Don't skip the CopyMI when removing kill markers.
[llvm/msp430.git] / lib / CodeGen / SimpleRegisterCoalescing.cpp
blob520ecb3c4d61b8977463170977cbd9920194cbe1
1 //===-- SimpleRegisterCoalescing.cpp - Register Coalescing ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a simple register coalescing pass that attempts to
11 // aggressively coalesce every register copy that it can.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "regcoalescing"
16 #include "SimpleRegisterCoalescing.h"
17 #include "VirtRegMap.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/Value.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/RegisterCoalescer.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include <algorithm>
35 #include <cmath>
36 using namespace llvm;
38 STATISTIC(numJoins , "Number of interval joins performed");
39 STATISTIC(numCrossRCs , "Number of cross class joins performed");
40 STATISTIC(numCommutes , "Number of instruction commuting performed");
41 STATISTIC(numExtends , "Number of copies extended");
42 STATISTIC(NumReMats , "Number of instructions re-materialized");
43 STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
44 STATISTIC(numAborts , "Number of times interval joining aborted");
45 STATISTIC(numDeadValNo, "Number of valno def marked dead");
47 char SimpleRegisterCoalescing::ID = 0;
48 static cl::opt<bool>
49 EnableJoining("join-liveintervals",
50 cl::desc("Coalesce copies (default=true)"),
51 cl::init(true));
53 static cl::opt<bool>
54 NewHeuristic("new-coalescer-heuristic",
55 cl::desc("Use new coalescer heuristic"),
56 cl::init(false), cl::Hidden);
58 static cl::opt<bool>
59 CrossClassJoin("join-cross-class-copies",
60 cl::desc("Coalesce cross register class copies"),
61 cl::init(false), cl::Hidden);
63 static RegisterPass<SimpleRegisterCoalescing>
64 X("simple-register-coalescing", "Simple Register Coalescing");
66 // Declare that we implement the RegisterCoalescer interface
67 static RegisterAnalysisGroup<RegisterCoalescer, true/*The Default*/> V(X);
69 const PassInfo *const llvm::SimpleRegisterCoalescingID = &X;
71 void SimpleRegisterCoalescing::getAnalysisUsage(AnalysisUsage &AU) const {
72 AU.addRequired<LiveIntervals>();
73 AU.addPreserved<LiveIntervals>();
74 AU.addRequired<MachineLoopInfo>();
75 AU.addPreserved<MachineLoopInfo>();
76 AU.addPreservedID(MachineDominatorsID);
77 if (StrongPHIElim)
78 AU.addPreservedID(StrongPHIEliminationID);
79 else
80 AU.addPreservedID(PHIEliminationID);
81 AU.addPreservedID(TwoAddressInstructionPassID);
82 MachineFunctionPass::getAnalysisUsage(AU);
85 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
86 /// being the source and IntB being the dest, thus this defines a value number
87 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
88 /// see if we can merge these two pieces of B into a single value number,
89 /// eliminating a copy. For example:
90 ///
91 /// A3 = B0
92 /// ...
93 /// B1 = A3 <- this copy
94 ///
95 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
96 /// value number to be replaced with B0 (which simplifies the B liveinterval).
97 ///
98 /// This returns true if an interval was modified.
99 ///
100 bool SimpleRegisterCoalescing::AdjustCopiesBackFrom(LiveInterval &IntA,
101 LiveInterval &IntB,
102 MachineInstr *CopyMI) {
103 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
105 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
106 // the example above.
107 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
108 assert(BLR != IntB.end() && "Live range not found!");
109 VNInfo *BValNo = BLR->valno;
111 // Get the location that B is defined at. Two options: either this value has
112 // an unknown definition point or it is defined at CopyIdx. If unknown, we
113 // can't process it.
114 if (!BValNo->copy) return false;
115 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
117 // AValNo is the value number in A that defines the copy, A3 in the example.
118 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
119 assert(ALR != IntA.end() && "Live range not found!");
120 VNInfo *AValNo = ALR->valno;
121 // If it's re-defined by an early clobber somewhere in the live range, then
122 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
123 // See PR3149:
124 // 172 %ECX<def> = MOV32rr %reg1039<kill>
125 // 180 INLINEASM <es:subl $5,$1
126 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
127 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
128 // 188 %EAX<def> = MOV32rr %EAX<kill>
129 // 196 %ECX<def> = MOV32rr %ECX<kill>
130 // 204 %ECX<def> = MOV32rr %ECX<kill>
131 // 212 %EAX<def> = MOV32rr %EAX<kill>
132 // 220 %EAX<def> = MOV32rr %EAX
133 // 228 %reg1039<def> = MOV32rr %ECX<kill>
134 // The early clobber operand ties ECX input to the ECX def.
136 // The live interval of ECX is represented as this:
137 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
138 // The coalescer has no idea there was a def in the middle of [174,230].
139 if (AValNo->redefByEC)
140 return false;
142 // If AValNo is defined as a copy from IntB, we can potentially process this.
143 // Get the instruction that defines this value number.
144 unsigned SrcReg = li_->getVNInfoSourceReg(AValNo);
145 if (!SrcReg) return false; // Not defined by a copy.
147 // If the value number is not defined by a copy instruction, ignore it.
149 // If the source register comes from an interval other than IntB, we can't
150 // handle this.
151 if (SrcReg != IntB.reg) return false;
153 // Get the LiveRange in IntB that this value number starts with.
154 LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNo->def-1);
155 assert(ValLR != IntB.end() && "Live range not found!");
157 // Make sure that the end of the live range is inside the same block as
158 // CopyMI.
159 MachineInstr *ValLREndInst = li_->getInstructionFromIndex(ValLR->end-1);
160 if (!ValLREndInst ||
161 ValLREndInst->getParent() != CopyMI->getParent()) return false;
163 // Okay, we now know that ValLR ends in the same block that the CopyMI
164 // live-range starts. If there are no intervening live ranges between them in
165 // IntB, we can merge them.
166 if (ValLR+1 != BLR) return false;
168 // If a live interval is a physical register, conservatively check if any
169 // of its sub-registers is overlapping the live interval of the virtual
170 // register. If so, do not coalesce.
171 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg) &&
172 *tri_->getSubRegisters(IntB.reg)) {
173 for (const unsigned* SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR)
174 if (li_->hasInterval(*SR) && IntA.overlaps(li_->getInterval(*SR))) {
175 DOUT << "Interfere with sub-register ";
176 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
177 return false;
181 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
183 unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
184 // We are about to delete CopyMI, so need to remove it as the 'instruction
185 // that defines this value #'. Update the the valnum with the new defining
186 // instruction #.
187 BValNo->def = FillerStart;
188 BValNo->copy = NULL;
190 // Okay, we can merge them. We need to insert a new liverange:
191 // [ValLR.end, BLR.begin) of either value number, then we merge the
192 // two value numbers.
193 IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
195 // If the IntB live range is assigned to a physical register, and if that
196 // physreg has sub-registers, update their live intervals as well.
197 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
198 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
199 LiveInterval &SRLI = li_->getInterval(*SR);
200 SRLI.addRange(LiveRange(FillerStart, FillerEnd,
201 SRLI.getNextValue(FillerStart, 0, li_->getVNInfoAllocator())));
205 // Okay, merge "B1" into the same value number as "B0".
206 if (BValNo != ValLR->valno) {
207 IntB.addKills(ValLR->valno, BValNo->kills);
208 IntB.MergeValueNumberInto(BValNo, ValLR->valno);
210 DOUT << " result = "; IntB.print(DOUT, tri_);
211 DOUT << "\n";
213 // If the source instruction was killing the source register before the
214 // merge, unset the isKill marker given the live range has been extended.
215 int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
216 if (UIdx != -1) {
217 ValLREndInst->getOperand(UIdx).setIsKill(false);
218 IntB.removeKill(ValLR->valno, FillerStart);
221 ++numExtends;
222 return true;
225 /// HasOtherReachingDefs - Return true if there are definitions of IntB
226 /// other than BValNo val# that can reach uses of AValno val# of IntA.
227 bool SimpleRegisterCoalescing::HasOtherReachingDefs(LiveInterval &IntA,
228 LiveInterval &IntB,
229 VNInfo *AValNo,
230 VNInfo *BValNo) {
231 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
232 AI != AE; ++AI) {
233 if (AI->valno != AValNo) continue;
234 LiveInterval::Ranges::iterator BI =
235 std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
236 if (BI != IntB.ranges.begin())
237 --BI;
238 for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
239 if (BI->valno == BValNo)
240 continue;
241 if (BI->start <= AI->start && BI->end > AI->start)
242 return true;
243 if (BI->start > AI->start && BI->start < AI->end)
244 return true;
247 return false;
250 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with IntA
251 /// being the source and IntB being the dest, thus this defines a value number
252 /// in IntB. If the source value number (in IntA) is defined by a commutable
253 /// instruction and its other operand is coalesced to the copy dest register,
254 /// see if we can transform the copy into a noop by commuting the definition. For
255 /// example,
257 /// A3 = op A2 B0<kill>
258 /// ...
259 /// B1 = A3 <- this copy
260 /// ...
261 /// = op A3 <- more uses
263 /// ==>
265 /// B2 = op B0 A2<kill>
266 /// ...
267 /// B1 = B2 <- now an identify copy
268 /// ...
269 /// = op B2 <- more uses
271 /// This returns true if an interval was modified.
273 bool SimpleRegisterCoalescing::RemoveCopyByCommutingDef(LiveInterval &IntA,
274 LiveInterval &IntB,
275 MachineInstr *CopyMI) {
276 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
278 // FIXME: For now, only eliminate the copy by commuting its def when the
279 // source register is a virtual register. We want to guard against cases
280 // where the copy is a back edge copy and commuting the def lengthen the
281 // live interval of the source register to the entire loop.
282 if (TargetRegisterInfo::isPhysicalRegister(IntA.reg))
283 return false;
285 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
286 // the example above.
287 LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
288 assert(BLR != IntB.end() && "Live range not found!");
289 VNInfo *BValNo = BLR->valno;
291 // Get the location that B is defined at. Two options: either this value has
292 // an unknown definition point or it is defined at CopyIdx. If unknown, we
293 // can't process it.
294 if (!BValNo->copy) return false;
295 assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
297 // AValNo is the value number in A that defines the copy, A3 in the example.
298 LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyIdx-1);
299 assert(ALR != IntA.end() && "Live range not found!");
300 VNInfo *AValNo = ALR->valno;
301 // If other defs can reach uses of this def, then it's not safe to perform
302 // the optimization.
303 if (AValNo->def == ~0U || AValNo->def == ~1U || AValNo->hasPHIKill)
304 return false;
305 MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
306 const TargetInstrDesc &TID = DefMI->getDesc();
307 unsigned NewDstIdx;
308 if (!TID.isCommutable() ||
309 !tii_->CommuteChangesDestination(DefMI, NewDstIdx))
310 return false;
312 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
313 unsigned NewReg = NewDstMO.getReg();
314 if (NewReg != IntB.reg || !NewDstMO.isKill())
315 return false;
317 // Make sure there are no other definitions of IntB that would reach the
318 // uses which the new definition can reach.
319 if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
320 return false;
322 // If some of the uses of IntA.reg is already coalesced away, return false.
323 // It's not possible to determine whether it's safe to perform the coalescing.
324 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
325 UE = mri_->use_end(); UI != UE; ++UI) {
326 MachineInstr *UseMI = &*UI;
327 unsigned UseIdx = li_->getInstructionIndex(UseMI);
328 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
329 if (ULR == IntA.end())
330 continue;
331 if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
332 return false;
335 // At this point we have decided that it is legal to do this
336 // transformation. Start by commuting the instruction.
337 MachineBasicBlock *MBB = DefMI->getParent();
338 MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
339 if (!NewMI)
340 return false;
341 if (NewMI != DefMI) {
342 li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
343 MBB->insert(DefMI, NewMI);
344 MBB->erase(DefMI);
346 unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
347 NewMI->getOperand(OpIdx).setIsKill();
349 bool BHasPHIKill = BValNo->hasPHIKill;
350 SmallVector<VNInfo*, 4> BDeadValNos;
351 SmallVector<unsigned, 4> BKills;
352 std::map<unsigned, unsigned> BExtend;
354 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
355 // A = or A, B
356 // ...
357 // B = A
358 // ...
359 // C = A<kill>
360 // ...
361 // = B
363 // then do not add kills of A to the newly created B interval.
364 bool Extended = BLR->end > ALR->end && ALR->end != ALR->start;
365 if (Extended)
366 BExtend[ALR->end] = BLR->end;
368 // Update uses of IntA of the specific Val# with IntB.
369 bool BHasSubRegs = false;
370 if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
371 BHasSubRegs = *tri_->getSubRegisters(IntB.reg);
372 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
373 UE = mri_->use_end(); UI != UE;) {
374 MachineOperand &UseMO = UI.getOperand();
375 MachineInstr *UseMI = &*UI;
376 ++UI;
377 if (JoinedCopies.count(UseMI))
378 continue;
379 unsigned UseIdx = li_->getInstructionIndex(UseMI);
380 LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
381 if (ULR == IntA.end() || ULR->valno != AValNo)
382 continue;
383 UseMO.setReg(NewReg);
384 if (UseMI == CopyMI)
385 continue;
386 if (UseMO.isKill()) {
387 if (Extended)
388 UseMO.setIsKill(false);
389 else
390 BKills.push_back(li_->getUseIndex(UseIdx)+1);
392 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
393 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
394 continue;
395 if (DstReg == IntB.reg) {
396 // This copy will become a noop. If it's defining a new val#,
397 // remove that val# as well. However this live range is being
398 // extended to the end of the existing live range defined by the copy.
399 unsigned DefIdx = li_->getDefIndex(UseIdx);
400 const LiveRange *DLR = IntB.getLiveRangeContaining(DefIdx);
401 BHasPHIKill |= DLR->valno->hasPHIKill;
402 assert(DLR->valno->def == DefIdx);
403 BDeadValNos.push_back(DLR->valno);
404 BExtend[DLR->start] = DLR->end;
405 JoinedCopies.insert(UseMI);
406 // If this is a kill but it's going to be removed, the last use
407 // of the same val# is the new kill.
408 if (UseMO.isKill())
409 BKills.pop_back();
413 // We need to insert a new liverange: [ALR.start, LastUse). It may be we can
414 // simply extend BLR if CopyMI doesn't end the range.
415 DOUT << "\nExtending: "; IntB.print(DOUT, tri_);
417 // Remove val#'s defined by copies that will be coalesced away.
418 for (unsigned i = 0, e = BDeadValNos.size(); i != e; ++i) {
419 VNInfo *DeadVNI = BDeadValNos[i];
420 if (BHasSubRegs) {
421 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
422 LiveInterval &SRLI = li_->getInterval(*SR);
423 const LiveRange *SRLR = SRLI.getLiveRangeContaining(DeadVNI->def);
424 SRLI.removeValNo(SRLR->valno);
427 IntB.removeValNo(BDeadValNos[i]);
430 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
431 // is updated. Kills are also updated.
432 VNInfo *ValNo = BValNo;
433 ValNo->def = AValNo->def;
434 ValNo->copy = NULL;
435 for (unsigned j = 0, ee = ValNo->kills.size(); j != ee; ++j) {
436 unsigned Kill = ValNo->kills[j];
437 if (Kill != BLR->end)
438 BKills.push_back(Kill);
440 ValNo->kills.clear();
441 for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
442 AI != AE; ++AI) {
443 if (AI->valno != AValNo) continue;
444 unsigned End = AI->end;
445 std::map<unsigned, unsigned>::iterator EI = BExtend.find(End);
446 if (EI != BExtend.end())
447 End = EI->second;
448 IntB.addRange(LiveRange(AI->start, End, ValNo));
450 // If the IntB live range is assigned to a physical register, and if that
451 // physreg has sub-registers, update their live intervals as well.
452 if (BHasSubRegs) {
453 for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
454 LiveInterval &SRLI = li_->getInterval(*SR);
455 SRLI.MergeInClobberRange(AI->start, End, li_->getVNInfoAllocator());
459 IntB.addKills(ValNo, BKills);
460 ValNo->hasPHIKill = BHasPHIKill;
462 DOUT << " result = "; IntB.print(DOUT, tri_);
463 DOUT << "\n";
465 DOUT << "\nShortening: "; IntA.print(DOUT, tri_);
466 IntA.removeValNo(AValNo);
467 DOUT << " result = "; IntA.print(DOUT, tri_);
468 DOUT << "\n";
470 ++numCommutes;
471 return true;
474 /// isSameOrFallThroughBB - Return true if MBB == SuccMBB or MBB simply
475 /// fallthoughs to SuccMBB.
476 static bool isSameOrFallThroughBB(MachineBasicBlock *MBB,
477 MachineBasicBlock *SuccMBB,
478 const TargetInstrInfo *tii_) {
479 if (MBB == SuccMBB)
480 return true;
481 MachineBasicBlock *TBB = 0, *FBB = 0;
482 SmallVector<MachineOperand, 4> Cond;
483 return !tii_->AnalyzeBranch(*MBB, TBB, FBB, Cond) && !TBB && !FBB &&
484 MBB->isSuccessor(SuccMBB);
487 /// removeRange - Wrapper for LiveInterval::removeRange. This removes a range
488 /// from a physical register live interval as well as from the live intervals
489 /// of its sub-registers.
490 static void removeRange(LiveInterval &li, unsigned Start, unsigned End,
491 LiveIntervals *li_, const TargetRegisterInfo *tri_) {
492 li.removeRange(Start, End, true);
493 if (TargetRegisterInfo::isPhysicalRegister(li.reg)) {
494 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
495 if (!li_->hasInterval(*SR))
496 continue;
497 LiveInterval &sli = li_->getInterval(*SR);
498 unsigned RemoveEnd = Start;
499 while (RemoveEnd != End) {
500 LiveInterval::iterator LR = sli.FindLiveRangeContaining(Start);
501 if (LR == sli.end())
502 break;
503 RemoveEnd = (LR->end < End) ? LR->end : End;
504 sli.removeRange(Start, RemoveEnd, true);
505 Start = RemoveEnd;
511 /// TrimLiveIntervalToLastUse - If there is a last use in the same basic block
512 /// as the copy instruction, trim the live interval to the last use and return
513 /// true.
514 bool
515 SimpleRegisterCoalescing::TrimLiveIntervalToLastUse(unsigned CopyIdx,
516 MachineBasicBlock *CopyMBB,
517 LiveInterval &li,
518 const LiveRange *LR) {
519 unsigned MBBStart = li_->getMBBStartIdx(CopyMBB);
520 unsigned LastUseIdx;
521 MachineOperand *LastUse = lastRegisterUse(LR->start, CopyIdx-1, li.reg,
522 LastUseIdx);
523 if (LastUse) {
524 MachineInstr *LastUseMI = LastUse->getParent();
525 if (!isSameOrFallThroughBB(LastUseMI->getParent(), CopyMBB, tii_)) {
526 // r1024 = op
527 // ...
528 // BB1:
529 // = r1024
531 // BB2:
532 // r1025<dead> = r1024<kill>
533 if (MBBStart < LR->end)
534 removeRange(li, MBBStart, LR->end, li_, tri_);
535 return true;
538 // There are uses before the copy, just shorten the live range to the end
539 // of last use.
540 LastUse->setIsKill();
541 removeRange(li, li_->getDefIndex(LastUseIdx), LR->end, li_, tri_);
542 li.addKill(LR->valno, LastUseIdx+1);
543 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
544 if (tii_->isMoveInstr(*LastUseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
545 DstReg == li.reg) {
546 // Last use is itself an identity code.
547 int DeadIdx = LastUseMI->findRegisterDefOperandIdx(li.reg, false, tri_);
548 LastUseMI->getOperand(DeadIdx).setIsDead();
550 return true;
553 // Is it livein?
554 if (LR->start <= MBBStart && LR->end > MBBStart) {
555 if (LR->start == 0) {
556 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
557 // Live-in to the function but dead. Remove it from entry live-in set.
558 mf_->begin()->removeLiveIn(li.reg);
560 // FIXME: Shorten intervals in BBs that reaches this BB.
563 return false;
566 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
567 /// computation, replace the copy by rematerialize the definition.
568 bool SimpleRegisterCoalescing::ReMaterializeTrivialDef(LiveInterval &SrcInt,
569 unsigned DstReg,
570 MachineInstr *CopyMI) {
571 unsigned CopyIdx = li_->getUseIndex(li_->getInstructionIndex(CopyMI));
572 LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
573 assert(SrcLR != SrcInt.end() && "Live range not found!");
574 VNInfo *ValNo = SrcLR->valno;
575 // If other defs can reach uses of this def, then it's not safe to perform
576 // the optimization.
577 if (ValNo->def == ~0U || ValNo->def == ~1U || ValNo->hasPHIKill)
578 return false;
579 MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
580 const TargetInstrDesc &TID = DefMI->getDesc();
581 if (!TID.isAsCheapAsAMove())
582 return false;
583 if (!DefMI->getDesc().isRematerializable() ||
584 !tii_->isTriviallyReMaterializable(DefMI))
585 return false;
586 bool SawStore = false;
587 if (!DefMI->isSafeToMove(tii_, SawStore))
588 return false;
590 unsigned DefIdx = li_->getDefIndex(CopyIdx);
591 const LiveRange *DLR= li_->getInterval(DstReg).getLiveRangeContaining(DefIdx);
592 DLR->valno->copy = NULL;
593 // Don't forget to update sub-register intervals.
594 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
595 for (const unsigned* SR = tri_->getSubRegisters(DstReg); *SR; ++SR) {
596 if (!li_->hasInterval(*SR))
597 continue;
598 DLR = li_->getInterval(*SR).getLiveRangeContaining(DefIdx);
599 if (DLR && DLR->valno->copy == CopyMI)
600 DLR->valno->copy = NULL;
604 // If copy kills the source register, find the last use and propagate
605 // kill.
606 MachineBasicBlock *MBB = CopyMI->getParent();
607 if (CopyMI->killsRegister(SrcInt.reg))
608 TrimLiveIntervalToLastUse(CopyIdx, MBB, SrcInt, SrcLR);
610 MachineBasicBlock::iterator MII = next(MachineBasicBlock::iterator(CopyMI));
611 CopyMI->removeFromParent();
612 tii_->reMaterialize(*MBB, MII, DstReg, DefMI);
613 MachineInstr *NewMI = prior(MII);
614 // CopyMI may have implicit operands, transfer them over to the newly
615 // rematerialized instruction. And update implicit def interval valnos.
616 for (unsigned i = CopyMI->getDesc().getNumOperands(),
617 e = CopyMI->getNumOperands(); i != e; ++i) {
618 MachineOperand &MO = CopyMI->getOperand(i);
619 if (MO.isReg() && MO.isImplicit())
620 NewMI->addOperand(MO);
621 if (MO.isDef() && li_->hasInterval(MO.getReg())) {
622 unsigned Reg = MO.getReg();
623 DLR = li_->getInterval(Reg).getLiveRangeContaining(DefIdx);
624 if (DLR && DLR->valno->copy == CopyMI)
625 DLR->valno->copy = NULL;
629 li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
630 MBB->getParent()->DeleteMachineInstr(CopyMI);
631 ReMatCopies.insert(CopyMI);
632 ReMatDefs.insert(DefMI);
633 ++NumReMats;
634 return true;
637 /// isBackEdgeCopy - Returns true if CopyMI is a back edge copy.
639 bool SimpleRegisterCoalescing::isBackEdgeCopy(MachineInstr *CopyMI,
640 unsigned DstReg) const {
641 MachineBasicBlock *MBB = CopyMI->getParent();
642 const MachineLoop *L = loopInfo->getLoopFor(MBB);
643 if (!L)
644 return false;
645 if (MBB != L->getLoopLatch())
646 return false;
648 LiveInterval &LI = li_->getInterval(DstReg);
649 unsigned DefIdx = li_->getInstructionIndex(CopyMI);
650 LiveInterval::const_iterator DstLR =
651 LI.FindLiveRangeContaining(li_->getDefIndex(DefIdx));
652 if (DstLR == LI.end())
653 return false;
654 unsigned KillIdx = li_->getMBBEndIdx(MBB) + 1;
655 if (DstLR->valno->kills.size() == 1 &&
656 DstLR->valno->kills[0] == KillIdx && DstLR->valno->hasPHIKill)
657 return true;
658 return false;
661 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
662 /// update the subregister number if it is not zero. If DstReg is a
663 /// physical register and the existing subregister number of the def / use
664 /// being updated is not zero, make sure to set it to the correct physical
665 /// subregister.
666 void
667 SimpleRegisterCoalescing::UpdateRegDefsUses(unsigned SrcReg, unsigned DstReg,
668 unsigned SubIdx) {
669 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
670 if (DstIsPhys && SubIdx) {
671 // Figure out the real physical register we are updating with.
672 DstReg = tri_->getSubReg(DstReg, SubIdx);
673 SubIdx = 0;
676 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
677 E = mri_->reg_end(); I != E; ) {
678 MachineOperand &O = I.getOperand();
679 MachineInstr *UseMI = &*I;
680 ++I;
681 unsigned OldSubIdx = O.getSubReg();
682 if (DstIsPhys) {
683 unsigned UseDstReg = DstReg;
684 if (OldSubIdx)
685 UseDstReg = tri_->getSubReg(DstReg, OldSubIdx);
687 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
688 if (tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
689 CopySrcSubIdx, CopyDstSubIdx) &&
690 CopySrcReg != CopyDstReg &&
691 CopySrcReg == SrcReg && CopyDstReg != UseDstReg) {
692 // If the use is a copy and it won't be coalesced away, and its source
693 // is defined by a trivial computation, try to rematerialize it instead.
694 if (ReMaterializeTrivialDef(li_->getInterval(SrcReg), CopyDstReg,UseMI))
695 continue;
698 O.setReg(UseDstReg);
699 O.setSubReg(0);
700 continue;
703 // Sub-register indexes goes from small to large. e.g.
704 // RAX: 1 -> AL, 2 -> AX, 3 -> EAX
705 // EAX: 1 -> AL, 2 -> AX
706 // So RAX's sub-register 2 is AX, RAX's sub-regsiter 3 is EAX, whose
707 // sub-register 2 is also AX.
708 if (SubIdx && OldSubIdx && SubIdx != OldSubIdx)
709 assert(OldSubIdx < SubIdx && "Conflicting sub-register index!");
710 else if (SubIdx)
711 O.setSubReg(SubIdx);
712 // Remove would-be duplicated kill marker.
713 if (O.isKill() && UseMI->killsRegister(DstReg))
714 O.setIsKill(false);
715 O.setReg(DstReg);
717 // After updating the operand, check if the machine instruction has
718 // become a copy. If so, update its val# information.
719 const TargetInstrDesc &TID = UseMI->getDesc();
720 unsigned CopySrcReg, CopyDstReg, CopySrcSubIdx, CopyDstSubIdx;
721 if (TID.getNumDefs() == 1 && TID.getNumOperands() > 2 &&
722 tii_->isMoveInstr(*UseMI, CopySrcReg, CopyDstReg,
723 CopySrcSubIdx, CopyDstSubIdx) &&
724 CopySrcReg != CopyDstReg &&
725 (TargetRegisterInfo::isVirtualRegister(CopyDstReg) ||
726 allocatableRegs_[CopyDstReg])) {
727 LiveInterval &LI = li_->getInterval(CopyDstReg);
728 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(UseMI));
729 const LiveRange *DLR = LI.getLiveRangeContaining(DefIdx);
730 if (DLR->valno->def == DefIdx)
731 DLR->valno->copy = UseMI;
736 /// RemoveDeadImpDef - Remove implicit_def instructions which are "re-defining"
737 /// registers due to insert_subreg coalescing. e.g.
738 /// r1024 = op
739 /// r1025 = implicit_def
740 /// r1025 = insert_subreg r1025, r1024
741 /// = op r1025
742 /// =>
743 /// r1025 = op
744 /// r1025 = implicit_def
745 /// r1025 = insert_subreg r1025, r1025
746 /// = op r1025
747 void
748 SimpleRegisterCoalescing::RemoveDeadImpDef(unsigned Reg, LiveInterval &LI) {
749 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
750 E = mri_->reg_end(); I != E; ) {
751 MachineOperand &O = I.getOperand();
752 MachineInstr *DefMI = &*I;
753 ++I;
754 if (!O.isDef())
755 continue;
756 if (DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
757 continue;
758 if (!LI.liveBeforeAndAt(li_->getInstructionIndex(DefMI)))
759 continue;
760 li_->RemoveMachineInstrFromMaps(DefMI);
761 DefMI->eraseFromParent();
765 /// RemoveUnnecessaryKills - Remove kill markers that are no longer accurate
766 /// due to live range lengthening as the result of coalescing.
767 void SimpleRegisterCoalescing::RemoveUnnecessaryKills(unsigned Reg,
768 LiveInterval &LI) {
769 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(Reg),
770 UE = mri_->use_end(); UI != UE; ++UI) {
771 MachineOperand &UseMO = UI.getOperand();
772 if (UseMO.isKill()) {
773 MachineInstr *UseMI = UseMO.getParent();
774 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
775 const LiveRange *UI = LI.getLiveRangeContaining(UseIdx);
776 if (!UI || !LI.isKill(UI->valno, UseIdx+1))
777 UseMO.setIsKill(false);
782 /// removeIntervalIfEmpty - Check if the live interval of a physical register
783 /// is empty, if so remove it and also remove the empty intervals of its
784 /// sub-registers. Return true if live interval is removed.
785 static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
786 const TargetRegisterInfo *tri_) {
787 if (li.empty()) {
788 if (TargetRegisterInfo::isPhysicalRegister(li.reg))
789 for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
790 if (!li_->hasInterval(*SR))
791 continue;
792 LiveInterval &sli = li_->getInterval(*SR);
793 if (sli.empty())
794 li_->removeInterval(*SR);
796 li_->removeInterval(li.reg);
797 return true;
799 return false;
802 /// ShortenDeadCopyLiveRange - Shorten a live range defined by a dead copy.
803 /// Return true if live interval is removed.
804 bool SimpleRegisterCoalescing::ShortenDeadCopyLiveRange(LiveInterval &li,
805 MachineInstr *CopyMI) {
806 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
807 LiveInterval::iterator MLR =
808 li.FindLiveRangeContaining(li_->getDefIndex(CopyIdx));
809 if (MLR == li.end())
810 return false; // Already removed by ShortenDeadCopySrcLiveRange.
811 unsigned RemoveStart = MLR->start;
812 unsigned RemoveEnd = MLR->end;
813 // Remove the liverange that's defined by this.
814 if (RemoveEnd == li_->getDefIndex(CopyIdx)+1) {
815 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
816 return removeIntervalIfEmpty(li, li_, tri_);
818 return false;
821 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
822 /// the val# it defines. If the live interval becomes empty, remove it as well.
823 bool SimpleRegisterCoalescing::RemoveDeadDef(LiveInterval &li,
824 MachineInstr *DefMI) {
825 unsigned DefIdx = li_->getDefIndex(li_->getInstructionIndex(DefMI));
826 LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
827 if (DefIdx != MLR->valno->def)
828 return false;
829 li.removeValNo(MLR->valno);
830 return removeIntervalIfEmpty(li, li_, tri_);
833 /// PropagateDeadness - Propagate the dead marker to the instruction which
834 /// defines the val#.
835 static void PropagateDeadness(LiveInterval &li, MachineInstr *CopyMI,
836 unsigned &LRStart, LiveIntervals *li_,
837 const TargetRegisterInfo* tri_) {
838 MachineInstr *DefMI =
839 li_->getInstructionFromIndex(li_->getDefIndex(LRStart));
840 if (DefMI && DefMI != CopyMI) {
841 int DeadIdx = DefMI->findRegisterDefOperandIdx(li.reg, false, tri_);
842 if (DeadIdx != -1) {
843 DefMI->getOperand(DeadIdx).setIsDead();
844 // A dead def should have a single cycle interval.
845 ++LRStart;
850 /// ShortenDeadCopySrcLiveRange - Shorten a live range as it's artificially
851 /// extended by a dead copy. Mark the last use (if any) of the val# as kill as
852 /// ends the live range there. If there isn't another use, then this live range
853 /// is dead. Return true if live interval is removed.
854 bool
855 SimpleRegisterCoalescing::ShortenDeadCopySrcLiveRange(LiveInterval &li,
856 MachineInstr *CopyMI) {
857 unsigned CopyIdx = li_->getInstructionIndex(CopyMI);
858 if (CopyIdx == 0) {
859 // FIXME: special case: function live in. It can be a general case if the
860 // first instruction index starts at > 0 value.
861 assert(TargetRegisterInfo::isPhysicalRegister(li.reg));
862 // Live-in to the function but dead. Remove it from entry live-in set.
863 if (mf_->begin()->isLiveIn(li.reg))
864 mf_->begin()->removeLiveIn(li.reg);
865 const LiveRange *LR = li.getLiveRangeContaining(CopyIdx);
866 removeRange(li, LR->start, LR->end, li_, tri_);
867 return removeIntervalIfEmpty(li, li_, tri_);
870 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx-1);
871 if (LR == li.end())
872 // Livein but defined by a phi.
873 return false;
875 unsigned RemoveStart = LR->start;
876 unsigned RemoveEnd = li_->getDefIndex(CopyIdx)+1;
877 if (LR->end > RemoveEnd)
878 // More uses past this copy? Nothing to do.
879 return false;
881 // If there is a last use in the same bb, we can't remove the live range.
882 // Shorten the live interval and return.
883 MachineBasicBlock *CopyMBB = CopyMI->getParent();
884 if (TrimLiveIntervalToLastUse(CopyIdx, CopyMBB, li, LR))
885 return false;
887 MachineBasicBlock *StartMBB = li_->getMBBFromIndex(RemoveStart);
888 if (!isSameOrFallThroughBB(StartMBB, CopyMBB, tii_))
889 // If the live range starts in another mbb and the copy mbb is not a fall
890 // through mbb, then we can only cut the range from the beginning of the
891 // copy mbb.
892 RemoveStart = li_->getMBBStartIdx(CopyMBB) + 1;
894 if (LR->valno->def == RemoveStart) {
895 // If the def MI defines the val# and this copy is the only kill of the
896 // val#, then propagate the dead marker.
897 if (li.isOnlyLROfValNo(LR)) {
898 PropagateDeadness(li, CopyMI, RemoveStart, li_, tri_);
899 ++numDeadValNo;
901 if (li.isKill(LR->valno, RemoveEnd))
902 li.removeKill(LR->valno, RemoveEnd);
905 removeRange(li, RemoveStart, RemoveEnd, li_, tri_);
906 return removeIntervalIfEmpty(li, li_, tri_);
909 /// CanCoalesceWithImpDef - Returns true if the specified copy instruction
910 /// from an implicit def to another register can be coalesced away.
911 bool SimpleRegisterCoalescing::CanCoalesceWithImpDef(MachineInstr *CopyMI,
912 LiveInterval &li,
913 LiveInterval &ImpLi) const{
914 if (!CopyMI->killsRegister(ImpLi.reg))
915 return false;
916 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
917 LiveInterval::iterator LR = li.FindLiveRangeContaining(CopyIdx);
918 if (LR == li.end())
919 return false;
920 if (LR->valno->hasPHIKill)
921 return false;
922 if (LR->valno->def != CopyIdx)
923 return false;
924 // Make sure all of val# uses are copies.
925 for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(li.reg),
926 UE = mri_->use_end(); UI != UE;) {
927 MachineInstr *UseMI = &*UI;
928 ++UI;
929 if (JoinedCopies.count(UseMI))
930 continue;
931 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(UseMI));
932 LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
933 if (ULR == li.end() || ULR->valno != LR->valno)
934 continue;
935 // If the use is not a use, then it's not safe to coalesce the move.
936 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
937 if (!tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
938 if (UseMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG &&
939 UseMI->getOperand(1).getReg() == li.reg)
940 continue;
941 return false;
944 return true;
948 /// RemoveCopiesFromValNo - The specified value# is defined by an implicit
949 /// def and it is being removed. Turn all copies from this value# into
950 /// identity copies so they will be removed.
951 void SimpleRegisterCoalescing::RemoveCopiesFromValNo(LiveInterval &li,
952 VNInfo *VNI) {
953 SmallVector<MachineInstr*, 4> ImpDefs;
954 MachineOperand *LastUse = NULL;
955 unsigned LastUseIdx = li_->getUseIndex(VNI->def);
956 for (MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg),
957 RE = mri_->reg_end(); RI != RE;) {
958 MachineOperand *MO = &RI.getOperand();
959 MachineInstr *MI = &*RI;
960 ++RI;
961 if (MO->isDef()) {
962 if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
963 ImpDefs.push_back(MI);
965 continue;
967 if (JoinedCopies.count(MI))
968 continue;
969 unsigned UseIdx = li_->getUseIndex(li_->getInstructionIndex(MI));
970 LiveInterval::iterator ULR = li.FindLiveRangeContaining(UseIdx);
971 if (ULR == li.end() || ULR->valno != VNI)
972 continue;
973 // If the use is a copy, turn it into an identity copy.
974 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
975 if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
976 SrcReg == li.reg) {
977 // Each use MI may have multiple uses of this register. Change them all.
978 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
979 MachineOperand &MO = MI->getOperand(i);
980 if (MO.isReg() && MO.getReg() == li.reg)
981 MO.setReg(DstReg);
983 JoinedCopies.insert(MI);
984 } else if (UseIdx > LastUseIdx) {
985 LastUseIdx = UseIdx;
986 LastUse = MO;
989 if (LastUse) {
990 LastUse->setIsKill();
991 li.addKill(VNI, LastUseIdx+1);
992 } else {
993 // Remove dead implicit_def's.
994 while (!ImpDefs.empty()) {
995 MachineInstr *ImpDef = ImpDefs.back();
996 ImpDefs.pop_back();
997 li_->RemoveMachineInstrFromMaps(ImpDef);
998 ImpDef->eraseFromParent();
1003 /// getMatchingSuperReg - Return a super-register of the specified register
1004 /// Reg so its sub-register of index SubIdx is Reg.
1005 static unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
1006 const TargetRegisterClass *RC,
1007 const TargetRegisterInfo* TRI) {
1008 for (const unsigned *SRs = TRI->getSuperRegisters(Reg);
1009 unsigned SR = *SRs; ++SRs)
1010 if (Reg == TRI->getSubReg(SR, SubIdx) && RC->contains(SR))
1011 return SR;
1012 return 0;
1015 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
1016 /// two virtual registers from different register classes.
1017 bool
1018 SimpleRegisterCoalescing::isWinToJoinCrossClass(unsigned LargeReg,
1019 unsigned SmallReg,
1020 unsigned Threshold) {
1021 // Then make sure the intervals are *short*.
1022 LiveInterval &LargeInt = li_->getInterval(LargeReg);
1023 LiveInterval &SmallInt = li_->getInterval(SmallReg);
1024 unsigned LargeSize = li_->getApproximateInstructionCount(LargeInt);
1025 unsigned SmallSize = li_->getApproximateInstructionCount(SmallInt);
1026 if (SmallSize > Threshold || LargeSize > Threshold)
1027 if ((float)std::distance(mri_->use_begin(SmallReg),
1028 mri_->use_end()) / SmallSize <
1029 (float)std::distance(mri_->use_begin(LargeReg),
1030 mri_->use_end()) / LargeSize)
1031 return false;
1032 return true;
1035 /// HasIncompatibleSubRegDefUse - If we are trying to coalesce a virtual
1036 /// register with a physical register, check if any of the virtual register
1037 /// operand is a sub-register use or def. If so, make sure it won't result
1038 /// in an illegal extract_subreg or insert_subreg instruction. e.g.
1039 /// vr1024 = extract_subreg vr1025, 1
1040 /// ...
1041 /// vr1024 = mov8rr AH
1042 /// If vr1024 is coalesced with AH, the extract_subreg is now illegal since
1043 /// AH does not have a super-reg whose sub-register 1 is AH.
1044 bool
1045 SimpleRegisterCoalescing::HasIncompatibleSubRegDefUse(MachineInstr *CopyMI,
1046 unsigned VirtReg,
1047 unsigned PhysReg) {
1048 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(VirtReg),
1049 E = mri_->reg_end(); I != E; ++I) {
1050 MachineOperand &O = I.getOperand();
1051 MachineInstr *MI = &*I;
1052 if (MI == CopyMI || JoinedCopies.count(MI))
1053 continue;
1054 unsigned SubIdx = O.getSubReg();
1055 if (SubIdx && !tri_->getSubReg(PhysReg, SubIdx))
1056 return true;
1057 if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
1058 SubIdx = MI->getOperand(2).getImm();
1059 if (O.isUse() && !tri_->getSubReg(PhysReg, SubIdx))
1060 return true;
1061 if (O.isDef()) {
1062 unsigned SrcReg = MI->getOperand(1).getReg();
1063 const TargetRegisterClass *RC =
1064 TargetRegisterInfo::isPhysicalRegister(SrcReg)
1065 ? tri_->getPhysicalRegisterRegClass(SrcReg)
1066 : mri_->getRegClass(SrcReg);
1067 if (!getMatchingSuperReg(PhysReg, SubIdx, RC, tri_))
1068 return true;
1071 if (MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
1072 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
1073 SubIdx = MI->getOperand(3).getImm();
1074 if (VirtReg == MI->getOperand(0).getReg()) {
1075 if (!tri_->getSubReg(PhysReg, SubIdx))
1076 return true;
1077 } else {
1078 unsigned DstReg = MI->getOperand(0).getReg();
1079 const TargetRegisterClass *RC =
1080 TargetRegisterInfo::isPhysicalRegister(DstReg)
1081 ? tri_->getPhysicalRegisterRegClass(DstReg)
1082 : mri_->getRegClass(DstReg);
1083 if (!getMatchingSuperReg(PhysReg, SubIdx, RC, tri_))
1084 return true;
1088 return false;
1092 /// CanJoinExtractSubRegToPhysReg - Return true if it's possible to coalesce
1093 /// an extract_subreg where dst is a physical register, e.g.
1094 /// cl = EXTRACT_SUBREG reg1024, 1
1095 bool
1096 SimpleRegisterCoalescing::CanJoinExtractSubRegToPhysReg(unsigned DstReg,
1097 unsigned SrcReg, unsigned SubIdx,
1098 unsigned &RealDstReg) {
1099 const TargetRegisterClass *RC = mri_->getRegClass(SrcReg);
1100 RealDstReg = getMatchingSuperReg(DstReg, SubIdx, RC, tri_);
1101 assert(RealDstReg && "Invalid extract_subreg instruction!");
1103 // For this type of EXTRACT_SUBREG, conservatively
1104 // check if the live interval of the source register interfere with the
1105 // actual super physical register we are trying to coalesce with.
1106 LiveInterval &RHS = li_->getInterval(SrcReg);
1107 if (li_->hasInterval(RealDstReg) &&
1108 RHS.overlaps(li_->getInterval(RealDstReg))) {
1109 DOUT << "Interfere with register ";
1110 DEBUG(li_->getInterval(RealDstReg).print(DOUT, tri_));
1111 return false; // Not coalescable
1113 for (const unsigned* SR = tri_->getSubRegisters(RealDstReg); *SR; ++SR)
1114 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1115 DOUT << "Interfere with sub-register ";
1116 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1117 return false; // Not coalescable
1119 return true;
1122 /// CanJoinInsertSubRegToPhysReg - Return true if it's possible to coalesce
1123 /// an insert_subreg where src is a physical register, e.g.
1124 /// reg1024 = INSERT_SUBREG reg1024, c1, 0
1125 bool
1126 SimpleRegisterCoalescing::CanJoinInsertSubRegToPhysReg(unsigned DstReg,
1127 unsigned SrcReg, unsigned SubIdx,
1128 unsigned &RealSrcReg) {
1129 const TargetRegisterClass *RC = mri_->getRegClass(DstReg);
1130 RealSrcReg = getMatchingSuperReg(SrcReg, SubIdx, RC, tri_);
1131 assert(RealSrcReg && "Invalid extract_subreg instruction!");
1133 LiveInterval &RHS = li_->getInterval(DstReg);
1134 if (li_->hasInterval(RealSrcReg) &&
1135 RHS.overlaps(li_->getInterval(RealSrcReg))) {
1136 DOUT << "Interfere with register ";
1137 DEBUG(li_->getInterval(RealSrcReg).print(DOUT, tri_));
1138 return false; // Not coalescable
1140 for (const unsigned* SR = tri_->getSubRegisters(RealSrcReg); *SR; ++SR)
1141 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1142 DOUT << "Interfere with sub-register ";
1143 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1144 return false; // Not coalescable
1146 return true;
1149 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
1150 /// which are the src/dst of the copy instruction CopyMI. This returns true
1151 /// if the copy was successfully coalesced away. If it is not currently
1152 /// possible to coalesce this interval, but it may be possible if other
1153 /// things get coalesced, then it returns true by reference in 'Again'.
1154 bool SimpleRegisterCoalescing::JoinCopy(CopyRec &TheCopy, bool &Again) {
1155 MachineInstr *CopyMI = TheCopy.MI;
1157 Again = false;
1158 if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
1159 return false; // Already done.
1161 DOUT << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI;
1163 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1164 bool isExtSubReg = CopyMI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG;
1165 bool isInsSubReg = CopyMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG;
1166 bool isSubRegToReg = CopyMI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG;
1167 unsigned SubIdx = 0;
1168 if (isExtSubReg) {
1169 DstReg = CopyMI->getOperand(0).getReg();
1170 SrcReg = CopyMI->getOperand(1).getReg();
1171 } else if (isInsSubReg || isSubRegToReg) {
1172 if (CopyMI->getOperand(2).getSubReg()) {
1173 DOUT << "\tSource of insert_subreg is already coalesced "
1174 << "to another register.\n";
1175 return false; // Not coalescable.
1177 DstReg = CopyMI->getOperand(0).getReg();
1178 SrcReg = CopyMI->getOperand(2).getReg();
1179 } else if (!tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)){
1180 assert(0 && "Unrecognized copy instruction!");
1181 return false;
1184 // If they are already joined we continue.
1185 if (SrcReg == DstReg) {
1186 DOUT << "\tCopy already coalesced.\n";
1187 return false; // Not coalescable.
1190 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
1191 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1193 // If they are both physical registers, we cannot join them.
1194 if (SrcIsPhys && DstIsPhys) {
1195 DOUT << "\tCan not coalesce physregs.\n";
1196 return false; // Not coalescable.
1199 // We only join virtual registers with allocatable physical registers.
1200 if (SrcIsPhys && !allocatableRegs_[SrcReg]) {
1201 DOUT << "\tSrc reg is unallocatable physreg.\n";
1202 return false; // Not coalescable.
1204 if (DstIsPhys && !allocatableRegs_[DstReg]) {
1205 DOUT << "\tDst reg is unallocatable physreg.\n";
1206 return false; // Not coalescable.
1209 // Should be non-null only when coalescing to a sub-register class.
1210 bool CrossRC = false;
1211 const TargetRegisterClass *NewRC = NULL;
1212 MachineBasicBlock *CopyMBB = CopyMI->getParent();
1213 unsigned RealDstReg = 0;
1214 unsigned RealSrcReg = 0;
1215 if (isExtSubReg || isInsSubReg || isSubRegToReg) {
1216 SubIdx = CopyMI->getOperand(isExtSubReg ? 2 : 3).getImm();
1217 if (SrcIsPhys && isExtSubReg) {
1218 // r1024 = EXTRACT_SUBREG EAX, 0 then r1024 is really going to be
1219 // coalesced with AX.
1220 unsigned DstSubIdx = CopyMI->getOperand(0).getSubReg();
1221 if (DstSubIdx) {
1222 // r1024<2> = EXTRACT_SUBREG EAX, 2. Then r1024 has already been
1223 // coalesced to a larger register so the subreg indices cancel out.
1224 if (DstSubIdx != SubIdx) {
1225 DOUT << "\t Sub-register indices mismatch.\n";
1226 return false; // Not coalescable.
1228 } else
1229 SrcReg = tri_->getSubReg(SrcReg, SubIdx);
1230 SubIdx = 0;
1231 } else if (DstIsPhys && (isInsSubReg || isSubRegToReg)) {
1232 // EAX = INSERT_SUBREG EAX, r1024, 0
1233 unsigned SrcSubIdx = CopyMI->getOperand(2).getSubReg();
1234 if (SrcSubIdx) {
1235 // EAX = INSERT_SUBREG EAX, r1024<2>, 2 Then r1024 has already been
1236 // coalesced to a larger register so the subreg indices cancel out.
1237 if (SrcSubIdx != SubIdx) {
1238 DOUT << "\t Sub-register indices mismatch.\n";
1239 return false; // Not coalescable.
1241 } else
1242 DstReg = tri_->getSubReg(DstReg, SubIdx);
1243 SubIdx = 0;
1244 } else if ((DstIsPhys && isExtSubReg) ||
1245 (SrcIsPhys && (isInsSubReg || isSubRegToReg))) {
1246 if (!isSubRegToReg && CopyMI->getOperand(1).getSubReg()) {
1247 DOUT << "\tSrc of extract_subreg already coalesced with reg"
1248 << " of a super-class.\n";
1249 return false; // Not coalescable.
1252 if (isExtSubReg) {
1253 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealDstReg))
1254 return false; // Not coalescable
1255 } else {
1256 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1257 return false; // Not coalescable
1259 SubIdx = 0;
1260 } else {
1261 unsigned OldSubIdx = isExtSubReg ? CopyMI->getOperand(0).getSubReg()
1262 : CopyMI->getOperand(2).getSubReg();
1263 if (OldSubIdx) {
1264 if (OldSubIdx == SubIdx && !differingRegisterClasses(SrcReg, DstReg))
1265 // r1024<2> = EXTRACT_SUBREG r1025, 2. Then r1024 has already been
1266 // coalesced to a larger register so the subreg indices cancel out.
1267 // Also check if the other larger register is of the same register
1268 // class as the would be resulting register.
1269 SubIdx = 0;
1270 else {
1271 DOUT << "\t Sub-register indices mismatch.\n";
1272 return false; // Not coalescable.
1275 if (SubIdx) {
1276 unsigned LargeReg = isExtSubReg ? SrcReg : DstReg;
1277 unsigned SmallReg = isExtSubReg ? DstReg : SrcReg;
1278 unsigned Limit= allocatableRCRegs_[mri_->getRegClass(SmallReg)].count();
1279 if (!isWinToJoinCrossClass(LargeReg, SmallReg, Limit)) {
1280 Again = true; // May be possible to coalesce later.
1281 return false;
1285 } else if (differingRegisterClasses(SrcReg, DstReg)) {
1286 if (!CrossClassJoin)
1287 return false;
1288 CrossRC = true;
1290 // FIXME: What if the result of a EXTRACT_SUBREG is then coalesced
1291 // with another? If it's the resulting destination register, then
1292 // the subidx must be propagated to uses (but only those defined
1293 // by the EXTRACT_SUBREG). If it's being coalesced into another
1294 // register, it should be safe because register is assumed to have
1295 // the register class of the super-register.
1297 // Process moves where one of the registers have a sub-register index.
1298 MachineOperand *DstMO = CopyMI->findRegisterDefOperand(DstReg);
1299 MachineOperand *SrcMO = CopyMI->findRegisterUseOperand(SrcReg);
1300 SubIdx = DstMO->getSubReg();
1301 if (SubIdx) {
1302 if (SrcMO->getSubReg())
1303 // FIXME: can we handle this?
1304 return false;
1305 // This is not an insert_subreg but it looks like one.
1306 // e.g. %reg1024:4 = MOV32rr %EAX
1307 isInsSubReg = true;
1308 if (SrcIsPhys) {
1309 if (!CanJoinInsertSubRegToPhysReg(DstReg, SrcReg, SubIdx, RealSrcReg))
1310 return false; // Not coalescable
1311 SubIdx = 0;
1313 } else {
1314 SubIdx = SrcMO->getSubReg();
1315 if (SubIdx) {
1316 // This is not a extract_subreg but it looks like one.
1317 // e.g. %cl = MOV16rr %reg1024:1
1318 isExtSubReg = true;
1319 if (DstIsPhys) {
1320 if (!CanJoinExtractSubRegToPhysReg(DstReg, SrcReg, SubIdx,RealDstReg))
1321 return false; // Not coalescable
1322 SubIdx = 0;
1327 const TargetRegisterClass *SrcRC= SrcIsPhys ? 0 : mri_->getRegClass(SrcReg);
1328 const TargetRegisterClass *DstRC= DstIsPhys ? 0 : mri_->getRegClass(DstReg);
1329 unsigned LargeReg = SrcReg;
1330 unsigned SmallReg = DstReg;
1331 unsigned Limit = 0;
1333 // Now determine the register class of the joined register.
1334 if (isExtSubReg) {
1335 if (SubIdx && DstRC && DstRC->isASubClass()) {
1336 // This is a move to a sub-register class. However, the source is a
1337 // sub-register of a larger register class. We don't know what should
1338 // the register class be. FIXME.
1339 Again = true;
1340 return false;
1342 Limit = allocatableRCRegs_[DstRC].count();
1343 } else if (!SrcIsPhys && !DstIsPhys) {
1344 unsigned SrcSize = SrcRC->getSize();
1345 unsigned DstSize = DstRC->getSize();
1346 if (SrcSize < DstSize)
1347 // For example X86::MOVSD2PDrr copies from FR64 to VR128.
1348 NewRC = DstRC;
1349 else if (DstSize > SrcSize) {
1350 NewRC = SrcRC;
1351 std::swap(LargeReg, SmallReg);
1352 } else {
1353 unsigned SrcNumRegs = SrcRC->getNumRegs();
1354 unsigned DstNumRegs = DstRC->getNumRegs();
1355 if (DstNumRegs < SrcNumRegs)
1356 // Sub-register class?
1357 NewRC = DstRC;
1358 else if (SrcNumRegs < DstNumRegs) {
1359 NewRC = SrcRC;
1360 std::swap(LargeReg, SmallReg);
1361 } else
1362 // No idea what's the right register class to use.
1363 return false;
1367 // If we are joining two virtual registers and the resulting register
1368 // class is more restrictive (fewer register, smaller size). Check if it's
1369 // worth doing the merge.
1370 if (!SrcIsPhys && !DstIsPhys &&
1371 (isExtSubReg || DstRC->isASubClass()) &&
1372 !isWinToJoinCrossClass(LargeReg, SmallReg,
1373 allocatableRCRegs_[NewRC].count())) {
1374 DOUT << "\tSrc/Dest are different register classes.\n";
1375 // Allow the coalescer to try again in case either side gets coalesced to
1376 // a physical register that's compatible with the other side. e.g.
1377 // r1024 = MOV32to32_ r1025
1378 // But later r1024 is assigned EAX then r1025 may be coalesced with EAX.
1379 Again = true; // May be possible to coalesce later.
1380 return false;
1384 // Will it create illegal extract_subreg / insert_subreg?
1385 if (SrcIsPhys && HasIncompatibleSubRegDefUse(CopyMI, DstReg, SrcReg))
1386 return false;
1387 if (DstIsPhys && HasIncompatibleSubRegDefUse(CopyMI, SrcReg, DstReg))
1388 return false;
1390 LiveInterval &SrcInt = li_->getInterval(SrcReg);
1391 LiveInterval &DstInt = li_->getInterval(DstReg);
1392 assert(SrcInt.reg == SrcReg && DstInt.reg == DstReg &&
1393 "Register mapping is horribly broken!");
1395 DOUT << "\t\tInspecting "; SrcInt.print(DOUT, tri_);
1396 DOUT << " and "; DstInt.print(DOUT, tri_);
1397 DOUT << ": ";
1399 // Save a copy of the virtual register live interval. We'll manually
1400 // merge this into the "real" physical register live interval this is
1401 // coalesced with.
1402 LiveInterval *SavedLI = 0;
1403 if (RealDstReg)
1404 SavedLI = li_->dupInterval(&SrcInt);
1405 else if (RealSrcReg)
1406 SavedLI = li_->dupInterval(&DstInt);
1408 // Check if it is necessary to propagate "isDead" property.
1409 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg) {
1410 MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg, false);
1411 bool isDead = mopd->isDead();
1413 // We need to be careful about coalescing a source physical register with a
1414 // virtual register. Once the coalescing is done, it cannot be broken and
1415 // these are not spillable! If the destination interval uses are far away,
1416 // think twice about coalescing them!
1417 if (!isDead && (SrcIsPhys || DstIsPhys)) {
1418 LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1419 unsigned JoinVReg = SrcIsPhys ? DstReg : SrcReg;
1420 unsigned JoinPReg = SrcIsPhys ? SrcReg : DstReg;
1421 const TargetRegisterClass *RC = mri_->getRegClass(JoinVReg);
1422 unsigned Threshold = allocatableRCRegs_[RC].count() * 2;
1423 if (TheCopy.isBackEdge)
1424 Threshold *= 2; // Favors back edge copies.
1426 // If the virtual register live interval is long but it has low use desity,
1427 // do not join them, instead mark the physical register as its allocation
1428 // preference.
1429 unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
1430 if (Length > Threshold &&
1431 (((float)std::distance(mri_->use_begin(JoinVReg), mri_->use_end())
1432 / Length) < (1.0 / Threshold))) {
1433 JoinVInt.preference = JoinPReg;
1434 ++numAborts;
1435 DOUT << "\tMay tie down a physical register, abort!\n";
1436 Again = true; // May be possible to coalesce later.
1437 return false;
1442 // Okay, attempt to join these two intervals. On failure, this returns false.
1443 // Otherwise, if one of the intervals being joined is a physreg, this method
1444 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1445 // been modified, so we can use this information below to update aliases.
1446 bool Swapped = false;
1447 // If SrcInt is implicitly defined, it's safe to coalesce.
1448 bool isEmpty = SrcInt.empty();
1449 if (isEmpty && !CanCoalesceWithImpDef(CopyMI, DstInt, SrcInt)) {
1450 // Only coalesce an empty interval (defined by implicit_def) with
1451 // another interval which has a valno defined by the CopyMI and the CopyMI
1452 // is a kill of the implicit def.
1453 DOUT << "Not profitable!\n";
1454 return false;
1457 if (!isEmpty && !JoinIntervals(DstInt, SrcInt, Swapped)) {
1458 // Coalescing failed.
1460 // If definition of source is defined by trivial computation, try
1461 // rematerializing it.
1462 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1463 ReMaterializeTrivialDef(SrcInt, DstInt.reg, CopyMI))
1464 return true;
1466 // If we can eliminate the copy without merging the live ranges, do so now.
1467 if (!isExtSubReg && !isInsSubReg && !isSubRegToReg &&
1468 (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI) ||
1469 RemoveCopyByCommutingDef(SrcInt, DstInt, CopyMI))) {
1470 JoinedCopies.insert(CopyMI);
1471 return true;
1474 // Otherwise, we are unable to join the intervals.
1475 DOUT << "Interference!\n";
1476 Again = true; // May be possible to coalesce later.
1477 return false;
1480 LiveInterval *ResSrcInt = &SrcInt;
1481 LiveInterval *ResDstInt = &DstInt;
1482 if (Swapped) {
1483 std::swap(SrcReg, DstReg);
1484 std::swap(ResSrcInt, ResDstInt);
1486 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1487 "LiveInterval::join didn't work right!");
1489 // If we're about to merge live ranges into a physical register live interval,
1490 // we have to update any aliased register's live ranges to indicate that they
1491 // have clobbered values for this range.
1492 if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
1493 // If this is a extract_subreg where dst is a physical register, e.g.
1494 // cl = EXTRACT_SUBREG reg1024, 1
1495 // then create and update the actual physical register allocated to RHS.
1496 if (RealDstReg || RealSrcReg) {
1497 LiveInterval &RealInt =
1498 li_->getOrCreateInterval(RealDstReg ? RealDstReg : RealSrcReg);
1499 for (LiveInterval::const_vni_iterator I = SavedLI->vni_begin(),
1500 E = SavedLI->vni_end(); I != E; ++I) {
1501 const VNInfo *ValNo = *I;
1502 VNInfo *NewValNo = RealInt.getNextValue(ValNo->def, ValNo->copy,
1503 li_->getVNInfoAllocator());
1504 NewValNo->hasPHIKill = ValNo->hasPHIKill;
1505 NewValNo->redefByEC = ValNo->redefByEC;
1506 RealInt.addKills(NewValNo, ValNo->kills);
1507 RealInt.MergeValueInAsValue(*SavedLI, ValNo, NewValNo);
1509 RealInt.weight += SavedLI->weight;
1510 DstReg = RealDstReg ? RealDstReg : RealSrcReg;
1513 // Update the liveintervals of sub-registers.
1514 for (const unsigned *AS = tri_->getSubRegisters(DstReg); *AS; ++AS)
1515 li_->getOrCreateInterval(*AS).MergeInClobberRanges(*ResSrcInt,
1516 li_->getVNInfoAllocator());
1519 // If this is a EXTRACT_SUBREG, make sure the result of coalescing is the
1520 // larger super-register.
1521 if ((isExtSubReg || isInsSubReg || isSubRegToReg) &&
1522 !SrcIsPhys && !DstIsPhys) {
1523 if ((isExtSubReg && !Swapped) ||
1524 ((isInsSubReg || isSubRegToReg) && Swapped)) {
1525 ResSrcInt->Copy(*ResDstInt, li_->getVNInfoAllocator());
1526 std::swap(SrcReg, DstReg);
1527 std::swap(ResSrcInt, ResDstInt);
1531 // Coalescing to a virtual register that is of a sub-register class of the
1532 // other. Make sure the resulting register is set to the right register class.
1533 if (CrossRC) {
1534 ++numCrossRCs;
1535 if (NewRC)
1536 mri_->setRegClass(DstReg, NewRC);
1539 if (NewHeuristic) {
1540 // Add all copies that define val# in the source interval into the queue.
1541 for (LiveInterval::const_vni_iterator i = ResSrcInt->vni_begin(),
1542 e = ResSrcInt->vni_end(); i != e; ++i) {
1543 const VNInfo *vni = *i;
1544 if (!vni->def || vni->def == ~1U || vni->def == ~0U)
1545 continue;
1546 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
1547 unsigned NewSrcReg, NewDstReg, NewSrcSubIdx, NewDstSubIdx;
1548 if (CopyMI &&
1549 JoinedCopies.count(CopyMI) == 0 &&
1550 tii_->isMoveInstr(*CopyMI, NewSrcReg, NewDstReg,
1551 NewSrcSubIdx, NewDstSubIdx)) {
1552 unsigned LoopDepth = loopInfo->getLoopDepth(CopyMBB);
1553 JoinQueue->push(CopyRec(CopyMI, LoopDepth,
1554 isBackEdgeCopy(CopyMI, DstReg)));
1559 // Remember to delete the copy instruction.
1560 JoinedCopies.insert(CopyMI);
1562 // Some live range has been lengthened due to colaescing, eliminate the
1563 // unnecessary kills.
1564 RemoveUnnecessaryKills(SrcReg, *ResDstInt);
1565 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1566 RemoveUnnecessaryKills(DstReg, *ResDstInt);
1568 if (isInsSubReg)
1569 // Avoid:
1570 // r1024 = op
1571 // r1024 = implicit_def
1572 // ...
1573 // = r1024
1574 RemoveDeadImpDef(DstReg, *ResDstInt);
1575 UpdateRegDefsUses(SrcReg, DstReg, SubIdx);
1577 // SrcReg is guarateed to be the register whose live interval that is
1578 // being merged.
1579 li_->removeInterval(SrcReg);
1581 // Manually deleted the live interval copy.
1582 if (SavedLI) {
1583 SavedLI->clear();
1584 delete SavedLI;
1587 if (isEmpty) {
1588 // Now the copy is being coalesced away, the val# previously defined
1589 // by the copy is being defined by an IMPLICIT_DEF which defines a zero
1590 // length interval. Remove the val#.
1591 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
1592 const LiveRange *LR = ResDstInt->getLiveRangeContaining(CopyIdx);
1593 VNInfo *ImpVal = LR->valno;
1594 assert(ImpVal->def == CopyIdx);
1595 unsigned NextDef = LR->end;
1596 RemoveCopiesFromValNo(*ResDstInt, ImpVal);
1597 ResDstInt->removeValNo(ImpVal);
1598 LR = ResDstInt->FindLiveRangeContaining(NextDef);
1599 if (LR != ResDstInt->end() && LR->valno->def == NextDef) {
1600 // Special case: vr1024 = implicit_def
1601 // vr1024 = insert_subreg vr1024, vr1025, c
1602 // The insert_subreg becomes a "copy" that defines a val# which can itself
1603 // be coalesced away.
1604 MachineInstr *DefMI = li_->getInstructionFromIndex(NextDef);
1605 if (DefMI->getOpcode() == TargetInstrInfo::INSERT_SUBREG)
1606 LR->valno->copy = DefMI;
1610 // If resulting interval has a preference that no longer fits because of subreg
1611 // coalescing, just clear the preference.
1612 if (ResDstInt->preference && (isExtSubReg || isInsSubReg || isSubRegToReg) &&
1613 TargetRegisterInfo::isVirtualRegister(ResDstInt->reg)) {
1614 const TargetRegisterClass *RC = mri_->getRegClass(ResDstInt->reg);
1615 if (!RC->contains(ResDstInt->preference))
1616 ResDstInt->preference = 0;
1619 DOUT << "\n\t\tJoined. Result = "; ResDstInt->print(DOUT, tri_);
1620 DOUT << "\n";
1622 ++numJoins;
1623 return true;
1626 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1627 /// compute what the resultant value numbers for each value in the input two
1628 /// ranges will be. This is complicated by copies between the two which can
1629 /// and will commonly cause multiple value numbers to be merged into one.
1631 /// VN is the value number that we're trying to resolve. InstDefiningValue
1632 /// keeps track of the new InstDefiningValue assignment for the result
1633 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1634 /// whether a value in this or other is a copy from the opposite set.
1635 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1636 /// already been assigned.
1638 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1639 /// contains the value number the copy is from.
1641 static unsigned ComputeUltimateVN(VNInfo *VNI,
1642 SmallVector<VNInfo*, 16> &NewVNInfo,
1643 DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
1644 DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
1645 SmallVector<int, 16> &ThisValNoAssignments,
1646 SmallVector<int, 16> &OtherValNoAssignments) {
1647 unsigned VN = VNI->id;
1649 // If the VN has already been computed, just return it.
1650 if (ThisValNoAssignments[VN] >= 0)
1651 return ThisValNoAssignments[VN];
1652 // assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1654 // If this val is not a copy from the other val, then it must be a new value
1655 // number in the destination.
1656 DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
1657 if (I == ThisFromOther.end()) {
1658 NewVNInfo.push_back(VNI);
1659 return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
1661 VNInfo *OtherValNo = I->second;
1663 // Otherwise, this *is* a copy from the RHS. If the other side has already
1664 // been computed, return it.
1665 if (OtherValNoAssignments[OtherValNo->id] >= 0)
1666 return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
1668 // Mark this value number as currently being computed, then ask what the
1669 // ultimate value # of the other value is.
1670 ThisValNoAssignments[VN] = -2;
1671 unsigned UltimateVN =
1672 ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
1673 OtherValNoAssignments, ThisValNoAssignments);
1674 return ThisValNoAssignments[VN] = UltimateVN;
1677 static bool InVector(VNInfo *Val, const SmallVector<VNInfo*, 8> &V) {
1678 return std::find(V.begin(), V.end(), Val) != V.end();
1681 /// RangeIsDefinedByCopyFromReg - Return true if the specified live range of
1682 /// the specified live interval is defined by a copy from the specified
1683 /// register.
1684 bool SimpleRegisterCoalescing::RangeIsDefinedByCopyFromReg(LiveInterval &li,
1685 LiveRange *LR,
1686 unsigned Reg) {
1687 unsigned SrcReg = li_->getVNInfoSourceReg(LR->valno);
1688 if (SrcReg == Reg)
1689 return true;
1690 if (LR->valno->def == ~0U &&
1691 TargetRegisterInfo::isPhysicalRegister(li.reg) &&
1692 *tri_->getSuperRegisters(li.reg)) {
1693 // It's a sub-register live interval, we may not have precise information.
1694 // Re-compute it.
1695 MachineInstr *DefMI = li_->getInstructionFromIndex(LR->start);
1696 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1697 if (DefMI &&
1698 tii_->isMoveInstr(*DefMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
1699 DstReg == li.reg && SrcReg == Reg) {
1700 // Cache computed info.
1701 LR->valno->def = LR->start;
1702 LR->valno->copy = DefMI;
1703 return true;
1706 return false;
1709 /// SimpleJoin - Attempt to joint the specified interval into this one. The
1710 /// caller of this method must guarantee that the RHS only contains a single
1711 /// value number and that the RHS is not defined by a copy from this
1712 /// interval. This returns false if the intervals are not joinable, or it
1713 /// joins them and returns true.
1714 bool SimpleRegisterCoalescing::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS){
1715 assert(RHS.containsOneValue());
1717 // Some number (potentially more than one) value numbers in the current
1718 // interval may be defined as copies from the RHS. Scan the overlapping
1719 // portions of the LHS and RHS, keeping track of this and looking for
1720 // overlapping live ranges that are NOT defined as copies. If these exist, we
1721 // cannot coalesce.
1723 LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1724 LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1726 if (LHSIt->start < RHSIt->start) {
1727 LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1728 if (LHSIt != LHS.begin()) --LHSIt;
1729 } else if (RHSIt->start < LHSIt->start) {
1730 RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1731 if (RHSIt != RHS.begin()) --RHSIt;
1734 SmallVector<VNInfo*, 8> EliminatedLHSVals;
1736 while (1) {
1737 // Determine if these live intervals overlap.
1738 bool Overlaps = false;
1739 if (LHSIt->start <= RHSIt->start)
1740 Overlaps = LHSIt->end > RHSIt->start;
1741 else
1742 Overlaps = RHSIt->end > LHSIt->start;
1744 // If the live intervals overlap, there are two interesting cases: if the
1745 // LHS interval is defined by a copy from the RHS, it's ok and we record
1746 // that the LHS value # is the same as the RHS. If it's not, then we cannot
1747 // coalesce these live ranges and we bail out.
1748 if (Overlaps) {
1749 // If we haven't already recorded that this value # is safe, check it.
1750 if (!InVector(LHSIt->valno, EliminatedLHSVals)) {
1751 // Copy from the RHS?
1752 if (!RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg))
1753 return false; // Nope, bail out.
1755 if (LHSIt->contains(RHSIt->valno->def))
1756 // Here is an interesting situation:
1757 // BB1:
1758 // vr1025 = copy vr1024
1759 // ..
1760 // BB2:
1761 // vr1024 = op
1762 // = vr1025
1763 // Even though vr1025 is copied from vr1024, it's not safe to
1764 // coalesce them since the live range of vr1025 intersects the
1765 // def of vr1024. This happens because vr1025 is assigned the
1766 // value of the previous iteration of vr1024.
1767 return false;
1768 EliminatedLHSVals.push_back(LHSIt->valno);
1771 // We know this entire LHS live range is okay, so skip it now.
1772 if (++LHSIt == LHSEnd) break;
1773 continue;
1776 if (LHSIt->end < RHSIt->end) {
1777 if (++LHSIt == LHSEnd) break;
1778 } else {
1779 // One interesting case to check here. It's possible that we have
1780 // something like "X3 = Y" which defines a new value number in the LHS,
1781 // and is the last use of this liverange of the RHS. In this case, we
1782 // want to notice this copy (so that it gets coalesced away) even though
1783 // the live ranges don't actually overlap.
1784 if (LHSIt->start == RHSIt->end) {
1785 if (InVector(LHSIt->valno, EliminatedLHSVals)) {
1786 // We already know that this value number is going to be merged in
1787 // if coalescing succeeds. Just skip the liverange.
1788 if (++LHSIt == LHSEnd) break;
1789 } else {
1790 // Otherwise, if this is a copy from the RHS, mark it as being merged
1791 // in.
1792 if (RangeIsDefinedByCopyFromReg(LHS, LHSIt, RHS.reg)) {
1793 if (LHSIt->contains(RHSIt->valno->def))
1794 // Here is an interesting situation:
1795 // BB1:
1796 // vr1025 = copy vr1024
1797 // ..
1798 // BB2:
1799 // vr1024 = op
1800 // = vr1025
1801 // Even though vr1025 is copied from vr1024, it's not safe to
1802 // coalesced them since live range of vr1025 intersects the
1803 // def of vr1024. This happens because vr1025 is assigned the
1804 // value of the previous iteration of vr1024.
1805 return false;
1806 EliminatedLHSVals.push_back(LHSIt->valno);
1808 // We know this entire LHS live range is okay, so skip it now.
1809 if (++LHSIt == LHSEnd) break;
1814 if (++RHSIt == RHSEnd) break;
1818 // If we got here, we know that the coalescing will be successful and that
1819 // the value numbers in EliminatedLHSVals will all be merged together. Since
1820 // the most common case is that EliminatedLHSVals has a single number, we
1821 // optimize for it: if there is more than one value, we merge them all into
1822 // the lowest numbered one, then handle the interval as if we were merging
1823 // with one value number.
1824 VNInfo *LHSValNo = NULL;
1825 if (EliminatedLHSVals.size() > 1) {
1826 // Loop through all the equal value numbers merging them into the smallest
1827 // one.
1828 VNInfo *Smallest = EliminatedLHSVals[0];
1829 for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1830 if (EliminatedLHSVals[i]->id < Smallest->id) {
1831 // Merge the current notion of the smallest into the smaller one.
1832 LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1833 Smallest = EliminatedLHSVals[i];
1834 } else {
1835 // Merge into the smallest.
1836 LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1839 LHSValNo = Smallest;
1840 } else if (EliminatedLHSVals.empty()) {
1841 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
1842 *tri_->getSuperRegisters(LHS.reg))
1843 // Imprecise sub-register information. Can't handle it.
1844 return false;
1845 assert(0 && "No copies from the RHS?");
1846 } else {
1847 LHSValNo = EliminatedLHSVals[0];
1850 // Okay, now that there is a single LHS value number that we're merging the
1851 // RHS into, update the value number info for the LHS to indicate that the
1852 // value number is defined where the RHS value number was.
1853 const VNInfo *VNI = RHS.getValNumInfo(0);
1854 LHSValNo->def = VNI->def;
1855 LHSValNo->copy = VNI->copy;
1857 // Okay, the final step is to loop over the RHS live intervals, adding them to
1858 // the LHS.
1859 LHSValNo->hasPHIKill |= VNI->hasPHIKill;
1860 LHS.addKills(LHSValNo, VNI->kills);
1861 LHS.MergeRangesInAsValue(RHS, LHSValNo);
1862 LHS.weight += RHS.weight;
1863 if (RHS.preference && !LHS.preference)
1864 LHS.preference = RHS.preference;
1866 // Update the liveintervals of sub-registers.
1867 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg))
1868 for (const unsigned *AS = tri_->getSubRegisters(LHS.reg); *AS; ++AS)
1869 li_->getOrCreateInterval(*AS).MergeInClobberRanges(LHS,
1870 li_->getVNInfoAllocator());
1872 return true;
1875 /// JoinIntervals - Attempt to join these two intervals. On failure, this
1876 /// returns false. Otherwise, if one of the intervals being joined is a
1877 /// physreg, this method always canonicalizes LHS to be it. The output
1878 /// "RHS" will not have been modified, so we can use this information
1879 /// below to update aliases.
1880 bool
1881 SimpleRegisterCoalescing::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS,
1882 bool &Swapped) {
1883 // Compute the final value assignment, assuming that the live ranges can be
1884 // coalesced.
1885 SmallVector<int, 16> LHSValNoAssignments;
1886 SmallVector<int, 16> RHSValNoAssignments;
1887 DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
1888 DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
1889 SmallVector<VNInfo*, 16> NewVNInfo;
1891 // If a live interval is a physical register, conservatively check if any
1892 // of its sub-registers is overlapping the live interval of the virtual
1893 // register. If so, do not coalesce.
1894 if (TargetRegisterInfo::isPhysicalRegister(LHS.reg) &&
1895 *tri_->getSubRegisters(LHS.reg)) {
1896 // If it's coalescing a virtual register to a physical register, estimate
1897 // its live interval length. This is the *cost* of scanning an entire live
1898 // interval. If the cost is low, we'll do an exhaustive check instead.
1900 // If this is something like this:
1901 // BB1:
1902 // v1024 = op
1903 // ...
1904 // BB2:
1905 // ...
1906 // RAX = v1024
1908 // That is, the live interval of v1024 crosses a bb. Then we can't rely on
1909 // less conservative check. It's possible a sub-register is defined before
1910 // v1024 (or live in) and live out of BB1.
1911 if (RHS.containsOneValue() &&
1912 li_->intervalIsInOneMBB(RHS) &&
1913 li_->getApproximateInstructionCount(RHS) <= 10) {
1914 // Perform a more exhaustive check for some common cases.
1915 if (li_->conflictsWithPhysRegRef(RHS, LHS.reg, true, JoinedCopies))
1916 return false;
1917 } else {
1918 for (const unsigned* SR = tri_->getSubRegisters(LHS.reg); *SR; ++SR)
1919 if (li_->hasInterval(*SR) && RHS.overlaps(li_->getInterval(*SR))) {
1920 DOUT << "Interfere with sub-register ";
1921 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1922 return false;
1925 } else if (TargetRegisterInfo::isPhysicalRegister(RHS.reg) &&
1926 *tri_->getSubRegisters(RHS.reg)) {
1927 if (LHS.containsOneValue() &&
1928 li_->getApproximateInstructionCount(LHS) <= 10) {
1929 // Perform a more exhaustive check for some common cases.
1930 if (li_->conflictsWithPhysRegRef(LHS, RHS.reg, false, JoinedCopies))
1931 return false;
1932 } else {
1933 for (const unsigned* SR = tri_->getSubRegisters(RHS.reg); *SR; ++SR)
1934 if (li_->hasInterval(*SR) && LHS.overlaps(li_->getInterval(*SR))) {
1935 DOUT << "Interfere with sub-register ";
1936 DEBUG(li_->getInterval(*SR).print(DOUT, tri_));
1937 return false;
1942 // Compute ultimate value numbers for the LHS and RHS values.
1943 if (RHS.containsOneValue()) {
1944 // Copies from a liveinterval with a single value are simple to handle and
1945 // very common, handle the special case here. This is important, because
1946 // often RHS is small and LHS is large (e.g. a physreg).
1948 // Find out if the RHS is defined as a copy from some value in the LHS.
1949 int RHSVal0DefinedFromLHS = -1;
1950 int RHSValID = -1;
1951 VNInfo *RHSValNoInfo = NULL;
1952 VNInfo *RHSValNoInfo0 = RHS.getValNumInfo(0);
1953 unsigned RHSSrcReg = li_->getVNInfoSourceReg(RHSValNoInfo0);
1954 if (RHSSrcReg == 0 || RHSSrcReg != LHS.reg) {
1955 // If RHS is not defined as a copy from the LHS, we can use simpler and
1956 // faster checks to see if the live ranges are coalescable. This joiner
1957 // can't swap the LHS/RHS intervals though.
1958 if (!TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
1959 return SimpleJoin(LHS, RHS);
1960 } else {
1961 RHSValNoInfo = RHSValNoInfo0;
1963 } else {
1964 // It was defined as a copy from the LHS, find out what value # it is.
1965 RHSValNoInfo = LHS.getLiveRangeContaining(RHSValNoInfo0->def-1)->valno;
1966 RHSValID = RHSValNoInfo->id;
1967 RHSVal0DefinedFromLHS = RHSValID;
1970 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1971 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1972 NewVNInfo.resize(LHS.getNumValNums(), NULL);
1974 // Okay, *all* of the values in LHS that are defined as a copy from RHS
1975 // should now get updated.
1976 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
1977 i != e; ++i) {
1978 VNInfo *VNI = *i;
1979 unsigned VN = VNI->id;
1980 if (unsigned LHSSrcReg = li_->getVNInfoSourceReg(VNI)) {
1981 if (LHSSrcReg != RHS.reg) {
1982 // If this is not a copy from the RHS, its value number will be
1983 // unmodified by the coalescing.
1984 NewVNInfo[VN] = VNI;
1985 LHSValNoAssignments[VN] = VN;
1986 } else if (RHSValID == -1) {
1987 // Otherwise, it is a copy from the RHS, and we don't already have a
1988 // value# for it. Keep the current value number, but remember it.
1989 LHSValNoAssignments[VN] = RHSValID = VN;
1990 NewVNInfo[VN] = RHSValNoInfo;
1991 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
1992 } else {
1993 // Otherwise, use the specified value #.
1994 LHSValNoAssignments[VN] = RHSValID;
1995 if (VN == (unsigned)RHSValID) { // Else this val# is dead.
1996 NewVNInfo[VN] = RHSValNoInfo;
1997 LHSValsDefinedFromRHS[VNI] = RHSValNoInfo0;
2000 } else {
2001 NewVNInfo[VN] = VNI;
2002 LHSValNoAssignments[VN] = VN;
2006 assert(RHSValID != -1 && "Didn't find value #?");
2007 RHSValNoAssignments[0] = RHSValID;
2008 if (RHSVal0DefinedFromLHS != -1) {
2009 // This path doesn't go through ComputeUltimateVN so just set
2010 // it to anything.
2011 RHSValsDefinedFromLHS[RHSValNoInfo0] = (VNInfo*)1;
2013 } else {
2014 // Loop over the value numbers of the LHS, seeing if any are defined from
2015 // the RHS.
2016 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2017 i != e; ++i) {
2018 VNInfo *VNI = *i;
2019 if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy?
2020 continue;
2022 // DstReg is known to be a register in the LHS interval. If the src is
2023 // from the RHS interval, we can use its value #.
2024 if (li_->getVNInfoSourceReg(VNI) != RHS.reg)
2025 continue;
2027 // Figure out the value # from the RHS.
2028 LHSValsDefinedFromRHS[VNI]=RHS.getLiveRangeContaining(VNI->def-1)->valno;
2031 // Loop over the value numbers of the RHS, seeing if any are defined from
2032 // the LHS.
2033 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2034 i != e; ++i) {
2035 VNInfo *VNI = *i;
2036 if (VNI->def == ~1U || VNI->copy == 0) // Src not defined by a copy?
2037 continue;
2039 // DstReg is known to be a register in the RHS interval. If the src is
2040 // from the LHS interval, we can use its value #.
2041 if (li_->getVNInfoSourceReg(VNI) != LHS.reg)
2042 continue;
2044 // Figure out the value # from the LHS.
2045 RHSValsDefinedFromLHS[VNI]=LHS.getLiveRangeContaining(VNI->def-1)->valno;
2048 LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
2049 RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
2050 NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
2052 for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
2053 i != e; ++i) {
2054 VNInfo *VNI = *i;
2055 unsigned VN = VNI->id;
2056 if (LHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
2057 continue;
2058 ComputeUltimateVN(VNI, NewVNInfo,
2059 LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
2060 LHSValNoAssignments, RHSValNoAssignments);
2062 for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
2063 i != e; ++i) {
2064 VNInfo *VNI = *i;
2065 unsigned VN = VNI->id;
2066 if (RHSValNoAssignments[VN] >= 0 || VNI->def == ~1U)
2067 continue;
2068 // If this value number isn't a copy from the LHS, it's a new number.
2069 if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
2070 NewVNInfo.push_back(VNI);
2071 RHSValNoAssignments[VN] = NewVNInfo.size()-1;
2072 continue;
2075 ComputeUltimateVN(VNI, NewVNInfo,
2076 RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
2077 RHSValNoAssignments, LHSValNoAssignments);
2081 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
2082 // interval lists to see if these intervals are coalescable.
2083 LiveInterval::const_iterator I = LHS.begin();
2084 LiveInterval::const_iterator IE = LHS.end();
2085 LiveInterval::const_iterator J = RHS.begin();
2086 LiveInterval::const_iterator JE = RHS.end();
2088 // Skip ahead until the first place of potential sharing.
2089 if (I->start < J->start) {
2090 I = std::upper_bound(I, IE, J->start);
2091 if (I != LHS.begin()) --I;
2092 } else if (J->start < I->start) {
2093 J = std::upper_bound(J, JE, I->start);
2094 if (J != RHS.begin()) --J;
2097 while (1) {
2098 // Determine if these two live ranges overlap.
2099 bool Overlaps;
2100 if (I->start < J->start) {
2101 Overlaps = I->end > J->start;
2102 } else {
2103 Overlaps = J->end > I->start;
2106 // If so, check value # info to determine if they are really different.
2107 if (Overlaps) {
2108 // If the live range overlap will map to the same value number in the
2109 // result liverange, we can still coalesce them. If not, we can't.
2110 if (LHSValNoAssignments[I->valno->id] !=
2111 RHSValNoAssignments[J->valno->id])
2112 return false;
2115 if (I->end < J->end) {
2116 ++I;
2117 if (I == IE) break;
2118 } else {
2119 ++J;
2120 if (J == JE) break;
2124 // Update kill info. Some live ranges are extended due to copy coalescing.
2125 for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
2126 E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
2127 VNInfo *VNI = I->first;
2128 unsigned LHSValID = LHSValNoAssignments[VNI->id];
2129 LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
2130 NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill;
2131 RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
2134 // Update kill info. Some live ranges are extended due to copy coalescing.
2135 for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
2136 E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
2137 VNInfo *VNI = I->first;
2138 unsigned RHSValID = RHSValNoAssignments[VNI->id];
2139 LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
2140 NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill;
2141 LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
2144 // If we get here, we know that we can coalesce the live ranges. Ask the
2145 // intervals to coalesce themselves now.
2146 if ((RHS.ranges.size() > LHS.ranges.size() &&
2147 TargetRegisterInfo::isVirtualRegister(LHS.reg)) ||
2148 TargetRegisterInfo::isPhysicalRegister(RHS.reg)) {
2149 RHS.join(LHS, &RHSValNoAssignments[0], &LHSValNoAssignments[0], NewVNInfo);
2150 Swapped = true;
2151 } else {
2152 LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo);
2153 Swapped = false;
2155 return true;
2158 namespace {
2159 // DepthMBBCompare - Comparison predicate that sort first based on the loop
2160 // depth of the basic block (the unsigned), and then on the MBB number.
2161 struct DepthMBBCompare {
2162 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
2163 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
2164 if (LHS.first > RHS.first) return true; // Deeper loops first
2165 return LHS.first == RHS.first &&
2166 LHS.second->getNumber() < RHS.second->getNumber();
2171 /// getRepIntervalSize - Returns the size of the interval that represents the
2172 /// specified register.
2173 template<class SF>
2174 unsigned JoinPriorityQueue<SF>::getRepIntervalSize(unsigned Reg) {
2175 return Rc->getRepIntervalSize(Reg);
2178 /// CopyRecSort::operator - Join priority queue sorting function.
2180 bool CopyRecSort::operator()(CopyRec left, CopyRec right) const {
2181 // Inner loops first.
2182 if (left.LoopDepth > right.LoopDepth)
2183 return false;
2184 else if (left.LoopDepth == right.LoopDepth)
2185 if (left.isBackEdge && !right.isBackEdge)
2186 return false;
2187 return true;
2190 void SimpleRegisterCoalescing::CopyCoalesceInMBB(MachineBasicBlock *MBB,
2191 std::vector<CopyRec> &TryAgain) {
2192 DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
2194 std::vector<CopyRec> VirtCopies;
2195 std::vector<CopyRec> PhysCopies;
2196 std::vector<CopyRec> ImpDefCopies;
2197 unsigned LoopDepth = loopInfo->getLoopDepth(MBB);
2198 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2199 MII != E;) {
2200 MachineInstr *Inst = MII++;
2202 // If this isn't a copy nor a extract_subreg, we can't join intervals.
2203 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2204 if (Inst->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
2205 DstReg = Inst->getOperand(0).getReg();
2206 SrcReg = Inst->getOperand(1).getReg();
2207 } else if (Inst->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2208 Inst->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
2209 DstReg = Inst->getOperand(0).getReg();
2210 SrcReg = Inst->getOperand(2).getReg();
2211 } else if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
2212 continue;
2214 bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
2215 bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
2216 if (NewHeuristic) {
2217 JoinQueue->push(CopyRec(Inst, LoopDepth, isBackEdgeCopy(Inst, DstReg)));
2218 } else {
2219 if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
2220 ImpDefCopies.push_back(CopyRec(Inst, 0, false));
2221 else if (SrcIsPhys || DstIsPhys)
2222 PhysCopies.push_back(CopyRec(Inst, 0, false));
2223 else
2224 VirtCopies.push_back(CopyRec(Inst, 0, false));
2228 if (NewHeuristic)
2229 return;
2231 // Try coalescing implicit copies first, followed by copies to / from
2232 // physical registers, then finally copies from virtual registers to
2233 // virtual registers.
2234 for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
2235 CopyRec &TheCopy = ImpDefCopies[i];
2236 bool Again = false;
2237 if (!JoinCopy(TheCopy, Again))
2238 if (Again)
2239 TryAgain.push_back(TheCopy);
2241 for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
2242 CopyRec &TheCopy = PhysCopies[i];
2243 bool Again = false;
2244 if (!JoinCopy(TheCopy, Again))
2245 if (Again)
2246 TryAgain.push_back(TheCopy);
2248 for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
2249 CopyRec &TheCopy = VirtCopies[i];
2250 bool Again = false;
2251 if (!JoinCopy(TheCopy, Again))
2252 if (Again)
2253 TryAgain.push_back(TheCopy);
2257 void SimpleRegisterCoalescing::joinIntervals() {
2258 DOUT << "********** JOINING INTERVALS ***********\n";
2260 if (NewHeuristic)
2261 JoinQueue = new JoinPriorityQueue<CopyRecSort>(this);
2263 std::vector<CopyRec> TryAgainList;
2264 if (loopInfo->empty()) {
2265 // If there are no loops in the function, join intervals in function order.
2266 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
2267 I != E; ++I)
2268 CopyCoalesceInMBB(I, TryAgainList);
2269 } else {
2270 // Otherwise, join intervals in inner loops before other intervals.
2271 // Unfortunately we can't just iterate over loop hierarchy here because
2272 // there may be more MBB's than BB's. Collect MBB's for sorting.
2274 // Join intervals in the function prolog first. We want to join physical
2275 // registers with virtual registers before the intervals got too long.
2276 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
2277 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
2278 MachineBasicBlock *MBB = I;
2279 MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
2282 // Sort by loop depth.
2283 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
2285 // Finally, join intervals in loop nest order.
2286 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
2287 CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
2290 // Joining intervals can allow other intervals to be joined. Iteratively join
2291 // until we make no progress.
2292 if (NewHeuristic) {
2293 SmallVector<CopyRec, 16> TryAgain;
2294 bool ProgressMade = true;
2295 while (ProgressMade) {
2296 ProgressMade = false;
2297 while (!JoinQueue->empty()) {
2298 CopyRec R = JoinQueue->pop();
2299 bool Again = false;
2300 bool Success = JoinCopy(R, Again);
2301 if (Success)
2302 ProgressMade = true;
2303 else if (Again)
2304 TryAgain.push_back(R);
2307 if (ProgressMade) {
2308 while (!TryAgain.empty()) {
2309 JoinQueue->push(TryAgain.back());
2310 TryAgain.pop_back();
2314 } else {
2315 bool ProgressMade = true;
2316 while (ProgressMade) {
2317 ProgressMade = false;
2319 for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
2320 CopyRec &TheCopy = TryAgainList[i];
2321 if (TheCopy.MI) {
2322 bool Again = false;
2323 bool Success = JoinCopy(TheCopy, Again);
2324 if (Success || !Again) {
2325 TheCopy.MI = 0; // Mark this one as done.
2326 ProgressMade = true;
2333 if (NewHeuristic)
2334 delete JoinQueue;
2337 /// Return true if the two specified registers belong to different register
2338 /// classes. The registers may be either phys or virt regs.
2339 bool
2340 SimpleRegisterCoalescing::differingRegisterClasses(unsigned RegA,
2341 unsigned RegB) const {
2342 // Get the register classes for the first reg.
2343 if (TargetRegisterInfo::isPhysicalRegister(RegA)) {
2344 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
2345 "Shouldn't consider two physregs!");
2346 return !mri_->getRegClass(RegB)->contains(RegA);
2349 // Compare against the regclass for the second reg.
2350 const TargetRegisterClass *RegClassA = mri_->getRegClass(RegA);
2351 if (TargetRegisterInfo::isVirtualRegister(RegB)) {
2352 const TargetRegisterClass *RegClassB = mri_->getRegClass(RegB);
2353 return RegClassA != RegClassB;
2355 return !RegClassA->contains(RegB);
2358 /// lastRegisterUse - Returns the last use of the specific register between
2359 /// cycles Start and End or NULL if there are no uses.
2360 MachineOperand *
2361 SimpleRegisterCoalescing::lastRegisterUse(unsigned Start, unsigned End,
2362 unsigned Reg, unsigned &UseIdx) const{
2363 UseIdx = 0;
2364 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2365 MachineOperand *LastUse = NULL;
2366 for (MachineRegisterInfo::use_iterator I = mri_->use_begin(Reg),
2367 E = mri_->use_end(); I != E; ++I) {
2368 MachineOperand &Use = I.getOperand();
2369 MachineInstr *UseMI = Use.getParent();
2370 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2371 if (tii_->isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2372 SrcReg == DstReg)
2373 // Ignore identity copies.
2374 continue;
2375 unsigned Idx = li_->getInstructionIndex(UseMI);
2376 if (Idx >= Start && Idx < End && Idx >= UseIdx) {
2377 LastUse = &Use;
2378 UseIdx = li_->getUseIndex(Idx);
2381 return LastUse;
2384 int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
2385 int s = Start;
2386 while (e >= s) {
2387 // Skip deleted instructions
2388 MachineInstr *MI = li_->getInstructionFromIndex(e);
2389 while ((e - InstrSlots::NUM) >= s && !MI) {
2390 e -= InstrSlots::NUM;
2391 MI = li_->getInstructionFromIndex(e);
2393 if (e < s || MI == NULL)
2394 return NULL;
2396 // Ignore identity copies.
2397 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2398 if (!(tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx) &&
2399 SrcReg == DstReg))
2400 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
2401 MachineOperand &Use = MI->getOperand(i);
2402 if (Use.isReg() && Use.isUse() && Use.getReg() &&
2403 tri_->regsOverlap(Use.getReg(), Reg)) {
2404 UseIdx = li_->getUseIndex(e);
2405 return &Use;
2409 e -= InstrSlots::NUM;
2412 return NULL;
2416 void SimpleRegisterCoalescing::printRegName(unsigned reg) const {
2417 if (TargetRegisterInfo::isPhysicalRegister(reg))
2418 cerr << tri_->getName(reg);
2419 else
2420 cerr << "%reg" << reg;
2423 void SimpleRegisterCoalescing::releaseMemory() {
2424 JoinedCopies.clear();
2425 ReMatCopies.clear();
2426 ReMatDefs.clear();
2429 static bool isZeroLengthInterval(LiveInterval *li) {
2430 for (LiveInterval::Ranges::const_iterator
2431 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
2432 if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
2433 return false;
2434 return true;
2437 /// TurnCopyIntoImpDef - If source of the specified copy is an implicit def,
2438 /// turn the copy into an implicit def.
2439 bool
2440 SimpleRegisterCoalescing::TurnCopyIntoImpDef(MachineBasicBlock::iterator &I,
2441 MachineBasicBlock *MBB,
2442 unsigned DstReg, unsigned SrcReg) {
2443 MachineInstr *CopyMI = &*I;
2444 unsigned CopyIdx = li_->getDefIndex(li_->getInstructionIndex(CopyMI));
2445 if (!li_->hasInterval(SrcReg))
2446 return false;
2447 LiveInterval &SrcInt = li_->getInterval(SrcReg);
2448 if (!SrcInt.empty())
2449 return false;
2450 if (!li_->hasInterval(DstReg))
2451 return false;
2452 LiveInterval &DstInt = li_->getInterval(DstReg);
2453 const LiveRange *DstLR = DstInt.getLiveRangeContaining(CopyIdx);
2454 DstInt.removeValNo(DstLR->valno);
2455 CopyMI->setDesc(tii_->get(TargetInstrInfo::IMPLICIT_DEF));
2456 for (int i = CopyMI->getNumOperands() - 1, e = 0; i > e; --i)
2457 CopyMI->RemoveOperand(i);
2458 bool NoUse = mri_->use_empty(SrcReg);
2459 if (NoUse) {
2460 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg),
2461 E = mri_->reg_end(); I != E; ) {
2462 assert(I.getOperand().isDef());
2463 MachineInstr *DefMI = &*I;
2464 ++I;
2465 // The implicit_def source has no other uses, delete it.
2466 assert(DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF);
2467 li_->RemoveMachineInstrFromMaps(DefMI);
2468 DefMI->eraseFromParent();
2471 ++I;
2472 return true;
2476 bool SimpleRegisterCoalescing::runOnMachineFunction(MachineFunction &fn) {
2477 mf_ = &fn;
2478 mri_ = &fn.getRegInfo();
2479 tm_ = &fn.getTarget();
2480 tri_ = tm_->getRegisterInfo();
2481 tii_ = tm_->getInstrInfo();
2482 li_ = &getAnalysis<LiveIntervals>();
2483 loopInfo = &getAnalysis<MachineLoopInfo>();
2485 DOUT << "********** SIMPLE REGISTER COALESCING **********\n"
2486 << "********** Function: "
2487 << ((Value*)mf_->getFunction())->getName() << '\n';
2489 allocatableRegs_ = tri_->getAllocatableSet(fn);
2490 for (TargetRegisterInfo::regclass_iterator I = tri_->regclass_begin(),
2491 E = tri_->regclass_end(); I != E; ++I)
2492 allocatableRCRegs_.insert(std::make_pair(*I,
2493 tri_->getAllocatableSet(fn, *I)));
2495 // Join (coalesce) intervals if requested.
2496 if (EnableJoining) {
2497 joinIntervals();
2498 DEBUG({
2499 DOUT << "********** INTERVALS POST JOINING **********\n";
2500 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I){
2501 I->second->print(DOUT, tri_);
2502 DOUT << "\n";
2507 // Perform a final pass over the instructions and compute spill weights
2508 // and remove identity moves.
2509 SmallVector<unsigned, 4> DeadDefs;
2510 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
2511 mbbi != mbbe; ++mbbi) {
2512 MachineBasicBlock* mbb = mbbi;
2513 unsigned loopDepth = loopInfo->getLoopDepth(mbb);
2515 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
2516 mii != mie; ) {
2517 MachineInstr *MI = mii;
2518 unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
2519 if (JoinedCopies.count(MI)) {
2520 // Delete all coalesced copies.
2521 if (!tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
2522 assert((MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
2523 MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
2524 MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG) &&
2525 "Unrecognized copy instruction");
2526 DstReg = MI->getOperand(0).getReg();
2528 if (MI->registerDefIsDead(DstReg)) {
2529 LiveInterval &li = li_->getInterval(DstReg);
2530 if (!ShortenDeadCopySrcLiveRange(li, MI))
2531 ShortenDeadCopyLiveRange(li, MI);
2533 li_->RemoveMachineInstrFromMaps(MI);
2534 mii = mbbi->erase(mii);
2535 ++numPeep;
2536 continue;
2539 // Now check if this is a remat'ed def instruction which is now dead.
2540 if (ReMatDefs.count(MI)) {
2541 bool isDead = true;
2542 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2543 const MachineOperand &MO = MI->getOperand(i);
2544 if (!MO.isReg())
2545 continue;
2546 unsigned Reg = MO.getReg();
2547 if (!Reg)
2548 continue;
2549 if (TargetRegisterInfo::isVirtualRegister(Reg))
2550 DeadDefs.push_back(Reg);
2551 if (MO.isDead())
2552 continue;
2553 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
2554 !mri_->use_empty(Reg)) {
2555 isDead = false;
2556 break;
2559 if (isDead) {
2560 while (!DeadDefs.empty()) {
2561 unsigned DeadDef = DeadDefs.back();
2562 DeadDefs.pop_back();
2563 RemoveDeadDef(li_->getInterval(DeadDef), MI);
2565 li_->RemoveMachineInstrFromMaps(mii);
2566 mii = mbbi->erase(mii);
2567 continue;
2568 } else
2569 DeadDefs.clear();
2572 // If the move will be an identity move delete it
2573 bool isMove= tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
2574 if (isMove && SrcReg == DstReg) {
2575 if (li_->hasInterval(SrcReg)) {
2576 LiveInterval &RegInt = li_->getInterval(SrcReg);
2577 // If def of this move instruction is dead, remove its live range
2578 // from the dstination register's live interval.
2579 if (MI->registerDefIsDead(DstReg)) {
2580 if (!ShortenDeadCopySrcLiveRange(RegInt, MI))
2581 ShortenDeadCopyLiveRange(RegInt, MI);
2584 li_->RemoveMachineInstrFromMaps(MI);
2585 mii = mbbi->erase(mii);
2586 ++numPeep;
2587 } else if (!isMove || !TurnCopyIntoImpDef(mii, mbb, DstReg, SrcReg)) {
2588 SmallSet<unsigned, 4> UniqueUses;
2589 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2590 const MachineOperand &mop = MI->getOperand(i);
2591 if (mop.isReg() && mop.getReg() &&
2592 TargetRegisterInfo::isVirtualRegister(mop.getReg())) {
2593 unsigned reg = mop.getReg();
2594 // Multiple uses of reg by the same instruction. It should not
2595 // contribute to spill weight again.
2596 if (UniqueUses.count(reg) != 0)
2597 continue;
2598 LiveInterval &RegInt = li_->getInterval(reg);
2599 RegInt.weight +=
2600 li_->getSpillWeight(mop.isDef(), mop.isUse(), loopDepth);
2601 UniqueUses.insert(reg);
2604 ++mii;
2609 for (LiveIntervals::iterator I = li_->begin(), E = li_->end(); I != E; ++I) {
2610 LiveInterval &LI = *I->second;
2611 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
2612 // If the live interval length is essentially zero, i.e. in every live
2613 // range the use follows def immediately, it doesn't make sense to spill
2614 // it and hope it will be easier to allocate for this li.
2615 if (isZeroLengthInterval(&LI))
2616 LI.weight = HUGE_VALF;
2617 else {
2618 bool isLoad = false;
2619 SmallVector<LiveInterval*, 4> SpillIs;
2620 if (li_->isReMaterializable(LI, SpillIs, isLoad)) {
2621 // If all of the definitions of the interval are re-materializable,
2622 // it is a preferred candidate for spilling. If non of the defs are
2623 // loads, then it's potentially very cheap to re-materialize.
2624 // FIXME: this gets much more complicated once we support non-trivial
2625 // re-materialization.
2626 if (isLoad)
2627 LI.weight *= 0.9F;
2628 else
2629 LI.weight *= 0.5F;
2633 // Slightly prefer live interval that has been assigned a preferred reg.
2634 if (LI.preference)
2635 LI.weight *= 1.01F;
2637 // Divide the weight of the interval by its size. This encourages
2638 // spilling of intervals that are large and have few uses, and
2639 // discourages spilling of small intervals with many uses.
2640 LI.weight /= li_->getApproximateInstructionCount(LI) * InstrSlots::NUM;
2644 DEBUG(dump());
2645 return true;
2648 /// print - Implement the dump method.
2649 void SimpleRegisterCoalescing::print(std::ostream &O, const Module* m) const {
2650 li_->print(O, m);
2653 RegisterCoalescer* llvm::createSimpleRegisterCoalescer() {
2654 return new SimpleRegisterCoalescing();
2657 // Make sure that anything that uses RegisterCoalescer pulls in this file...
2658 DEFINING_FILE_FOR(SimpleRegisterCoalescing)