1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/GlobalAlias.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringExtras.h"
45 /// makeVTList - Return an instance of the SDVTList struct initialized with the
46 /// specified members.
47 static SDVTList
makeVTList(const MVT
*VTs
, unsigned NumVTs
) {
48 SDVTList Res
= {VTs
, NumVTs
};
52 static const fltSemantics
*MVTToAPFloatSemantics(MVT VT
) {
53 switch (VT
.getSimpleVT()) {
54 default: assert(0 && "Unknown FP format");
55 case MVT::f32
: return &APFloat::IEEEsingle
;
56 case MVT::f64
: return &APFloat::IEEEdouble
;
57 case MVT::f80
: return &APFloat::x87DoubleExtended
;
58 case MVT::f128
: return &APFloat::IEEEquad
;
59 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
63 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
65 //===----------------------------------------------------------------------===//
66 // ConstantFPSDNode Class
67 //===----------------------------------------------------------------------===//
69 /// isExactlyValue - We don't rely on operator== working on double values, as
70 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71 /// As such, this method can be used to do an exact bit-for-bit comparison of
72 /// two floating point values.
73 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
74 return getValueAPF().bitwiseIsEqual(V
);
77 bool ConstantFPSDNode::isValueValidForType(MVT VT
,
79 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
81 // PPC long double cannot be converted to any other type.
82 if (VT
== MVT::ppcf128
||
83 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
86 // convert modifies in place, so make a copy.
87 APFloat Val2
= APFloat(Val
);
89 (void) Val2
.convert(*MVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
94 //===----------------------------------------------------------------------===//
96 //===----------------------------------------------------------------------===//
98 /// isBuildVectorAllOnes - Return true if the specified node is a
99 /// BUILD_VECTOR where all of the elements are ~0 or undef.
100 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
101 // Look through a bit convert.
102 if (N
->getOpcode() == ISD::BIT_CONVERT
)
103 N
= N
->getOperand(0).getNode();
105 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
107 unsigned i
= 0, e
= N
->getNumOperands();
109 // Skip over all of the undef values.
110 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
113 // Do not accept an all-undef vector.
114 if (i
== e
) return false;
116 // Do not accept build_vectors that aren't all constants or which have non-~0
118 SDValue NotZero
= N
->getOperand(i
);
119 if (isa
<ConstantSDNode
>(NotZero
)) {
120 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
122 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
123 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
124 bitcastToAPInt().isAllOnesValue())
129 // Okay, we have at least one ~0 value, check to see if the rest match or are
131 for (++i
; i
!= e
; ++i
)
132 if (N
->getOperand(i
) != NotZero
&&
133 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
139 /// isBuildVectorAllZeros - Return true if the specified node is a
140 /// BUILD_VECTOR where all of the elements are 0 or undef.
141 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
142 // Look through a bit convert.
143 if (N
->getOpcode() == ISD::BIT_CONVERT
)
144 N
= N
->getOperand(0).getNode();
146 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
148 unsigned i
= 0, e
= N
->getNumOperands();
150 // Skip over all of the undef values.
151 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
154 // Do not accept an all-undef vector.
155 if (i
== e
) return false;
157 // Do not accept build_vectors that aren't all constants or which have non-~0
159 SDValue Zero
= N
->getOperand(i
);
160 if (isa
<ConstantSDNode
>(Zero
)) {
161 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
163 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
164 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
169 // Okay, we have at least one ~0 value, check to see if the rest match or are
171 for (++i
; i
!= e
; ++i
)
172 if (N
->getOperand(i
) != Zero
&&
173 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
178 /// isScalarToVector - Return true if the specified node is a
179 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180 /// element is not an undef.
181 bool ISD::isScalarToVector(const SDNode
*N
) {
182 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
185 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
187 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
189 unsigned NumElems
= N
->getNumOperands();
190 for (unsigned i
= 1; i
< NumElems
; ++i
) {
191 SDValue V
= N
->getOperand(i
);
192 if (V
.getOpcode() != ISD::UNDEF
)
199 /// isDebugLabel - Return true if the specified node represents a debug
200 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201 bool ISD::isDebugLabel(const SDNode
*N
) {
203 if (N
->getOpcode() == ISD::DBG_LABEL
)
205 if (N
->isMachineOpcode() &&
206 N
->getMachineOpcode() == TargetInstrInfo::DBG_LABEL
)
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
214 // To perform this operation, we just need to swap the L and G bits of the
216 unsigned OldL
= (Operation
>> 2) & 1;
217 unsigned OldG
= (Operation
>> 1) & 1;
218 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
219 (OldL
<< 1) | // New G bit
220 (OldG
<< 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
226 unsigned Operation
= Op
;
228 Operation
^= 7; // Flip L, G, E bits, but not U.
230 Operation
^= 15; // Flip all of the condition bits.
232 if (Operation
> ISD::SETTRUE2
)
233 Operation
&= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation
);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode
) {
244 default: assert(0 && "Illegal integer setcc operation!");
246 case ISD::SETNE
: return 0;
250 case ISD::SETGE
: return 1;
254 case ISD::SETUGE
: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
262 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
264 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID
;
268 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op
> ISD::SETTRUE2
)
273 Op
&= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
279 return ISD::CondCode(Op
);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
286 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
288 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID
;
292 // Combine all of the condition bits.
293 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
295 // Canonicalize illegal integer setcc's.
299 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
300 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
302 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
303 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
310 const TargetMachine
&SelectionDAG::getTarget() const {
311 return MF
->getTarget();
314 //===----------------------------------------------------------------------===//
315 // SDNode Profile Support
316 //===----------------------------------------------------------------------===//
318 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
320 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
324 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325 /// solely with their pointer.
326 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
327 ID
.AddPointer(VTList
.VTs
);
330 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
332 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
333 const SDValue
*Ops
, unsigned NumOps
) {
334 for (; NumOps
; --NumOps
, ++Ops
) {
335 ID
.AddPointer(Ops
->getNode());
336 ID
.AddInteger(Ops
->getResNo());
340 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
342 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
343 const SDUse
*Ops
, unsigned NumOps
) {
344 for (; NumOps
; --NumOps
, ++Ops
) {
345 ID
.AddPointer(Ops
->getNode());
346 ID
.AddInteger(Ops
->getResNo());
350 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
351 unsigned short OpC
, SDVTList VTList
,
352 const SDValue
*OpList
, unsigned N
) {
353 AddNodeIDOpcode(ID
, OpC
);
354 AddNodeIDValueTypes(ID
, VTList
);
355 AddNodeIDOperands(ID
, OpList
, N
);
358 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
360 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
361 switch (N
->getOpcode()) {
362 default: break; // Normal nodes don't need extra info.
364 ID
.AddInteger(cast
<ARG_FLAGSSDNode
>(N
)->getArgFlags().getRawBits());
366 case ISD::TargetConstant
:
368 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
370 case ISD::TargetConstantFP
:
371 case ISD::ConstantFP
: {
372 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
375 case ISD::TargetGlobalAddress
:
376 case ISD::GlobalAddress
:
377 case ISD::TargetGlobalTLSAddress
:
378 case ISD::GlobalTLSAddress
: {
379 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
380 ID
.AddPointer(GA
->getGlobal());
381 ID
.AddInteger(GA
->getOffset());
384 case ISD::BasicBlock
:
385 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
388 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
390 case ISD::DBG_STOPPOINT
: {
391 const DbgStopPointSDNode
*DSP
= cast
<DbgStopPointSDNode
>(N
);
392 ID
.AddInteger(DSP
->getLine());
393 ID
.AddInteger(DSP
->getColumn());
394 ID
.AddPointer(DSP
->getCompileUnit());
398 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
400 case ISD::MEMOPERAND
: {
401 const MachineMemOperand
&MO
= cast
<MemOperandSDNode
>(N
)->MO
;
405 case ISD::FrameIndex
:
406 case ISD::TargetFrameIndex
:
407 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
410 case ISD::TargetJumpTable
:
411 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
413 case ISD::ConstantPool
:
414 case ISD::TargetConstantPool
: {
415 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
416 ID
.AddInteger(CP
->getAlignment());
417 ID
.AddInteger(CP
->getOffset());
418 if (CP
->isMachineConstantPoolEntry())
419 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
421 ID
.AddPointer(CP
->getConstVal());
425 const CallSDNode
*Call
= cast
<CallSDNode
>(N
);
426 ID
.AddInteger(Call
->getCallingConv());
427 ID
.AddInteger(Call
->isVarArg());
431 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
432 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
433 ID
.AddInteger(LD
->getRawSubclassData());
437 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
438 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
439 ID
.AddInteger(ST
->getRawSubclassData());
442 case ISD::ATOMIC_CMP_SWAP
:
443 case ISD::ATOMIC_SWAP
:
444 case ISD::ATOMIC_LOAD_ADD
:
445 case ISD::ATOMIC_LOAD_SUB
:
446 case ISD::ATOMIC_LOAD_AND
:
447 case ISD::ATOMIC_LOAD_OR
:
448 case ISD::ATOMIC_LOAD_XOR
:
449 case ISD::ATOMIC_LOAD_NAND
:
450 case ISD::ATOMIC_LOAD_MIN
:
451 case ISD::ATOMIC_LOAD_MAX
:
452 case ISD::ATOMIC_LOAD_UMIN
:
453 case ISD::ATOMIC_LOAD_UMAX
: {
454 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
455 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
456 ID
.AddInteger(AT
->getRawSubclassData());
459 } // end switch (N->getOpcode())
462 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
464 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
465 AddNodeIDOpcode(ID
, N
->getOpcode());
466 // Add the return value info.
467 AddNodeIDValueTypes(ID
, N
->getVTList());
468 // Add the operand info.
469 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
471 // Handle SDNode leafs with special info.
472 AddNodeIDCustom(ID
, N
);
475 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476 /// the CSE map that carries alignment, volatility, indexing mode, and
477 /// extension/truncation information.
479 static inline unsigned
480 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
,
481 bool isVolatile
, unsigned Alignment
) {
482 assert((ConvType
& 3) == ConvType
&&
483 "ConvType may not require more than 2 bits!");
484 assert((AM
& 7) == AM
&&
485 "AM may not require more than 3 bits!");
489 ((Log2_32(Alignment
) + 1) << 6);
492 //===----------------------------------------------------------------------===//
493 // SelectionDAG Class
494 //===----------------------------------------------------------------------===//
496 /// doNotCSE - Return true if CSE should not be performed for this node.
497 static bool doNotCSE(SDNode
*N
) {
498 if (N
->getValueType(0) == MVT::Flag
)
499 return true; // Never CSE anything that produces a flag.
501 switch (N
->getOpcode()) {
503 case ISD::HANDLENODE
:
505 case ISD::DBG_STOPPOINT
:
508 return true; // Never CSE these nodes.
511 // Check that remaining values produced are not flags.
512 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
513 if (N
->getValueType(i
) == MVT::Flag
)
514 return true; // Never CSE anything that produces a flag.
519 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
521 void SelectionDAG::RemoveDeadNodes() {
522 // Create a dummy node (which is not added to allnodes), that adds a reference
523 // to the root node, preventing it from being deleted.
524 HandleSDNode
Dummy(getRoot());
526 SmallVector
<SDNode
*, 128> DeadNodes
;
528 // Add all obviously-dead nodes to the DeadNodes worklist.
529 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
531 DeadNodes
.push_back(I
);
533 RemoveDeadNodes(DeadNodes
);
535 // If the root changed (e.g. it was a dead load, update the root).
536 setRoot(Dummy
.getValue());
539 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
540 /// given list, and any nodes that become unreachable as a result.
541 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
542 DAGUpdateListener
*UpdateListener
) {
544 // Process the worklist, deleting the nodes and adding their uses to the
546 while (!DeadNodes
.empty()) {
547 SDNode
*N
= DeadNodes
.pop_back_val();
550 UpdateListener
->NodeDeleted(N
, 0);
552 // Take the node out of the appropriate CSE map.
553 RemoveNodeFromCSEMaps(N
);
555 // Next, brutally remove the operand list. This is safe to do, as there are
556 // no cycles in the graph.
557 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
559 SDNode
*Operand
= Use
.getNode();
562 // Now that we removed this operand, see if there are no uses of it left.
563 if (Operand
->use_empty())
564 DeadNodes
.push_back(Operand
);
571 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
572 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
573 RemoveDeadNodes(DeadNodes
, UpdateListener
);
576 void SelectionDAG::DeleteNode(SDNode
*N
) {
577 // First take this out of the appropriate CSE map.
578 RemoveNodeFromCSEMaps(N
);
580 // Finally, remove uses due to operands of this node, remove from the
581 // AllNodes list, and delete the node.
582 DeleteNodeNotInCSEMaps(N
);
585 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
586 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
587 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
589 // Drop all of the operands and decrement used node's use counts.
595 void SelectionDAG::DeallocateNode(SDNode
*N
) {
596 if (N
->OperandsNeedDelete
)
597 delete[] N
->OperandList
;
599 // Set the opcode to DELETED_NODE to help catch bugs when node
600 // memory is reallocated.
601 N
->NodeType
= ISD::DELETED_NODE
;
603 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
606 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607 /// correspond to it. This is useful when we're about to delete or repurpose
608 /// the node. We don't want future request for structurally identical nodes
609 /// to return N anymore.
610 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
612 switch (N
->getOpcode()) {
613 case ISD::EntryToken
:
614 assert(0 && "EntryToken should not be in CSEMaps!");
616 case ISD::HANDLENODE
: return false; // noop.
618 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
619 "Cond code doesn't exist!");
620 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
621 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
623 case ISD::ExternalSymbol
:
624 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
626 case ISD::TargetExternalSymbol
:
628 TargetExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
630 case ISD::VALUETYPE
: {
631 MVT VT
= cast
<VTSDNode
>(N
)->getVT();
632 if (VT
.isExtended()) {
633 Erased
= ExtendedValueTypeNodes
.erase(VT
);
635 Erased
= ValueTypeNodes
[VT
.getSimpleVT()] != 0;
636 ValueTypeNodes
[VT
.getSimpleVT()] = 0;
641 // Remove it from the CSE Map.
642 Erased
= CSEMap
.RemoveNode(N
);
646 // Verify that the node was actually in one of the CSE maps, unless it has a
647 // flag result (which cannot be CSE'd) or is one of the special cases that are
648 // not subject to CSE.
649 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Flag
&&
650 !N
->isMachineOpcode() && !doNotCSE(N
)) {
653 assert(0 && "Node is not in map!");
659 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660 /// maps and modified in place. Add it back to the CSE maps, unless an identical
661 /// node already exists, in which case transfer all its users to the existing
662 /// node. This transfer can potentially trigger recursive merging.
665 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
666 DAGUpdateListener
*UpdateListener
) {
667 // For node types that aren't CSE'd, just act as if no identical node
670 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
672 // If there was already an existing matching node, use ReplaceAllUsesWith
673 // to replace the dead one with the existing one. This can cause
674 // recursive merging of other unrelated nodes down the line.
675 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
677 // N is now dead. Inform the listener if it exists and delete it.
679 UpdateListener
->NodeDeleted(N
, Existing
);
680 DeleteNodeNotInCSEMaps(N
);
685 // If the node doesn't already exist, we updated it. Inform a listener if
688 UpdateListener
->NodeUpdated(N
);
691 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692 /// were replaced with those specified. If this node is never memoized,
693 /// return null, otherwise return a pointer to the slot it would take. If a
694 /// node already exists with these operands, the slot will be non-null.
695 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
700 SDValue Ops
[] = { Op
};
702 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
703 AddNodeIDCustom(ID
, N
);
704 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
707 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708 /// were replaced with those specified. If this node is never memoized,
709 /// return null, otherwise return a pointer to the slot it would take. If a
710 /// node already exists with these operands, the slot will be non-null.
711 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
712 SDValue Op1
, SDValue Op2
,
717 SDValue Ops
[] = { Op1
, Op2
};
719 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
720 AddNodeIDCustom(ID
, N
);
721 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
725 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726 /// were replaced with those specified. If this node is never memoized,
727 /// return null, otherwise return a pointer to the slot it would take. If a
728 /// node already exists with these operands, the slot will be non-null.
729 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
730 const SDValue
*Ops
,unsigned NumOps
,
736 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
737 AddNodeIDCustom(ID
, N
);
738 return CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
741 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
742 void SelectionDAG::VerifyNode(SDNode
*N
) {
743 switch (N
->getOpcode()) {
746 case ISD::BUILD_PAIR
: {
747 MVT VT
= N
->getValueType(0);
748 assert(N
->getNumValues() == 1 && "Too many results!");
749 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
750 "Wrong return type!");
751 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
752 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
753 "Mismatched operand types!");
754 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
755 "Wrong operand type!");
756 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
757 "Wrong return type size");
760 case ISD::BUILD_VECTOR
: {
761 assert(N
->getNumValues() == 1 && "Too many results!");
762 assert(N
->getValueType(0).isVector() && "Wrong return type!");
763 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
764 "Wrong number of operands!");
765 // FIXME: Change vector_shuffle to a variadic node with mask elements being
766 // operands of the node. Currently the mask is a BUILD_VECTOR passed as an
767 // operand, and it is not always possible to legalize it. Turning off the
768 // following checks at least makes it possible to legalize most of the time.
769 // MVT EltVT = N->getValueType(0).getVectorElementType();
770 // for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771 // assert(I->getValueType() == EltVT &&
772 // "Wrong operand type!");
778 /// getMVTAlignment - Compute the default alignment value for the
781 unsigned SelectionDAG::getMVTAlignment(MVT VT
) const {
782 const Type
*Ty
= VT
== MVT::iPTR
?
783 PointerType::get(Type::Int8Ty
, 0) :
786 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
789 // EntryNode could meaningfully have debug info if we can find it...
790 SelectionDAG::SelectionDAG(TargetLowering
&tli
, FunctionLoweringInfo
&fli
)
791 : TLI(tli
), FLI(fli
), DW(0),
792 EntryNode(ISD::EntryToken
, DebugLoc::getUnknownLoc(),
793 getVTList(MVT::Other
)), Root(getEntryNode()) {
794 AllNodes
.push_back(&EntryNode
);
797 void SelectionDAG::init(MachineFunction
&mf
, MachineModuleInfo
*mmi
,
804 SelectionDAG::~SelectionDAG() {
808 void SelectionDAG::allnodes_clear() {
809 assert(&*AllNodes
.begin() == &EntryNode
);
810 AllNodes
.remove(AllNodes
.begin());
811 while (!AllNodes
.empty())
812 DeallocateNode(AllNodes
.begin());
815 void SelectionDAG::clear() {
817 OperandAllocator
.Reset();
820 ExtendedValueTypeNodes
.clear();
821 ExternalSymbols
.clear();
822 TargetExternalSymbols
.clear();
823 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
824 static_cast<CondCodeSDNode
*>(0));
825 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
826 static_cast<SDNode
*>(0));
828 EntryNode
.UseList
= 0;
829 AllNodes
.push_back(&EntryNode
);
830 Root
= getEntryNode();
833 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, MVT VT
) {
834 if (Op
.getValueType() == VT
) return Op
;
835 APInt Imm
= APInt::getLowBitsSet(Op
.getValueSizeInBits(),
837 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
838 getConstant(Imm
, Op
.getValueType()));
841 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
843 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, MVT VT
) {
846 MVT EltVT
= VT
.getVectorElementType();
848 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), EltVT
);
849 std::vector
<SDValue
> NegOnes(VT
.getVectorNumElements(), NegOneElt
);
850 NegOne
= getNode(ISD::BUILD_VECTOR
, DL
, VT
, &NegOnes
[0], NegOnes
.size());
852 NegOne
= getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
854 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
857 SDValue
SelectionDAG::getConstant(uint64_t Val
, MVT VT
, bool isT
) {
858 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
859 assert((EltVT
.getSizeInBits() >= 64 ||
860 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
861 "getConstant with a uint64_t value that doesn't fit in the type!");
862 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
865 SDValue
SelectionDAG::getConstant(const APInt
&Val
, MVT VT
, bool isT
) {
866 return getConstant(*ConstantInt::get(Val
), VT
, isT
);
869 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, MVT VT
, bool isT
) {
870 assert(VT
.isInteger() && "Cannot create FP integer constant!");
872 MVT EltVT
= VT
.isVector() ? VT
.getVectorElementType() : VT
;
873 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
874 "APInt size does not match type size!");
876 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
878 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
882 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
884 return SDValue(N
, 0);
886 N
= NodeAllocator
.Allocate
<ConstantSDNode
>();
887 new (N
) ConstantSDNode(isT
, &Val
, EltVT
);
888 CSEMap
.InsertNode(N
, IP
);
889 AllNodes
.push_back(N
);
892 SDValue
Result(N
, 0);
894 SmallVector
<SDValue
, 8> Ops
;
895 Ops
.assign(VT
.getVectorNumElements(), Result
);
896 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
897 VT
, &Ops
[0], Ops
.size());
902 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
903 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
907 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, MVT VT
, bool isTarget
) {
908 return getConstantFP(*ConstantFP::get(V
), VT
, isTarget
);
911 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, MVT VT
, bool isTarget
){
912 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
915 VT
.isVector() ? VT
.getVectorElementType() : VT
;
917 // Do the map lookup using the actual bit pattern for the floating point
918 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
919 // we don't have issues with SNANs.
920 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
922 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
926 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
928 return SDValue(N
, 0);
930 N
= NodeAllocator
.Allocate
<ConstantFPSDNode
>();
931 new (N
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
932 CSEMap
.InsertNode(N
, IP
);
933 AllNodes
.push_back(N
);
936 SDValue
Result(N
, 0);
938 SmallVector
<SDValue
, 8> Ops
;
939 Ops
.assign(VT
.getVectorNumElements(), Result
);
940 // FIXME DebugLoc info might be appropriate here
941 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc::getUnknownLoc(),
942 VT
, &Ops
[0], Ops
.size());
947 SDValue
SelectionDAG::getConstantFP(double Val
, MVT VT
, bool isTarget
) {
949 VT
.isVector() ? VT
.getVectorElementType() : VT
;
951 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
953 return getConstantFP(APFloat(Val
), VT
, isTarget
);
956 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
,
957 MVT VT
, int64_t Offset
,
961 // Truncate (with sign-extension) the offset value to the pointer size.
962 unsigned BitWidth
= TLI
.getPointerTy().getSizeInBits();
964 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
966 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
968 // If GV is an alias then use the aliasee for determining thread-localness.
969 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
970 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
973 if (GVar
&& GVar
->isThreadLocal())
974 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
976 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
979 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
981 ID
.AddInteger(Offset
);
983 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
984 return SDValue(E
, 0);
985 SDNode
*N
= NodeAllocator
.Allocate
<GlobalAddressSDNode
>();
986 new (N
) GlobalAddressSDNode(isTargetGA
, GV
, VT
, Offset
);
987 CSEMap
.InsertNode(N
, IP
);
988 AllNodes
.push_back(N
);
989 return SDValue(N
, 0);
992 SDValue
SelectionDAG::getFrameIndex(int FI
, MVT VT
, bool isTarget
) {
993 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
995 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
998 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
999 return SDValue(E
, 0);
1000 SDNode
*N
= NodeAllocator
.Allocate
<FrameIndexSDNode
>();
1001 new (N
) FrameIndexSDNode(FI
, VT
, isTarget
);
1002 CSEMap
.InsertNode(N
, IP
);
1003 AllNodes
.push_back(N
);
1004 return SDValue(N
, 0);
1007 SDValue
SelectionDAG::getJumpTable(int JTI
, MVT VT
, bool isTarget
){
1008 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1009 FoldingSetNodeID ID
;
1010 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1013 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1014 return SDValue(E
, 0);
1015 SDNode
*N
= NodeAllocator
.Allocate
<JumpTableSDNode
>();
1016 new (N
) JumpTableSDNode(JTI
, VT
, isTarget
);
1017 CSEMap
.InsertNode(N
, IP
);
1018 AllNodes
.push_back(N
);
1019 return SDValue(N
, 0);
1022 SDValue
SelectionDAG::getConstantPool(Constant
*C
, MVT VT
,
1023 unsigned Alignment
, int Offset
,
1027 TLI
.getTargetData()->getPreferredTypeAlignmentShift(C
->getType());
1028 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1029 FoldingSetNodeID ID
;
1030 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1031 ID
.AddInteger(Alignment
);
1032 ID
.AddInteger(Offset
);
1035 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1036 return SDValue(E
, 0);
1037 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1038 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
);
1039 CSEMap
.InsertNode(N
, IP
);
1040 AllNodes
.push_back(N
);
1041 return SDValue(N
, 0);
1045 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, MVT VT
,
1046 unsigned Alignment
, int Offset
,
1050 TLI
.getTargetData()->getPreferredTypeAlignmentShift(C
->getType());
1051 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1052 FoldingSetNodeID ID
;
1053 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1054 ID
.AddInteger(Alignment
);
1055 ID
.AddInteger(Offset
);
1056 C
->AddSelectionDAGCSEId(ID
);
1058 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1059 return SDValue(E
, 0);
1060 SDNode
*N
= NodeAllocator
.Allocate
<ConstantPoolSDNode
>();
1061 new (N
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
, Alignment
);
1062 CSEMap
.InsertNode(N
, IP
);
1063 AllNodes
.push_back(N
);
1064 return SDValue(N
, 0);
1067 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1068 FoldingSetNodeID ID
;
1069 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1072 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1073 return SDValue(E
, 0);
1074 SDNode
*N
= NodeAllocator
.Allocate
<BasicBlockSDNode
>();
1075 new (N
) BasicBlockSDNode(MBB
);
1076 CSEMap
.InsertNode(N
, IP
);
1077 AllNodes
.push_back(N
);
1078 return SDValue(N
, 0);
1081 SDValue
SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags
) {
1082 FoldingSetNodeID ID
;
1083 AddNodeIDNode(ID
, ISD::ARG_FLAGS
, getVTList(MVT::Other
), 0, 0);
1084 ID
.AddInteger(Flags
.getRawBits());
1086 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1087 return SDValue(E
, 0);
1088 SDNode
*N
= NodeAllocator
.Allocate
<ARG_FLAGSSDNode
>();
1089 new (N
) ARG_FLAGSSDNode(Flags
);
1090 CSEMap
.InsertNode(N
, IP
);
1091 AllNodes
.push_back(N
);
1092 return SDValue(N
, 0);
1095 SDValue
SelectionDAG::getValueType(MVT VT
) {
1096 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT() >= ValueTypeNodes
.size())
1097 ValueTypeNodes
.resize(VT
.getSimpleVT()+1);
1099 SDNode
*&N
= VT
.isExtended() ?
1100 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT()];
1102 if (N
) return SDValue(N
, 0);
1103 N
= NodeAllocator
.Allocate
<VTSDNode
>();
1104 new (N
) VTSDNode(VT
);
1105 AllNodes
.push_back(N
);
1106 return SDValue(N
, 0);
1109 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, MVT VT
) {
1110 SDNode
*&N
= ExternalSymbols
[Sym
];
1111 if (N
) return SDValue(N
, 0);
1112 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1113 new (N
) ExternalSymbolSDNode(false, Sym
, VT
);
1114 AllNodes
.push_back(N
);
1115 return SDValue(N
, 0);
1118 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, MVT VT
) {
1119 SDNode
*&N
= TargetExternalSymbols
[Sym
];
1120 if (N
) return SDValue(N
, 0);
1121 N
= NodeAllocator
.Allocate
<ExternalSymbolSDNode
>();
1122 new (N
) ExternalSymbolSDNode(true, Sym
, VT
);
1123 AllNodes
.push_back(N
);
1124 return SDValue(N
, 0);
1127 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1128 if ((unsigned)Cond
>= CondCodeNodes
.size())
1129 CondCodeNodes
.resize(Cond
+1);
1131 if (CondCodeNodes
[Cond
] == 0) {
1132 CondCodeSDNode
*N
= NodeAllocator
.Allocate
<CondCodeSDNode
>();
1133 new (N
) CondCodeSDNode(Cond
);
1134 CondCodeNodes
[Cond
] = N
;
1135 AllNodes
.push_back(N
);
1137 return SDValue(CondCodeNodes
[Cond
], 0);
1140 SDValue
SelectionDAG::getConvertRndSat(MVT VT
, DebugLoc dl
,
1141 SDValue Val
, SDValue DTy
,
1142 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1143 ISD::CvtCode Code
) {
1144 // If the src and dest types are the same and the conversion is between
1145 // integer types of the same sign or two floats, no conversion is necessary.
1147 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1150 FoldingSetNodeID ID
;
1152 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1153 return SDValue(E
, 0);
1154 CvtRndSatSDNode
*N
= NodeAllocator
.Allocate
<CvtRndSatSDNode
>();
1155 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1156 new (N
) CvtRndSatSDNode(VT
, dl
, Ops
, 5, Code
);
1157 CSEMap
.InsertNode(N
, IP
);
1158 AllNodes
.push_back(N
);
1159 return SDValue(N
, 0);
1162 SDValue
SelectionDAG::getRegister(unsigned RegNo
, MVT VT
) {
1163 FoldingSetNodeID ID
;
1164 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1165 ID
.AddInteger(RegNo
);
1167 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1168 return SDValue(E
, 0);
1169 SDNode
*N
= NodeAllocator
.Allocate
<RegisterSDNode
>();
1170 new (N
) RegisterSDNode(RegNo
, VT
);
1171 CSEMap
.InsertNode(N
, IP
);
1172 AllNodes
.push_back(N
);
1173 return SDValue(N
, 0);
1176 SDValue
SelectionDAG::getDbgStopPoint(SDValue Root
,
1177 unsigned Line
, unsigned Col
,
1179 SDNode
*N
= NodeAllocator
.Allocate
<DbgStopPointSDNode
>();
1180 new (N
) DbgStopPointSDNode(Root
, Line
, Col
, CU
);
1181 AllNodes
.push_back(N
);
1182 return SDValue(N
, 0);
1185 SDValue
SelectionDAG::getLabel(unsigned Opcode
, DebugLoc dl
,
1188 FoldingSetNodeID ID
;
1189 SDValue Ops
[] = { Root
};
1190 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), &Ops
[0], 1);
1191 ID
.AddInteger(LabelID
);
1193 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1194 return SDValue(E
, 0);
1195 SDNode
*N
= NodeAllocator
.Allocate
<LabelSDNode
>();
1196 new (N
) LabelSDNode(Opcode
, dl
, Root
, LabelID
);
1197 CSEMap
.InsertNode(N
, IP
);
1198 AllNodes
.push_back(N
);
1199 return SDValue(N
, 0);
1202 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1203 assert((!V
|| isa
<PointerType
>(V
->getType())) &&
1204 "SrcValue is not a pointer?");
1206 FoldingSetNodeID ID
;
1207 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1211 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1212 return SDValue(E
, 0);
1214 SDNode
*N
= NodeAllocator
.Allocate
<SrcValueSDNode
>();
1215 new (N
) SrcValueSDNode(V
);
1216 CSEMap
.InsertNode(N
, IP
);
1217 AllNodes
.push_back(N
);
1218 return SDValue(N
, 0);
1221 SDValue
SelectionDAG::getMemOperand(const MachineMemOperand
&MO
) {
1223 const Value
*v
= MO
.getValue();
1224 assert((!v
|| isa
<PointerType
>(v
->getType())) &&
1225 "SrcValue is not a pointer?");
1228 FoldingSetNodeID ID
;
1229 AddNodeIDNode(ID
, ISD::MEMOPERAND
, getVTList(MVT::Other
), 0, 0);
1233 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1234 return SDValue(E
, 0);
1236 SDNode
*N
= NodeAllocator
.Allocate
<MemOperandSDNode
>();
1237 new (N
) MemOperandSDNode(MO
);
1238 CSEMap
.InsertNode(N
, IP
);
1239 AllNodes
.push_back(N
);
1240 return SDValue(N
, 0);
1243 /// getShiftAmountOperand - Return the specified value casted to
1244 /// the target's desired shift amount type.
1245 SDValue
SelectionDAG::getShiftAmountOperand(SDValue Op
) {
1246 MVT OpTy
= Op
.getValueType();
1247 MVT ShTy
= TLI
.getShiftAmountTy();
1248 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1250 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1251 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1254 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1255 /// specified value type.
1256 SDValue
SelectionDAG::CreateStackTemporary(MVT VT
, unsigned minAlign
) {
1257 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1258 unsigned ByteSize
= VT
.getStoreSizeInBits()/8;
1259 const Type
*Ty
= VT
.getTypeForMVT();
1260 unsigned StackAlign
=
1261 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1263 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
);
1264 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1267 /// CreateStackTemporary - Create a stack temporary suitable for holding
1268 /// either of the specified value types.
1269 SDValue
SelectionDAG::CreateStackTemporary(MVT VT1
, MVT VT2
) {
1270 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1271 VT2
.getStoreSizeInBits())/8;
1272 const Type
*Ty1
= VT1
.getTypeForMVT();
1273 const Type
*Ty2
= VT2
.getTypeForMVT();
1274 const TargetData
*TD
= TLI
.getTargetData();
1275 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1276 TD
->getPrefTypeAlignment(Ty2
));
1278 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1279 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
);
1280 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1283 SDValue
SelectionDAG::FoldSetCC(MVT VT
, SDValue N1
,
1284 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1285 // These setcc operations always fold.
1289 case ISD::SETFALSE2
: return getConstant(0, VT
);
1291 case ISD::SETTRUE2
: return getConstant(1, VT
);
1303 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1307 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1308 const APInt
&C2
= N2C
->getAPIntValue();
1309 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1310 const APInt
&C1
= N1C
->getAPIntValue();
1313 default: assert(0 && "Unknown integer setcc!");
1314 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1315 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1316 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1317 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1318 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1319 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1320 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1321 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1322 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1323 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1327 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1328 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1329 // No compile time operations on this type yet.
1330 if (N1C
->getValueType(0) == MVT::ppcf128
)
1333 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1336 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1337 return getUNDEF(VT
);
1339 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1340 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1341 return getUNDEF(VT
);
1343 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1344 R
==APFloat::cmpLessThan
, VT
);
1345 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1346 return getUNDEF(VT
);
1348 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1349 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1350 return getUNDEF(VT
);
1352 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1353 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1354 return getUNDEF(VT
);
1356 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1357 R
==APFloat::cmpEqual
, VT
);
1358 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1359 return getUNDEF(VT
);
1361 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1362 R
==APFloat::cmpEqual
, VT
);
1363 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1364 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1365 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1366 R
==APFloat::cmpEqual
, VT
);
1367 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1368 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1369 R
==APFloat::cmpLessThan
, VT
);
1370 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1371 R
==APFloat::cmpUnordered
, VT
);
1372 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1373 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1376 // Ensure that the constant occurs on the RHS.
1377 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1381 // Could not fold it.
1385 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1386 /// use this predicate to simplify operations downstream.
1387 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1388 unsigned BitWidth
= Op
.getValueSizeInBits();
1389 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1392 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1393 /// this predicate to simplify operations downstream. Mask is known to be zero
1394 /// for bits that V cannot have.
1395 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1396 unsigned Depth
) const {
1397 APInt KnownZero
, KnownOne
;
1398 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1399 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1400 return (KnownZero
& Mask
) == Mask
;
1403 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1404 /// known to be either zero or one and return them in the KnownZero/KnownOne
1405 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1407 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1408 APInt
&KnownZero
, APInt
&KnownOne
,
1409 unsigned Depth
) const {
1410 unsigned BitWidth
= Mask
.getBitWidth();
1411 assert(BitWidth
== Op
.getValueType().getSizeInBits() &&
1412 "Mask size mismatches value type size!");
1414 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1415 if (Depth
== 6 || Mask
== 0)
1416 return; // Limit search depth.
1418 APInt KnownZero2
, KnownOne2
;
1420 switch (Op
.getOpcode()) {
1422 // We know all of the bits for a constant!
1423 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1424 KnownZero
= ~KnownOne
& Mask
;
1427 // If either the LHS or the RHS are Zero, the result is zero.
1428 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1429 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1430 KnownZero2
, KnownOne2
, Depth
+1);
1431 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1432 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1434 // Output known-1 bits are only known if set in both the LHS & RHS.
1435 KnownOne
&= KnownOne2
;
1436 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1437 KnownZero
|= KnownZero2
;
1440 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1441 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1442 KnownZero2
, KnownOne2
, Depth
+1);
1443 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1444 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1446 // Output known-0 bits are only known if clear in both the LHS & RHS.
1447 KnownZero
&= KnownZero2
;
1448 // Output known-1 are known to be set if set in either the LHS | RHS.
1449 KnownOne
|= KnownOne2
;
1452 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1453 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1454 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1455 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1457 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1458 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1459 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1460 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1461 KnownZero
= KnownZeroOut
;
1465 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1466 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1467 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1468 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1469 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1471 // If low bits are zero in either operand, output low known-0 bits.
1472 // Also compute a conserative estimate for high known-0 bits.
1473 // More trickiness is possible, but this is sufficient for the
1474 // interesting case of alignment computation.
1476 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1477 KnownZero2
.countTrailingOnes();
1478 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1479 KnownZero2
.countLeadingOnes(),
1480 BitWidth
) - BitWidth
;
1482 TrailZ
= std::min(TrailZ
, BitWidth
);
1483 LeadZ
= std::min(LeadZ
, BitWidth
);
1484 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1485 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1490 // For the purposes of computing leading zeros we can conservatively
1491 // treat a udiv as a logical right shift by the power of 2 known to
1492 // be less than the denominator.
1493 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1494 ComputeMaskedBits(Op
.getOperand(0),
1495 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1496 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1500 ComputeMaskedBits(Op
.getOperand(1),
1501 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1502 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1503 if (RHSUnknownLeadingOnes
!= BitWidth
)
1504 LeadZ
= std::min(BitWidth
,
1505 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1507 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1511 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1512 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1513 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1514 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1516 // Only known if known in both the LHS and RHS.
1517 KnownOne
&= KnownOne2
;
1518 KnownZero
&= KnownZero2
;
1520 case ISD::SELECT_CC
:
1521 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1522 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1523 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1524 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1526 // Only known if known in both the LHS and RHS.
1527 KnownOne
&= KnownOne2
;
1528 KnownZero
&= KnownZero2
;
1536 if (Op
.getResNo() != 1)
1538 // The boolean result conforms to getBooleanContents. Fall through.
1540 // If we know the result of a setcc has the top bits zero, use this info.
1541 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1543 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1546 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1547 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1548 unsigned ShAmt
= SA
->getZExtValue();
1550 // If the shift count is an invalid immediate, don't do anything.
1551 if (ShAmt
>= BitWidth
)
1554 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1555 KnownZero
, KnownOne
, Depth
+1);
1556 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1557 KnownZero
<<= ShAmt
;
1559 // low bits known zero.
1560 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1564 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1565 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1566 unsigned ShAmt
= SA
->getZExtValue();
1568 // If the shift count is an invalid immediate, don't do anything.
1569 if (ShAmt
>= BitWidth
)
1572 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1573 KnownZero
, KnownOne
, Depth
+1);
1574 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1575 KnownZero
= KnownZero
.lshr(ShAmt
);
1576 KnownOne
= KnownOne
.lshr(ShAmt
);
1578 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1579 KnownZero
|= HighBits
; // High bits known zero.
1583 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1584 unsigned ShAmt
= SA
->getZExtValue();
1586 // If the shift count is an invalid immediate, don't do anything.
1587 if (ShAmt
>= BitWidth
)
1590 APInt InDemandedMask
= (Mask
<< ShAmt
);
1591 // If any of the demanded bits are produced by the sign extension, we also
1592 // demand the input sign bit.
1593 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1594 if (HighBits
.getBoolValue())
1595 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1597 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1599 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1600 KnownZero
= KnownZero
.lshr(ShAmt
);
1601 KnownOne
= KnownOne
.lshr(ShAmt
);
1603 // Handle the sign bits.
1604 APInt SignBit
= APInt::getSignBit(BitWidth
);
1605 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1607 if (KnownZero
.intersects(SignBit
)) {
1608 KnownZero
|= HighBits
; // New bits are known zero.
1609 } else if (KnownOne
.intersects(SignBit
)) {
1610 KnownOne
|= HighBits
; // New bits are known one.
1614 case ISD::SIGN_EXTEND_INREG
: {
1615 MVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1616 unsigned EBits
= EVT
.getSizeInBits();
1618 // Sign extension. Compute the demanded bits in the result that are not
1619 // present in the input.
1620 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1622 APInt InSignBit
= APInt::getSignBit(EBits
);
1623 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1625 // If the sign extended bits are demanded, we know that the sign
1627 InSignBit
.zext(BitWidth
);
1628 if (NewBits
.getBoolValue())
1629 InputDemandedBits
|= InSignBit
;
1631 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1632 KnownZero
, KnownOne
, Depth
+1);
1633 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1635 // If the sign bit of the input is known set or clear, then we know the
1636 // top bits of the result.
1637 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1638 KnownZero
|= NewBits
;
1639 KnownOne
&= ~NewBits
;
1640 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1641 KnownOne
|= NewBits
;
1642 KnownZero
&= ~NewBits
;
1643 } else { // Input sign bit unknown
1644 KnownZero
&= ~NewBits
;
1645 KnownOne
&= ~NewBits
;
1652 unsigned LowBits
= Log2_32(BitWidth
)+1;
1653 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1658 if (ISD::isZEXTLoad(Op
.getNode())) {
1659 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1660 MVT VT
= LD
->getMemoryVT();
1661 unsigned MemBits
= VT
.getSizeInBits();
1662 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1666 case ISD::ZERO_EXTEND
: {
1667 MVT InVT
= Op
.getOperand(0).getValueType();
1668 unsigned InBits
= InVT
.getSizeInBits();
1669 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1670 APInt InMask
= Mask
;
1671 InMask
.trunc(InBits
);
1672 KnownZero
.trunc(InBits
);
1673 KnownOne
.trunc(InBits
);
1674 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1675 KnownZero
.zext(BitWidth
);
1676 KnownOne
.zext(BitWidth
);
1677 KnownZero
|= NewBits
;
1680 case ISD::SIGN_EXTEND
: {
1681 MVT InVT
= Op
.getOperand(0).getValueType();
1682 unsigned InBits
= InVT
.getSizeInBits();
1683 APInt InSignBit
= APInt::getSignBit(InBits
);
1684 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1685 APInt InMask
= Mask
;
1686 InMask
.trunc(InBits
);
1688 // If any of the sign extended bits are demanded, we know that the sign
1689 // bit is demanded. Temporarily set this bit in the mask for our callee.
1690 if (NewBits
.getBoolValue())
1691 InMask
|= InSignBit
;
1693 KnownZero
.trunc(InBits
);
1694 KnownOne
.trunc(InBits
);
1695 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1697 // Note if the sign bit is known to be zero or one.
1698 bool SignBitKnownZero
= KnownZero
.isNegative();
1699 bool SignBitKnownOne
= KnownOne
.isNegative();
1700 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1701 "Sign bit can't be known to be both zero and one!");
1703 // If the sign bit wasn't actually demanded by our caller, we don't
1704 // want it set in the KnownZero and KnownOne result values. Reset the
1705 // mask and reapply it to the result values.
1707 InMask
.trunc(InBits
);
1708 KnownZero
&= InMask
;
1711 KnownZero
.zext(BitWidth
);
1712 KnownOne
.zext(BitWidth
);
1714 // If the sign bit is known zero or one, the top bits match.
1715 if (SignBitKnownZero
)
1716 KnownZero
|= NewBits
;
1717 else if (SignBitKnownOne
)
1718 KnownOne
|= NewBits
;
1721 case ISD::ANY_EXTEND
: {
1722 MVT InVT
= Op
.getOperand(0).getValueType();
1723 unsigned InBits
= InVT
.getSizeInBits();
1724 APInt InMask
= Mask
;
1725 InMask
.trunc(InBits
);
1726 KnownZero
.trunc(InBits
);
1727 KnownOne
.trunc(InBits
);
1728 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1729 KnownZero
.zext(BitWidth
);
1730 KnownOne
.zext(BitWidth
);
1733 case ISD::TRUNCATE
: {
1734 MVT InVT
= Op
.getOperand(0).getValueType();
1735 unsigned InBits
= InVT
.getSizeInBits();
1736 APInt InMask
= Mask
;
1737 InMask
.zext(InBits
);
1738 KnownZero
.zext(InBits
);
1739 KnownOne
.zext(InBits
);
1740 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1741 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1742 KnownZero
.trunc(BitWidth
);
1743 KnownOne
.trunc(BitWidth
);
1746 case ISD::AssertZext
: {
1747 MVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1748 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1749 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1751 KnownZero
|= (~InMask
) & Mask
;
1755 // All bits are zero except the low bit.
1756 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1760 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1761 // We know that the top bits of C-X are clear if X contains less bits
1762 // than C (i.e. no wrap-around can happen). For example, 20-X is
1763 // positive if we can prove that X is >= 0 and < 16.
1764 if (CLHS
->getAPIntValue().isNonNegative()) {
1765 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1766 // NLZ can't be BitWidth with no sign bit
1767 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1768 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1771 // If all of the MaskV bits are known to be zero, then we know the
1772 // output top bits are zero, because we now know that the output is
1774 if ((KnownZero2
& MaskV
) == MaskV
) {
1775 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1776 // Top bits known zero.
1777 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1784 // Output known-0 bits are known if clear or set in both the low clear bits
1785 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1786 // low 3 bits clear.
1787 APInt Mask2
= APInt::getLowBitsSet(BitWidth
, Mask
.countTrailingOnes());
1788 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1789 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1790 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1792 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1793 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1794 KnownZeroOut
= std::min(KnownZeroOut
,
1795 KnownZero2
.countTrailingOnes());
1797 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1801 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1802 const APInt
&RA
= Rem
->getAPIntValue();
1803 if (RA
.isPowerOf2() || (-RA
).isPowerOf2()) {
1804 APInt LowBits
= RA
.isStrictlyPositive() ? (RA
- 1) : ~RA
;
1805 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1806 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1808 // If the sign bit of the first operand is zero, the sign bit of
1809 // the result is zero. If the first operand has no one bits below
1810 // the second operand's single 1 bit, its sign will be zero.
1811 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
1812 KnownZero2
|= ~LowBits
;
1814 KnownZero
|= KnownZero2
& Mask
;
1816 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1821 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1822 const APInt
&RA
= Rem
->getAPIntValue();
1823 if (RA
.isPowerOf2()) {
1824 APInt LowBits
= (RA
- 1);
1825 APInt Mask2
= LowBits
& Mask
;
1826 KnownZero
|= ~LowBits
& Mask
;
1827 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
1828 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
1833 // Since the result is less than or equal to either operand, any leading
1834 // zero bits in either operand must also exist in the result.
1835 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1836 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
1838 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
1841 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
1842 KnownZero2
.countLeadingOnes());
1844 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
1848 // Allow the target to implement this method for its nodes.
1849 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1850 case ISD::INTRINSIC_WO_CHAIN
:
1851 case ISD::INTRINSIC_W_CHAIN
:
1852 case ISD::INTRINSIC_VOID
:
1853 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this);
1859 /// ComputeNumSignBits - Return the number of times the sign bit of the
1860 /// register is replicated into the other bits. We know that at least 1 bit
1861 /// is always equal to the sign bit (itself), but other cases can give us
1862 /// information. For example, immediately after an "SRA X, 2", we know that
1863 /// the top 3 bits are all equal to each other, so we return 3.
1864 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
1865 MVT VT
= Op
.getValueType();
1866 assert(VT
.isInteger() && "Invalid VT!");
1867 unsigned VTBits
= VT
.getSizeInBits();
1869 unsigned FirstAnswer
= 1;
1872 return 1; // Limit search depth.
1874 switch (Op
.getOpcode()) {
1876 case ISD::AssertSext
:
1877 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1878 return VTBits
-Tmp
+1;
1879 case ISD::AssertZext
:
1880 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1883 case ISD::Constant
: {
1884 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
1885 // If negative, return # leading ones.
1886 if (Val
.isNegative())
1887 return Val
.countLeadingOnes();
1889 // Return # leading zeros.
1890 return Val
.countLeadingZeros();
1893 case ISD::SIGN_EXTEND
:
1894 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getSizeInBits();
1895 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
1897 case ISD::SIGN_EXTEND_INREG
:
1898 // Max of the input and what this extends.
1899 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
1902 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1903 return std::max(Tmp
, Tmp2
);
1906 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1907 // SRA X, C -> adds C sign bits.
1908 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1909 Tmp
+= C
->getZExtValue();
1910 if (Tmp
> VTBits
) Tmp
= VTBits
;
1914 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1915 // shl destroys sign bits.
1916 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1917 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
1918 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
1919 return Tmp
- C
->getZExtValue();
1924 case ISD::XOR
: // NOT is handled here.
1925 // Logical binary ops preserve the number of sign bits at the worst.
1926 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1928 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
1929 FirstAnswer
= std::min(Tmp
, Tmp2
);
1930 // We computed what we know about the sign bits as our first
1931 // answer. Now proceed to the generic code that uses
1932 // ComputeMaskedBits, and pick whichever answer is better.
1937 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
1938 if (Tmp
== 1) return 1; // Early out.
1939 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
1940 return std::min(Tmp
, Tmp2
);
1948 if (Op
.getResNo() != 1)
1950 // The boolean result conforms to getBooleanContents. Fall through.
1952 // If setcc returns 0/-1, all bits are sign bits.
1953 if (TLI
.getBooleanContents() ==
1954 TargetLowering::ZeroOrNegativeOneBooleanContent
)
1959 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1960 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
1962 // Handle rotate right by N like a rotate left by 32-N.
1963 if (Op
.getOpcode() == ISD::ROTR
)
1964 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
1966 // If we aren't rotating out all of the known-in sign bits, return the
1967 // number that are left. This handles rotl(sext(x), 1) for example.
1968 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1969 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
1973 // Add can have at most one carry bit. Thus we know that the output
1974 // is, at worst, one more bit than the inputs.
1975 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
1976 if (Tmp
== 1) return 1; // Early out.
1978 // Special case decrementing a value (ADD X, -1):
1979 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
1980 if (CRHS
->isAllOnesValue()) {
1981 APInt KnownZero
, KnownOne
;
1982 APInt Mask
= APInt::getAllOnesValue(VTBits
);
1983 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
1985 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1987 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
1990 // If we are subtracting one from a positive number, there is no carry
1991 // out of the result.
1992 if (KnownZero
.isNegative())
1996 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
1997 if (Tmp2
== 1) return 1;
1998 return std::min(Tmp
, Tmp2
)-1;
2002 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2003 if (Tmp2
== 1) return 1;
2006 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
2007 if (CLHS
->isNullValue()) {
2008 APInt KnownZero
, KnownOne
;
2009 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2010 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2011 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2013 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2016 // If the input is known to be positive (the sign bit is known clear),
2017 // the output of the NEG has the same number of sign bits as the input.
2018 if (KnownZero
.isNegative())
2021 // Otherwise, we treat this like a SUB.
2024 // Sub can have at most one carry bit. Thus we know that the output
2025 // is, at worst, one more bit than the inputs.
2026 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2027 if (Tmp
== 1) return 1; // Early out.
2028 return std::min(Tmp
, Tmp2
)-1;
2031 // FIXME: it's tricky to do anything useful for this, but it is an important
2032 // case for targets like X86.
2036 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2037 if (Op
.getOpcode() == ISD::LOAD
) {
2038 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2039 unsigned ExtType
= LD
->getExtensionType();
2042 case ISD::SEXTLOAD
: // '17' bits known
2043 Tmp
= LD
->getMemoryVT().getSizeInBits();
2044 return VTBits
-Tmp
+1;
2045 case ISD::ZEXTLOAD
: // '16' bits known
2046 Tmp
= LD
->getMemoryVT().getSizeInBits();
2051 // Allow the target to implement this method for its nodes.
2052 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2053 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2054 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2055 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2056 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2057 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2060 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2061 // use this information.
2062 APInt KnownZero
, KnownOne
;
2063 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2064 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2066 if (KnownZero
.isNegative()) { // sign bit is 0
2068 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2075 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2076 // the number of identical bits in the top of the input value.
2078 Mask
<<= Mask
.getBitWidth()-VTBits
;
2079 // Return # leading zeros. We use 'min' here in case Val was zero before
2080 // shifting. We don't want to return '64' as for an i32 "0".
2081 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2085 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op
) const {
2086 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2087 if (!GA
) return false;
2088 if (GA
->getOffset() != 0) return false;
2089 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GA
->getGlobal());
2090 if (!GV
) return false;
2091 MachineModuleInfo
*MMI
= getMachineModuleInfo();
2092 return MMI
&& MMI
->hasDebugInfo();
2096 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2097 /// element of the result of the vector shuffle.
2098 SDValue
SelectionDAG::getShuffleScalarElt(const SDNode
*N
, unsigned i
) {
2099 MVT VT
= N
->getValueType(0);
2100 DebugLoc dl
= N
->getDebugLoc();
2101 SDValue PermMask
= N
->getOperand(2);
2102 SDValue Idx
= PermMask
.getOperand(i
);
2103 if (Idx
.getOpcode() == ISD::UNDEF
)
2104 return getUNDEF(VT
.getVectorElementType());
2105 unsigned Index
= cast
<ConstantSDNode
>(Idx
)->getZExtValue();
2106 unsigned NumElems
= PermMask
.getNumOperands();
2107 SDValue V
= (Index
< NumElems
) ? N
->getOperand(0) : N
->getOperand(1);
2110 if (V
.getOpcode() == ISD::BIT_CONVERT
) {
2111 V
= V
.getOperand(0);
2112 MVT VVT
= V
.getValueType();
2113 if (!VVT
.isVector() || VVT
.getVectorNumElements() != NumElems
)
2116 if (V
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
2117 return (Index
== 0) ? V
.getOperand(0)
2118 : getUNDEF(VT
.getVectorElementType());
2119 if (V
.getOpcode() == ISD::BUILD_VECTOR
)
2120 return V
.getOperand(Index
);
2121 if (V
.getOpcode() == ISD::VECTOR_SHUFFLE
)
2122 return getShuffleScalarElt(V
.getNode(), Index
);
2127 /// getNode - Gets or creates the specified node.
2129 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
) {
2130 FoldingSetNodeID ID
;
2131 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2133 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2134 return SDValue(E
, 0);
2135 SDNode
*N
= NodeAllocator
.Allocate
<SDNode
>();
2136 new (N
) SDNode(Opcode
, DL
, SDNode::getSDVTList(VT
));
2137 CSEMap
.InsertNode(N
, IP
);
2139 AllNodes
.push_back(N
);
2143 return SDValue(N
, 0);
2146 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2147 MVT VT
, SDValue Operand
) {
2148 // Constant fold unary operations with an integer constant operand.
2149 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2150 const APInt
&Val
= C
->getAPIntValue();
2151 unsigned BitWidth
= VT
.getSizeInBits();
2154 case ISD::SIGN_EXTEND
:
2155 return getConstant(APInt(Val
).sextOrTrunc(BitWidth
), VT
);
2156 case ISD::ANY_EXTEND
:
2157 case ISD::ZERO_EXTEND
:
2159 return getConstant(APInt(Val
).zextOrTrunc(BitWidth
), VT
);
2160 case ISD::UINT_TO_FP
:
2161 case ISD::SINT_TO_FP
: {
2162 const uint64_t zero
[] = {0, 0};
2163 // No compile time operations on this type.
2164 if (VT
==MVT::ppcf128
)
2166 APFloat apf
= APFloat(APInt(BitWidth
, 2, zero
));
2167 (void)apf
.convertFromAPInt(Val
,
2168 Opcode
==ISD::SINT_TO_FP
,
2169 APFloat::rmNearestTiesToEven
);
2170 return getConstantFP(apf
, VT
);
2172 case ISD::BIT_CONVERT
:
2173 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2174 return getConstantFP(Val
.bitsToFloat(), VT
);
2175 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2176 return getConstantFP(Val
.bitsToDouble(), VT
);
2179 return getConstant(Val
.byteSwap(), VT
);
2181 return getConstant(Val
.countPopulation(), VT
);
2183 return getConstant(Val
.countLeadingZeros(), VT
);
2185 return getConstant(Val
.countTrailingZeros(), VT
);
2189 // Constant fold unary operations with a floating point constant operand.
2190 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2191 APFloat V
= C
->getValueAPF(); // make copy
2192 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2196 return getConstantFP(V
, VT
);
2199 return getConstantFP(V
, VT
);
2201 case ISD::FP_EXTEND
: {
2203 // This can return overflow, underflow, or inexact; we don't care.
2204 // FIXME need to be more flexible about rounding mode.
2205 (void)V
.convert(*MVTToAPFloatSemantics(VT
),
2206 APFloat::rmNearestTiesToEven
, &ignored
);
2207 return getConstantFP(V
, VT
);
2209 case ISD::FP_TO_SINT
:
2210 case ISD::FP_TO_UINT
: {
2213 assert(integerPartWidth
>= 64);
2214 // FIXME need to be more flexible about rounding mode.
2215 APFloat::opStatus s
= V
.convertToInteger(&x
, 64U,
2216 Opcode
==ISD::FP_TO_SINT
,
2217 APFloat::rmTowardZero
, &ignored
);
2218 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2220 return getConstant(x
, VT
);
2222 case ISD::BIT_CONVERT
:
2223 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2224 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2225 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2226 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2232 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2234 case ISD::TokenFactor
:
2235 case ISD::MERGE_VALUES
:
2236 case ISD::CONCAT_VECTORS
:
2237 return Operand
; // Factor, merge or concat of one node? No need.
2238 case ISD::FP_ROUND
: assert(0 && "Invalid method to make FP_ROUND node");
2239 case ISD::FP_EXTEND
:
2240 assert(VT
.isFloatingPoint() &&
2241 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2242 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2243 if (Operand
.getOpcode() == ISD::UNDEF
)
2244 return getUNDEF(VT
);
2246 case ISD::SIGN_EXTEND
:
2247 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2248 "Invalid SIGN_EXTEND!");
2249 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2250 assert(Operand
.getValueType().bitsLT(VT
)
2251 && "Invalid sext node, dst < src!");
2252 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2253 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2255 case ISD::ZERO_EXTEND
:
2256 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2257 "Invalid ZERO_EXTEND!");
2258 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2259 assert(Operand
.getValueType().bitsLT(VT
)
2260 && "Invalid zext node, dst < src!");
2261 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2262 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2263 Operand
.getNode()->getOperand(0));
2265 case ISD::ANY_EXTEND
:
2266 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2267 "Invalid ANY_EXTEND!");
2268 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2269 assert(Operand
.getValueType().bitsLT(VT
)
2270 && "Invalid anyext node, dst < src!");
2271 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
)
2272 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2273 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2276 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2277 "Invalid TRUNCATE!");
2278 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2279 assert(Operand
.getValueType().bitsGT(VT
)
2280 && "Invalid truncate node, src < dst!");
2281 if (OpOpcode
== ISD::TRUNCATE
)
2282 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2283 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2284 OpOpcode
== ISD::ANY_EXTEND
) {
2285 // If the source is smaller than the dest, we still need an extend.
2286 if (Operand
.getNode()->getOperand(0).getValueType().bitsLT(VT
))
2287 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2288 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2289 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2291 return Operand
.getNode()->getOperand(0);
2294 case ISD::BIT_CONVERT
:
2295 // Basic sanity checking.
2296 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2297 && "Cannot BIT_CONVERT between types of different sizes!");
2298 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2299 if (OpOpcode
== ISD::BIT_CONVERT
) // bitconv(bitconv(x)) -> bitconv(x)
2300 return getNode(ISD::BIT_CONVERT
, DL
, VT
, Operand
.getOperand(0));
2301 if (OpOpcode
== ISD::UNDEF
)
2302 return getUNDEF(VT
);
2304 case ISD::SCALAR_TO_VECTOR
:
2305 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2306 VT
.getVectorElementType() == Operand
.getValueType() &&
2307 "Illegal SCALAR_TO_VECTOR node!");
2308 if (OpOpcode
== ISD::UNDEF
)
2309 return getUNDEF(VT
);
2310 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2311 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2312 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2313 Operand
.getConstantOperandVal(1) == 0 &&
2314 Operand
.getOperand(0).getValueType() == VT
)
2315 return Operand
.getOperand(0);
2318 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2319 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2320 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2321 Operand
.getNode()->getOperand(0));
2322 if (OpOpcode
== ISD::FNEG
) // --X -> X
2323 return Operand
.getNode()->getOperand(0);
2326 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2327 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2332 SDVTList VTs
= getVTList(VT
);
2333 if (VT
!= MVT::Flag
) { // Don't CSE flag producing nodes
2334 FoldingSetNodeID ID
;
2335 SDValue Ops
[1] = { Operand
};
2336 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2338 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2339 return SDValue(E
, 0);
2340 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2341 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2342 CSEMap
.InsertNode(N
, IP
);
2344 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
2345 new (N
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2348 AllNodes
.push_back(N
);
2352 return SDValue(N
, 0);
2355 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2357 ConstantSDNode
*Cst1
,
2358 ConstantSDNode
*Cst2
) {
2359 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2362 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2363 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2364 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2366 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2369 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2372 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2375 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2377 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2378 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2379 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2380 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2381 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2382 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2383 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2384 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2391 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2392 SDValue N1
, SDValue N2
) {
2393 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2394 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2397 case ISD::TokenFactor
:
2398 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2399 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2400 // Fold trivial token factors.
2401 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2402 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2403 if (N1
== N2
) return N1
;
2405 case ISD::CONCAT_VECTORS
:
2406 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2407 // one big BUILD_VECTOR.
2408 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2409 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2410 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2411 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2412 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2416 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2417 N1
.getValueType() == VT
&& "Binary operator types must match!");
2418 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2419 // worth handling here.
2420 if (N2C
&& N2C
->isNullValue())
2422 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2429 assert(VT
.isInteger() && N1
.getValueType() == N2
.getValueType() &&
2430 N1
.getValueType() == VT
&& "Binary operator types must match!");
2431 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2432 // it's worth handling here.
2433 if (N2C
&& N2C
->isNullValue())
2443 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2451 if (Opcode
== ISD::FADD
) {
2453 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2454 if (CFP
->getValueAPF().isZero())
2457 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2458 if (CFP
->getValueAPF().isZero())
2460 } else if (Opcode
== ISD::FSUB
) {
2462 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2463 if (CFP
->getValueAPF().isZero())
2467 assert(N1
.getValueType() == N2
.getValueType() &&
2468 N1
.getValueType() == VT
&& "Binary operator types must match!");
2470 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2471 assert(N1
.getValueType() == VT
&&
2472 N1
.getValueType().isFloatingPoint() &&
2473 N2
.getValueType().isFloatingPoint() &&
2474 "Invalid FCOPYSIGN!");
2481 assert(VT
== N1
.getValueType() &&
2482 "Shift operators return type must be the same as their first arg");
2483 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2484 "Shifts only work on integers");
2486 // Always fold shifts of i1 values so the code generator doesn't need to
2487 // handle them. Since we know the size of the shift has to be less than the
2488 // size of the value, the shift/rotate count is guaranteed to be zero.
2492 case ISD::FP_ROUND_INREG
: {
2493 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2494 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2495 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2496 "Cannot FP_ROUND_INREG integer types");
2497 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2498 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2502 assert(VT
.isFloatingPoint() &&
2503 N1
.getValueType().isFloatingPoint() &&
2504 VT
.bitsLE(N1
.getValueType()) &&
2505 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2506 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2508 case ISD::AssertSext
:
2509 case ISD::AssertZext
: {
2510 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2511 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2512 assert(VT
.isInteger() && EVT
.isInteger() &&
2513 "Cannot *_EXTEND_INREG FP types");
2514 assert(EVT
.bitsLE(VT
) && "Not extending!");
2515 if (VT
== EVT
) return N1
; // noop assertion.
2518 case ISD::SIGN_EXTEND_INREG
: {
2519 MVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2520 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2521 assert(VT
.isInteger() && EVT
.isInteger() &&
2522 "Cannot *_EXTEND_INREG FP types");
2523 assert(EVT
.bitsLE(VT
) && "Not extending!");
2524 if (EVT
== VT
) return N1
; // Not actually extending
2527 APInt Val
= N1C
->getAPIntValue();
2528 unsigned FromBits
= cast
<VTSDNode
>(N2
)->getVT().getSizeInBits();
2529 Val
<<= Val
.getBitWidth()-FromBits
;
2530 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2531 return getConstant(Val
, VT
);
2535 case ISD::EXTRACT_VECTOR_ELT
:
2536 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2537 if (N1
.getOpcode() == ISD::UNDEF
)
2538 return getUNDEF(VT
);
2540 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2541 // expanding copies of large vectors from registers.
2543 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2544 N1
.getNumOperands() > 0) {
2546 N1
.getOperand(0).getValueType().getVectorNumElements();
2547 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2548 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2549 getConstant(N2C
->getZExtValue() % Factor
,
2550 N2
.getValueType()));
2553 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2554 // expanding large vector constants.
2555 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
)
2556 return N1
.getOperand(N2C
->getZExtValue());
2558 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2559 // operations are lowered to scalars.
2560 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2561 // If the indices are the same, return the inserted element.
2562 if (N1
.getOperand(2) == N2
)
2563 return N1
.getOperand(1);
2564 // If the indices are known different, extract the element from
2565 // the original vector.
2566 else if (isa
<ConstantSDNode
>(N1
.getOperand(2)) &&
2567 isa
<ConstantSDNode
>(N2
))
2568 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2571 case ISD::EXTRACT_ELEMENT
:
2572 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2573 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2574 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2575 "Wrong types for EXTRACT_ELEMENT!");
2577 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2578 // 64-bit integers into 32-bit parts. Instead of building the extract of
2579 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2580 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2581 return N1
.getOperand(N2C
->getZExtValue());
2583 // EXTRACT_ELEMENT of a constant int is also very common.
2584 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2585 unsigned ElementSize
= VT
.getSizeInBits();
2586 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2587 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2588 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2591 case ISD::EXTRACT_SUBVECTOR
:
2592 if (N1
.getValueType() == VT
) // Trivial extraction.
2599 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2600 if (SV
.getNode()) return SV
;
2601 } else { // Cannonicalize constant to RHS if commutative
2602 if (isCommutativeBinOp(Opcode
)) {
2603 std::swap(N1C
, N2C
);
2609 // Constant fold FP operations.
2610 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2611 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2613 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2614 // Cannonicalize constant to RHS if commutative
2615 std::swap(N1CFP
, N2CFP
);
2617 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2618 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2619 APFloat::opStatus s
;
2622 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2623 if (s
!= APFloat::opInvalidOp
)
2624 return getConstantFP(V1
, VT
);
2627 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2628 if (s
!=APFloat::opInvalidOp
)
2629 return getConstantFP(V1
, VT
);
2632 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2633 if (s
!=APFloat::opInvalidOp
)
2634 return getConstantFP(V1
, VT
);
2637 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2638 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2639 return getConstantFP(V1
, VT
);
2642 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2643 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2644 return getConstantFP(V1
, VT
);
2646 case ISD::FCOPYSIGN
:
2648 return getConstantFP(V1
, VT
);
2654 // Canonicalize an UNDEF to the RHS, even over a constant.
2655 if (N1
.getOpcode() == ISD::UNDEF
) {
2656 if (isCommutativeBinOp(Opcode
)) {
2660 case ISD::FP_ROUND_INREG
:
2661 case ISD::SIGN_EXTEND_INREG
:
2667 return N1
; // fold op(undef, arg2) -> undef
2675 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
2676 // For vectors, we can't easily build an all zero vector, just return
2683 // Fold a bunch of operators when the RHS is undef.
2684 if (N2
.getOpcode() == ISD::UNDEF
) {
2687 if (N1
.getOpcode() == ISD::UNDEF
)
2688 // Handle undef ^ undef -> 0 special case. This is a common
2690 return getConstant(0, VT
);
2705 return N2
; // fold op(arg1, undef) -> undef
2711 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
2712 // For vectors, we can't easily build an all zero vector, just return
2717 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
2718 // For vectors, we can't easily build an all one vector, just return
2726 // Memoize this node if possible.
2728 SDVTList VTs
= getVTList(VT
);
2729 if (VT
!= MVT::Flag
) {
2730 SDValue Ops
[] = { N1
, N2
};
2731 FoldingSetNodeID ID
;
2732 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
2734 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2735 return SDValue(E
, 0);
2736 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2737 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2738 CSEMap
.InsertNode(N
, IP
);
2740 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
2741 new (N
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
2744 AllNodes
.push_back(N
);
2748 return SDValue(N
, 0);
2751 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2752 SDValue N1
, SDValue N2
, SDValue N3
) {
2753 // Perform various simplifications.
2754 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2755 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2757 case ISD::CONCAT_VECTORS
:
2758 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2759 // one big BUILD_VECTOR.
2760 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2761 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
2762 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
2763 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(), N1
.getNode()->op_end());
2764 Elts
.insert(Elts
.end(), N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2765 Elts
.insert(Elts
.end(), N3
.getNode()->op_begin(), N3
.getNode()->op_end());
2766 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2770 // Use FoldSetCC to simplify SETCC's.
2771 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
2772 if (Simp
.getNode()) return Simp
;
2777 if (N1C
->getZExtValue())
2778 return N2
; // select true, X, Y -> X
2780 return N3
; // select false, X, Y -> Y
2783 if (N2
== N3
) return N2
; // select C, X, X -> X
2787 if (N2C
->getZExtValue()) // Unconditional branch
2788 return getNode(ISD::BR
, DL
, MVT::Other
, N1
, N3
);
2790 return N1
; // Never-taken branch
2793 case ISD::VECTOR_SHUFFLE
:
2794 assert(N1
.getValueType() == N2
.getValueType() &&
2795 N1
.getValueType().isVector() &&
2796 VT
.isVector() && N3
.getValueType().isVector() &&
2797 N3
.getOpcode() == ISD::BUILD_VECTOR
&&
2798 VT
.getVectorNumElements() == N3
.getNumOperands() &&
2799 "Illegal VECTOR_SHUFFLE node!");
2801 case ISD::BIT_CONVERT
:
2802 // Fold bit_convert nodes from a type to themselves.
2803 if (N1
.getValueType() == VT
)
2808 // Memoize node if it doesn't produce a flag.
2810 SDVTList VTs
= getVTList(VT
);
2811 if (VT
!= MVT::Flag
) {
2812 SDValue Ops
[] = { N1
, N2
, N3
};
2813 FoldingSetNodeID ID
;
2814 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
2816 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2817 return SDValue(E
, 0);
2818 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2819 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2820 CSEMap
.InsertNode(N
, IP
);
2822 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
2823 new (N
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
2825 AllNodes
.push_back(N
);
2829 return SDValue(N
, 0);
2832 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2833 SDValue N1
, SDValue N2
, SDValue N3
,
2835 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
2836 return getNode(Opcode
, DL
, VT
, Ops
, 4);
2839 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
2840 SDValue N1
, SDValue N2
, SDValue N3
,
2841 SDValue N4
, SDValue N5
) {
2842 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
2843 return getNode(Opcode
, DL
, VT
, Ops
, 5);
2846 /// getMemsetValue - Vectorized representation of the memset value
2848 static SDValue
getMemsetValue(SDValue Value
, MVT VT
, SelectionDAG
&DAG
,
2850 unsigned NumBits
= VT
.isVector() ?
2851 VT
.getVectorElementType().getSizeInBits() : VT
.getSizeInBits();
2852 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
2853 APInt Val
= APInt(NumBits
, C
->getZExtValue() & 255);
2855 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
2856 Val
= (Val
<< Shift
) | Val
;
2860 return DAG
.getConstant(Val
, VT
);
2861 return DAG
.getConstantFP(APFloat(Val
), VT
);
2864 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2865 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
2867 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
2868 Value
= DAG
.getNode(ISD::OR
, dl
, VT
,
2869 DAG
.getNode(ISD::SHL
, dl
, VT
, Value
,
2870 DAG
.getConstant(Shift
,
2871 TLI
.getShiftAmountTy())),
2879 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2880 /// used when a memcpy is turned into a memset when the source is a constant
2882 static SDValue
getMemsetStringVal(MVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
2883 const TargetLowering
&TLI
,
2884 std::string
&Str
, unsigned Offset
) {
2885 // Handle vector with all elements zero.
2888 return DAG
.getConstant(0, VT
);
2889 unsigned NumElts
= VT
.getVectorNumElements();
2890 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
2891 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
2892 DAG
.getConstant(0, MVT::getVectorVT(EltVT
, NumElts
)));
2895 assert(!VT
.isVector() && "Can't handle vector type here!");
2896 unsigned NumBits
= VT
.getSizeInBits();
2897 unsigned MSB
= NumBits
/ 8;
2899 if (TLI
.isLittleEndian())
2900 Offset
= Offset
+ MSB
- 1;
2901 for (unsigned i
= 0; i
!= MSB
; ++i
) {
2902 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
2903 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
2905 return DAG
.getConstant(Val
, VT
);
2908 /// getMemBasePlusOffset - Returns base and offset node for the
2910 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
2911 SelectionDAG
&DAG
) {
2912 MVT VT
= Base
.getValueType();
2913 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
2914 VT
, Base
, DAG
.getConstant(Offset
, VT
));
2917 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
2919 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
2920 unsigned SrcDelta
= 0;
2921 GlobalAddressSDNode
*G
= NULL
;
2922 if (Src
.getOpcode() == ISD::GlobalAddress
)
2923 G
= cast
<GlobalAddressSDNode
>(Src
);
2924 else if (Src
.getOpcode() == ISD::ADD
&&
2925 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
2926 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
2927 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
2928 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
2933 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
2934 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
2940 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2941 /// to replace the memset / memcpy is below the threshold. It also returns the
2942 /// types of the sequence of memory ops to perform memset / memcpy.
2944 bool MeetsMaxMemopRequirement(std::vector
<MVT
> &MemOps
,
2945 SDValue Dst
, SDValue Src
,
2946 unsigned Limit
, uint64_t Size
, unsigned &Align
,
2947 std::string
&Str
, bool &isSrcStr
,
2949 const TargetLowering
&TLI
) {
2950 isSrcStr
= isMemSrcFromString(Src
, Str
);
2951 bool isSrcConst
= isa
<ConstantSDNode
>(Src
);
2952 bool AllowUnalign
= TLI
.allowsUnalignedMemoryAccesses();
2953 MVT VT
= TLI
.getOptimalMemOpType(Size
, Align
, isSrcConst
, isSrcStr
);
2954 if (VT
!= MVT::iAny
) {
2955 unsigned NewAlign
= (unsigned)
2956 TLI
.getTargetData()->getABITypeAlignment(VT
.getTypeForMVT());
2957 // If source is a string constant, this will require an unaligned load.
2958 if (NewAlign
> Align
&& (isSrcConst
|| AllowUnalign
)) {
2959 if (Dst
.getOpcode() != ISD::FrameIndex
) {
2960 // Can't change destination alignment. It requires a unaligned store.
2964 int FI
= cast
<FrameIndexSDNode
>(Dst
)->getIndex();
2965 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
2966 if (MFI
->isFixedObjectIndex(FI
)) {
2967 // Can't change destination alignment. It requires a unaligned store.
2971 // Give the stack frame object a larger alignment if needed.
2972 if (MFI
->getObjectAlignment(FI
) < NewAlign
)
2973 MFI
->setObjectAlignment(FI
, NewAlign
);
2980 if (VT
== MVT::iAny
) {
2984 switch (Align
& 7) {
2985 case 0: VT
= MVT::i64
; break;
2986 case 4: VT
= MVT::i32
; break;
2987 case 2: VT
= MVT::i16
; break;
2988 default: VT
= MVT::i8
; break;
2993 while (!TLI
.isTypeLegal(LVT
))
2994 LVT
= (MVT::SimpleValueType
)(LVT
.getSimpleVT() - 1);
2995 assert(LVT
.isInteger());
3001 unsigned NumMemOps
= 0;
3003 unsigned VTSize
= VT
.getSizeInBits() / 8;
3004 while (VTSize
> Size
) {
3005 // For now, only use non-vector load / store's for the left-over pieces.
3006 if (VT
.isVector()) {
3008 while (!TLI
.isTypeLegal(VT
))
3009 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT() - 1);
3010 VTSize
= VT
.getSizeInBits() / 8;
3012 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT() - 1);
3017 if (++NumMemOps
> Limit
)
3019 MemOps
.push_back(VT
);
3026 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3027 SDValue Chain
, SDValue Dst
,
3028 SDValue Src
, uint64_t Size
,
3029 unsigned Align
, bool AlwaysInline
,
3030 const Value
*DstSV
, uint64_t DstSVOff
,
3031 const Value
*SrcSV
, uint64_t SrcSVOff
){
3032 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3034 // Expand memcpy to a series of load and store ops if the size operand falls
3035 // below a certain threshold.
3036 std::vector
<MVT
> MemOps
;
3037 uint64_t Limit
= -1ULL;
3039 Limit
= TLI
.getMaxStoresPerMemcpy();
3040 unsigned DstAlign
= Align
; // Destination alignment can change.
3043 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3044 Str
, CopyFromStr
, DAG
, TLI
))
3048 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3049 SmallVector
<SDValue
, 8> OutChains
;
3050 unsigned NumMemOps
= MemOps
.size();
3051 uint64_t SrcOff
= 0, DstOff
= 0;
3052 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3054 unsigned VTSize
= VT
.getSizeInBits() / 8;
3055 SDValue Value
, Store
;
3057 if (CopyFromStr
&& (isZeroStr
|| !VT
.isVector())) {
3058 // It's unlikely a store of a vector immediate can be done in a single
3059 // instruction. It would require a load from a constantpool first.
3060 // We also handle store a vector with all zero's.
3061 // FIXME: Handle other cases where store of vector immediate is done in
3062 // a single instruction.
3063 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3064 Store
= DAG
.getStore(Chain
, dl
, Value
,
3065 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3066 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3068 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3069 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3070 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3071 Store
= DAG
.getStore(Chain
, dl
, Value
,
3072 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3073 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3075 OutChains
.push_back(Store
);
3080 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3081 &OutChains
[0], OutChains
.size());
3084 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3085 SDValue Chain
, SDValue Dst
,
3086 SDValue Src
, uint64_t Size
,
3087 unsigned Align
, bool AlwaysInline
,
3088 const Value
*DstSV
, uint64_t DstSVOff
,
3089 const Value
*SrcSV
, uint64_t SrcSVOff
){
3090 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3092 // Expand memmove to a series of load and store ops if the size operand falls
3093 // below a certain threshold.
3094 std::vector
<MVT
> MemOps
;
3095 uint64_t Limit
= -1ULL;
3097 Limit
= TLI
.getMaxStoresPerMemmove();
3098 unsigned DstAlign
= Align
; // Destination alignment can change.
3101 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, Limit
, Size
, DstAlign
,
3102 Str
, CopyFromStr
, DAG
, TLI
))
3105 uint64_t SrcOff
= 0, DstOff
= 0;
3107 SmallVector
<SDValue
, 8> LoadValues
;
3108 SmallVector
<SDValue
, 8> LoadChains
;
3109 SmallVector
<SDValue
, 8> OutChains
;
3110 unsigned NumMemOps
= MemOps
.size();
3111 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3113 unsigned VTSize
= VT
.getSizeInBits() / 8;
3114 SDValue Value
, Store
;
3116 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3117 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3118 SrcSV
, SrcSVOff
+ SrcOff
, false, Align
);
3119 LoadValues
.push_back(Value
);
3120 LoadChains
.push_back(Value
.getValue(1));
3123 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3124 &LoadChains
[0], LoadChains
.size());
3126 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3128 unsigned VTSize
= VT
.getSizeInBits() / 8;
3129 SDValue Value
, Store
;
3131 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3132 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3133 DstSV
, DstSVOff
+ DstOff
, false, DstAlign
);
3134 OutChains
.push_back(Store
);
3138 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3139 &OutChains
[0], OutChains
.size());
3142 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3143 SDValue Chain
, SDValue Dst
,
3144 SDValue Src
, uint64_t Size
,
3146 const Value
*DstSV
, uint64_t DstSVOff
) {
3147 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3149 // Expand memset to a series of load/store ops if the size operand
3150 // falls below a certain threshold.
3151 std::vector
<MVT
> MemOps
;
3154 if (!MeetsMaxMemopRequirement(MemOps
, Dst
, Src
, TLI
.getMaxStoresPerMemset(),
3155 Size
, Align
, Str
, CopyFromStr
, DAG
, TLI
))
3158 SmallVector
<SDValue
, 8> OutChains
;
3159 uint64_t DstOff
= 0;
3161 unsigned NumMemOps
= MemOps
.size();
3162 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3164 unsigned VTSize
= VT
.getSizeInBits() / 8;
3165 SDValue Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3166 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3167 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3168 DstSV
, DstSVOff
+ DstOff
);
3169 OutChains
.push_back(Store
);
3173 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3174 &OutChains
[0], OutChains
.size());
3177 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3178 SDValue Src
, SDValue Size
,
3179 unsigned Align
, bool AlwaysInline
,
3180 const Value
*DstSV
, uint64_t DstSVOff
,
3181 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3183 // Check to see if we should lower the memcpy to loads and stores first.
3184 // For cases within the target-specified limits, this is the best choice.
3185 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3187 // Memcpy with size zero? Just return the original chain.
3188 if (ConstantSize
->isNullValue())
3192 getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3193 ConstantSize
->getZExtValue(),
3194 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3195 if (Result
.getNode())
3199 // Then check to see if we should lower the memcpy with target-specific
3200 // code. If the target chooses to do this, this is the next best.
3202 TLI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3204 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3205 if (Result
.getNode())
3208 // If we really need inline code and the target declined to provide it,
3209 // use a (potentially long) sequence of loads and stores.
3211 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3212 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3213 ConstantSize
->getZExtValue(), Align
, true,
3214 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3217 // Emit a library call.
3218 TargetLowering::ArgListTy Args
;
3219 TargetLowering::ArgListEntry Entry
;
3220 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
3221 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3222 Entry
.Node
= Src
; Args
.push_back(Entry
);
3223 Entry
.Node
= Size
; Args
.push_back(Entry
);
3224 // FIXME: pass in DebugLoc
3225 std::pair
<SDValue
,SDValue
> CallResult
=
3226 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3227 false, false, false, false, CallingConv::C
, false,
3228 getExternalSymbol("memcpy", TLI
.getPointerTy()),
3230 return CallResult
.second
;
3233 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3234 SDValue Src
, SDValue Size
,
3236 const Value
*DstSV
, uint64_t DstSVOff
,
3237 const Value
*SrcSV
, uint64_t SrcSVOff
) {
3239 // Check to see if we should lower the memmove to loads and stores first.
3240 // For cases within the target-specified limits, this is the best choice.
3241 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3243 // Memmove with size zero? Just return the original chain.
3244 if (ConstantSize
->isNullValue())
3248 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3249 ConstantSize
->getZExtValue(),
3250 Align
, false, DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3251 if (Result
.getNode())
3255 // Then check to see if we should lower the memmove with target-specific
3256 // code. If the target chooses to do this, this is the next best.
3258 TLI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3259 DstSV
, DstSVOff
, SrcSV
, SrcSVOff
);
3260 if (Result
.getNode())
3263 // Emit a library call.
3264 TargetLowering::ArgListTy Args
;
3265 TargetLowering::ArgListEntry Entry
;
3266 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType();
3267 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3268 Entry
.Node
= Src
; Args
.push_back(Entry
);
3269 Entry
.Node
= Size
; Args
.push_back(Entry
);
3270 // FIXME: pass in DebugLoc
3271 std::pair
<SDValue
,SDValue
> CallResult
=
3272 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3273 false, false, false, false, CallingConv::C
, false,
3274 getExternalSymbol("memmove", TLI
.getPointerTy()),
3276 return CallResult
.second
;
3279 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3280 SDValue Src
, SDValue Size
,
3282 const Value
*DstSV
, uint64_t DstSVOff
) {
3284 // Check to see if we should lower the memset to stores first.
3285 // For cases within the target-specified limits, this is the best choice.
3286 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3288 // Memset with size zero? Just return the original chain.
3289 if (ConstantSize
->isNullValue())
3293 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3294 Align
, DstSV
, DstSVOff
);
3295 if (Result
.getNode())
3299 // Then check to see if we should lower the memset with target-specific
3300 // code. If the target chooses to do this, this is the next best.
3302 TLI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3304 if (Result
.getNode())
3307 // Emit a library call.
3308 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType();
3309 TargetLowering::ArgListTy Args
;
3310 TargetLowering::ArgListEntry Entry
;
3311 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3312 Args
.push_back(Entry
);
3313 // Extend or truncate the argument to be an i32 value for the call.
3314 if (Src
.getValueType().bitsGT(MVT::i32
))
3315 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3317 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3318 Entry
.Node
= Src
; Entry
.Ty
= Type::Int32Ty
; Entry
.isSExt
= true;
3319 Args
.push_back(Entry
);
3320 Entry
.Node
= Size
; Entry
.Ty
= IntPtrTy
; Entry
.isSExt
= false;
3321 Args
.push_back(Entry
);
3322 // FIXME: pass in DebugLoc
3323 std::pair
<SDValue
,SDValue
> CallResult
=
3324 TLI
.LowerCallTo(Chain
, Type::VoidTy
,
3325 false, false, false, false, CallingConv::C
, false,
3326 getExternalSymbol("memset", TLI
.getPointerTy()),
3328 return CallResult
.second
;
3331 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, MVT MemVT
,
3333 SDValue Ptr
, SDValue Cmp
,
3334 SDValue Swp
, const Value
* PtrVal
,
3335 unsigned Alignment
) {
3336 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3337 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3339 MVT VT
= Cmp
.getValueType();
3341 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3342 Alignment
= getMVTAlignment(MemVT
);
3344 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3345 FoldingSetNodeID ID
;
3346 ID
.AddInteger(MemVT
.getRawBits());
3347 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3348 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3350 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3351 return SDValue(E
, 0);
3352 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3353 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3354 Chain
, Ptr
, Cmp
, Swp
, PtrVal
, Alignment
);
3355 CSEMap
.InsertNode(N
, IP
);
3356 AllNodes
.push_back(N
);
3357 return SDValue(N
, 0);
3360 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, MVT MemVT
,
3362 SDValue Ptr
, SDValue Val
,
3363 const Value
* PtrVal
,
3364 unsigned Alignment
) {
3365 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3366 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3367 Opcode
== ISD::ATOMIC_LOAD_AND
||
3368 Opcode
== ISD::ATOMIC_LOAD_OR
||
3369 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3370 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3371 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3372 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3373 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3374 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3375 Opcode
== ISD::ATOMIC_SWAP
) &&
3376 "Invalid Atomic Op");
3378 MVT VT
= Val
.getValueType();
3380 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3381 Alignment
= getMVTAlignment(MemVT
);
3383 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3384 FoldingSetNodeID ID
;
3385 ID
.AddInteger(MemVT
.getRawBits());
3386 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3387 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3389 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3390 return SDValue(E
, 0);
3391 SDNode
* N
= NodeAllocator
.Allocate
<AtomicSDNode
>();
3392 new (N
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
,
3393 Chain
, Ptr
, Val
, PtrVal
, Alignment
);
3394 CSEMap
.InsertNode(N
, IP
);
3395 AllNodes
.push_back(N
);
3396 return SDValue(N
, 0);
3399 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3400 /// Allowed to return something different (and simpler) if Simplify is true.
3401 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3406 SmallVector
<MVT
, 4> VTs
;
3407 VTs
.reserve(NumOps
);
3408 for (unsigned i
= 0; i
< NumOps
; ++i
)
3409 VTs
.push_back(Ops
[i
].getValueType());
3410 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3415 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3416 const MVT
*VTs
, unsigned NumVTs
,
3417 const SDValue
*Ops
, unsigned NumOps
,
3418 MVT MemVT
, const Value
*srcValue
, int SVOff
,
3419 unsigned Align
, bool Vol
,
3420 bool ReadMem
, bool WriteMem
) {
3421 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3422 MemVT
, srcValue
, SVOff
, Align
, Vol
,
3427 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3428 const SDValue
*Ops
, unsigned NumOps
,
3429 MVT MemVT
, const Value
*srcValue
, int SVOff
,
3430 unsigned Align
, bool Vol
,
3431 bool ReadMem
, bool WriteMem
) {
3432 // Memoize the node unless it returns a flag.
3433 MemIntrinsicSDNode
*N
;
3434 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3435 FoldingSetNodeID ID
;
3436 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3438 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3439 return SDValue(E
, 0);
3441 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3442 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3443 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3444 CSEMap
.InsertNode(N
, IP
);
3446 N
= NodeAllocator
.Allocate
<MemIntrinsicSDNode
>();
3447 new (N
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
,
3448 srcValue
, SVOff
, Align
, Vol
, ReadMem
, WriteMem
);
3450 AllNodes
.push_back(N
);
3451 return SDValue(N
, 0);
3455 SelectionDAG::getCall(unsigned CallingConv
, DebugLoc dl
, bool IsVarArgs
,
3456 bool IsTailCall
, bool IsInreg
, SDVTList VTs
,
3457 const SDValue
*Operands
, unsigned NumOperands
) {
3458 // Do not include isTailCall in the folding set profile.
3459 FoldingSetNodeID ID
;
3460 AddNodeIDNode(ID
, ISD::CALL
, VTs
, Operands
, NumOperands
);
3461 ID
.AddInteger(CallingConv
);
3462 ID
.AddInteger(IsVarArgs
);
3464 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3465 // Instead of including isTailCall in the folding set, we just
3466 // set the flag of the existing node.
3468 cast
<CallSDNode
>(E
)->setNotTailCall();
3469 return SDValue(E
, 0);
3471 SDNode
*N
= NodeAllocator
.Allocate
<CallSDNode
>();
3472 new (N
) CallSDNode(CallingConv
, dl
, IsVarArgs
, IsTailCall
, IsInreg
,
3473 VTs
, Operands
, NumOperands
);
3474 CSEMap
.InsertNode(N
, IP
);
3475 AllNodes
.push_back(N
);
3476 return SDValue(N
, 0);
3480 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, DebugLoc dl
,
3481 ISD::LoadExtType ExtType
, MVT VT
, SDValue Chain
,
3482 SDValue Ptr
, SDValue Offset
,
3483 const Value
*SV
, int SVOffset
, MVT EVT
,
3484 bool isVolatile
, unsigned Alignment
) {
3485 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3486 Alignment
= getMVTAlignment(VT
);
3489 ExtType
= ISD::NON_EXTLOAD
;
3490 } else if (ExtType
== ISD::NON_EXTLOAD
) {
3491 assert(VT
== EVT
&& "Non-extending load from different memory type!");
3495 assert(EVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
3496 "Invalid vector extload!");
3498 assert(EVT
.bitsLT(VT
) &&
3499 "Should only be an extending load, not truncating!");
3500 assert((ExtType
== ISD::EXTLOAD
|| VT
.isInteger()) &&
3501 "Cannot sign/zero extend a FP/Vector load!");
3502 assert(VT
.isInteger() == EVT
.isInteger() &&
3503 "Cannot convert from FP to Int or Int -> FP!");
3506 bool Indexed
= AM
!= ISD::UNINDEXED
;
3507 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
3508 "Unindexed load with an offset!");
3510 SDVTList VTs
= Indexed
?
3511 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
3512 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
3513 FoldingSetNodeID ID
;
3514 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
3515 ID
.AddInteger(EVT
.getRawBits());
3516 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, isVolatile
, Alignment
));
3518 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3519 return SDValue(E
, 0);
3520 SDNode
*N
= NodeAllocator
.Allocate
<LoadSDNode
>();
3521 new (N
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
, EVT
, SV
, SVOffset
,
3522 Alignment
, isVolatile
);
3523 CSEMap
.InsertNode(N
, IP
);
3524 AllNodes
.push_back(N
);
3525 return SDValue(N
, 0);
3528 SDValue
SelectionDAG::getLoad(MVT VT
, DebugLoc dl
,
3529 SDValue Chain
, SDValue Ptr
,
3530 const Value
*SV
, int SVOffset
,
3531 bool isVolatile
, unsigned Alignment
) {
3532 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3533 return getLoad(ISD::UNINDEXED
, dl
, ISD::NON_EXTLOAD
, VT
, Chain
, Ptr
, Undef
,
3534 SV
, SVOffset
, VT
, isVolatile
, Alignment
);
3537 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, DebugLoc dl
, MVT VT
,
3538 SDValue Chain
, SDValue Ptr
,
3540 int SVOffset
, MVT EVT
,
3541 bool isVolatile
, unsigned Alignment
) {
3542 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3543 return getLoad(ISD::UNINDEXED
, dl
, ExtType
, VT
, Chain
, Ptr
, Undef
,
3544 SV
, SVOffset
, EVT
, isVolatile
, Alignment
);
3548 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
3549 SDValue Offset
, ISD::MemIndexedMode AM
) {
3550 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
3551 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
3552 "Load is already a indexed load!");
3553 return getLoad(AM
, dl
, LD
->getExtensionType(), OrigLoad
.getValueType(),
3554 LD
->getChain(), Base
, Offset
, LD
->getSrcValue(),
3555 LD
->getSrcValueOffset(), LD
->getMemoryVT(),
3556 LD
->isVolatile(), LD
->getAlignment());
3559 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3560 SDValue Ptr
, const Value
*SV
, int SVOffset
,
3561 bool isVolatile
, unsigned Alignment
) {
3562 MVT VT
= Val
.getValueType();
3564 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3565 Alignment
= getMVTAlignment(VT
);
3567 SDVTList VTs
= getVTList(MVT::Other
);
3568 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3569 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3570 FoldingSetNodeID ID
;
3571 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3572 ID
.AddInteger(VT
.getRawBits());
3573 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
,
3574 isVolatile
, Alignment
));
3576 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3577 return SDValue(E
, 0);
3578 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3579 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, false,
3580 VT
, SV
, SVOffset
, Alignment
, isVolatile
);
3581 CSEMap
.InsertNode(N
, IP
);
3582 AllNodes
.push_back(N
);
3583 return SDValue(N
, 0);
3586 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
3587 SDValue Ptr
, const Value
*SV
,
3588 int SVOffset
, MVT SVT
,
3589 bool isVolatile
, unsigned Alignment
) {
3590 MVT VT
= Val
.getValueType();
3593 return getStore(Chain
, dl
, Val
, Ptr
, SV
, SVOffset
, isVolatile
, Alignment
);
3595 assert(VT
.bitsGT(SVT
) && "Not a truncation?");
3596 assert(VT
.isInteger() == SVT
.isInteger() &&
3597 "Can't do FP-INT conversion!");
3599 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3600 Alignment
= getMVTAlignment(VT
);
3602 SDVTList VTs
= getVTList(MVT::Other
);
3603 SDValue Undef
= getUNDEF(Ptr
.getValueType());
3604 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
3605 FoldingSetNodeID ID
;
3606 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3607 ID
.AddInteger(SVT
.getRawBits());
3608 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
,
3609 isVolatile
, Alignment
));
3611 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3612 return SDValue(E
, 0);
3613 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3614 new (N
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
, true,
3615 SVT
, SV
, SVOffset
, Alignment
, isVolatile
);
3616 CSEMap
.InsertNode(N
, IP
);
3617 AllNodes
.push_back(N
);
3618 return SDValue(N
, 0);
3622 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
3623 SDValue Offset
, ISD::MemIndexedMode AM
) {
3624 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
3625 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
3626 "Store is already a indexed store!");
3627 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
3628 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
3629 FoldingSetNodeID ID
;
3630 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
3631 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
3632 ID
.AddInteger(ST
->getRawSubclassData());
3634 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3635 return SDValue(E
, 0);
3636 SDNode
*N
= NodeAllocator
.Allocate
<StoreSDNode
>();
3637 new (N
) StoreSDNode(Ops
, dl
, VTs
, AM
,
3638 ST
->isTruncatingStore(), ST
->getMemoryVT(),
3639 ST
->getSrcValue(), ST
->getSrcValueOffset(),
3640 ST
->getAlignment(), ST
->isVolatile());
3641 CSEMap
.InsertNode(N
, IP
);
3642 AllNodes
.push_back(N
);
3643 return SDValue(N
, 0);
3646 SDValue
SelectionDAG::getVAArg(MVT VT
, DebugLoc dl
,
3647 SDValue Chain
, SDValue Ptr
,
3649 SDValue Ops
[] = { Chain
, Ptr
, SV
};
3650 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 3);
3653 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
3654 const SDUse
*Ops
, unsigned NumOps
) {
3656 case 0: return getNode(Opcode
, DL
, VT
);
3657 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3658 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3659 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3663 // Copy from an SDUse array into an SDValue array for use with
3664 // the regular getNode logic.
3665 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
3666 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
3669 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, MVT VT
,
3670 const SDValue
*Ops
, unsigned NumOps
) {
3672 case 0: return getNode(Opcode
, DL
, VT
);
3673 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
3674 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
3675 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
3681 case ISD::SELECT_CC
: {
3682 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
3683 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
3684 "LHS and RHS of condition must have same type!");
3685 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3686 "True and False arms of SelectCC must have same type!");
3687 assert(Ops
[2].getValueType() == VT
&&
3688 "select_cc node must be of same type as true and false value!");
3692 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
3693 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
3694 "LHS/RHS of comparison should match types!");
3701 SDVTList VTs
= getVTList(VT
);
3703 if (VT
!= MVT::Flag
) {
3704 FoldingSetNodeID ID
;
3705 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
3708 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3709 return SDValue(E
, 0);
3711 N
= NodeAllocator
.Allocate
<SDNode
>();
3712 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3713 CSEMap
.InsertNode(N
, IP
);
3715 N
= NodeAllocator
.Allocate
<SDNode
>();
3716 new (N
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
3719 AllNodes
.push_back(N
);
3723 return SDValue(N
, 0);
3726 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3727 const std::vector
<MVT
> &ResultTys
,
3728 const SDValue
*Ops
, unsigned NumOps
) {
3729 return getNode(Opcode
, DL
, getNodeValueTypes(ResultTys
), ResultTys
.size(),
3733 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
3734 const MVT
*VTs
, unsigned NumVTs
,
3735 const SDValue
*Ops
, unsigned NumOps
) {
3737 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
3738 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
3741 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3742 const SDValue
*Ops
, unsigned NumOps
) {
3743 if (VTList
.NumVTs
== 1)
3744 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
3747 // FIXME: figure out how to safely handle things like
3748 // int foo(int x) { return 1 << (x & 255); }
3749 // int bar() { return foo(256); }
3751 case ISD::SRA_PARTS
:
3752 case ISD::SRL_PARTS
:
3753 case ISD::SHL_PARTS
:
3754 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
3755 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
3756 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3757 else if (N3
.getOpcode() == ISD::AND
)
3758 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
3759 // If the and is only masking out bits that cannot effect the shift,
3760 // eliminate the and.
3761 unsigned NumBits
= VT
.getSizeInBits()*2;
3762 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
3763 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
3769 // Memoize the node unless it returns a flag.
3771 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
3772 FoldingSetNodeID ID
;
3773 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3775 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3776 return SDValue(E
, 0);
3778 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3779 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3780 } else if (NumOps
== 2) {
3781 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3782 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3783 } else if (NumOps
== 3) {
3784 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3785 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3787 N
= NodeAllocator
.Allocate
<SDNode
>();
3788 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3790 CSEMap
.InsertNode(N
, IP
);
3793 N
= NodeAllocator
.Allocate
<UnarySDNode
>();
3794 new (N
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
3795 } else if (NumOps
== 2) {
3796 N
= NodeAllocator
.Allocate
<BinarySDNode
>();
3797 new (N
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
3798 } else if (NumOps
== 3) {
3799 N
= NodeAllocator
.Allocate
<TernarySDNode
>();
3800 new (N
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1], Ops
[2]);
3802 N
= NodeAllocator
.Allocate
<SDNode
>();
3803 new (N
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
3806 AllNodes
.push_back(N
);
3810 return SDValue(N
, 0);
3813 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
3814 return getNode(Opcode
, DL
, VTList
, 0, 0);
3817 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3819 SDValue Ops
[] = { N1
};
3820 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
3823 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3824 SDValue N1
, SDValue N2
) {
3825 SDValue Ops
[] = { N1
, N2
};
3826 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
3829 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3830 SDValue N1
, SDValue N2
, SDValue N3
) {
3831 SDValue Ops
[] = { N1
, N2
, N3
};
3832 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
3835 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3836 SDValue N1
, SDValue N2
, SDValue N3
,
3838 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
3839 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
3842 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
3843 SDValue N1
, SDValue N2
, SDValue N3
,
3844 SDValue N4
, SDValue N5
) {
3845 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
3846 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
3849 SDVTList
SelectionDAG::getVTList(MVT VT
) {
3850 return makeVTList(SDNode::getValueTypeList(VT
), 1);
3853 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
) {
3854 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3855 E
= VTList
.rend(); I
!= E
; ++I
)
3856 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
3859 MVT
*Array
= Allocator
.Allocate
<MVT
>(2);
3862 SDVTList Result
= makeVTList(Array
, 2);
3863 VTList
.push_back(Result
);
3867 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
, MVT VT3
) {
3868 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3869 E
= VTList
.rend(); I
!= E
; ++I
)
3870 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
3874 MVT
*Array
= Allocator
.Allocate
<MVT
>(3);
3878 SDVTList Result
= makeVTList(Array
, 3);
3879 VTList
.push_back(Result
);
3883 SDVTList
SelectionDAG::getVTList(MVT VT1
, MVT VT2
, MVT VT3
, MVT VT4
) {
3884 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3885 E
= VTList
.rend(); I
!= E
; ++I
)
3886 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
3887 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
3890 MVT
*Array
= Allocator
.Allocate
<MVT
>(3);
3895 SDVTList Result
= makeVTList(Array
, 4);
3896 VTList
.push_back(Result
);
3900 SDVTList
SelectionDAG::getVTList(const MVT
*VTs
, unsigned NumVTs
) {
3902 case 0: assert(0 && "Cannot have nodes without results!");
3903 case 1: return getVTList(VTs
[0]);
3904 case 2: return getVTList(VTs
[0], VTs
[1]);
3905 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
3909 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
3910 E
= VTList
.rend(); I
!= E
; ++I
) {
3911 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
3914 bool NoMatch
= false;
3915 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
3916 if (VTs
[i
] != I
->VTs
[i
]) {
3924 MVT
*Array
= Allocator
.Allocate
<MVT
>(NumVTs
);
3925 std::copy(VTs
, VTs
+NumVTs
, Array
);
3926 SDVTList Result
= makeVTList(Array
, NumVTs
);
3927 VTList
.push_back(Result
);
3932 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3933 /// specified operands. If the resultant node already exists in the DAG,
3934 /// this does not modify the specified node, instead it returns the node that
3935 /// already exists. If the resultant node does not exist in the DAG, the
3936 /// input node is returned. As a degenerate case, if you specify the same
3937 /// input operands as the node already has, the input node is returned.
3938 SDValue
SelectionDAG::UpdateNodeOperands(SDValue InN
, SDValue Op
) {
3939 SDNode
*N
= InN
.getNode();
3940 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
3942 // Check to see if there is no change.
3943 if (Op
== N
->getOperand(0)) return InN
;
3945 // See if the modified node already exists.
3946 void *InsertPos
= 0;
3947 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
3948 return SDValue(Existing
, InN
.getResNo());
3950 // Nope it doesn't. Remove the node from its current place in the maps.
3952 if (!RemoveNodeFromCSEMaps(N
))
3955 // Now we update the operands.
3956 N
->OperandList
[0].set(Op
);
3958 // If this gets put into a CSE map, add it.
3959 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
3963 SDValue
SelectionDAG::
3964 UpdateNodeOperands(SDValue InN
, SDValue Op1
, SDValue Op2
) {
3965 SDNode
*N
= InN
.getNode();
3966 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
3968 // Check to see if there is no change.
3969 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
3970 return InN
; // No operands changed, just return the input node.
3972 // See if the modified node already exists.
3973 void *InsertPos
= 0;
3974 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
3975 return SDValue(Existing
, InN
.getResNo());
3977 // Nope it doesn't. Remove the node from its current place in the maps.
3979 if (!RemoveNodeFromCSEMaps(N
))
3982 // Now we update the operands.
3983 if (N
->OperandList
[0] != Op1
)
3984 N
->OperandList
[0].set(Op1
);
3985 if (N
->OperandList
[1] != Op2
)
3986 N
->OperandList
[1].set(Op2
);
3988 // If this gets put into a CSE map, add it.
3989 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
3993 SDValue
SelectionDAG::
3994 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
3995 SDValue Ops
[] = { Op1
, Op2
, Op3
};
3996 return UpdateNodeOperands(N
, Ops
, 3);
3999 SDValue
SelectionDAG::
4000 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4001 SDValue Op3
, SDValue Op4
) {
4002 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4003 return UpdateNodeOperands(N
, Ops
, 4);
4006 SDValue
SelectionDAG::
4007 UpdateNodeOperands(SDValue N
, SDValue Op1
, SDValue Op2
,
4008 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4009 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4010 return UpdateNodeOperands(N
, Ops
, 5);
4013 SDValue
SelectionDAG::
4014 UpdateNodeOperands(SDValue InN
, const SDValue
*Ops
, unsigned NumOps
) {
4015 SDNode
*N
= InN
.getNode();
4016 assert(N
->getNumOperands() == NumOps
&&
4017 "Update with wrong number of operands");
4019 // Check to see if there is no change.
4020 bool AnyChange
= false;
4021 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4022 if (Ops
[i
] != N
->getOperand(i
)) {
4028 // No operands changed, just return the input node.
4029 if (!AnyChange
) return InN
;
4031 // See if the modified node already exists.
4032 void *InsertPos
= 0;
4033 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4034 return SDValue(Existing
, InN
.getResNo());
4036 // Nope it doesn't. Remove the node from its current place in the maps.
4038 if (!RemoveNodeFromCSEMaps(N
))
4041 // Now we update the operands.
4042 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4043 if (N
->OperandList
[i
] != Ops
[i
])
4044 N
->OperandList
[i
].set(Ops
[i
]);
4046 // If this gets put into a CSE map, add it.
4047 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4051 /// DropOperands - Release the operands and set this node to have
4053 void SDNode::DropOperands() {
4054 // Unlike the code in MorphNodeTo that does this, we don't need to
4055 // watch for dead nodes here.
4056 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4062 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4065 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4067 SDVTList VTs
= getVTList(VT
);
4068 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4071 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4072 MVT VT
, SDValue Op1
) {
4073 SDVTList VTs
= getVTList(VT
);
4074 SDValue Ops
[] = { Op1
};
4075 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4078 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4079 MVT VT
, SDValue Op1
,
4081 SDVTList VTs
= getVTList(VT
);
4082 SDValue Ops
[] = { Op1
, Op2
};
4083 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4086 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4087 MVT VT
, SDValue Op1
,
4088 SDValue Op2
, SDValue Op3
) {
4089 SDVTList VTs
= getVTList(VT
);
4090 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4091 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4094 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4095 MVT VT
, const SDValue
*Ops
,
4097 SDVTList VTs
= getVTList(VT
);
4098 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4101 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4102 MVT VT1
, MVT VT2
, const SDValue
*Ops
,
4104 SDVTList VTs
= getVTList(VT1
, VT2
);
4105 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4108 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4110 SDVTList VTs
= getVTList(VT1
, VT2
);
4111 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4114 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4115 MVT VT1
, MVT VT2
, MVT VT3
,
4116 const SDValue
*Ops
, unsigned NumOps
) {
4117 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4118 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4121 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4122 MVT VT1
, MVT VT2
, MVT VT3
, MVT VT4
,
4123 const SDValue
*Ops
, unsigned NumOps
) {
4124 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4125 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4128 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4131 SDVTList VTs
= getVTList(VT1
, VT2
);
4132 SDValue Ops
[] = { Op1
};
4133 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4136 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4138 SDValue Op1
, SDValue Op2
) {
4139 SDVTList VTs
= getVTList(VT1
, VT2
);
4140 SDValue Ops
[] = { Op1
, Op2
};
4141 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4144 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4146 SDValue Op1
, SDValue Op2
,
4148 SDVTList VTs
= getVTList(VT1
, VT2
);
4149 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4150 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4153 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4154 MVT VT1
, MVT VT2
, MVT VT3
,
4155 SDValue Op1
, SDValue Op2
,
4157 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4158 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4159 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4162 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4163 SDVTList VTs
, const SDValue
*Ops
,
4165 return MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4168 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4170 SDVTList VTs
= getVTList(VT
);
4171 return MorphNodeTo(N
, Opc
, VTs
, 0, 0);
4174 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4175 MVT VT
, SDValue Op1
) {
4176 SDVTList VTs
= getVTList(VT
);
4177 SDValue Ops
[] = { Op1
};
4178 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4181 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4182 MVT VT
, SDValue Op1
,
4184 SDVTList VTs
= getVTList(VT
);
4185 SDValue Ops
[] = { Op1
, Op2
};
4186 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4189 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4190 MVT VT
, SDValue Op1
,
4191 SDValue Op2
, SDValue Op3
) {
4192 SDVTList VTs
= getVTList(VT
);
4193 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4194 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4197 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4198 MVT VT
, const SDValue
*Ops
,
4200 SDVTList VTs
= getVTList(VT
);
4201 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4204 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4205 MVT VT1
, MVT VT2
, const SDValue
*Ops
,
4207 SDVTList VTs
= getVTList(VT1
, VT2
);
4208 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4211 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4213 SDVTList VTs
= getVTList(VT1
, VT2
);
4214 return MorphNodeTo(N
, Opc
, VTs
, (SDValue
*)0, 0);
4217 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4218 MVT VT1
, MVT VT2
, MVT VT3
,
4219 const SDValue
*Ops
, unsigned NumOps
) {
4220 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4221 return MorphNodeTo(N
, Opc
, VTs
, Ops
, NumOps
);
4224 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4227 SDVTList VTs
= getVTList(VT1
, VT2
);
4228 SDValue Ops
[] = { Op1
};
4229 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 1);
4232 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4234 SDValue Op1
, SDValue Op2
) {
4235 SDVTList VTs
= getVTList(VT1
, VT2
);
4236 SDValue Ops
[] = { Op1
, Op2
};
4237 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 2);
4240 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4242 SDValue Op1
, SDValue Op2
,
4244 SDVTList VTs
= getVTList(VT1
, VT2
);
4245 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4246 return MorphNodeTo(N
, Opc
, VTs
, Ops
, 3);
4249 /// MorphNodeTo - These *mutate* the specified node to have the specified
4250 /// return type, opcode, and operands.
4252 /// Note that MorphNodeTo returns the resultant node. If there is already a
4253 /// node of the specified opcode and operands, it returns that node instead of
4254 /// the current one. Note that the DebugLoc need not be the same.
4256 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4257 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4258 /// node, and because it doesn't require CSE recalculation for any of
4259 /// the node's users.
4261 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4262 SDVTList VTs
, const SDValue
*Ops
,
4264 // If an identical node already exists, use it.
4266 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Flag
) {
4267 FoldingSetNodeID ID
;
4268 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4269 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4273 if (!RemoveNodeFromCSEMaps(N
))
4276 // Start the morphing.
4278 N
->ValueList
= VTs
.VTs
;
4279 N
->NumValues
= VTs
.NumVTs
;
4281 // Clear the operands list, updating used nodes to remove this from their
4282 // use list. Keep track of any operands that become dead as a result.
4283 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4284 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4286 SDNode
*Used
= Use
.getNode();
4288 if (Used
->use_empty())
4289 DeadNodeSet
.insert(Used
);
4292 // If NumOps is larger than the # of operands we currently have, reallocate
4293 // the operand list.
4294 if (NumOps
> N
->NumOperands
) {
4295 if (N
->OperandsNeedDelete
)
4296 delete[] N
->OperandList
;
4298 if (N
->isMachineOpcode()) {
4299 // We're creating a final node that will live unmorphed for the
4300 // remainder of the current SelectionDAG iteration, so we can allocate
4301 // the operands directly out of a pool with no recycling metadata.
4302 N
->OperandList
= OperandAllocator
.Allocate
<SDUse
>(NumOps
);
4303 N
->OperandsNeedDelete
= false;
4305 N
->OperandList
= new SDUse
[NumOps
];
4306 N
->OperandsNeedDelete
= true;
4310 // Assign the new operands.
4311 N
->NumOperands
= NumOps
;
4312 for (unsigned i
= 0, e
= NumOps
; i
!= e
; ++i
) {
4313 N
->OperandList
[i
].setUser(N
);
4314 N
->OperandList
[i
].setInitial(Ops
[i
]);
4317 // Delete any nodes that are still dead after adding the uses for the
4319 SmallVector
<SDNode
*, 16> DeadNodes
;
4320 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4321 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4322 if ((*I
)->use_empty())
4323 DeadNodes
.push_back(*I
);
4324 RemoveDeadNodes(DeadNodes
);
4327 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4332 /// getTargetNode - These are used for target selectors to create a new node
4333 /// with specified return type(s), target opcode, and operands.
4335 /// Note that getTargetNode returns the resultant node. If there is already a
4336 /// node of the specified opcode and operands, it returns that node instead of
4337 /// the current one.
4338 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
) {
4339 return getNode(~Opcode
, dl
, VT
).getNode();
4342 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4344 return getNode(~Opcode
, dl
, VT
, Op1
).getNode();
4347 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4348 SDValue Op1
, SDValue Op2
) {
4349 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
).getNode();
4352 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4353 SDValue Op1
, SDValue Op2
,
4355 return getNode(~Opcode
, dl
, VT
, Op1
, Op2
, Op3
).getNode();
4358 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT
,
4359 const SDValue
*Ops
, unsigned NumOps
) {
4360 return getNode(~Opcode
, dl
, VT
, Ops
, NumOps
).getNode();
4363 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4365 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
);
4367 return getNode(~Opcode
, dl
, VTs
, 2, &Op
, 0).getNode();
4370 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4371 MVT VT2
, SDValue Op1
) {
4372 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
);
4373 return getNode(~Opcode
, dl
, VTs
, 2, &Op1
, 1).getNode();
4376 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4377 MVT VT2
, SDValue Op1
,
4379 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
);
4380 SDValue Ops
[] = { Op1
, Op2
};
4381 return getNode(~Opcode
, dl
, VTs
, 2, Ops
, 2).getNode();
4384 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4385 MVT VT2
, SDValue Op1
,
4386 SDValue Op2
, SDValue Op3
) {
4387 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
);
4388 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4389 return getNode(~Opcode
, dl
, VTs
, 2, Ops
, 3).getNode();
4392 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4394 const SDValue
*Ops
, unsigned NumOps
) {
4395 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
);
4396 return getNode(~Opcode
, dl
, VTs
, 2, Ops
, NumOps
).getNode();
4399 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4400 MVT VT1
, MVT VT2
, MVT VT3
,
4401 SDValue Op1
, SDValue Op2
) {
4402 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
, VT3
);
4403 SDValue Ops
[] = { Op1
, Op2
};
4404 return getNode(~Opcode
, dl
, VTs
, 3, Ops
, 2).getNode();
4407 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4408 MVT VT1
, MVT VT2
, MVT VT3
,
4409 SDValue Op1
, SDValue Op2
,
4411 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
, VT3
);
4412 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4413 return getNode(~Opcode
, dl
, VTs
, 3, Ops
, 3).getNode();
4416 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4417 MVT VT1
, MVT VT2
, MVT VT3
,
4418 const SDValue
*Ops
, unsigned NumOps
) {
4419 const MVT
*VTs
= getNodeValueTypes(VT1
, VT2
, VT3
);
4420 return getNode(~Opcode
, dl
, VTs
, 3, Ops
, NumOps
).getNode();
4423 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
, MVT VT1
,
4424 MVT VT2
, MVT VT3
, MVT VT4
,
4425 const SDValue
*Ops
, unsigned NumOps
) {
4426 std::vector
<MVT
> VTList
;
4427 VTList
.push_back(VT1
);
4428 VTList
.push_back(VT2
);
4429 VTList
.push_back(VT3
);
4430 VTList
.push_back(VT4
);
4431 const MVT
*VTs
= getNodeValueTypes(VTList
);
4432 return getNode(~Opcode
, dl
, VTs
, 4, Ops
, NumOps
).getNode();
4435 SDNode
*SelectionDAG::getTargetNode(unsigned Opcode
, DebugLoc dl
,
4436 const std::vector
<MVT
> &ResultTys
,
4437 const SDValue
*Ops
, unsigned NumOps
) {
4438 const MVT
*VTs
= getNodeValueTypes(ResultTys
);
4439 return getNode(~Opcode
, dl
, VTs
, ResultTys
.size(),
4440 Ops
, NumOps
).getNode();
4443 /// getNodeIfExists - Get the specified node if it's already available, or
4444 /// else return NULL.
4445 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
4446 const SDValue
*Ops
, unsigned NumOps
) {
4447 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Flag
) {
4448 FoldingSetNodeID ID
;
4449 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4451 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4457 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4458 /// This can cause recursive merging of nodes in the DAG.
4460 /// This version assumes From has a single result value.
4462 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
4463 DAGUpdateListener
*UpdateListener
) {
4464 SDNode
*From
= FromN
.getNode();
4465 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
4466 "Cannot replace with this method!");
4467 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
4469 // Iterate over all the existing uses of From. New uses will be added
4470 // to the beginning of the use list, which we avoid visiting.
4471 // This specifically avoids visiting uses of From that arise while the
4472 // replacement is happening, because any such uses would be the result
4473 // of CSE: If an existing node looks like From after one of its operands
4474 // is replaced by To, we don't want to replace of all its users with To
4475 // too. See PR3018 for more info.
4476 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4480 // This node is about to morph, remove its old self from the CSE maps.
4481 RemoveNodeFromCSEMaps(User
);
4483 // A user can appear in a use list multiple times, and when this
4484 // happens the uses are usually next to each other in the list.
4485 // To help reduce the number of CSE recomputations, process all
4486 // the uses of this user that we can find this way.
4488 SDUse
&Use
= UI
.getUse();
4491 } while (UI
!= UE
&& *UI
== User
);
4493 // Now that we have modified User, add it back to the CSE maps. If it
4494 // already exists there, recursively merge the results together.
4495 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4499 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4500 /// This can cause recursive merging of nodes in the DAG.
4502 /// This version assumes From/To have matching types and numbers of result
4505 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
4506 DAGUpdateListener
*UpdateListener
) {
4507 assert(From
->getVTList().VTs
== To
->getVTList().VTs
&&
4508 From
->getNumValues() == To
->getNumValues() &&
4509 "Cannot use this version of ReplaceAllUsesWith!");
4511 // Handle the trivial case.
4515 // Iterate over just the existing users of From. See the comments in
4516 // the ReplaceAllUsesWith above.
4517 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4521 // This node is about to morph, remove its old self from the CSE maps.
4522 RemoveNodeFromCSEMaps(User
);
4524 // A user can appear in a use list multiple times, and when this
4525 // happens the uses are usually next to each other in the list.
4526 // To help reduce the number of CSE recomputations, process all
4527 // the uses of this user that we can find this way.
4529 SDUse
&Use
= UI
.getUse();
4532 } while (UI
!= UE
&& *UI
== User
);
4534 // Now that we have modified User, add it back to the CSE maps. If it
4535 // already exists there, recursively merge the results together.
4536 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4540 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4541 /// This can cause recursive merging of nodes in the DAG.
4543 /// This version can replace From with any result values. To must match the
4544 /// number and types of values returned by From.
4545 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
4547 DAGUpdateListener
*UpdateListener
) {
4548 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
4549 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
4551 // Iterate over just the existing users of From. See the comments in
4552 // the ReplaceAllUsesWith above.
4553 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
4557 // This node is about to morph, remove its old self from the CSE maps.
4558 RemoveNodeFromCSEMaps(User
);
4560 // A user can appear in a use list multiple times, and when this
4561 // happens the uses are usually next to each other in the list.
4562 // To help reduce the number of CSE recomputations, process all
4563 // the uses of this user that we can find this way.
4565 SDUse
&Use
= UI
.getUse();
4566 const SDValue
&ToOp
= To
[Use
.getResNo()];
4569 } while (UI
!= UE
&& *UI
== User
);
4571 // Now that we have modified User, add it back to the CSE maps. If it
4572 // already exists there, recursively merge the results together.
4573 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4577 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4578 /// uses of other values produced by From.getNode() alone. The Deleted
4579 /// vector is handled the same way as for ReplaceAllUsesWith.
4580 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
4581 DAGUpdateListener
*UpdateListener
){
4582 // Handle the really simple, really trivial case efficiently.
4583 if (From
== To
) return;
4585 // Handle the simple, trivial, case efficiently.
4586 if (From
.getNode()->getNumValues() == 1) {
4587 ReplaceAllUsesWith(From
, To
, UpdateListener
);
4591 // Iterate over just the existing users of From. See the comments in
4592 // the ReplaceAllUsesWith above.
4593 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
4594 UE
= From
.getNode()->use_end();
4597 bool UserRemovedFromCSEMaps
= false;
4599 // A user can appear in a use list multiple times, and when this
4600 // happens the uses are usually next to each other in the list.
4601 // To help reduce the number of CSE recomputations, process all
4602 // the uses of this user that we can find this way.
4604 SDUse
&Use
= UI
.getUse();
4606 // Skip uses of different values from the same node.
4607 if (Use
.getResNo() != From
.getResNo()) {
4612 // If this node hasn't been modified yet, it's still in the CSE maps,
4613 // so remove its old self from the CSE maps.
4614 if (!UserRemovedFromCSEMaps
) {
4615 RemoveNodeFromCSEMaps(User
);
4616 UserRemovedFromCSEMaps
= true;
4621 } while (UI
!= UE
&& *UI
== User
);
4623 // We are iterating over all uses of the From node, so if a use
4624 // doesn't use the specific value, no changes are made.
4625 if (!UserRemovedFromCSEMaps
)
4628 // Now that we have modified User, add it back to the CSE maps. If it
4629 // already exists there, recursively merge the results together.
4630 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4635 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4636 /// to record information about a use.
4643 /// operator< - Sort Memos by User.
4644 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
4645 return (intptr_t)L
.User
< (intptr_t)R
.User
;
4649 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4650 /// uses of other values produced by From.getNode() alone. The same value
4651 /// may appear in both the From and To list. The Deleted vector is
4652 /// handled the same way as for ReplaceAllUsesWith.
4653 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
4656 DAGUpdateListener
*UpdateListener
){
4657 // Handle the simple, trivial case efficiently.
4659 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
4661 // Read up all the uses and make records of them. This helps
4662 // processing new uses that are introduced during the
4663 // replacement process.
4664 SmallVector
<UseMemo
, 4> Uses
;
4665 for (unsigned i
= 0; i
!= Num
; ++i
) {
4666 unsigned FromResNo
= From
[i
].getResNo();
4667 SDNode
*FromNode
= From
[i
].getNode();
4668 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
4669 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
4670 SDUse
&Use
= UI
.getUse();
4671 if (Use
.getResNo() == FromResNo
) {
4672 UseMemo Memo
= { *UI
, i
, &Use
};
4673 Uses
.push_back(Memo
);
4678 // Sort the uses, so that all the uses from a given User are together.
4679 std::sort(Uses
.begin(), Uses
.end());
4681 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
4682 UseIndex
!= UseIndexEnd
; ) {
4683 // We know that this user uses some value of From. If it is the right
4684 // value, update it.
4685 SDNode
*User
= Uses
[UseIndex
].User
;
4687 // This node is about to morph, remove its old self from the CSE maps.
4688 RemoveNodeFromCSEMaps(User
);
4690 // The Uses array is sorted, so all the uses for a given User
4691 // are next to each other in the list.
4692 // To help reduce the number of CSE recomputations, process all
4693 // the uses of this user that we can find this way.
4695 unsigned i
= Uses
[UseIndex
].Index
;
4696 SDUse
&Use
= *Uses
[UseIndex
].Use
;
4700 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
4702 // Now that we have modified User, add it back to the CSE maps. If it
4703 // already exists there, recursively merge the results together.
4704 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
4708 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4709 /// based on their topological order. It returns the maximum id and a vector
4710 /// of the SDNodes* in assigned order by reference.
4711 unsigned SelectionDAG::AssignTopologicalOrder() {
4713 unsigned DAGSize
= 0;
4715 // SortedPos tracks the progress of the algorithm. Nodes before it are
4716 // sorted, nodes after it are unsorted. When the algorithm completes
4717 // it is at the end of the list.
4718 allnodes_iterator SortedPos
= allnodes_begin();
4720 // Visit all the nodes. Move nodes with no operands to the front of
4721 // the list immediately. Annotate nodes that do have operands with their
4722 // operand count. Before we do this, the Node Id fields of the nodes
4723 // may contain arbitrary values. After, the Node Id fields for nodes
4724 // before SortedPos will contain the topological sort index, and the
4725 // Node Id fields for nodes At SortedPos and after will contain the
4726 // count of outstanding operands.
4727 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
4729 unsigned Degree
= N
->getNumOperands();
4731 // A node with no uses, add it to the result array immediately.
4732 N
->setNodeId(DAGSize
++);
4733 allnodes_iterator Q
= N
;
4735 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
4738 // Temporarily use the Node Id as scratch space for the degree count.
4739 N
->setNodeId(Degree
);
4743 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4744 // such that by the time the end is reached all nodes will be sorted.
4745 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
4747 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
4750 unsigned Degree
= P
->getNodeId();
4753 // All of P's operands are sorted, so P may sorted now.
4754 P
->setNodeId(DAGSize
++);
4756 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
4759 // Update P's outstanding operand count.
4760 P
->setNodeId(Degree
);
4765 assert(SortedPos
== AllNodes
.end() &&
4766 "Topological sort incomplete!");
4767 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
4768 "First node in topological sort is not the entry token!");
4769 assert(AllNodes
.front().getNodeId() == 0 &&
4770 "First node in topological sort has non-zero id!");
4771 assert(AllNodes
.front().getNumOperands() == 0 &&
4772 "First node in topological sort has operands!");
4773 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
4774 "Last node in topologic sort has unexpected id!");
4775 assert(AllNodes
.back().use_empty() &&
4776 "Last node in topologic sort has users!");
4777 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
4783 //===----------------------------------------------------------------------===//
4785 //===----------------------------------------------------------------------===//
4787 HandleSDNode::~HandleSDNode() {
4791 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget
, const GlobalValue
*GA
,
4793 : SDNode(isa
<GlobalVariable
>(GA
) &&
4794 cast
<GlobalVariable
>(GA
)->isThreadLocal() ?
4796 (isTarget
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
) :
4798 (isTarget
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
),
4799 DebugLoc::getUnknownLoc(), getSDVTList(VT
)), Offset(o
) {
4800 TheGlobal
= const_cast<GlobalValue
*>(GA
);
4803 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, MVT memvt
,
4804 const Value
*srcValue
, int SVO
,
4805 unsigned alignment
, bool vol
)
4806 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4807 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4808 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4809 assert(getAlignment() == alignment
&& "Alignment representation error!");
4810 assert(isVolatile() == vol
&& "Volatile representation error!");
4813 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
4815 unsigned NumOps
, MVT memvt
, const Value
*srcValue
,
4816 int SVO
, unsigned alignment
, bool vol
)
4817 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
4818 MemoryVT(memvt
), SrcValue(srcValue
), SVOffset(SVO
) {
4819 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, vol
, alignment
);
4820 assert(isPowerOf2_32(alignment
) && "Alignment is not a power of 2!");
4821 assert(getAlignment() == alignment
&& "Alignment representation error!");
4822 assert(isVolatile() == vol
&& "Volatile representation error!");
4825 /// getMemOperand - Return a MachineMemOperand object describing the memory
4826 /// reference performed by this memory reference.
4827 MachineMemOperand
MemSDNode::getMemOperand() const {
4829 if (isa
<LoadSDNode
>(this))
4830 Flags
= MachineMemOperand::MOLoad
;
4831 else if (isa
<StoreSDNode
>(this))
4832 Flags
= MachineMemOperand::MOStore
;
4833 else if (isa
<AtomicSDNode
>(this)) {
4834 Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4837 const MemIntrinsicSDNode
* MemIntrinNode
= dyn_cast
<MemIntrinsicSDNode
>(this);
4838 assert(MemIntrinNode
&& "Unknown MemSDNode opcode!");
4839 if (MemIntrinNode
->readMem()) Flags
|= MachineMemOperand::MOLoad
;
4840 if (MemIntrinNode
->writeMem()) Flags
|= MachineMemOperand::MOStore
;
4843 int Size
= (getMemoryVT().getSizeInBits() + 7) >> 3;
4844 if (isVolatile()) Flags
|= MachineMemOperand::MOVolatile
;
4846 // Check if the memory reference references a frame index
4847 const FrameIndexSDNode
*FI
=
4848 dyn_cast
<const FrameIndexSDNode
>(getBasePtr().getNode());
4849 if (!getSrcValue() && FI
)
4850 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI
->getIndex()),
4851 Flags
, 0, Size
, getAlignment());
4853 return MachineMemOperand(getSrcValue(), Flags
, getSrcValueOffset(),
4854 Size
, getAlignment());
4857 /// Profile - Gather unique data for the node.
4859 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
4860 AddNodeIDNode(ID
, this);
4863 /// getValueTypeList - Return a pointer to the specified value type.
4865 const MVT
*SDNode::getValueTypeList(MVT VT
) {
4866 if (VT
.isExtended()) {
4867 static std::set
<MVT
, MVT::compareRawBits
> EVTs
;
4868 return &(*EVTs
.insert(VT
).first
);
4870 static MVT VTs
[MVT::LAST_VALUETYPE
];
4871 VTs
[VT
.getSimpleVT()] = VT
;
4872 return &VTs
[VT
.getSimpleVT()];
4876 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4877 /// indicated value. This method ignores uses of other values defined by this
4879 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
4880 assert(Value
< getNumValues() && "Bad value!");
4882 // TODO: Only iterate over uses of a given value of the node
4883 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
4884 if (UI
.getUse().getResNo() == Value
) {
4891 // Found exactly the right number of uses?
4896 /// hasAnyUseOfValue - Return true if there are any use of the indicated
4897 /// value. This method ignores uses of other values defined by this operation.
4898 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
4899 assert(Value
< getNumValues() && "Bad value!");
4901 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
4902 if (UI
.getUse().getResNo() == Value
)
4909 /// isOnlyUserOf - Return true if this node is the only use of N.
4911 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
4913 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
4924 /// isOperand - Return true if this node is an operand of N.
4926 bool SDValue::isOperandOf(SDNode
*N
) const {
4927 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
4928 if (*this == N
->getOperand(i
))
4933 bool SDNode::isOperandOf(SDNode
*N
) const {
4934 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
4935 if (this == N
->OperandList
[i
].getNode())
4940 /// reachesChainWithoutSideEffects - Return true if this operand (which must
4941 /// be a chain) reaches the specified operand without crossing any
4942 /// side-effecting instructions. In practice, this looks through token
4943 /// factors and non-volatile loads. In order to remain efficient, this only
4944 /// looks a couple of nodes in, it does not do an exhaustive search.
4945 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
4946 unsigned Depth
) const {
4947 if (*this == Dest
) return true;
4949 // Don't search too deeply, we just want to be able to see through
4950 // TokenFactor's etc.
4951 if (Depth
== 0) return false;
4953 // If this is a token factor, all inputs to the TF happen in parallel. If any
4954 // of the operands of the TF reach dest, then we can do the xform.
4955 if (getOpcode() == ISD::TokenFactor
) {
4956 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
4957 if (getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
4962 // Loads don't have side effects, look through them.
4963 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
4964 if (!Ld
->isVolatile())
4965 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
4971 static void findPredecessor(SDNode
*N
, const SDNode
*P
, bool &found
,
4972 SmallPtrSet
<SDNode
*, 32> &Visited
) {
4973 if (found
|| !Visited
.insert(N
))
4976 for (unsigned i
= 0, e
= N
->getNumOperands(); !found
&& i
!= e
; ++i
) {
4977 SDNode
*Op
= N
->getOperand(i
).getNode();
4982 findPredecessor(Op
, P
, found
, Visited
);
4986 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
4987 /// is either an operand of N or it can be reached by recursively traversing
4988 /// up the operands.
4989 /// NOTE: this is an expensive method. Use it carefully.
4990 bool SDNode::isPredecessorOf(SDNode
*N
) const {
4991 SmallPtrSet
<SDNode
*, 32> Visited
;
4993 findPredecessor(N
, this, found
, Visited
);
4997 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
4998 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
4999 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5002 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5003 switch (getOpcode()) {
5005 if (getOpcode() < ISD::BUILTIN_OP_END
)
5006 return "<<Unknown DAG Node>>";
5007 if (isMachineOpcode()) {
5009 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5010 if (getMachineOpcode() < TII
->getNumOpcodes())
5011 return TII
->get(getMachineOpcode()).getName();
5012 return "<<Unknown Machine Node>>";
5015 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5016 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5017 if (Name
) return Name
;
5018 return "<<Unknown Target Node>>";
5020 return "<<Unknown Node>>";
5023 case ISD::DELETED_NODE
:
5024 return "<<Deleted Node!>>";
5026 case ISD::PREFETCH
: return "Prefetch";
5027 case ISD::MEMBARRIER
: return "MemBarrier";
5028 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5029 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5030 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5031 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5032 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5033 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5034 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5035 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5036 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5037 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5038 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5039 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5040 case ISD::PCMARKER
: return "PCMarker";
5041 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5042 case ISD::SRCVALUE
: return "SrcValue";
5043 case ISD::MEMOPERAND
: return "MemOperand";
5044 case ISD::EntryToken
: return "EntryToken";
5045 case ISD::TokenFactor
: return "TokenFactor";
5046 case ISD::AssertSext
: return "AssertSext";
5047 case ISD::AssertZext
: return "AssertZext";
5049 case ISD::BasicBlock
: return "BasicBlock";
5050 case ISD::ARG_FLAGS
: return "ArgFlags";
5051 case ISD::VALUETYPE
: return "ValueType";
5052 case ISD::Register
: return "Register";
5054 case ISD::Constant
: return "Constant";
5055 case ISD::ConstantFP
: return "ConstantFP";
5056 case ISD::GlobalAddress
: return "GlobalAddress";
5057 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5058 case ISD::FrameIndex
: return "FrameIndex";
5059 case ISD::JumpTable
: return "JumpTable";
5060 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5061 case ISD::RETURNADDR
: return "RETURNADDR";
5062 case ISD::FRAMEADDR
: return "FRAMEADDR";
5063 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5064 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5065 case ISD::EHSELECTION
: return "EHSELECTION";
5066 case ISD::EH_RETURN
: return "EH_RETURN";
5067 case ISD::ConstantPool
: return "ConstantPool";
5068 case ISD::ExternalSymbol
: return "ExternalSymbol";
5069 case ISD::INTRINSIC_WO_CHAIN
: {
5070 unsigned IID
= cast
<ConstantSDNode
>(getOperand(0))->getZExtValue();
5071 return Intrinsic::getName((Intrinsic::ID
)IID
);
5073 case ISD::INTRINSIC_VOID
:
5074 case ISD::INTRINSIC_W_CHAIN
: {
5075 unsigned IID
= cast
<ConstantSDNode
>(getOperand(1))->getZExtValue();
5076 return Intrinsic::getName((Intrinsic::ID
)IID
);
5079 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5080 case ISD::TargetConstant
: return "TargetConstant";
5081 case ISD::TargetConstantFP
:return "TargetConstantFP";
5082 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5083 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5084 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5085 case ISD::TargetJumpTable
: return "TargetJumpTable";
5086 case ISD::TargetConstantPool
: return "TargetConstantPool";
5087 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5089 case ISD::CopyToReg
: return "CopyToReg";
5090 case ISD::CopyFromReg
: return "CopyFromReg";
5091 case ISD::UNDEF
: return "undef";
5092 case ISD::MERGE_VALUES
: return "merge_values";
5093 case ISD::INLINEASM
: return "inlineasm";
5094 case ISD::DBG_LABEL
: return "dbg_label";
5095 case ISD::EH_LABEL
: return "eh_label";
5096 case ISD::DECLARE
: return "declare";
5097 case ISD::HANDLENODE
: return "handlenode";
5098 case ISD::FORMAL_ARGUMENTS
: return "formal_arguments";
5099 case ISD::CALL
: return "call";
5102 case ISD::FABS
: return "fabs";
5103 case ISD::FNEG
: return "fneg";
5104 case ISD::FSQRT
: return "fsqrt";
5105 case ISD::FSIN
: return "fsin";
5106 case ISD::FCOS
: return "fcos";
5107 case ISD::FPOWI
: return "fpowi";
5108 case ISD::FPOW
: return "fpow";
5109 case ISD::FTRUNC
: return "ftrunc";
5110 case ISD::FFLOOR
: return "ffloor";
5111 case ISD::FCEIL
: return "fceil";
5112 case ISD::FRINT
: return "frint";
5113 case ISD::FNEARBYINT
: return "fnearbyint";
5116 case ISD::ADD
: return "add";
5117 case ISD::SUB
: return "sub";
5118 case ISD::MUL
: return "mul";
5119 case ISD::MULHU
: return "mulhu";
5120 case ISD::MULHS
: return "mulhs";
5121 case ISD::SDIV
: return "sdiv";
5122 case ISD::UDIV
: return "udiv";
5123 case ISD::SREM
: return "srem";
5124 case ISD::UREM
: return "urem";
5125 case ISD::SMUL_LOHI
: return "smul_lohi";
5126 case ISD::UMUL_LOHI
: return "umul_lohi";
5127 case ISD::SDIVREM
: return "sdivrem";
5128 case ISD::UDIVREM
: return "udivrem";
5129 case ISD::AND
: return "and";
5130 case ISD::OR
: return "or";
5131 case ISD::XOR
: return "xor";
5132 case ISD::SHL
: return "shl";
5133 case ISD::SRA
: return "sra";
5134 case ISD::SRL
: return "srl";
5135 case ISD::ROTL
: return "rotl";
5136 case ISD::ROTR
: return "rotr";
5137 case ISD::FADD
: return "fadd";
5138 case ISD::FSUB
: return "fsub";
5139 case ISD::FMUL
: return "fmul";
5140 case ISD::FDIV
: return "fdiv";
5141 case ISD::FREM
: return "frem";
5142 case ISD::FCOPYSIGN
: return "fcopysign";
5143 case ISD::FGETSIGN
: return "fgetsign";
5145 case ISD::SETCC
: return "setcc";
5146 case ISD::VSETCC
: return "vsetcc";
5147 case ISD::SELECT
: return "select";
5148 case ISD::SELECT_CC
: return "select_cc";
5149 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5150 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5151 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5152 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5153 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5154 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5155 case ISD::CARRY_FALSE
: return "carry_false";
5156 case ISD::ADDC
: return "addc";
5157 case ISD::ADDE
: return "adde";
5158 case ISD::SADDO
: return "saddo";
5159 case ISD::UADDO
: return "uaddo";
5160 case ISD::SSUBO
: return "ssubo";
5161 case ISD::USUBO
: return "usubo";
5162 case ISD::SMULO
: return "smulo";
5163 case ISD::UMULO
: return "umulo";
5164 case ISD::SUBC
: return "subc";
5165 case ISD::SUBE
: return "sube";
5166 case ISD::SHL_PARTS
: return "shl_parts";
5167 case ISD::SRA_PARTS
: return "sra_parts";
5168 case ISD::SRL_PARTS
: return "srl_parts";
5170 case ISD::EXTRACT_SUBREG
: return "extract_subreg";
5171 case ISD::INSERT_SUBREG
: return "insert_subreg";
5173 // Conversion operators.
5174 case ISD::SIGN_EXTEND
: return "sign_extend";
5175 case ISD::ZERO_EXTEND
: return "zero_extend";
5176 case ISD::ANY_EXTEND
: return "any_extend";
5177 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5178 case ISD::TRUNCATE
: return "truncate";
5179 case ISD::FP_ROUND
: return "fp_round";
5180 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5181 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5182 case ISD::FP_EXTEND
: return "fp_extend";
5184 case ISD::SINT_TO_FP
: return "sint_to_fp";
5185 case ISD::UINT_TO_FP
: return "uint_to_fp";
5186 case ISD::FP_TO_SINT
: return "fp_to_sint";
5187 case ISD::FP_TO_UINT
: return "fp_to_uint";
5188 case ISD::BIT_CONVERT
: return "bit_convert";
5190 case ISD::CONVERT_RNDSAT
: {
5191 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5192 default: assert(0 && "Unknown cvt code!");
5193 case ISD::CVT_FF
: return "cvt_ff";
5194 case ISD::CVT_FS
: return "cvt_fs";
5195 case ISD::CVT_FU
: return "cvt_fu";
5196 case ISD::CVT_SF
: return "cvt_sf";
5197 case ISD::CVT_UF
: return "cvt_uf";
5198 case ISD::CVT_SS
: return "cvt_ss";
5199 case ISD::CVT_SU
: return "cvt_su";
5200 case ISD::CVT_US
: return "cvt_us";
5201 case ISD::CVT_UU
: return "cvt_uu";
5205 // Control flow instructions
5206 case ISD::BR
: return "br";
5207 case ISD::BRIND
: return "brind";
5208 case ISD::BR_JT
: return "br_jt";
5209 case ISD::BRCOND
: return "brcond";
5210 case ISD::BR_CC
: return "br_cc";
5211 case ISD::RET
: return "ret";
5212 case ISD::CALLSEQ_START
: return "callseq_start";
5213 case ISD::CALLSEQ_END
: return "callseq_end";
5216 case ISD::LOAD
: return "load";
5217 case ISD::STORE
: return "store";
5218 case ISD::VAARG
: return "vaarg";
5219 case ISD::VACOPY
: return "vacopy";
5220 case ISD::VAEND
: return "vaend";
5221 case ISD::VASTART
: return "vastart";
5222 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5223 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5224 case ISD::BUILD_PAIR
: return "build_pair";
5225 case ISD::STACKSAVE
: return "stacksave";
5226 case ISD::STACKRESTORE
: return "stackrestore";
5227 case ISD::TRAP
: return "trap";
5230 case ISD::BSWAP
: return "bswap";
5231 case ISD::CTPOP
: return "ctpop";
5232 case ISD::CTTZ
: return "cttz";
5233 case ISD::CTLZ
: return "ctlz";
5236 case ISD::DBG_STOPPOINT
: return "dbg_stoppoint";
5237 case ISD::DEBUG_LOC
: return "debug_loc";
5240 case ISD::TRAMPOLINE
: return "trampoline";
5243 switch (cast
<CondCodeSDNode
>(this)->get()) {
5244 default: assert(0 && "Unknown setcc condition!");
5245 case ISD::SETOEQ
: return "setoeq";
5246 case ISD::SETOGT
: return "setogt";
5247 case ISD::SETOGE
: return "setoge";
5248 case ISD::SETOLT
: return "setolt";
5249 case ISD::SETOLE
: return "setole";
5250 case ISD::SETONE
: return "setone";
5252 case ISD::SETO
: return "seto";
5253 case ISD::SETUO
: return "setuo";
5254 case ISD::SETUEQ
: return "setue";
5255 case ISD::SETUGT
: return "setugt";
5256 case ISD::SETUGE
: return "setuge";
5257 case ISD::SETULT
: return "setult";
5258 case ISD::SETULE
: return "setule";
5259 case ISD::SETUNE
: return "setune";
5261 case ISD::SETEQ
: return "seteq";
5262 case ISD::SETGT
: return "setgt";
5263 case ISD::SETGE
: return "setge";
5264 case ISD::SETLT
: return "setlt";
5265 case ISD::SETLE
: return "setle";
5266 case ISD::SETNE
: return "setne";
5271 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
5280 return "<post-inc>";
5282 return "<post-dec>";
5286 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
5287 std::string S
= "< ";
5301 if (getByValAlign())
5302 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
5304 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
5306 S
+= "byval-size:" + utostr(getByValSize()) + " ";
5310 void SDNode::dump() const { dump(0); }
5311 void SDNode::dump(const SelectionDAG
*G
) const {
5316 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5317 OS
<< (void*)this << ": ";
5319 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
5321 if (getValueType(i
) == MVT::Other
)
5324 OS
<< getValueType(i
).getMVTString();
5326 OS
<< " = " << getOperationName(G
);
5329 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5330 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE
) {
5331 SDNode
*Mask
= getOperand(2).getNode();
5333 for (unsigned i
= 0, e
= Mask
->getNumOperands(); i
!= e
; ++i
) {
5335 if (Mask
->getOperand(i
).getOpcode() == ISD::UNDEF
)
5338 OS
<< cast
<ConstantSDNode
>(Mask
->getOperand(i
))->getZExtValue();
5343 if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
5344 OS
<< '<' << CSDN
->getAPIntValue() << '>';
5345 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
5346 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
5347 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
5348 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
5349 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
5352 CSDN
->getValueAPF().bitcastToAPInt().dump();
5355 } else if (const GlobalAddressSDNode
*GADN
=
5356 dyn_cast
<GlobalAddressSDNode
>(this)) {
5357 int64_t offset
= GADN
->getOffset();
5359 WriteAsOperand(OS
, GADN
->getGlobal());
5362 OS
<< " + " << offset
;
5364 OS
<< " " << offset
;
5365 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
5366 OS
<< "<" << FIDN
->getIndex() << ">";
5367 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
5368 OS
<< "<" << JTDN
->getIndex() << ">";
5369 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
5370 int offset
= CP
->getOffset();
5371 if (CP
->isMachineConstantPoolEntry())
5372 OS
<< "<" << *CP
->getMachineCPVal() << ">";
5374 OS
<< "<" << *CP
->getConstVal() << ">";
5376 OS
<< " + " << offset
;
5378 OS
<< " " << offset
;
5379 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
5381 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
5383 OS
<< LBB
->getName() << " ";
5384 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
5385 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
5386 if (G
&& R
->getReg() &&
5387 TargetRegisterInfo::isPhysicalRegister(R
->getReg())) {
5388 OS
<< " " << G
->getTarget().getRegisterInfo()->getName(R
->getReg());
5390 OS
<< " #" << R
->getReg();
5392 } else if (const ExternalSymbolSDNode
*ES
=
5393 dyn_cast
<ExternalSymbolSDNode
>(this)) {
5394 OS
<< "'" << ES
->getSymbol() << "'";
5395 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
5397 OS
<< "<" << M
->getValue() << ">";
5400 } else if (const MemOperandSDNode
*M
= dyn_cast
<MemOperandSDNode
>(this)) {
5401 if (M
->MO
.getValue())
5402 OS
<< "<" << M
->MO
.getValue() << ":" << M
->MO
.getOffset() << ">";
5404 OS
<< "<null:" << M
->MO
.getOffset() << ">";
5405 } else if (const ARG_FLAGSSDNode
*N
= dyn_cast
<ARG_FLAGSSDNode
>(this)) {
5406 OS
<< N
->getArgFlags().getArgFlagsString();
5407 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
5408 OS
<< ":" << N
->getVT().getMVTString();
5410 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
5411 const Value
*SrcValue
= LD
->getSrcValue();
5412 int SrcOffset
= LD
->getSrcValueOffset();
5418 OS
<< ":" << SrcOffset
<< ">";
5421 switch (LD
->getExtensionType()) {
5422 default: doExt
= false; break;
5423 case ISD::EXTLOAD
: OS
<< " <anyext "; break;
5424 case ISD::SEXTLOAD
: OS
<< " <sext "; break;
5425 case ISD::ZEXTLOAD
: OS
<< " <zext "; break;
5428 OS
<< LD
->getMemoryVT().getMVTString() << ">";
5430 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
5433 if (LD
->isVolatile())
5434 OS
<< " <volatile>";
5435 OS
<< " alignment=" << LD
->getAlignment();
5436 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
5437 const Value
*SrcValue
= ST
->getSrcValue();
5438 int SrcOffset
= ST
->getSrcValueOffset();
5444 OS
<< ":" << SrcOffset
<< ">";
5446 if (ST
->isTruncatingStore())
5447 OS
<< " <trunc " << ST
->getMemoryVT().getMVTString() << ">";
5449 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
5452 if (ST
->isVolatile())
5453 OS
<< " <volatile>";
5454 OS
<< " alignment=" << ST
->getAlignment();
5455 } else if (const AtomicSDNode
* AT
= dyn_cast
<AtomicSDNode
>(this)) {
5456 const Value
*SrcValue
= AT
->getSrcValue();
5457 int SrcOffset
= AT
->getSrcValueOffset();
5463 OS
<< ":" << SrcOffset
<< ">";
5464 if (AT
->isVolatile())
5465 OS
<< " <volatile>";
5466 OS
<< " alignment=" << AT
->getAlignment();
5470 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5473 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
5475 OS
<< (void*)getOperand(i
).getNode();
5476 if (unsigned RN
= getOperand(i
).getResNo())
5479 print_details(OS
, G
);
5482 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
5483 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5484 if (N
->getOperand(i
).getNode()->hasOneUse())
5485 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
5487 cerr
<< "\n" << std::string(indent
+2, ' ')
5488 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
5491 cerr
<< "\n" << std::string(indent
, ' ');
5495 void SelectionDAG::dump() const {
5496 cerr
<< "SelectionDAG has " << AllNodes
.size() << " nodes:";
5498 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
5500 const SDNode
*N
= I
;
5501 if (!N
->hasOneUse() && N
!= getRoot().getNode())
5502 DumpNodes(N
, 2, this);
5505 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5510 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
5512 print_details(OS
, G
);
5515 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
5516 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
5517 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
5518 if (!once
.insert(N
)) // If we've been here before, return now.
5520 // Dump the current SDNode, but don't end the line yet.
5521 OS
<< std::string(indent
, ' ');
5523 // Having printed this SDNode, walk the children:
5524 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5525 const SDNode
*child
= N
->getOperand(i
).getNode();
5528 if (child
->getNumOperands() == 0) {
5529 // This child has no grandchildren; print it inline right here.
5530 child
->printr(OS
, G
);
5532 } else { // Just the address. FIXME: also print the child's opcode
5534 if (unsigned RN
= N
->getOperand(i
).getResNo())
5539 // Dump children that have grandchildren on their own line(s).
5540 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
5541 const SDNode
*child
= N
->getOperand(i
).getNode();
5542 DumpNodesr(OS
, child
, indent
+2, G
, once
);
5546 void SDNode::dumpr() const {
5547 VisitedSDNodeSet once
;
5548 DumpNodesr(errs(), this, 0, 0, once
);
5552 const Type
*ConstantPoolSDNode::getType() const {
5553 if (isMachineConstantPoolEntry())
5554 return Val
.MachineCPVal
->getType();
5555 return Val
.ConstVal
->getType();
5558 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
5560 unsigned &SplatBitSize
,
5562 unsigned MinSplatBits
) {
5563 MVT VT
= getValueType(0);
5564 assert(VT
.isVector() && "Expected a vector type");
5565 unsigned sz
= VT
.getSizeInBits();
5566 if (MinSplatBits
> sz
)
5569 SplatValue
= APInt(sz
, 0);
5570 SplatUndef
= APInt(sz
, 0);
5572 // Get the bits. Bits with undefined values (when the corresponding element
5573 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5574 // in SplatValue. If any of the values are not constant, give up and return
5576 unsigned int nOps
= getNumOperands();
5577 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
5578 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
5579 for (unsigned i
= 0; i
< nOps
; ++i
) {
5580 SDValue OpVal
= getOperand(i
);
5581 unsigned BitPos
= i
* EltBitSize
;
5583 if (OpVal
.getOpcode() == ISD::UNDEF
)
5584 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+EltBitSize
);
5585 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
5586 SplatValue
|= APInt(CN
->getAPIntValue()).zextOrTrunc(sz
) << BitPos
;
5587 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
5588 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
5593 // The build_vector is all constants or undefs. Find the smallest element
5594 // size that splats the vector.
5596 HasAnyUndefs
= (SplatUndef
!= 0);
5599 unsigned HalfSize
= sz
/ 2;
5600 APInt HighValue
= APInt(SplatValue
).lshr(HalfSize
).trunc(HalfSize
);
5601 APInt LowValue
= APInt(SplatValue
).trunc(HalfSize
);
5602 APInt HighUndef
= APInt(SplatUndef
).lshr(HalfSize
).trunc(HalfSize
);
5603 APInt LowUndef
= APInt(SplatUndef
).trunc(HalfSize
);
5605 // If the two halves do not match (ignoring undef bits), stop here.
5606 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
5607 MinSplatBits
> HalfSize
)
5610 SplatValue
= HighValue
| LowValue
;
5611 SplatUndef
= HighUndef
& LowUndef
;