget
->isPICStyleGOT();
1231 /// CallRequiresFnAddressInReg - Check whether the call requires the function
1232 /// address to be loaded in a register.
1234 X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit
, bool IsTailCall
) {
1235 return !Is64Bit
&& IsTailCall
&&
1236 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1237 Subtarget
->isPICStyleGOT();
1240 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1241 /// by "Src" to address "Dst" with size and alignment information specified by
1242 /// the specific parameter attribute. The copy will be passed as a byval
1243 /// function parameter.
1245 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
1246 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1248 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
1249 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
1250 /*AlwaysInline=*/true, NULL
, 0, NULL
, 0);
1253 SDValue
X86TargetLowering::LowerMemArgument(SDValue Op
, SelectionDAG
&DAG
,
1254 const CCValAssign
&VA
,
1255 MachineFrameInfo
*MFI
,
1257 SDValue Root
, unsigned i
) {
1258 // Create the nodes corresponding to a load from this parameter slot.
1259 ISD::ArgFlagsTy Flags
=
1260 cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3 + i
))->getArgFlags();
1261 bool AlwaysUseMutable
= (CC
==CallingConv::Fast
) && PerformTailCallOpt
;
1262 bool isImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
1264 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1265 // changed with more analysis.
1266 // In case of tail call optimization mark all arguments mutable. Since they
1267 // could be overwritten by lowering of arguments in case of a tail call.
1268 int FI
= MFI
->CreateFixedObject(VA
.getValVT().getSizeInBits()/8,
1269 VA
.getLocMemOffset(), isImmutable
);
1270 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1271 if (Flags
.isByVal())
1273 return DAG
.getLoad(VA
.getValVT(), Op
.getDebugLoc(), Root
, FIN
,
1274 PseudoSourceValue::getFixedStack(FI
), 0);
1278 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op
, SelectionDAG
&DAG
) {
1279 MachineFunction
&MF
= DAG
.getMachineFunction();
1280 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1281 DebugLoc dl
= Op
.getDebugLoc();
1283 const Function
* Fn
= MF
.getFunction();
1284 if (Fn
->hasExternalLinkage() &&
1285 Subtarget
->isTargetCygMing() &&
1286 Fn
->getName() == "main")
1287 FuncInfo
->setForceFramePointer(true);
1289 // Decorate the function name.
1290 FuncInfo
->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op
));
1292 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1293 SDValue Root
= Op
.getOperand(0);
1294 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() != 0;
1295 unsigned CC
= MF
.getFunction()->getCallingConv();
1296 bool Is64Bit
= Subtarget
->is64Bit();
1297 bool IsWin64
= Subtarget
->isTargetWin64();
1299 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1300 "Var args not supported with calling convention fastcc");
1302 // Assign locations to all of the incoming arguments.
1303 SmallVector
<CCValAssign
, 16> ArgLocs
;
1304 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
);
1305 CCInfo
.AnalyzeFormalArguments(Op
.getNode(), CCAssignFnForNode(CC
));
1307 SmallVector
<SDValue
, 8> ArgValues
;
1308 unsigned LastVal
= ~0U;
1309 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1310 CCValAssign
&VA
= ArgLocs
[i
];
1311 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1313 assert(VA
.getValNo() != LastVal
&&
1314 "Don't support value assigned to multiple locs yet");
1315 LastVal
= VA
.getValNo();
1317 if (VA
.isRegLoc()) {
1318 MVT RegVT
= VA
.getLocVT();
1319 TargetRegisterClass
*RC
= NULL
;
1320 if (RegVT
== MVT::i32
)
1321 RC
= X86::GR32RegisterClass
;
1322 else if (Is64Bit
&& RegVT
== MVT::i64
)
1323 RC
= X86::GR64RegisterClass
;
1324 else if (RegVT
== MVT::f32
)
1325 RC
= X86::FR32RegisterClass
;
1326 else if (RegVT
== MVT::f64
)
1327 RC
= X86::FR64RegisterClass
;
1328 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128)
1329 RC
= X86::VR128RegisterClass
;
1330 else if (RegVT
.isVector()) {
1331 assert(RegVT
.getSizeInBits() == 64);
1333 RC
= X86::VR64RegisterClass
; // MMX values are passed in MMXs.
1335 // Darwin calling convention passes MMX values in either GPRs or
1336 // XMMs in x86-64. Other targets pass them in memory.
1337 if (RegVT
!= MVT::v1i64
&& Subtarget
->hasSSE2()) {
1338 RC
= X86::VR128RegisterClass
; // MMX values are passed in XMMs.
1341 RC
= X86::GR64RegisterClass
; // v1i64 values are passed in GPRs.
1346 assert(0 && "Unknown argument type!");
1349 unsigned Reg
= DAG
.getMachineFunction().addLiveIn(VA
.getLocReg(), RC
);
1350 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, RegVT
);
1352 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1353 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1355 if (VA
.getLocInfo() == CCValAssign::SExt
)
1356 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
1357 DAG
.getValueType(VA
.getValVT()));
1358 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1359 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
1360 DAG
.getValueType(VA
.getValVT()));
1362 if (VA
.getLocInfo() != CCValAssign::Full
)
1363 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
1365 // Handle MMX values passed in GPRs.
1366 if (Is64Bit
&& RegVT
!= VA
.getLocVT()) {
1367 if (RegVT
.getSizeInBits() == 64 && RC
== X86::GR64RegisterClass
)
1368 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1369 else if (RC
== X86::VR128RegisterClass
) {
1370 ArgValue
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1371 ArgValue
, DAG
.getConstant(0, MVT::i64
));
1372 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1376 ArgValues
.push_back(ArgValue
);
1378 assert(VA
.isMemLoc());
1379 ArgValues
.push_back(LowerMemArgument(Op
, DAG
, VA
, MFI
, CC
, Root
, i
));
1383 // The x86-64 ABI for returning structs by value requires that we copy
1384 // the sret argument into %rax for the return. Save the argument into
1385 // a virtual register so that we can access it from the return points.
1386 if (Is64Bit
&& DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1387 MachineFunction
&MF
= DAG
.getMachineFunction();
1388 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1389 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1391 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1392 FuncInfo
->setSRetReturnReg(Reg
);
1394 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, ArgValues
[0]);
1395 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Root
);
1398 unsigned StackSize
= CCInfo
.getNextStackOffset();
1399 // align stack specially for tail calls
1400 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1401 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
1403 // If the function takes variable number of arguments, make a frame index for
1404 // the start of the first vararg value... for expansion of llvm.va_start.
1406 if (Is64Bit
|| CC
!= CallingConv::X86_FastCall
) {
1407 VarArgsFrameIndex
= MFI
->CreateFixedObject(1, StackSize
);
1410 unsigned TotalNumIntRegs
= 0, TotalNumXMMRegs
= 0;
1412 // FIXME: We should really autogenerate these arrays
1413 static const unsigned GPR64ArgRegsWin64
[] = {
1414 X86::RCX
, X86::RDX
, X86::R8
, X86::R9
1416 static const unsigned XMMArgRegsWin64
[] = {
1417 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
1419 static const unsigned GPR64ArgRegs64Bit
[] = {
1420 X86::RDI
, X86::RSI
, X86::RDX
, X86::RCX
, X86::R8
, X86::R9
1422 static const unsigned XMMArgRegs64Bit
[] = {
1423 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1424 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1426 const unsigned *GPR64ArgRegs
, *XMMArgRegs
;
1429 TotalNumIntRegs
= 4; TotalNumXMMRegs
= 4;
1430 GPR64ArgRegs
= GPR64ArgRegsWin64
;
1431 XMMArgRegs
= XMMArgRegsWin64
;
1433 TotalNumIntRegs
= 6; TotalNumXMMRegs
= 8;
1434 GPR64ArgRegs
= GPR64ArgRegs64Bit
;
1435 XMMArgRegs
= XMMArgRegs64Bit
;
1437 unsigned NumIntRegs
= CCInfo
.getFirstUnallocated(GPR64ArgRegs
,
1439 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
,
1442 assert(!(NumXMMRegs
&& !Subtarget
->hasSSE1()) &&
1443 "SSE register cannot be used when SSE is disabled!");
1444 assert(!(NumXMMRegs
&& UseSoftFloat
&& NoImplicitFloat
) &&
1445 "SSE register cannot be used when SSE is disabled!");
1446 if (UseSoftFloat
|| NoImplicitFloat
|| !Subtarget
->hasSSE1())
1447 // Kernel mode asks for SSE to be disabled, so don't push them
1449 TotalNumXMMRegs
= 0;
1451 // For X86-64, if there are vararg parameters that are passed via
1452 // registers, then we must store them to their spots on the stack so they
1453 // may be loaded by deferencing the result of va_next.
1454 VarArgsGPOffset
= NumIntRegs
* 8;
1455 VarArgsFPOffset
= TotalNumIntRegs
* 8 + NumXMMRegs
* 16;
1456 RegSaveFrameIndex
= MFI
->CreateStackObject(TotalNumIntRegs
* 8 +
1457 TotalNumXMMRegs
* 16, 16);
1459 // Store the integer parameter registers.
1460 SmallVector
<SDValue
, 8> MemOps
;
1461 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
1462 SDValue FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1463 DAG
.getIntPtrConstant(VarArgsGPOffset
));
1464 for (; NumIntRegs
!= TotalNumIntRegs
; ++NumIntRegs
) {
1465 unsigned VReg
= MF
.addLiveIn(GPR64ArgRegs
[NumIntRegs
],
1466 X86::GR64RegisterClass
);
1467 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::i64
);
1469 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1470 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1471 MemOps
.push_back(Store
);
1472 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1473 DAG
.getIntPtrConstant(8));
1476 // Now store the XMM (fp + vector) parameter registers.
1477 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1478 DAG
.getIntPtrConstant(VarArgsFPOffset
));
1479 for (; NumXMMRegs
!= TotalNumXMMRegs
; ++NumXMMRegs
) {
1480 unsigned VReg
= MF
.addLiveIn(XMMArgRegs
[NumXMMRegs
],
1481 X86::VR128RegisterClass
);
1482 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::v4f32
);
1484 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1485 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1486 MemOps
.push_back(Store
);
1487 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1488 DAG
.getIntPtrConstant(16));
1490 if (!MemOps
.empty())
1491 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1492 &MemOps
[0], MemOps
.size());
1496 ArgValues
.push_back(Root
);
1498 // Some CCs need callee pop.
1499 if (IsCalleePop(isVarArg
, CC
)) {
1500 BytesToPopOnReturn
= StackSize
; // Callee pops everything.
1501 BytesCallerReserves
= 0;
1503 BytesToPopOnReturn
= 0; // Callee pops nothing.
1504 // If this is an sret function, the return should pop the hidden pointer.
1505 if (!Is64Bit
&& CC
!= CallingConv::Fast
&& ArgsAreStructReturn(Op
))
1506 BytesToPopOnReturn
= 4;
1507 BytesCallerReserves
= StackSize
;
1511 RegSaveFrameIndex
= 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1512 if (CC
== CallingConv::X86_FastCall
)
1513 VarArgsFrameIndex
= 0xAAAAAAA; // fastcc functions can't have varargs.
1516 FuncInfo
->setBytesToPopOnReturn(BytesToPopOnReturn
);
1518 // Return the new list of results.
1519 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Op
.getNode()->getVTList(),
1520 &ArgValues
[0], ArgValues
.size()).getValue(Op
.getResNo());
1524 X86TargetLowering::LowerMemOpCallTo(CallSDNode
*TheCall
, SelectionDAG
&DAG
,
1525 const SDValue
&StackPtr
,
1526 const CCValAssign
&VA
,
1528 SDValue Arg
, ISD::ArgFlagsTy Flags
) {
1529 DebugLoc dl
= TheCall
->getDebugLoc();
1530 unsigned LocMemOffset
= VA
.getLocMemOffset();
1531 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
1532 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
1533 if (Flags
.isByVal()) {
1534 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, dl
);
1536 return DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
1537 PseudoSourceValue::getStack(), LocMemOffset
);
1540 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1541 /// optimization is performed and it is required.
1543 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
1544 SDValue
&OutRetAddr
,
1550 if (!IsTailCall
|| FPDiff
==0) return Chain
;
1552 // Adjust the Return address stack slot.
1553 MVT VT
= getPointerTy();
1554 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
1556 // Load the "old" Return address.
1557 OutRetAddr
= DAG
.getLoad(VT
, dl
, Chain
, OutRetAddr
, NULL
, 0);
1558 return SDValue(OutRetAddr
.getNode(), 1);
1561 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1562 /// optimization is performed and it is required (FPDiff!=0).
1564 EmitTailCallStoreRetAddr(SelectionDAG
& DAG
, MachineFunction
&MF
,
1565 SDValue Chain
, SDValue RetAddrFrIdx
,
1566 bool Is64Bit
, int FPDiff
, DebugLoc dl
) {
1567 // Store the return address to the appropriate stack slot.
1568 if (!FPDiff
) return Chain
;
1569 // Calculate the new stack slot for the return address.
1570 int SlotSize
= Is64Bit
? 8 : 4;
1571 int NewReturnAddrFI
=
1572 MF
.getFrameInfo()->CreateFixedObject(SlotSize
, FPDiff
-SlotSize
);
1573 MVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
1574 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewReturnAddrFI
, VT
);
1575 Chain
= DAG
.getStore(Chain
, dl
, RetAddrFrIdx
, NewRetAddrFrIdx
,
1576 PseudoSourceValue::getFixedStack(NewReturnAddrFI
), 0);
1580 SDValue
X86TargetLowering::LowerCALL(SDValue Op
, SelectionDAG
&DAG
) {
1581 MachineFunction
&MF
= DAG
.getMachineFunction();
1582 CallSDNode
*TheCall
= cast
<CallSDNode
>(Op
.getNode());
1583 SDValue Chain
= TheCall
->getChain();
1584 unsigned CC
= TheCall
->getCallingConv();
1585 bool isVarArg
= TheCall
->isVarArg();
1586 bool IsTailCall
= TheCall
->isTailCall() &&
1587 CC
== CallingConv::Fast
&& PerformTailCallOpt
;
1588 SDValue Callee
= TheCall
->getCallee();
1589 bool Is64Bit
= Subtarget
->is64Bit();
1590 bool IsStructRet
= CallIsStructReturn(TheCall
);
1591 DebugLoc dl
= TheCall
->getDebugLoc();
1593 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1594 "Var args not supported with calling convention fastcc");
1596 // Analyze operands of the call, assigning locations to each operand.
1597 SmallVector
<CCValAssign
, 16> ArgLocs
;
1598 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
);
1599 CCInfo
.AnalyzeCallOperands(TheCall
, CCAssignFnForNode(CC
));
1601 // Get a count of how many bytes are to be pushed on the stack.
1602 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1603 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1604 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
1608 // Lower arguments at fp - stackoffset + fpdiff.
1609 unsigned NumBytesCallerPushed
=
1610 MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn();
1611 FPDiff
= NumBytesCallerPushed
- NumBytes
;
1613 // Set the delta of movement of the returnaddr stackslot.
1614 // But only set if delta is greater than previous delta.
1615 if (FPDiff
< (MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta()))
1616 MF
.getInfo
<X86MachineFunctionInfo
>()->setTCReturnAddrDelta(FPDiff
);
1619 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
1621 SDValue RetAddrFrIdx
;
1622 // Load return adress for tail calls.
1623 Chain
= EmitTailCallLoadRetAddr(DAG
, RetAddrFrIdx
, Chain
, IsTailCall
, Is64Bit
,
1626 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
1627 SmallVector
<SDValue
, 8> MemOpChains
;
1630 // Walk the register/memloc assignments, inserting copies/loads. In the case
1631 // of tail call optimization arguments are handle later.
1632 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1633 CCValAssign
&VA
= ArgLocs
[i
];
1634 SDValue Arg
= TheCall
->getArg(i
);
1635 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1636 bool isByVal
= Flags
.isByVal();
1638 // Promote the value if needed.
1639 switch (VA
.getLocInfo()) {
1640 default: assert(0 && "Unknown loc info!");
1641 case CCValAssign::Full
: break;
1642 case CCValAssign::SExt
:
1643 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1645 case CCValAssign::ZExt
:
1646 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1648 case CCValAssign::AExt
:
1649 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1653 if (VA
.isRegLoc()) {
1655 MVT RegVT
= VA
.getLocVT();
1656 if (RegVT
.isVector() && RegVT
.getSizeInBits() == 64)
1657 switch (VA
.getLocReg()) {
1660 case X86::RDI
: case X86::RSI
: case X86::RDX
: case X86::RCX
:
1662 // Special case: passing MMX values in GPR registers.
1663 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1666 case X86::XMM0
: case X86::XMM1
: case X86::XMM2
: case X86::XMM3
:
1667 case X86::XMM4
: case X86::XMM5
: case X86::XMM6
: case X86::XMM7
: {
1668 // Special case: passing MMX values in XMM registers.
1669 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1670 Arg
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, Arg
);
1671 Arg
= getMOVL(DAG
, dl
, MVT::v2i64
, DAG
.getUNDEF(MVT::v2i64
), Arg
);
1676 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1678 if (!IsTailCall
|| (IsTailCall
&& isByVal
)) {
1679 assert(VA
.isMemLoc());
1680 if (StackPtr
.getNode() == 0)
1681 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, getPointerTy());
1683 MemOpChains
.push_back(LowerMemOpCallTo(TheCall
, DAG
, StackPtr
, VA
,
1684 Chain
, Arg
, Flags
));
1689 if (!MemOpChains
.empty())
1690 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1691 &MemOpChains
[0], MemOpChains
.size());
1693 // Build a sequence of copy-to-reg nodes chained together with token chain
1694 // and flag operands which copy the outgoing args into registers.
1696 // Tail call byval lowering might overwrite argument registers so in case of
1697 // tail call optimization the copies to registers are lowered later.
1699 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1700 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1701 RegsToPass
[i
].second
, InFlag
);
1702 InFlag
= Chain
.getValue(1);
1705 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1707 if (CallRequiresGOTPtrInReg(Is64Bit
, IsTailCall
)) {
1708 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EBX
,
1709 DAG
.getNode(X86ISD::GlobalBaseReg
,
1710 DebugLoc::getUnknownLoc(),
1713 InFlag
= Chain
.getValue(1);
1715 // If we are tail calling and generating PIC/GOT style code load the address
1716 // of the callee into ecx. The value in ecx is used as target of the tail
1717 // jump. This is done to circumvent the ebx/callee-saved problem for tail
1718 // calls on PIC/GOT architectures. Normally we would just put the address of
1719 // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1720 // restored (since ebx is callee saved) before jumping to the target@PLT.
1721 if (CallRequiresFnAddressInReg(Is64Bit
, IsTailCall
)) {
1722 // Note: The actual moving to ecx is done further down.
1723 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
1724 if (G
&& !G
->getGlobal()->hasHiddenVisibility() &&
1725 !G
->getGlobal()->hasProtectedVisibility())
1726 Callee
= LowerGlobalAddress(Callee
, DAG
);
1727 else if (isa
<ExternalSymbolSDNode
>(Callee
))
1728 Callee
= LowerExternalSymbol(Callee
,DAG
);
1731 if (Is64Bit
&& isVarArg
) {
1732 // From AMD64 ABI document:
1733 // For calls that may call functions that use varargs or stdargs
1734 // (prototype-less calls or calls to functions containing ellipsis (...) in
1735 // the declaration) %al is used as hidden argument to specify the number
1736 // of SSE registers used. The contents of %al do not need to match exactly
1737 // the number of registers, but must be an ubound on the number of SSE
1738 // registers used and is in the range 0 - 8 inclusive.
1740 // FIXME: Verify this on Win64
1741 // Count the number of XMM registers allocated.
1742 static const unsigned XMMArgRegs
[] = {
1743 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1744 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1746 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
, 8);
1747 assert((Subtarget
->hasSSE1() || !NumXMMRegs
)
1748 && "SSE registers cannot be used when SSE is disabled");
1750 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
,
1751 DAG
.getConstant(NumXMMRegs
, MVT::i8
), InFlag
);
1752 InFlag
= Chain
.getValue(1);
1756 // For tail calls lower the arguments to the 'real' stack slot.
1758 SmallVector
<SDValue
, 8> MemOpChains2
;
1761 // Do not flag preceeding copytoreg stuff together with the following stuff.
1763 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1764 CCValAssign
&VA
= ArgLocs
[i
];
1765 if (!VA
.isRegLoc()) {
1766 assert(VA
.isMemLoc());
1767 SDValue Arg
= TheCall
->getArg(i
);
1768 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1769 // Create frame index.
1770 int32_t Offset
= VA
.getLocMemOffset()+FPDiff
;
1771 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits()+7)/8;
1772 FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
);
1773 FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1775 if (Flags
.isByVal()) {
1776 // Copy relative to framepointer.
1777 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset());
1778 if (StackPtr
.getNode() == 0)
1779 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
,
1781 Source
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, Source
);
1783 MemOpChains2
.push_back(CreateCopyOfByValArgument(Source
, FIN
, Chain
,
1786 // Store relative to framepointer.
1787 MemOpChains2
.push_back(
1788 DAG
.getStore(Chain
, dl
, Arg
, FIN
,
1789 PseudoSourceValue::getFixedStack(FI
), 0));
1794 if (!MemOpChains2
.empty())
1795 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1796 &MemOpChains2
[0], MemOpChains2
.size());
1798 // Copy arguments to their registers.
1799 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1800 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1801 RegsToPass
[i
].second
, InFlag
);
1802 InFlag
= Chain
.getValue(1);
1806 // Store the return address to the appropriate stack slot.
1807 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetAddrFrIdx
, Is64Bit
,
1811 // If the callee is a GlobalAddress node (quite common, every direct call is)
1812 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1813 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
1814 // We should use extra load for direct calls to dllimported functions in
1816 if (!Subtarget
->GVRequiresExtraLoad(G
->getGlobal(),
1817 getTargetMachine(), true))
1818 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), getPointerTy(),
1820 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
1821 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy());
1822 } else if (IsTailCall
) {
1823 unsigned Opc
= Is64Bit
? X86::R9
: X86::EAX
;
1825 Chain
= DAG
.getCopyToReg(Chain
, dl
,
1826 DAG
.getRegister(Opc
, getPointerTy()),
1828 Callee
= DAG
.getRegister(Opc
, getPointerTy());
1829 // Add register as live out.
1830 DAG
.getMachineFunction().getRegInfo().addLiveOut(Opc
);
1833 // Returns a chain & a flag for retval copy to use.
1834 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1835 SmallVector
<SDValue
, 8> Ops
;
1838 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
1839 DAG
.getIntPtrConstant(0, true), InFlag
);
1840 InFlag
= Chain
.getValue(1);
1842 // Returns a chain & a flag for retval copy to use.
1843 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1847 Ops
.push_back(Chain
);
1848 Ops
.push_back(Callee
);
1851 Ops
.push_back(DAG
.getConstant(FPDiff
, MVT::i32
));
1853 // Add argument registers to the end of the list so that they are known live
1855 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1856 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1857 RegsToPass
[i
].second
.getValueType()));
1859 // Add an implicit use GOT pointer in EBX.
1860 if (!IsTailCall
&& !Is64Bit
&&
1861 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1862 Subtarget
->isPICStyleGOT())
1863 Ops
.push_back(DAG
.getRegister(X86::EBX
, getPointerTy()));
1865 // Add an implicit use of AL for x86 vararg functions.
1866 if (Is64Bit
&& isVarArg
)
1867 Ops
.push_back(DAG
.getRegister(X86::AL
, MVT::i8
));
1869 if (InFlag
.getNode())
1870 Ops
.push_back(InFlag
);
1873 assert(InFlag
.getNode() &&
1874 "Flag must be set. Depend on flag being set in LowerRET");
1875 Chain
= DAG
.getNode(X86ISD::TAILCALL
, dl
,
1876 TheCall
->getVTList(), &Ops
[0], Ops
.size());
1878 return SDValue(Chain
.getNode(), Op
.getResNo());
1881 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, &Ops
[0], Ops
.size());
1882 InFlag
= Chain
.getValue(1);
1884 // Create the CALLSEQ_END node.
1885 unsigned NumBytesForCalleeToPush
;
1886 if (IsCalleePop(isVarArg
, CC
))
1887 NumBytesForCalleeToPush
= NumBytes
; // Callee pops everything
1888 else if (!Is64Bit
&& CC
!= CallingConv::Fast
&& IsStructRet
)
1889 // If this is is a call to a struct-return function, the callee
1890 // pops the hidden struct pointer, so we have to push it back.
1891 // This is common for Darwin/X86, Linux & Mingw32 targets.
1892 NumBytesForCalleeToPush
= 4;
1894 NumBytesForCalleeToPush
= 0; // Callee pops nothing.
1896 // Returns a flag for retval copy to use.
1897 Chain
= DAG
.getCALLSEQ_END(Chain
,
1898 DAG
.getIntPtrConstant(NumBytes
, true),
1899 DAG
.getIntPtrConstant(NumBytesForCalleeToPush
,
1902 InFlag
= Chain
.getValue(1);
1904 // Handle result values, copying them out of physregs into vregs that we
1906 return SDValue(LowerCallResult(Chain
, InFlag
, TheCall
, CC
, DAG
),
1911 //===----------------------------------------------------------------------===//
1912 // Fast Calling Convention (tail call) implementation
1913 //===----------------------------------------------------------------------===//
1915 // Like std call, callee cleans arguments, convention except that ECX is
1916 // reserved for storing the tail called function address. Only 2 registers are
1917 // free for argument passing (inreg). Tail call optimization is performed
1919 // * tailcallopt is enabled
1920 // * caller/callee are fastcc
1921 // On X86_64 architecture with GOT-style position independent code only local
1922 // (within module) calls are supported at the moment.
1923 // To keep the stack aligned according to platform abi the function
1924 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
1925 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1926 // If a tail called function callee has more arguments than the caller the
1927 // caller needs to make sure that there is room to move the RETADDR to. This is
1928 // achieved by reserving an area the size of the argument delta right after the
1929 // original REtADDR, but before the saved framepointer or the spilled registers
1930 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1942 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1943 /// for a 16 byte align requirement.
1944 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
1945 SelectionDAG
& DAG
) {
1946 MachineFunction
&MF
= DAG
.getMachineFunction();
1947 const TargetMachine
&TM
= MF
.getTarget();
1948 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
1949 unsigned StackAlignment
= TFI
.getStackAlignment();
1950 uint64_t AlignMask
= StackAlignment
- 1;
1951 int64_t Offset
= StackSize
;
1952 uint64_t SlotSize
= TD
->getPointerSize();
1953 if ( (Offset
& AlignMask
) <= (StackAlignment
- SlotSize
) ) {
1954 // Number smaller than 12 so just add the difference.
1955 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
1957 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1958 Offset
= ((~AlignMask
) & Offset
) + StackAlignment
+
1959 (StackAlignment
-SlotSize
);
1964 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
1965 /// following the call is a return. A function is eligible if caller/callee
1966 /// calling conventions match, currently only fastcc supports tail calls, and
1967 /// the function CALL is immediatly followed by a RET.
1968 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode
*TheCall
,
1970 SelectionDAG
& DAG
) const {
1971 if (!PerformTailCallOpt
)
1974 if (CheckTailCallReturnConstraints(TheCall
, Ret
)) {
1975 MachineFunction
&MF
= DAG
.getMachineFunction();
1976 unsigned CallerCC
= MF
.getFunction()->getCallingConv();
1977 unsigned CalleeCC
= TheCall
->getCallingConv();
1978 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
) {
1979 SDValue Callee
= TheCall
->getCallee();
1980 // On x86/32Bit PIC/GOT tail calls are supported.
1981 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
||
1982 !Subtarget
->isPICStyleGOT()|| !Subtarget
->is64Bit())
1985 // Can only do local tail calls (in same module, hidden or protected) on
1986 // x86_64 PIC/GOT at the moment.
1987 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1988 return G
->getGlobal()->hasHiddenVisibility()
1989 || G
->getGlobal()->hasProtectedVisibility();
1997 X86TargetLowering::createFastISel(MachineFunction
&mf
,
1998 MachineModuleInfo
*mmo
,
2000 DenseMap
<const Value
*, unsigned> &vm
,
2001 DenseMap
<const BasicBlock
*,
2002 MachineBasicBlock
*> &bm
,
2003 DenseMap
<const AllocaInst
*, int> &am
2005 , SmallSet
<Instruction
*, 8> &cil
2008 return X86::createFastISel(mf
, mmo
, dw
, vm
, bm
, am
2016 //===----------------------------------------------------------------------===//
2017 // Other Lowering Hooks
2018 //===----------------------------------------------------------------------===//
2021 SDValue
X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) {
2022 MachineFunction
&MF
= DAG
.getMachineFunction();
2023 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
2024 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
2026 if (ReturnAddrIndex
== 0) {
2027 // Set up a frame object for the return address.
2028 uint64_t SlotSize
= TD
->getPointerSize();
2029 ReturnAddrIndex
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, -SlotSize
);
2030 FuncInfo
->setRAIndex(ReturnAddrIndex
);
2033 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy());
2037 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2038 /// specific condition code, returning the condition code and the LHS/RHS of the
2039 /// comparison to make.
2040 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode
, bool isFP
,
2041 SDValue
&LHS
, SDValue
&RHS
, SelectionDAG
&DAG
) {
2043 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
2044 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
2045 // X > -1 -> X == 0, jump !sign.
2046 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2047 return X86::COND_NS
;
2048 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
2049 // X < 0 -> X == 0, jump on sign.
2051 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
2053 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2054 return X86::COND_LE
;
2058 switch (SetCCOpcode
) {
2059 default: assert(0 && "Invalid integer condition!");
2060 case ISD::SETEQ
: return X86::COND_E
;
2061 case ISD::SETGT
: return X86::COND_G
;
2062 case ISD::SETGE
: return X86::COND_GE
;
2063 case ISD::SETLT
: return X86::COND_L
;
2064 case ISD::SETLE
: return X86::COND_LE
;
2065 case ISD::SETNE
: return X86::COND_NE
;
2066 case ISD::SETULT
: return X86::COND_B
;
2067 case ISD::SETUGT
: return X86::COND_A
;
2068 case ISD::SETULE
: return X86::COND_BE
;
2069 case ISD::SETUGE
: return X86::COND_AE
;
2073 // First determine if it is required or is profitable to flip the operands.
2075 // If LHS is a foldable load, but RHS is not, flip the condition.
2076 if ((ISD::isNON_EXTLoad(LHS
.getNode()) && LHS
.hasOneUse()) &&
2077 !(ISD::isNON_EXTLoad(RHS
.getNode()) && RHS
.hasOneUse())) {
2078 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
2079 std::swap(LHS
, RHS
);
2082 switch (SetCCOpcode
) {
2088 std::swap(LHS
, RHS
);
2092 // On a floating point condition, the flags are set as follows:
2094 // 0 | 0 | 0 | X > Y
2095 // 0 | 0 | 1 | X < Y
2096 // 1 | 0 | 0 | X == Y
2097 // 1 | 1 | 1 | unordered
2098 switch (SetCCOpcode
) {
2099 default: assert(0 && "Condcode should be pre-legalized away");
2101 case ISD::SETEQ
: return X86::COND_E
;
2102 case ISD::SETOLT
: // flipped
2104 case ISD::SETGT
: return X86::COND_A
;
2105 case ISD::SETOLE
: // flipped
2107 case ISD::SETGE
: return X86::COND_AE
;
2108 case ISD::SETUGT
: // flipped
2110 case ISD::SETLT
: return X86::COND_B
;
2111 case ISD::SETUGE
: // flipped
2113 case ISD::SETLE
: return X86::COND_BE
;
2115 case ISD::SETNE
: return X86::COND_NE
;
2116 case ISD::SETUO
: return X86::COND_P
;
2117 case ISD::SETO
: return X86::COND_NP
;
2121 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2122 /// code. Current x86 isa includes the following FP cmov instructions:
2123 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2124 static bool hasFPCMov(unsigned X86CC
) {
2140 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2141 /// the specified range (L, H].
2142 static bool isUndefOrInRange(int Val
, int Low
, int Hi
) {
2143 return (Val
< 0) || (Val
>= Low
&& Val
< Hi
);
2146 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2147 /// specified value.
2148 static bool isUndefOrEqual(int Val
, int CmpVal
) {
2149 if (Val
< 0 || Val
== CmpVal
)
2154 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2155 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2156 /// the second operand.
2157 static bool isPSHUFDMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2158 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
|| VT
== MVT::v4i16
)
2159 return (Mask
[0] < 4 && Mask
[1] < 4 && Mask
[2] < 4 && Mask
[3] < 4);
2160 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
2161 return (Mask
[0] < 2 && Mask
[1] < 2);
2165 bool X86::isPSHUFDMask(ShuffleVectorSDNode
*N
) {
2166 SmallVector
<int, 8> M
;
2168 return ::isPSHUFDMask(M
, N
->getValueType(0));
2171 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2172 /// is suitable for input to PSHUFHW.
2173 static bool isPSHUFHWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2174 if (VT
!= MVT::v8i16
)
2177 // Lower quadword copied in order or undef.
2178 for (int i
= 0; i
!= 4; ++i
)
2179 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2182 // Upper quadword shuffled.
2183 for (int i
= 4; i
!= 8; ++i
)
2184 if (Mask
[i
] >= 0 && (Mask
[i
] < 4 || Mask
[i
] > 7))
2190 bool X86::isPSHUFHWMask(ShuffleVectorSDNode
*N
) {
2191 SmallVector
<int, 8> M
;
2193 return ::isPSHUFHWMask(M
, N
->getValueType(0));
2196 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2197 /// is suitable for input to PSHUFLW.
2198 static bool isPSHUFLWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2199 if (VT
!= MVT::v8i16
)
2202 // Upper quadword copied in order.
2203 for (int i
= 4; i
!= 8; ++i
)
2204 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2207 // Lower quadword shuffled.
2208 for (int i
= 0; i
!= 4; ++i
)
2215 bool X86::isPSHUFLWMask(ShuffleVectorSDNode
*N
) {
2216 SmallVector
<int, 8> M
;
2218 return ::isPSHUFLWMask(M
, N
->getValueType(0));
2221 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2222 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2223 static bool isSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2224 int NumElems
= VT
.getVectorNumElements();
2225 if (NumElems
!= 2 && NumElems
!= 4)
2228 int Half
= NumElems
/ 2;
2229 for (int i
= 0; i
< Half
; ++i
)
2230 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2232 for (int i
= Half
; i
< NumElems
; ++i
)
2233 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2239 bool X86::isSHUFPMask(ShuffleVectorSDNode
*N
) {
2240 SmallVector
<int, 8> M
;
2242 return ::isSHUFPMask(M
, N
->getValueType(0));
2245 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2246 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2247 /// half elements to come from vector 1 (which would equal the dest.) and
2248 /// the upper half to come from vector 2.
2249 static bool isCommutedSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2250 int NumElems
= VT
.getVectorNumElements();
2252 if (NumElems
!= 2 && NumElems
!= 4)
2255 int Half
= NumElems
/ 2;
2256 for (int i
= 0; i
< Half
; ++i
)
2257 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2259 for (int i
= Half
; i
< NumElems
; ++i
)
2260 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2265 static bool isCommutedSHUFP(ShuffleVectorSDNode
*N
) {
2266 SmallVector
<int, 8> M
;
2268 return isCommutedSHUFPMask(M
, N
->getValueType(0));
2271 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2272 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2273 bool X86::isMOVHLPSMask(ShuffleVectorSDNode
*N
) {
2274 if (N
->getValueType(0).getVectorNumElements() != 4)
2277 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2278 return isUndefOrEqual(N
->getMaskElt(0), 6) &&
2279 isUndefOrEqual(N
->getMaskElt(1), 7) &&
2280 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2281 isUndefOrEqual(N
->getMaskElt(3), 3);
2284 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2285 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2286 bool X86::isMOVLPMask(ShuffleVectorSDNode
*N
) {
2287 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2289 if (NumElems
!= 2 && NumElems
!= 4)
2292 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2293 if (!isUndefOrEqual(N
->getMaskElt(i
), i
+ NumElems
))
2296 for (unsigned i
= NumElems
/2; i
< NumElems
; ++i
)
2297 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2303 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2304 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2306 bool X86::isMOVHPMask(ShuffleVectorSDNode
*N
) {
2307 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2309 if (NumElems
!= 2 && NumElems
!= 4)
2312 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2313 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2316 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2317 if (!isUndefOrEqual(N
->getMaskElt(i
+ NumElems
/2), i
+ NumElems
))
2323 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2324 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2326 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2327 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2332 return isUndefOrEqual(N
->getMaskElt(0), 2) &&
2333 isUndefOrEqual(N
->getMaskElt(1), 3) &&
2334 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2335 isUndefOrEqual(N
->getMaskElt(3), 3);
2338 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2339 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2340 static bool isUNPCKLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2341 bool V2IsSplat
= false) {
2342 int NumElts
= VT
.getVectorNumElements();
2343 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2346 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2348 int BitI1
= Mask
[i
+1];
2349 if (!isUndefOrEqual(BitI
, j
))
2352 if (!isUndefOrEqual(BitI1
, NumElts
))
2355 if (!isUndefOrEqual(BitI1
, j
+ NumElts
))
2362 bool X86::isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2363 SmallVector
<int, 8> M
;
2365 return ::isUNPCKLMask(M
, N
->getValueType(0), V2IsSplat
);
2368 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2369 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2370 static bool isUNPCKHMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2371 bool V2IsSplat
= false) {
2372 int NumElts
= VT
.getVectorNumElements();
2373 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2376 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2378 int BitI1
= Mask
[i
+1];
2379 if (!isUndefOrEqual(BitI
, j
+ NumElts
/2))
2382 if (isUndefOrEqual(BitI1
, NumElts
))
2385 if (!isUndefOrEqual(BitI1
, j
+ NumElts
/2 + NumElts
))
2392 bool X86::isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2393 SmallVector
<int, 8> M
;
2395 return ::isUNPCKHMask(M
, N
->getValueType(0), V2IsSplat
);
2398 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2399 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2401 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2402 int NumElems
= VT
.getVectorNumElements();
2403 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2406 for (int i
= 0, j
= 0; i
!= NumElems
; i
+= 2, ++j
) {
2408 int BitI1
= Mask
[i
+1];
2409 if (!isUndefOrEqual(BitI
, j
))
2411 if (!isUndefOrEqual(BitI1
, j
))
2417 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2418 SmallVector
<int, 8> M
;
2420 return ::isUNPCKL_v_undef_Mask(M
, N
->getValueType(0));
2423 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2424 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2426 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2427 int NumElems
= VT
.getVectorNumElements();
2428 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2431 for (int i
= 0, j
= NumElems
/ 2; i
!= NumElems
; i
+= 2, ++j
) {
2433 int BitI1
= Mask
[i
+1];
2434 if (!isUndefOrEqual(BitI
, j
))
2436 if (!isUndefOrEqual(BitI1
, j
))
2442 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2443 SmallVector
<int, 8> M
;
2445 return ::isUNPCKH_v_undef_Mask(M
, N
->getValueType(0));
2448 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2449 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2450 /// MOVSD, and MOVD, i.e. setting the lowest element.
2451 static bool isMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2452 int NumElts
= VT
.getVectorNumElements();
2453 if (NumElts
!= 2 && NumElts
!= 4)
2456 if (!isUndefOrEqual(Mask
[0], NumElts
))
2459 for (int i
= 1; i
< NumElts
; ++i
)
2460 if (!isUndefOrEqual(Mask
[i
], i
))
2466 bool X86::isMOVLMask(ShuffleVectorSDNode
*N
) {
2467 SmallVector
<int, 8> M
;
2469 return ::isMOVLMask(M
, N
->getValueType(0));
2472 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2473 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2474 /// element of vector 2 and the other elements to come from vector 1 in order.
2475 static bool isCommutedMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2476 bool V2IsSplat
= false, bool V2IsUndef
= false) {
2477 int NumOps
= VT
.getVectorNumElements();
2478 if (NumOps
!= 2 && NumOps
!= 4 && NumOps
!= 8 && NumOps
!= 16)
2481 if (!isUndefOrEqual(Mask
[0], 0))
2484 for (int i
= 1; i
< NumOps
; ++i
)
2485 if (!(isUndefOrEqual(Mask
[i
], i
+NumOps
) ||
2486 (V2IsUndef
&& isUndefOrInRange(Mask
[i
], NumOps
, NumOps
*2)) ||
2487 (V2IsSplat
&& isUndefOrEqual(Mask
[i
], NumOps
))))
2493 static bool isCommutedMOVL(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false,
2494 bool V2IsUndef
= false) {
2495 SmallVector
<int, 8> M
;
2497 return isCommutedMOVLMask(M
, N
->getValueType(0), V2IsSplat
, V2IsUndef
);
2500 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2501 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2502 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode
*N
) {
2503 if (N
->getValueType(0).getVectorNumElements() != 4)
2506 // Expect 1, 1, 3, 3
2507 for (unsigned i
= 0; i
< 2; ++i
) {
2508 int Elt
= N
->getMaskElt(i
);
2509 if (Elt
>= 0 && Elt
!= 1)
2514 for (unsigned i
= 2; i
< 4; ++i
) {
2515 int Elt
= N
->getMaskElt(i
);
2516 if (Elt
>= 0 && Elt
!= 3)
2521 // Don't use movshdup if it can be done with a shufps.
2522 // FIXME: verify that matching u, u, 3, 3 is what we want.
2526 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2527 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2528 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode
*N
) {
2529 if (N
->getValueType(0).getVectorNumElements() != 4)
2532 // Expect 0, 0, 2, 2
2533 for (unsigned i
= 0; i
< 2; ++i
)
2534 if (N
->getMaskElt(i
) > 0)
2538 for (unsigned i
= 2; i
< 4; ++i
) {
2539 int Elt
= N
->getMaskElt(i
);
2540 if (Elt
>= 0 && Elt
!= 2)
2545 // Don't use movsldup if it can be done with a shufps.
2549 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2550 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2551 bool X86::isMOVDDUPMask(ShuffleVectorSDNode
*N
) {
2552 int e
= N
->getValueType(0).getVectorNumElements() / 2;
2554 for (int i
= 0; i
< e
; ++i
)
2555 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2557 for (int i
= 0; i
< e
; ++i
)
2558 if (!isUndefOrEqual(N
->getMaskElt(e
+i
), i
))
2563 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2564 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2566 unsigned X86::getShuffleSHUFImmediate(SDNode
*N
) {
2567 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2568 int NumOperands
= SVOp
->getValueType(0).getVectorNumElements();
2570 unsigned Shift
= (NumOperands
== 4) ? 2 : 1;
2572 for (int i
= 0; i
< NumOperands
; ++i
) {
2573 int Val
= SVOp
->getMaskElt(NumOperands
-i
-1);
2574 if (Val
< 0) Val
= 0;
2575 if (Val
>= NumOperands
) Val
-= NumOperands
;
2577 if (i
!= NumOperands
- 1)
2583 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2584 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2586 unsigned X86::getShufflePSHUFHWImmediate(SDNode
*N
) {
2587 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2589 // 8 nodes, but we only care about the last 4.
2590 for (unsigned i
= 7; i
>= 4; --i
) {
2591 int Val
= SVOp
->getMaskElt(i
);
2600 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2601 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2603 unsigned X86::getShufflePSHUFLWImmediate(SDNode
*N
) {
2604 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2606 // 8 nodes, but we only care about the first 4.
2607 for (int i
= 3; i
>= 0; --i
) {
2608 int Val
= SVOp
->getMaskElt(i
);
2617 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2618 /// their permute mask.
2619 static SDValue
CommuteVectorShuffle(ShuffleVectorSDNode
*SVOp
,
2620 SelectionDAG
&DAG
) {
2621 MVT VT
= SVOp
->getValueType(0);
2622 unsigned NumElems
= VT
.getVectorNumElements();
2623 SmallVector
<int, 8> MaskVec
;
2625 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2626 int idx
= SVOp
->getMaskElt(i
);
2628 MaskVec
.push_back(idx
);
2629 else if (idx
< (int)NumElems
)
2630 MaskVec
.push_back(idx
+ NumElems
);
2632 MaskVec
.push_back(idx
- NumElems
);
2634 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(1),
2635 SVOp
->getOperand(0), &MaskVec
[0]);
2638 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2639 /// the two vector operands have swapped position.
2640 static void CommuteVectorShuffleMask(SmallVectorImpl
<int> &Mask
, MVT VT
) {
2641 unsigned NumElems
= VT
.getVectorNumElements();
2642 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2646 else if (idx
< (int)NumElems
)
2647 Mask
[i
] = idx
+ NumElems
;
2649 Mask
[i
] = idx
- NumElems
;
2653 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2654 /// match movhlps. The lower half elements should come from upper half of
2655 /// V1 (and in order), and the upper half elements should come from the upper
2656 /// half of V2 (and in order).
2657 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode
*Op
) {
2658 if (Op
->getValueType(0).getVectorNumElements() != 4)
2660 for (unsigned i
= 0, e
= 2; i
!= e
; ++i
)
2661 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+2))
2663 for (unsigned i
= 2; i
!= 4; ++i
)
2664 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+4))
2669 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2670 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2672 static bool isScalarLoadToVector(SDNode
*N
, LoadSDNode
**LD
= NULL
) {
2673 if (N
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
2675 N
= N
->getOperand(0).getNode();
2676 if (!ISD::isNON_EXTLoad(N
))
2679 *LD
= cast
<LoadSDNode
>(N
);
2683 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2684 /// match movlp{s|d}. The lower half elements should come from lower half of
2685 /// V1 (and in order), and the upper half elements should come from the upper
2686 /// half of V2 (and in order). And since V1 will become the source of the
2687 /// MOVLP, it must be either a vector load or a scalar load to vector.
2688 static bool ShouldXformToMOVLP(SDNode
*V1
, SDNode
*V2
,
2689 ShuffleVectorSDNode
*Op
) {
2690 if (!ISD::isNON_EXTLoad(V1
) && !isScalarLoadToVector(V1
))
2692 // Is V2 is a vector load, don't do this transformation. We will try to use
2693 // load folding shufps op.
2694 if (ISD::isNON_EXTLoad(V2
))
2697 unsigned NumElems
= Op
->getValueType(0).getVectorNumElements();
2699 if (NumElems
!= 2 && NumElems
!= 4)
2701 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
)
2702 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
))
2704 for (unsigned i
= NumElems
/2; i
!= NumElems
; ++i
)
2705 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+NumElems
))
2710 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2712 static bool isSplatVector(SDNode
*N
) {
2713 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2716 SDValue SplatValue
= N
->getOperand(0);
2717 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
2718 if (N
->getOperand(i
) != SplatValue
)
2723 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2725 static inline bool isZeroNode(SDValue Elt
) {
2726 return ((isa
<ConstantSDNode
>(Elt
) &&
2727 cast
<ConstantSDNode
>(Elt
)->getZExtValue() == 0) ||
2728 (isa
<ConstantFPSDNode
>(Elt
) &&
2729 cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().isPosZero()));
2732 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2733 /// to an zero vector.
2734 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2735 static bool isZeroShuffle(ShuffleVectorSDNode
*N
) {
2736 SDValue V1
= N
->getOperand(0);
2737 SDValue V2
= N
->getOperand(1);
2738 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2739 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2740 int Idx
= N
->getMaskElt(i
);
2741 if (Idx
>= (int)NumElems
) {
2742 unsigned Opc
= V2
.getOpcode();
2743 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V2
.getNode()))
2745 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V2
.getOperand(Idx
-NumElems
)))
2747 } else if (Idx
>= 0) {
2748 unsigned Opc
= V1
.getOpcode();
2749 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V1
.getNode()))
2751 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V1
.getOperand(Idx
)))
2758 /// getZeroVector - Returns a vector of specified type with all zero elements.
2760 static SDValue
getZeroVector(MVT VT
, bool HasSSE2
, SelectionDAG
&DAG
,
2762 assert(VT
.isVector() && "Expected a vector type");
2764 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2765 // type. This ensures they get CSE'd.
2767 if (VT
.getSizeInBits() == 64) { // MMX
2768 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2769 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2770 } else if (HasSSE2
) { // SSE2
2771 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2772 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2774 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
2775 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Cst
, Cst
, Cst
, Cst
);
2777 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2780 /// getOnesVector - Returns a vector of specified type with all bits set.
2782 static SDValue
getOnesVector(MVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
2783 assert(VT
.isVector() && "Expected a vector type");
2785 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2786 // type. This ensures they get CSE'd.
2787 SDValue Cst
= DAG
.getTargetConstant(~0U, MVT::i32
);
2789 if (VT
.getSizeInBits() == 64) // MMX
2790 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2792 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2793 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2797 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2798 /// that point to V2 points to its first element.
2799 static SDValue
NormalizeMask(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
2800 MVT VT
= SVOp
->getValueType(0);
2801 unsigned NumElems
= VT
.getVectorNumElements();
2803 bool Changed
= false;
2804 SmallVector
<int, 8> MaskVec
;
2805 SVOp
->getMask(MaskVec
);
2807 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2808 if (MaskVec
[i
] > (int)NumElems
) {
2809 MaskVec
[i
] = NumElems
;
2814 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(0),
2815 SVOp
->getOperand(1), &MaskVec
[0]);
2816 return SDValue(SVOp
, 0);
2819 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2820 /// operation of specified width.
2821 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2823 unsigned NumElems
= VT
.getVectorNumElements();
2824 SmallVector
<int, 8> Mask
;
2825 Mask
.push_back(NumElems
);
2826 for (unsigned i
= 1; i
!= NumElems
; ++i
)
2828 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2831 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2832 static SDValue
getUnpackl(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2834 unsigned NumElems
= VT
.getVectorNumElements();
2835 SmallVector
<int, 8> Mask
;
2836 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
) {
2838 Mask
.push_back(i
+ NumElems
);
2840 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2843 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2844 static SDValue
getUnpackh(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2846 unsigned NumElems
= VT
.getVectorNumElements();
2847 unsigned Half
= NumElems
/2;
2848 SmallVector
<int, 8> Mask
;
2849 for (unsigned i
= 0; i
!= Half
; ++i
) {
2850 Mask
.push_back(i
+ Half
);
2851 Mask
.push_back(i
+ NumElems
+ Half
);
2853 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2856 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2857 static SDValue
PromoteSplat(ShuffleVectorSDNode
*SV
, SelectionDAG
&DAG
,
2859 if (SV
->getValueType(0).getVectorNumElements() <= 4)
2860 return SDValue(SV
, 0);
2862 MVT PVT
= MVT::v4f32
;
2863 MVT VT
= SV
->getValueType(0);
2864 DebugLoc dl
= SV
->getDebugLoc();
2865 SDValue V1
= SV
->getOperand(0);
2866 int NumElems
= VT
.getVectorNumElements();
2867 int EltNo
= SV
->getSplatIndex();
2869 // unpack elements to the correct location
2870 while (NumElems
> 4) {
2871 if (EltNo
< NumElems
/2) {
2872 V1
= getUnpackl(DAG
, dl
, VT
, V1
, V1
);
2874 V1
= getUnpackh(DAG
, dl
, VT
, V1
, V1
);
2875 EltNo
-= NumElems
/2;
2880 // Perform the splat.
2881 int SplatMask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
2882 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PVT
, V1
);
2883 V1
= DAG
.getVectorShuffle(PVT
, dl
, V1
, DAG
.getUNDEF(PVT
), &SplatMask
[0]);
2884 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, V1
);
2887 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2888 /// vector of zero or undef vector. This produces a shuffle where the low
2889 /// element of V2 is swizzled into the zero/undef vector, landing at element
2890 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
2891 static SDValue
getShuffleVectorZeroOrUndef(SDValue V2
, unsigned Idx
,
2892 bool isZero
, bool HasSSE2
,
2893 SelectionDAG
&DAG
) {
2894 MVT VT
= V2
.getValueType();
2896 ? getZeroVector(VT
, HasSSE2
, DAG
, V2
.getDebugLoc()) : DAG
.getUNDEF(VT
);
2897 unsigned NumElems
= VT
.getVectorNumElements();
2898 SmallVector
<int, 16> MaskVec
;
2899 for (unsigned i
= 0; i
!= NumElems
; ++i
)
2900 // If this is the insertion idx, put the low elt of V2 here.
2901 MaskVec
.push_back(i
== Idx
? NumElems
: i
);
2902 return DAG
.getVectorShuffle(VT
, V2
.getDebugLoc(), V1
, V2
, &MaskVec
[0]);
2905 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
2906 /// a shuffle that is zero.
2908 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode
*SVOp
, int NumElems
,
2909 bool Low
, SelectionDAG
&DAG
) {
2910 unsigned NumZeros
= 0;
2911 for (int i
= 0; i
< NumElems
; ++i
) {
2912 unsigned Index
= Low
? i
: NumElems
-i
-1;
2913 int Idx
= SVOp
->getMaskElt(Index
);
2918 SDValue Elt
= DAG
.getShuffleScalarElt(SVOp
, Index
);
2919 if (Elt
.getNode() && isZeroNode(Elt
))
2927 /// isVectorShift - Returns true if the shuffle can be implemented as a
2928 /// logical left or right shift of a vector.
2929 /// FIXME: split into pslldqi, psrldqi, palignr variants.
2930 static bool isVectorShift(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
2931 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
2932 int NumElems
= SVOp
->getValueType(0).getVectorNumElements();
2935 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, true, DAG
);
2938 NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, false, DAG
);
2942 bool SeenV1
= false;
2943 bool SeenV2
= false;
2944 for (int i
= NumZeros
; i
< NumElems
; ++i
) {
2945 int Val
= isLeft
? (i
- NumZeros
) : i
;
2946 int Idx
= SVOp
->getMaskElt(isLeft
? i
: (i
- NumZeros
));
2958 if (SeenV1
&& SeenV2
)
2961 ShVal
= SeenV1
? SVOp
->getOperand(0) : SVOp
->getOperand(1);
2967 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2969 static SDValue
LowerBuildVectorv16i8(SDValue Op
, unsigned NonZeros
,
2970 unsigned NumNonZero
, unsigned NumZero
,
2971 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
2975 DebugLoc dl
= Op
.getDebugLoc();
2978 for (unsigned i
= 0; i
< 16; ++i
) {
2979 bool ThisIsNonZero
= (NonZeros
& (1 << i
)) != 0;
2980 if (ThisIsNonZero
&& First
) {
2982 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
2984 V
= DAG
.getUNDEF(MVT::v8i16
);
2989 SDValue
ThisElt(0, 0), LastElt(0, 0);
2990 bool LastIsNonZero
= (NonZeros
& (1 << (i
-1))) != 0;
2991 if (LastIsNonZero
) {
2992 LastElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
2993 MVT::i16
, Op
.getOperand(i
-1));
2995 if (ThisIsNonZero
) {
2996 ThisElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i16
, Op
.getOperand(i
));
2997 ThisElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
,
2998 ThisElt
, DAG
.getConstant(8, MVT::i8
));
3000 ThisElt
= DAG
.getNode(ISD::OR
, dl
, MVT::i16
, ThisElt
, LastElt
);
3004 if (ThisElt
.getNode())
3005 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, V
, ThisElt
,
3006 DAG
.getIntPtrConstant(i
/2));
3010 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V
);
3013 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3015 static SDValue
LowerBuildVectorv8i16(SDValue Op
, unsigned NonZeros
,
3016 unsigned NumNonZero
, unsigned NumZero
,
3017 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3021 DebugLoc dl
= Op
.getDebugLoc();
3024 for (unsigned i
= 0; i
< 8; ++i
) {
3025 bool isNonZero
= (NonZeros
& (1 << i
)) != 0;
3029 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3031 V
= DAG
.getUNDEF(MVT::v8i16
);
3034 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
,
3035 MVT::v8i16
, V
, Op
.getOperand(i
),
3036 DAG
.getIntPtrConstant(i
));
3043 /// getVShift - Return a vector logical shift node.
3045 static SDValue
getVShift(bool isLeft
, MVT VT
, SDValue SrcOp
,
3046 unsigned NumBits
, SelectionDAG
&DAG
,
3047 const TargetLowering
&TLI
, DebugLoc dl
) {
3048 bool isMMX
= VT
.getSizeInBits() == 64;
3049 MVT ShVT
= isMMX
? MVT::v1i64
: MVT::v2i64
;
3050 unsigned Opc
= isLeft
? X86ISD::VSHL
: X86ISD::VSRL
;
3051 SrcOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ShVT
, SrcOp
);
3052 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3053 DAG
.getNode(Opc
, dl
, ShVT
, SrcOp
,
3054 DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy())));
3058 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
3059 DebugLoc dl
= Op
.getDebugLoc();
3060 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3061 if (ISD::isBuildVectorAllZeros(Op
.getNode())
3062 || ISD::isBuildVectorAllOnes(Op
.getNode())) {
3063 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3064 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3065 // eliminated on x86-32 hosts.
3066 if (Op
.getValueType() == MVT::v4i32
|| Op
.getValueType() == MVT::v2i32
)
3069 if (ISD::isBuildVectorAllOnes(Op
.getNode()))
3070 return getOnesVector(Op
.getValueType(), DAG
, dl
);
3071 return getZeroVector(Op
.getValueType(), Subtarget
->hasSSE2(), DAG
, dl
);
3074 MVT VT
= Op
.getValueType();
3075 MVT EVT
= VT
.getVectorElementType();
3076 unsigned EVTBits
= EVT
.getSizeInBits();
3078 unsigned NumElems
= Op
.getNumOperands();
3079 unsigned NumZero
= 0;
3080 unsigned NumNonZero
= 0;
3081 unsigned NonZeros
= 0;
3082 bool IsAllConstants
= true;
3083 SmallSet
<SDValue
, 8> Values
;
3084 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3085 SDValue Elt
= Op
.getOperand(i
);
3086 if (Elt
.getOpcode() == ISD::UNDEF
)
3089 if (Elt
.getOpcode() != ISD::Constant
&&
3090 Elt
.getOpcode() != ISD::ConstantFP
)
3091 IsAllConstants
= false;
3092 if (isZeroNode(Elt
))
3095 NonZeros
|= (1 << i
);
3100 if (NumNonZero
== 0) {
3101 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3102 return DAG
.getUNDEF(VT
);
3105 // Special case for single non-zero, non-undef, element.
3106 if (NumNonZero
== 1 && NumElems
<= 4) {
3107 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3108 SDValue Item
= Op
.getOperand(Idx
);
3110 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3111 // the value are obviously zero, truncate the value to i32 and do the
3112 // insertion that way. Only do this if the value is non-constant or if the
3113 // value is a constant being inserted into element 0. It is cheaper to do
3114 // a constant pool load than it is to do a movd + shuffle.
3115 if (EVT
== MVT::i64
&& !Subtarget
->is64Bit() &&
3116 (!IsAllConstants
|| Idx
== 0)) {
3117 if (DAG
.MaskedValueIsZero(Item
, APInt::getBitsSet(64, 32, 64))) {
3118 // Handle MMX and SSE both.
3119 MVT VecVT
= VT
== MVT::v2i64
? MVT::v4i32
: MVT::v2i32
;
3120 unsigned VecElts
= VT
== MVT::v2i64
? 4 : 2;
3122 // Truncate the value (which may itself be a constant) to i32, and
3123 // convert it to a vector with movd (S2V+shuffle to zero extend).
3124 Item
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Item
);
3125 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecVT
, Item
);
3126 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3127 Subtarget
->hasSSE2(), DAG
);
3129 // Now we have our 32-bit value zero extended in the low element of
3130 // a vector. If Idx != 0, swizzle it into place.
3132 SmallVector
<int, 4> Mask
;
3133 Mask
.push_back(Idx
);
3134 for (unsigned i
= 1; i
!= VecElts
; ++i
)
3136 Item
= DAG
.getVectorShuffle(VecVT
, dl
, Item
,
3137 DAG
.getUNDEF(Item
.getValueType()),
3140 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Item
);
3144 // If we have a constant or non-constant insertion into the low element of
3145 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3146 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3147 // depending on what the source datatype is. Because we can only get here
3148 // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3150 // Don't do this for i64 values on x86-32.
3151 (EVT
!= MVT::i64
|| Subtarget
->is64Bit())) {
3152 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3153 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3154 return getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3155 Subtarget
->hasSSE2(), DAG
);
3158 // Is it a vector logical left shift?
3159 if (NumElems
== 2 && Idx
== 1 &&
3160 isZeroNode(Op
.getOperand(0)) && !isZeroNode(Op
.getOperand(1))) {
3161 unsigned NumBits
= VT
.getSizeInBits();
3162 return getVShift(true, VT
,
3163 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3164 VT
, Op
.getOperand(1)),
3165 NumBits
/2, DAG
, *this, dl
);
3168 if (IsAllConstants
) // Otherwise, it's better to do a constpool load.
3171 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3172 // is a non-constant being inserted into an element other than the low one,
3173 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3174 // movd/movss) to move this into the low element, then shuffle it into
3176 if (EVTBits
== 32) {
3177 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3179 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3180 Item
= getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3181 Subtarget
->hasSSE2(), DAG
);
3182 SmallVector
<int, 8> MaskVec
;
3183 for (unsigned i
= 0; i
< NumElems
; i
++)
3184 MaskVec
.push_back(i
== Idx
? 0 : 1);
3185 return DAG
.getVectorShuffle(VT
, dl
, Item
, DAG
.getUNDEF(VT
), &MaskVec
[0]);
3189 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3190 if (Values
.size() == 1)
3193 // A vector full of immediates; various special cases are already
3194 // handled, so this is best done with a single constant-pool load.
3198 // Let legalizer expand 2-wide build_vectors.
3199 if (EVTBits
== 64) {
3200 if (NumNonZero
== 1) {
3201 // One half is zero or undef.
3202 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3203 SDValue V2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
,
3204 Op
.getOperand(Idx
));
3205 return getShuffleVectorZeroOrUndef(V2
, Idx
, true,
3206 Subtarget
->hasSSE2(), DAG
);
3211 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3212 if (EVTBits
== 8 && NumElems
== 16) {
3213 SDValue V
= LowerBuildVectorv16i8(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3215 if (V
.getNode()) return V
;
3218 if (EVTBits
== 16 && NumElems
== 8) {
3219 SDValue V
= LowerBuildVectorv8i16(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3221 if (V
.getNode()) return V
;
3224 // If element VT is == 32 bits, turn it into a number of shuffles.
3225 SmallVector
<SDValue
, 8> V
;
3227 if (NumElems
== 4 && NumZero
> 0) {
3228 for (unsigned i
= 0; i
< 4; ++i
) {
3229 bool isZero
= !(NonZeros
& (1 << i
));
3231 V
[i
] = getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3233 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3236 for (unsigned i
= 0; i
< 2; ++i
) {
3237 switch ((NonZeros
& (0x3 << i
*2)) >> (i
*2)) {
3240 V
[i
] = V
[i
*2]; // Must be a zero vector.
3243 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2+1], V
[i
*2]);
3246 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3249 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3254 SmallVector
<int, 8> MaskVec
;
3255 bool Reverse
= (NonZeros
& 0x3) == 2;
3256 for (unsigned i
= 0; i
< 2; ++i
)
3257 MaskVec
.push_back(Reverse
? 1-i
: i
);
3258 Reverse
= ((NonZeros
& (0x3 << 2)) >> 2) == 2;
3259 for (unsigned i
= 0; i
< 2; ++i
)
3260 MaskVec
.push_back(Reverse
? 1-i
+NumElems
: i
+NumElems
);
3261 return DAG
.getVectorShuffle(VT
, dl
, V
[0], V
[1], &MaskVec
[0]);
3264 if (Values
.size() > 2) {
3265 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3266 // values to be inserted is equal to the number of elements, in which case
3267 // use the unpack code below in the hopes of matching the consecutive elts
3268 // load merge pattern for shuffles.
3269 // FIXME: We could probably just check that here directly.
3270 if (Values
.size() < NumElems
&& VT
.getSizeInBits() == 128 &&
3271 getSubtarget()->hasSSE41()) {
3272 V
[0] = DAG
.getUNDEF(VT
);
3273 for (unsigned i
= 0; i
< NumElems
; ++i
)
3274 if (Op
.getOperand(i
).getOpcode() != ISD::UNDEF
)
3275 V
[0] = DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, V
[0],
3276 Op
.getOperand(i
), DAG
.getIntPtrConstant(i
));
3279 // Expand into a number of unpckl*.
3281 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3282 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3283 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3284 for (unsigned i
= 0; i
< NumElems
; ++i
)
3285 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3287 while (NumElems
!= 0) {
3288 for (unsigned i
= 0; i
< NumElems
; ++i
)
3289 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
], V
[i
+ NumElems
]);
3298 // v8i16 shuffles - Prefer shuffles in the following order:
3299 // 1. [all] pshuflw, pshufhw, optional move
3300 // 2. [ssse3] 1 x pshufb
3301 // 3. [ssse3] 2 x pshufb + 1 x por
3302 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3304 SDValue
LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode
*SVOp
,
3305 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3306 SDValue V1
= SVOp
->getOperand(0);
3307 SDValue V2
= SVOp
->getOperand(1);
3308 DebugLoc dl
= SVOp
->getDebugLoc();
3309 SmallVector
<int, 8> MaskVals
;
3311 // Determine if more than 1 of the words in each of the low and high quadwords
3312 // of the result come from the same quadword of one of the two inputs. Undef
3313 // mask values count as coming from any quadword, for better codegen.
3314 SmallVector
<unsigned, 4> LoQuad(4);
3315 SmallVector
<unsigned, 4> HiQuad(4);
3316 BitVector
InputQuads(4);
3317 for (unsigned i
= 0; i
< 8; ++i
) {
3318 SmallVectorImpl
<unsigned> &Quad
= i
< 4 ? LoQuad
: HiQuad
;
3319 int EltIdx
= SVOp
->getMaskElt(i
);
3320 MaskVals
.push_back(EltIdx
);
3329 InputQuads
.set(EltIdx
/ 4);
3332 int BestLoQuad
= -1;
3333 unsigned MaxQuad
= 1;
3334 for (unsigned i
= 0; i
< 4; ++i
) {
3335 if (LoQuad
[i
] > MaxQuad
) {
3337 MaxQuad
= LoQuad
[i
];
3341 int BestHiQuad
= -1;
3343 for (unsigned i
= 0; i
< 4; ++i
) {
3344 if (HiQuad
[i
] > MaxQuad
) {
3346 MaxQuad
= HiQuad
[i
];
3350 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3351 // of the two input vectors, shuffle them into one input vector so only a
3352 // single pshufb instruction is necessary. If There are more than 2 input
3353 // quads, disable the next transformation since it does not help SSSE3.
3354 bool V1Used
= InputQuads
[0] || InputQuads
[1];
3355 bool V2Used
= InputQuads
[2] || InputQuads
[3];
3356 if (TLI
.getSubtarget()->hasSSSE3()) {
3357 if (InputQuads
.count() == 2 && V1Used
&& V2Used
) {
3358 BestLoQuad
= InputQuads
.find_first();
3359 BestHiQuad
= InputQuads
.find_next(BestLoQuad
);
3361 if (InputQuads
.count() > 2) {
3367 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3368 // the shuffle mask. If a quad is scored as -1, that means that it contains
3369 // words from all 4 input quadwords.
3371 if (BestLoQuad
>= 0 || BestHiQuad
>= 0) {
3372 SmallVector
<int, 8> MaskV
;
3373 MaskV
.push_back(BestLoQuad
< 0 ? 0 : BestLoQuad
);
3374 MaskV
.push_back(BestHiQuad
< 0 ? 1 : BestHiQuad
);
3375 NewV
= DAG
.getVectorShuffle(MVT::v2i64
, dl
,
3376 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V1
),
3377 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V2
), &MaskV
[0]);
3378 NewV
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, NewV
);
3380 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3381 // source words for the shuffle, to aid later transformations.
3382 bool AllWordsInNewV
= true;
3383 bool InOrder
[2] = { true, true };
3384 for (unsigned i
= 0; i
!= 8; ++i
) {
3385 int idx
= MaskVals
[i
];
3387 InOrder
[i
/4] = false;
3388 if (idx
< 0 || (idx
/4) == BestLoQuad
|| (idx
/4) == BestHiQuad
)
3390 AllWordsInNewV
= false;
3394 bool pshuflw
= AllWordsInNewV
, pshufhw
= AllWordsInNewV
;
3395 if (AllWordsInNewV
) {
3396 for (int i
= 0; i
!= 8; ++i
) {
3397 int idx
= MaskVals
[i
];
3400 idx
= MaskVals
[i
] = (idx
/ 4) == BestLoQuad
? (idx
& 3) : (idx
& 3) + 4;
3401 if ((idx
!= i
) && idx
< 4)
3403 if ((idx
!= i
) && idx
> 3)
3412 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3413 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3414 if ((pshufhw
&& InOrder
[0]) || (pshuflw
&& InOrder
[1])) {
3415 return DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
,
3416 DAG
.getUNDEF(MVT::v8i16
), &MaskVals
[0]);
3420 // If we have SSSE3, and all words of the result are from 1 input vector,
3421 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3422 // is present, fall back to case 4.
3423 if (TLI
.getSubtarget()->hasSSSE3()) {
3424 SmallVector
<SDValue
,16> pshufbMask
;
3426 // If we have elements from both input vectors, set the high bit of the
3427 // shuffle mask element to zero out elements that come from V2 in the V1
3428 // mask, and elements that come from V1 in the V2 mask, so that the two
3429 // results can be OR'd together.
3430 bool TwoInputs
= V1Used
&& V2Used
;
3431 for (unsigned i
= 0; i
!= 8; ++i
) {
3432 int EltIdx
= MaskVals
[i
] * 2;
3433 if (TwoInputs
&& (EltIdx
>= 16)) {
3434 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3435 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3438 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3439 pshufbMask
.push_back(DAG
.getConstant(EltIdx
+1, MVT::i8
));
3441 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V1
);
3442 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3443 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3444 MVT::v16i8
, &pshufbMask
[0], 16));
3446 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3448 // Calculate the shuffle mask for the second input, shuffle it, and
3449 // OR it with the first shuffled input.
3451 for (unsigned i
= 0; i
!= 8; ++i
) {
3452 int EltIdx
= MaskVals
[i
] * 2;
3454 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3455 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3458 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3459 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 15, MVT::i8
));
3461 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V2
);
3462 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3463 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3464 MVT::v16i8
, &pshufbMask
[0], 16));
3465 V1
= DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3466 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3469 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3470 // and update MaskVals with new element order.
3471 BitVector
InOrder(8);
3472 if (BestLoQuad
>= 0) {
3473 SmallVector
<int, 8> MaskV
;
3474 for (int i
= 0; i
!= 4; ++i
) {
3475 int idx
= MaskVals
[i
];
3477 MaskV
.push_back(-1);
3479 } else if ((idx
/ 4) == BestLoQuad
) {
3480 MaskV
.push_back(idx
& 3);
3483 MaskV
.push_back(-1);
3486 for (unsigned i
= 4; i
!= 8; ++i
)
3488 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3492 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3493 // and update MaskVals with the new element order.
3494 if (BestHiQuad
>= 0) {
3495 SmallVector
<int, 8> MaskV
;
3496 for (unsigned i
= 0; i
!= 4; ++i
)
3498 for (unsigned i
= 4; i
!= 8; ++i
) {
3499 int idx
= MaskVals
[i
];
3501 MaskV
.push_back(-1);
3503 } else if ((idx
/ 4) == BestHiQuad
) {
3504 MaskV
.push_back((idx
& 3) + 4);
3507 MaskV
.push_back(-1);
3510 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3514 // In case BestHi & BestLo were both -1, which means each quadword has a word
3515 // from each of the four input quadwords, calculate the InOrder bitvector now
3516 // before falling through to the insert/extract cleanup.
3517 if (BestLoQuad
== -1 && BestHiQuad
== -1) {
3519 for (int i
= 0; i
!= 8; ++i
)
3520 if (MaskVals
[i
] < 0 || MaskVals
[i
] == i
)
3524 // The other elements are put in the right place using pextrw and pinsrw.
3525 for (unsigned i
= 0; i
!= 8; ++i
) {
3528 int EltIdx
= MaskVals
[i
];
3531 SDValue ExtOp
= (EltIdx
< 8)
3532 ? DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V1
,
3533 DAG
.getIntPtrConstant(EltIdx
))
3534 : DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V2
,
3535 DAG
.getIntPtrConstant(EltIdx
- 8));
3536 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, ExtOp
,
3537 DAG
.getIntPtrConstant(i
));
3542 // v16i8 shuffles - Prefer shuffles in the following order:
3543 // 1. [ssse3] 1 x pshufb
3544 // 2. [ssse3] 2 x pshufb + 1 x por
3545 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3547 SDValue
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode
*SVOp
,
3548 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3549 SDValue V1
= SVOp
->getOperand(0);
3550 SDValue V2
= SVOp
->getOperand(1);
3551 DebugLoc dl
= SVOp
->getDebugLoc();
3552 SmallVector
<int, 16> MaskVals
;
3553 SVOp
->getMask(MaskVals
);
3555 // If we have SSSE3, case 1 is generated when all result bytes come from
3556 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3557 // present, fall back to case 3.
3558 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3561 for (unsigned i
= 0; i
< 16; ++i
) {
3562 int EltIdx
= MaskVals
[i
];
3571 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3572 if (TLI
.getSubtarget()->hasSSSE3()) {
3573 SmallVector
<SDValue
,16> pshufbMask
;
3575 // If all result elements are from one input vector, then only translate
3576 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3578 // Otherwise, we have elements from both input vectors, and must zero out
3579 // elements that come from V2 in the first mask, and V1 in the second mask
3580 // so that we can OR them together.
3581 bool TwoInputs
= !(V1Only
|| V2Only
);
3582 for (unsigned i
= 0; i
!= 16; ++i
) {
3583 int EltIdx
= MaskVals
[i
];
3584 if (EltIdx
< 0 || (TwoInputs
&& EltIdx
>= 16)) {
3585 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3588 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3590 // If all the elements are from V2, assign it to V1 and return after
3591 // building the first pshufb.
3594 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3595 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3596 MVT::v16i8
, &pshufbMask
[0], 16));
3600 // Calculate the shuffle mask for the second input, shuffle it, and
3601 // OR it with the first shuffled input.
3603 for (unsigned i
= 0; i
!= 16; ++i
) {
3604 int EltIdx
= MaskVals
[i
];
3606 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3609 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3611 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3612 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3613 MVT::v16i8
, &pshufbMask
[0], 16));
3614 return DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3617 // No SSSE3 - Calculate in place words and then fix all out of place words
3618 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3619 // the 16 different words that comprise the two doublequadword input vectors.
3620 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3621 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V2
);
3622 SDValue NewV
= V2Only
? V2
: V1
;
3623 for (int i
= 0; i
!= 8; ++i
) {
3624 int Elt0
= MaskVals
[i
*2];
3625 int Elt1
= MaskVals
[i
*2+1];
3627 // This word of the result is all undef, skip it.
3628 if (Elt0
< 0 && Elt1
< 0)
3631 // This word of the result is already in the correct place, skip it.
3632 if (V1Only
&& (Elt0
== i
*2) && (Elt1
== i
*2+1))
3634 if (V2Only
&& (Elt0
== i
*2+16) && (Elt1
== i
*2+17))
3637 SDValue Elt0Src
= Elt0
< 16 ? V1
: V2
;
3638 SDValue Elt1Src
= Elt1
< 16 ? V1
: V2
;
3641 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3642 // using a single extract together, load it and store it.
3643 if ((Elt0
>= 0) && ((Elt0
+ 1) == Elt1
) && ((Elt0
& 1) == 0)) {
3644 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3645 DAG
.getIntPtrConstant(Elt1
/ 2));
3646 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3647 DAG
.getIntPtrConstant(i
));
3651 // If Elt1 is defined, extract it from the appropriate source. If the
3652 // source byte is not also odd, shift the extracted word left 8 bits
3653 // otherwise clear the bottom 8 bits if we need to do an or.
3655 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3656 DAG
.getIntPtrConstant(Elt1
/ 2));
3657 if ((Elt1
& 1) == 0)
3658 InsElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
, InsElt
,
3659 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3661 InsElt
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt
,
3662 DAG
.getConstant(0xFF00, MVT::i16
));
3664 // If Elt0 is defined, extract it from the appropriate source. If the
3665 // source byte is not also even, shift the extracted word right 8 bits. If
3666 // Elt1 was also defined, OR the extracted values together before
3667 // inserting them in the result.
3669 SDValue InsElt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
,
3670 Elt0Src
, DAG
.getIntPtrConstant(Elt0
/ 2));
3671 if ((Elt0
& 1) != 0)
3672 InsElt0
= DAG
.getNode(ISD::SRL
, dl
, MVT::i16
, InsElt0
,
3673 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3675 InsElt0
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt0
,
3676 DAG
.getConstant(0x00FF, MVT::i16
));
3677 InsElt
= Elt1
>= 0 ? DAG
.getNode(ISD::OR
, dl
, MVT::i16
, InsElt
, InsElt0
)
3680 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3681 DAG
.getIntPtrConstant(i
));
3683 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, NewV
);
3686 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3687 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3688 /// done when every pair / quad of shuffle mask elements point to elements in
3689 /// the right sequence. e.g.
3690 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3692 SDValue
RewriteAsNarrowerShuffle(ShuffleVectorSDNode
*SVOp
,
3694 TargetLowering
&TLI
, DebugLoc dl
) {
3695 MVT VT
= SVOp
->getValueType(0);
3696 SDValue V1
= SVOp
->getOperand(0);
3697 SDValue V2
= SVOp
->getOperand(1);
3698 unsigned NumElems
= VT
.getVectorNumElements();
3699 unsigned NewWidth
= (NumElems
== 4) ? 2 : 4;
3700 MVT MaskVT
= MVT::getIntVectorWithNumElements(NewWidth
);
3701 MVT MaskEltVT
= MaskVT
.getVectorElementType();
3703 switch (VT
.getSimpleVT()) {
3704 default: assert(false && "Unexpected!");
3705 case MVT::v4f32
: NewVT
= MVT::v2f64
; break;
3706 case MVT::v4i32
: NewVT
= MVT::v2i64
; break;
3707 case MVT::v8i16
: NewVT
= MVT::v4i32
; break;
3708 case MVT::v16i8
: NewVT
= MVT::v4i32
; break;
3711 if (NewWidth
== 2) {
3717 int Scale
= NumElems
/ NewWidth
;
3718 SmallVector
<int, 8> MaskVec
;
3719 for (unsigned i
= 0; i
< NumElems
; i
+= Scale
) {
3721 for (int j
= 0; j
< Scale
; ++j
) {
3722 int EltIdx
= SVOp
->getMaskElt(i
+j
);
3726 StartIdx
= EltIdx
- (EltIdx
% Scale
);
3727 if (EltIdx
!= StartIdx
+ j
)
3731 MaskVec
.push_back(-1);
3733 MaskVec
.push_back(StartIdx
/ Scale
);
3736 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V1
);
3737 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V2
);
3738 return DAG
.getVectorShuffle(NewVT
, dl
, V1
, V2
, &MaskVec
[0]);
3741 /// getVZextMovL - Return a zero-extending vector move low node.
3743 static SDValue
getVZextMovL(MVT VT
, MVT OpVT
,
3744 SDValue SrcOp
, SelectionDAG
&DAG
,
3745 const X86Subtarget
*Subtarget
, DebugLoc dl
) {
3746 if (VT
== MVT::v2f64
|| VT
== MVT::v4f32
) {
3747 LoadSDNode
*LD
= NULL
;
3748 if (!isScalarLoadToVector(SrcOp
.getNode(), &LD
))
3749 LD
= dyn_cast
<LoadSDNode
>(SrcOp
);
3751 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3753 MVT EVT
= (OpVT
== MVT::v2f64
) ? MVT::i64
: MVT::i32
;
3754 if ((EVT
!= MVT::i64
|| Subtarget
->is64Bit()) &&
3755 SrcOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
3756 SrcOp
.getOperand(0).getOpcode() == ISD::BIT_CONVERT
&&
3757 SrcOp
.getOperand(0).getOperand(0).getValueType() == EVT
) {
3759 OpVT
= (OpVT
== MVT::v2f64
) ? MVT::v2i64
: MVT::v4i32
;
3760 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3761 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3762 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3770 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3771 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3772 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3776 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3779 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
3780 SDValue V1
= SVOp
->getOperand(0);
3781 SDValue V2
= SVOp
->getOperand(1);
3782 DebugLoc dl
= SVOp
->getDebugLoc();
3783 MVT VT
= SVOp
->getValueType(0);
3785 SmallVector
<std::pair
<int, int>, 8> Locs
;
3787 SmallVector
<int, 8> Mask1(4U, -1);
3788 SmallVector
<int, 8> PermMask
;
3789 SVOp
->getMask(PermMask
);
3793 for (unsigned i
= 0; i
!= 4; ++i
) {
3794 int Idx
= PermMask
[i
];
3796 Locs
[i
] = std::make_pair(-1, -1);
3798 assert(Idx
< 8 && "Invalid VECTOR_SHUFFLE index!");
3800 Locs
[i
] = std::make_pair(0, NumLo
);
3804 Locs
[i
] = std::make_pair(1, NumHi
);
3806 Mask1
[2+NumHi
] = Idx
;
3812 if (NumLo
<= 2 && NumHi
<= 2) {
3813 // If no more than two elements come from either vector. This can be
3814 // implemented with two shuffles. First shuffle gather the elements.
3815 // The second shuffle, which takes the first shuffle as both of its
3816 // vector operands, put the elements into the right order.
3817 V1
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3819 SmallVector
<int, 8> Mask2(4U, -1);
3821 for (unsigned i
= 0; i
!= 4; ++i
) {
3822 if (Locs
[i
].first
== -1)
3825 unsigned Idx
= (i
< 2) ? 0 : 4;
3826 Idx
+= Locs
[i
].first
* 2 + Locs
[i
].second
;
3831 return DAG
.getVectorShuffle(VT
, dl
, V1
, V1
, &Mask2
[0]);
3832 } else if (NumLo
== 3 || NumHi
== 3) {
3833 // Otherwise, we must have three elements from one vector, call it X, and
3834 // one element from the other, call it Y. First, use a shufps to build an
3835 // intermediate vector with the one element from Y and the element from X
3836 // that will be in the same half in the final destination (the indexes don't
3837 // matter). Then, use a shufps to build the final vector, taking the half
3838 // containing the element from Y from the intermediate, and the other half
3841 // Normalize it so the 3 elements come from V1.
3842 CommuteVectorShuffleMask(PermMask
, VT
);
3846 // Find the element from V2.
3848 for (HiIndex
= 0; HiIndex
< 3; ++HiIndex
) {
3849 int Val
= PermMask
[HiIndex
];
3856 Mask1
[0] = PermMask
[HiIndex
];
3858 Mask1
[2] = PermMask
[HiIndex
^1];
3860 V2
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3863 Mask1
[0] = PermMask
[0];
3864 Mask1
[1] = PermMask
[1];
3865 Mask1
[2] = HiIndex
& 1 ? 6 : 4;
3866 Mask1
[3] = HiIndex
& 1 ? 4 : 6;
3867 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3869 Mask1
[0] = HiIndex
& 1 ? 2 : 0;
3870 Mask1
[1] = HiIndex
& 1 ? 0 : 2;
3871 Mask1
[2] = PermMask
[2];
3872 Mask1
[3] = PermMask
[3];
3877 return DAG
.getVectorShuffle(VT
, dl
, V2
, V1
, &Mask1
[0]);
3881 // Break it into (shuffle shuffle_hi, shuffle_lo).
3883 SmallVector
<int,8> LoMask(4U, -1);
3884 SmallVector
<int,8> HiMask(4U, -1);
3886 SmallVector
<int,8> *MaskPtr
= &LoMask
;
3887 unsigned MaskIdx
= 0;
3890 for (unsigned i
= 0; i
!= 4; ++i
) {
3897 int Idx
= PermMask
[i
];
3899 Locs
[i
] = std::make_pair(-1, -1);
3900 } else if (Idx
< 4) {
3901 Locs
[i
] = std::make_pair(MaskIdx
, LoIdx
);
3902 (*MaskPtr
)[LoIdx
] = Idx
;
3905 Locs
[i
] = std::make_pair(MaskIdx
, HiIdx
);
3906 (*MaskPtr
)[HiIdx
] = Idx
;
3911 SDValue LoShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &LoMask
[0]);
3912 SDValue HiShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &HiMask
[0]);
3913 SmallVector
<int, 8> MaskOps
;
3914 for (unsigned i
= 0; i
!= 4; ++i
) {
3915 if (Locs
[i
].first
== -1) {
3916 MaskOps
.push_back(-1);
3918 unsigned Idx
= Locs
[i
].first
* 4 + Locs
[i
].second
;
3919 MaskOps
.push_back(Idx
);
3922 return DAG
.getVectorShuffle(VT
, dl
, LoShuffle
, HiShuffle
, &MaskOps
[0]);
3926 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) {
3927 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
3928 SDValue V1
= Op
.getOperand(0);
3929 SDValue V2
= Op
.getOperand(1);
3930 MVT VT
= Op
.getValueType();
3931 DebugLoc dl
= Op
.getDebugLoc();
3932 unsigned NumElems
= VT
.getVectorNumElements();
3933 bool isMMX
= VT
.getSizeInBits() == 64;
3934 bool V1IsUndef
= V1
.getOpcode() == ISD::UNDEF
;
3935 bool V2IsUndef
= V2
.getOpcode() == ISD::UNDEF
;
3936 bool V1IsSplat
= false;
3937 bool V2IsSplat
= false;
3939 if (isZeroShuffle(SVOp
))
3940 return getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3942 // Promote splats to v4f32.
3943 if (SVOp
->isSplat()) {
3944 if (isMMX
|| NumElems
< 4)
3946 return PromoteSplat(SVOp
, DAG
, Subtarget
->hasSSE2());
3949 // If the shuffle can be profitably rewritten as a narrower shuffle, then
3951 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
3952 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
3953 if (NewOp
.getNode())
3954 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3955 LowerVECTOR_SHUFFLE(NewOp
, DAG
));
3956 } else if ((VT
== MVT::v4i32
|| (VT
== MVT::v4f32
&& Subtarget
->hasSSE2()))) {
3957 // FIXME: Figure out a cleaner way to do this.
3958 // Try to make use of movq to zero out the top part.
3959 if (ISD::isBuildVectorAllZeros(V2
.getNode())) {
3960 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
3961 if (NewOp
.getNode()) {
3962 if (isCommutedMOVL(cast
<ShuffleVectorSDNode
>(NewOp
), true, false))
3963 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(0),
3964 DAG
, Subtarget
, dl
);
3966 } else if (ISD::isBuildVectorAllZeros(V1
.getNode())) {
3967 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
3968 if (NewOp
.getNode() && X86::isMOVLMask(cast
<ShuffleVectorSDNode
>(NewOp
)))
3969 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(1),
3970 DAG
, Subtarget
, dl
);
3974 if (X86::isPSHUFDMask(SVOp
))
3977 // Check if this can be converted into a logical shift.
3978 bool isLeft
= false;
3981 bool isShift
= getSubtarget()->hasSSE2() &&
3982 isVectorShift(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
);
3983 if (isShift
&& ShVal
.hasOneUse()) {
3984 // If the shifted value has multiple uses, it may be cheaper to use
3985 // v_set0 + movlhps or movhlps, etc.
3986 MVT EVT
= VT
.getVectorElementType();
3987 ShAmt
*= EVT
.getSizeInBits();
3988 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
3991 if (X86::isMOVLMask(SVOp
)) {
3994 if (ISD::isBuildVectorAllZeros(V1
.getNode()))
3995 return getVZextMovL(VT
, VT
, V2
, DAG
, Subtarget
, dl
);
4000 // FIXME: fold these into legal mask.
4001 if (!isMMX
&& (X86::isMOVSHDUPMask(SVOp
) ||
4002 X86::isMOVSLDUPMask(SVOp
) ||
4003 X86::isMOVHLPSMask(SVOp
) ||
4004 X86::isMOVHPMask(SVOp
) ||
4005 X86::isMOVLPMask(SVOp
)))
4008 if (ShouldXformToMOVHLPS(SVOp
) ||
4009 ShouldXformToMOVLP(V1
.getNode(), V2
.getNode(), SVOp
))
4010 return CommuteVectorShuffle(SVOp
, DAG
);
4013 // No better options. Use a vshl / vsrl.
4014 MVT EVT
= VT
.getVectorElementType();
4015 ShAmt
*= EVT
.getSizeInBits();
4016 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4019 bool Commuted
= false;
4020 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4021 // 1,1,1,1 -> v8i16 though.
4022 V1IsSplat
= isSplatVector(V1
.getNode());
4023 V2IsSplat
= isSplatVector(V2
.getNode());
4025 // Canonicalize the splat or undef, if present, to be on the RHS.
4026 if ((V1IsSplat
|| V1IsUndef
) && !(V2IsSplat
|| V2IsUndef
)) {
4027 Op
= CommuteVectorShuffle(SVOp
, DAG
);
4028 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4029 V1
= SVOp
->getOperand(0);
4030 V2
= SVOp
->getOperand(1);
4031 std::swap(V1IsSplat
, V2IsSplat
);
4032 std::swap(V1IsUndef
, V2IsUndef
);
4036 if (isCommutedMOVL(SVOp
, V2IsSplat
, V2IsUndef
)) {
4037 // Shuffling low element of v1 into undef, just return v1.
4040 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4041 // the instruction selector will not match, so get a canonical MOVL with
4042 // swapped operands to undo the commute.
4043 return getMOVL(DAG
, dl
, VT
, V2
, V1
);
4046 if (X86::isUNPCKL_v_undef_Mask(SVOp
) ||
4047 X86::isUNPCKH_v_undef_Mask(SVOp
) ||
4048 X86::isUNPCKLMask(SVOp
) ||
4049 X86::isUNPCKHMask(SVOp
))
4053 // Normalize mask so all entries that point to V2 points to its first
4054 // element then try to match unpck{h|l} again. If match, return a
4055 // new vector_shuffle with the corrected mask.
4056 SDValue NewMask
= NormalizeMask(SVOp
, DAG
);
4057 ShuffleVectorSDNode
*NSVOp
= cast
<ShuffleVectorSDNode
>(NewMask
);
4058 if (NSVOp
!= SVOp
) {
4059 if (X86::isUNPCKLMask(NSVOp
, true)) {
4061 } else if (X86::isUNPCKHMask(NSVOp
, true)) {
4068 // Commute is back and try unpck* again.
4069 // FIXME: this seems wrong.
4070 SDValue NewOp
= CommuteVectorShuffle(SVOp
, DAG
);
4071 ShuffleVectorSDNode
*NewSVOp
= cast
<ShuffleVectorSDNode
>(NewOp
);
4072 if (X86::isUNPCKL_v_undef_Mask(NewSVOp
) ||
4073 X86::isUNPCKH_v_undef_Mask(NewSVOp
) ||
4074 X86::isUNPCKLMask(NewSVOp
) ||
4075 X86::isUNPCKHMask(NewSVOp
))
4079 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4081 // Normalize the node to match x86 shuffle ops if needed
4082 if (!isMMX
&& V2
.getOpcode() != ISD::UNDEF
&& isCommutedSHUFP(SVOp
))
4083 return CommuteVectorShuffle(SVOp
, DAG
);
4085 // Check for legal shuffle and return?
4086 SmallVector
<int, 16> PermMask
;
4087 SVOp
->getMask(PermMask
);
4088 if (isShuffleMaskLegal(PermMask
, VT
))
4091 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4092 if (VT
== MVT::v8i16
) {
4093 SDValue NewOp
= LowerVECTOR_SHUFFLEv8i16(SVOp
, DAG
, *this);
4094 if (NewOp
.getNode())
4098 if (VT
== MVT::v16i8
) {
4099 SDValue NewOp
= LowerVECTOR_SHUFFLEv16i8(SVOp
, DAG
, *this);
4100 if (NewOp
.getNode())
4104 // Handle all 4 wide cases with a number of shuffles except for MMX.
4105 if (NumElems
== 4 && !isMMX
)
4106 return LowerVECTOR_SHUFFLE_4wide(SVOp
, DAG
);
4112 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
,
4113 SelectionDAG
&DAG
) {
4114 MVT VT
= Op
.getValueType();
4115 DebugLoc dl
= Op
.getDebugLoc();
4116 if (VT
.getSizeInBits() == 8) {
4117 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRB
, dl
, MVT::i32
,
4118 Op
.getOperand(0), Op
.getOperand(1));
4119 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4120 DAG
.getValueType(VT
));
4121 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4122 } else if (VT
.getSizeInBits() == 16) {
4123 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4124 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4126 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4127 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4128 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4132 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, MVT::i32
,
4133 Op
.getOperand(0), Op
.getOperand(1));
4134 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4135 DAG
.getValueType(VT
));
4136 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4137 } else if (VT
== MVT::f32
) {
4138 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4139 // the result back to FR32 register. It's only worth matching if the
4140 // result has a single use which is a store or a bitcast to i32. And in
4141 // the case of a store, it's not worth it if the index is a constant 0,
4142 // because a MOVSSmr can be used instead, which is smaller and faster.
4143 if (!Op
.hasOneUse())
4145 SDNode
*User
= *Op
.getNode()->use_begin();
4146 if ((User
->getOpcode() != ISD::STORE
||
4147 (isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
4148 cast
<ConstantSDNode
>(Op
.getOperand(1))->isNullValue())) &&
4149 (User
->getOpcode() != ISD::BIT_CONVERT
||
4150 User
->getValueType(0) != MVT::i32
))
4152 SDValue Extract
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4153 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
,
4156 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, Extract
);
4157 } else if (VT
== MVT::i32
) {
4158 // ExtractPS works with constant index.
4159 if (isa
<ConstantSDNode
>(Op
.getOperand(1)))
4167 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4168 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4171 if (Subtarget
->hasSSE41()) {
4172 SDValue Res
= LowerEXTRACT_VECTOR_ELT_SSE4(Op
, DAG
);
4177 MVT VT
= Op
.getValueType();
4178 DebugLoc dl
= Op
.getDebugLoc();
4179 // TODO: handle v16i8.
4180 if (VT
.getSizeInBits() == 16) {
4181 SDValue Vec
= Op
.getOperand(0);
4182 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4184 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4185 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4186 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4189 // Transform it so it match pextrw which produces a 32-bit result.
4190 MVT EVT
= (MVT::SimpleValueType
)(VT
.getSimpleVT()+1);
4191 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, EVT
,
4192 Op
.getOperand(0), Op
.getOperand(1));
4193 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, EVT
, Extract
,
4194 DAG
.getValueType(VT
));
4195 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4196 } else if (VT
.getSizeInBits() == 32) {
4197 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4201 // SHUFPS the element to the lowest double word, then movss.
4202 int Mask
[4] = { Idx
, -1, -1, -1 };
4203 MVT VVT
= Op
.getOperand(0).getValueType();
4204 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4205 DAG
.getUNDEF(VVT
), Mask
);
4206 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4207 DAG
.getIntPtrConstant(0));
4208 } else if (VT
.getSizeInBits() == 64) {
4209 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4210 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4211 // to match extract_elt for f64.
4212 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4216 // UNPCKHPD the element to the lowest double word, then movsd.
4217 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4218 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4219 int Mask
[2] = { 1, -1 };
4220 MVT VVT
= Op
.getOperand(0).getValueType();
4221 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4222 DAG
.getUNDEF(VVT
), Mask
);
4223 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4224 DAG
.getIntPtrConstant(0));
4231 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
){
4232 MVT VT
= Op
.getValueType();
4233 MVT EVT
= VT
.getVectorElementType();
4234 DebugLoc dl
= Op
.getDebugLoc();
4236 SDValue N0
= Op
.getOperand(0);
4237 SDValue N1
= Op
.getOperand(1);
4238 SDValue N2
= Op
.getOperand(2);
4240 if ((EVT
.getSizeInBits() == 8 || EVT
.getSizeInBits() == 16) &&
4241 isa
<ConstantSDNode
>(N2
)) {
4242 unsigned Opc
= (EVT
.getSizeInBits() == 8) ? X86ISD::PINSRB
4244 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4246 if (N1
.getValueType() != MVT::i32
)
4247 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4248 if (N2
.getValueType() != MVT::i32
)
4249 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4250 return DAG
.getNode(Opc
, dl
, VT
, N0
, N1
, N2
);
4251 } else if (EVT
== MVT::f32
&& isa
<ConstantSDNode
>(N2
)) {
4252 // Bits [7:6] of the constant are the source select. This will always be
4253 // zero here. The DAG Combiner may combine an extract_elt index into these
4254 // bits. For example (insert (extract, 3), 2) could be matched by putting
4255 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4256 // Bits [5:4] of the constant are the destination select. This is the
4257 // value of the incoming immediate.
4258 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4259 // combine either bitwise AND or insert of float 0.0 to set these bits.
4260 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue() << 4);
4261 return DAG
.getNode(X86ISD::INSERTPS
, dl
, VT
, N0
, N1
, N2
);
4262 } else if (EVT
== MVT::i32
) {
4263 // InsertPS works with constant index.
4264 if (isa
<ConstantSDNode
>(N2
))
4271 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4272 MVT VT
= Op
.getValueType();
4273 MVT EVT
= VT
.getVectorElementType();
4275 if (Subtarget
->hasSSE41())
4276 return LowerINSERT_VECTOR_ELT_SSE4(Op
, DAG
);
4281 DebugLoc dl
= Op
.getDebugLoc();
4282 SDValue N0
= Op
.getOperand(0);
4283 SDValue N1
= Op
.getOperand(1);
4284 SDValue N2
= Op
.getOperand(2);
4286 if (EVT
.getSizeInBits() == 16) {
4287 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4288 // as its second argument.
4289 if (N1
.getValueType() != MVT::i32
)
4290 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4291 if (N2
.getValueType() != MVT::i32
)
4292 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4293 return DAG
.getNode(X86ISD::PINSRW
, dl
, VT
, N0
, N1
, N2
);
4299 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
4300 DebugLoc dl
= Op
.getDebugLoc();
4301 if (Op
.getValueType() == MVT::v2f32
)
4302 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f32
,
4303 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i32
,
4304 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
,
4305 Op
.getOperand(0))));
4307 SDValue AnyExt
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Op
.getOperand(0));
4308 MVT VT
= MVT::v2i32
;
4309 switch (Op
.getValueType().getSimpleVT()) {
4316 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(),
4317 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, AnyExt
));
4320 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4321 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4322 // one of the above mentioned nodes. It has to be wrapped because otherwise
4323 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4324 // be used to form addressing mode. These wrapped nodes will be selected
4327 X86TargetLowering::LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) {
4328 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
4329 // FIXME there isn't really any debug info here, should come from the parent
4330 DebugLoc dl
= CP
->getDebugLoc();
4331 SDValue Result
= DAG
.getTargetConstantPool(CP
->getConstVal(), getPointerTy(),
4332 CP
->getAlignment());
4333 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4334 // With PIC, the address is actually $g + Offset.
4335 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4336 !Subtarget
->isPICStyleRIPRel()) {
4337 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4338 DAG
.getNode(X86ISD::GlobalBaseReg
,
4339 DebugLoc::getUnknownLoc(),
4348 X86TargetLowering::LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
4350 SelectionDAG
&DAG
) const {
4351 bool IsPic
= getTargetMachine().getRelocationModel() == Reloc::PIC_
;
4352 bool ExtraLoadRequired
=
4353 Subtarget
->GVRequiresExtraLoad(GV
, getTargetMachine(), false);
4355 // Create the TargetGlobalAddress node, folding in the constant
4356 // offset if it is legal.
4358 if (!IsPic
&& !ExtraLoadRequired
&& isInt32(Offset
)) {
4359 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), Offset
);
4362 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), 0);
4363 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4365 // With PIC, the address is actually $g + Offset.
4366 if (IsPic
&& !Subtarget
->isPICStyleRIPRel()) {
4367 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4368 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
4372 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4373 // load the value at address GV, not the value of GV itself. This means that
4374 // the GlobalAddress must be in the base or index register of the address, not
4375 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4376 // The same applies for external symbols during PIC codegen
4377 if (ExtraLoadRequired
)
4378 Result
= DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(), Result
,
4379 PseudoSourceValue::getGOT(), 0);
4381 // If there was a non-zero offset that we didn't fold, create an explicit
4384 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Result
,
4385 DAG
.getConstant(Offset
, getPointerTy()));
4391 X86TargetLowering::LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) {
4392 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4393 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
4394 return LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
4398 GetTLSADDR(SelectionDAG
&DAG
, SDValue Chain
, GlobalAddressSDNode
*GA
,
4399 SDValue
*InFlag
, const MVT PtrVT
, unsigned ReturnReg
) {
4400 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
4401 DebugLoc dl
= GA
->getDebugLoc();
4402 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4403 GA
->getValueType(0),
4406 SDValue Ops
[] = { Chain
, TGA
, *InFlag
};
4407 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 3);
4409 SDValue Ops
[] = { Chain
, TGA
};
4410 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 2);
4412 SDValue Flag
= Chain
.getValue(1);
4413 return DAG
.getCopyFromReg(Chain
, dl
, ReturnReg
, PtrVT
, Flag
);
4416 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4418 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4421 DebugLoc dl
= GA
->getDebugLoc(); // ? function entry point might be better
4422 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, X86::EBX
,
4423 DAG
.getNode(X86ISD::GlobalBaseReg
,
4424 DebugLoc::getUnknownLoc(),
4426 InFlag
= Chain
.getValue(1);
4428 return GetTLSADDR(DAG
, Chain
, GA
, &InFlag
, PtrVT
, X86::EAX
);
4431 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4433 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4435 return GetTLSADDR(DAG
, DAG
.getEntryNode(), GA
, NULL
, PtrVT
, X86::RAX
);
4438 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4439 // "local exec" model.
4440 static SDValue
LowerToTLSExecModel(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4441 const MVT PtrVT
, TLSModel::Model model
,
4443 DebugLoc dl
= GA
->getDebugLoc();
4444 // Get the Thread Pointer
4445 SDValue Base
= DAG
.getNode(X86ISD::SegmentBaseAddress
,
4446 DebugLoc::getUnknownLoc(), PtrVT
,
4447 DAG
.getRegister(is64Bit
? X86::FS
: X86::GS
,
4450 SDValue ThreadPointer
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Base
,
4453 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4455 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4456 GA
->getValueType(0),
4458 SDValue Offset
= DAG
.getNode(X86ISD::Wrapper
, dl
, PtrVT
, TGA
);
4460 if (model
== TLSModel::InitialExec
)
4461 Offset
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Offset
,
4462 PseudoSourceValue::getGOT(), 0);
4464 // The address of the thread local variable is the add of the thread
4465 // pointer with the offset of the variable.
4466 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
4470 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) {
4471 // TODO: implement the "local dynamic" model
4472 // TODO: implement the "initial exec"model for pic executables
4473 assert(Subtarget
->isTargetELF() &&
4474 "TLS not implemented for non-ELF targets");
4475 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4476 GlobalValue
*GV
= GA
->getGlobal();
4477 TLSModel::Model model
=
4478 getTLSModel (GV
, getTargetMachine().getRelocationModel());
4479 if (Subtarget
->is64Bit()) {
4481 case TLSModel::GeneralDynamic
:
4482 case TLSModel::LocalDynamic
: // not implemented
4483 return LowerToTLSGeneralDynamicModel64(GA
, DAG
, getPointerTy());
4485 case TLSModel::InitialExec
:
4486 case TLSModel::LocalExec
:
4487 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
, true);
4491 case TLSModel::GeneralDynamic
:
4492 case TLSModel::LocalDynamic
: // not implemented
4493 return LowerToTLSGeneralDynamicModel32(GA
, DAG
, getPointerTy());
4495 case TLSModel::InitialExec
:
4496 case TLSModel::LocalExec
:
4497 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
, false);
4500 assert(0 && "Unreachable");
4505 X86TargetLowering::LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) {
4506 // FIXME there isn't really any debug info here
4507 DebugLoc dl
= Op
.getDebugLoc();
4508 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
4509 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy());
4510 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4511 // With PIC, the address is actually $g + Offset.
4512 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4513 !Subtarget
->isPICStyleRIPRel()) {
4514 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4515 DAG
.getNode(X86ISD::GlobalBaseReg
,
4516 DebugLoc::getUnknownLoc(),
4524 SDValue
X86TargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) {
4525 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
4526 // FIXME there isn't really any debug into here
4527 DebugLoc dl
= JT
->getDebugLoc();
4528 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), getPointerTy());
4529 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4530 // With PIC, the address is actually $g + Offset.
4531 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4532 !Subtarget
->isPICStyleRIPRel()) {
4533 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4534 DAG
.getNode(X86ISD::GlobalBaseReg
,
4535 DebugLoc::getUnknownLoc(),
4543 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4544 /// take a 2 x i32 value to shift plus a shift amount.
4545 SDValue
X86TargetLowering::LowerShift(SDValue Op
, SelectionDAG
&DAG
) {
4546 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
4547 MVT VT
= Op
.getValueType();
4548 unsigned VTBits
= VT
.getSizeInBits();
4549 DebugLoc dl
= Op
.getDebugLoc();
4550 bool isSRA
= Op
.getOpcode() == ISD::SRA_PARTS
;
4551 SDValue ShOpLo
= Op
.getOperand(0);
4552 SDValue ShOpHi
= Op
.getOperand(1);
4553 SDValue ShAmt
= Op
.getOperand(2);
4554 SDValue Tmp1
= isSRA
?
4555 DAG
.getNode(ISD::SRA
, dl
, VT
, ShOpHi
,
4556 DAG
.getConstant(VTBits
- 1, MVT::i8
)) :
4557 DAG
.getConstant(0, VT
);
4560 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4561 Tmp2
= DAG
.getNode(X86ISD::SHLD
, dl
, VT
, ShOpHi
, ShOpLo
, ShAmt
);
4562 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
4564 Tmp2
= DAG
.getNode(X86ISD::SHRD
, dl
, VT
, ShOpLo
, ShOpHi
, ShAmt
);
4565 Tmp3
= DAG
.getNode(isSRA
? ISD::SRA
: ISD::SRL
, dl
, VT
, ShOpHi
, ShAmt
);
4568 SDValue AndNode
= DAG
.getNode(ISD::AND
, dl
, MVT::i8
, ShAmt
,
4569 DAG
.getConstant(VTBits
, MVT::i8
));
4570 SDValue Cond
= DAG
.getNode(X86ISD::CMP
, dl
, VT
,
4571 AndNode
, DAG
.getConstant(0, MVT::i8
));
4574 SDValue CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
4575 SDValue Ops0
[4] = { Tmp2
, Tmp3
, CC
, Cond
};
4576 SDValue Ops1
[4] = { Tmp3
, Tmp1
, CC
, Cond
};
4578 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4579 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4580 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4582 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4583 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4586 SDValue Ops
[2] = { Lo
, Hi
};
4587 return DAG
.getMergeValues(Ops
, 2, dl
);
4590 SDValue
X86TargetLowering::LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4591 MVT SrcVT
= Op
.getOperand(0).getValueType();
4592 assert(SrcVT
.getSimpleVT() <= MVT::i64
&& SrcVT
.getSimpleVT() >= MVT::i16
&&
4593 "Unknown SINT_TO_FP to lower!");
4595 // These are really Legal; caller falls through into that case.
4596 if (SrcVT
== MVT::i32
&& isScalarFPTypeInSSEReg(Op
.getValueType()))
4598 if (SrcVT
== MVT::i64
&& Op
.getValueType() != MVT::f80
&&
4599 Subtarget
->is64Bit())
4602 DebugLoc dl
= Op
.getDebugLoc();
4603 unsigned Size
= SrcVT
.getSizeInBits()/8;
4604 MachineFunction
&MF
= DAG
.getMachineFunction();
4605 int SSFI
= MF
.getFrameInfo()->CreateStackObject(Size
, Size
);
4606 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4607 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
4609 PseudoSourceValue::getFixedStack(SSFI
), 0);
4613 bool useSSE
= isScalarFPTypeInSSEReg(Op
.getValueType());
4615 Tys
= DAG
.getVTList(MVT::f64
, MVT::Other
, MVT::Flag
);
4617 Tys
= DAG
.getVTList(Op
.getValueType(), MVT::Other
);
4618 SmallVector
<SDValue
, 8> Ops
;
4619 Ops
.push_back(Chain
);
4620 Ops
.push_back(StackSlot
);
4621 Ops
.push_back(DAG
.getValueType(SrcVT
));
4622 SDValue Result
= DAG
.getNode(useSSE
? X86ISD::FILD_FLAG
: X86ISD::FILD
, dl
,
4623 Tys
, &Ops
[0], Ops
.size());
4626 Chain
= Result
.getValue(1);
4627 SDValue InFlag
= Result
.getValue(2);
4629 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4630 // shouldn't be necessary except that RFP cannot be live across
4631 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4632 MachineFunction
&MF
= DAG
.getMachineFunction();
4633 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8);
4634 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4635 Tys
= DAG
.getVTList(MVT::Other
);
4636 SmallVector
<SDValue
, 8> Ops
;
4637 Ops
.push_back(Chain
);
4638 Ops
.push_back(Result
);
4639 Ops
.push_back(StackSlot
);
4640 Ops
.push_back(DAG
.getValueType(Op
.getValueType()));
4641 Ops
.push_back(InFlag
);
4642 Chain
= DAG
.getNode(X86ISD::FST
, dl
, Tys
, &Ops
[0], Ops
.size());
4643 Result
= DAG
.getLoad(Op
.getValueType(), dl
, Chain
, StackSlot
,
4644 PseudoSourceValue::getFixedStack(SSFI
), 0);
4650 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4651 SDValue
X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) {
4652 // This algorithm is not obvious. Here it is in C code, more or less:
4654 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4655 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4656 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4658 // Copy ints to xmm registers.
4659 __m128i xh = _mm_cvtsi32_si128( hi );
4660 __m128i xl = _mm_cvtsi32_si128( lo );
4662 // Combine into low half of a single xmm register.
4663 __m128i x = _mm_unpacklo_epi32( xh, xl );
4667 // Merge in appropriate exponents to give the integer bits the right
4669 x = _mm_unpacklo_epi32( x, exp );
4671 // Subtract away the biases to deal with the IEEE-754 double precision
4673 d = _mm_sub_pd( (__m128d) x, bias );
4675 // All conversions up to here are exact. The correctly rounded result is
4676 // calculated using the current rounding mode using the following
4678 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4679 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4680 // store doesn't really need to be here (except
4681 // maybe to zero the other double)
4686 DebugLoc dl
= Op
.getDebugLoc();
4688 // Build some magic constants.
4689 std::vector
<Constant
*> CV0
;
4690 CV0
.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4691 CV0
.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4692 CV0
.push_back(ConstantInt::get(APInt(32, 0)));
4693 CV0
.push_back(ConstantInt::get(APInt(32, 0)));
4694 Constant
*C0
= ConstantVector::get(CV0
);
4695 SDValue CPIdx0
= DAG
.getConstantPool(C0
, getPointerTy(), 16);
4697 std::vector
<Constant
*> CV1
;
4698 CV1
.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL
))));
4699 CV1
.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL
))));
4700 Constant
*C1
= ConstantVector::get(CV1
);
4701 SDValue CPIdx1
= DAG
.getConstantPool(C1
, getPointerTy(), 16);
4703 SDValue XR1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4704 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4706 DAG
.getIntPtrConstant(1)));
4707 SDValue XR2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4708 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4710 DAG
.getIntPtrConstant(0)));
4711 SDValue Unpck1
= getUnpackl(DAG
, dl
, MVT::v4i32
, XR1
, XR2
);
4712 SDValue CLod0
= DAG
.getLoad(MVT::v4i32
, dl
, DAG
.getEntryNode(), CPIdx0
,
4713 PseudoSourceValue::getConstantPool(), 0,
4715 SDValue Unpck2
= getUnpackl(DAG
, dl
, MVT::v4i32
, Unpck1
, CLod0
);
4716 SDValue XR2F
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Unpck2
);
4717 SDValue CLod1
= DAG
.getLoad(MVT::v2f64
, dl
, CLod0
.getValue(1), CPIdx1
,
4718 PseudoSourceValue::getConstantPool(), 0,
4720 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::v2f64
, XR2F
, CLod1
);
4722 // Add the halves; easiest way is to swap them into another reg first.
4723 int ShufMask
[2] = { 1, -1 };
4724 SDValue Shuf
= DAG
.getVectorShuffle(MVT::v2f64
, dl
, Sub
,
4725 DAG
.getUNDEF(MVT::v2f64
), ShufMask
);
4726 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::v2f64
, Shuf
, Sub
);
4727 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Add
,
4728 DAG
.getIntPtrConstant(0));
4731 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4732 SDValue
X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) {
4733 DebugLoc dl
= Op
.getDebugLoc();
4734 // FP constant to bias correct the final result.
4735 SDValue Bias
= DAG
.getConstantFP(BitsToDouble(0x4330000000000000ULL
),
4738 // Load the 32-bit value into an XMM register.
4739 SDValue Load
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4740 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4742 DAG
.getIntPtrConstant(0)));
4744 Load
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4745 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Load
),
4746 DAG
.getIntPtrConstant(0));
4748 // Or the load with the bias.
4749 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, MVT::v2i64
,
4750 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4751 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4753 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4754 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4755 MVT::v2f64
, Bias
)));
4756 Or
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4757 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Or
),
4758 DAG
.getIntPtrConstant(0));
4760 // Subtract the bias.
4761 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Or
, Bias
);
4763 // Handle final rounding.
4764 MVT DestVT
= Op
.getValueType();
4766 if (DestVT
.bitsLT(MVT::f64
)) {
4767 return DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
4768 DAG
.getIntPtrConstant(0));
4769 } else if (DestVT
.bitsGT(MVT::f64
)) {
4770 return DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
4773 // Handle final rounding.
4777 SDValue
X86TargetLowering::LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4778 SDValue N0
= Op
.getOperand(0);
4779 DebugLoc dl
= Op
.getDebugLoc();
4781 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4782 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4783 // the optimization here.
4784 if (DAG
.SignBitIsZero(N0
))
4785 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, Op
.getValueType(), N0
);
4787 MVT SrcVT
= N0
.getValueType();
4788 if (SrcVT
== MVT::i64
) {
4789 // We only handle SSE2 f64 target here; caller can handle the rest.
4790 if (Op
.getValueType() != MVT::f64
|| !X86ScalarSSEf64
)
4793 return LowerUINT_TO_FP_i64(Op
, DAG
);
4794 } else if (SrcVT
== MVT::i32
) {
4795 return LowerUINT_TO_FP_i32(Op
, DAG
);
4798 assert(0 && "Unknown UINT_TO_FP to lower!");
4802 std::pair
<SDValue
,SDValue
> X86TargetLowering::
4803 FP_TO_SINTHelper(SDValue Op
, SelectionDAG
&DAG
) {
4804 DebugLoc dl
= Op
.getDebugLoc();
4805 assert(Op
.getValueType().getSimpleVT() <= MVT::i64
&&
4806 Op
.getValueType().getSimpleVT() >= MVT::i16
&&
4807 "Unknown FP_TO_SINT to lower!");
4809 // These are really Legal.
4810 if (Op
.getValueType() == MVT::i32
&&
4811 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
4812 return std::make_pair(SDValue(), SDValue());
4813 if (Subtarget
->is64Bit() &&
4814 Op
.getValueType() == MVT::i64
&&
4815 Op
.getOperand(0).getValueType() != MVT::f80
)
4816 return std::make_pair(SDValue(), SDValue());
4818 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4820 MachineFunction
&MF
= DAG
.getMachineFunction();
4821 unsigned MemSize
= Op
.getValueType().getSizeInBits()/8;
4822 int SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
4823 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4825 switch (Op
.getValueType().getSimpleVT()) {
4826 default: assert(0 && "Invalid FP_TO_SINT to lower!");
4827 case MVT::i16
: Opc
= X86ISD::FP_TO_INT16_IN_MEM
; break;
4828 case MVT::i32
: Opc
= X86ISD::FP_TO_INT32_IN_MEM
; break;
4829 case MVT::i64
: Opc
= X86ISD::FP_TO_INT64_IN_MEM
; break;
4832 SDValue Chain
= DAG
.getEntryNode();
4833 SDValue Value
= Op
.getOperand(0);
4834 if (isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType())) {
4835 assert(Op
.getValueType() == MVT::i64
&& "Invalid FP_TO_SINT to lower!");
4836 Chain
= DAG
.getStore(Chain
, dl
, Value
, StackSlot
,
4837 PseudoSourceValue::getFixedStack(SSFI
), 0);
4838 SDVTList Tys
= DAG
.getVTList(Op
.getOperand(0).getValueType(), MVT::Other
);
4840 Chain
, StackSlot
, DAG
.getValueType(Op
.getOperand(0).getValueType())
4842 Value
= DAG
.getNode(X86ISD::FLD
, dl
, Tys
, Ops
, 3);
4843 Chain
= Value
.getValue(1);
4844 SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
4845 StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4848 // Build the FP_TO_INT*_IN_MEM
4849 SDValue Ops
[] = { Chain
, Value
, StackSlot
};
4850 SDValue FIST
= DAG
.getNode(Opc
, dl
, MVT::Other
, Ops
, 3);
4852 return std::make_pair(FIST
, StackSlot
);
4855 SDValue
X86TargetLowering::LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) {
4856 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_SINTHelper(Op
, DAG
);
4857 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
4858 if (FIST
.getNode() == 0) return SDValue();
4861 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
4862 FIST
, StackSlot
, NULL
, 0);
4865 SDValue
X86TargetLowering::LowerFABS(SDValue Op
, SelectionDAG
&DAG
) {
4866 DebugLoc dl
= Op
.getDebugLoc();
4867 MVT VT
= Op
.getValueType();
4870 EltVT
= VT
.getVectorElementType();
4871 std::vector
<Constant
*> CV
;
4872 if (EltVT
== MVT::f64
) {
4873 Constant
*C
= ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4877 Constant
*C
= ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4883 Constant
*C
= ConstantVector::get(CV
);
4884 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4885 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
4886 PseudoSourceValue::getConstantPool(), 0,
4888 return DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op
.getOperand(0), Mask
);
4891 SDValue
X86TargetLowering::LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) {
4892 DebugLoc dl
= Op
.getDebugLoc();
4893 MVT VT
= Op
.getValueType();
4895 unsigned EltNum
= 1;
4896 if (VT
.isVector()) {
4897 EltVT
= VT
.getVectorElementType();
4898 EltNum
= VT
.getVectorNumElements();
4900 std::vector
<Constant
*> CV
;
4901 if (EltVT
== MVT::f64
) {
4902 Constant
*C
= ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4906 Constant
*C
= ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4912 Constant
*C
= ConstantVector::get(CV
);
4913 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4914 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
4915 PseudoSourceValue::getConstantPool(), 0,
4917 if (VT
.isVector()) {
4918 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4919 DAG
.getNode(ISD::XOR
, dl
, MVT::v2i64
,
4920 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4922 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, Mask
)));
4924 return DAG
.getNode(X86ISD::FXOR
, dl
, VT
, Op
.getOperand(0), Mask
);
4928 SDValue
X86TargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) {
4929 SDValue Op0
= Op
.getOperand(0);
4930 SDValue Op1
= Op
.getOperand(1);
4931 DebugLoc dl
= Op
.getDebugLoc();
4932 MVT VT
= Op
.getValueType();
4933 MVT SrcVT
= Op1
.getValueType();
4935 // If second operand is smaller, extend it first.
4936 if (SrcVT
.bitsLT(VT
)) {
4937 Op1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Op1
);
4940 // And if it is bigger, shrink it first.
4941 if (SrcVT
.bitsGT(VT
)) {
4942 Op1
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op1
, DAG
.getIntPtrConstant(1));
4946 // At this point the operands and the result should have the same
4947 // type, and that won't be f80 since that is not custom lowered.
4949 // First get the sign bit of second operand.
4950 std::vector
<Constant
*> CV
;
4951 if (SrcVT
== MVT::f64
) {
4952 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4953 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4955 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4956 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4957 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4958 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4960 Constant
*C
= ConstantVector::get(CV
);
4961 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4962 SDValue Mask1
= DAG
.getLoad(SrcVT
, dl
, DAG
.getEntryNode(), CPIdx
,
4963 PseudoSourceValue::getConstantPool(), 0,
4965 SDValue SignBit
= DAG
.getNode(X86ISD::FAND
, dl
, SrcVT
, Op1
, Mask1
);
4967 // Shift sign bit right or left if the two operands have different types.
4968 if (SrcVT
.bitsGT(VT
)) {
4969 // Op0 is MVT::f32, Op1 is MVT::f64.
4970 SignBit
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f64
, SignBit
);
4971 SignBit
= DAG
.getNode(X86ISD::FSRL
, dl
, MVT::v2f64
, SignBit
,
4972 DAG
.getConstant(32, MVT::i32
));
4973 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, SignBit
);
4974 SignBit
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, SignBit
,
4975 DAG
.getIntPtrConstant(0));
4978 // Clear first operand sign bit.
4980 if (VT
== MVT::f64
) {
4981 CV
.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4982 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4984 CV
.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4985 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4986 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4987 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4989 C
= ConstantVector::get(CV
);
4990 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
4991 SDValue Mask2
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
4992 PseudoSourceValue::getConstantPool(), 0,
4994 SDValue Val
= DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op0
, Mask2
);
4996 // Or the value with the sign bit.
4997 return DAG
.getNode(X86ISD::FOR
, dl
, VT
, Val
, SignBit
);
5000 /// Emit nodes that will be selected as "test Op0,Op0", or something
5002 SDValue
X86TargetLowering::EmitTest(SDValue Op
, unsigned X86CC
,
5003 SelectionDAG
&DAG
) {
5004 DebugLoc dl
= Op
.getDebugLoc();
5006 // CF and OF aren't always set the way we want. Determine which
5007 // of these we need.
5008 bool NeedCF
= false;
5009 bool NeedOF
= false;
5011 case X86::COND_A
: case X86::COND_AE
:
5012 case X86::COND_B
: case X86::COND_BE
:
5015 case X86::COND_G
: case X86::COND_GE
:
5016 case X86::COND_L
: case X86::COND_LE
:
5017 case X86::COND_O
: case X86::COND_NO
:
5023 // See if we can use the EFLAGS value from the operand instead of
5024 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5025 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5026 if (Op
.getResNo() == 0 && !NeedOF
&& !NeedCF
) {
5027 unsigned Opcode
= 0;
5028 unsigned NumOperands
= 0;
5029 switch (Op
.getNode()->getOpcode()) {
5031 // Due to an isel shortcoming, be conservative if this add is likely to
5032 // be selected as part of a load-modify-store instruction. When the root
5033 // node in a match is a store, isel doesn't know how to remap non-chain
5034 // non-flag uses of other nodes in the match, such as the ADD in this
5035 // case. This leads to the ADD being left around and reselected, with
5036 // the result being two adds in the output.
5037 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5038 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5039 if (UI
->getOpcode() == ISD::STORE
)
5041 if (ConstantSDNode
*C
=
5042 dyn_cast
<ConstantSDNode
>(Op
.getNode()->getOperand(1))) {
5043 // An add of one will be selected as an INC.
5044 if (C
->getAPIntValue() == 1) {
5045 Opcode
= X86ISD::INC
;
5049 // An add of negative one (subtract of one) will be selected as a DEC.
5050 if (C
->getAPIntValue().isAllOnesValue()) {
5051 Opcode
= X86ISD::DEC
;
5056 // Otherwise use a regular EFLAGS-setting add.
5057 Opcode
= X86ISD::ADD
;
5061 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5062 // likely to be selected as part of a load-modify-store instruction.
5063 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5064 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5065 if (UI
->getOpcode() == ISD::STORE
)
5067 // Otherwise use a regular EFLAGS-setting sub.
5068 Opcode
= X86ISD::SUB
;
5075 return SDValue(Op
.getNode(), 1);
5081 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
5082 SmallVector
<SDValue
, 4> Ops
;
5083 for (unsigned i
= 0; i
!= NumOperands
; ++i
)
5084 Ops
.push_back(Op
.getOperand(i
));
5085 SDValue New
= DAG
.getNode(Opcode
, dl
, VTs
, &Ops
[0], NumOperands
);
5086 DAG
.ReplaceAllUsesWith(Op
, New
);
5087 return SDValue(New
.getNode(), 1);
5091 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5092 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
5093 DAG
.getConstant(0, Op
.getValueType()));
5096 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5098 SDValue
X86TargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
5099 SelectionDAG
&DAG
) {
5100 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op1
))
5101 if (C
->getAPIntValue() == 0)
5102 return EmitTest(Op0
, X86CC
, DAG
);
5104 DebugLoc dl
= Op0
.getDebugLoc();
5105 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op0
, Op1
);
5108 SDValue
X86TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5109 assert(Op
.getValueType() == MVT::i8
&& "SetCC type must be 8-bit integer");
5110 SDValue Op0
= Op
.getOperand(0);
5111 SDValue Op1
= Op
.getOperand(1);
5112 DebugLoc dl
= Op
.getDebugLoc();
5113 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5115 // Lower (X & (1 << N)) == 0 to BT(X, N).
5116 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5117 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5118 if (Op0
.getOpcode() == ISD::AND
&&
5120 Op1
.getOpcode() == ISD::Constant
&&
5121 cast
<ConstantSDNode
>(Op1
)->getZExtValue() == 0 &&
5122 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5124 if (Op0
.getOperand(1).getOpcode() == ISD::SHL
) {
5125 if (ConstantSDNode
*Op010C
=
5126 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1).getOperand(0)))
5127 if (Op010C
->getZExtValue() == 1) {
5128 LHS
= Op0
.getOperand(0);
5129 RHS
= Op0
.getOperand(1).getOperand(1);
5131 } else if (Op0
.getOperand(0).getOpcode() == ISD::SHL
) {
5132 if (ConstantSDNode
*Op000C
=
5133 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(0).getOperand(0)))
5134 if (Op000C
->getZExtValue() == 1) {
5135 LHS
= Op0
.getOperand(1);
5136 RHS
= Op0
.getOperand(0).getOperand(1);
5138 } else if (Op0
.getOperand(1).getOpcode() == ISD::Constant
) {
5139 ConstantSDNode
*AndRHS
= cast
<ConstantSDNode
>(Op0
.getOperand(1));
5140 SDValue AndLHS
= Op0
.getOperand(0);
5141 if (AndRHS
->getZExtValue() == 1 && AndLHS
.getOpcode() == ISD::SRL
) {
5142 LHS
= AndLHS
.getOperand(0);
5143 RHS
= AndLHS
.getOperand(1);
5147 if (LHS
.getNode()) {
5148 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5149 // instruction. Since the shift amount is in-range-or-undefined, we know
5150 // that doing a bittest on the i16 value is ok. We extend to i32 because
5151 // the encoding for the i16 version is larger than the i32 version.
5152 if (LHS
.getValueType() == MVT::i8
)
5153 LHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
5155 // If the operand types disagree, extend the shift amount to match. Since
5156 // BT ignores high bits (like shifts) we can use anyextend.
5157 if (LHS
.getValueType() != RHS
.getValueType())
5158 RHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, LHS
.getValueType(), RHS
);
5160 SDValue BT
= DAG
.getNode(X86ISD::BT
, dl
, MVT::i32
, LHS
, RHS
);
5161 unsigned Cond
= CC
== ISD::SETEQ
? X86::COND_AE
: X86::COND_B
;
5162 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5163 DAG
.getConstant(Cond
, MVT::i8
), BT
);
5167 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5168 unsigned X86CC
= TranslateX86CC(CC
, isFP
, Op0
, Op1
, DAG
);
5170 SDValue Cond
= EmitCmp(Op0
, Op1
, X86CC
, DAG
);
5171 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5172 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5175 SDValue
X86TargetLowering::LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5177 SDValue Op0
= Op
.getOperand(0);
5178 SDValue Op1
= Op
.getOperand(1);
5179 SDValue CC
= Op
.getOperand(2);
5180 MVT VT
= Op
.getValueType();
5181 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5182 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5183 DebugLoc dl
= Op
.getDebugLoc();
5187 MVT VT0
= Op0
.getValueType();
5188 assert(VT0
== MVT::v4f32
|| VT0
== MVT::v2f64
);
5189 unsigned Opc
= VT0
== MVT::v4f32
? X86ISD::CMPPS
: X86ISD::CMPPD
;
5192 switch (SetCCOpcode
) {
5195 case ISD::SETEQ
: SSECC
= 0; break;
5197 case ISD::SETGT
: Swap
= true; // Fallthrough
5199 case ISD::SETOLT
: SSECC
= 1; break;
5201 case ISD::SETGE
: Swap
= true; // Fallthrough
5203 case ISD::SETOLE
: SSECC
= 2; break;
5204 case ISD::SETUO
: SSECC
= 3; break;
5206 case ISD::SETNE
: SSECC
= 4; break;
5207 case ISD::SETULE
: Swap
= true;
5208 case ISD::SETUGE
: SSECC
= 5; break;
5209 case ISD::SETULT
: Swap
= true;
5210 case ISD::SETUGT
: SSECC
= 6; break;
5211 case ISD::SETO
: SSECC
= 7; break;
5214 std::swap(Op0
, Op1
);
5216 // In the two special cases we can't handle, emit two comparisons.
5218 if (SetCCOpcode
== ISD::SETUEQ
) {
5220 UNORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(3, MVT::i8
));
5221 EQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(0, MVT::i8
));
5222 return DAG
.getNode(ISD::OR
, dl
, VT
, UNORD
, EQ
);
5224 else if (SetCCOpcode
== ISD::SETONE
) {
5226 ORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(7, MVT::i8
));
5227 NEQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(4, MVT::i8
));
5228 return DAG
.getNode(ISD::AND
, dl
, VT
, ORD
, NEQ
);
5230 assert(0 && "Illegal FP comparison");
5232 // Handle all other FP comparisons here.
5233 return DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(SSECC
, MVT::i8
));
5236 // We are handling one of the integer comparisons here. Since SSE only has
5237 // GT and EQ comparisons for integer, swapping operands and multiple
5238 // operations may be required for some comparisons.
5239 unsigned Opc
= 0, EQOpc
= 0, GTOpc
= 0;
5240 bool Swap
= false, Invert
= false, FlipSigns
= false;
5242 switch (VT
.getSimpleVT()) {
5244 case MVT::v16i8
: EQOpc
= X86ISD::PCMPEQB
; GTOpc
= X86ISD::PCMPGTB
; break;
5245 case MVT::v8i16
: EQOpc
= X86ISD::PCMPEQW
; GTOpc
= X86ISD::PCMPGTW
; break;
5246 case MVT::v4i32
: EQOpc
= X86ISD::PCMPEQD
; GTOpc
= X86ISD::PCMPGTD
; break;
5247 case MVT::v2i64
: EQOpc
= X86ISD::PCMPEQQ
; GTOpc
= X86ISD::PCMPGTQ
; break;
5250 switch (SetCCOpcode
) {
5252 case ISD::SETNE
: Invert
= true;
5253 case ISD::SETEQ
: Opc
= EQOpc
; break;
5254 case ISD::SETLT
: Swap
= true;
5255 case ISD::SETGT
: Opc
= GTOpc
; break;
5256 case ISD::SETGE
: Swap
= true;
5257 case ISD::SETLE
: Opc
= GTOpc
; Invert
= true; break;
5258 case ISD::SETULT
: Swap
= true;
5259 case ISD::SETUGT
: Opc
= GTOpc
; FlipSigns
= true; break;
5260 case ISD::SETUGE
: Swap
= true;
5261 case ISD::SETULE
: Opc
= GTOpc
; FlipSigns
= true; Invert
= true; break;
5264 std::swap(Op0
, Op1
);
5266 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5267 // bits of the inputs before performing those operations.
5269 MVT EltVT
= VT
.getVectorElementType();
5270 SDValue SignBit
= DAG
.getConstant(APInt::getSignBit(EltVT
.getSizeInBits()),
5272 std::vector
<SDValue
> SignBits(VT
.getVectorNumElements(), SignBit
);
5273 SDValue SignVec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &SignBits
[0],
5275 Op0
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
, SignVec
);
5276 Op1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op1
, SignVec
);
5279 SDValue Result
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
);
5281 // If the logical-not of the result is required, perform that now.
5283 Result
= DAG
.getNOT(dl
, Result
, VT
);
5288 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5289 static bool isX86LogicalCmp(SDValue Op
) {
5290 unsigned Opc
= Op
.getNode()->getOpcode();
5291 if (Opc
== X86ISD::CMP
|| Opc
== X86ISD::COMI
|| Opc
== X86ISD::UCOMI
)
5293 if (Op
.getResNo() == 1 &&
5294 (Opc
== X86ISD::ADD
||
5295 Opc
== X86ISD::SUB
||
5296 Opc
== X86ISD::SMUL
||
5297 Opc
== X86ISD::UMUL
||
5298 Opc
== X86ISD::INC
||
5299 Opc
== X86ISD::DEC
))
5305 SDValue
X86TargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) {
5306 bool addTest
= true;
5307 SDValue Cond
= Op
.getOperand(0);
5308 DebugLoc dl
= Op
.getDebugLoc();
5311 if (Cond
.getOpcode() == ISD::SETCC
)
5312 Cond
= LowerSETCC(Cond
, DAG
);
5314 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5315 // setting operand in place of the X86ISD::SETCC.
5316 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5317 CC
= Cond
.getOperand(0);
5319 SDValue Cmp
= Cond
.getOperand(1);
5320 unsigned Opc
= Cmp
.getOpcode();
5321 MVT VT
= Op
.getValueType();
5323 bool IllegalFPCMov
= false;
5324 if (VT
.isFloatingPoint() && !VT
.isVector() &&
5325 !isScalarFPTypeInSSEReg(VT
)) // FPStack?
5326 IllegalFPCMov
= !hasFPCMov(cast
<ConstantSDNode
>(CC
)->getSExtValue());
5328 if ((isX86LogicalCmp(Cmp
) && !IllegalFPCMov
) ||
5329 Opc
== X86ISD::BT
) { // FIXME
5336 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5337 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5340 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Flag
);
5341 SmallVector
<SDValue
, 4> Ops
;
5342 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5343 // condition is true.
5344 Ops
.push_back(Op
.getOperand(2));
5345 Ops
.push_back(Op
.getOperand(1));
5347 Ops
.push_back(Cond
);
5348 return DAG
.getNode(X86ISD::CMOV
, dl
, VTs
, &Ops
[0], Ops
.size());
5351 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5352 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5353 // from the AND / OR.
5354 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
5355 Opc
= Op
.getOpcode();
5356 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
5358 return (Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5359 Op
.getOperand(0).hasOneUse() &&
5360 Op
.getOperand(1).getOpcode() == X86ISD::SETCC
&&
5361 Op
.getOperand(1).hasOneUse());
5364 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5365 // 1 and that the SETCC node has a single use.
5366 static bool isXor1OfSetCC(SDValue Op
) {
5367 if (Op
.getOpcode() != ISD::XOR
)
5369 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5370 if (N1C
&& N1C
->getAPIntValue() == 1) {
5371 return Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5372 Op
.getOperand(0).hasOneUse();
5377 SDValue
X86TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) {
5378 bool addTest
= true;
5379 SDValue Chain
= Op
.getOperand(0);
5380 SDValue Cond
= Op
.getOperand(1);
5381 SDValue Dest
= Op
.getOperand(2);
5382 DebugLoc dl
= Op
.getDebugLoc();
5385 if (Cond
.getOpcode() == ISD::SETCC
)
5386 Cond
= LowerSETCC(Cond
, DAG
);
5388 // FIXME: LowerXALUO doesn't handle these!!
5389 else if (Cond
.getOpcode() == X86ISD::ADD
||
5390 Cond
.getOpcode() == X86ISD::SUB
||
5391 Cond
.getOpcode() == X86ISD::SMUL
||
5392 Cond
.getOpcode() == X86ISD::UMUL
)
5393 Cond
= LowerXALUO(Cond
, DAG
);
5396 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5397 // setting operand in place of the X86ISD::SETCC.
5398 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5399 CC
= Cond
.getOperand(0);
5401 SDValue Cmp
= Cond
.getOperand(1);
5402 unsigned Opc
= Cmp
.getOpcode();
5403 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5404 if (isX86LogicalCmp(Cmp
) || Opc
== X86ISD::BT
) {
5408 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
5412 // These can only come from an arithmetic instruction with overflow,
5413 // e.g. SADDO, UADDO.
5414 Cond
= Cond
.getNode()->getOperand(1);
5421 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
5422 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
5423 if (CondOpc
== ISD::OR
) {
5424 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5425 // two branches instead of an explicit OR instruction with a
5427 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5428 isX86LogicalCmp(Cmp
)) {
5429 CC
= Cond
.getOperand(0).getOperand(0);
5430 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5431 Chain
, Dest
, CC
, Cmp
);
5432 CC
= Cond
.getOperand(1).getOperand(0);
5436 } else { // ISD::AND
5437 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5438 // two branches instead of an explicit AND instruction with a
5439 // separate test. However, we only do this if this block doesn't
5440 // have a fall-through edge, because this requires an explicit
5441 // jmp when the condition is false.
5442 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5443 isX86LogicalCmp(Cmp
) &&
5444 Op
.getNode()->hasOneUse()) {
5445 X86::CondCode CCode
=
5446 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5447 CCode
= X86::GetOppositeBranchCondition(CCode
);
5448 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5449 SDValue User
= SDValue(*Op
.getNode()->use_begin(), 0);
5450 // Look for an unconditional branch following this conditional branch.
5451 // We need this because we need to reverse the successors in order
5452 // to implement FCMP_OEQ.
5453 if (User
.getOpcode() == ISD::BR
) {
5454 SDValue FalseBB
= User
.getOperand(1);
5456 DAG
.UpdateNodeOperands(User
, User
.getOperand(0), Dest
);
5457 assert(NewBR
== User
);
5460 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5461 Chain
, Dest
, CC
, Cmp
);
5462 X86::CondCode CCode
=
5463 (X86::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
5464 CCode
= X86::GetOppositeBranchCondition(CCode
);
5465 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5471 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
5472 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5473 // It should be transformed during dag combiner except when the condition
5474 // is set by a arithmetics with overflow node.
5475 X86::CondCode CCode
=
5476 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5477 CCode
= X86::GetOppositeBranchCondition(CCode
);
5478 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5479 Cond
= Cond
.getOperand(0).getOperand(1);
5485 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5486 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5488 return DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5489 Chain
, Dest
, CC
, Cond
);
5493 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5494 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5495 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5496 // that the guard pages used by the OS virtual memory manager are allocated in
5497 // correct sequence.
5499 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
5500 SelectionDAG
&DAG
) {
5501 assert(Subtarget
->isTargetCygMing() &&
5502 "This should be used only on Cygwin/Mingw targets");
5503 DebugLoc dl
= Op
.getDebugLoc();
5506 SDValue Chain
= Op
.getOperand(0);
5507 SDValue Size
= Op
.getOperand(1);
5508 // FIXME: Ensure alignment here
5512 MVT IntPtr
= getPointerTy();
5513 MVT SPTy
= Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
;
5515 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
5517 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EAX
, Size
, Flag
);
5518 Flag
= Chain
.getValue(1);
5520 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5521 SDValue Ops
[] = { Chain
,
5522 DAG
.getTargetExternalSymbol("_alloca", IntPtr
),
5523 DAG
.getRegister(X86::EAX
, IntPtr
),
5524 DAG
.getRegister(X86StackPtr
, SPTy
),
5526 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, Ops
, 5);
5527 Flag
= Chain
.getValue(1);
5529 Chain
= DAG
.getCALLSEQ_END(Chain
,
5530 DAG
.getIntPtrConstant(0, true),
5531 DAG
.getIntPtrConstant(0, true),
5534 Chain
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, SPTy
).getValue(1);
5536 SDValue Ops1
[2] = { Chain
.getValue(0), Chain
};
5537 return DAG
.getMergeValues(Ops1
, 2, dl
);
5541 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
5543 SDValue Dst
, SDValue Src
,
5544 SDValue Size
, unsigned Align
,
5546 uint64_t DstSVOff
) {
5547 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5549 // If not DWORD aligned or size is more than the threshold, call the library.
5550 // The libc version is likely to be faster for these cases. It can use the
5551 // address value and run time information about the CPU.
5552 if ((Align
& 3) != 0 ||
5554 ConstantSize
->getZExtValue() >
5555 getSubtarget()->getMaxInlineSizeThreshold()) {
5556 SDValue
InFlag(0, 0);
5558 // Check to see if there is a specialized entry-point for memory zeroing.
5559 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Src
);
5561 if (const char *bzeroEntry
= V
&&
5562 V
->isNullValue() ? Subtarget
->getBZeroEntry() : 0) {
5563 MVT IntPtr
= getPointerTy();
5564 const Type
*IntPtrTy
= TD
->getIntPtrType();
5565 TargetLowering::ArgListTy Args
;
5566 TargetLowering::ArgListEntry Entry
;
5568 Entry
.Ty
= IntPtrTy
;
5569 Args
.push_back(Entry
);
5571 Args
.push_back(Entry
);
5572 std::pair
<SDValue
,SDValue
> CallResult
=
5573 LowerCallTo(Chain
, Type::VoidTy
, false, false, false, false,
5574 CallingConv::C
, false,
5575 DAG
.getExternalSymbol(bzeroEntry
, IntPtr
), Args
, DAG
, dl
);
5576 return CallResult
.second
;
5579 // Otherwise have the target-independent code call memset.
5583 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5584 SDValue
InFlag(0, 0);
5587 ConstantSDNode
*ValC
= dyn_cast
<ConstantSDNode
>(Src
);
5588 unsigned BytesLeft
= 0;
5589 bool TwoRepStos
= false;
5592 uint64_t Val
= ValC
->getZExtValue() & 255;
5594 // If the value is a constant, then we can potentially use larger sets.
5595 switch (Align
& 3) {
5596 case 2: // WORD aligned
5599 Val
= (Val
<< 8) | Val
;
5601 case 0: // DWORD aligned
5604 Val
= (Val
<< 8) | Val
;
5605 Val
= (Val
<< 16) | Val
;
5606 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) { // QWORD aligned
5609 Val
= (Val
<< 32) | Val
;
5612 default: // Byte aligned
5615 Count
= DAG
.getIntPtrConstant(SizeVal
);
5619 if (AVT
.bitsGT(MVT::i8
)) {
5620 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5621 Count
= DAG
.getIntPtrConstant(SizeVal
/ UBytes
);
5622 BytesLeft
= SizeVal
% UBytes
;
5625 Chain
= DAG
.getCopyToReg(Chain
, dl
, ValReg
, DAG
.getConstant(Val
, AVT
),
5627 InFlag
= Chain
.getValue(1);
5630 Count
= DAG
.getIntPtrConstant(SizeVal
);
5631 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
, Src
, InFlag
);
5632 InFlag
= Chain
.getValue(1);
5635 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5638 InFlag
= Chain
.getValue(1);
5639 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5642 InFlag
= Chain
.getValue(1);
5644 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5645 SmallVector
<SDValue
, 8> Ops
;
5646 Ops
.push_back(Chain
);
5647 Ops
.push_back(DAG
.getValueType(AVT
));
5648 Ops
.push_back(InFlag
);
5649 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5652 InFlag
= Chain
.getValue(1);
5654 MVT CVT
= Count
.getValueType();
5655 SDValue Left
= DAG
.getNode(ISD::AND
, dl
, CVT
, Count
,
5656 DAG
.getConstant((AVT
== MVT::i64
) ? 7 : 3, CVT
));
5657 Chain
= DAG
.getCopyToReg(Chain
, dl
, (CVT
== MVT::i64
) ? X86::RCX
:
5660 InFlag
= Chain
.getValue(1);
5661 Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5663 Ops
.push_back(Chain
);
5664 Ops
.push_back(DAG
.getValueType(MVT::i8
));
5665 Ops
.push_back(InFlag
);
5666 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5667 } else if (BytesLeft
) {
5668 // Handle the last 1 - 7 bytes.
5669 unsigned Offset
= SizeVal
- BytesLeft
;
5670 MVT AddrVT
= Dst
.getValueType();
5671 MVT SizeVT
= Size
.getValueType();
5673 Chain
= DAG
.getMemset(Chain
, dl
,
5674 DAG
.getNode(ISD::ADD
, dl
, AddrVT
, Dst
,
5675 DAG
.getConstant(Offset
, AddrVT
)),
5677 DAG
.getConstant(BytesLeft
, SizeVT
),
5678 Align
, DstSV
, DstSVOff
+ Offset
);
5681 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5686 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
5687 SDValue Chain
, SDValue Dst
, SDValue Src
,
5688 SDValue Size
, unsigned Align
,
5690 const Value
*DstSV
, uint64_t DstSVOff
,
5691 const Value
*SrcSV
, uint64_t SrcSVOff
) {
5692 // This requires the copy size to be a constant, preferrably
5693 // within a subtarget-specific limit.
5694 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5697 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5698 if (!AlwaysInline
&& SizeVal
> getSubtarget()->getMaxInlineSizeThreshold())
5701 /// If not DWORD aligned, call the library.
5702 if ((Align
& 3) != 0)
5707 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) // QWORD aligned
5710 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5711 unsigned CountVal
= SizeVal
/ UBytes
;
5712 SDValue Count
= DAG
.getIntPtrConstant(CountVal
);
5713 unsigned BytesLeft
= SizeVal
% UBytes
;
5715 SDValue
InFlag(0, 0);
5716 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5719 InFlag
= Chain
.getValue(1);
5720 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5723 InFlag
= Chain
.getValue(1);
5724 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RSI
:
5727 InFlag
= Chain
.getValue(1);
5729 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5730 SmallVector
<SDValue
, 8> Ops
;
5731 Ops
.push_back(Chain
);
5732 Ops
.push_back(DAG
.getValueType(AVT
));
5733 Ops
.push_back(InFlag
);
5734 SDValue RepMovs
= DAG
.getNode(X86ISD::REP_MOVS
, dl
, Tys
, &Ops
[0], Ops
.size());
5736 SmallVector
<SDValue
, 4> Results
;
5737 Results
.push_back(RepMovs
);
5739 // Handle the last 1 - 7 bytes.
5740 unsigned Offset
= SizeVal
- BytesLeft
;
5741 MVT DstVT
= Dst
.getValueType();
5742 MVT SrcVT
= Src
.getValueType();
5743 MVT SizeVT
= Size
.getValueType();
5744 Results
.push_back(DAG
.getMemcpy(Chain
, dl
,
5745 DAG
.getNode(ISD::ADD
, dl
, DstVT
, Dst
,
5746 DAG
.getConstant(Offset
, DstVT
)),
5747 DAG
.getNode(ISD::ADD
, dl
, SrcVT
, Src
,
5748 DAG
.getConstant(Offset
, SrcVT
)),
5749 DAG
.getConstant(BytesLeft
, SizeVT
),
5750 Align
, AlwaysInline
,
5751 DstSV
, DstSVOff
+ Offset
,
5752 SrcSV
, SrcSVOff
+ Offset
));
5755 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5756 &Results
[0], Results
.size());
5759 SDValue
X86TargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
5760 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5761 DebugLoc dl
= Op
.getDebugLoc();
5763 if (!Subtarget
->is64Bit()) {
5764 // vastart just stores the address of the VarArgsFrameIndex slot into the
5765 // memory location argument.
5766 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
5767 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1), SV
, 0);
5771 // gp_offset (0 - 6 * 8)
5772 // fp_offset (48 - 48 + 8 * 16)
5773 // overflow_arg_area (point to parameters coming in memory).
5775 SmallVector
<SDValue
, 8> MemOps
;
5776 SDValue FIN
= Op
.getOperand(1);
5778 SDValue Store
= DAG
.getStore(Op
.getOperand(0), dl
,
5779 DAG
.getConstant(VarArgsGPOffset
, MVT::i32
),
5781 MemOps
.push_back(Store
);
5784 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5785 FIN
, DAG
.getIntPtrConstant(4));
5786 Store
= DAG
.getStore(Op
.getOperand(0), dl
,
5787 DAG
.getConstant(VarArgsFPOffset
, MVT::i32
),
5789 MemOps
.push_back(Store
);
5791 // Store ptr to overflow_arg_area
5792 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5793 FIN
, DAG
.getIntPtrConstant(4));
5794 SDValue OVFIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
5795 Store
= DAG
.getStore(Op
.getOperand(0), dl
, OVFIN
, FIN
, SV
, 0);
5796 MemOps
.push_back(Store
);
5798 // Store ptr to reg_save_area.
5799 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5800 FIN
, DAG
.getIntPtrConstant(8));
5801 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
5802 Store
= DAG
.getStore(Op
.getOperand(0), dl
, RSFIN
, FIN
, SV
, 0);
5803 MemOps
.push_back(Store
);
5804 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5805 &MemOps
[0], MemOps
.size());
5808 SDValue
X86TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) {
5809 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5810 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_arg!");
5811 SDValue Chain
= Op
.getOperand(0);
5812 SDValue SrcPtr
= Op
.getOperand(1);
5813 SDValue SrcSV
= Op
.getOperand(2);
5815 assert(0 && "VAArgInst is not yet implemented for x86-64!");
5820 SDValue
X86TargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) {
5821 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5822 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_copy!");
5823 SDValue Chain
= Op
.getOperand(0);
5824 SDValue DstPtr
= Op
.getOperand(1);
5825 SDValue SrcPtr
= Op
.getOperand(2);
5826 const Value
*DstSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
5827 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
5828 DebugLoc dl
= Op
.getDebugLoc();
5830 return DAG
.getMemcpy(Chain
, dl
, DstPtr
, SrcPtr
,
5831 DAG
.getIntPtrConstant(24), 8, false,
5832 DstSV
, 0, SrcSV
, 0);
5836 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) {
5837 DebugLoc dl
= Op
.getDebugLoc();
5838 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5840 default: return SDValue(); // Don't custom lower most intrinsics.
5841 // Comparison intrinsics.
5842 case Intrinsic::x86_sse_comieq_ss
:
5843 case Intrinsic::x86_sse_comilt_ss
:
5844 case Intrinsic::x86_sse_comile_ss
:
5845 case Intrinsic::x86_sse_comigt_ss
:
5846 case Intrinsic::x86_sse_comige_ss
:
5847 case Intrinsic::x86_sse_comineq_ss
:
5848 case Intrinsic::x86_sse_ucomieq_ss
:
5849 case Intrinsic::x86_sse_ucomilt_ss
:
5850 case Intrinsic::x86_sse_ucomile_ss
:
5851 case Intrinsic::x86_sse_ucomigt_ss
:
5852 case Intrinsic::x86_sse_ucomige_ss
:
5853 case Intrinsic::x86_sse_ucomineq_ss
:
5854 case Intrinsic::x86_sse2_comieq_sd
:
5855 case Intrinsic::x86_sse2_comilt_sd
:
5856 case Intrinsic::x86_sse2_comile_sd
:
5857 case Intrinsic::x86_sse2_comigt_sd
:
5858 case Intrinsic::x86_sse2_comige_sd
:
5859 case Intrinsic::x86_sse2_comineq_sd
:
5860 case Intrinsic::x86_sse2_ucomieq_sd
:
5861 case Intrinsic::x86_sse2_ucomilt_sd
:
5862 case Intrinsic::x86_sse2_ucomile_sd
:
5863 case Intrinsic::x86_sse2_ucomigt_sd
:
5864 case Intrinsic::x86_sse2_ucomige_sd
:
5865 case Intrinsic::x86_sse2_ucomineq_sd
: {
5867 ISD::CondCode CC
= ISD::SETCC_INVALID
;
5870 case Intrinsic::x86_sse_comieq_ss
:
5871 case Intrinsic::x86_sse2_comieq_sd
:
5875 case Intrinsic::x86_sse_comilt_ss
:
5876 case Intrinsic::x86_sse2_comilt_sd
:
5880 case Intrinsic::x86_sse_comile_ss
:
5881 case Intrinsic::x86_sse2_comile_sd
:
5885 case Intrinsic::x86_sse_comigt_ss
:
5886 case Intrinsic::x86_sse2_comigt_sd
:
5890 case Intrinsic::x86_sse_comige_ss
:
5891 case Intrinsic::x86_sse2_comige_sd
:
5895 case Intrinsic::x86_sse_comineq_ss
:
5896 case Intrinsic::x86_sse2_comineq_sd
:
5900 case Intrinsic::x86_sse_ucomieq_ss
:
5901 case Intrinsic::x86_sse2_ucomieq_sd
:
5902 Opc
= X86ISD::UCOMI
;
5905 case Intrinsic::x86_sse_ucomilt_ss
:
5906 case Intrinsic::x86_sse2_ucomilt_sd
:
5907 Opc
= X86ISD::UCOMI
;
5910 case Intrinsic::x86_sse_ucomile_ss
:
5911 case Intrinsic::x86_sse2_ucomile_sd
:
5912 Opc
= X86ISD::UCOMI
;
5915 case Intrinsic::x86_sse_ucomigt_ss
:
5916 case Intrinsic::x86_sse2_ucomigt_sd
:
5917 Opc
= X86ISD::UCOMI
;
5920 case Intrinsic::x86_sse_ucomige_ss
:
5921 case Intrinsic::x86_sse2_ucomige_sd
:
5922 Opc
= X86ISD::UCOMI
;
5925 case Intrinsic::x86_sse_ucomineq_ss
:
5926 case Intrinsic::x86_sse2_ucomineq_sd
:
5927 Opc
= X86ISD::UCOMI
;
5932 SDValue LHS
= Op
.getOperand(1);
5933 SDValue RHS
= Op
.getOperand(2);
5934 unsigned X86CC
= TranslateX86CC(CC
, true, LHS
, RHS
, DAG
);
5935 SDValue Cond
= DAG
.getNode(Opc
, dl
, MVT::i32
, LHS
, RHS
);
5936 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5937 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5938 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
5941 // Fix vector shift instructions where the last operand is a non-immediate
5943 case Intrinsic::x86_sse2_pslli_w
:
5944 case Intrinsic::x86_sse2_pslli_d
:
5945 case Intrinsic::x86_sse2_pslli_q
:
5946 case Intrinsic::x86_sse2_psrli_w
:
5947 case Intrinsic::x86_sse2_psrli_d
:
5948 case Intrinsic::x86_sse2_psrli_q
:
5949 case Intrinsic::x86_sse2_psrai_w
:
5950 case Intrinsic::x86_sse2_psrai_d
:
5951 case Intrinsic::x86_mmx_pslli_w
:
5952 case Intrinsic::x86_mmx_pslli_d
:
5953 case Intrinsic::x86_mmx_pslli_q
:
5954 case Intrinsic::x86_mmx_psrli_w
:
5955 case Intrinsic::x86_mmx_psrli_d
:
5956 case Intrinsic::x86_mmx_psrli_q
:
5957 case Intrinsic::x86_mmx_psrai_w
:
5958 case Intrinsic::x86_mmx_psrai_d
: {
5959 SDValue ShAmt
= Op
.getOperand(2);
5960 if (isa
<ConstantSDNode
>(ShAmt
))
5963 unsigned NewIntNo
= 0;
5964 MVT ShAmtVT
= MVT::v4i32
;
5966 case Intrinsic::x86_sse2_pslli_w
:
5967 NewIntNo
= Intrinsic::x86_sse2_psll_w
;
5969 case Intrinsic::x86_sse2_pslli_d
:
5970 NewIntNo
= Intrinsic::x86_sse2_psll_d
;
5972 case Intrinsic::x86_sse2_pslli_q
:
5973 NewIntNo
= Intrinsic::x86_sse2_psll_q
;
5975 case Intrinsic::x86_sse2_psrli_w
:
5976 NewIntNo
= Intrinsic::x86_sse2_psrl_w
;
5978 case Intrinsic::x86_sse2_psrli_d
:
5979 NewIntNo
= Intrinsic::x86_sse2_psrl_d
;
5981 case Intrinsic::x86_sse2_psrli_q
:
5982 NewIntNo
= Intrinsic::x86_sse2_psrl_q
;
5984 case Intrinsic::x86_sse2_psrai_w
:
5985 NewIntNo
= Intrinsic::x86_sse2_psra_w
;
5987 case Intrinsic::x86_sse2_psrai_d
:
5988 NewIntNo
= Intrinsic::x86_sse2_psra_d
;
5991 ShAmtVT
= MVT::v2i32
;
5993 case Intrinsic::x86_mmx_pslli_w
:
5994 NewIntNo
= Intrinsic::x86_mmx_psll_w
;
5996 case Intrinsic::x86_mmx_pslli_d
:
5997 NewIntNo
= Intrinsic::x86_mmx_psll_d
;
5999 case Intrinsic::x86_mmx_pslli_q
:
6000 NewIntNo
= Intrinsic::x86_mmx_psll_q
;
6002 case Intrinsic::x86_mmx_psrli_w
:
6003 NewIntNo
= Intrinsic::x86_mmx_psrl_w
;
6005 case Intrinsic::x86_mmx_psrli_d
:
6006 NewIntNo
= Intrinsic::x86_mmx_psrl_d
;
6008 case Intrinsic::x86_mmx_psrli_q
:
6009 NewIntNo
= Intrinsic::x86_mmx_psrl_q
;
6011 case Intrinsic::x86_mmx_psrai_w
:
6012 NewIntNo
= Intrinsic::x86_mmx_psra_w
;
6014 case Intrinsic::x86_mmx_psrai_d
:
6015 NewIntNo
= Intrinsic::x86_mmx_psra_d
;
6017 default: abort(); // Can't reach here.
6022 MVT VT
= Op
.getValueType();
6023 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
6024 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, ShAmtVT
, ShAmt
));
6025 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6026 DAG
.getConstant(NewIntNo
, MVT::i32
),
6027 Op
.getOperand(1), ShAmt
);
6032 SDValue
X86TargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) {
6033 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6034 DebugLoc dl
= Op
.getDebugLoc();
6037 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
6039 DAG
.getConstant(TD
->getPointerSize(),
6040 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
6041 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6042 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6047 // Just load the return address.
6048 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
6049 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6050 RetAddrFI
, NULL
, 0);
6053 SDValue
X86TargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) {
6054 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6055 MFI
->setFrameAddressIsTaken(true);
6056 MVT VT
= Op
.getValueType();
6057 DebugLoc dl
= Op
.getDebugLoc(); // FIXME probably not meaningful
6058 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6059 unsigned FrameReg
= Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
;
6060 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
6062 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
, NULL
, 0);
6066 SDValue
X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op
,
6067 SelectionDAG
&DAG
) {
6068 return DAG
.getIntPtrConstant(2*TD
->getPointerSize());
6071 SDValue
X86TargetLowering::LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
6073 MachineFunction
&MF
= DAG
.getMachineFunction();
6074 SDValue Chain
= Op
.getOperand(0);
6075 SDValue Offset
= Op
.getOperand(1);
6076 SDValue Handler
= Op
.getOperand(2);
6077 DebugLoc dl
= Op
.getDebugLoc();
6079 SDValue Frame
= DAG
.getRegister(Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
,
6081 unsigned StoreAddrReg
= (Subtarget
->is64Bit() ? X86::RCX
: X86::ECX
);
6083 SDValue StoreAddr
= DAG
.getNode(ISD::SUB
, dl
, getPointerTy(), Frame
,
6084 DAG
.getIntPtrConstant(-TD
->getPointerSize()));
6085 StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StoreAddr
, Offset
);
6086 Chain
= DAG
.getStore(Chain
, dl
, Handler
, StoreAddr
, NULL
, 0);
6087 Chain
= DAG
.getCopyToReg(Chain
, dl
, StoreAddrReg
, StoreAddr
);
6088 MF
.getRegInfo().addLiveOut(StoreAddrReg
);
6090 return DAG
.getNode(X86ISD::EH_RETURN
, dl
,
6092 Chain
, DAG
.getRegister(StoreAddrReg
, getPointerTy()));
6095 SDValue
X86TargetLowering::LowerTRAMPOLINE(SDValue Op
,
6096 SelectionDAG
&DAG
) {
6097 SDValue Root
= Op
.getOperand(0);
6098 SDValue Trmp
= Op
.getOperand(1); // trampoline
6099 SDValue FPtr
= Op
.getOperand(2); // nested function
6100 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
6101 DebugLoc dl
= Op
.getDebugLoc();
6103 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6105 const X86InstrInfo
*TII
=
6106 ((X86TargetMachine
&)getTargetMachine()).getInstrInfo();
6108 if (Subtarget
->is64Bit()) {
6109 SDValue OutChains
[6];
6111 // Large code-model.
6113 const unsigned char JMP64r
= TII
->getBaseOpcodeFor(X86::JMP64r
);
6114 const unsigned char MOV64ri
= TII
->getBaseOpcodeFor(X86::MOV64ri
);
6116 const unsigned char N86R10
= RegInfo
->getX86RegNum(X86::R10
);
6117 const unsigned char N86R11
= RegInfo
->getX86RegNum(X86::R11
);
6119 const unsigned char REX_WB
= 0x40 | 0x08 | 0x01; // REX prefix
6121 // Load the pointer to the nested function into R11.
6122 unsigned OpCode
= ((MOV64ri
| N86R11
) << 8) | REX_WB
; // movabsq r11
6123 SDValue Addr
= Trmp
;
6124 OutChains
[0] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6127 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6128 DAG
.getConstant(2, MVT::i64
));
6129 OutChains
[1] = DAG
.getStore(Root
, dl
, FPtr
, Addr
, TrmpAddr
, 2, false, 2);
6131 // Load the 'nest' parameter value into R10.
6132 // R10 is specified in X86CallingConv.td
6133 OpCode
= ((MOV64ri
| N86R10
) << 8) | REX_WB
; // movabsq r10
6134 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6135 DAG
.getConstant(10, MVT::i64
));
6136 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6137 Addr
, TrmpAddr
, 10);
6139 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6140 DAG
.getConstant(12, MVT::i64
));
6141 OutChains
[3] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 12, false, 2);
6143 // Jump to the nested function.
6144 OpCode
= (JMP64r
<< 8) | REX_WB
; // jmpq *...
6145 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6146 DAG
.getConstant(20, MVT::i64
));
6147 OutChains
[4] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6148 Addr
, TrmpAddr
, 20);
6150 unsigned char ModRM
= N86R11
| (4 << 3) | (3 << 6); // ...r11
6151 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6152 DAG
.getConstant(22, MVT::i64
));
6153 OutChains
[5] = DAG
.getStore(Root
, dl
, DAG
.getConstant(ModRM
, MVT::i8
), Addr
,
6157 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 6) };
6158 return DAG
.getMergeValues(Ops
, 2, dl
);
6160 const Function
*Func
=
6161 cast
<Function
>(cast
<SrcValueSDNode
>(Op
.getOperand(5))->getValue());
6162 unsigned CC
= Func
->getCallingConv();
6167 assert(0 && "Unsupported calling convention");
6168 case CallingConv::C
:
6169 case CallingConv::X86_StdCall
: {
6170 // Pass 'nest' parameter in ECX.
6171 // Must be kept in sync with X86CallingConv.td
6174 // Check that ECX wasn't needed by an 'inreg' parameter.
6175 const FunctionType
*FTy
= Func
->getFunctionType();
6176 const AttrListPtr
&Attrs
= Func
->getAttributes();
6178 if (!Attrs
.isEmpty() && !Func
->isVarArg()) {
6179 unsigned InRegCount
= 0;
6182 for (FunctionType::param_iterator I
= FTy
->param_begin(),
6183 E
= FTy
->param_end(); I
!= E
; ++I
, ++Idx
)
6184 if (Attrs
.paramHasAttr(Idx
, Attribute::InReg
))
6185 // FIXME: should only count parameters that are lowered to integers.
6186 InRegCount
+= (TD
->getTypeSizeInBits(*I
) + 31) / 32;
6188 if (InRegCount
> 2) {
6189 cerr
<< "Nest register in use - reduce number of inreg parameters!\n";
6195 case CallingConv::X86_FastCall
:
6196 case CallingConv::Fast
:
6197 // Pass 'nest' parameter in EAX.
6198 // Must be kept in sync with X86CallingConv.td
6203 SDValue OutChains
[4];
6206 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6207 DAG
.getConstant(10, MVT::i32
));
6208 Disp
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, FPtr
, Addr
);
6210 const unsigned char MOV32ri
= TII
->getBaseOpcodeFor(X86::MOV32ri
);
6211 const unsigned char N86Reg
= RegInfo
->getX86RegNum(NestReg
);
6212 OutChains
[0] = DAG
.getStore(Root
, dl
,
6213 DAG
.getConstant(MOV32ri
|N86Reg
, MVT::i8
),
6216 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6217 DAG
.getConstant(1, MVT::i32
));
6218 OutChains
[1] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 1, false, 1);
6220 const unsigned char JMP
= TII
->getBaseOpcodeFor(X86::JMP
);
6221 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6222 DAG
.getConstant(5, MVT::i32
));
6223 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(JMP
, MVT::i8
), Addr
,
6224 TrmpAddr
, 5, false, 1);
6226 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6227 DAG
.getConstant(6, MVT::i32
));
6228 OutChains
[3] = DAG
.getStore(Root
, dl
, Disp
, Addr
, TrmpAddr
, 6, false, 1);
6231 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 4) };
6232 return DAG
.getMergeValues(Ops
, 2, dl
);
6236 SDValue
X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) {
6238 The rounding mode is in bits 11:10 of FPSR, and has the following
6245 FLT_ROUNDS, on the other hand, expects the following:
6252 To perform the conversion, we do:
6253 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6256 MachineFunction
&MF
= DAG
.getMachineFunction();
6257 const TargetMachine
&TM
= MF
.getTarget();
6258 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
6259 unsigned StackAlignment
= TFI
.getStackAlignment();
6260 MVT VT
= Op
.getValueType();
6261 DebugLoc dl
= Op
.getDebugLoc();
6263 // Save FP Control Word to stack slot
6264 int SSFI
= MF
.getFrameInfo()->CreateStackObject(2, StackAlignment
);
6265 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6267 SDValue Chain
= DAG
.getNode(X86ISD::FNSTCW16m
, dl
, MVT::Other
,
6268 DAG
.getEntryNode(), StackSlot
);
6270 // Load FP Control Word from stack slot
6271 SDValue CWD
= DAG
.getLoad(MVT::i16
, dl
, Chain
, StackSlot
, NULL
, 0);
6273 // Transform as necessary
6275 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6276 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6277 CWD
, DAG
.getConstant(0x800, MVT::i16
)),
6278 DAG
.getConstant(11, MVT::i8
));
6280 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6281 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6282 CWD
, DAG
.getConstant(0x400, MVT::i16
)),
6283 DAG
.getConstant(9, MVT::i8
));
6286 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6287 DAG
.getNode(ISD::ADD
, dl
, MVT::i16
,
6288 DAG
.getNode(ISD::OR
, dl
, MVT::i16
, CWD1
, CWD2
),
6289 DAG
.getConstant(1, MVT::i16
)),
6290 DAG
.getConstant(3, MVT::i16
));
6293 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
6294 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
6297 SDValue
X86TargetLowering::LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) {
6298 MVT VT
= Op
.getValueType();
6300 unsigned NumBits
= VT
.getSizeInBits();
6301 DebugLoc dl
= Op
.getDebugLoc();
6303 Op
= Op
.getOperand(0);
6304 if (VT
== MVT::i8
) {
6305 // Zero extend to i32 since there is not an i8 bsr.
6307 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6310 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6311 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6312 Op
= DAG
.getNode(X86ISD::BSR
, dl
, VTs
, Op
);
6314 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6315 SmallVector
<SDValue
, 4> Ops
;
6317 Ops
.push_back(DAG
.getConstant(NumBits
+NumBits
-1, OpVT
));
6318 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6319 Ops
.push_back(Op
.getValue(1));
6320 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6322 // Finally xor with NumBits-1.
6323 Op
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Op
, DAG
.getConstant(NumBits
-1, OpVT
));
6326 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6330 SDValue
X86TargetLowering::LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) {
6331 MVT VT
= Op
.getValueType();
6333 unsigned NumBits
= VT
.getSizeInBits();
6334 DebugLoc dl
= Op
.getDebugLoc();
6336 Op
= Op
.getOperand(0);
6337 if (VT
== MVT::i8
) {
6339 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6342 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6343 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6344 Op
= DAG
.getNode(X86ISD::BSF
, dl
, VTs
, Op
);
6346 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6347 SmallVector
<SDValue
, 4> Ops
;
6349 Ops
.push_back(DAG
.getConstant(NumBits
, OpVT
));
6350 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6351 Ops
.push_back(Op
.getValue(1));
6352 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6355 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6359 SDValue
X86TargetLowering::LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) {
6360 MVT VT
= Op
.getValueType();
6361 assert(VT
== MVT::v2i64
&& "Only know how to lower V2I64 multiply");
6362 DebugLoc dl
= Op
.getDebugLoc();
6364 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6365 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6366 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6367 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6368 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6370 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6371 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6372 // return AloBlo + AloBhi + AhiBlo;
6374 SDValue A
= Op
.getOperand(0);
6375 SDValue B
= Op
.getOperand(1);
6377 SDValue Ahi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6378 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6379 A
, DAG
.getConstant(32, MVT::i32
));
6380 SDValue Bhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6381 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6382 B
, DAG
.getConstant(32, MVT::i32
));
6383 SDValue AloBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6384 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6386 SDValue AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6387 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6389 SDValue AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6390 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6392 AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6393 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6394 AloBhi
, DAG
.getConstant(32, MVT::i32
));
6395 AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6396 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6397 AhiBlo
, DAG
.getConstant(32, MVT::i32
));
6398 SDValue Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, AloBlo
, AloBhi
);
6399 Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, Res
, AhiBlo
);
6404 SDValue
X86TargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
6405 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6406 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6407 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6408 // has only one use.
6409 SDNode
*N
= Op
.getNode();
6410 SDValue LHS
= N
->getOperand(0);
6411 SDValue RHS
= N
->getOperand(1);
6412 unsigned BaseOp
= 0;
6414 DebugLoc dl
= Op
.getDebugLoc();
6416 switch (Op
.getOpcode()) {
6417 default: assert(0 && "Unknown ovf instruction!");
6419 // A subtract of one will be selected as a INC. Note that INC doesn't
6420 // set CF, so we can't do this for UADDO.
6421 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6422 if (C
->getAPIntValue() == 1) {
6423 BaseOp
= X86ISD::INC
;
6427 BaseOp
= X86ISD::ADD
;
6431 BaseOp
= X86ISD::ADD
;
6435 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6436 // set CF, so we can't do this for USUBO.
6437 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6438 if (C
->getAPIntValue() == 1) {
6439 BaseOp
= X86ISD::DEC
;
6443 BaseOp
= X86ISD::SUB
;
6447 BaseOp
= X86ISD::SUB
;
6451 BaseOp
= X86ISD::SMUL
;
6455 BaseOp
= X86ISD::UMUL
;
6460 // Also sets EFLAGS.
6461 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i32
);
6462 SDValue Sum
= DAG
.getNode(BaseOp
, dl
, VTs
, LHS
, RHS
);
6465 DAG
.getNode(X86ISD::SETCC
, dl
, N
->getValueType(1),
6466 DAG
.getConstant(Cond
, MVT::i32
), SDValue(Sum
.getNode(), 1));
6468 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), SetCC
);
6472 SDValue
X86TargetLowering::LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) {
6473 MVT T
= Op
.getValueType();
6474 DebugLoc dl
= Op
.getDebugLoc();
6477 switch(T
.getSimpleVT()) {
6479 assert(false && "Invalid value type!");
6480 case MVT::i8
: Reg
= X86::AL
; size
= 1; break;
6481 case MVT::i16
: Reg
= X86::AX
; size
= 2; break;
6482 case MVT::i32
: Reg
= X86::EAX
; size
= 4; break;
6484 assert(Subtarget
->is64Bit() && "Node not type legal!");
6485 Reg
= X86::RAX
; size
= 8;
6488 SDValue cpIn
= DAG
.getCopyToReg(Op
.getOperand(0), dl
, Reg
,
6489 Op
.getOperand(2), SDValue());
6490 SDValue Ops
[] = { cpIn
.getValue(0),
6493 DAG
.getTargetConstant(size
, MVT::i8
),
6495 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6496 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG_DAG
, dl
, Tys
, Ops
, 5);
6498 DAG
.getCopyFromReg(Result
.getValue(0), dl
, Reg
, T
, Result
.getValue(1));
6502 SDValue
X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op
,
6503 SelectionDAG
&DAG
) {
6504 assert(Subtarget
->is64Bit() && "Result not type legalized?");
6505 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6506 SDValue TheChain
= Op
.getOperand(0);
6507 DebugLoc dl
= Op
.getDebugLoc();
6508 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6509 SDValue rax
= DAG
.getCopyFromReg(rd
, dl
, X86::RAX
, MVT::i64
, rd
.getValue(1));
6510 SDValue rdx
= DAG
.getCopyFromReg(rax
.getValue(1), dl
, X86::RDX
, MVT::i64
,
6512 SDValue Tmp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, rdx
,
6513 DAG
.getConstant(32, MVT::i8
));
6515 DAG
.getNode(ISD::OR
, dl
, MVT::i64
, rax
, Tmp
),
6518 return DAG
.getMergeValues(Ops
, 2, dl
);
6521 SDValue
X86TargetLowering::LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) {
6522 SDNode
*Node
= Op
.getNode();
6523 DebugLoc dl
= Node
->getDebugLoc();
6524 MVT T
= Node
->getValueType(0);
6525 SDValue negOp
= DAG
.getNode(ISD::SUB
, dl
, T
,
6526 DAG
.getConstant(0, T
), Node
->getOperand(2));
6527 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
,
6528 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
6529 Node
->getOperand(0),
6530 Node
->getOperand(1), negOp
,
6531 cast
<AtomicSDNode
>(Node
)->getSrcValue(),
6532 cast
<AtomicSDNode
>(Node
)->getAlignment());
6535 /// LowerOperation - Provide custom lowering hooks for some operations.
6537 SDValue
X86TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
6538 switch (Op
.getOpcode()) {
6539 default: assert(0 && "Should not custom lower this!");
6540 case ISD::ATOMIC_CMP_SWAP
: return LowerCMP_SWAP(Op
,DAG
);
6541 case ISD::ATOMIC_LOAD_SUB
: return LowerLOAD_SUB(Op
,DAG
);
6542 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
6543 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
6544 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
6545 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
6546 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
6547 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
6548 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
6549 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
6550 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
6551 case ISD::SHL_PARTS
:
6552 case ISD::SRA_PARTS
:
6553 case ISD::SRL_PARTS
: return LowerShift(Op
, DAG
);
6554 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
6555 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
6556 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
6557 case ISD::FABS
: return LowerFABS(Op
, DAG
);
6558 case ISD::FNEG
: return LowerFNEG(Op
, DAG
);
6559 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
6560 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
6561 case ISD::VSETCC
: return LowerVSETCC(Op
, DAG
);
6562 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
6563 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
6564 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
6565 case ISD::CALL
: return LowerCALL(Op
, DAG
);
6566 case ISD::RET
: return LowerRET(Op
, DAG
);
6567 case ISD::FORMAL_ARGUMENTS
: return LowerFORMAL_ARGUMENTS(Op
, DAG
);
6568 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
6569 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
6570 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
6571 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
6572 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
6573 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
6574 case ISD::FRAME_TO_ARGS_OFFSET
:
6575 return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
6576 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
6577 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
6578 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
6579 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
6580 case ISD::CTLZ
: return LowerCTLZ(Op
, DAG
);
6581 case ISD::CTTZ
: return LowerCTTZ(Op
, DAG
);
6582 case ISD::MUL
: return LowerMUL_V2I64(Op
, DAG
);
6588 case ISD::UMULO
: return LowerXALUO(Op
, DAG
);
6589 case ISD::READCYCLECOUNTER
: return LowerREADCYCLECOUNTER(Op
, DAG
);
6593 void X86TargetLowering::
6594 ReplaceATOMIC_BINARY_64(SDNode
*Node
, SmallVectorImpl
<SDValue
>&Results
,
6595 SelectionDAG
&DAG
, unsigned NewOp
) {
6596 MVT T
= Node
->getValueType(0);
6597 DebugLoc dl
= Node
->getDebugLoc();
6598 assert (T
== MVT::i64
&& "Only know how to expand i64 atomics");
6600 SDValue Chain
= Node
->getOperand(0);
6601 SDValue In1
= Node
->getOperand(1);
6602 SDValue In2L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6603 Node
->getOperand(2), DAG
.getIntPtrConstant(0));
6604 SDValue In2H
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6605 Node
->getOperand(2), DAG
.getIntPtrConstant(1));
6606 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6607 // have a MemOperand. Pass the info through as a normal operand.
6608 SDValue LSI
= DAG
.getMemOperand(cast
<MemSDNode
>(Node
)->getMemOperand());
6609 SDValue Ops
[] = { Chain
, In1
, In2L
, In2H
, LSI
};
6610 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
6611 SDValue Result
= DAG
.getNode(NewOp
, dl
, Tys
, Ops
, 5);
6612 SDValue OpsF
[] = { Result
.getValue(0), Result
.getValue(1)};
6613 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6614 Results
.push_back(Result
.getValue(2));
6617 /// ReplaceNodeResults - Replace a node with an illegal result type
6618 /// with a new node built out of custom code.
6619 void X86TargetLowering::ReplaceNodeResults(SDNode
*N
,
6620 SmallVectorImpl
<SDValue
>&Results
,
6621 SelectionDAG
&DAG
) {
6622 DebugLoc dl
= N
->getDebugLoc();
6623 switch (N
->getOpcode()) {
6625 assert(false && "Do not know how to custom type legalize this operation!");
6627 case ISD::FP_TO_SINT
: {
6628 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_SINTHelper(SDValue(N
, 0), DAG
);
6629 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6630 if (FIST
.getNode() != 0) {
6631 MVT VT
= N
->getValueType(0);
6632 // Return a load from the stack slot.
6633 Results
.push_back(DAG
.getLoad(VT
, dl
, FIST
, StackSlot
, NULL
, 0));
6637 case ISD::READCYCLECOUNTER
: {
6638 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6639 SDValue TheChain
= N
->getOperand(0);
6640 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6641 SDValue eax
= DAG
.getCopyFromReg(rd
, dl
, X86::EAX
, MVT::i32
,
6643 SDValue edx
= DAG
.getCopyFromReg(eax
.getValue(1), dl
, X86::EDX
, MVT::i32
,
6645 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6646 SDValue Ops
[] = { eax
, edx
};
6647 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Ops
, 2));
6648 Results
.push_back(edx
.getValue(1));
6651 case ISD::ATOMIC_CMP_SWAP
: {
6652 MVT T
= N
->getValueType(0);
6653 assert (T
== MVT::i64
&& "Only know how to expand i64 Cmp and Swap");
6654 SDValue cpInL
, cpInH
;
6655 cpInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6656 DAG
.getConstant(0, MVT::i32
));
6657 cpInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6658 DAG
.getConstant(1, MVT::i32
));
6659 cpInL
= DAG
.getCopyToReg(N
->getOperand(0), dl
, X86::EAX
, cpInL
, SDValue());
6660 cpInH
= DAG
.getCopyToReg(cpInL
.getValue(0), dl
, X86::EDX
, cpInH
,
6662 SDValue swapInL
, swapInH
;
6663 swapInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6664 DAG
.getConstant(0, MVT::i32
));
6665 swapInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6666 DAG
.getConstant(1, MVT::i32
));
6667 swapInL
= DAG
.getCopyToReg(cpInH
.getValue(0), dl
, X86::EBX
, swapInL
,
6669 swapInH
= DAG
.getCopyToReg(swapInL
.getValue(0), dl
, X86::ECX
, swapInH
,
6670 swapInL
.getValue(1));
6671 SDValue Ops
[] = { swapInH
.getValue(0),
6673 swapInH
.getValue(1) };
6674 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6675 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG8_DAG
, dl
, Tys
, Ops
, 3);
6676 SDValue cpOutL
= DAG
.getCopyFromReg(Result
.getValue(0), dl
, X86::EAX
,
6677 MVT::i32
, Result
.getValue(1));
6678 SDValue cpOutH
= DAG
.getCopyFromReg(cpOutL
.getValue(1), dl
, X86::EDX
,
6679 MVT::i32
, cpOutL
.getValue(2));
6680 SDValue OpsF
[] = { cpOutL
.getValue(0), cpOutH
.getValue(0)};
6681 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6682 Results
.push_back(cpOutH
.getValue(1));
6685 case ISD::ATOMIC_LOAD_ADD
:
6686 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMADD64_DAG
);
6688 case ISD::ATOMIC_LOAD_AND
:
6689 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMAND64_DAG
);
6691 case ISD::ATOMIC_LOAD_NAND
:
6692 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMNAND64_DAG
);
6694 case ISD::ATOMIC_LOAD_OR
:
6695 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMOR64_DAG
);
6697 case ISD::ATOMIC_LOAD_SUB
:
6698 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSUB64_DAG
);
6700 case ISD::ATOMIC_LOAD_XOR
:
6701 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMXOR64_DAG
);
6703 case ISD::ATOMIC_SWAP
:
6704 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSWAP64_DAG
);
6709 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode
) const {
6711 default: return NULL
;
6712 case X86ISD::BSF
: return "X86ISD::BSF";
6713 case X86ISD::BSR
: return "X86ISD::BSR";
6714 case X86ISD::SHLD
: return "X86ISD::SHLD";
6715 case X86ISD::SHRD
: return "X86ISD::SHRD";
6716 case X86ISD::FAND
: return "X86ISD::FAND";
6717 case X86ISD::FOR
: return "X86ISD::FOR";
6718 case X86ISD::FXOR
: return "X86ISD::FXOR";
6719 case X86ISD::FSRL
: return "X86ISD::FSRL";
6720 case X86ISD::FILD
: return "X86ISD::FILD";
6721 case X86ISD::FILD_FLAG
: return "X86ISD::FILD_FLAG";
6722 case X86ISD::FP_TO_INT16_IN_MEM
: return "X86ISD::FP_TO_INT16_IN_MEM";
6723 case X86ISD::FP_TO_INT32_IN_MEM
: return "X86ISD::FP_TO_INT32_IN_MEM";
6724 case X86ISD::FP_TO_INT64_IN_MEM
: return "X86ISD::FP_TO_INT64_IN_MEM";
6725 case X86ISD::FLD
: return "X86ISD::FLD";
6726 case X86ISD::FST
: return "X86ISD::FST";
6727 case X86ISD::CALL
: return "X86ISD::CALL";
6728 case X86ISD::TAILCALL
: return "X86ISD::TAILCALL";
6729 case X86ISD::RDTSC_DAG
: return "X86ISD::RDTSC_DAG";
6730 case X86ISD::BT
: return "X86ISD::BT";
6731 case X86ISD::CMP
: return "X86ISD::CMP";
6732 case X86ISD::COMI
: return "X86ISD::COMI";
6733 case X86ISD::UCOMI
: return "X86ISD::UCOMI";
6734 case X86ISD::SETCC
: return "X86ISD::SETCC";
6735 case X86ISD::CMOV
: return "X86ISD::CMOV";
6736 case X86ISD::BRCOND
: return "X86ISD::BRCOND";
6737 case X86ISD::RET_FLAG
: return "X86ISD::RET_FLAG";
6738 case X86ISD::REP_STOS
: return "X86ISD::REP_STOS";
6739 case X86ISD::REP_MOVS
: return "X86ISD::REP_MOVS";
6740 case X86ISD::GlobalBaseReg
: return "X86ISD::GlobalBaseReg";
6741 case X86ISD::Wrapper
: return "X86ISD::Wrapper";
6742 case X86ISD::PEXTRB
: return "X86ISD::PEXTRB";
6743 case X86ISD::PEXTRW
: return "X86ISD::PEXTRW";
6744 case X86ISD::INSERTPS
: return "X86ISD::INSERTPS";
6745 case X86ISD::PINSRB
: return "X86ISD::PINSRB";
6746 case X86ISD::PINSRW
: return "X86ISD::PINSRW";
6747 case X86ISD::PSHUFB
: return "X86ISD::PSHUFB";
6748 case X86ISD::FMAX
: return "X86ISD::FMAX";
6749 case X86ISD::FMIN
: return "X86ISD::FMIN";
6750 case X86ISD::FRSQRT
: return "X86ISD::FRSQRT";
6751 case X86ISD::FRCP
: return "X86ISD::FRCP";
6752 case X86ISD::TLSADDR
: return "X86ISD::TLSADDR";
6753 case X86ISD::SegmentBaseAddress
: return "X86ISD::SegmentBaseAddress";
6754 case X86ISD::EH_RETURN
: return "X86ISD::EH_RETURN";
6755 case X86ISD::TC_RETURN
: return "X86ISD::TC_RETURN";
6756 case X86ISD::FNSTCW16m
: return "X86ISD::FNSTCW16m";
6757 case X86ISD::LCMPXCHG_DAG
: return "X86ISD::LCMPXCHG_DAG";
6758 case X86ISD::LCMPXCHG8_DAG
: return "X86ISD::LCMPXCHG8_DAG";
6759 case X86ISD::ATOMADD64_DAG
: return "X86ISD::ATOMADD64_DAG";
6760 case X86ISD::ATOMSUB64_DAG
: return "X86ISD::ATOMSUB64_DAG";
6761 case X86ISD::ATOMOR64_DAG
: return "X86ISD::ATOMOR64_DAG";
6762 case X86ISD::ATOMXOR64_DAG
: return "X86ISD::ATOMXOR64_DAG";
6763 case X86ISD::ATOMAND64_DAG
: return "X86ISD::ATOMAND64_DAG";
6764 case X86ISD::ATOMNAND64_DAG
: return "X86ISD::ATOMNAND64_DAG";
6765 case X86ISD::VZEXT_MOVL
: return "X86ISD::VZEXT_MOVL";
6766 case X86ISD::VZEXT_LOAD
: return "X86ISD::VZEXT_LOAD";
6767 case X86ISD::VSHL
: return "X86ISD::VSHL";
6768 case X86ISD::VSRL
: return "X86ISD::VSRL";
6769 case X86ISD::CMPPD
: return "X86ISD::CMPPD";
6770 case X86ISD::CMPPS
: return "X86ISD::CMPPS";
6771 case X86ISD::PCMPEQB
: return "X86ISD::PCMPEQB";
6772 case X86ISD::PCMPEQW
: return "X86ISD::PCMPEQW";
6773 case X86ISD::PCMPEQD
: return "X86ISD::PCMPEQD";
6774 case X86ISD::PCMPEQQ
: return "X86ISD::PCMPEQQ";
6775 case X86ISD::PCMPGTB
: return "X86ISD::PCMPGTB";
6776 case X86ISD::PCMPGTW
: return "X86ISD::PCMPGTW";
6777 case X86ISD::PCMPGTD
: return "X86ISD::PCMPGTD";
6778 case X86ISD::PCMPGTQ
: return "X86ISD::PCMPGTQ";
6779 case X86ISD::ADD
: return "X86ISD::ADD";
6780 case X86ISD::SUB
: return "X86ISD::SUB";
6781 case X86ISD::SMUL
: return "X86ISD::SMUL";
6782 case X86ISD::UMUL
: return "X86ISD::UMUL";
6783 case X86ISD::INC
: return "X86ISD::INC";
6784 case X86ISD::DEC
: return "X86ISD::DEC";
6785 case X86ISD::MUL_IMM
: return "X86ISD::MUL_IMM";
6789 // isLegalAddressingMode - Return true if the addressing mode represented
6790 // by AM is legal for this target, for a load/store of the specified type.
6791 bool X86TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
6792 const Type
*Ty
) const {
6793 // X86 supports extremely general addressing modes.
6795 // X86 allows a sign-extended 32-bit immediate field as a displacement.
6796 if (AM
.BaseOffs
<= -(1LL << 32) || AM
.BaseOffs
>= (1LL << 32)-1)
6800 // We can only fold this if we don't need an extra load.
6801 if (Subtarget
->GVRequiresExtraLoad(AM
.BaseGV
, getTargetMachine(), false))
6803 // If BaseGV requires a register, we cannot also have a BaseReg.
6804 if (Subtarget
->GVRequiresRegister(AM
.BaseGV
, getTargetMachine(), false) &&
6808 // X86-64 only supports addr of globals in small code model.
6809 if (Subtarget
->is64Bit()) {
6810 if (getTargetMachine().getCodeModel() != CodeModel::Small
)
6812 // If lower 4G is not available, then we must use rip-relative addressing.
6813 if (AM
.BaseOffs
|| AM
.Scale
> 1)
6824 // These scales always work.
6829 // These scales are formed with basereg+scalereg. Only accept if there is
6834 default: // Other stuff never works.
6842 bool X86TargetLowering::isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const {
6843 if (!Ty1
->isInteger() || !Ty2
->isInteger())
6845 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
6846 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
6847 if (NumBits1
<= NumBits2
)
6849 return Subtarget
->is64Bit() || NumBits1
< 64;
6852 bool X86TargetLowering::isTruncateFree(MVT VT1
, MVT VT2
) const {
6853 if (!VT1
.isInteger() || !VT2
.isInteger())
6855 unsigned NumBits1
= VT1
.getSizeInBits();
6856 unsigned NumBits2
= VT2
.getSizeInBits();
6857 if (NumBits1
<= NumBits2
)
6859 return Subtarget
->is64Bit() || NumBits1
< 64;
6862 bool X86TargetLowering::isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const {
6863 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6864 return Ty1
== Type::Int32Ty
&& Ty2
== Type::Int64Ty
&& Subtarget
->is64Bit();
6867 bool X86TargetLowering::isZExtFree(MVT VT1
, MVT VT2
) const {
6868 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
6869 return VT1
== MVT::i32
&& VT2
== MVT::i64
&& Subtarget
->is64Bit();
6872 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6873 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6874 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6875 /// are assumed to be legal.
6877 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl
<int> &M
,
6879 // Only do shuffles on 128-bit vector types for now.
6880 if (VT
.getSizeInBits() == 64)
6883 // FIXME: pshufb, blends, palignr, shifts.
6884 return (VT
.getVectorNumElements() == 2 ||
6885 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
6886 isMOVLMask(M
, VT
) ||
6887 isSHUFPMask(M
, VT
) ||
6888 isPSHUFDMask(M
, VT
) ||
6889 isPSHUFHWMask(M
, VT
) ||
6890 isPSHUFLWMask(M
, VT
) ||
6891 isUNPCKLMask(M
, VT
) ||
6892 isUNPCKHMask(M
, VT
) ||
6893 isUNPCKL_v_undef_Mask(M
, VT
) ||
6894 isUNPCKH_v_undef_Mask(M
, VT
));
6898 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
6900 unsigned NumElts
= VT
.getVectorNumElements();
6901 // FIXME: This collection of masks seems suspect.
6904 if (NumElts
== 4 && VT
.getSizeInBits() == 128) {
6905 return (isMOVLMask(Mask
, VT
) ||
6906 isCommutedMOVLMask(Mask
, VT
, true) ||
6907 isSHUFPMask(Mask
, VT
) ||
6908 isCommutedSHUFPMask(Mask
, VT
));
6913 //===----------------------------------------------------------------------===//
6914 // X86 Scheduler Hooks
6915 //===----------------------------------------------------------------------===//
6917 // private utility function
6919 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr
*bInstr
,
6920 MachineBasicBlock
*MBB
,
6928 TargetRegisterClass
*RC
,
6929 bool invSrc
) const {
6930 // For the atomic bitwise operator, we generate
6933 // ld t1 = [bitinstr.addr]
6934 // op t2 = t1, [bitinstr.val]
6936 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
6938 // fallthrough -->nextMBB
6939 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
6940 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
6941 MachineFunction::iterator MBBIter
= MBB
;
6944 /// First build the CFG
6945 MachineFunction
*F
= MBB
->getParent();
6946 MachineBasicBlock
*thisMBB
= MBB
;
6947 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
6948 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
6949 F
->insert(MBBIter
, newMBB
);
6950 F
->insert(MBBIter
, nextMBB
);
6952 // Move all successors to thisMBB to nextMBB
6953 nextMBB
->transferSuccessors(thisMBB
);
6955 // Update thisMBB to fall through to newMBB
6956 thisMBB
->addSuccessor(newMBB
);
6958 // newMBB jumps to itself and fall through to nextMBB
6959 newMBB
->addSuccessor(nextMBB
);
6960 newMBB
->addSuccessor(newMBB
);
6962 // Insert instructions into newMBB based on incoming instruction
6963 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
6964 "unexpected number of operands");
6965 DebugLoc dl
= bInstr
->getDebugLoc();
6966 MachineOperand
& destOper
= bInstr
->getOperand(0);
6967 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
6968 int numArgs
= bInstr
->getNumOperands() - 1;
6969 for (int i
=0; i
< numArgs
; ++i
)
6970 argOpers
[i
] = &bInstr
->getOperand(i
+1);
6972 // x86 address has 4 operands: base, index, scale, and displacement
6973 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
6974 int valArgIndx
= lastAddrIndx
+ 1;
6976 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
6977 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(LoadOpc
), t1
);
6978 for (int i
=0; i
<= lastAddrIndx
; ++i
)
6979 (*MIB
).addOperand(*argOpers
[i
]);
6981 unsigned tt
= F
->getRegInfo().createVirtualRegister(RC
);
6983 MIB
= BuildMI(newMBB
, dl
, TII
->get(notOpc
), tt
).addReg(t1
);
6988 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
6989 assert((argOpers
[valArgIndx
]->isReg() ||
6990 argOpers
[valArgIndx
]->isImm()) &&
6992 if (argOpers
[valArgIndx
]->isReg())
6993 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpc
), t2
);
6995 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpc
), t2
);
6997 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
6999 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), EAXreg
);
7002 MIB
= BuildMI(newMBB
, dl
, TII
->get(CXchgOpc
));
7003 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7004 (*MIB
).addOperand(*argOpers
[i
]);
7006 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7007 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7009 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), destOper
.getReg());
7013 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7015 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7019 // private utility function: 64 bit atomics on 32 bit host.
7021 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr
*bInstr
,
7022 MachineBasicBlock
*MBB
,
7027 bool invSrc
) const {
7028 // For the atomic bitwise operator, we generate
7029 // thisMBB (instructions are in pairs, except cmpxchg8b)
7030 // ld t1,t2 = [bitinstr.addr]
7032 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7033 // op t5, t6 <- out1, out2, [bitinstr.val]
7034 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7035 // mov ECX, EBX <- t5, t6
7036 // mov EAX, EDX <- t1, t2
7037 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7038 // mov t3, t4 <- EAX, EDX
7040 // result in out1, out2
7041 // fallthrough -->nextMBB
7043 const TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
7044 const unsigned LoadOpc
= X86::MOV32rm
;
7045 const unsigned copyOpc
= X86::MOV32rr
;
7046 const unsigned NotOpc
= X86::NOT32r
;
7047 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7048 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7049 MachineFunction::iterator MBBIter
= MBB
;
7052 /// First build the CFG
7053 MachineFunction
*F
= MBB
->getParent();
7054 MachineBasicBlock
*thisMBB
= MBB
;
7055 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7056 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7057 F
->insert(MBBIter
, newMBB
);
7058 F
->insert(MBBIter
, nextMBB
);
7060 // Move all successors to thisMBB to nextMBB
7061 nextMBB
->transferSuccessors(thisMBB
);
7063 // Update thisMBB to fall through to newMBB
7064 thisMBB
->addSuccessor(newMBB
);
7066 // newMBB jumps to itself and fall through to nextMBB
7067 newMBB
->addSuccessor(nextMBB
);
7068 newMBB
->addSuccessor(newMBB
);
7070 DebugLoc dl
= bInstr
->getDebugLoc();
7071 // Insert instructions into newMBB based on incoming instruction
7072 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7073 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 14 &&
7074 "unexpected number of operands");
7075 MachineOperand
& dest1Oper
= bInstr
->getOperand(0);
7076 MachineOperand
& dest2Oper
= bInstr
->getOperand(1);
7077 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7078 for (int i
=0; i
< 2 + X86AddrNumOperands
; ++i
)
7079 argOpers
[i
] = &bInstr
->getOperand(i
+2);
7081 // x86 address has 4 operands: base, index, scale, and displacement
7082 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7084 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7085 MachineInstrBuilder MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t1
);
7086 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7087 (*MIB
).addOperand(*argOpers
[i
]);
7088 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7089 MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t2
);
7090 // add 4 to displacement.
7091 for (int i
=0; i
<= lastAddrIndx
-2; ++i
)
7092 (*MIB
).addOperand(*argOpers
[i
]);
7093 MachineOperand newOp3
= *(argOpers
[3]);
7095 newOp3
.setImm(newOp3
.getImm()+4);
7097 newOp3
.setOffset(newOp3
.getOffset()+4);
7098 (*MIB
).addOperand(newOp3
);
7099 (*MIB
).addOperand(*argOpers
[lastAddrIndx
]);
7101 // t3/4 are defined later, at the bottom of the loop
7102 unsigned t3
= F
->getRegInfo().createVirtualRegister(RC
);
7103 unsigned t4
= F
->getRegInfo().createVirtualRegister(RC
);
7104 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest1Oper
.getReg())
7105 .addReg(t1
).addMBB(thisMBB
).addReg(t3
).addMBB(newMBB
);
7106 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest2Oper
.getReg())
7107 .addReg(t2
).addMBB(thisMBB
).addReg(t4
).addMBB(newMBB
);
7109 unsigned tt1
= F
->getRegInfo().createVirtualRegister(RC
);
7110 unsigned tt2
= F
->getRegInfo().createVirtualRegister(RC
);
7112 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt1
).addReg(t1
);
7113 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt2
).addReg(t2
);
7119 int valArgIndx
= lastAddrIndx
+ 1;
7120 assert((argOpers
[valArgIndx
]->isReg() ||
7121 argOpers
[valArgIndx
]->isImm()) &&
7123 unsigned t5
= F
->getRegInfo().createVirtualRegister(RC
);
7124 unsigned t6
= F
->getRegInfo().createVirtualRegister(RC
);
7125 if (argOpers
[valArgIndx
]->isReg())
7126 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcL
), t5
);
7128 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcL
), t5
);
7129 if (regOpcL
!= X86::MOV32rr
)
7131 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7132 assert(argOpers
[valArgIndx
+ 1]->isReg() ==
7133 argOpers
[valArgIndx
]->isReg());
7134 assert(argOpers
[valArgIndx
+ 1]->isImm() ==
7135 argOpers
[valArgIndx
]->isImm());
7136 if (argOpers
[valArgIndx
+ 1]->isReg())
7137 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcH
), t6
);
7139 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcH
), t6
);
7140 if (regOpcH
!= X86::MOV32rr
)
7142 (*MIB
).addOperand(*argOpers
[valArgIndx
+ 1]);
7144 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EAX
);
7146 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EDX
);
7149 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EBX
);
7151 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::ECX
);
7154 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG8B
));
7155 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7156 (*MIB
).addOperand(*argOpers
[i
]);
7158 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7159 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7161 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t3
);
7162 MIB
.addReg(X86::EAX
);
7163 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t4
);
7164 MIB
.addReg(X86::EDX
);
7167 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7169 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7173 // private utility function
7175 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr
*mInstr
,
7176 MachineBasicBlock
*MBB
,
7177 unsigned cmovOpc
) const {
7178 // For the atomic min/max operator, we generate
7181 // ld t1 = [min/max.addr]
7182 // mov t2 = [min/max.val]
7184 // cmov[cond] t2 = t1
7186 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7188 // fallthrough -->nextMBB
7190 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7191 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7192 MachineFunction::iterator MBBIter
= MBB
;
7195 /// First build the CFG
7196 MachineFunction
*F
= MBB
->getParent();
7197 MachineBasicBlock
*thisMBB
= MBB
;
7198 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7199 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7200 F
->insert(MBBIter
, newMBB
);
7201 F
->insert(MBBIter
, nextMBB
);
7203 // Move all successors to thisMBB to nextMBB
7204 nextMBB
->transferSuccessors(thisMBB
);
7206 // Update thisMBB to fall through to newMBB
7207 thisMBB
->addSuccessor(newMBB
);
7209 // newMBB jumps to newMBB and fall through to nextMBB
7210 newMBB
->addSuccessor(nextMBB
);
7211 newMBB
->addSuccessor(newMBB
);
7213 DebugLoc dl
= mInstr
->getDebugLoc();
7214 // Insert instructions into newMBB based on incoming instruction
7215 assert(mInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7216 "unexpected number of operands");
7217 MachineOperand
& destOper
= mInstr
->getOperand(0);
7218 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7219 int numArgs
= mInstr
->getNumOperands() - 1;
7220 for (int i
=0; i
< numArgs
; ++i
)
7221 argOpers
[i
] = &mInstr
->getOperand(i
+1);
7223 // x86 address has 4 operands: base, index, scale, and displacement
7224 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7225 int valArgIndx
= lastAddrIndx
+ 1;
7227 unsigned t1
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7228 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rm
), t1
);
7229 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7230 (*MIB
).addOperand(*argOpers
[i
]);
7232 // We only support register and immediate values
7233 assert((argOpers
[valArgIndx
]->isReg() ||
7234 argOpers
[valArgIndx
]->isImm()) &&
7237 unsigned t2
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7238 if (argOpers
[valArgIndx
]->isReg())
7239 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7241 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7242 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7244 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), X86::EAX
);
7247 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::CMP32rr
));
7252 unsigned t3
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7253 MIB
= BuildMI(newMBB
, dl
, TII
->get(cmovOpc
),t3
);
7257 // Cmp and exchange if none has modified the memory location
7258 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG32
));
7259 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7260 (*MIB
).addOperand(*argOpers
[i
]);
7262 assert(mInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7263 (*MIB
).addMemOperand(*F
, *mInstr
->memoperands_begin());
7265 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), destOper
.getReg());
7266 MIB
.addReg(X86::EAX
);
7269 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7271 F
->DeleteMachineInstr(mInstr
); // The pseudo instruction is gone now.
7277 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
7278 MachineBasicBlock
*BB
) const {
7279 DebugLoc dl
= MI
->getDebugLoc();
7280 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7281 switch (MI
->getOpcode()) {
7282 default: assert(false && "Unexpected instr type to insert");
7283 case X86::CMOV_V1I64
:
7284 case X86::CMOV_FR32
:
7285 case X86::CMOV_FR64
:
7286 case X86::CMOV_V4F32
:
7287 case X86::CMOV_V2F64
:
7288 case X86::CMOV_V2I64
: {
7289 // To "insert" a SELECT_CC instruction, we actually have to insert the
7290 // diamond control-flow pattern. The incoming instruction knows the
7291 // destination vreg to set, the condition code register to branch on, the
7292 // true/false values to select between, and a branch opcode to use.
7293 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
7294 MachineFunction::iterator It
= BB
;
7300 // cmpTY ccX, r1, r2
7302 // fallthrough --> copy0MBB
7303 MachineBasicBlock
*thisMBB
= BB
;
7304 MachineFunction
*F
= BB
->getParent();
7305 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7306 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7308 X86::GetCondBranchFromCond((X86::CondCode
)MI
->getOperand(3).getImm());
7309 BuildMI(BB
, dl
, TII
->get(Opc
)).addMBB(sinkMBB
);
7310 F
->insert(It
, copy0MBB
);
7311 F
->insert(It
, sinkMBB
);
7312 // Update machine-CFG edges by transferring all successors of the current
7313 // block to the new block which will contain the Phi node for the select.
7314 sinkMBB
->transferSuccessors(BB
);
7316 // Add the true and fallthrough blocks as its successors.
7317 BB
->addSuccessor(copy0MBB
);
7318 BB
->addSuccessor(sinkMBB
);
7321 // %FalseValue = ...
7322 // # fallthrough to sinkMBB
7325 // Update machine-CFG edges
7326 BB
->addSuccessor(sinkMBB
);
7329 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7332 BuildMI(BB
, dl
, TII
->get(X86::PHI
), MI
->getOperand(0).getReg())
7333 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
7334 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
7336 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7340 case X86::FP32_TO_INT16_IN_MEM
:
7341 case X86::FP32_TO_INT32_IN_MEM
:
7342 case X86::FP32_TO_INT64_IN_MEM
:
7343 case X86::FP64_TO_INT16_IN_MEM
:
7344 case X86::FP64_TO_INT32_IN_MEM
:
7345 case X86::FP64_TO_INT64_IN_MEM
:
7346 case X86::FP80_TO_INT16_IN_MEM
:
7347 case X86::FP80_TO_INT32_IN_MEM
:
7348 case X86::FP80_TO_INT64_IN_MEM
: {
7349 // Change the floating point control register to use "round towards zero"
7350 // mode when truncating to an integer value.
7351 MachineFunction
*F
= BB
->getParent();
7352 int CWFrameIdx
= F
->getFrameInfo()->CreateStackObject(2, 2);
7353 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FNSTCW16m
)), CWFrameIdx
);
7355 // Load the old value of the high byte of the control word...
7357 F
->getRegInfo().createVirtualRegister(X86::GR16RegisterClass
);
7358 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16rm
), OldCW
),
7361 // Set the high part to be round to zero...
7362 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mi
)), CWFrameIdx
)
7365 // Reload the modified control word now...
7366 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7368 // Restore the memory image of control word to original value
7369 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mr
)), CWFrameIdx
)
7372 // Get the X86 opcode to use.
7374 switch (MI
->getOpcode()) {
7375 default: assert(0 && "illegal opcode!");
7376 case X86::FP32_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m32
; break;
7377 case X86::FP32_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m32
; break;
7378 case X86::FP32_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m32
; break;
7379 case X86::FP64_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m64
; break;
7380 case X86::FP64_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m64
; break;
7381 case X86::FP64_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m64
; break;
7382 case X86::FP80_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m80
; break;
7383 case X86::FP80_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m80
; break;
7384 case X86::FP80_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m80
; break;
7388 MachineOperand
&Op
= MI
->getOperand(0);
7390 AM
.BaseType
= X86AddressMode::RegBase
;
7391 AM
.Base
.Reg
= Op
.getReg();
7393 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
7394 AM
.Base
.FrameIndex
= Op
.getIndex();
7396 Op
= MI
->getOperand(1);
7398 AM
.Scale
= Op
.getImm();
7399 Op
= MI
->getOperand(2);
7401 AM
.IndexReg
= Op
.getImm();
7402 Op
= MI
->getOperand(3);
7403 if (Op
.isGlobal()) {
7404 AM
.GV
= Op
.getGlobal();
7406 AM
.Disp
= Op
.getImm();
7408 addFullAddress(BuildMI(BB
, dl
, TII
->get(Opc
)), AM
)
7409 .addReg(MI
->getOperand(X86AddrNumOperands
).getReg());
7411 // Reload the original control word now.
7412 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7414 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7417 case X86::ATOMAND32
:
7418 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7419 X86::AND32ri
, X86::MOV32rm
,
7420 X86::LCMPXCHG32
, X86::MOV32rr
,
7421 X86::NOT32r
, X86::EAX
,
7422 X86::GR32RegisterClass
);
7424 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR32rr
,
7425 X86::OR32ri
, X86::MOV32rm
,
7426 X86::LCMPXCHG32
, X86::MOV32rr
,
7427 X86::NOT32r
, X86::EAX
,
7428 X86::GR32RegisterClass
);
7429 case X86::ATOMXOR32
:
7430 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR32rr
,
7431 X86::XOR32ri
, X86::MOV32rm
,
7432 X86::LCMPXCHG32
, X86::MOV32rr
,
7433 X86::NOT32r
, X86::EAX
,
7434 X86::GR32RegisterClass
);
7435 case X86::ATOMNAND32
:
7436 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7437 X86::AND32ri
, X86::MOV32rm
,
7438 X86::LCMPXCHG32
, X86::MOV32rr
,
7439 X86::NOT32r
, X86::EAX
,
7440 X86::GR32RegisterClass
, true);
7441 case X86::ATOMMIN32
:
7442 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL32rr
);
7443 case X86::ATOMMAX32
:
7444 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG32rr
);
7445 case X86::ATOMUMIN32
:
7446 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB32rr
);
7447 case X86::ATOMUMAX32
:
7448 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA32rr
);
7450 case X86::ATOMAND16
:
7451 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7452 X86::AND16ri
, X86::MOV16rm
,
7453 X86::LCMPXCHG16
, X86::MOV16rr
,
7454 X86::NOT16r
, X86::AX
,
7455 X86::GR16RegisterClass
);
7457 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR16rr
,
7458 X86::OR16ri
, X86::MOV16rm
,
7459 X86::LCMPXCHG16
, X86::MOV16rr
,
7460 X86::NOT16r
, X86::AX
,
7461 X86::GR16RegisterClass
);
7462 case X86::ATOMXOR16
:
7463 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR16rr
,
7464 X86::XOR16ri
, X86::MOV16rm
,
7465 X86::LCMPXCHG16
, X86::MOV16rr
,
7466 X86::NOT16r
, X86::AX
,
7467 X86::GR16RegisterClass
);
7468 case X86::ATOMNAND16
:
7469 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7470 X86::AND16ri
, X86::MOV16rm
,
7471 X86::LCMPXCHG16
, X86::MOV16rr
,
7472 X86::NOT16r
, X86::AX
,
7473 X86::GR16RegisterClass
, true);
7474 case X86::ATOMMIN16
:
7475 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL16rr
);
7476 case X86::ATOMMAX16
:
7477 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG16rr
);
7478 case X86::ATOMUMIN16
:
7479 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB16rr
);
7480 case X86::ATOMUMAX16
:
7481 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA16rr
);
7484 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7485 X86::AND8ri
, X86::MOV8rm
,
7486 X86::LCMPXCHG8
, X86::MOV8rr
,
7487 X86::NOT8r
, X86::AL
,
7488 X86::GR8RegisterClass
);
7490 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR8rr
,
7491 X86::OR8ri
, X86::MOV8rm
,
7492 X86::LCMPXCHG8
, X86::MOV8rr
,
7493 X86::NOT8r
, X86::AL
,
7494 X86::GR8RegisterClass
);
7496 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR8rr
,
7497 X86::XOR8ri
, X86::MOV8rm
,
7498 X86::LCMPXCHG8
, X86::MOV8rr
,
7499 X86::NOT8r
, X86::AL
,
7500 X86::GR8RegisterClass
);
7501 case X86::ATOMNAND8
:
7502 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7503 X86::AND8ri
, X86::MOV8rm
,
7504 X86::LCMPXCHG8
, X86::MOV8rr
,
7505 X86::NOT8r
, X86::AL
,
7506 X86::GR8RegisterClass
, true);
7507 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7508 // This group is for 64-bit host.
7509 case X86::ATOMAND64
:
7510 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7511 X86::AND64ri32
, X86::MOV64rm
,
7512 X86::LCMPXCHG64
, X86::MOV64rr
,
7513 X86::NOT64r
, X86::RAX
,
7514 X86::GR64RegisterClass
);
7516 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR64rr
,
7517 X86::OR64ri32
, X86::MOV64rm
,
7518 X86::LCMPXCHG64
, X86::MOV64rr
,
7519 X86::NOT64r
, X86::RAX
,
7520 X86::GR64RegisterClass
);
7521 case X86::ATOMXOR64
:
7522 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR64rr
,
7523 X86::XOR64ri32
, X86::MOV64rm
,
7524 X86::LCMPXCHG64
, X86::MOV64rr
,
7525 X86::NOT64r
, X86::RAX
,
7526 X86::GR64RegisterClass
);
7527 case X86::ATOMNAND64
:
7528 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7529 X86::AND64ri32
, X86::MOV64rm
,
7530 X86::LCMPXCHG64
, X86::MOV64rr
,
7531 X86::NOT64r
, X86::RAX
,
7532 X86::GR64RegisterClass
, true);
7533 case X86::ATOMMIN64
:
7534 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL64rr
);
7535 case X86::ATOMMAX64
:
7536 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG64rr
);
7537 case X86::ATOMUMIN64
:
7538 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB64rr
);
7539 case X86::ATOMUMAX64
:
7540 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA64rr
);
7542 // This group does 64-bit operations on a 32-bit host.
7543 case X86::ATOMAND6432
:
7544 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7545 X86::AND32rr
, X86::AND32rr
,
7546 X86::AND32ri
, X86::AND32ri
,
7548 case X86::ATOMOR6432
:
7549 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7550 X86::OR32rr
, X86::OR32rr
,
7551 X86::OR32ri
, X86::OR32ri
,
7553 case X86::ATOMXOR6432
:
7554 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7555 X86::XOR32rr
, X86::XOR32rr
,
7556 X86::XOR32ri
, X86::XOR32ri
,
7558 case X86::ATOMNAND6432
:
7559 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7560 X86::AND32rr
, X86::AND32rr
,
7561 X86::AND32ri
, X86::AND32ri
,
7563 case X86::ATOMADD6432
:
7564 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7565 X86::ADD32rr
, X86::ADC32rr
,
7566 X86::ADD32ri
, X86::ADC32ri
,
7568 case X86::ATOMSUB6432
:
7569 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7570 X86::SUB32rr
, X86::SBB32rr
,
7571 X86::SUB32ri
, X86::SBB32ri
,
7573 case X86::ATOMSWAP6432
:
7574 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7575 X86::MOV32rr
, X86::MOV32rr
,
7576 X86::MOV32ri
, X86::MOV32ri
,
7581 //===----------------------------------------------------------------------===//
7582 // X86 Optimization Hooks
7583 //===----------------------------------------------------------------------===//
7585 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
7589 const SelectionDAG
&DAG
,
7590 unsigned Depth
) const {
7591 unsigned Opc
= Op
.getOpcode();
7592 assert((Opc
>= ISD::BUILTIN_OP_END
||
7593 Opc
== ISD::INTRINSIC_WO_CHAIN
||
7594 Opc
== ISD::INTRINSIC_W_CHAIN
||
7595 Opc
== ISD::INTRINSIC_VOID
) &&
7596 "Should use MaskedValueIsZero if you don't know whether Op"
7597 " is a target node!");
7599 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0); // Don't know anything.
7608 // These nodes' second result is a boolean.
7609 if (Op
.getResNo() == 0)
7613 KnownZero
|= APInt::getHighBitsSet(Mask
.getBitWidth(),
7614 Mask
.getBitWidth() - 1);
7619 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7620 /// node is a GlobalAddress + offset.
7621 bool X86TargetLowering::isGAPlusOffset(SDNode
*N
,
7622 GlobalValue
* &GA
, int64_t &Offset
) const{
7623 if (N
->getOpcode() == X86ISD::Wrapper
) {
7624 if (isa
<GlobalAddressSDNode
>(N
->getOperand(0))) {
7625 GA
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getGlobal();
7626 Offset
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getOffset();
7630 return TargetLowering::isGAPlusOffset(N
, GA
, Offset
);
7633 static bool isBaseAlignmentOfN(unsigned N
, SDNode
*Base
,
7634 const TargetLowering
&TLI
) {
7637 if (TLI
.isGAPlusOffset(Base
, GV
, Offset
))
7638 return (GV
->getAlignment() >= N
&& (Offset
% N
) == 0);
7639 // DAG combine handles the stack object case.
7643 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode
*N
, unsigned NumElems
,
7644 MVT EVT
, SDNode
*&Base
,
7645 SelectionDAG
&DAG
, MachineFrameInfo
*MFI
,
7646 const TargetLowering
&TLI
) {
7648 for (unsigned i
= 0; i
< NumElems
; ++i
) {
7649 if (N
->getMaskElt(i
) < 0) {
7655 SDValue Elt
= DAG
.getShuffleScalarElt(N
, i
);
7656 if (!Elt
.getNode() ||
7657 (Elt
.getOpcode() != ISD::UNDEF
&& !ISD::isNON_EXTLoad(Elt
.getNode())))
7660 Base
= Elt
.getNode();
7661 if (Base
->getOpcode() == ISD::UNDEF
)
7665 if (Elt
.getOpcode() == ISD::UNDEF
)
7668 if (!TLI
.isConsecutiveLoad(Elt
.getNode(), Base
,
7669 EVT
.getSizeInBits()/8, i
, MFI
))
7675 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7676 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7677 /// if the load addresses are consecutive, non-overlapping, and in the right
7678 /// order. In the case of v2i64, it will see if it can rewrite the
7679 /// shuffle to be an appropriate build vector so it can take advantage of
7680 // performBuildVectorCombine.
7681 static SDValue
PerformShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
,
7682 const TargetLowering
&TLI
) {
7683 DebugLoc dl
= N
->getDebugLoc();
7684 MVT VT
= N
->getValueType(0);
7685 MVT EVT
= VT
.getVectorElementType();
7686 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
7687 unsigned NumElems
= VT
.getVectorNumElements();
7689 // For x86-32 machines, if we see an insert and then a shuffle in a v2i64
7690 // where the upper half is 0, it is advantageous to rewrite it as a build
7691 // vector of (0, val) so it can use movq.
7692 if (VT
== MVT::v2i64
) {
7694 In
[0] = N
->getOperand(0);
7695 In
[1] = N
->getOperand(1);
7696 int Idx0
= SVN
->getMaskElt(0);
7697 int Idx1
= SVN
->getMaskElt(1);
7698 // FIXME: can we take advantage of undef index?
7699 if (Idx0
>= 0 && Idx1
>= 0 &&
7700 In
[Idx0
/2].getOpcode() == ISD::INSERT_VECTOR_ELT
&&
7701 In
[Idx1
/2].getOpcode() == ISD::BUILD_VECTOR
) {
7702 ConstantSDNode
* InsertVecIdx
=
7703 dyn_cast
<ConstantSDNode
>(In
[Idx0
/2].getOperand(2));
7705 InsertVecIdx
->getZExtValue() == (unsigned)(Idx0
% 2) &&
7706 isZeroNode(In
[Idx1
/2].getOperand(Idx1
% 2))) {
7707 return DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
,
7708 In
[Idx0
/2].getOperand(1),
7709 In
[Idx1
/2].getOperand(Idx1
% 2));
7714 // Try to combine a vector_shuffle into a 128-bit load.
7715 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7716 SDNode
*Base
= NULL
;
7717 if (!EltsFromConsecutiveLoads(SVN
, NumElems
, EVT
, Base
, DAG
, MFI
, TLI
))
7720 LoadSDNode
*LD
= cast
<LoadSDNode
>(Base
);
7721 if (isBaseAlignmentOfN(16, Base
->getOperand(1).getNode(), TLI
))
7722 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7723 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7725 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7726 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7727 LD
->isVolatile(), LD
->getAlignment());
7730 /// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7731 static SDValue
PerformBuildVectorCombine(SDNode
*N
, SelectionDAG
&DAG
,
7732 TargetLowering::DAGCombinerInfo
&DCI
,
7733 const X86Subtarget
*Subtarget
,
7734 const TargetLowering
&TLI
) {
7735 unsigned NumOps
= N
->getNumOperands();
7736 DebugLoc dl
= N
->getDebugLoc();
7738 // Ignore single operand BUILD_VECTOR.
7742 MVT VT
= N
->getValueType(0);
7743 MVT EVT
= VT
.getVectorElementType();
7744 if ((EVT
!= MVT::i64
&& EVT
!= MVT::f64
) || Subtarget
->is64Bit())
7745 // We are looking for load i64 and zero extend. We want to transform
7746 // it before legalizer has a chance to expand it. Also look for i64
7747 // BUILD_PAIR bit casted to f64.
7749 // This must be an insertion into a zero vector.
7750 SDValue HighElt
= N
->getOperand(1);
7751 if (!isZeroNode(HighElt
))
7754 // Value must be a load.
7755 SDNode
*Base
= N
->getOperand(0).getNode();
7756 if (!isa
<LoadSDNode
>(Base
)) {
7757 if (Base
->getOpcode() != ISD::BIT_CONVERT
)
7759 Base
= Base
->getOperand(0).getNode();
7760 if (!isa
<LoadSDNode
>(Base
))
7764 // Transform it into VZEXT_LOAD addr.
7765 LoadSDNode
*LD
= cast
<LoadSDNode
>(Base
);
7767 // Load must not be an extload.
7768 if (LD
->getExtensionType() != ISD::NON_EXTLOAD
)
7771 // Load type should legal type so we don't have to legalize it.
7772 if (!TLI
.isTypeLegal(VT
))
7775 SDVTList Tys
= DAG
.getVTList(VT
, MVT::Other
);
7776 SDValue Ops
[] = { LD
->getChain(), LD
->getBasePtr() };
7777 SDValue ResNode
= DAG
.getNode(X86ISD::VZEXT_LOAD
, dl
, Tys
, Ops
, 2);
7778 TargetLowering::TargetLoweringOpt
TLO(DAG
);
7779 TLO
.CombineTo(SDValue(Base
, 1), ResNode
.getValue(1));
7780 DCI
.CommitTargetLoweringOpt(TLO
);
7784 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7785 static SDValue
PerformSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
7786 const X86Subtarget
*Subtarget
) {
7787 DebugLoc DL
= N
->getDebugLoc();
7788 SDValue Cond
= N
->getOperand(0);
7789 // Get the LHS/RHS of the select.
7790 SDValue LHS
= N
->getOperand(1);
7791 SDValue RHS
= N
->getOperand(2);
7793 // If we have SSE[12] support, try to form min/max nodes.
7794 if (Subtarget
->hasSSE2() &&
7795 (LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
) &&
7796 Cond
.getOpcode() == ISD::SETCC
) {
7797 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
7799 unsigned Opcode
= 0;
7800 if (LHS
== Cond
.getOperand(0) && RHS
== Cond
.getOperand(1)) {
7803 case ISD::SETOLE
: // (X <= Y) ? X : Y -> min
7806 if (!UnsafeFPMath
) break;
7808 case ISD::SETOLT
: // (X olt/lt Y) ? X : Y -> min
7810 Opcode
= X86ISD::FMIN
;
7813 case ISD::SETOGT
: // (X > Y) ? X : Y -> max
7816 if (!UnsafeFPMath
) break;
7818 case ISD::SETUGE
: // (X uge/ge Y) ? X : Y -> max
7820 Opcode
= X86ISD::FMAX
;
7823 } else if (LHS
== Cond
.getOperand(1) && RHS
== Cond
.getOperand(0)) {
7826 case ISD::SETOGT
: // (X > Y) ? Y : X -> min
7829 if (!UnsafeFPMath
) break;
7831 case ISD::SETUGE
: // (X uge/ge Y) ? Y : X -> min
7833 Opcode
= X86ISD::FMIN
;
7836 case ISD::SETOLE
: // (X <= Y) ? Y : X -> max
7839 if (!UnsafeFPMath
) break;
7841 case ISD::SETOLT
: // (X olt/lt Y) ? Y : X -> max
7843 Opcode
= X86ISD::FMAX
;
7849 return DAG
.getNode(Opcode
, DL
, N
->getValueType(0), LHS
, RHS
);
7852 // If this is a select between two integer constants, try to do some
7854 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(LHS
)) {
7855 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(RHS
))
7856 // Don't do this for crazy integer types.
7857 if (DAG
.getTargetLoweringInfo().isTypeLegal(LHS
.getValueType())) {
7858 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
7859 // so that TrueC (the true value) is larger than FalseC.
7860 bool NeedsCondInvert
= false;
7862 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue()) &&
7863 // Efficiently invertible.
7864 (Cond
.getOpcode() == ISD::SETCC
|| // setcc -> invertible.
7865 (Cond
.getOpcode() == ISD::XOR
&& // xor(X, C) -> invertible.
7866 isa
<ConstantSDNode
>(Cond
.getOperand(1))))) {
7867 NeedsCondInvert
= true;
7868 std::swap(TrueC
, FalseC
);
7871 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
7872 if (FalseC
->getAPIntValue() == 0 &&
7873 TrueC
->getAPIntValue().isPowerOf2()) {
7874 if (NeedsCondInvert
) // Invert the condition if needed.
7875 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
7876 DAG
.getConstant(1, Cond
.getValueType()));
7878 // Zero extend the condition if needed.
7879 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LHS
.getValueType(), Cond
);
7881 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
7882 return DAG
.getNode(ISD::SHL
, DL
, LHS
.getValueType(), Cond
,
7883 DAG
.getConstant(ShAmt
, MVT::i8
));
7886 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
7887 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
7888 if (NeedsCondInvert
) // Invert the condition if needed.
7889 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
7890 DAG
.getConstant(1, Cond
.getValueType()));
7892 // Zero extend the condition if needed.
7893 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
7894 FalseC
->getValueType(0), Cond
);
7895 return DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
7896 SDValue(FalseC
, 0));
7899 // Optimize cases that will turn into an LEA instruction. This requires
7900 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
7901 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
7902 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
7903 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
7905 bool isFastMultiplier
= false;
7907 switch ((unsigned char)Diff
) {
7909 case 1: // result = add base, cond
7910 case 2: // result = lea base( , cond*2)
7911 case 3: // result = lea base(cond, cond*2)
7912 case 4: // result = lea base( , cond*4)
7913 case 5: // result = lea base(cond, cond*4)
7914 case 8: // result = lea base( , cond*8)
7915 case 9: // result = lea base(cond, cond*8)
7916 isFastMultiplier
= true;
7921 if (isFastMultiplier
) {
7922 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
7923 if (NeedsCondInvert
) // Invert the condition if needed.
7924 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
7925 DAG
.getConstant(1, Cond
.getValueType()));
7927 // Zero extend the condition if needed.
7928 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
7930 // Scale the condition by the difference.
7932 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
7933 DAG
.getConstant(Diff
, Cond
.getValueType()));
7935 // Add the base if non-zero.
7936 if (FalseC
->getAPIntValue() != 0)
7937 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
7938 SDValue(FalseC
, 0));
7948 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
7949 static SDValue
PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
,
7950 TargetLowering::DAGCombinerInfo
&DCI
) {
7951 DebugLoc DL
= N
->getDebugLoc();
7953 // If the flag operand isn't dead, don't touch this CMOV.
7954 if (N
->getNumValues() == 2 && !SDValue(N
, 1).use_empty())
7957 // If this is a select between two integer constants, try to do some
7958 // optimizations. Note that the operands are ordered the opposite of SELECT
7960 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
7961 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
7962 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
7963 // larger than FalseC (the false value).
7964 X86::CondCode CC
= (X86::CondCode
)N
->getConstantOperandVal(2);
7966 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue())) {
7967 CC
= X86::GetOppositeBranchCondition(CC
);
7968 std::swap(TrueC
, FalseC
);
7971 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
7972 // This is efficient for any integer data type (including i8/i16) and
7974 if (FalseC
->getAPIntValue() == 0 && TrueC
->getAPIntValue().isPowerOf2()) {
7975 SDValue Cond
= N
->getOperand(3);
7976 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
7977 DAG
.getConstant(CC
, MVT::i8
), Cond
);
7979 // Zero extend the condition if needed.
7980 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TrueC
->getValueType(0), Cond
);
7982 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
7983 Cond
= DAG
.getNode(ISD::SHL
, DL
, Cond
.getValueType(), Cond
,
7984 DAG
.getConstant(ShAmt
, MVT::i8
));
7985 if (N
->getNumValues() == 2) // Dead flag value?
7986 return DCI
.CombineTo(N
, Cond
, SDValue());
7990 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
7991 // for any integer data type, including i8/i16.
7992 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
7993 SDValue Cond
= N
->getOperand(3);
7994 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
7995 DAG
.getConstant(CC
, MVT::i8
), Cond
);
7997 // Zero extend the condition if needed.
7998 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
7999 FalseC
->getValueType(0), Cond
);
8000 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8001 SDValue(FalseC
, 0));
8003 if (N
->getNumValues() == 2) // Dead flag value?
8004 return DCI
.CombineTo(N
, Cond
, SDValue());
8008 // Optimize cases that will turn into an LEA instruction. This requires
8009 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8010 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8011 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8012 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8014 bool isFastMultiplier
= false;
8016 switch ((unsigned char)Diff
) {
8018 case 1: // result = add base, cond
8019 case 2: // result = lea base( , cond*2)
8020 case 3: // result = lea base(cond, cond*2)
8021 case 4: // result = lea base( , cond*4)
8022 case 5: // result = lea base(cond, cond*4)
8023 case 8: // result = lea base( , cond*8)
8024 case 9: // result = lea base(cond, cond*8)
8025 isFastMultiplier
= true;
8030 if (isFastMultiplier
) {
8031 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8032 SDValue Cond
= N
->getOperand(3);
8033 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8034 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8035 // Zero extend the condition if needed.
8036 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8038 // Scale the condition by the difference.
8040 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8041 DAG
.getConstant(Diff
, Cond
.getValueType()));
8043 // Add the base if non-zero.
8044 if (FalseC
->getAPIntValue() != 0)
8045 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8046 SDValue(FalseC
, 0));
8047 if (N
->getNumValues() == 2) // Dead flag value?
8048 return DCI
.CombineTo(N
, Cond
, SDValue());
8058 /// PerformMulCombine - Optimize a single multiply with constant into two
8059 /// in order to implement it with two cheaper instructions, e.g.
8060 /// LEA + SHL, LEA + LEA.
8061 static SDValue
PerformMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
8062 TargetLowering::DAGCombinerInfo
&DCI
) {
8063 if (DAG
.getMachineFunction().
8064 getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
8067 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
8070 MVT VT
= N
->getValueType(0);
8074 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
8077 uint64_t MulAmt
= C
->getZExtValue();
8078 if (isPowerOf2_64(MulAmt
) || MulAmt
== 3 || MulAmt
== 5 || MulAmt
== 9)
8081 uint64_t MulAmt1
= 0;
8082 uint64_t MulAmt2
= 0;
8083 if ((MulAmt
% 9) == 0) {
8085 MulAmt2
= MulAmt
/ 9;
8086 } else if ((MulAmt
% 5) == 0) {
8088 MulAmt2
= MulAmt
/ 5;
8089 } else if ((MulAmt
% 3) == 0) {
8091 MulAmt2
= MulAmt
/ 3;
8094 (isPowerOf2_64(MulAmt2
) || MulAmt2
== 3 || MulAmt2
== 5 || MulAmt2
== 9)){
8095 DebugLoc DL
= N
->getDebugLoc();
8097 if (isPowerOf2_64(MulAmt2
) &&
8098 !(N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::ADD
))
8099 // If second multiplifer is pow2, issue it first. We want the multiply by
8100 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8102 std::swap(MulAmt1
, MulAmt2
);
8105 if (isPowerOf2_64(MulAmt1
))
8106 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
8107 DAG
.getConstant(Log2_64(MulAmt1
), MVT::i8
));
8109 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, N
->getOperand(0),
8110 DAG
.getConstant(MulAmt1
, VT
));
8112 if (isPowerOf2_64(MulAmt2
))
8113 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewMul
,
8114 DAG
.getConstant(Log2_64(MulAmt2
), MVT::i8
));
8116 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, NewMul
,
8117 DAG
.getConstant(MulAmt2
, VT
));
8119 // Do not add new nodes to DAG combiner worklist.
8120 DCI
.CombineTo(N
, NewMul
, false);
8126 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8128 static SDValue
PerformShiftCombine(SDNode
* N
, SelectionDAG
&DAG
,
8129 const X86Subtarget
*Subtarget
) {
8130 // On X86 with SSE2 support, we can transform this to a vector shift if
8131 // all elements are shifted by the same amount. We can't do this in legalize
8132 // because the a constant vector is typically transformed to a constant pool
8133 // so we have no knowledge of the shift amount.
8134 if (!Subtarget
->hasSSE2())
8137 MVT VT
= N
->getValueType(0);
8138 if (VT
!= MVT::v2i64
&& VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
8141 SDValue ShAmtOp
= N
->getOperand(1);
8142 MVT EltVT
= VT
.getVectorElementType();
8143 DebugLoc DL
= N
->getDebugLoc();
8145 if (ShAmtOp
.getOpcode() == ISD::BUILD_VECTOR
) {
8146 unsigned NumElts
= VT
.getVectorNumElements();
8148 for (; i
!= NumElts
; ++i
) {
8149 SDValue Arg
= ShAmtOp
.getOperand(i
);
8150 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8154 for (; i
!= NumElts
; ++i
) {
8155 SDValue Arg
= ShAmtOp
.getOperand(i
);
8156 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8157 if (Arg
!= BaseShAmt
) {
8161 } else if (ShAmtOp
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
8162 cast
<ShuffleVectorSDNode
>(ShAmtOp
)->isSplat()) {
8163 BaseShAmt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, ShAmtOp
,
8164 DAG
.getIntPtrConstant(0));
8168 if (EltVT
.bitsGT(MVT::i32
))
8169 BaseShAmt
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, BaseShAmt
);
8170 else if (EltVT
.bitsLT(MVT::i32
))
8171 BaseShAmt
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, BaseShAmt
);
8173 // The shift amount is identical so we can do a vector shift.
8174 SDValue ValOp
= N
->getOperand(0);
8175 switch (N
->getOpcode()) {
8177 assert(0 && "Unknown shift opcode!");
8180 if (VT
== MVT::v2i64
)
8181 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8182 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8184 if (VT
== MVT::v4i32
)
8185 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8186 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
8188 if (VT
== MVT::v8i16
)
8189 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8190 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
8194 if (VT
== MVT::v4i32
)
8195 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8196 DAG
.getConstant(Intrinsic::x86_sse2_psrai_d
, MVT::i32
),
8198 if (VT
== MVT::v8i16
)
8199 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8200 DAG
.getConstant(Intrinsic::x86_sse2_psrai_w
, MVT::i32
),
8204 if (VT
== MVT::v2i64
)
8205 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8206 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8208 if (VT
== MVT::v4i32
)
8209 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8210 DAG
.getConstant(Intrinsic::x86_sse2_psrli_d
, MVT::i32
),
8212 if (VT
== MVT::v8i16
)
8213 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8214 DAG
.getConstant(Intrinsic::x86_sse2_psrli_w
, MVT::i32
),
8221 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8222 static SDValue
PerformSTORECombine(SDNode
*N
, SelectionDAG
&DAG
,
8223 const X86Subtarget
*Subtarget
) {
8224 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8225 // the FP state in cases where an emms may be missing.
8226 // A preferable solution to the general problem is to figure out the right
8227 // places to insert EMMS. This qualifies as a quick hack.
8229 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8230 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
8231 MVT VT
= St
->getValue().getValueType();
8232 if (VT
.getSizeInBits() != 64)
8235 bool F64IsLegal
= !UseSoftFloat
&& !NoImplicitFloat
&& Subtarget
->hasSSE2();
8236 if ((VT
.isVector() ||
8237 (VT
== MVT::i64
&& F64IsLegal
&& !Subtarget
->is64Bit())) &&
8238 isa
<LoadSDNode
>(St
->getValue()) &&
8239 !cast
<LoadSDNode
>(St
->getValue())->isVolatile() &&
8240 St
->getChain().hasOneUse() && !St
->isVolatile()) {
8241 SDNode
* LdVal
= St
->getValue().getNode();
8243 int TokenFactorIndex
= -1;
8244 SmallVector
<SDValue
, 8> Ops
;
8245 SDNode
* ChainVal
= St
->getChain().getNode();
8246 // Must be a store of a load. We currently handle two cases: the load
8247 // is a direct child, and it's under an intervening TokenFactor. It is
8248 // possible to dig deeper under nested TokenFactors.
8249 if (ChainVal
== LdVal
)
8250 Ld
= cast
<LoadSDNode
>(St
->getChain());
8251 else if (St
->getValue().hasOneUse() &&
8252 ChainVal
->getOpcode() == ISD::TokenFactor
) {
8253 for (unsigned i
=0, e
= ChainVal
->getNumOperands(); i
!= e
; ++i
) {
8254 if (ChainVal
->getOperand(i
).getNode() == LdVal
) {
8255 TokenFactorIndex
= i
;
8256 Ld
= cast
<LoadSDNode
>(St
->getValue());
8258 Ops
.push_back(ChainVal
->getOperand(i
));
8262 if (!Ld
|| !ISD::isNormalLoad(Ld
))
8265 // If this is not the MMX case, i.e. we are just turning i64 load/store
8266 // into f64 load/store, avoid the transformation if there are multiple
8267 // uses of the loaded value.
8268 if (!VT
.isVector() && !Ld
->hasNUsesOfValue(1, 0))
8271 DebugLoc LdDL
= Ld
->getDebugLoc();
8272 DebugLoc StDL
= N
->getDebugLoc();
8273 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8274 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8276 if (Subtarget
->is64Bit() || F64IsLegal
) {
8277 MVT LdVT
= Subtarget
->is64Bit() ? MVT::i64
: MVT::f64
;
8278 SDValue NewLd
= DAG
.getLoad(LdVT
, LdDL
, Ld
->getChain(),
8279 Ld
->getBasePtr(), Ld
->getSrcValue(),
8280 Ld
->getSrcValueOffset(), Ld
->isVolatile(),
8281 Ld
->getAlignment());
8282 SDValue NewChain
= NewLd
.getValue(1);
8283 if (TokenFactorIndex
!= -1) {
8284 Ops
.push_back(NewChain
);
8285 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8288 return DAG
.getStore(NewChain
, StDL
, NewLd
, St
->getBasePtr(),
8289 St
->getSrcValue(), St
->getSrcValueOffset(),
8290 St
->isVolatile(), St
->getAlignment());
8293 // Otherwise, lower to two pairs of 32-bit loads / stores.
8294 SDValue LoAddr
= Ld
->getBasePtr();
8295 SDValue HiAddr
= DAG
.getNode(ISD::ADD
, LdDL
, MVT::i32
, LoAddr
,
8296 DAG
.getConstant(4, MVT::i32
));
8298 SDValue LoLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), LoAddr
,
8299 Ld
->getSrcValue(), Ld
->getSrcValueOffset(),
8300 Ld
->isVolatile(), Ld
->getAlignment());
8301 SDValue HiLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), HiAddr
,
8302 Ld
->getSrcValue(), Ld
->getSrcValueOffset()+4,
8304 MinAlign(Ld
->getAlignment(), 4));
8306 SDValue NewChain
= LoLd
.getValue(1);
8307 if (TokenFactorIndex
!= -1) {
8308 Ops
.push_back(LoLd
);
8309 Ops
.push_back(HiLd
);
8310 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8314 LoAddr
= St
->getBasePtr();
8315 HiAddr
= DAG
.getNode(ISD::ADD
, StDL
, MVT::i32
, LoAddr
,
8316 DAG
.getConstant(4, MVT::i32
));
8318 SDValue LoSt
= DAG
.getStore(NewChain
, StDL
, LoLd
, LoAddr
,
8319 St
->getSrcValue(), St
->getSrcValueOffset(),
8320 St
->isVolatile(), St
->getAlignment());
8321 SDValue HiSt
= DAG
.getStore(NewChain
, StDL
, HiLd
, HiAddr
,
8323 St
->getSrcValueOffset() + 4,
8325 MinAlign(St
->getAlignment(), 4));
8326 return DAG
.getNode(ISD::TokenFactor
, StDL
, MVT::Other
, LoSt
, HiSt
);
8331 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8332 /// X86ISD::FXOR nodes.
8333 static SDValue
PerformFORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8334 assert(N
->getOpcode() == X86ISD::FOR
|| N
->getOpcode() == X86ISD::FXOR
);
8335 // F[X]OR(0.0, x) -> x
8336 // F[X]OR(x, 0.0) -> x
8337 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8338 if (C
->getValueAPF().isPosZero())
8339 return N
->getOperand(1);
8340 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8341 if (C
->getValueAPF().isPosZero())
8342 return N
->getOperand(0);
8346 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8347 static SDValue
PerformFANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8348 // FAND(0.0, x) -> 0.0
8349 // FAND(x, 0.0) -> 0.0
8350 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8351 if (C
->getValueAPF().isPosZero())
8352 return N
->getOperand(0);
8353 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8354 if (C
->getValueAPF().isPosZero())
8355 return N
->getOperand(1);
8359 static SDValue
PerformBTCombine(SDNode
*N
,
8361 TargetLowering::DAGCombinerInfo
&DCI
) {
8362 // BT ignores high bits in the bit index operand.
8363 SDValue Op1
= N
->getOperand(1);
8364 if (Op1
.hasOneUse()) {
8365 unsigned BitWidth
= Op1
.getValueSizeInBits();
8366 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, Log2_32(BitWidth
));
8367 APInt KnownZero
, KnownOne
;
8368 TargetLowering::TargetLoweringOpt
TLO(DAG
);
8369 TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8370 if (TLO
.ShrinkDemandedConstant(Op1
, DemandedMask
) ||
8371 TLI
.SimplifyDemandedBits(Op1
, DemandedMask
, KnownZero
, KnownOne
, TLO
))
8372 DCI
.CommitTargetLoweringOpt(TLO
);
8377 SDValue
X86TargetLowering::PerformDAGCombine(SDNode
*N
,
8378 DAGCombinerInfo
&DCI
) const {
8379 SelectionDAG
&DAG
= DCI
.DAG
;
8380 switch (N
->getOpcode()) {
8382 case ISD::VECTOR_SHUFFLE
: return PerformShuffleCombine(N
, DAG
, *this);
8383 case ISD::BUILD_VECTOR
:
8384 return PerformBuildVectorCombine(N
, DAG
, DCI
, Subtarget
, *this);
8385 case ISD::SELECT
: return PerformSELECTCombine(N
, DAG
, Subtarget
);
8386 case X86ISD::CMOV
: return PerformCMOVCombine(N
, DAG
, DCI
);
8387 case ISD::MUL
: return PerformMulCombine(N
, DAG
, DCI
);
8390 case ISD::SRL
: return PerformShiftCombine(N
, DAG
, Subtarget
);
8391 case ISD::STORE
: return PerformSTORECombine(N
, DAG
, Subtarget
);
8393 case X86ISD::FOR
: return PerformFORCombine(N
, DAG
);
8394 case X86ISD::FAND
: return PerformFANDCombine(N
, DAG
);
8395 case X86ISD::BT
: return PerformBTCombine(N
, DAG
, DCI
);
8401 //===----------------------------------------------------------------------===//
8402 // X86 Inline Assembly Support
8403 //===----------------------------------------------------------------------===//
8405 /// getConstraintType - Given a constraint letter, return the type of
8406 /// constraint it is for this target.
8407 X86TargetLowering::ConstraintType
8408 X86TargetLowering::getConstraintType(const std::string
&Constraint
) const {
8409 if (Constraint
.size() == 1) {
8410 switch (Constraint
[0]) {
8422 return C_RegisterClass
;
8430 return TargetLowering::getConstraintType(Constraint
);
8433 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8434 /// with another that has more specific requirements based on the type of the
8435 /// corresponding operand.
8436 const char *X86TargetLowering::
8437 LowerXConstraint(MVT ConstraintVT
) const {
8438 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8439 // 'f' like normal targets.
8440 if (ConstraintVT
.isFloatingPoint()) {
8441 if (Subtarget
->hasSSE2())
8443 if (Subtarget
->hasSSE1())
8447 return TargetLowering::LowerXConstraint(ConstraintVT
);
8450 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8451 /// vector. If it is invalid, don't add anything to Ops.
8452 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
8455 std::vector
<SDValue
>&Ops
,
8456 SelectionDAG
&DAG
) const {
8457 SDValue
Result(0, 0);
8459 switch (Constraint
) {
8462 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8463 if (C
->getZExtValue() <= 31) {
8464 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8470 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8471 if (C
->getZExtValue() <= 63) {
8472 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8478 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8479 if (C
->getZExtValue() <= 255) {
8480 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8486 // 32-bit signed value
8487 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8488 const ConstantInt
*CI
= C
->getConstantIntValue();
8489 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getSExtValue())) {
8490 // Widen to 64 bits here to get it sign extended.
8491 Result
= DAG
.getTargetConstant(C
->getSExtValue(), MVT::i64
);
8494 // FIXME gcc accepts some relocatable values here too, but only in certain
8495 // memory models; it's complicated.
8500 // 32-bit unsigned value
8501 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8502 const ConstantInt
*CI
= C
->getConstantIntValue();
8503 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getZExtValue())) {
8504 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8508 // FIXME gcc accepts some relocatable values here too, but only in certain
8509 // memory models; it's complicated.
8513 // Literal immediates are always ok.
8514 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
)) {
8515 // Widen to 64 bits here to get it sign extended.
8516 Result
= DAG
.getTargetConstant(CST
->getSExtValue(), MVT::i64
);
8520 // If we are in non-pic codegen mode, we allow the address of a global (with
8521 // an optional displacement) to be used with 'i'.
8522 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
8525 // Match either (GA) or (GA+C)
8527 Offset
= GA
->getOffset();
8528 } else if (Op
.getOpcode() == ISD::ADD
) {
8529 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
8530 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
8532 Offset
= GA
->getOffset()+C
->getZExtValue();
8534 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
8535 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
8537 Offset
= GA
->getOffset()+C
->getZExtValue();
8545 Op
= LowerGlobalAddress(GA
->getGlobal(), Op
.getDebugLoc(),
8548 Op
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), GA
->getValueType(0),
8554 // Otherwise, not valid for this mode.
8559 if (Result
.getNode()) {
8560 Ops
.push_back(Result
);
8563 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, hasMemory
,
8567 std::vector
<unsigned> X86TargetLowering::
8568 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
8570 if (Constraint
.size() == 1) {
8571 // FIXME: not handling fp-stack yet!
8572 switch (Constraint
[0]) { // GCC X86 Constraint Letters
8573 default: break; // Unknown constraint letter
8574 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
8577 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
, 0);
8578 else if (VT
== MVT::i16
)
8579 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
, 0);
8580 else if (VT
== MVT::i8
)
8581 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
, 0);
8582 else if (VT
== MVT::i64
)
8583 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
, 0);
8588 return std::vector
<unsigned>();
8591 std::pair
<unsigned, const TargetRegisterClass
*>
8592 X86TargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
8594 // First, see if this is a constraint that directly corresponds to an LLVM
8596 if (Constraint
.size() == 1) {
8597 // GCC Constraint Letters
8598 switch (Constraint
[0]) {
8600 case 'r': // GENERAL_REGS
8601 case 'R': // LEGACY_REGS
8602 case 'l': // INDEX_REGS
8604 return std::make_pair(0U, X86::GR8RegisterClass
);
8606 return std::make_pair(0U, X86::GR16RegisterClass
);
8607 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
8608 return std::make_pair(0U, X86::GR32RegisterClass
);
8609 return std::make_pair(0U, X86::GR64RegisterClass
);
8610 case 'f': // FP Stack registers.
8611 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8612 // value to the correct fpstack register class.
8613 if (VT
== MVT::f32
&& !isScalarFPTypeInSSEReg(VT
))
8614 return std::make_pair(0U, X86::RFP32RegisterClass
);
8615 if (VT
== MVT::f64
&& !isScalarFPTypeInSSEReg(VT
))
8616 return std::make_pair(0U, X86::RFP64RegisterClass
);
8617 return std::make_pair(0U, X86::RFP80RegisterClass
);
8618 case 'y': // MMX_REGS if MMX allowed.
8619 if (!Subtarget
->hasMMX()) break;
8620 return std::make_pair(0U, X86::VR64RegisterClass
);
8621 case 'Y': // SSE_REGS if SSE2 allowed
8622 if (!Subtarget
->hasSSE2()) break;
8624 case 'x': // SSE_REGS if SSE1 allowed
8625 if (!Subtarget
->hasSSE1()) break;
8627 switch (VT
.getSimpleVT()) {
8629 // Scalar SSE types.
8632 return std::make_pair(0U, X86::FR32RegisterClass
);
8635 return std::make_pair(0U, X86::FR64RegisterClass
);
8643 return std::make_pair(0U, X86::VR128RegisterClass
);
8649 // Use the default implementation in TargetLowering to convert the register
8650 // constraint into a member of a register class.
8651 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
8652 Res
= TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
8654 // Not found as a standard register?
8655 if (Res
.second
== 0) {
8656 // GCC calls "st(0)" just plain "st".
8657 if (StringsEqualNoCase("{st}", Constraint
)) {
8658 Res
.first
= X86::ST0
;
8659 Res
.second
= X86::RFP80RegisterClass
;
8661 // 'A' means EAX + EDX.
8662 if (Constraint
== "A") {
8663 Res
.first
= X86::EAX
;
8664 Res
.second
= X86::GRADRegisterClass
;
8669 // Otherwise, check to see if this is a register class of the wrong value
8670 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8671 // turn into {ax},{dx}.
8672 if (Res
.second
->hasType(VT
))
8673 return Res
; // Correct type already, nothing to do.
8675 // All of the single-register GCC register classes map their values onto
8676 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
8677 // really want an 8-bit or 32-bit register, map to the appropriate register
8678 // class and return the appropriate register.
8679 if (Res
.second
== X86::GR16RegisterClass
) {
8680 if (VT
== MVT::i8
) {
8681 unsigned DestReg
= 0;
8682 switch (Res
.first
) {
8684 case X86::AX
: DestReg
= X86::AL
; break;
8685 case X86::DX
: DestReg
= X86::DL
; break;
8686 case X86::CX
: DestReg
= X86::CL
; break;
8687 case X86::BX
: DestReg
= X86::BL
; break;
8690 Res
.first
= DestReg
;
8691 Res
.second
= X86::GR8RegisterClass
;
8693 } else if (VT
== MVT::i32
) {
8694 unsigned DestReg
= 0;
8695 switch (Res
.first
) {
8697 case X86::AX
: DestReg
= X86::EAX
; break;
8698 case X86::DX
: DestReg
= X86::EDX
; break;
8699 case X86::CX
: DestReg
= X86::ECX
; break;
8700 case X86::BX
: DestReg
= X86::EBX
; break;
8701 case X86::SI
: DestReg
= X86::ESI
; break;
8702 case X86::DI
: DestReg
= X86::EDI
; break;
8703 case X86::BP
: DestReg
= X86::EBP
; break;
8704 case X86::SP
: DestReg
= X86::ESP
; break;
8707 Res
.first
= DestReg
;
8708 Res
.second
= X86::GR32RegisterClass
;
8710 } else if (VT
== MVT::i64
) {
8711 unsigned DestReg
= 0;
8712 switch (Res
.first
) {
8714 case X86::AX
: DestReg
= X86::RAX
; break;
8715 case X86::DX
: DestReg
= X86::RDX
; break;
8716 case X86::CX
: DestReg
= X86::RCX
; break;
8717 case X86::BX
: DestReg
= X86::RBX
; break;
8718 case X86::SI
: DestReg
= X86::RSI
; break;
8719 case X86::DI
: DestReg
= X86::RDI
; break;
8720 case X86::BP
: DestReg
= X86::RBP
; break;
8721 case X86::SP
: DestReg
= X86::RSP
; break;
8724 Res
.first
= DestReg
;
8725 Res
.second
= X86::GR64RegisterClass
;
8728 } else if (Res
.second
== X86::FR32RegisterClass
||
8729 Res
.second
== X86::FR64RegisterClass
||
8730 Res
.second
== X86::VR128RegisterClass
) {
8731 // Handle references to XMM physical registers that got mapped into the
8732 // wrong class. This can happen with constraints like {xmm0} where the
8733 // target independent register mapper will just pick the first match it can
8734 // find, ignoring the required type.
8736 Res
.second
= X86::FR32RegisterClass
;
8737 else if (VT
== MVT::f64
)
8738 Res
.second
= X86::FR64RegisterClass
;
8739 else if (X86::VR128RegisterClass
->hasType(VT
))
8740 Res
.second
= X86::VR128RegisterClass
;
8746 //===----------------------------------------------------------------------===//
8747 // X86 Widen vector type
8748 //===----------------------------------------------------------------------===//
8750 /// getWidenVectorType: given a vector type, returns the type to widen
8751 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
8752 /// If there is no vector type that we want to widen to, returns MVT::Other
8753 /// When and where to widen is target dependent based on the cost of
8754 /// scalarizing vs using the wider vector type.
8756 MVT
X86TargetLowering::getWidenVectorType(MVT VT
) const {
8757 assert(VT
.isVector());
8758 if (isTypeLegal(VT
))
8761 // TODO: In computeRegisterProperty, we can compute the list of legal vector
8762 // type based on element type. This would speed up our search (though
8763 // it may not be worth it since the size of the list is relatively
8765 MVT EltVT
= VT
.getVectorElementType();
8766 unsigned NElts
= VT
.getVectorNumElements();
8768 // On X86, it make sense to widen any vector wider than 1
8772 for (unsigned nVT
= MVT::FIRST_VECTOR_VALUETYPE
;
8773 nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
8774 MVT SVT
= (MVT::SimpleValueType
)nVT
;
8776 if (isTypeLegal(SVT
) &&
8777 SVT
.getVectorElementType() == EltVT
&&
8778 SVT
.getVectorNumElements() > NElts
)