Provide addc and subc
[llvm/msp430.git] / lib / VMCore / Verifier.cpp
blob5e1137f32db2949c3e6cab26c56758fa8c443b03
1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Module.h"
49 #include "llvm/ModuleProvider.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/Analysis/Dominators.h"
53 #include "llvm/Assembly/Writer.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/Support/CallSite.h"
56 #include "llvm/Support/CFG.h"
57 #include "llvm/Support/InstVisitor.h"
58 #include "llvm/Support/Streams.h"
59 #include "llvm/ADT/SmallPtrSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <sstream>
67 #include <cstdarg>
68 using namespace llvm;
70 namespace { // Anonymous namespace for class
71 struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
72 static char ID; // Pass ID, replacement for typeid
74 PreVerifier() : FunctionPass(&ID) { }
76 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77 AU.setPreservesAll();
80 // Check that the prerequisites for successful DominatorTree construction
81 // are satisfied.
82 bool runOnFunction(Function &F) {
83 bool Broken = false;
85 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
86 if (I->empty() || !I->back().isTerminator()) {
87 cerr << "Basic Block does not have terminator!\n";
88 WriteAsOperand(*cerr, I, true);
89 cerr << "\n";
90 Broken = true;
94 if (Broken)
95 abort();
97 return false;
102 char PreVerifier::ID = 0;
103 static RegisterPass<PreVerifier>
104 PreVer("preverify", "Preliminary module verification");
105 static const PassInfo *const PreVerifyID = &PreVer;
107 namespace {
108 struct VISIBILITY_HIDDEN
109 Verifier : public FunctionPass, InstVisitor<Verifier> {
110 static char ID; // Pass ID, replacement for typeid
111 bool Broken; // Is this module found to be broken?
112 bool RealPass; // Are we not being run by a PassManager?
113 VerifierFailureAction action;
114 // What to do if verification fails.
115 Module *Mod; // Module we are verifying right now
116 DominatorTree *DT; // Dominator Tree, caution can be null!
117 std::stringstream msgs; // A stringstream to collect messages
119 /// InstInThisBlock - when verifying a basic block, keep track of all of the
120 /// instructions we have seen so far. This allows us to do efficient
121 /// dominance checks for the case when an instruction has an operand that is
122 /// an instruction in the same block.
123 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
125 Verifier()
126 : FunctionPass(&ID),
127 Broken(false), RealPass(true), action(AbortProcessAction),
128 DT(0), msgs( std::ios::app | std::ios::out ) {}
129 explicit Verifier(VerifierFailureAction ctn)
130 : FunctionPass(&ID),
131 Broken(false), RealPass(true), action(ctn), DT(0),
132 msgs( std::ios::app | std::ios::out ) {}
133 explicit Verifier(bool AB)
134 : FunctionPass(&ID),
135 Broken(false), RealPass(true),
136 action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
137 msgs( std::ios::app | std::ios::out ) {}
138 explicit Verifier(DominatorTree &dt)
139 : FunctionPass(&ID),
140 Broken(false), RealPass(false), action(PrintMessageAction),
141 DT(&dt), msgs( std::ios::app | std::ios::out ) {}
144 bool doInitialization(Module &M) {
145 Mod = &M;
146 verifyTypeSymbolTable(M.getTypeSymbolTable());
148 // If this is a real pass, in a pass manager, we must abort before
149 // returning back to the pass manager, or else the pass manager may try to
150 // run other passes on the broken module.
151 if (RealPass)
152 return abortIfBroken();
153 return false;
156 bool runOnFunction(Function &F) {
157 // Get dominator information if we are being run by PassManager
158 if (RealPass) DT = &getAnalysis<DominatorTree>();
160 Mod = F.getParent();
162 visit(F);
163 InstsInThisBlock.clear();
165 // If this is a real pass, in a pass manager, we must abort before
166 // returning back to the pass manager, or else the pass manager may try to
167 // run other passes on the broken module.
168 if (RealPass)
169 return abortIfBroken();
171 return false;
174 bool doFinalization(Module &M) {
175 // Scan through, checking all of the external function's linkage now...
176 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
177 visitGlobalValue(*I);
179 // Check to make sure function prototypes are okay.
180 if (I->isDeclaration()) visitFunction(*I);
183 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
184 I != E; ++I)
185 visitGlobalVariable(*I);
187 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
188 I != E; ++I)
189 visitGlobalAlias(*I);
191 // If the module is broken, abort at this time.
192 return abortIfBroken();
195 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
196 AU.setPreservesAll();
197 AU.addRequiredID(PreVerifyID);
198 if (RealPass)
199 AU.addRequired<DominatorTree>();
202 /// abortIfBroken - If the module is broken and we are supposed to abort on
203 /// this condition, do so.
205 bool abortIfBroken() {
206 if (!Broken) return false;
207 msgs << "Broken module found, ";
208 switch (action) {
209 default: assert(0 && "Unknown action");
210 case AbortProcessAction:
211 msgs << "compilation aborted!\n";
212 cerr << msgs.str();
213 abort();
214 case PrintMessageAction:
215 msgs << "verification continues.\n";
216 cerr << msgs.str();
217 return false;
218 case ReturnStatusAction:
219 msgs << "compilation terminated.\n";
220 return true;
225 // Verification methods...
226 void verifyTypeSymbolTable(TypeSymbolTable &ST);
227 void visitGlobalValue(GlobalValue &GV);
228 void visitGlobalVariable(GlobalVariable &GV);
229 void visitGlobalAlias(GlobalAlias &GA);
230 void visitFunction(Function &F);
231 void visitBasicBlock(BasicBlock &BB);
232 using InstVisitor<Verifier>::visit;
234 void visit(Instruction &I);
236 void visitTruncInst(TruncInst &I);
237 void visitZExtInst(ZExtInst &I);
238 void visitSExtInst(SExtInst &I);
239 void visitFPTruncInst(FPTruncInst &I);
240 void visitFPExtInst(FPExtInst &I);
241 void visitFPToUIInst(FPToUIInst &I);
242 void visitFPToSIInst(FPToSIInst &I);
243 void visitUIToFPInst(UIToFPInst &I);
244 void visitSIToFPInst(SIToFPInst &I);
245 void visitIntToPtrInst(IntToPtrInst &I);
246 void visitPtrToIntInst(PtrToIntInst &I);
247 void visitBitCastInst(BitCastInst &I);
248 void visitPHINode(PHINode &PN);
249 void visitBinaryOperator(BinaryOperator &B);
250 void visitICmpInst(ICmpInst &IC);
251 void visitFCmpInst(FCmpInst &FC);
252 void visitExtractElementInst(ExtractElementInst &EI);
253 void visitInsertElementInst(InsertElementInst &EI);
254 void visitShuffleVectorInst(ShuffleVectorInst &EI);
255 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
256 void visitCallInst(CallInst &CI);
257 void visitInvokeInst(InvokeInst &II);
258 void visitGetElementPtrInst(GetElementPtrInst &GEP);
259 void visitLoadInst(LoadInst &LI);
260 void visitStoreInst(StoreInst &SI);
261 void visitInstruction(Instruction &I);
262 void visitTerminatorInst(TerminatorInst &I);
263 void visitReturnInst(ReturnInst &RI);
264 void visitSwitchInst(SwitchInst &SI);
265 void visitSelectInst(SelectInst &SI);
266 void visitUserOp1(Instruction &I);
267 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
268 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
269 void visitAllocationInst(AllocationInst &AI);
270 void visitExtractValueInst(ExtractValueInst &EVI);
271 void visitInsertValueInst(InsertValueInst &IVI);
273 void VerifyCallSite(CallSite CS);
274 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
275 int VT, unsigned ArgNo, std::string &Suffix);
276 void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
277 unsigned RetNum, unsigned ParamNum, ...);
278 void VerifyAttrs(Attributes Attrs, const Type *Ty,
279 bool isReturnValue, const Value *V);
280 void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs,
281 const Value *V);
283 void WriteValue(const Value *V) {
284 if (!V) return;
285 if (isa<Instruction>(V)) {
286 msgs << *V;
287 } else {
288 WriteAsOperand(msgs, V, true, Mod);
289 msgs << "\n";
293 void WriteType(const Type *T) {
294 if (!T) return;
295 raw_os_ostream RO(msgs);
296 RO << ' ';
297 WriteTypeSymbolic(RO, T, Mod);
301 // CheckFailed - A check failed, so print out the condition and the message
302 // that failed. This provides a nice place to put a breakpoint if you want
303 // to see why something is not correct.
304 void CheckFailed(const std::string &Message,
305 const Value *V1 = 0, const Value *V2 = 0,
306 const Value *V3 = 0, const Value *V4 = 0) {
307 msgs << Message << "\n";
308 WriteValue(V1);
309 WriteValue(V2);
310 WriteValue(V3);
311 WriteValue(V4);
312 Broken = true;
315 void CheckFailed( const std::string& Message, const Value* V1,
316 const Type* T2, const Value* V3 = 0 ) {
317 msgs << Message << "\n";
318 WriteValue(V1);
319 WriteType(T2);
320 WriteValue(V3);
321 Broken = true;
324 } // End anonymous namespace
326 char Verifier::ID = 0;
327 static RegisterPass<Verifier> X("verify", "Module Verifier");
329 // Assert - We know that cond should be true, if not print an error message.
330 #define Assert(C, M) \
331 do { if (!(C)) { CheckFailed(M); return; } } while (0)
332 #define Assert1(C, M, V1) \
333 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
334 #define Assert2(C, M, V1, V2) \
335 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
336 #define Assert3(C, M, V1, V2, V3) \
337 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
338 #define Assert4(C, M, V1, V2, V3, V4) \
339 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
341 /// Check whether or not a Value is metadata or made up of a constant
342 /// expression involving metadata.
343 static bool isMetadata(Value *X) {
344 SmallPtrSet<Value *, 8> Visited;
345 SmallVector<Value *, 8> Queue;
346 Queue.push_back(X);
348 while (!Queue.empty()) {
349 Value *V = Queue.back();
350 Queue.pop_back();
351 if (!Visited.insert(V))
352 continue;
354 if (isa<MDString>(V) || isa<MDNode>(V))
355 return true;
356 if (!isa<ConstantExpr>(V))
357 continue;
358 ConstantExpr *CE = cast<ConstantExpr>(V);
360 if (CE->getType() != Type::EmptyStructTy)
361 continue;
363 // The only constant expression that works on metadata type is select.
364 if (CE->getOpcode() != Instruction::Select) return false;
366 Queue.push_back(CE->getOperand(1));
367 Queue.push_back(CE->getOperand(2));
369 return false;
372 void Verifier::visit(Instruction &I) {
373 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
374 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
375 InstVisitor<Verifier>::visit(I);
379 void Verifier::visitGlobalValue(GlobalValue &GV) {
380 Assert1(!GV.isDeclaration() ||
381 GV.hasExternalLinkage() ||
382 GV.hasDLLImportLinkage() ||
383 GV.hasExternalWeakLinkage() ||
384 GV.hasGhostLinkage() ||
385 (isa<GlobalAlias>(GV) &&
386 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
387 "Global is external, but doesn't have external or dllimport or weak linkage!",
388 &GV);
390 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
391 "Global is marked as dllimport, but not external", &GV);
393 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
394 "Only global variables can have appending linkage!", &GV);
396 if (GV.hasAppendingLinkage()) {
397 GlobalVariable &GVar = cast<GlobalVariable>(GV);
398 Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
399 "Only global arrays can have appending linkage!", &GV);
403 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
404 if (GV.hasInitializer()) {
405 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
406 "Global variable initializer type does not match global "
407 "variable type!", &GV);
408 } else {
409 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
410 GV.hasExternalWeakLinkage(),
411 "invalid linkage type for global declaration", &GV);
414 visitGlobalValue(GV);
417 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
418 Assert1(!GA.getName().empty(),
419 "Alias name cannot be empty!", &GA);
420 Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
421 GA.hasWeakLinkage(),
422 "Alias should have external or external weak linkage!", &GA);
423 Assert1(GA.getAliasee(),
424 "Aliasee cannot be NULL!", &GA);
425 Assert1(GA.getType() == GA.getAliasee()->getType(),
426 "Alias and aliasee types should match!", &GA);
428 if (!isa<GlobalValue>(GA.getAliasee())) {
429 const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
430 Assert1(CE &&
431 (CE->getOpcode() == Instruction::BitCast ||
432 CE->getOpcode() == Instruction::GetElementPtr) &&
433 isa<GlobalValue>(CE->getOperand(0)),
434 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
435 &GA);
438 const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
439 Assert1(Aliasee,
440 "Aliasing chain should end with function or global variable", &GA);
442 visitGlobalValue(GA);
445 void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
448 // VerifyAttrs - Check the given parameter attributes for an argument or return
449 // value of the specified type. The value V is printed in error messages.
450 void Verifier::VerifyAttrs(Attributes Attrs, const Type *Ty,
451 bool isReturnValue, const Value *V) {
452 if (Attrs == Attribute::None)
453 return;
455 if (isReturnValue) {
456 Attributes RetI = Attrs & Attribute::ParameterOnly;
457 Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
458 " does not apply to return values!", V);
460 Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
461 Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
462 " only applies to functions!", V);
464 for (unsigned i = 0;
465 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
466 Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
467 Assert1(!(MutI & (MutI - 1)), "Attributes " +
468 Attribute::getAsString(MutI) + " are incompatible!", V);
471 Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
472 Assert1(!TypeI, "Wrong type for attribute " +
473 Attribute::getAsString(TypeI), V);
475 Attributes ByValI = Attrs & Attribute::ByVal;
476 if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
477 Assert1(!ByValI || PTy->getElementType()->isSized(),
478 "Attribute " + Attribute::getAsString(ByValI) +
479 " does not support unsized types!", V);
480 } else {
481 Assert1(!ByValI,
482 "Attribute " + Attribute::getAsString(ByValI) +
483 " only applies to parameters with pointer type!", V);
487 // VerifyFunctionAttrs - Check parameter attributes against a function type.
488 // The value V is printed in error messages.
489 void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
490 const AttrListPtr &Attrs,
491 const Value *V) {
492 if (Attrs.isEmpty())
493 return;
495 bool SawNest = false;
497 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
498 const AttributeWithIndex &Attr = Attrs.getSlot(i);
500 const Type *Ty;
501 if (Attr.Index == 0)
502 Ty = FT->getReturnType();
503 else if (Attr.Index-1 < FT->getNumParams())
504 Ty = FT->getParamType(Attr.Index-1);
505 else
506 break; // VarArgs attributes, don't verify.
508 VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
510 if (Attr.Attrs & Attribute::Nest) {
511 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
512 SawNest = true;
515 if (Attr.Attrs & Attribute::StructRet)
516 Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
519 Attributes FAttrs = Attrs.getFnAttributes();
520 Assert1(!(FAttrs & (~Attribute::FunctionOnly)),
521 "Attribute " + Attribute::getAsString(FAttrs) +
522 " does not apply to function!", V);
524 for (unsigned i = 0;
525 i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
526 Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
527 Assert1(!(MutI & (MutI - 1)), "Attributes " +
528 Attribute::getAsString(MutI) + " are incompatible!", V);
532 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
533 if (Attrs.isEmpty())
534 return true;
536 unsigned LastSlot = Attrs.getNumSlots() - 1;
537 unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
538 if (LastIndex <= Params
539 || (LastIndex == (unsigned)~0
540 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
541 return true;
543 return false;
545 // visitFunction - Verify that a function is ok.
547 void Verifier::visitFunction(Function &F) {
548 // Check function arguments.
549 const FunctionType *FT = F.getFunctionType();
550 unsigned NumArgs = F.arg_size();
552 Assert2(FT->getNumParams() == NumArgs,
553 "# formal arguments must match # of arguments for function type!",
554 &F, FT);
555 Assert1(F.getReturnType()->isFirstClassType() ||
556 F.getReturnType() == Type::VoidTy ||
557 isa<StructType>(F.getReturnType()),
558 "Functions cannot return aggregate values!", &F);
560 Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy,
561 "Invalid struct return type!", &F);
563 const AttrListPtr &Attrs = F.getAttributes();
565 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
566 "Attributes after last parameter!", &F);
568 // Check function attributes.
569 VerifyFunctionAttrs(FT, Attrs, &F);
571 // Check that this function meets the restrictions on this calling convention.
572 switch (F.getCallingConv()) {
573 default:
574 break;
575 case CallingConv::C:
576 break;
577 case CallingConv::Fast:
578 case CallingConv::Cold:
579 case CallingConv::X86_FastCall:
580 Assert1(!F.isVarArg(),
581 "Varargs functions must have C calling conventions!", &F);
582 break;
585 // Check that the argument values match the function type for this function...
586 unsigned i = 0;
587 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
588 I != E; ++I, ++i) {
589 Assert2(I->getType() == FT->getParamType(i),
590 "Argument value does not match function argument type!",
591 I, FT->getParamType(i));
592 Assert1(I->getType()->isFirstClassType(),
593 "Function arguments must have first-class types!", I);
596 if (F.isDeclaration()) {
597 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
598 F.hasExternalWeakLinkage() || F.hasGhostLinkage(),
599 "invalid linkage type for function declaration", &F);
600 } else {
601 // Verify that this function (which has a body) is not named "llvm.*". It
602 // is not legal to define intrinsics.
603 if (F.getName().size() >= 5)
604 Assert1(F.getName().substr(0, 5) != "llvm.",
605 "llvm intrinsics cannot be defined!", &F);
607 // Check the entry node
608 BasicBlock *Entry = &F.getEntryBlock();
609 Assert1(pred_begin(Entry) == pred_end(Entry),
610 "Entry block to function must not have predecessors!", Entry);
615 // verifyBasicBlock - Verify that a basic block is well formed...
617 void Verifier::visitBasicBlock(BasicBlock &BB) {
618 InstsInThisBlock.clear();
620 // Ensure that basic blocks have terminators!
621 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
623 // Check constraints that this basic block imposes on all of the PHI nodes in
624 // it.
625 if (isa<PHINode>(BB.front())) {
626 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
627 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
628 std::sort(Preds.begin(), Preds.end());
629 PHINode *PN;
630 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
632 // Ensure that PHI nodes have at least one entry!
633 Assert1(PN->getNumIncomingValues() != 0,
634 "PHI nodes must have at least one entry. If the block is dead, "
635 "the PHI should be removed!", PN);
636 Assert1(PN->getNumIncomingValues() == Preds.size(),
637 "PHINode should have one entry for each predecessor of its "
638 "parent basic block!", PN);
640 // Get and sort all incoming values in the PHI node...
641 Values.clear();
642 Values.reserve(PN->getNumIncomingValues());
643 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
644 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
645 PN->getIncomingValue(i)));
646 std::sort(Values.begin(), Values.end());
648 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
649 // Check to make sure that if there is more than one entry for a
650 // particular basic block in this PHI node, that the incoming values are
651 // all identical.
653 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
654 Values[i].second == Values[i-1].second,
655 "PHI node has multiple entries for the same basic block with "
656 "different incoming values!", PN, Values[i].first,
657 Values[i].second, Values[i-1].second);
659 // Check to make sure that the predecessors and PHI node entries are
660 // matched up.
661 Assert3(Values[i].first == Preds[i],
662 "PHI node entries do not match predecessors!", PN,
663 Values[i].first, Preds[i]);
669 void Verifier::visitTerminatorInst(TerminatorInst &I) {
670 // Ensure that terminators only exist at the end of the basic block.
671 Assert1(&I == I.getParent()->getTerminator(),
672 "Terminator found in the middle of a basic block!", I.getParent());
673 visitInstruction(I);
676 void Verifier::visitReturnInst(ReturnInst &RI) {
677 Function *F = RI.getParent()->getParent();
678 unsigned N = RI.getNumOperands();
679 if (F->getReturnType() == Type::VoidTy)
680 Assert2(N == 0,
681 "Found return instr that returns non-void in Function of void "
682 "return type!", &RI, F->getReturnType());
683 else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
684 Assert1(!isMetadata(RI.getOperand(0)), "Invalid use of metadata!", &RI);
685 // Exactly one return value and it matches the return type. Good.
686 } else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
687 // The return type is a struct; check for multiple return values.
688 Assert2(STy->getNumElements() == N,
689 "Incorrect number of return values in ret instruction!",
690 &RI, F->getReturnType());
691 for (unsigned i = 0; i != N; ++i)
692 Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
693 "Function return type does not match operand "
694 "type of return inst!", &RI, F->getReturnType());
695 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
696 // The return type is an array; check for multiple return values.
697 Assert2(ATy->getNumElements() == N,
698 "Incorrect number of return values in ret instruction!",
699 &RI, F->getReturnType());
700 for (unsigned i = 0; i != N; ++i)
701 Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
702 "Function return type does not match operand "
703 "type of return inst!", &RI, F->getReturnType());
704 } else {
705 CheckFailed("Function return type does not match operand "
706 "type of return inst!", &RI, F->getReturnType());
709 // Check to make sure that the return value has necessary properties for
710 // terminators...
711 visitTerminatorInst(RI);
714 void Verifier::visitSwitchInst(SwitchInst &SI) {
715 // Check to make sure that all of the constants in the switch instruction
716 // have the same type as the switched-on value.
717 const Type *SwitchTy = SI.getCondition()->getType();
718 for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
719 Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
720 "Switch constants must all be same type as switch value!", &SI);
722 visitTerminatorInst(SI);
725 void Verifier::visitSelectInst(SelectInst &SI) {
726 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
727 SI.getOperand(2)),
728 "Invalid operands for select instruction!", &SI);
730 Assert1(SI.getTrueValue()->getType() == SI.getType(),
731 "Select values must have same type as select instruction!", &SI);
732 Assert1(!isMetadata(SI.getOperand(1)) && !isMetadata(SI.getOperand(2)),
733 "Invalid use of metadata!", &SI);
734 visitInstruction(SI);
738 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
739 /// a pass, if any exist, it's an error.
741 void Verifier::visitUserOp1(Instruction &I) {
742 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
745 void Verifier::visitTruncInst(TruncInst &I) {
746 // Get the source and destination types
747 const Type *SrcTy = I.getOperand(0)->getType();
748 const Type *DestTy = I.getType();
750 // Get the size of the types in bits, we'll need this later
751 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
752 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
754 Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I);
755 Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I);
756 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
757 "trunc source and destination must both be a vector or neither", &I);
758 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
760 visitInstruction(I);
763 void Verifier::visitZExtInst(ZExtInst &I) {
764 // Get the source and destination types
765 const Type *SrcTy = I.getOperand(0)->getType();
766 const Type *DestTy = I.getType();
768 // Get the size of the types in bits, we'll need this later
769 Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I);
770 Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I);
771 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
772 "zext source and destination must both be a vector or neither", &I);
773 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
774 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
776 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
778 visitInstruction(I);
781 void Verifier::visitSExtInst(SExtInst &I) {
782 // Get the source and destination types
783 const Type *SrcTy = I.getOperand(0)->getType();
784 const Type *DestTy = I.getType();
786 // Get the size of the types in bits, we'll need this later
787 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
788 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
790 Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I);
791 Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I);
792 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
793 "sext source and destination must both be a vector or neither", &I);
794 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
796 visitInstruction(I);
799 void Verifier::visitFPTruncInst(FPTruncInst &I) {
800 // Get the source and destination types
801 const Type *SrcTy = I.getOperand(0)->getType();
802 const Type *DestTy = I.getType();
803 // Get the size of the types in bits, we'll need this later
804 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
805 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
807 Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I);
808 Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I);
809 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
810 "fptrunc source and destination must both be a vector or neither",&I);
811 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
813 visitInstruction(I);
816 void Verifier::visitFPExtInst(FPExtInst &I) {
817 // Get the source and destination types
818 const Type *SrcTy = I.getOperand(0)->getType();
819 const Type *DestTy = I.getType();
821 // Get the size of the types in bits, we'll need this later
822 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
823 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
825 Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I);
826 Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I);
827 Assert1(isa<VectorType>(SrcTy) == isa<VectorType>(DestTy),
828 "fpext source and destination must both be a vector or neither", &I);
829 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
831 visitInstruction(I);
834 void Verifier::visitUIToFPInst(UIToFPInst &I) {
835 // Get the source and destination types
836 const Type *SrcTy = I.getOperand(0)->getType();
837 const Type *DestTy = I.getType();
839 bool SrcVec = isa<VectorType>(SrcTy);
840 bool DstVec = isa<VectorType>(DestTy);
842 Assert1(SrcVec == DstVec,
843 "UIToFP source and dest must both be vector or scalar", &I);
844 Assert1(SrcTy->isIntOrIntVector(),
845 "UIToFP source must be integer or integer vector", &I);
846 Assert1(DestTy->isFPOrFPVector(),
847 "UIToFP result must be FP or FP vector", &I);
849 if (SrcVec && DstVec)
850 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
851 cast<VectorType>(DestTy)->getNumElements(),
852 "UIToFP source and dest vector length mismatch", &I);
854 visitInstruction(I);
857 void Verifier::visitSIToFPInst(SIToFPInst &I) {
858 // Get the source and destination types
859 const Type *SrcTy = I.getOperand(0)->getType();
860 const Type *DestTy = I.getType();
862 bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
863 bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
865 Assert1(SrcVec == DstVec,
866 "SIToFP source and dest must both be vector or scalar", &I);
867 Assert1(SrcTy->isIntOrIntVector(),
868 "SIToFP source must be integer or integer vector", &I);
869 Assert1(DestTy->isFPOrFPVector(),
870 "SIToFP result must be FP or FP vector", &I);
872 if (SrcVec && DstVec)
873 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
874 cast<VectorType>(DestTy)->getNumElements(),
875 "SIToFP source and dest vector length mismatch", &I);
877 visitInstruction(I);
880 void Verifier::visitFPToUIInst(FPToUIInst &I) {
881 // Get the source and destination types
882 const Type *SrcTy = I.getOperand(0)->getType();
883 const Type *DestTy = I.getType();
885 bool SrcVec = isa<VectorType>(SrcTy);
886 bool DstVec = isa<VectorType>(DestTy);
888 Assert1(SrcVec == DstVec,
889 "FPToUI source and dest must both be vector or scalar", &I);
890 Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I);
891 Assert1(DestTy->isIntOrIntVector(),
892 "FPToUI result must be integer or integer vector", &I);
894 if (SrcVec && DstVec)
895 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
896 cast<VectorType>(DestTy)->getNumElements(),
897 "FPToUI source and dest vector length mismatch", &I);
899 visitInstruction(I);
902 void Verifier::visitFPToSIInst(FPToSIInst &I) {
903 // Get the source and destination types
904 const Type *SrcTy = I.getOperand(0)->getType();
905 const Type *DestTy = I.getType();
907 bool SrcVec = isa<VectorType>(SrcTy);
908 bool DstVec = isa<VectorType>(DestTy);
910 Assert1(SrcVec == DstVec,
911 "FPToSI source and dest must both be vector or scalar", &I);
912 Assert1(SrcTy->isFPOrFPVector(),
913 "FPToSI source must be FP or FP vector", &I);
914 Assert1(DestTy->isIntOrIntVector(),
915 "FPToSI result must be integer or integer vector", &I);
917 if (SrcVec && DstVec)
918 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
919 cast<VectorType>(DestTy)->getNumElements(),
920 "FPToSI source and dest vector length mismatch", &I);
922 visitInstruction(I);
925 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
926 // Get the source and destination types
927 const Type *SrcTy = I.getOperand(0)->getType();
928 const Type *DestTy = I.getType();
930 Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
931 Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
933 visitInstruction(I);
936 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
937 // Get the source and destination types
938 const Type *SrcTy = I.getOperand(0)->getType();
939 const Type *DestTy = I.getType();
941 Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
942 Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
944 visitInstruction(I);
947 void Verifier::visitBitCastInst(BitCastInst &I) {
948 // Get the source and destination types
949 const Type *SrcTy = I.getOperand(0)->getType();
950 const Type *DestTy = I.getType();
952 // Get the size of the types in bits, we'll need this later
953 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
954 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
956 // BitCast implies a no-op cast of type only. No bits change.
957 // However, you can't cast pointers to anything but pointers.
958 Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
959 "Bitcast requires both operands to be pointer or neither", &I);
960 Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
962 // Disallow aggregates.
963 Assert1(!SrcTy->isAggregateType(),
964 "Bitcast operand must not be aggregate", &I);
965 Assert1(!DestTy->isAggregateType(),
966 "Bitcast type must not be aggregate", &I);
968 visitInstruction(I);
971 /// visitPHINode - Ensure that a PHI node is well formed.
973 void Verifier::visitPHINode(PHINode &PN) {
974 // Ensure that the PHI nodes are all grouped together at the top of the block.
975 // This can be tested by checking whether the instruction before this is
976 // either nonexistent (because this is begin()) or is a PHI node. If not,
977 // then there is some other instruction before a PHI.
978 Assert2(&PN == &PN.getParent()->front() ||
979 isa<PHINode>(--BasicBlock::iterator(&PN)),
980 "PHI nodes not grouped at top of basic block!",
981 &PN, PN.getParent());
983 // Check that all of the operands of the PHI node have the same type as the
984 // result.
985 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
986 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
987 "PHI node operands are not the same type as the result!", &PN);
989 // Check that it's not a PHI of metadata.
990 if (PN.getType() == Type::EmptyStructTy) {
991 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
992 Assert1(!isMetadata(PN.getIncomingValue(i)),
993 "Invalid use of metadata!", &PN);
996 // All other PHI node constraints are checked in the visitBasicBlock method.
998 visitInstruction(PN);
1001 void Verifier::VerifyCallSite(CallSite CS) {
1002 Instruction *I = CS.getInstruction();
1004 Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
1005 "Called function must be a pointer!", I);
1006 const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1007 Assert1(isa<FunctionType>(FPTy->getElementType()),
1008 "Called function is not pointer to function type!", I);
1010 const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1012 // Verify that the correct number of arguments are being passed
1013 if (FTy->isVarArg())
1014 Assert1(CS.arg_size() >= FTy->getNumParams(),
1015 "Called function requires more parameters than were provided!",I);
1016 else
1017 Assert1(CS.arg_size() == FTy->getNumParams(),
1018 "Incorrect number of arguments passed to called function!", I);
1020 // Verify that all arguments to the call match the function type...
1021 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1022 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1023 "Call parameter type does not match function signature!",
1024 CS.getArgument(i), FTy->getParamType(i), I);
1026 if (CS.getCalledValue()->getNameLen() < 5 ||
1027 strncmp(CS.getCalledValue()->getNameStart(), "llvm.", 5) != 0) {
1028 // Verify that none of the arguments are metadata...
1029 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1030 Assert2(!isMetadata(CS.getArgument(i)), "Invalid use of metadata!",
1031 CS.getArgument(i), I);
1034 const AttrListPtr &Attrs = CS.getAttributes();
1036 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1037 "Attributes after last parameter!", I);
1039 // Verify call attributes.
1040 VerifyFunctionAttrs(FTy, Attrs, I);
1042 if (FTy->isVarArg())
1043 // Check attributes on the varargs part.
1044 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1045 Attributes Attr = Attrs.getParamAttributes(Idx);
1047 VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
1049 Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
1050 Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
1051 " cannot be used for vararg call arguments!", I);
1054 visitInstruction(*I);
1057 void Verifier::visitCallInst(CallInst &CI) {
1058 VerifyCallSite(&CI);
1060 if (Function *F = CI.getCalledFunction())
1061 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1062 visitIntrinsicFunctionCall(ID, CI);
1065 void Verifier::visitInvokeInst(InvokeInst &II) {
1066 VerifyCallSite(&II);
1069 /// visitBinaryOperator - Check that both arguments to the binary operator are
1070 /// of the same type!
1072 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1073 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1074 "Both operands to a binary operator are not of the same type!", &B);
1076 switch (B.getOpcode()) {
1077 // Check that logical operators are only used with integral operands.
1078 case Instruction::And:
1079 case Instruction::Or:
1080 case Instruction::Xor:
1081 Assert1(B.getType()->isInteger() ||
1082 (isa<VectorType>(B.getType()) &&
1083 cast<VectorType>(B.getType())->getElementType()->isInteger()),
1084 "Logical operators only work with integral types!", &B);
1085 Assert1(B.getType() == B.getOperand(0)->getType(),
1086 "Logical operators must have same type for operands and result!",
1087 &B);
1088 break;
1089 case Instruction::Shl:
1090 case Instruction::LShr:
1091 case Instruction::AShr:
1092 Assert1(B.getType()->isInteger() ||
1093 (isa<VectorType>(B.getType()) &&
1094 cast<VectorType>(B.getType())->getElementType()->isInteger()),
1095 "Shifts only work with integral types!", &B);
1096 Assert1(B.getType() == B.getOperand(0)->getType(),
1097 "Shift return type must be same as operands!", &B);
1098 /* FALL THROUGH */
1099 default:
1100 // Arithmetic operators only work on integer or fp values
1101 Assert1(B.getType() == B.getOperand(0)->getType(),
1102 "Arithmetic operators must have same type for operands and result!",
1103 &B);
1104 Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
1105 isa<VectorType>(B.getType()),
1106 "Arithmetic operators must have integer, fp, or vector type!", &B);
1107 break;
1110 visitInstruction(B);
1113 void Verifier::visitICmpInst(ICmpInst& IC) {
1114 // Check that the operands are the same type
1115 const Type* Op0Ty = IC.getOperand(0)->getType();
1116 const Type* Op1Ty = IC.getOperand(1)->getType();
1117 Assert1(Op0Ty == Op1Ty,
1118 "Both operands to ICmp instruction are not of the same type!", &IC);
1119 // Check that the operands are the right type
1120 Assert1(Op0Ty->isIntOrIntVector() || isa<PointerType>(Op0Ty),
1121 "Invalid operand types for ICmp instruction", &IC);
1122 visitInstruction(IC);
1125 void Verifier::visitFCmpInst(FCmpInst& FC) {
1126 // Check that the operands are the same type
1127 const Type* Op0Ty = FC.getOperand(0)->getType();
1128 const Type* Op1Ty = FC.getOperand(1)->getType();
1129 Assert1(Op0Ty == Op1Ty,
1130 "Both operands to FCmp instruction are not of the same type!", &FC);
1131 // Check that the operands are the right type
1132 Assert1(Op0Ty->isFPOrFPVector(),
1133 "Invalid operand types for FCmp instruction", &FC);
1134 visitInstruction(FC);
1137 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1138 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1139 EI.getOperand(1)),
1140 "Invalid extractelement operands!", &EI);
1141 visitInstruction(EI);
1144 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1145 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1146 IE.getOperand(1),
1147 IE.getOperand(2)),
1148 "Invalid insertelement operands!", &IE);
1149 visitInstruction(IE);
1152 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1153 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1154 SV.getOperand(2)),
1155 "Invalid shufflevector operands!", &SV);
1157 const VectorType *VTy = dyn_cast<VectorType>(SV.getOperand(0)->getType());
1158 Assert1(VTy, "Operands are not a vector type", &SV);
1160 // Check to see if Mask is valid.
1161 if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
1162 for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1163 if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1164 Assert1(!CI->uge(VTy->getNumElements()*2),
1165 "Invalid shufflevector shuffle mask!", &SV);
1166 } else {
1167 Assert1(isa<UndefValue>(MV->getOperand(i)),
1168 "Invalid shufflevector shuffle mask!", &SV);
1171 } else {
1172 Assert1(isa<UndefValue>(SV.getOperand(2)) ||
1173 isa<ConstantAggregateZero>(SV.getOperand(2)),
1174 "Invalid shufflevector shuffle mask!", &SV);
1177 visitInstruction(SV);
1180 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1181 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1182 const Type *ElTy =
1183 GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
1184 Idxs.begin(), Idxs.end());
1185 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1186 Assert2(isa<PointerType>(GEP.getType()) &&
1187 cast<PointerType>(GEP.getType())->getElementType() == ElTy,
1188 "GEP is not of right type for indices!", &GEP, ElTy);
1189 visitInstruction(GEP);
1192 void Verifier::visitLoadInst(LoadInst &LI) {
1193 const Type *ElTy =
1194 cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
1195 Assert2(ElTy == LI.getType(),
1196 "Load result type does not match pointer operand type!", &LI, ElTy);
1197 visitInstruction(LI);
1200 void Verifier::visitStoreInst(StoreInst &SI) {
1201 const Type *ElTy =
1202 cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
1203 Assert2(ElTy == SI.getOperand(0)->getType(),
1204 "Stored value type does not match pointer operand type!", &SI, ElTy);
1205 Assert1(!isMetadata(SI.getOperand(0)), "Invalid use of metadata!", &SI);
1206 visitInstruction(SI);
1209 void Verifier::visitAllocationInst(AllocationInst &AI) {
1210 const PointerType *PTy = AI.getType();
1211 Assert1(PTy->getAddressSpace() == 0,
1212 "Allocation instruction pointer not in the generic address space!",
1213 &AI);
1214 Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
1215 &AI);
1216 visitInstruction(AI);
1219 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1220 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1221 EVI.idx_begin(), EVI.idx_end()) ==
1222 EVI.getType(),
1223 "Invalid ExtractValueInst operands!", &EVI);
1225 visitInstruction(EVI);
1228 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1229 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1230 IVI.idx_begin(), IVI.idx_end()) ==
1231 IVI.getOperand(1)->getType(),
1232 "Invalid InsertValueInst operands!", &IVI);
1234 visitInstruction(IVI);
1237 /// verifyInstruction - Verify that an instruction is well formed.
1239 void Verifier::visitInstruction(Instruction &I) {
1240 BasicBlock *BB = I.getParent();
1241 Assert1(BB, "Instruction not embedded in basic block!", &I);
1243 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
1244 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
1245 UI != UE; ++UI)
1246 Assert1(*UI != (User*)&I ||
1247 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1248 "Only PHI nodes may reference their own value!", &I);
1251 // Verify that if this is a terminator that it is at the end of the block.
1252 if (isa<TerminatorInst>(I))
1253 Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
1256 // Check that void typed values don't have names
1257 Assert1(I.getType() != Type::VoidTy || !I.hasName(),
1258 "Instruction has a name, but provides a void value!", &I);
1260 // Check that the return value of the instruction is either void or a legal
1261 // value type.
1262 Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
1263 || ((isa<CallInst>(I) || isa<InvokeInst>(I))
1264 && isa<StructType>(I.getType())),
1265 "Instruction returns a non-scalar type!", &I);
1267 // Check that all uses of the instruction, if they are instructions
1268 // themselves, actually have parent basic blocks. If the use is not an
1269 // instruction, it is an error!
1270 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
1271 UI != UE; ++UI) {
1272 Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
1273 *UI);
1274 Instruction *Used = cast<Instruction>(*UI);
1275 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
1276 " embedded in a basic block!", &I, Used);
1279 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1280 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
1282 // Check to make sure that only first-class-values are operands to
1283 // instructions.
1284 if (!I.getOperand(i)->getType()->isFirstClassType()) {
1285 Assert1(0, "Instruction operands must be first-class values!", &I);
1288 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
1289 // Check to make sure that the "address of" an intrinsic function is never
1290 // taken.
1291 Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
1292 "Cannot take the address of an intrinsic!", &I);
1293 Assert1(F->getParent() == Mod, "Referencing function in another module!",
1294 &I);
1295 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
1296 Assert1(OpBB->getParent() == BB->getParent(),
1297 "Referring to a basic block in another function!", &I);
1298 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
1299 Assert1(OpArg->getParent() == BB->getParent(),
1300 "Referring to an argument in another function!", &I);
1301 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
1302 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
1303 &I);
1304 } else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
1305 BasicBlock *OpBlock = Op->getParent();
1307 // Check that a definition dominates all of its uses.
1308 if (!isa<PHINode>(I)) {
1309 // Invoke results are only usable in the normal destination, not in the
1310 // exceptional destination.
1311 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
1312 OpBlock = II->getNormalDest();
1314 Assert2(OpBlock != II->getUnwindDest(),
1315 "No uses of invoke possible due to dominance structure!",
1316 Op, II);
1318 // If the normal successor of an invoke instruction has multiple
1319 // predecessors, then the normal edge from the invoke is critical, so
1320 // the invoke value can only be live if the destination block
1321 // dominates all of it's predecessors (other than the invoke) or if
1322 // the invoke value is only used by a phi in the successor.
1323 if (!OpBlock->getSinglePredecessor() &&
1324 DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
1325 // The first case we allow is if the use is a PHI operand in the
1326 // normal block, and if that PHI operand corresponds to the invoke's
1327 // block.
1328 bool Bad = true;
1329 if (PHINode *PN = dyn_cast<PHINode>(&I))
1330 if (PN->getParent() == OpBlock &&
1331 PN->getIncomingBlock(i/2) == Op->getParent())
1332 Bad = false;
1334 // If it is used by something non-phi, then the other case is that
1335 // 'OpBlock' dominates all of its predecessors other than the
1336 // invoke. In this case, the invoke value can still be used.
1337 if (Bad) {
1338 Bad = false;
1339 for (pred_iterator PI = pred_begin(OpBlock),
1340 E = pred_end(OpBlock); PI != E; ++PI) {
1341 if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
1342 Bad = true;
1343 break;
1347 Assert2(!Bad,
1348 "Invoke value defined on critical edge but not dead!", &I,
1349 Op);
1351 } else if (OpBlock == BB) {
1352 // If they are in the same basic block, make sure that the definition
1353 // comes before the use.
1354 Assert2(InstsInThisBlock.count(Op) ||
1355 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1356 "Instruction does not dominate all uses!", Op, &I);
1359 // Definition must dominate use unless use is unreachable!
1360 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
1361 !DT->dominates(&BB->getParent()->getEntryBlock(), BB),
1362 "Instruction does not dominate all uses!", Op, &I);
1363 } else {
1364 // PHI nodes are more difficult than other nodes because they actually
1365 // "use" the value in the predecessor basic blocks they correspond to.
1366 BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
1367 Assert2(DT->dominates(OpBlock, PredBB) ||
1368 !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
1369 "Instruction does not dominate all uses!", Op, &I);
1371 } else if (isa<InlineAsm>(I.getOperand(i))) {
1372 Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
1373 "Cannot take the address of an inline asm!", &I);
1376 InstsInThisBlock.insert(&I);
1379 // Flags used by TableGen to mark intrinsic parameters with the
1380 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1381 static const unsigned ExtendedElementVectorType = 0x40000000;
1382 static const unsigned TruncatedElementVectorType = 0x20000000;
1384 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1386 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
1387 Function *IF = CI.getCalledFunction();
1388 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
1389 IF);
1391 #define GET_INTRINSIC_VERIFIER
1392 #include "llvm/Intrinsics.gen"
1393 #undef GET_INTRINSIC_VERIFIER
1395 switch (ID) {
1396 default:
1397 break;
1398 case Intrinsic::dbg_declare: // llvm.dbg.declare
1399 if (Constant *C = dyn_cast<Constant>(CI.getOperand(1)))
1400 Assert1(C && !isa<ConstantPointerNull>(C),
1401 "invalid llvm.dbg.declare intrinsic call", &CI);
1402 break;
1403 case Intrinsic::memcpy:
1404 case Intrinsic::memmove:
1405 case Intrinsic::memset:
1406 Assert1(isa<ConstantInt>(CI.getOperand(4)),
1407 "alignment argument of memory intrinsics must be a constant int",
1408 &CI);
1409 break;
1410 case Intrinsic::gcroot:
1411 case Intrinsic::gcwrite:
1412 case Intrinsic::gcread:
1413 if (ID == Intrinsic::gcroot) {
1414 AllocaInst *AI =
1415 dyn_cast<AllocaInst>(CI.getOperand(1)->stripPointerCasts());
1416 Assert1(AI && isa<PointerType>(AI->getType()->getElementType()),
1417 "llvm.gcroot parameter #1 must be a pointer alloca.", &CI);
1418 Assert1(isa<Constant>(CI.getOperand(2)),
1419 "llvm.gcroot parameter #2 must be a constant.", &CI);
1422 Assert1(CI.getParent()->getParent()->hasGC(),
1423 "Enclosing function does not use GC.", &CI);
1424 break;
1425 case Intrinsic::init_trampoline:
1426 Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()),
1427 "llvm.init_trampoline parameter #2 must resolve to a function.",
1428 &CI);
1429 break;
1430 case Intrinsic::prefetch:
1431 Assert1(isa<ConstantInt>(CI.getOperand(2)) &&
1432 isa<ConstantInt>(CI.getOperand(3)) &&
1433 cast<ConstantInt>(CI.getOperand(2))->getZExtValue() < 2 &&
1434 cast<ConstantInt>(CI.getOperand(3))->getZExtValue() < 4,
1435 "invalid arguments to llvm.prefetch",
1436 &CI);
1437 break;
1438 case Intrinsic::stackprotector:
1439 Assert1(isa<AllocaInst>(CI.getOperand(2)->stripPointerCasts()),
1440 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1441 &CI);
1442 break;
1446 /// Produce a string to identify an intrinsic parameter or return value.
1447 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1448 /// parameters beginning with NumRets.
1450 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
1451 if (ArgNo < NumRets) {
1452 if (NumRets == 1)
1453 return "Intrinsic result type";
1454 else
1455 return "Intrinsic result type #" + utostr(ArgNo);
1456 } else
1457 return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
1460 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty,
1461 int VT, unsigned ArgNo, std::string &Suffix) {
1462 const FunctionType *FTy = F->getFunctionType();
1464 unsigned NumElts = 0;
1465 const Type *EltTy = Ty;
1466 const VectorType *VTy = dyn_cast<VectorType>(Ty);
1467 if (VTy) {
1468 EltTy = VTy->getElementType();
1469 NumElts = VTy->getNumElements();
1472 const Type *RetTy = FTy->getReturnType();
1473 const StructType *ST = dyn_cast<StructType>(RetTy);
1474 unsigned NumRets = 1;
1475 if (ST)
1476 NumRets = ST->getNumElements();
1478 if (VT < 0) {
1479 int Match = ~VT;
1481 // Check flags that indicate a type that is an integral vector type with
1482 // elements that are larger or smaller than the elements of the matched
1483 // type.
1484 if ((Match & (ExtendedElementVectorType |
1485 TruncatedElementVectorType)) != 0) {
1486 const IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
1487 if (!VTy || !IEltTy) {
1488 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
1489 "an integral vector type.", F);
1490 return false;
1492 // Adjust the current Ty (in the opposite direction) rather than
1493 // the type being matched against.
1494 if ((Match & ExtendedElementVectorType) != 0) {
1495 if ((IEltTy->getBitWidth() & 1) != 0) {
1496 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector "
1497 "element bit-width is odd.", F);
1498 return false;
1500 Ty = VectorType::getTruncatedElementVectorType(VTy);
1501 } else
1502 Ty = VectorType::getExtendedElementVectorType(VTy);
1503 Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
1506 if (Match <= static_cast<int>(NumRets - 1)) {
1507 if (ST)
1508 RetTy = ST->getElementType(Match);
1510 if (Ty != RetTy) {
1511 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
1512 "match return type.", F);
1513 return false;
1515 } else {
1516 if (Ty != FTy->getParamType(Match - 1)) {
1517 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not "
1518 "match parameter %" + utostr(Match - 1) + ".", F);
1519 return false;
1522 } else if (VT == MVT::iAny) {
1523 if (!EltTy->isInteger()) {
1524 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
1525 "an integer type.", F);
1526 return false;
1529 unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
1530 Suffix += ".";
1532 if (EltTy != Ty)
1533 Suffix += "v" + utostr(NumElts);
1535 Suffix += "i" + utostr(GotBits);
1537 // Check some constraints on various intrinsics.
1538 switch (ID) {
1539 default: break; // Not everything needs to be checked.
1540 case Intrinsic::bswap:
1541 if (GotBits < 16 || GotBits % 16 != 0) {
1542 CheckFailed("Intrinsic requires even byte width argument", F);
1543 return false;
1545 break;
1547 } else if (VT == MVT::fAny) {
1548 if (!EltTy->isFloatingPoint()) {
1549 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not "
1550 "a floating-point type.", F);
1551 return false;
1554 Suffix += ".";
1556 if (EltTy != Ty)
1557 Suffix += "v" + utostr(NumElts);
1559 Suffix += MVT::getMVT(EltTy).getMVTString();
1560 } else if (VT == MVT::iPTR) {
1561 if (!isa<PointerType>(Ty)) {
1562 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
1563 "pointer and a pointer is required.", F);
1564 return false;
1566 } else if (VT == MVT::iPTRAny) {
1567 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1568 // and iPTR. In the verifier, we can not distinguish which case we have so
1569 // allow either case to be legal.
1570 if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
1571 Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
1572 MVT::getMVT(PTyp->getElementType()).getMVTString();
1573 } else {
1574 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a "
1575 "pointer and a pointer is required.", F);
1576 return false;
1578 } else if (MVT((MVT::SimpleValueType)VT).isVector()) {
1579 MVT VVT = MVT((MVT::SimpleValueType)VT);
1581 // If this is a vector argument, verify the number and type of elements.
1582 if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) {
1583 CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
1584 return false;
1587 if (VVT.getVectorNumElements() != NumElts) {
1588 CheckFailed("Intrinsic prototype has incorrect number of "
1589 "vector elements!", F);
1590 return false;
1592 } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) {
1593 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F);
1594 return false;
1595 } else if (EltTy != Ty) {
1596 CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector "
1597 "and a scalar is required.", F);
1598 return false;
1601 return true;
1604 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1605 /// Intrinsics.gen. This implements a little state machine that verifies the
1606 /// prototype of intrinsics.
1607 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
1608 unsigned RetNum,
1609 unsigned ParamNum, ...) {
1610 va_list VA;
1611 va_start(VA, ParamNum);
1612 const FunctionType *FTy = F->getFunctionType();
1614 // For overloaded intrinsics, the Suffix of the function name must match the
1615 // types of the arguments. This variable keeps track of the expected
1616 // suffix, to be checked at the end.
1617 std::string Suffix;
1619 if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) {
1620 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
1621 return;
1624 const Type *Ty = FTy->getReturnType();
1625 const StructType *ST = dyn_cast<StructType>(Ty);
1627 // Verify the return types.
1628 if (ST && ST->getNumElements() != RetNum) {
1629 CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
1630 return;
1633 for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) {
1634 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1636 if (ST) Ty = ST->getElementType(ArgNo);
1638 if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
1639 break;
1642 // Verify the parameter types.
1643 for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) {
1644 int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
1646 if (VT == MVT::isVoid && ArgNo > 0) {
1647 if (!FTy->isVarArg())
1648 CheckFailed("Intrinsic prototype has no '...'!", F);
1649 break;
1652 if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum,
1653 Suffix))
1654 break;
1657 va_end(VA);
1659 // For intrinsics without pointer arguments, if we computed a Suffix then the
1660 // intrinsic is overloaded and we need to make sure that the name of the
1661 // function is correct. We add the suffix to the name of the intrinsic and
1662 // compare against the given function name. If they are not the same, the
1663 // function name is invalid. This ensures that overloading of intrinsics
1664 // uses a sane and consistent naming convention. Note that intrinsics with
1665 // pointer argument may or may not be overloaded so we will check assuming it
1666 // has a suffix and not.
1667 if (!Suffix.empty()) {
1668 std::string Name(Intrinsic::getName(ID));
1669 if (Name + Suffix != F->getName()) {
1670 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1671 F->getName().substr(Name.length()) + "'. It should be '" +
1672 Suffix + "'", F);
1676 // Check parameter attributes.
1677 Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
1678 "Intrinsic has wrong parameter attributes!", F);
1682 //===----------------------------------------------------------------------===//
1683 // Implement the public interfaces to this file...
1684 //===----------------------------------------------------------------------===//
1686 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
1687 return new Verifier(action);
1691 // verifyFunction - Create
1692 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
1693 Function &F = const_cast<Function&>(f);
1694 assert(!F.isDeclaration() && "Cannot verify external functions");
1696 ExistingModuleProvider MP(F.getParent());
1697 FunctionPassManager FPM(&MP);
1698 Verifier *V = new Verifier(action);
1699 FPM.add(V);
1700 FPM.run(F);
1701 MP.releaseModule();
1702 return V->Broken;
1705 /// verifyModule - Check a module for errors, printing messages on stderr.
1706 /// Return true if the module is corrupt.
1708 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
1709 std::string *ErrorInfo) {
1710 PassManager PM;
1711 Verifier *V = new Verifier(action);
1712 PM.add(V);
1713 PM.run(const_cast<Module&>(M));
1715 if (ErrorInfo && V->Broken)
1716 *ErrorInfo = V->msgs.str();
1717 return V->Broken;
1720 // vim: sw=2