Oops...I committed too much.
[llvm/msp430.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob71560fe2ae6d87371a43aa169ef2f0296f29f2e5
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "llvm/Constants.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/GlobalAlias.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/Intrinsics.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Assembly/Writer.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/SetVector.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringExtras.h"
41 #include <algorithm>
42 #include <cmath>
43 using namespace llvm;
45 /// makeVTList - Return an instance of the SDVTList struct initialized with the
46 /// specified members.
47 static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48 SDVTList Res = {VTs, NumVTs};
49 return Res;
52 static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53 switch (VT.getSimpleVT()) {
54 default: assert(0 && "Unknown FP format");
55 case MVT::f32: return &APFloat::IEEEsingle;
56 case MVT::f64: return &APFloat::IEEEdouble;
57 case MVT::f80: return &APFloat::x87DoubleExtended;
58 case MVT::f128: return &APFloat::IEEEquad;
59 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
63 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
65 //===----------------------------------------------------------------------===//
66 // ConstantFPSDNode Class
67 //===----------------------------------------------------------------------===//
69 /// isExactlyValue - We don't rely on operator== working on double values, as
70 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71 /// As such, this method can be used to do an exact bit-for-bit comparison of
72 /// two floating point values.
73 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74 return getValueAPF().bitwiseIsEqual(V);
77 bool ConstantFPSDNode::isValueValidForType(MVT VT,
78 const APFloat& Val) {
79 assert(VT.isFloatingPoint() && "Can only convert between FP types");
81 // PPC long double cannot be converted to any other type.
82 if (VT == MVT::ppcf128 ||
83 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84 return false;
86 // convert modifies in place, so make a copy.
87 APFloat Val2 = APFloat(Val);
88 bool losesInfo;
89 (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90 &losesInfo);
91 return !losesInfo;
94 //===----------------------------------------------------------------------===//
95 // ISD Namespace
96 //===----------------------------------------------------------------------===//
98 /// isBuildVectorAllOnes - Return true if the specified node is a
99 /// BUILD_VECTOR where all of the elements are ~0 or undef.
100 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101 // Look through a bit convert.
102 if (N->getOpcode() == ISD::BIT_CONVERT)
103 N = N->getOperand(0).getNode();
105 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
107 unsigned i = 0, e = N->getNumOperands();
109 // Skip over all of the undef values.
110 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111 ++i;
113 // Do not accept an all-undef vector.
114 if (i == e) return false;
116 // Do not accept build_vectors that aren't all constants or which have non-~0
117 // elements.
118 SDValue NotZero = N->getOperand(i);
119 if (isa<ConstantSDNode>(NotZero)) {
120 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121 return false;
122 } else if (isa<ConstantFPSDNode>(NotZero)) {
123 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124 bitcastToAPInt().isAllOnesValue())
125 return false;
126 } else
127 return false;
129 // Okay, we have at least one ~0 value, check to see if the rest match or are
130 // undefs.
131 for (++i; i != e; ++i)
132 if (N->getOperand(i) != NotZero &&
133 N->getOperand(i).getOpcode() != ISD::UNDEF)
134 return false;
135 return true;
139 /// isBuildVectorAllZeros - Return true if the specified node is a
140 /// BUILD_VECTOR where all of the elements are 0 or undef.
141 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142 // Look through a bit convert.
143 if (N->getOpcode() == ISD::BIT_CONVERT)
144 N = N->getOperand(0).getNode();
146 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148 unsigned i = 0, e = N->getNumOperands();
150 // Skip over all of the undef values.
151 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152 ++i;
154 // Do not accept an all-undef vector.
155 if (i == e) return false;
157 // Do not accept build_vectors that aren't all constants or which have non-~0
158 // elements.
159 SDValue Zero = N->getOperand(i);
160 if (isa<ConstantSDNode>(Zero)) {
161 if (!cast<ConstantSDNode>(Zero)->isNullValue())
162 return false;
163 } else if (isa<ConstantFPSDNode>(Zero)) {
164 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165 return false;
166 } else
167 return false;
169 // Okay, we have at least one ~0 value, check to see if the rest match or are
170 // undefs.
171 for (++i; i != e; ++i)
172 if (N->getOperand(i) != Zero &&
173 N->getOperand(i).getOpcode() != ISD::UNDEF)
174 return false;
175 return true;
178 /// isScalarToVector - Return true if the specified node is a
179 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180 /// element is not an undef.
181 bool ISD::isScalarToVector(const SDNode *N) {
182 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183 return true;
185 if (N->getOpcode() != ISD::BUILD_VECTOR)
186 return false;
187 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188 return false;
189 unsigned NumElems = N->getNumOperands();
190 for (unsigned i = 1; i < NumElems; ++i) {
191 SDValue V = N->getOperand(i);
192 if (V.getOpcode() != ISD::UNDEF)
193 return false;
195 return true;
199 /// isDebugLabel - Return true if the specified node represents a debug
200 /// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201 bool ISD::isDebugLabel(const SDNode *N) {
202 SDValue Zero;
203 if (N->getOpcode() == ISD::DBG_LABEL)
204 return true;
205 if (N->isMachineOpcode() &&
206 N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207 return true;
208 return false;
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214 // To perform this operation, we just need to swap the L and G bits of the
215 // operation.
216 unsigned OldL = (Operation >> 2) & 1;
217 unsigned OldG = (Operation >> 1) & 1;
218 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
219 (OldL << 1) | // New G bit
220 (OldG << 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226 unsigned Operation = Op;
227 if (isInteger)
228 Operation ^= 7; // Flip L, G, E bits, but not U.
229 else
230 Operation ^= 15; // Flip all of the condition bits.
232 if (Operation > ISD::SETTRUE2)
233 Operation &= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode) {
243 switch (Opcode) {
244 default: assert(0 && "Illegal integer setcc operation!");
245 case ISD::SETEQ:
246 case ISD::SETNE: return 0;
247 case ISD::SETLT:
248 case ISD::SETLE:
249 case ISD::SETGT:
250 case ISD::SETGE: return 1;
251 case ISD::SETULT:
252 case ISD::SETULE:
253 case ISD::SETUGT:
254 case ISD::SETUGE: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
261 /// comparison.
262 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263 bool isInteger) {
264 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID;
268 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op > ISD::SETTRUE2)
273 Op &= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
277 Op = ISD::SETNE;
279 return ISD::CondCode(Op);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
285 /// comparison.
286 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287 bool isInteger) {
288 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID;
292 // Combine all of the condition bits.
293 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295 // Canonicalize illegal integer setcc's.
296 if (isInteger) {
297 switch (Result) {
298 default: break;
299 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
300 case ISD::SETOEQ: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
302 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
303 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
307 return Result;
310 const TargetMachine &SelectionDAG::getTarget() const {
311 return MF->getTarget();
314 //===----------------------------------------------------------------------===//
315 // SDNode Profile Support
316 //===----------------------------------------------------------------------===//
318 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
320 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
321 ID.AddInteger(OpC);
324 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325 /// solely with their pointer.
326 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327 ID.AddPointer(VTList.VTs);
330 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
332 static void AddNodeIDOperands(FoldingSetNodeID &ID,
333 const SDValue *Ops, unsigned NumOps) {
334 for (; NumOps; --NumOps, ++Ops) {
335 ID.AddPointer(Ops->getNode());
336 ID.AddInteger(Ops->getResNo());
340 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
342 static void AddNodeIDOperands(FoldingSetNodeID &ID,
343 const SDUse *Ops, unsigned NumOps) {
344 for (; NumOps; --NumOps, ++Ops) {
345 ID.AddPointer(Ops->getNode());
346 ID.AddInteger(Ops->getResNo());
350 static void AddNodeIDNode(FoldingSetNodeID &ID,
351 unsigned short OpC, SDVTList VTList,
352 const SDValue *OpList, unsigned N) {
353 AddNodeIDOpcode(ID, OpC);
354 AddNodeIDValueTypes(ID, VTList);
355 AddNodeIDOperands(ID, OpList, N);
358 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359 /// the NodeID data.
360 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361 switch (N->getOpcode()) {
362 default: break; // Normal nodes don't need extra info.
363 case ISD::ARG_FLAGS:
364 ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365 break;
366 case ISD::TargetConstant:
367 case ISD::Constant:
368 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369 break;
370 case ISD::TargetConstantFP:
371 case ISD::ConstantFP: {
372 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373 break;
375 case ISD::TargetGlobalAddress:
376 case ISD::GlobalAddress:
377 case ISD::TargetGlobalTLSAddress:
378 case ISD::GlobalTLSAddress: {
379 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380 ID.AddPointer(GA->getGlobal());
381 ID.AddInteger(GA->getOffset());
382 break;
384 case ISD::BasicBlock:
385 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386 break;
387 case ISD::Register:
388 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389 break;
390 case ISD::DBG_STOPPOINT: {
391 const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392 ID.AddInteger(DSP->getLine());
393 ID.AddInteger(DSP->getColumn());
394 ID.AddPointer(DSP->getCompileUnit());
395 break;
397 case ISD::SRCVALUE:
398 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399 break;
400 case ISD::MEMOPERAND: {
401 const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402 MO.Profile(ID);
403 break;
405 case ISD::FrameIndex:
406 case ISD::TargetFrameIndex:
407 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408 break;
409 case ISD::JumpTable:
410 case ISD::TargetJumpTable:
411 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412 break;
413 case ISD::ConstantPool:
414 case ISD::TargetConstantPool: {
415 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416 ID.AddInteger(CP->getAlignment());
417 ID.AddInteger(CP->getOffset());
418 if (CP->isMachineConstantPoolEntry())
419 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420 else
421 ID.AddPointer(CP->getConstVal());
422 break;
424 case ISD::CALL: {
425 const CallSDNode *Call = cast<CallSDNode>(N);
426 ID.AddInteger(Call->getCallingConv());
427 ID.AddInteger(Call->isVarArg());
428 break;
430 case ISD::LOAD: {
431 const LoadSDNode *LD = cast<LoadSDNode>(N);
432 ID.AddInteger(LD->getMemoryVT().getRawBits());
433 ID.AddInteger(LD->getRawSubclassData());
434 break;
436 case ISD::STORE: {
437 const StoreSDNode *ST = cast<StoreSDNode>(N);
438 ID.AddInteger(ST->getMemoryVT().getRawBits());
439 ID.AddInteger(ST->getRawSubclassData());
440 break;
442 case ISD::ATOMIC_CMP_SWAP:
443 case ISD::ATOMIC_SWAP:
444 case ISD::ATOMIC_LOAD_ADD:
445 case ISD::ATOMIC_LOAD_SUB:
446 case ISD::ATOMIC_LOAD_AND:
447 case ISD::ATOMIC_LOAD_OR:
448 case ISD::ATOMIC_LOAD_XOR:
449 case ISD::ATOMIC_LOAD_NAND:
450 case ISD::ATOMIC_LOAD_MIN:
451 case ISD::ATOMIC_LOAD_MAX:
452 case ISD::ATOMIC_LOAD_UMIN:
453 case ISD::ATOMIC_LOAD_UMAX: {
454 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455 ID.AddInteger(AT->getMemoryVT().getRawBits());
456 ID.AddInteger(AT->getRawSubclassData());
457 break;
459 } // end switch (N->getOpcode())
462 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463 /// data.
464 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465 AddNodeIDOpcode(ID, N->getOpcode());
466 // Add the return value info.
467 AddNodeIDValueTypes(ID, N->getVTList());
468 // Add the operand info.
469 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
471 // Handle SDNode leafs with special info.
472 AddNodeIDCustom(ID, N);
475 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476 /// the CSE map that carries alignment, volatility, indexing mode, and
477 /// extension/truncation information.
479 static inline unsigned
480 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481 bool isVolatile, unsigned Alignment) {
482 assert((ConvType & 3) == ConvType &&
483 "ConvType may not require more than 2 bits!");
484 assert((AM & 7) == AM &&
485 "AM may not require more than 3 bits!");
486 return ConvType |
487 (AM << 2) |
488 (isVolatile << 5) |
489 ((Log2_32(Alignment) + 1) << 6);
492 //===----------------------------------------------------------------------===//
493 // SelectionDAG Class
494 //===----------------------------------------------------------------------===//
496 /// doNotCSE - Return true if CSE should not be performed for this node.
497 static bool doNotCSE(SDNode *N) {
498 if (N->getValueType(0) == MVT::Flag)
499 return true; // Never CSE anything that produces a flag.
501 switch (N->getOpcode()) {
502 default: break;
503 case ISD::HANDLENODE:
504 case ISD::DBG_LABEL:
505 case ISD::DBG_STOPPOINT:
506 case ISD::EH_LABEL:
507 case ISD::DECLARE:
508 return true; // Never CSE these nodes.
511 // Check that remaining values produced are not flags.
512 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513 if (N->getValueType(i) == MVT::Flag)
514 return true; // Never CSE anything that produces a flag.
516 return false;
519 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
520 /// SelectionDAG.
521 void SelectionDAG::RemoveDeadNodes() {
522 // Create a dummy node (which is not added to allnodes), that adds a reference
523 // to the root node, preventing it from being deleted.
524 HandleSDNode Dummy(getRoot());
526 SmallVector<SDNode*, 128> DeadNodes;
528 // Add all obviously-dead nodes to the DeadNodes worklist.
529 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530 if (I->use_empty())
531 DeadNodes.push_back(I);
533 RemoveDeadNodes(DeadNodes);
535 // If the root changed (e.g. it was a dead load, update the root).
536 setRoot(Dummy.getValue());
539 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
540 /// given list, and any nodes that become unreachable as a result.
541 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542 DAGUpdateListener *UpdateListener) {
544 // Process the worklist, deleting the nodes and adding their uses to the
545 // worklist.
546 while (!DeadNodes.empty()) {
547 SDNode *N = DeadNodes.pop_back_val();
549 if (UpdateListener)
550 UpdateListener->NodeDeleted(N, 0);
552 // Take the node out of the appropriate CSE map.
553 RemoveNodeFromCSEMaps(N);
555 // Next, brutally remove the operand list. This is safe to do, as there are
556 // no cycles in the graph.
557 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558 SDUse &Use = *I++;
559 SDNode *Operand = Use.getNode();
560 Use.set(SDValue());
562 // Now that we removed this operand, see if there are no uses of it left.
563 if (Operand->use_empty())
564 DeadNodes.push_back(Operand);
567 DeallocateNode(N);
571 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572 SmallVector<SDNode*, 16> DeadNodes(1, N);
573 RemoveDeadNodes(DeadNodes, UpdateListener);
576 void SelectionDAG::DeleteNode(SDNode *N) {
577 // First take this out of the appropriate CSE map.
578 RemoveNodeFromCSEMaps(N);
580 // Finally, remove uses due to operands of this node, remove from the
581 // AllNodes list, and delete the node.
582 DeleteNodeNotInCSEMaps(N);
585 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587 assert(N->use_empty() && "Cannot delete a node that is not dead!");
589 // Drop all of the operands and decrement used node's use counts.
590 N->DropOperands();
592 DeallocateNode(N);
595 void SelectionDAG::DeallocateNode(SDNode *N) {
596 if (N->OperandsNeedDelete)
597 delete[] N->OperandList;
599 // Set the opcode to DELETED_NODE to help catch bugs when node
600 // memory is reallocated.
601 N->NodeType = ISD::DELETED_NODE;
603 NodeAllocator.Deallocate(AllNodes.remove(N));
606 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607 /// correspond to it. This is useful when we're about to delete or repurpose
608 /// the node. We don't want future request for structurally identical nodes
609 /// to return N anymore.
610 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611 bool Erased = false;
612 switch (N->getOpcode()) {
613 case ISD::EntryToken:
614 assert(0 && "EntryToken should not be in CSEMaps!");
615 return false;
616 case ISD::HANDLENODE: return false; // noop.
617 case ISD::CONDCODE:
618 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619 "Cond code doesn't exist!");
620 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622 break;
623 case ISD::ExternalSymbol:
624 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625 break;
626 case ISD::TargetExternalSymbol:
627 Erased =
628 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629 break;
630 case ISD::VALUETYPE: {
631 MVT VT = cast<VTSDNode>(N)->getVT();
632 if (VT.isExtended()) {
633 Erased = ExtendedValueTypeNodes.erase(VT);
634 } else {
635 Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636 ValueTypeNodes[VT.getSimpleVT()] = 0;
638 break;
640 default:
641 // Remove it from the CSE Map.
642 Erased = CSEMap.RemoveNode(N);
643 break;
645 #ifndef NDEBUG
646 // Verify that the node was actually in one of the CSE maps, unless it has a
647 // flag result (which cannot be CSE'd) or is one of the special cases that are
648 // not subject to CSE.
649 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650 !N->isMachineOpcode() && !doNotCSE(N)) {
651 N->dump(this);
652 cerr << "\n";
653 assert(0 && "Node is not in map!");
655 #endif
656 return Erased;
659 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660 /// maps and modified in place. Add it back to the CSE maps, unless an identical
661 /// node already exists, in which case transfer all its users to the existing
662 /// node. This transfer can potentially trigger recursive merging.
664 void
665 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666 DAGUpdateListener *UpdateListener) {
667 // For node types that aren't CSE'd, just act as if no identical node
668 // already exists.
669 if (!doNotCSE(N)) {
670 SDNode *Existing = CSEMap.GetOrInsertNode(N);
671 if (Existing != N) {
672 // If there was already an existing matching node, use ReplaceAllUsesWith
673 // to replace the dead one with the existing one. This can cause
674 // recursive merging of other unrelated nodes down the line.
675 ReplaceAllUsesWith(N, Existing, UpdateListener);
677 // N is now dead. Inform the listener if it exists and delete it.
678 if (UpdateListener)
679 UpdateListener->NodeDeleted(N, Existing);
680 DeleteNodeNotInCSEMaps(N);
681 return;
685 // If the node doesn't already exist, we updated it. Inform a listener if
686 // it exists.
687 if (UpdateListener)
688 UpdateListener->NodeUpdated(N);
691 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692 /// were replaced with those specified. If this node is never memoized,
693 /// return null, otherwise return a pointer to the slot it would take. If a
694 /// node already exists with these operands, the slot will be non-null.
695 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696 void *&InsertPos) {
697 if (doNotCSE(N))
698 return 0;
700 SDValue Ops[] = { Op };
701 FoldingSetNodeID ID;
702 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703 AddNodeIDCustom(ID, N);
704 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708 /// were replaced with those specified. If this node is never memoized,
709 /// return null, otherwise return a pointer to the slot it would take. If a
710 /// node already exists with these operands, the slot will be non-null.
711 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712 SDValue Op1, SDValue Op2,
713 void *&InsertPos) {
714 if (doNotCSE(N))
715 return 0;
717 SDValue Ops[] = { Op1, Op2 };
718 FoldingSetNodeID ID;
719 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720 AddNodeIDCustom(ID, N);
721 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726 /// were replaced with those specified. If this node is never memoized,
727 /// return null, otherwise return a pointer to the slot it would take. If a
728 /// node already exists with these operands, the slot will be non-null.
729 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730 const SDValue *Ops,unsigned NumOps,
731 void *&InsertPos) {
732 if (doNotCSE(N))
733 return 0;
735 FoldingSetNodeID ID;
736 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737 AddNodeIDCustom(ID, N);
738 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
741 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
742 void SelectionDAG::VerifyNode(SDNode *N) {
743 switch (N->getOpcode()) {
744 default:
745 break;
746 case ISD::BUILD_PAIR: {
747 MVT VT = N->getValueType(0);
748 assert(N->getNumValues() == 1 && "Too many results!");
749 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750 "Wrong return type!");
751 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753 "Mismatched operand types!");
754 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755 "Wrong operand type!");
756 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757 "Wrong return type size");
758 break;
760 case ISD::BUILD_VECTOR: {
761 assert(N->getNumValues() == 1 && "Too many results!");
762 assert(N->getValueType(0).isVector() && "Wrong return type!");
763 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764 "Wrong number of operands!");
765 // FIXME: Change vector_shuffle to a variadic node with mask elements being
766 // operands of the node. Currently the mask is a BUILD_VECTOR passed as an
767 // operand, and it is not always possible to legalize it. Turning off the
768 // following checks at least makes it possible to legalize most of the time.
769 // MVT EltVT = N->getValueType(0).getVectorElementType();
770 // for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771 // assert(I->getValueType() == EltVT &&
772 // "Wrong operand type!");
773 break;
778 /// getMVTAlignment - Compute the default alignment value for the
779 /// given type.
781 unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782 const Type *Ty = VT == MVT::iPTR ?
783 PointerType::get(Type::Int8Ty, 0) :
784 VT.getTypeForMVT();
786 return TLI.getTargetData()->getABITypeAlignment(Ty);
789 // EntryNode could meaningfully have debug info if we can find it...
790 SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
791 : TLI(tli), FLI(fli), DW(0),
792 EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
793 getVTList(MVT::Other)), Root(getEntryNode()) {
794 AllNodes.push_back(&EntryNode);
797 void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
798 DwarfWriter *dw) {
799 MF = &mf;
800 MMI = mmi;
801 DW = dw;
804 SelectionDAG::~SelectionDAG() {
805 allnodes_clear();
808 void SelectionDAG::allnodes_clear() {
809 assert(&*AllNodes.begin() == &EntryNode);
810 AllNodes.remove(AllNodes.begin());
811 while (!AllNodes.empty())
812 DeallocateNode(AllNodes.begin());
815 void SelectionDAG::clear() {
816 allnodes_clear();
817 OperandAllocator.Reset();
818 CSEMap.clear();
820 ExtendedValueTypeNodes.clear();
821 ExternalSymbols.clear();
822 TargetExternalSymbols.clear();
823 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
824 static_cast<CondCodeSDNode*>(0));
825 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
826 static_cast<SDNode*>(0));
828 EntryNode.UseList = 0;
829 AllNodes.push_back(&EntryNode);
830 Root = getEntryNode();
833 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
834 if (Op.getValueType() == VT) return Op;
835 APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
836 VT.getSizeInBits());
837 return getNode(ISD::AND, DL, Op.getValueType(), Op,
838 getConstant(Imm, Op.getValueType()));
841 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
843 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
844 SDValue NegOne;
845 if (VT.isVector()) {
846 MVT EltVT = VT.getVectorElementType();
847 SDValue NegOneElt =
848 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
849 std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
850 NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
851 } else {
852 NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
854 return getNode(ISD::XOR, DL, VT, Val, NegOne);
857 SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
858 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
859 assert((EltVT.getSizeInBits() >= 64 ||
860 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
861 "getConstant with a uint64_t value that doesn't fit in the type!");
862 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865 SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
866 return getConstant(*ConstantInt::get(Val), VT, isT);
869 SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
870 assert(VT.isInteger() && "Cannot create FP integer constant!");
872 MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
874 "APInt size does not match type size!");
876 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
877 FoldingSetNodeID ID;
878 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
879 ID.AddPointer(&Val);
880 void *IP = 0;
881 SDNode *N = NULL;
882 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
883 if (!VT.isVector())
884 return SDValue(N, 0);
885 if (!N) {
886 N = NodeAllocator.Allocate<ConstantSDNode>();
887 new (N) ConstantSDNode(isT, &Val, EltVT);
888 CSEMap.InsertNode(N, IP);
889 AllNodes.push_back(N);
892 SDValue Result(N, 0);
893 if (VT.isVector()) {
894 SmallVector<SDValue, 8> Ops;
895 Ops.assign(VT.getVectorNumElements(), Result);
896 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
897 VT, &Ops[0], Ops.size());
899 return Result;
902 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
903 return getConstant(Val, TLI.getPointerTy(), isTarget);
907 SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
908 return getConstantFP(*ConstantFP::get(V), VT, isTarget);
911 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
912 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914 MVT EltVT =
915 VT.isVector() ? VT.getVectorElementType() : VT;
917 // Do the map lookup using the actual bit pattern for the floating point
918 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
919 // we don't have issues with SNANs.
920 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
921 FoldingSetNodeID ID;
922 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
923 ID.AddPointer(&V);
924 void *IP = 0;
925 SDNode *N = NULL;
926 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
927 if (!VT.isVector())
928 return SDValue(N, 0);
929 if (!N) {
930 N = NodeAllocator.Allocate<ConstantFPSDNode>();
931 new (N) ConstantFPSDNode(isTarget, &V, EltVT);
932 CSEMap.InsertNode(N, IP);
933 AllNodes.push_back(N);
936 SDValue Result(N, 0);
937 if (VT.isVector()) {
938 SmallVector<SDValue, 8> Ops;
939 Ops.assign(VT.getVectorNumElements(), Result);
940 // FIXME DebugLoc info might be appropriate here
941 Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
942 VT, &Ops[0], Ops.size());
944 return Result;
947 SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
948 MVT EltVT =
949 VT.isVector() ? VT.getVectorElementType() : VT;
950 if (EltVT==MVT::f32)
951 return getConstantFP(APFloat((float)Val), VT, isTarget);
952 else
953 return getConstantFP(APFloat(Val), VT, isTarget);
956 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
957 MVT VT, int64_t Offset,
958 bool isTargetGA) {
959 unsigned Opc;
961 // Truncate (with sign-extension) the offset value to the pointer size.
962 unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
963 if (BitWidth < 64)
964 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
966 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
967 if (!GVar) {
968 // If GV is an alias then use the aliasee for determining thread-localness.
969 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
970 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
973 if (GVar && GVar->isThreadLocal())
974 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
975 else
976 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
978 FoldingSetNodeID ID;
979 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
980 ID.AddPointer(GV);
981 ID.AddInteger(Offset);
982 void *IP = 0;
983 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984 return SDValue(E, 0);
985 SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
986 new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
987 CSEMap.InsertNode(N, IP);
988 AllNodes.push_back(N);
989 return SDValue(N, 0);
992 SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
993 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
994 FoldingSetNodeID ID;
995 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996 ID.AddInteger(FI);
997 void *IP = 0;
998 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999 return SDValue(E, 0);
1000 SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1001 new (N) FrameIndexSDNode(FI, VT, isTarget);
1002 CSEMap.InsertNode(N, IP);
1003 AllNodes.push_back(N);
1004 return SDValue(N, 0);
1007 SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1008 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1009 FoldingSetNodeID ID;
1010 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011 ID.AddInteger(JTI);
1012 void *IP = 0;
1013 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014 return SDValue(E, 0);
1015 SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1016 new (N) JumpTableSDNode(JTI, VT, isTarget);
1017 CSEMap.InsertNode(N, IP);
1018 AllNodes.push_back(N);
1019 return SDValue(N, 0);
1022 SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1023 unsigned Alignment, int Offset,
1024 bool isTarget) {
1025 if (Alignment == 0)
1026 Alignment =
1027 TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1028 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1029 FoldingSetNodeID ID;
1030 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1031 ID.AddInteger(Alignment);
1032 ID.AddInteger(Offset);
1033 ID.AddPointer(C);
1034 void *IP = 0;
1035 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1036 return SDValue(E, 0);
1037 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1038 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1039 CSEMap.InsertNode(N, IP);
1040 AllNodes.push_back(N);
1041 return SDValue(N, 0);
1045 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1046 unsigned Alignment, int Offset,
1047 bool isTarget) {
1048 if (Alignment == 0)
1049 Alignment =
1050 TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1051 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1052 FoldingSetNodeID ID;
1053 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1054 ID.AddInteger(Alignment);
1055 ID.AddInteger(Offset);
1056 C->AddSelectionDAGCSEId(ID);
1057 void *IP = 0;
1058 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1059 return SDValue(E, 0);
1060 SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1061 new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1062 CSEMap.InsertNode(N, IP);
1063 AllNodes.push_back(N);
1064 return SDValue(N, 0);
1067 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068 FoldingSetNodeID ID;
1069 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070 ID.AddPointer(MBB);
1071 void *IP = 0;
1072 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073 return SDValue(E, 0);
1074 SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075 new (N) BasicBlockSDNode(MBB);
1076 CSEMap.InsertNode(N, IP);
1077 AllNodes.push_back(N);
1078 return SDValue(N, 0);
1081 SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082 FoldingSetNodeID ID;
1083 AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084 ID.AddInteger(Flags.getRawBits());
1085 void *IP = 0;
1086 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087 return SDValue(E, 0);
1088 SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089 new (N) ARG_FLAGSSDNode(Flags);
1090 CSEMap.InsertNode(N, IP);
1091 AllNodes.push_back(N);
1092 return SDValue(N, 0);
1095 SDValue SelectionDAG::getValueType(MVT VT) {
1096 if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097 ValueTypeNodes.resize(VT.getSimpleVT()+1);
1099 SDNode *&N = VT.isExtended() ?
1100 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1102 if (N) return SDValue(N, 0);
1103 N = NodeAllocator.Allocate<VTSDNode>();
1104 new (N) VTSDNode(VT);
1105 AllNodes.push_back(N);
1106 return SDValue(N, 0);
1109 SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110 SDNode *&N = ExternalSymbols[Sym];
1111 if (N) return SDValue(N, 0);
1112 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113 new (N) ExternalSymbolSDNode(false, Sym, VT);
1114 AllNodes.push_back(N);
1115 return SDValue(N, 0);
1118 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119 SDNode *&N = TargetExternalSymbols[Sym];
1120 if (N) return SDValue(N, 0);
1121 N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122 new (N) ExternalSymbolSDNode(true, Sym, VT);
1123 AllNodes.push_back(N);
1124 return SDValue(N, 0);
1127 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128 if ((unsigned)Cond >= CondCodeNodes.size())
1129 CondCodeNodes.resize(Cond+1);
1131 if (CondCodeNodes[Cond] == 0) {
1132 CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133 new (N) CondCodeSDNode(Cond);
1134 CondCodeNodes[Cond] = N;
1135 AllNodes.push_back(N);
1137 return SDValue(CondCodeNodes[Cond], 0);
1140 SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1141 SDValue Val, SDValue DTy,
1142 SDValue STy, SDValue Rnd, SDValue Sat,
1143 ISD::CvtCode Code) {
1144 // If the src and dest types are the same and the conversion is between
1145 // integer types of the same sign or two floats, no conversion is necessary.
1146 if (DTy == STy &&
1147 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1148 return Val;
1150 FoldingSetNodeID ID;
1151 void* IP = 0;
1152 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153 return SDValue(E, 0);
1154 CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1155 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1156 new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1157 CSEMap.InsertNode(N, IP);
1158 AllNodes.push_back(N);
1159 return SDValue(N, 0);
1162 SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1163 FoldingSetNodeID ID;
1164 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1165 ID.AddInteger(RegNo);
1166 void *IP = 0;
1167 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1168 return SDValue(E, 0);
1169 SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1170 new (N) RegisterSDNode(RegNo, VT);
1171 CSEMap.InsertNode(N, IP);
1172 AllNodes.push_back(N);
1173 return SDValue(N, 0);
1176 SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1177 unsigned Line, unsigned Col,
1178 Value *CU) {
1179 SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1180 new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1181 AllNodes.push_back(N);
1182 return SDValue(N, 0);
1185 SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1186 SDValue Root,
1187 unsigned LabelID) {
1188 FoldingSetNodeID ID;
1189 SDValue Ops[] = { Root };
1190 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1191 ID.AddInteger(LabelID);
1192 void *IP = 0;
1193 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1194 return SDValue(E, 0);
1195 SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1196 new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1197 CSEMap.InsertNode(N, IP);
1198 AllNodes.push_back(N);
1199 return SDValue(N, 0);
1202 SDValue SelectionDAG::getSrcValue(const Value *V) {
1203 assert((!V || isa<PointerType>(V->getType())) &&
1204 "SrcValue is not a pointer?");
1206 FoldingSetNodeID ID;
1207 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1208 ID.AddPointer(V);
1210 void *IP = 0;
1211 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1212 return SDValue(E, 0);
1214 SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1215 new (N) SrcValueSDNode(V);
1216 CSEMap.InsertNode(N, IP);
1217 AllNodes.push_back(N);
1218 return SDValue(N, 0);
1221 SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1222 #ifndef NDEBUG
1223 const Value *v = MO.getValue();
1224 assert((!v || isa<PointerType>(v->getType())) &&
1225 "SrcValue is not a pointer?");
1226 #endif
1228 FoldingSetNodeID ID;
1229 AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1230 MO.Profile(ID);
1232 void *IP = 0;
1233 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1234 return SDValue(E, 0);
1236 SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1237 new (N) MemOperandSDNode(MO);
1238 CSEMap.InsertNode(N, IP);
1239 AllNodes.push_back(N);
1240 return SDValue(N, 0);
1243 /// getShiftAmountOperand - Return the specified value casted to
1244 /// the target's desired shift amount type.
1245 SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1246 MVT OpTy = Op.getValueType();
1247 MVT ShTy = TLI.getShiftAmountTy();
1248 if (OpTy == ShTy || OpTy.isVector()) return Op;
1250 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1251 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1254 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1255 /// specified value type.
1256 SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1257 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1258 unsigned ByteSize = VT.getStoreSizeInBits()/8;
1259 const Type *Ty = VT.getTypeForMVT();
1260 unsigned StackAlign =
1261 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1263 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1264 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1267 /// CreateStackTemporary - Create a stack temporary suitable for holding
1268 /// either of the specified value types.
1269 SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1270 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1271 VT2.getStoreSizeInBits())/8;
1272 const Type *Ty1 = VT1.getTypeForMVT();
1273 const Type *Ty2 = VT2.getTypeForMVT();
1274 const TargetData *TD = TLI.getTargetData();
1275 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1276 TD->getPrefTypeAlignment(Ty2));
1278 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1279 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1280 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1283 SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1284 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1285 // These setcc operations always fold.
1286 switch (Cond) {
1287 default: break;
1288 case ISD::SETFALSE:
1289 case ISD::SETFALSE2: return getConstant(0, VT);
1290 case ISD::SETTRUE:
1291 case ISD::SETTRUE2: return getConstant(1, VT);
1293 case ISD::SETOEQ:
1294 case ISD::SETOGT:
1295 case ISD::SETOGE:
1296 case ISD::SETOLT:
1297 case ISD::SETOLE:
1298 case ISD::SETONE:
1299 case ISD::SETO:
1300 case ISD::SETUO:
1301 case ISD::SETUEQ:
1302 case ISD::SETUNE:
1303 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1304 break;
1307 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1308 const APInt &C2 = N2C->getAPIntValue();
1309 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1310 const APInt &C1 = N1C->getAPIntValue();
1312 switch (Cond) {
1313 default: assert(0 && "Unknown integer setcc!");
1314 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1315 case ISD::SETNE: return getConstant(C1 != C2, VT);
1316 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1317 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1318 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1319 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1320 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1321 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1322 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1323 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1327 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1328 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1329 // No compile time operations on this type yet.
1330 if (N1C->getValueType(0) == MVT::ppcf128)
1331 return SDValue();
1333 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1334 switch (Cond) {
1335 default: break;
1336 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1337 return getUNDEF(VT);
1338 // fall through
1339 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1340 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1341 return getUNDEF(VT);
1342 // fall through
1343 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1344 R==APFloat::cmpLessThan, VT);
1345 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1346 return getUNDEF(VT);
1347 // fall through
1348 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1349 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1350 return getUNDEF(VT);
1351 // fall through
1352 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1353 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1354 return getUNDEF(VT);
1355 // fall through
1356 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1357 R==APFloat::cmpEqual, VT);
1358 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1359 return getUNDEF(VT);
1360 // fall through
1361 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1362 R==APFloat::cmpEqual, VT);
1363 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1364 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1365 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1366 R==APFloat::cmpEqual, VT);
1367 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1368 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1369 R==APFloat::cmpLessThan, VT);
1370 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1371 R==APFloat::cmpUnordered, VT);
1372 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1373 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1375 } else {
1376 // Ensure that the constant occurs on the RHS.
1377 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1381 // Could not fold it.
1382 return SDValue();
1385 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1386 /// use this predicate to simplify operations downstream.
1387 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1388 unsigned BitWidth = Op.getValueSizeInBits();
1389 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1392 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1393 /// this predicate to simplify operations downstream. Mask is known to be zero
1394 /// for bits that V cannot have.
1395 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1396 unsigned Depth) const {
1397 APInt KnownZero, KnownOne;
1398 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1399 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1400 return (KnownZero & Mask) == Mask;
1403 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1404 /// known to be either zero or one and return them in the KnownZero/KnownOne
1405 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1406 /// processing.
1407 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1408 APInt &KnownZero, APInt &KnownOne,
1409 unsigned Depth) const {
1410 unsigned BitWidth = Mask.getBitWidth();
1411 assert(BitWidth == Op.getValueType().getSizeInBits() &&
1412 "Mask size mismatches value type size!");
1414 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1415 if (Depth == 6 || Mask == 0)
1416 return; // Limit search depth.
1418 APInt KnownZero2, KnownOne2;
1420 switch (Op.getOpcode()) {
1421 case ISD::Constant:
1422 // We know all of the bits for a constant!
1423 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1424 KnownZero = ~KnownOne & Mask;
1425 return;
1426 case ISD::AND:
1427 // If either the LHS or the RHS are Zero, the result is zero.
1428 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1429 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1430 KnownZero2, KnownOne2, Depth+1);
1431 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1432 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1434 // Output known-1 bits are only known if set in both the LHS & RHS.
1435 KnownOne &= KnownOne2;
1436 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1437 KnownZero |= KnownZero2;
1438 return;
1439 case ISD::OR:
1440 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1441 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1442 KnownZero2, KnownOne2, Depth+1);
1443 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1444 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1446 // Output known-0 bits are only known if clear in both the LHS & RHS.
1447 KnownZero &= KnownZero2;
1448 // Output known-1 are known to be set if set in either the LHS | RHS.
1449 KnownOne |= KnownOne2;
1450 return;
1451 case ISD::XOR: {
1452 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1453 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1454 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1455 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1457 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1458 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1459 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1460 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1461 KnownZero = KnownZeroOut;
1462 return;
1464 case ISD::MUL: {
1465 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1466 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1467 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1468 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1469 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1471 // If low bits are zero in either operand, output low known-0 bits.
1472 // Also compute a conserative estimate for high known-0 bits.
1473 // More trickiness is possible, but this is sufficient for the
1474 // interesting case of alignment computation.
1475 KnownOne.clear();
1476 unsigned TrailZ = KnownZero.countTrailingOnes() +
1477 KnownZero2.countTrailingOnes();
1478 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1479 KnownZero2.countLeadingOnes(),
1480 BitWidth) - BitWidth;
1482 TrailZ = std::min(TrailZ, BitWidth);
1483 LeadZ = std::min(LeadZ, BitWidth);
1484 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1485 APInt::getHighBitsSet(BitWidth, LeadZ);
1486 KnownZero &= Mask;
1487 return;
1489 case ISD::UDIV: {
1490 // For the purposes of computing leading zeros we can conservatively
1491 // treat a udiv as a logical right shift by the power of 2 known to
1492 // be less than the denominator.
1493 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1494 ComputeMaskedBits(Op.getOperand(0),
1495 AllOnes, KnownZero2, KnownOne2, Depth+1);
1496 unsigned LeadZ = KnownZero2.countLeadingOnes();
1498 KnownOne2.clear();
1499 KnownZero2.clear();
1500 ComputeMaskedBits(Op.getOperand(1),
1501 AllOnes, KnownZero2, KnownOne2, Depth+1);
1502 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1503 if (RHSUnknownLeadingOnes != BitWidth)
1504 LeadZ = std::min(BitWidth,
1505 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1507 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1508 return;
1510 case ISD::SELECT:
1511 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1512 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1513 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1516 // Only known if known in both the LHS and RHS.
1517 KnownOne &= KnownOne2;
1518 KnownZero &= KnownZero2;
1519 return;
1520 case ISD::SELECT_CC:
1521 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1522 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1524 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1526 // Only known if known in both the LHS and RHS.
1527 KnownOne &= KnownOne2;
1528 KnownZero &= KnownZero2;
1529 return;
1530 case ISD::SADDO:
1531 case ISD::UADDO:
1532 case ISD::SSUBO:
1533 case ISD::USUBO:
1534 case ISD::SMULO:
1535 case ISD::UMULO:
1536 if (Op.getResNo() != 1)
1537 return;
1538 // The boolean result conforms to getBooleanContents. Fall through.
1539 case ISD::SETCC:
1540 // If we know the result of a setcc has the top bits zero, use this info.
1541 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1542 BitWidth > 1)
1543 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1544 return;
1545 case ISD::SHL:
1546 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1547 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1548 unsigned ShAmt = SA->getZExtValue();
1550 // If the shift count is an invalid immediate, don't do anything.
1551 if (ShAmt >= BitWidth)
1552 return;
1554 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1555 KnownZero, KnownOne, Depth+1);
1556 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1557 KnownZero <<= ShAmt;
1558 KnownOne <<= ShAmt;
1559 // low bits known zero.
1560 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1562 return;
1563 case ISD::SRL:
1564 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1565 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1566 unsigned ShAmt = SA->getZExtValue();
1568 // If the shift count is an invalid immediate, don't do anything.
1569 if (ShAmt >= BitWidth)
1570 return;
1572 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1573 KnownZero, KnownOne, Depth+1);
1574 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575 KnownZero = KnownZero.lshr(ShAmt);
1576 KnownOne = KnownOne.lshr(ShAmt);
1578 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1579 KnownZero |= HighBits; // High bits known zero.
1581 return;
1582 case ISD::SRA:
1583 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1584 unsigned ShAmt = SA->getZExtValue();
1586 // If the shift count is an invalid immediate, don't do anything.
1587 if (ShAmt >= BitWidth)
1588 return;
1590 APInt InDemandedMask = (Mask << ShAmt);
1591 // If any of the demanded bits are produced by the sign extension, we also
1592 // demand the input sign bit.
1593 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1594 if (HighBits.getBoolValue())
1595 InDemandedMask |= APInt::getSignBit(BitWidth);
1597 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1598 Depth+1);
1599 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1600 KnownZero = KnownZero.lshr(ShAmt);
1601 KnownOne = KnownOne.lshr(ShAmt);
1603 // Handle the sign bits.
1604 APInt SignBit = APInt::getSignBit(BitWidth);
1605 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1607 if (KnownZero.intersects(SignBit)) {
1608 KnownZero |= HighBits; // New bits are known zero.
1609 } else if (KnownOne.intersects(SignBit)) {
1610 KnownOne |= HighBits; // New bits are known one.
1613 return;
1614 case ISD::SIGN_EXTEND_INREG: {
1615 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1616 unsigned EBits = EVT.getSizeInBits();
1618 // Sign extension. Compute the demanded bits in the result that are not
1619 // present in the input.
1620 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1622 APInt InSignBit = APInt::getSignBit(EBits);
1623 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1625 // If the sign extended bits are demanded, we know that the sign
1626 // bit is demanded.
1627 InSignBit.zext(BitWidth);
1628 if (NewBits.getBoolValue())
1629 InputDemandedBits |= InSignBit;
1631 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1632 KnownZero, KnownOne, Depth+1);
1633 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635 // If the sign bit of the input is known set or clear, then we know the
1636 // top bits of the result.
1637 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1638 KnownZero |= NewBits;
1639 KnownOne &= ~NewBits;
1640 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1641 KnownOne |= NewBits;
1642 KnownZero &= ~NewBits;
1643 } else { // Input sign bit unknown
1644 KnownZero &= ~NewBits;
1645 KnownOne &= ~NewBits;
1647 return;
1649 case ISD::CTTZ:
1650 case ISD::CTLZ:
1651 case ISD::CTPOP: {
1652 unsigned LowBits = Log2_32(BitWidth)+1;
1653 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1654 KnownOne.clear();
1655 return;
1657 case ISD::LOAD: {
1658 if (ISD::isZEXTLoad(Op.getNode())) {
1659 LoadSDNode *LD = cast<LoadSDNode>(Op);
1660 MVT VT = LD->getMemoryVT();
1661 unsigned MemBits = VT.getSizeInBits();
1662 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1664 return;
1666 case ISD::ZERO_EXTEND: {
1667 MVT InVT = Op.getOperand(0).getValueType();
1668 unsigned InBits = InVT.getSizeInBits();
1669 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1670 APInt InMask = Mask;
1671 InMask.trunc(InBits);
1672 KnownZero.trunc(InBits);
1673 KnownOne.trunc(InBits);
1674 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1675 KnownZero.zext(BitWidth);
1676 KnownOne.zext(BitWidth);
1677 KnownZero |= NewBits;
1678 return;
1680 case ISD::SIGN_EXTEND: {
1681 MVT InVT = Op.getOperand(0).getValueType();
1682 unsigned InBits = InVT.getSizeInBits();
1683 APInt InSignBit = APInt::getSignBit(InBits);
1684 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1685 APInt InMask = Mask;
1686 InMask.trunc(InBits);
1688 // If any of the sign extended bits are demanded, we know that the sign
1689 // bit is demanded. Temporarily set this bit in the mask for our callee.
1690 if (NewBits.getBoolValue())
1691 InMask |= InSignBit;
1693 KnownZero.trunc(InBits);
1694 KnownOne.trunc(InBits);
1695 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1697 // Note if the sign bit is known to be zero or one.
1698 bool SignBitKnownZero = KnownZero.isNegative();
1699 bool SignBitKnownOne = KnownOne.isNegative();
1700 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1701 "Sign bit can't be known to be both zero and one!");
1703 // If the sign bit wasn't actually demanded by our caller, we don't
1704 // want it set in the KnownZero and KnownOne result values. Reset the
1705 // mask and reapply it to the result values.
1706 InMask = Mask;
1707 InMask.trunc(InBits);
1708 KnownZero &= InMask;
1709 KnownOne &= InMask;
1711 KnownZero.zext(BitWidth);
1712 KnownOne.zext(BitWidth);
1714 // If the sign bit is known zero or one, the top bits match.
1715 if (SignBitKnownZero)
1716 KnownZero |= NewBits;
1717 else if (SignBitKnownOne)
1718 KnownOne |= NewBits;
1719 return;
1721 case ISD::ANY_EXTEND: {
1722 MVT InVT = Op.getOperand(0).getValueType();
1723 unsigned InBits = InVT.getSizeInBits();
1724 APInt InMask = Mask;
1725 InMask.trunc(InBits);
1726 KnownZero.trunc(InBits);
1727 KnownOne.trunc(InBits);
1728 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1729 KnownZero.zext(BitWidth);
1730 KnownOne.zext(BitWidth);
1731 return;
1733 case ISD::TRUNCATE: {
1734 MVT InVT = Op.getOperand(0).getValueType();
1735 unsigned InBits = InVT.getSizeInBits();
1736 APInt InMask = Mask;
1737 InMask.zext(InBits);
1738 KnownZero.zext(InBits);
1739 KnownOne.zext(InBits);
1740 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1741 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1742 KnownZero.trunc(BitWidth);
1743 KnownOne.trunc(BitWidth);
1744 break;
1746 case ISD::AssertZext: {
1747 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1748 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1749 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1750 KnownOne, Depth+1);
1751 KnownZero |= (~InMask) & Mask;
1752 return;
1754 case ISD::FGETSIGN:
1755 // All bits are zero except the low bit.
1756 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1757 return;
1759 case ISD::SUB: {
1760 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1761 // We know that the top bits of C-X are clear if X contains less bits
1762 // than C (i.e. no wrap-around can happen). For example, 20-X is
1763 // positive if we can prove that X is >= 0 and < 16.
1764 if (CLHS->getAPIntValue().isNonNegative()) {
1765 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1766 // NLZ can't be BitWidth with no sign bit
1767 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1768 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1769 Depth+1);
1771 // If all of the MaskV bits are known to be zero, then we know the
1772 // output top bits are zero, because we now know that the output is
1773 // from [0-C].
1774 if ((KnownZero2 & MaskV) == MaskV) {
1775 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1776 // Top bits known zero.
1777 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1782 // fall through
1783 case ISD::ADD: {
1784 // Output known-0 bits are known if clear or set in both the low clear bits
1785 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1786 // low 3 bits clear.
1787 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1788 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1789 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1790 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1792 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1793 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1794 KnownZeroOut = std::min(KnownZeroOut,
1795 KnownZero2.countTrailingOnes());
1797 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1798 return;
1800 case ISD::SREM:
1801 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1802 const APInt &RA = Rem->getAPIntValue();
1803 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1804 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1805 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1806 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1808 // If the sign bit of the first operand is zero, the sign bit of
1809 // the result is zero. If the first operand has no one bits below
1810 // the second operand's single 1 bit, its sign will be zero.
1811 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1812 KnownZero2 |= ~LowBits;
1814 KnownZero |= KnownZero2 & Mask;
1816 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1819 return;
1820 case ISD::UREM: {
1821 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1822 const APInt &RA = Rem->getAPIntValue();
1823 if (RA.isPowerOf2()) {
1824 APInt LowBits = (RA - 1);
1825 APInt Mask2 = LowBits & Mask;
1826 KnownZero |= ~LowBits & Mask;
1827 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1828 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1829 break;
1833 // Since the result is less than or equal to either operand, any leading
1834 // zero bits in either operand must also exist in the result.
1835 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1836 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1837 Depth+1);
1838 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1839 Depth+1);
1841 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1842 KnownZero2.countLeadingOnes());
1843 KnownOne.clear();
1844 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1845 return;
1847 default:
1848 // Allow the target to implement this method for its nodes.
1849 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1850 case ISD::INTRINSIC_WO_CHAIN:
1851 case ISD::INTRINSIC_W_CHAIN:
1852 case ISD::INTRINSIC_VOID:
1853 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1855 return;
1859 /// ComputeNumSignBits - Return the number of times the sign bit of the
1860 /// register is replicated into the other bits. We know that at least 1 bit
1861 /// is always equal to the sign bit (itself), but other cases can give us
1862 /// information. For example, immediately after an "SRA X, 2", we know that
1863 /// the top 3 bits are all equal to each other, so we return 3.
1864 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1865 MVT VT = Op.getValueType();
1866 assert(VT.isInteger() && "Invalid VT!");
1867 unsigned VTBits = VT.getSizeInBits();
1868 unsigned Tmp, Tmp2;
1869 unsigned FirstAnswer = 1;
1871 if (Depth == 6)
1872 return 1; // Limit search depth.
1874 switch (Op.getOpcode()) {
1875 default: break;
1876 case ISD::AssertSext:
1877 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1878 return VTBits-Tmp+1;
1879 case ISD::AssertZext:
1880 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1881 return VTBits-Tmp;
1883 case ISD::Constant: {
1884 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1885 // If negative, return # leading ones.
1886 if (Val.isNegative())
1887 return Val.countLeadingOnes();
1889 // Return # leading zeros.
1890 return Val.countLeadingZeros();
1893 case ISD::SIGN_EXTEND:
1894 Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1895 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1897 case ISD::SIGN_EXTEND_INREG:
1898 // Max of the input and what this extends.
1899 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1900 Tmp = VTBits-Tmp+1;
1902 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1903 return std::max(Tmp, Tmp2);
1905 case ISD::SRA:
1906 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1907 // SRA X, C -> adds C sign bits.
1908 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1909 Tmp += C->getZExtValue();
1910 if (Tmp > VTBits) Tmp = VTBits;
1912 return Tmp;
1913 case ISD::SHL:
1914 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1915 // shl destroys sign bits.
1916 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1917 if (C->getZExtValue() >= VTBits || // Bad shift.
1918 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
1919 return Tmp - C->getZExtValue();
1921 break;
1922 case ISD::AND:
1923 case ISD::OR:
1924 case ISD::XOR: // NOT is handled here.
1925 // Logical binary ops preserve the number of sign bits at the worst.
1926 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1927 if (Tmp != 1) {
1928 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1929 FirstAnswer = std::min(Tmp, Tmp2);
1930 // We computed what we know about the sign bits as our first
1931 // answer. Now proceed to the generic code that uses
1932 // ComputeMaskedBits, and pick whichever answer is better.
1934 break;
1936 case ISD::SELECT:
1937 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1938 if (Tmp == 1) return 1; // Early out.
1939 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1940 return std::min(Tmp, Tmp2);
1942 case ISD::SADDO:
1943 case ISD::UADDO:
1944 case ISD::SSUBO:
1945 case ISD::USUBO:
1946 case ISD::SMULO:
1947 case ISD::UMULO:
1948 if (Op.getResNo() != 1)
1949 break;
1950 // The boolean result conforms to getBooleanContents. Fall through.
1951 case ISD::SETCC:
1952 // If setcc returns 0/-1, all bits are sign bits.
1953 if (TLI.getBooleanContents() ==
1954 TargetLowering::ZeroOrNegativeOneBooleanContent)
1955 return VTBits;
1956 break;
1957 case ISD::ROTL:
1958 case ISD::ROTR:
1959 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1960 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1962 // Handle rotate right by N like a rotate left by 32-N.
1963 if (Op.getOpcode() == ISD::ROTR)
1964 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1966 // If we aren't rotating out all of the known-in sign bits, return the
1967 // number that are left. This handles rotl(sext(x), 1) for example.
1968 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1969 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1971 break;
1972 case ISD::ADD:
1973 // Add can have at most one carry bit. Thus we know that the output
1974 // is, at worst, one more bit than the inputs.
1975 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1976 if (Tmp == 1) return 1; // Early out.
1978 // Special case decrementing a value (ADD X, -1):
1979 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1980 if (CRHS->isAllOnesValue()) {
1981 APInt KnownZero, KnownOne;
1982 APInt Mask = APInt::getAllOnesValue(VTBits);
1983 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1985 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1986 // sign bits set.
1987 if ((KnownZero | APInt(VTBits, 1)) == Mask)
1988 return VTBits;
1990 // If we are subtracting one from a positive number, there is no carry
1991 // out of the result.
1992 if (KnownZero.isNegative())
1993 return Tmp;
1996 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1997 if (Tmp2 == 1) return 1;
1998 return std::min(Tmp, Tmp2)-1;
1999 break;
2001 case ISD::SUB:
2002 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2003 if (Tmp2 == 1) return 1;
2005 // Handle NEG.
2006 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2007 if (CLHS->isNullValue()) {
2008 APInt KnownZero, KnownOne;
2009 APInt Mask = APInt::getAllOnesValue(VTBits);
2010 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2011 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2012 // sign bits set.
2013 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2014 return VTBits;
2016 // If the input is known to be positive (the sign bit is known clear),
2017 // the output of the NEG has the same number of sign bits as the input.
2018 if (KnownZero.isNegative())
2019 return Tmp2;
2021 // Otherwise, we treat this like a SUB.
2024 // Sub can have at most one carry bit. Thus we know that the output
2025 // is, at worst, one more bit than the inputs.
2026 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027 if (Tmp == 1) return 1; // Early out.
2028 return std::min(Tmp, Tmp2)-1;
2029 break;
2030 case ISD::TRUNCATE:
2031 // FIXME: it's tricky to do anything useful for this, but it is an important
2032 // case for targets like X86.
2033 break;
2036 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2037 if (Op.getOpcode() == ISD::LOAD) {
2038 LoadSDNode *LD = cast<LoadSDNode>(Op);
2039 unsigned ExtType = LD->getExtensionType();
2040 switch (ExtType) {
2041 default: break;
2042 case ISD::SEXTLOAD: // '17' bits known
2043 Tmp = LD->getMemoryVT().getSizeInBits();
2044 return VTBits-Tmp+1;
2045 case ISD::ZEXTLOAD: // '16' bits known
2046 Tmp = LD->getMemoryVT().getSizeInBits();
2047 return VTBits-Tmp;
2051 // Allow the target to implement this method for its nodes.
2052 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2053 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2054 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2055 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2056 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2057 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2060 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2061 // use this information.
2062 APInt KnownZero, KnownOne;
2063 APInt Mask = APInt::getAllOnesValue(VTBits);
2064 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2066 if (KnownZero.isNegative()) { // sign bit is 0
2067 Mask = KnownZero;
2068 } else if (KnownOne.isNegative()) { // sign bit is 1;
2069 Mask = KnownOne;
2070 } else {
2071 // Nothing known.
2072 return FirstAnswer;
2075 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2076 // the number of identical bits in the top of the input value.
2077 Mask = ~Mask;
2078 Mask <<= Mask.getBitWidth()-VTBits;
2079 // Return # leading zeros. We use 'min' here in case Val was zero before
2080 // shifting. We don't want to return '64' as for an i32 "0".
2081 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2085 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2086 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2087 if (!GA) return false;
2088 if (GA->getOffset() != 0) return false;
2089 GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2090 if (!GV) return false;
2091 MachineModuleInfo *MMI = getMachineModuleInfo();
2092 return MMI && MMI->hasDebugInfo();
2096 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
2097 /// element of the result of the vector shuffle.
2098 SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2099 MVT VT = N->getValueType(0);
2100 DebugLoc dl = N->getDebugLoc();
2101 SDValue PermMask = N->getOperand(2);
2102 SDValue Idx = PermMask.getOperand(i);
2103 if (Idx.getOpcode() == ISD::UNDEF)
2104 return getUNDEF(VT.getVectorElementType());
2105 unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2106 unsigned NumElems = PermMask.getNumOperands();
2107 SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2108 Index %= NumElems;
2110 if (V.getOpcode() == ISD::BIT_CONVERT) {
2111 V = V.getOperand(0);
2112 MVT VVT = V.getValueType();
2113 if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2114 return SDValue();
2116 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2117 return (Index == 0) ? V.getOperand(0)
2118 : getUNDEF(VT.getVectorElementType());
2119 if (V.getOpcode() == ISD::BUILD_VECTOR)
2120 return V.getOperand(Index);
2121 if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2122 return getShuffleScalarElt(V.getNode(), Index);
2123 return SDValue();
2127 /// getNode - Gets or creates the specified node.
2129 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2130 FoldingSetNodeID ID;
2131 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2132 void *IP = 0;
2133 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2134 return SDValue(E, 0);
2135 SDNode *N = NodeAllocator.Allocate<SDNode>();
2136 new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2137 CSEMap.InsertNode(N, IP);
2139 AllNodes.push_back(N);
2140 #ifndef NDEBUG
2141 VerifyNode(N);
2142 #endif
2143 return SDValue(N, 0);
2146 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2147 MVT VT, SDValue Operand) {
2148 // Constant fold unary operations with an integer constant operand.
2149 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2150 const APInt &Val = C->getAPIntValue();
2151 unsigned BitWidth = VT.getSizeInBits();
2152 switch (Opcode) {
2153 default: break;
2154 case ISD::SIGN_EXTEND:
2155 return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2156 case ISD::ANY_EXTEND:
2157 case ISD::ZERO_EXTEND:
2158 case ISD::TRUNCATE:
2159 return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2160 case ISD::UINT_TO_FP:
2161 case ISD::SINT_TO_FP: {
2162 const uint64_t zero[] = {0, 0};
2163 // No compile time operations on this type.
2164 if (VT==MVT::ppcf128)
2165 break;
2166 APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2167 (void)apf.convertFromAPInt(Val,
2168 Opcode==ISD::SINT_TO_FP,
2169 APFloat::rmNearestTiesToEven);
2170 return getConstantFP(apf, VT);
2172 case ISD::BIT_CONVERT:
2173 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2174 return getConstantFP(Val.bitsToFloat(), VT);
2175 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2176 return getConstantFP(Val.bitsToDouble(), VT);
2177 break;
2178 case ISD::BSWAP:
2179 return getConstant(Val.byteSwap(), VT);
2180 case ISD::CTPOP:
2181 return getConstant(Val.countPopulation(), VT);
2182 case ISD::CTLZ:
2183 return getConstant(Val.countLeadingZeros(), VT);
2184 case ISD::CTTZ:
2185 return getConstant(Val.countTrailingZeros(), VT);
2189 // Constant fold unary operations with a floating point constant operand.
2190 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2191 APFloat V = C->getValueAPF(); // make copy
2192 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2193 switch (Opcode) {
2194 case ISD::FNEG:
2195 V.changeSign();
2196 return getConstantFP(V, VT);
2197 case ISD::FABS:
2198 V.clearSign();
2199 return getConstantFP(V, VT);
2200 case ISD::FP_ROUND:
2201 case ISD::FP_EXTEND: {
2202 bool ignored;
2203 // This can return overflow, underflow, or inexact; we don't care.
2204 // FIXME need to be more flexible about rounding mode.
2205 (void)V.convert(*MVTToAPFloatSemantics(VT),
2206 APFloat::rmNearestTiesToEven, &ignored);
2207 return getConstantFP(V, VT);
2209 case ISD::FP_TO_SINT:
2210 case ISD::FP_TO_UINT: {
2211 integerPart x;
2212 bool ignored;
2213 assert(integerPartWidth >= 64);
2214 // FIXME need to be more flexible about rounding mode.
2215 APFloat::opStatus s = V.convertToInteger(&x, 64U,
2216 Opcode==ISD::FP_TO_SINT,
2217 APFloat::rmTowardZero, &ignored);
2218 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2219 break;
2220 return getConstant(x, VT);
2222 case ISD::BIT_CONVERT:
2223 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2224 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2225 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2226 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2227 break;
2232 unsigned OpOpcode = Operand.getNode()->getOpcode();
2233 switch (Opcode) {
2234 case ISD::TokenFactor:
2235 case ISD::MERGE_VALUES:
2236 case ISD::CONCAT_VECTORS:
2237 return Operand; // Factor, merge or concat of one node? No need.
2238 case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2239 case ISD::FP_EXTEND:
2240 assert(VT.isFloatingPoint() &&
2241 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2242 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2243 if (Operand.getOpcode() == ISD::UNDEF)
2244 return getUNDEF(VT);
2245 break;
2246 case ISD::SIGN_EXTEND:
2247 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2248 "Invalid SIGN_EXTEND!");
2249 if (Operand.getValueType() == VT) return Operand; // noop extension
2250 assert(Operand.getValueType().bitsLT(VT)
2251 && "Invalid sext node, dst < src!");
2252 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2253 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2254 break;
2255 case ISD::ZERO_EXTEND:
2256 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2257 "Invalid ZERO_EXTEND!");
2258 if (Operand.getValueType() == VT) return Operand; // noop extension
2259 assert(Operand.getValueType().bitsLT(VT)
2260 && "Invalid zext node, dst < src!");
2261 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2262 return getNode(ISD::ZERO_EXTEND, DL, VT,
2263 Operand.getNode()->getOperand(0));
2264 break;
2265 case ISD::ANY_EXTEND:
2266 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2267 "Invalid ANY_EXTEND!");
2268 if (Operand.getValueType() == VT) return Operand; // noop extension
2269 assert(Operand.getValueType().bitsLT(VT)
2270 && "Invalid anyext node, dst < src!");
2271 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2272 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2273 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2274 break;
2275 case ISD::TRUNCATE:
2276 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2277 "Invalid TRUNCATE!");
2278 if (Operand.getValueType() == VT) return Operand; // noop truncate
2279 assert(Operand.getValueType().bitsGT(VT)
2280 && "Invalid truncate node, src < dst!");
2281 if (OpOpcode == ISD::TRUNCATE)
2282 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2283 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2284 OpOpcode == ISD::ANY_EXTEND) {
2285 // If the source is smaller than the dest, we still need an extend.
2286 if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2287 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2288 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2289 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2290 else
2291 return Operand.getNode()->getOperand(0);
2293 break;
2294 case ISD::BIT_CONVERT:
2295 // Basic sanity checking.
2296 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2297 && "Cannot BIT_CONVERT between types of different sizes!");
2298 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2299 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2300 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2301 if (OpOpcode == ISD::UNDEF)
2302 return getUNDEF(VT);
2303 break;
2304 case ISD::SCALAR_TO_VECTOR:
2305 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2306 VT.getVectorElementType() == Operand.getValueType() &&
2307 "Illegal SCALAR_TO_VECTOR node!");
2308 if (OpOpcode == ISD::UNDEF)
2309 return getUNDEF(VT);
2310 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2311 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2312 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2313 Operand.getConstantOperandVal(1) == 0 &&
2314 Operand.getOperand(0).getValueType() == VT)
2315 return Operand.getOperand(0);
2316 break;
2317 case ISD::FNEG:
2318 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2319 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2320 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2321 Operand.getNode()->getOperand(0));
2322 if (OpOpcode == ISD::FNEG) // --X -> X
2323 return Operand.getNode()->getOperand(0);
2324 break;
2325 case ISD::FABS:
2326 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2327 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2328 break;
2331 SDNode *N;
2332 SDVTList VTs = getVTList(VT);
2333 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2334 FoldingSetNodeID ID;
2335 SDValue Ops[1] = { Operand };
2336 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2337 void *IP = 0;
2338 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2339 return SDValue(E, 0);
2340 N = NodeAllocator.Allocate<UnarySDNode>();
2341 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2342 CSEMap.InsertNode(N, IP);
2343 } else {
2344 N = NodeAllocator.Allocate<UnarySDNode>();
2345 new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2348 AllNodes.push_back(N);
2349 #ifndef NDEBUG
2350 VerifyNode(N);
2351 #endif
2352 return SDValue(N, 0);
2355 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2356 MVT VT,
2357 ConstantSDNode *Cst1,
2358 ConstantSDNode *Cst2) {
2359 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2361 switch (Opcode) {
2362 case ISD::ADD: return getConstant(C1 + C2, VT);
2363 case ISD::SUB: return getConstant(C1 - C2, VT);
2364 case ISD::MUL: return getConstant(C1 * C2, VT);
2365 case ISD::UDIV:
2366 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2367 break;
2368 case ISD::UREM:
2369 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2370 break;
2371 case ISD::SDIV:
2372 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2373 break;
2374 case ISD::SREM:
2375 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2376 break;
2377 case ISD::AND: return getConstant(C1 & C2, VT);
2378 case ISD::OR: return getConstant(C1 | C2, VT);
2379 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2380 case ISD::SHL: return getConstant(C1 << C2, VT);
2381 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2382 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2383 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2384 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2385 default: break;
2388 return SDValue();
2391 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2392 SDValue N1, SDValue N2) {
2393 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2394 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2395 switch (Opcode) {
2396 default: break;
2397 case ISD::TokenFactor:
2398 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2399 N2.getValueType() == MVT::Other && "Invalid token factor!");
2400 // Fold trivial token factors.
2401 if (N1.getOpcode() == ISD::EntryToken) return N2;
2402 if (N2.getOpcode() == ISD::EntryToken) return N1;
2403 if (N1 == N2) return N1;
2404 break;
2405 case ISD::CONCAT_VECTORS:
2406 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2407 // one big BUILD_VECTOR.
2408 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2409 N2.getOpcode() == ISD::BUILD_VECTOR) {
2410 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2411 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2412 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2414 break;
2415 case ISD::AND:
2416 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2417 N1.getValueType() == VT && "Binary operator types must match!");
2418 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2419 // worth handling here.
2420 if (N2C && N2C->isNullValue())
2421 return N2;
2422 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2423 return N1;
2424 break;
2425 case ISD::OR:
2426 case ISD::XOR:
2427 case ISD::ADD:
2428 case ISD::SUB:
2429 assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2430 N1.getValueType() == VT && "Binary operator types must match!");
2431 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2432 // it's worth handling here.
2433 if (N2C && N2C->isNullValue())
2434 return N1;
2435 break;
2436 case ISD::UDIV:
2437 case ISD::UREM:
2438 case ISD::MULHU:
2439 case ISD::MULHS:
2440 case ISD::MUL:
2441 case ISD::SDIV:
2442 case ISD::SREM:
2443 assert(VT.isInteger() && "This operator does not apply to FP types!");
2444 // fall through
2445 case ISD::FADD:
2446 case ISD::FSUB:
2447 case ISD::FMUL:
2448 case ISD::FDIV:
2449 case ISD::FREM:
2450 if (UnsafeFPMath) {
2451 if (Opcode == ISD::FADD) {
2452 // 0+x --> x
2453 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2454 if (CFP->getValueAPF().isZero())
2455 return N2;
2456 // x+0 --> x
2457 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2458 if (CFP->getValueAPF().isZero())
2459 return N1;
2460 } else if (Opcode == ISD::FSUB) {
2461 // x-0 --> x
2462 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2463 if (CFP->getValueAPF().isZero())
2464 return N1;
2467 assert(N1.getValueType() == N2.getValueType() &&
2468 N1.getValueType() == VT && "Binary operator types must match!");
2469 break;
2470 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2471 assert(N1.getValueType() == VT &&
2472 N1.getValueType().isFloatingPoint() &&
2473 N2.getValueType().isFloatingPoint() &&
2474 "Invalid FCOPYSIGN!");
2475 break;
2476 case ISD::SHL:
2477 case ISD::SRA:
2478 case ISD::SRL:
2479 case ISD::ROTL:
2480 case ISD::ROTR:
2481 assert(VT == N1.getValueType() &&
2482 "Shift operators return type must be the same as their first arg");
2483 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2484 "Shifts only work on integers");
2486 // Always fold shifts of i1 values so the code generator doesn't need to
2487 // handle them. Since we know the size of the shift has to be less than the
2488 // size of the value, the shift/rotate count is guaranteed to be zero.
2489 if (VT == MVT::i1)
2490 return N1;
2491 break;
2492 case ISD::FP_ROUND_INREG: {
2493 MVT EVT = cast<VTSDNode>(N2)->getVT();
2494 assert(VT == N1.getValueType() && "Not an inreg round!");
2495 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2496 "Cannot FP_ROUND_INREG integer types");
2497 assert(EVT.bitsLE(VT) && "Not rounding down!");
2498 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2499 break;
2501 case ISD::FP_ROUND:
2502 assert(VT.isFloatingPoint() &&
2503 N1.getValueType().isFloatingPoint() &&
2504 VT.bitsLE(N1.getValueType()) &&
2505 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2506 if (N1.getValueType() == VT) return N1; // noop conversion.
2507 break;
2508 case ISD::AssertSext:
2509 case ISD::AssertZext: {
2510 MVT EVT = cast<VTSDNode>(N2)->getVT();
2511 assert(VT == N1.getValueType() && "Not an inreg extend!");
2512 assert(VT.isInteger() && EVT.isInteger() &&
2513 "Cannot *_EXTEND_INREG FP types");
2514 assert(EVT.bitsLE(VT) && "Not extending!");
2515 if (VT == EVT) return N1; // noop assertion.
2516 break;
2518 case ISD::SIGN_EXTEND_INREG: {
2519 MVT EVT = cast<VTSDNode>(N2)->getVT();
2520 assert(VT == N1.getValueType() && "Not an inreg extend!");
2521 assert(VT.isInteger() && EVT.isInteger() &&
2522 "Cannot *_EXTEND_INREG FP types");
2523 assert(EVT.bitsLE(VT) && "Not extending!");
2524 if (EVT == VT) return N1; // Not actually extending
2526 if (N1C) {
2527 APInt Val = N1C->getAPIntValue();
2528 unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2529 Val <<= Val.getBitWidth()-FromBits;
2530 Val = Val.ashr(Val.getBitWidth()-FromBits);
2531 return getConstant(Val, VT);
2533 break;
2535 case ISD::EXTRACT_VECTOR_ELT:
2536 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2537 if (N1.getOpcode() == ISD::UNDEF)
2538 return getUNDEF(VT);
2540 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2541 // expanding copies of large vectors from registers.
2542 if (N2C &&
2543 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2544 N1.getNumOperands() > 0) {
2545 unsigned Factor =
2546 N1.getOperand(0).getValueType().getVectorNumElements();
2547 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2548 N1.getOperand(N2C->getZExtValue() / Factor),
2549 getConstant(N2C->getZExtValue() % Factor,
2550 N2.getValueType()));
2553 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2554 // expanding large vector constants.
2555 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2556 return N1.getOperand(N2C->getZExtValue());
2558 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2559 // operations are lowered to scalars.
2560 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2561 // If the indices are the same, return the inserted element.
2562 if (N1.getOperand(2) == N2)
2563 return N1.getOperand(1);
2564 // If the indices are known different, extract the element from
2565 // the original vector.
2566 else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2567 isa<ConstantSDNode>(N2))
2568 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2570 break;
2571 case ISD::EXTRACT_ELEMENT:
2572 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2573 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2574 (N1.getValueType().isInteger() == VT.isInteger()) &&
2575 "Wrong types for EXTRACT_ELEMENT!");
2577 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2578 // 64-bit integers into 32-bit parts. Instead of building the extract of
2579 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2580 if (N1.getOpcode() == ISD::BUILD_PAIR)
2581 return N1.getOperand(N2C->getZExtValue());
2583 // EXTRACT_ELEMENT of a constant int is also very common.
2584 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2585 unsigned ElementSize = VT.getSizeInBits();
2586 unsigned Shift = ElementSize * N2C->getZExtValue();
2587 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2588 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2590 break;
2591 case ISD::EXTRACT_SUBVECTOR:
2592 if (N1.getValueType() == VT) // Trivial extraction.
2593 return N1;
2594 break;
2597 if (N1C) {
2598 if (N2C) {
2599 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2600 if (SV.getNode()) return SV;
2601 } else { // Cannonicalize constant to RHS if commutative
2602 if (isCommutativeBinOp(Opcode)) {
2603 std::swap(N1C, N2C);
2604 std::swap(N1, N2);
2609 // Constant fold FP operations.
2610 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2611 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2612 if (N1CFP) {
2613 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2614 // Cannonicalize constant to RHS if commutative
2615 std::swap(N1CFP, N2CFP);
2616 std::swap(N1, N2);
2617 } else if (N2CFP && VT != MVT::ppcf128) {
2618 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2619 APFloat::opStatus s;
2620 switch (Opcode) {
2621 case ISD::FADD:
2622 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2623 if (s != APFloat::opInvalidOp)
2624 return getConstantFP(V1, VT);
2625 break;
2626 case ISD::FSUB:
2627 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2628 if (s!=APFloat::opInvalidOp)
2629 return getConstantFP(V1, VT);
2630 break;
2631 case ISD::FMUL:
2632 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2633 if (s!=APFloat::opInvalidOp)
2634 return getConstantFP(V1, VT);
2635 break;
2636 case ISD::FDIV:
2637 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2638 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2639 return getConstantFP(V1, VT);
2640 break;
2641 case ISD::FREM :
2642 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2643 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2644 return getConstantFP(V1, VT);
2645 break;
2646 case ISD::FCOPYSIGN:
2647 V1.copySign(V2);
2648 return getConstantFP(V1, VT);
2649 default: break;
2654 // Canonicalize an UNDEF to the RHS, even over a constant.
2655 if (N1.getOpcode() == ISD::UNDEF) {
2656 if (isCommutativeBinOp(Opcode)) {
2657 std::swap(N1, N2);
2658 } else {
2659 switch (Opcode) {
2660 case ISD::FP_ROUND_INREG:
2661 case ISD::SIGN_EXTEND_INREG:
2662 case ISD::SUB:
2663 case ISD::FSUB:
2664 case ISD::FDIV:
2665 case ISD::FREM:
2666 case ISD::SRA:
2667 return N1; // fold op(undef, arg2) -> undef
2668 case ISD::UDIV:
2669 case ISD::SDIV:
2670 case ISD::UREM:
2671 case ISD::SREM:
2672 case ISD::SRL:
2673 case ISD::SHL:
2674 if (!VT.isVector())
2675 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2676 // For vectors, we can't easily build an all zero vector, just return
2677 // the LHS.
2678 return N2;
2683 // Fold a bunch of operators when the RHS is undef.
2684 if (N2.getOpcode() == ISD::UNDEF) {
2685 switch (Opcode) {
2686 case ISD::XOR:
2687 if (N1.getOpcode() == ISD::UNDEF)
2688 // Handle undef ^ undef -> 0 special case. This is a common
2689 // idiom (misuse).
2690 return getConstant(0, VT);
2691 // fallthrough
2692 case ISD::ADD:
2693 case ISD::ADDC:
2694 case ISD::ADDE:
2695 case ISD::SUB:
2696 case ISD::FADD:
2697 case ISD::FSUB:
2698 case ISD::FMUL:
2699 case ISD::FDIV:
2700 case ISD::FREM:
2701 case ISD::UDIV:
2702 case ISD::SDIV:
2703 case ISD::UREM:
2704 case ISD::SREM:
2705 return N2; // fold op(arg1, undef) -> undef
2706 case ISD::MUL:
2707 case ISD::AND:
2708 case ISD::SRL:
2709 case ISD::SHL:
2710 if (!VT.isVector())
2711 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2712 // For vectors, we can't easily build an all zero vector, just return
2713 // the LHS.
2714 return N1;
2715 case ISD::OR:
2716 if (!VT.isVector())
2717 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2718 // For vectors, we can't easily build an all one vector, just return
2719 // the LHS.
2720 return N1;
2721 case ISD::SRA:
2722 return N1;
2726 // Memoize this node if possible.
2727 SDNode *N;
2728 SDVTList VTs = getVTList(VT);
2729 if (VT != MVT::Flag) {
2730 SDValue Ops[] = { N1, N2 };
2731 FoldingSetNodeID ID;
2732 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2733 void *IP = 0;
2734 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2735 return SDValue(E, 0);
2736 N = NodeAllocator.Allocate<BinarySDNode>();
2737 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2738 CSEMap.InsertNode(N, IP);
2739 } else {
2740 N = NodeAllocator.Allocate<BinarySDNode>();
2741 new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2744 AllNodes.push_back(N);
2745 #ifndef NDEBUG
2746 VerifyNode(N);
2747 #endif
2748 return SDValue(N, 0);
2751 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2752 SDValue N1, SDValue N2, SDValue N3) {
2753 // Perform various simplifications.
2754 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2755 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2756 switch (Opcode) {
2757 case ISD::CONCAT_VECTORS:
2758 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2759 // one big BUILD_VECTOR.
2760 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2761 N2.getOpcode() == ISD::BUILD_VECTOR &&
2762 N3.getOpcode() == ISD::BUILD_VECTOR) {
2763 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2764 Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2765 Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2766 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2768 break;
2769 case ISD::SETCC: {
2770 // Use FoldSetCC to simplify SETCC's.
2771 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2772 if (Simp.getNode()) return Simp;
2773 break;
2775 case ISD::SELECT:
2776 if (N1C) {
2777 if (N1C->getZExtValue())
2778 return N2; // select true, X, Y -> X
2779 else
2780 return N3; // select false, X, Y -> Y
2783 if (N2 == N3) return N2; // select C, X, X -> X
2784 break;
2785 case ISD::BRCOND:
2786 if (N2C) {
2787 if (N2C->getZExtValue()) // Unconditional branch
2788 return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2789 else
2790 return N1; // Never-taken branch
2792 break;
2793 case ISD::VECTOR_SHUFFLE:
2794 assert(N1.getValueType() == N2.getValueType() &&
2795 N1.getValueType().isVector() &&
2796 VT.isVector() && N3.getValueType().isVector() &&
2797 N3.getOpcode() == ISD::BUILD_VECTOR &&
2798 VT.getVectorNumElements() == N3.getNumOperands() &&
2799 "Illegal VECTOR_SHUFFLE node!");
2800 break;
2801 case ISD::BIT_CONVERT:
2802 // Fold bit_convert nodes from a type to themselves.
2803 if (N1.getValueType() == VT)
2804 return N1;
2805 break;
2808 // Memoize node if it doesn't produce a flag.
2809 SDNode *N;
2810 SDVTList VTs = getVTList(VT);
2811 if (VT != MVT::Flag) {
2812 SDValue Ops[] = { N1, N2, N3 };
2813 FoldingSetNodeID ID;
2814 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2815 void *IP = 0;
2816 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2817 return SDValue(E, 0);
2818 N = NodeAllocator.Allocate<TernarySDNode>();
2819 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2820 CSEMap.InsertNode(N, IP);
2821 } else {
2822 N = NodeAllocator.Allocate<TernarySDNode>();
2823 new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2825 AllNodes.push_back(N);
2826 #ifndef NDEBUG
2827 VerifyNode(N);
2828 #endif
2829 return SDValue(N, 0);
2832 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2833 SDValue N1, SDValue N2, SDValue N3,
2834 SDValue N4) {
2835 SDValue Ops[] = { N1, N2, N3, N4 };
2836 return getNode(Opcode, DL, VT, Ops, 4);
2839 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2840 SDValue N1, SDValue N2, SDValue N3,
2841 SDValue N4, SDValue N5) {
2842 SDValue Ops[] = { N1, N2, N3, N4, N5 };
2843 return getNode(Opcode, DL, VT, Ops, 5);
2846 /// getMemsetValue - Vectorized representation of the memset value
2847 /// operand.
2848 static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2849 DebugLoc dl) {
2850 unsigned NumBits = VT.isVector() ?
2851 VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2852 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2853 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2854 unsigned Shift = 8;
2855 for (unsigned i = NumBits; i > 8; i >>= 1) {
2856 Val = (Val << Shift) | Val;
2857 Shift <<= 1;
2859 if (VT.isInteger())
2860 return DAG.getConstant(Val, VT);
2861 return DAG.getConstantFP(APFloat(Val), VT);
2864 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2865 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2866 unsigned Shift = 8;
2867 for (unsigned i = NumBits; i > 8; i >>= 1) {
2868 Value = DAG.getNode(ISD::OR, dl, VT,
2869 DAG.getNode(ISD::SHL, dl, VT, Value,
2870 DAG.getConstant(Shift,
2871 TLI.getShiftAmountTy())),
2872 Value);
2873 Shift <<= 1;
2876 return Value;
2879 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2880 /// used when a memcpy is turned into a memset when the source is a constant
2881 /// string ptr.
2882 static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2883 const TargetLowering &TLI,
2884 std::string &Str, unsigned Offset) {
2885 // Handle vector with all elements zero.
2886 if (Str.empty()) {
2887 if (VT.isInteger())
2888 return DAG.getConstant(0, VT);
2889 unsigned NumElts = VT.getVectorNumElements();
2890 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2891 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2892 DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2895 assert(!VT.isVector() && "Can't handle vector type here!");
2896 unsigned NumBits = VT.getSizeInBits();
2897 unsigned MSB = NumBits / 8;
2898 uint64_t Val = 0;
2899 if (TLI.isLittleEndian())
2900 Offset = Offset + MSB - 1;
2901 for (unsigned i = 0; i != MSB; ++i) {
2902 Val = (Val << 8) | (unsigned char)Str[Offset];
2903 Offset += TLI.isLittleEndian() ? -1 : 1;
2905 return DAG.getConstant(Val, VT);
2908 /// getMemBasePlusOffset - Returns base and offset node for the
2910 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2911 SelectionDAG &DAG) {
2912 MVT VT = Base.getValueType();
2913 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2914 VT, Base, DAG.getConstant(Offset, VT));
2917 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
2919 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2920 unsigned SrcDelta = 0;
2921 GlobalAddressSDNode *G = NULL;
2922 if (Src.getOpcode() == ISD::GlobalAddress)
2923 G = cast<GlobalAddressSDNode>(Src);
2924 else if (Src.getOpcode() == ISD::ADD &&
2925 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2926 Src.getOperand(1).getOpcode() == ISD::Constant) {
2927 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2928 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2930 if (!G)
2931 return false;
2933 GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2934 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2935 return true;
2937 return false;
2940 /// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2941 /// to replace the memset / memcpy is below the threshold. It also returns the
2942 /// types of the sequence of memory ops to perform memset / memcpy.
2943 static
2944 bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2945 SDValue Dst, SDValue Src,
2946 unsigned Limit, uint64_t Size, unsigned &Align,
2947 std::string &Str, bool &isSrcStr,
2948 SelectionDAG &DAG,
2949 const TargetLowering &TLI) {
2950 isSrcStr = isMemSrcFromString(Src, Str);
2951 bool isSrcConst = isa<ConstantSDNode>(Src);
2952 bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2953 MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2954 if (VT != MVT::iAny) {
2955 unsigned NewAlign = (unsigned)
2956 TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2957 // If source is a string constant, this will require an unaligned load.
2958 if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2959 if (Dst.getOpcode() != ISD::FrameIndex) {
2960 // Can't change destination alignment. It requires a unaligned store.
2961 if (AllowUnalign)
2962 VT = MVT::iAny;
2963 } else {
2964 int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2965 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2966 if (MFI->isFixedObjectIndex(FI)) {
2967 // Can't change destination alignment. It requires a unaligned store.
2968 if (AllowUnalign)
2969 VT = MVT::iAny;
2970 } else {
2971 // Give the stack frame object a larger alignment if needed.
2972 if (MFI->getObjectAlignment(FI) < NewAlign)
2973 MFI->setObjectAlignment(FI, NewAlign);
2974 Align = NewAlign;
2980 if (VT == MVT::iAny) {
2981 if (AllowUnalign) {
2982 VT = MVT::i64;
2983 } else {
2984 switch (Align & 7) {
2985 case 0: VT = MVT::i64; break;
2986 case 4: VT = MVT::i32; break;
2987 case 2: VT = MVT::i16; break;
2988 default: VT = MVT::i8; break;
2992 MVT LVT = MVT::i64;
2993 while (!TLI.isTypeLegal(LVT))
2994 LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2995 assert(LVT.isInteger());
2997 if (VT.bitsGT(LVT))
2998 VT = LVT;
3001 unsigned NumMemOps = 0;
3002 while (Size != 0) {
3003 unsigned VTSize = VT.getSizeInBits() / 8;
3004 while (VTSize > Size) {
3005 // For now, only use non-vector load / store's for the left-over pieces.
3006 if (VT.isVector()) {
3007 VT = MVT::i64;
3008 while (!TLI.isTypeLegal(VT))
3009 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3010 VTSize = VT.getSizeInBits() / 8;
3011 } else {
3012 VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3013 VTSize >>= 1;
3017 if (++NumMemOps > Limit)
3018 return false;
3019 MemOps.push_back(VT);
3020 Size -= VTSize;
3023 return true;
3026 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3027 SDValue Chain, SDValue Dst,
3028 SDValue Src, uint64_t Size,
3029 unsigned Align, bool AlwaysInline,
3030 const Value *DstSV, uint64_t DstSVOff,
3031 const Value *SrcSV, uint64_t SrcSVOff){
3032 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3034 // Expand memcpy to a series of load and store ops if the size operand falls
3035 // below a certain threshold.
3036 std::vector<MVT> MemOps;
3037 uint64_t Limit = -1ULL;
3038 if (!AlwaysInline)
3039 Limit = TLI.getMaxStoresPerMemcpy();
3040 unsigned DstAlign = Align; // Destination alignment can change.
3041 std::string Str;
3042 bool CopyFromStr;
3043 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3044 Str, CopyFromStr, DAG, TLI))
3045 return SDValue();
3048 bool isZeroStr = CopyFromStr && Str.empty();
3049 SmallVector<SDValue, 8> OutChains;
3050 unsigned NumMemOps = MemOps.size();
3051 uint64_t SrcOff = 0, DstOff = 0;
3052 for (unsigned i = 0; i < NumMemOps; i++) {
3053 MVT VT = MemOps[i];
3054 unsigned VTSize = VT.getSizeInBits() / 8;
3055 SDValue Value, Store;
3057 if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3058 // It's unlikely a store of a vector immediate can be done in a single
3059 // instruction. It would require a load from a constantpool first.
3060 // We also handle store a vector with all zero's.
3061 // FIXME: Handle other cases where store of vector immediate is done in
3062 // a single instruction.
3063 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3064 Store = DAG.getStore(Chain, dl, Value,
3065 getMemBasePlusOffset(Dst, DstOff, DAG),
3066 DstSV, DstSVOff + DstOff, false, DstAlign);
3067 } else {
3068 Value = DAG.getLoad(VT, dl, Chain,
3069 getMemBasePlusOffset(Src, SrcOff, DAG),
3070 SrcSV, SrcSVOff + SrcOff, false, Align);
3071 Store = DAG.getStore(Chain, dl, Value,
3072 getMemBasePlusOffset(Dst, DstOff, DAG),
3073 DstSV, DstSVOff + DstOff, false, DstAlign);
3075 OutChains.push_back(Store);
3076 SrcOff += VTSize;
3077 DstOff += VTSize;
3080 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3081 &OutChains[0], OutChains.size());
3084 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3085 SDValue Chain, SDValue Dst,
3086 SDValue Src, uint64_t Size,
3087 unsigned Align, bool AlwaysInline,
3088 const Value *DstSV, uint64_t DstSVOff,
3089 const Value *SrcSV, uint64_t SrcSVOff){
3090 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3092 // Expand memmove to a series of load and store ops if the size operand falls
3093 // below a certain threshold.
3094 std::vector<MVT> MemOps;
3095 uint64_t Limit = -1ULL;
3096 if (!AlwaysInline)
3097 Limit = TLI.getMaxStoresPerMemmove();
3098 unsigned DstAlign = Align; // Destination alignment can change.
3099 std::string Str;
3100 bool CopyFromStr;
3101 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3102 Str, CopyFromStr, DAG, TLI))
3103 return SDValue();
3105 uint64_t SrcOff = 0, DstOff = 0;
3107 SmallVector<SDValue, 8> LoadValues;
3108 SmallVector<SDValue, 8> LoadChains;
3109 SmallVector<SDValue, 8> OutChains;
3110 unsigned NumMemOps = MemOps.size();
3111 for (unsigned i = 0; i < NumMemOps; i++) {
3112 MVT VT = MemOps[i];
3113 unsigned VTSize = VT.getSizeInBits() / 8;
3114 SDValue Value, Store;
3116 Value = DAG.getLoad(VT, dl, Chain,
3117 getMemBasePlusOffset(Src, SrcOff, DAG),
3118 SrcSV, SrcSVOff + SrcOff, false, Align);
3119 LoadValues.push_back(Value);
3120 LoadChains.push_back(Value.getValue(1));
3121 SrcOff += VTSize;
3123 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3124 &LoadChains[0], LoadChains.size());
3125 OutChains.clear();
3126 for (unsigned i = 0; i < NumMemOps; i++) {
3127 MVT VT = MemOps[i];
3128 unsigned VTSize = VT.getSizeInBits() / 8;
3129 SDValue Value, Store;
3131 Store = DAG.getStore(Chain, dl, LoadValues[i],
3132 getMemBasePlusOffset(Dst, DstOff, DAG),
3133 DstSV, DstSVOff + DstOff, false, DstAlign);
3134 OutChains.push_back(Store);
3135 DstOff += VTSize;
3138 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3139 &OutChains[0], OutChains.size());
3142 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3143 SDValue Chain, SDValue Dst,
3144 SDValue Src, uint64_t Size,
3145 unsigned Align,
3146 const Value *DstSV, uint64_t DstSVOff) {
3147 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3149 // Expand memset to a series of load/store ops if the size operand
3150 // falls below a certain threshold.
3151 std::vector<MVT> MemOps;
3152 std::string Str;
3153 bool CopyFromStr;
3154 if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3155 Size, Align, Str, CopyFromStr, DAG, TLI))
3156 return SDValue();
3158 SmallVector<SDValue, 8> OutChains;
3159 uint64_t DstOff = 0;
3161 unsigned NumMemOps = MemOps.size();
3162 for (unsigned i = 0; i < NumMemOps; i++) {
3163 MVT VT = MemOps[i];
3164 unsigned VTSize = VT.getSizeInBits() / 8;
3165 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3166 SDValue Store = DAG.getStore(Chain, dl, Value,
3167 getMemBasePlusOffset(Dst, DstOff, DAG),
3168 DstSV, DstSVOff + DstOff);
3169 OutChains.push_back(Store);
3170 DstOff += VTSize;
3173 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3174 &OutChains[0], OutChains.size());
3177 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3178 SDValue Src, SDValue Size,
3179 unsigned Align, bool AlwaysInline,
3180 const Value *DstSV, uint64_t DstSVOff,
3181 const Value *SrcSV, uint64_t SrcSVOff) {
3183 // Check to see if we should lower the memcpy to loads and stores first.
3184 // For cases within the target-specified limits, this is the best choice.
3185 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3186 if (ConstantSize) {
3187 // Memcpy with size zero? Just return the original chain.
3188 if (ConstantSize->isNullValue())
3189 return Chain;
3191 SDValue Result =
3192 getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3193 ConstantSize->getZExtValue(),
3194 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3195 if (Result.getNode())
3196 return Result;
3199 // Then check to see if we should lower the memcpy with target-specific
3200 // code. If the target chooses to do this, this is the next best.
3201 SDValue Result =
3202 TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3203 AlwaysInline,
3204 DstSV, DstSVOff, SrcSV, SrcSVOff);
3205 if (Result.getNode())
3206 return Result;
3208 // If we really need inline code and the target declined to provide it,
3209 // use a (potentially long) sequence of loads and stores.
3210 if (AlwaysInline) {
3211 assert(ConstantSize && "AlwaysInline requires a constant size!");
3212 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3213 ConstantSize->getZExtValue(), Align, true,
3214 DstSV, DstSVOff, SrcSV, SrcSVOff);
3217 // Emit a library call.
3218 TargetLowering::ArgListTy Args;
3219 TargetLowering::ArgListEntry Entry;
3220 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3221 Entry.Node = Dst; Args.push_back(Entry);
3222 Entry.Node = Src; Args.push_back(Entry);
3223 Entry.Node = Size; Args.push_back(Entry);
3224 // FIXME: pass in DebugLoc
3225 std::pair<SDValue,SDValue> CallResult =
3226 TLI.LowerCallTo(Chain, Type::VoidTy,
3227 false, false, false, false, CallingConv::C, false,
3228 getExternalSymbol("memcpy", TLI.getPointerTy()),
3229 Args, *this, dl);
3230 return CallResult.second;
3233 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3234 SDValue Src, SDValue Size,
3235 unsigned Align,
3236 const Value *DstSV, uint64_t DstSVOff,
3237 const Value *SrcSV, uint64_t SrcSVOff) {
3239 // Check to see if we should lower the memmove to loads and stores first.
3240 // For cases within the target-specified limits, this is the best choice.
3241 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3242 if (ConstantSize) {
3243 // Memmove with size zero? Just return the original chain.
3244 if (ConstantSize->isNullValue())
3245 return Chain;
3247 SDValue Result =
3248 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3249 ConstantSize->getZExtValue(),
3250 Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3251 if (Result.getNode())
3252 return Result;
3255 // Then check to see if we should lower the memmove with target-specific
3256 // code. If the target chooses to do this, this is the next best.
3257 SDValue Result =
3258 TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3259 DstSV, DstSVOff, SrcSV, SrcSVOff);
3260 if (Result.getNode())
3261 return Result;
3263 // Emit a library call.
3264 TargetLowering::ArgListTy Args;
3265 TargetLowering::ArgListEntry Entry;
3266 Entry.Ty = TLI.getTargetData()->getIntPtrType();
3267 Entry.Node = Dst; Args.push_back(Entry);
3268 Entry.Node = Src; Args.push_back(Entry);
3269 Entry.Node = Size; Args.push_back(Entry);
3270 // FIXME: pass in DebugLoc
3271 std::pair<SDValue,SDValue> CallResult =
3272 TLI.LowerCallTo(Chain, Type::VoidTy,
3273 false, false, false, false, CallingConv::C, false,
3274 getExternalSymbol("memmove", TLI.getPointerTy()),
3275 Args, *this, dl);
3276 return CallResult.second;
3279 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3280 SDValue Src, SDValue Size,
3281 unsigned Align,
3282 const Value *DstSV, uint64_t DstSVOff) {
3284 // Check to see if we should lower the memset to stores first.
3285 // For cases within the target-specified limits, this is the best choice.
3286 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3287 if (ConstantSize) {
3288 // Memset with size zero? Just return the original chain.
3289 if (ConstantSize->isNullValue())
3290 return Chain;
3292 SDValue Result =
3293 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3294 Align, DstSV, DstSVOff);
3295 if (Result.getNode())
3296 return Result;
3299 // Then check to see if we should lower the memset with target-specific
3300 // code. If the target chooses to do this, this is the next best.
3301 SDValue Result =
3302 TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3303 DstSV, DstSVOff);
3304 if (Result.getNode())
3305 return Result;
3307 // Emit a library call.
3308 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3309 TargetLowering::ArgListTy Args;
3310 TargetLowering::ArgListEntry Entry;
3311 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3312 Args.push_back(Entry);
3313 // Extend or truncate the argument to be an i32 value for the call.
3314 if (Src.getValueType().bitsGT(MVT::i32))
3315 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3316 else
3317 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3318 Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3319 Args.push_back(Entry);
3320 Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3321 Args.push_back(Entry);
3322 // FIXME: pass in DebugLoc
3323 std::pair<SDValue,SDValue> CallResult =
3324 TLI.LowerCallTo(Chain, Type::VoidTy,
3325 false, false, false, false, CallingConv::C, false,
3326 getExternalSymbol("memset", TLI.getPointerTy()),
3327 Args, *this, dl);
3328 return CallResult.second;
3331 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3332 SDValue Chain,
3333 SDValue Ptr, SDValue Cmp,
3334 SDValue Swp, const Value* PtrVal,
3335 unsigned Alignment) {
3336 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3337 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3339 MVT VT = Cmp.getValueType();
3341 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3342 Alignment = getMVTAlignment(MemVT);
3344 SDVTList VTs = getVTList(VT, MVT::Other);
3345 FoldingSetNodeID ID;
3346 ID.AddInteger(MemVT.getRawBits());
3347 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3348 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3349 void* IP = 0;
3350 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3351 return SDValue(E, 0);
3352 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3353 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3354 Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3355 CSEMap.InsertNode(N, IP);
3356 AllNodes.push_back(N);
3357 return SDValue(N, 0);
3360 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3361 SDValue Chain,
3362 SDValue Ptr, SDValue Val,
3363 const Value* PtrVal,
3364 unsigned Alignment) {
3365 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3366 Opcode == ISD::ATOMIC_LOAD_SUB ||
3367 Opcode == ISD::ATOMIC_LOAD_AND ||
3368 Opcode == ISD::ATOMIC_LOAD_OR ||
3369 Opcode == ISD::ATOMIC_LOAD_XOR ||
3370 Opcode == ISD::ATOMIC_LOAD_NAND ||
3371 Opcode == ISD::ATOMIC_LOAD_MIN ||
3372 Opcode == ISD::ATOMIC_LOAD_MAX ||
3373 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3374 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3375 Opcode == ISD::ATOMIC_SWAP) &&
3376 "Invalid Atomic Op");
3378 MVT VT = Val.getValueType();
3380 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3381 Alignment = getMVTAlignment(MemVT);
3383 SDVTList VTs = getVTList(VT, MVT::Other);
3384 FoldingSetNodeID ID;
3385 ID.AddInteger(MemVT.getRawBits());
3386 SDValue Ops[] = {Chain, Ptr, Val};
3387 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3388 void* IP = 0;
3389 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3390 return SDValue(E, 0);
3391 SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3392 new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3393 Chain, Ptr, Val, PtrVal, Alignment);
3394 CSEMap.InsertNode(N, IP);
3395 AllNodes.push_back(N);
3396 return SDValue(N, 0);
3399 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3400 /// Allowed to return something different (and simpler) if Simplify is true.
3401 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3402 DebugLoc dl) {
3403 if (NumOps == 1)
3404 return Ops[0];
3406 SmallVector<MVT, 4> VTs;
3407 VTs.reserve(NumOps);
3408 for (unsigned i = 0; i < NumOps; ++i)
3409 VTs.push_back(Ops[i].getValueType());
3410 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3411 Ops, NumOps);
3414 SDValue
3415 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3416 const MVT *VTs, unsigned NumVTs,
3417 const SDValue *Ops, unsigned NumOps,
3418 MVT MemVT, const Value *srcValue, int SVOff,
3419 unsigned Align, bool Vol,
3420 bool ReadMem, bool WriteMem) {
3421 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3422 MemVT, srcValue, SVOff, Align, Vol,
3423 ReadMem, WriteMem);
3426 SDValue
3427 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3428 const SDValue *Ops, unsigned NumOps,
3429 MVT MemVT, const Value *srcValue, int SVOff,
3430 unsigned Align, bool Vol,
3431 bool ReadMem, bool WriteMem) {
3432 // Memoize the node unless it returns a flag.
3433 MemIntrinsicSDNode *N;
3434 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3435 FoldingSetNodeID ID;
3436 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3437 void *IP = 0;
3438 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3439 return SDValue(E, 0);
3441 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3442 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3443 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3444 CSEMap.InsertNode(N, IP);
3445 } else {
3446 N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3447 new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3448 srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3450 AllNodes.push_back(N);
3451 return SDValue(N, 0);
3454 SDValue
3455 SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3456 bool IsTailCall, bool IsInreg, SDVTList VTs,
3457 const SDValue *Operands, unsigned NumOperands) {
3458 // Do not include isTailCall in the folding set profile.
3459 FoldingSetNodeID ID;
3460 AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3461 ID.AddInteger(CallingConv);
3462 ID.AddInteger(IsVarArgs);
3463 void *IP = 0;
3464 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3465 // Instead of including isTailCall in the folding set, we just
3466 // set the flag of the existing node.
3467 if (!IsTailCall)
3468 cast<CallSDNode>(E)->setNotTailCall();
3469 return SDValue(E, 0);
3471 SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3472 new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3473 VTs, Operands, NumOperands);
3474 CSEMap.InsertNode(N, IP);
3475 AllNodes.push_back(N);
3476 return SDValue(N, 0);
3479 SDValue
3480 SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3481 ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3482 SDValue Ptr, SDValue Offset,
3483 const Value *SV, int SVOffset, MVT EVT,
3484 bool isVolatile, unsigned Alignment) {
3485 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3486 Alignment = getMVTAlignment(VT);
3488 if (VT == EVT) {
3489 ExtType = ISD::NON_EXTLOAD;
3490 } else if (ExtType == ISD::NON_EXTLOAD) {
3491 assert(VT == EVT && "Non-extending load from different memory type!");
3492 } else {
3493 // Extending load.
3494 if (VT.isVector())
3495 assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3496 "Invalid vector extload!");
3497 else
3498 assert(EVT.bitsLT(VT) &&
3499 "Should only be an extending load, not truncating!");
3500 assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3501 "Cannot sign/zero extend a FP/Vector load!");
3502 assert(VT.isInteger() == EVT.isInteger() &&
3503 "Cannot convert from FP to Int or Int -> FP!");
3506 bool Indexed = AM != ISD::UNINDEXED;
3507 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3508 "Unindexed load with an offset!");
3510 SDVTList VTs = Indexed ?
3511 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3512 SDValue Ops[] = { Chain, Ptr, Offset };
3513 FoldingSetNodeID ID;
3514 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3515 ID.AddInteger(EVT.getRawBits());
3516 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3517 void *IP = 0;
3518 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3519 return SDValue(E, 0);
3520 SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3521 new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3522 Alignment, isVolatile);
3523 CSEMap.InsertNode(N, IP);
3524 AllNodes.push_back(N);
3525 return SDValue(N, 0);
3528 SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3529 SDValue Chain, SDValue Ptr,
3530 const Value *SV, int SVOffset,
3531 bool isVolatile, unsigned Alignment) {
3532 SDValue Undef = getUNDEF(Ptr.getValueType());
3533 return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3534 SV, SVOffset, VT, isVolatile, Alignment);
3537 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3538 SDValue Chain, SDValue Ptr,
3539 const Value *SV,
3540 int SVOffset, MVT EVT,
3541 bool isVolatile, unsigned Alignment) {
3542 SDValue Undef = getUNDEF(Ptr.getValueType());
3543 return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3544 SV, SVOffset, EVT, isVolatile, Alignment);
3547 SDValue
3548 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3549 SDValue Offset, ISD::MemIndexedMode AM) {
3550 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3551 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3552 "Load is already a indexed load!");
3553 return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3554 LD->getChain(), Base, Offset, LD->getSrcValue(),
3555 LD->getSrcValueOffset(), LD->getMemoryVT(),
3556 LD->isVolatile(), LD->getAlignment());
3559 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3560 SDValue Ptr, const Value *SV, int SVOffset,
3561 bool isVolatile, unsigned Alignment) {
3562 MVT VT = Val.getValueType();
3564 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3565 Alignment = getMVTAlignment(VT);
3567 SDVTList VTs = getVTList(MVT::Other);
3568 SDValue Undef = getUNDEF(Ptr.getValueType());
3569 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3570 FoldingSetNodeID ID;
3571 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3572 ID.AddInteger(VT.getRawBits());
3573 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3574 isVolatile, Alignment));
3575 void *IP = 0;
3576 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3577 return SDValue(E, 0);
3578 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3579 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3580 VT, SV, SVOffset, Alignment, isVolatile);
3581 CSEMap.InsertNode(N, IP);
3582 AllNodes.push_back(N);
3583 return SDValue(N, 0);
3586 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3587 SDValue Ptr, const Value *SV,
3588 int SVOffset, MVT SVT,
3589 bool isVolatile, unsigned Alignment) {
3590 MVT VT = Val.getValueType();
3592 if (VT == SVT)
3593 return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3595 assert(VT.bitsGT(SVT) && "Not a truncation?");
3596 assert(VT.isInteger() == SVT.isInteger() &&
3597 "Can't do FP-INT conversion!");
3599 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3600 Alignment = getMVTAlignment(VT);
3602 SDVTList VTs = getVTList(MVT::Other);
3603 SDValue Undef = getUNDEF(Ptr.getValueType());
3604 SDValue Ops[] = { Chain, Val, Ptr, Undef };
3605 FoldingSetNodeID ID;
3606 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3607 ID.AddInteger(SVT.getRawBits());
3608 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3609 isVolatile, Alignment));
3610 void *IP = 0;
3611 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3612 return SDValue(E, 0);
3613 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3614 new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3615 SVT, SV, SVOffset, Alignment, isVolatile);
3616 CSEMap.InsertNode(N, IP);
3617 AllNodes.push_back(N);
3618 return SDValue(N, 0);
3621 SDValue
3622 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3623 SDValue Offset, ISD::MemIndexedMode AM) {
3624 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3625 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3626 "Store is already a indexed store!");
3627 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3628 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3629 FoldingSetNodeID ID;
3630 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3631 ID.AddInteger(ST->getMemoryVT().getRawBits());
3632 ID.AddInteger(ST->getRawSubclassData());
3633 void *IP = 0;
3634 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3635 return SDValue(E, 0);
3636 SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3637 new (N) StoreSDNode(Ops, dl, VTs, AM,
3638 ST->isTruncatingStore(), ST->getMemoryVT(),
3639 ST->getSrcValue(), ST->getSrcValueOffset(),
3640 ST->getAlignment(), ST->isVolatile());
3641 CSEMap.InsertNode(N, IP);
3642 AllNodes.push_back(N);
3643 return SDValue(N, 0);
3646 SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3647 SDValue Chain, SDValue Ptr,
3648 SDValue SV) {
3649 SDValue Ops[] = { Chain, Ptr, SV };
3650 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3653 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3654 const SDUse *Ops, unsigned NumOps) {
3655 switch (NumOps) {
3656 case 0: return getNode(Opcode, DL, VT);
3657 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3658 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3659 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3660 default: break;
3663 // Copy from an SDUse array into an SDValue array for use with
3664 // the regular getNode logic.
3665 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3666 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3669 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3670 const SDValue *Ops, unsigned NumOps) {
3671 switch (NumOps) {
3672 case 0: return getNode(Opcode, DL, VT);
3673 case 1: return getNode(Opcode, DL, VT, Ops[0]);
3674 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3675 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3676 default: break;
3679 switch (Opcode) {
3680 default: break;
3681 case ISD::SELECT_CC: {
3682 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3683 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3684 "LHS and RHS of condition must have same type!");
3685 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3686 "True and False arms of SelectCC must have same type!");
3687 assert(Ops[2].getValueType() == VT &&
3688 "select_cc node must be of same type as true and false value!");
3689 break;
3691 case ISD::BR_CC: {
3692 assert(NumOps == 5 && "BR_CC takes 5 operands!");
3693 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3694 "LHS/RHS of comparison should match types!");
3695 break;
3699 // Memoize nodes.
3700 SDNode *N;
3701 SDVTList VTs = getVTList(VT);
3703 if (VT != MVT::Flag) {
3704 FoldingSetNodeID ID;
3705 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3706 void *IP = 0;
3708 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3709 return SDValue(E, 0);
3711 N = NodeAllocator.Allocate<SDNode>();
3712 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3713 CSEMap.InsertNode(N, IP);
3714 } else {
3715 N = NodeAllocator.Allocate<SDNode>();
3716 new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3719 AllNodes.push_back(N);
3720 #ifndef NDEBUG
3721 VerifyNode(N);
3722 #endif
3723 return SDValue(N, 0);
3726 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3727 const std::vector<MVT> &ResultTys,
3728 const SDValue *Ops, unsigned NumOps) {
3729 return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
3730 Ops, NumOps);
3733 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3734 const MVT *VTs, unsigned NumVTs,
3735 const SDValue *Ops, unsigned NumOps) {
3736 if (NumVTs == 1)
3737 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3738 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3741 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3742 const SDValue *Ops, unsigned NumOps) {
3743 if (VTList.NumVTs == 1)
3744 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3746 switch (Opcode) {
3747 // FIXME: figure out how to safely handle things like
3748 // int foo(int x) { return 1 << (x & 255); }
3749 // int bar() { return foo(256); }
3750 #if 0
3751 case ISD::SRA_PARTS:
3752 case ISD::SRL_PARTS:
3753 case ISD::SHL_PARTS:
3754 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3755 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3756 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3757 else if (N3.getOpcode() == ISD::AND)
3758 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3759 // If the and is only masking out bits that cannot effect the shift,
3760 // eliminate the and.
3761 unsigned NumBits = VT.getSizeInBits()*2;
3762 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3763 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3765 break;
3766 #endif
3769 // Memoize the node unless it returns a flag.
3770 SDNode *N;
3771 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3772 FoldingSetNodeID ID;
3773 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3774 void *IP = 0;
3775 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3776 return SDValue(E, 0);
3777 if (NumOps == 1) {
3778 N = NodeAllocator.Allocate<UnarySDNode>();
3779 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3780 } else if (NumOps == 2) {
3781 N = NodeAllocator.Allocate<BinarySDNode>();
3782 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3783 } else if (NumOps == 3) {
3784 N = NodeAllocator.Allocate<TernarySDNode>();
3785 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3786 } else {
3787 N = NodeAllocator.Allocate<SDNode>();
3788 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3790 CSEMap.InsertNode(N, IP);
3791 } else {
3792 if (NumOps == 1) {
3793 N = NodeAllocator.Allocate<UnarySDNode>();
3794 new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3795 } else if (NumOps == 2) {
3796 N = NodeAllocator.Allocate<BinarySDNode>();
3797 new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3798 } else if (NumOps == 3) {
3799 N = NodeAllocator.Allocate<TernarySDNode>();
3800 new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3801 } else {
3802 N = NodeAllocator.Allocate<SDNode>();
3803 new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3806 AllNodes.push_back(N);
3807 #ifndef NDEBUG
3808 VerifyNode(N);
3809 #endif
3810 return SDValue(N, 0);
3813 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3814 return getNode(Opcode, DL, VTList, 0, 0);
3817 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3818 SDValue N1) {
3819 SDValue Ops[] = { N1 };
3820 return getNode(Opcode, DL, VTList, Ops, 1);
3823 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3824 SDValue N1, SDValue N2) {
3825 SDValue Ops[] = { N1, N2 };
3826 return getNode(Opcode, DL, VTList, Ops, 2);
3829 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3830 SDValue N1, SDValue N2, SDValue N3) {
3831 SDValue Ops[] = { N1, N2, N3 };
3832 return getNode(Opcode, DL, VTList, Ops, 3);
3835 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3836 SDValue N1, SDValue N2, SDValue N3,
3837 SDValue N4) {
3838 SDValue Ops[] = { N1, N2, N3, N4 };
3839 return getNode(Opcode, DL, VTList, Ops, 4);
3842 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3843 SDValue N1, SDValue N2, SDValue N3,
3844 SDValue N4, SDValue N5) {
3845 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3846 return getNode(Opcode, DL, VTList, Ops, 5);
3849 SDVTList SelectionDAG::getVTList(MVT VT) {
3850 return makeVTList(SDNode::getValueTypeList(VT), 1);
3853 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3854 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3855 E = VTList.rend(); I != E; ++I)
3856 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3857 return *I;
3859 MVT *Array = Allocator.Allocate<MVT>(2);
3860 Array[0] = VT1;
3861 Array[1] = VT2;
3862 SDVTList Result = makeVTList(Array, 2);
3863 VTList.push_back(Result);
3864 return Result;
3867 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3868 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3869 E = VTList.rend(); I != E; ++I)
3870 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3871 I->VTs[2] == VT3)
3872 return *I;
3874 MVT *Array = Allocator.Allocate<MVT>(3);
3875 Array[0] = VT1;
3876 Array[1] = VT2;
3877 Array[2] = VT3;
3878 SDVTList Result = makeVTList(Array, 3);
3879 VTList.push_back(Result);
3880 return Result;
3883 SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3884 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3885 E = VTList.rend(); I != E; ++I)
3886 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3887 I->VTs[2] == VT3 && I->VTs[3] == VT4)
3888 return *I;
3890 MVT *Array = Allocator.Allocate<MVT>(3);
3891 Array[0] = VT1;
3892 Array[1] = VT2;
3893 Array[2] = VT3;
3894 Array[3] = VT4;
3895 SDVTList Result = makeVTList(Array, 4);
3896 VTList.push_back(Result);
3897 return Result;
3900 SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3901 switch (NumVTs) {
3902 case 0: assert(0 && "Cannot have nodes without results!");
3903 case 1: return getVTList(VTs[0]);
3904 case 2: return getVTList(VTs[0], VTs[1]);
3905 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3906 default: break;
3909 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3910 E = VTList.rend(); I != E; ++I) {
3911 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3912 continue;
3914 bool NoMatch = false;
3915 for (unsigned i = 2; i != NumVTs; ++i)
3916 if (VTs[i] != I->VTs[i]) {
3917 NoMatch = true;
3918 break;
3920 if (!NoMatch)
3921 return *I;
3924 MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3925 std::copy(VTs, VTs+NumVTs, Array);
3926 SDVTList Result = makeVTList(Array, NumVTs);
3927 VTList.push_back(Result);
3928 return Result;
3932 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3933 /// specified operands. If the resultant node already exists in the DAG,
3934 /// this does not modify the specified node, instead it returns the node that
3935 /// already exists. If the resultant node does not exist in the DAG, the
3936 /// input node is returned. As a degenerate case, if you specify the same
3937 /// input operands as the node already has, the input node is returned.
3938 SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3939 SDNode *N = InN.getNode();
3940 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3942 // Check to see if there is no change.
3943 if (Op == N->getOperand(0)) return InN;
3945 // See if the modified node already exists.
3946 void *InsertPos = 0;
3947 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3948 return SDValue(Existing, InN.getResNo());
3950 // Nope it doesn't. Remove the node from its current place in the maps.
3951 if (InsertPos)
3952 if (!RemoveNodeFromCSEMaps(N))
3953 InsertPos = 0;
3955 // Now we update the operands.
3956 N->OperandList[0].set(Op);
3958 // If this gets put into a CSE map, add it.
3959 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3960 return InN;
3963 SDValue SelectionDAG::
3964 UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3965 SDNode *N = InN.getNode();
3966 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3968 // Check to see if there is no change.
3969 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3970 return InN; // No operands changed, just return the input node.
3972 // See if the modified node already exists.
3973 void *InsertPos = 0;
3974 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3975 return SDValue(Existing, InN.getResNo());
3977 // Nope it doesn't. Remove the node from its current place in the maps.
3978 if (InsertPos)
3979 if (!RemoveNodeFromCSEMaps(N))
3980 InsertPos = 0;
3982 // Now we update the operands.
3983 if (N->OperandList[0] != Op1)
3984 N->OperandList[0].set(Op1);
3985 if (N->OperandList[1] != Op2)
3986 N->OperandList[1].set(Op2);
3988 // If this gets put into a CSE map, add it.
3989 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3990 return InN;
3993 SDValue SelectionDAG::
3994 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3995 SDValue Ops[] = { Op1, Op2, Op3 };
3996 return UpdateNodeOperands(N, Ops, 3);
3999 SDValue SelectionDAG::
4000 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4001 SDValue Op3, SDValue Op4) {
4002 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4003 return UpdateNodeOperands(N, Ops, 4);
4006 SDValue SelectionDAG::
4007 UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4008 SDValue Op3, SDValue Op4, SDValue Op5) {
4009 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4010 return UpdateNodeOperands(N, Ops, 5);
4013 SDValue SelectionDAG::
4014 UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4015 SDNode *N = InN.getNode();
4016 assert(N->getNumOperands() == NumOps &&
4017 "Update with wrong number of operands");
4019 // Check to see if there is no change.
4020 bool AnyChange = false;
4021 for (unsigned i = 0; i != NumOps; ++i) {
4022 if (Ops[i] != N->getOperand(i)) {
4023 AnyChange = true;
4024 break;
4028 // No operands changed, just return the input node.
4029 if (!AnyChange) return InN;
4031 // See if the modified node already exists.
4032 void *InsertPos = 0;
4033 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4034 return SDValue(Existing, InN.getResNo());
4036 // Nope it doesn't. Remove the node from its current place in the maps.
4037 if (InsertPos)
4038 if (!RemoveNodeFromCSEMaps(N))
4039 InsertPos = 0;
4041 // Now we update the operands.
4042 for (unsigned i = 0; i != NumOps; ++i)
4043 if (N->OperandList[i] != Ops[i])
4044 N->OperandList[i].set(Ops[i]);
4046 // If this gets put into a CSE map, add it.
4047 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4048 return InN;
4051 /// DropOperands - Release the operands and set this node to have
4052 /// zero operands.
4053 void SDNode::DropOperands() {
4054 // Unlike the code in MorphNodeTo that does this, we don't need to
4055 // watch for dead nodes here.
4056 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4057 SDUse &Use = *I++;
4058 Use.set(SDValue());
4062 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4063 /// machine opcode.
4065 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4066 MVT VT) {
4067 SDVTList VTs = getVTList(VT);
4068 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4071 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4072 MVT VT, SDValue Op1) {
4073 SDVTList VTs = getVTList(VT);
4074 SDValue Ops[] = { Op1 };
4075 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4078 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4079 MVT VT, SDValue Op1,
4080 SDValue Op2) {
4081 SDVTList VTs = getVTList(VT);
4082 SDValue Ops[] = { Op1, Op2 };
4083 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4086 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4087 MVT VT, SDValue Op1,
4088 SDValue Op2, SDValue Op3) {
4089 SDVTList VTs = getVTList(VT);
4090 SDValue Ops[] = { Op1, Op2, Op3 };
4091 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4094 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4095 MVT VT, const SDValue *Ops,
4096 unsigned NumOps) {
4097 SDVTList VTs = getVTList(VT);
4098 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4101 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4102 MVT VT1, MVT VT2, const SDValue *Ops,
4103 unsigned NumOps) {
4104 SDVTList VTs = getVTList(VT1, VT2);
4105 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4108 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4109 MVT VT1, MVT VT2) {
4110 SDVTList VTs = getVTList(VT1, VT2);
4111 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4114 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4115 MVT VT1, MVT VT2, MVT VT3,
4116 const SDValue *Ops, unsigned NumOps) {
4117 SDVTList VTs = getVTList(VT1, VT2, VT3);
4118 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4121 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4122 MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4123 const SDValue *Ops, unsigned NumOps) {
4124 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4125 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4128 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4129 MVT VT1, MVT VT2,
4130 SDValue Op1) {
4131 SDVTList VTs = getVTList(VT1, VT2);
4132 SDValue Ops[] = { Op1 };
4133 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4136 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4137 MVT VT1, MVT VT2,
4138 SDValue Op1, SDValue Op2) {
4139 SDVTList VTs = getVTList(VT1, VT2);
4140 SDValue Ops[] = { Op1, Op2 };
4141 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4144 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4145 MVT VT1, MVT VT2,
4146 SDValue Op1, SDValue Op2,
4147 SDValue Op3) {
4148 SDVTList VTs = getVTList(VT1, VT2);
4149 SDValue Ops[] = { Op1, Op2, Op3 };
4150 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4153 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4154 MVT VT1, MVT VT2, MVT VT3,
4155 SDValue Op1, SDValue Op2,
4156 SDValue Op3) {
4157 SDVTList VTs = getVTList(VT1, VT2, VT3);
4158 SDValue Ops[] = { Op1, Op2, Op3 };
4159 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4162 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4163 SDVTList VTs, const SDValue *Ops,
4164 unsigned NumOps) {
4165 return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4168 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4169 MVT VT) {
4170 SDVTList VTs = getVTList(VT);
4171 return MorphNodeTo(N, Opc, VTs, 0, 0);
4174 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4175 MVT VT, SDValue Op1) {
4176 SDVTList VTs = getVTList(VT);
4177 SDValue Ops[] = { Op1 };
4178 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4181 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4182 MVT VT, SDValue Op1,
4183 SDValue Op2) {
4184 SDVTList VTs = getVTList(VT);
4185 SDValue Ops[] = { Op1, Op2 };
4186 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4189 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4190 MVT VT, SDValue Op1,
4191 SDValue Op2, SDValue Op3) {
4192 SDVTList VTs = getVTList(VT);
4193 SDValue Ops[] = { Op1, Op2, Op3 };
4194 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4197 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4198 MVT VT, const SDValue *Ops,
4199 unsigned NumOps) {
4200 SDVTList VTs = getVTList(VT);
4201 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4204 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4205 MVT VT1, MVT VT2, const SDValue *Ops,
4206 unsigned NumOps) {
4207 SDVTList VTs = getVTList(VT1, VT2);
4208 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4211 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4212 MVT VT1, MVT VT2) {
4213 SDVTList VTs = getVTList(VT1, VT2);
4214 return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4217 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4218 MVT VT1, MVT VT2, MVT VT3,
4219 const SDValue *Ops, unsigned NumOps) {
4220 SDVTList VTs = getVTList(VT1, VT2, VT3);
4221 return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4224 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4225 MVT VT1, MVT VT2,
4226 SDValue Op1) {
4227 SDVTList VTs = getVTList(VT1, VT2);
4228 SDValue Ops[] = { Op1 };
4229 return MorphNodeTo(N, Opc, VTs, Ops, 1);
4232 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4233 MVT VT1, MVT VT2,
4234 SDValue Op1, SDValue Op2) {
4235 SDVTList VTs = getVTList(VT1, VT2);
4236 SDValue Ops[] = { Op1, Op2 };
4237 return MorphNodeTo(N, Opc, VTs, Ops, 2);
4240 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4241 MVT VT1, MVT VT2,
4242 SDValue Op1, SDValue Op2,
4243 SDValue Op3) {
4244 SDVTList VTs = getVTList(VT1, VT2);
4245 SDValue Ops[] = { Op1, Op2, Op3 };
4246 return MorphNodeTo(N, Opc, VTs, Ops, 3);
4249 /// MorphNodeTo - These *mutate* the specified node to have the specified
4250 /// return type, opcode, and operands.
4252 /// Note that MorphNodeTo returns the resultant node. If there is already a
4253 /// node of the specified opcode and operands, it returns that node instead of
4254 /// the current one. Note that the DebugLoc need not be the same.
4256 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4257 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4258 /// node, and because it doesn't require CSE recalculation for any of
4259 /// the node's users.
4261 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4262 SDVTList VTs, const SDValue *Ops,
4263 unsigned NumOps) {
4264 // If an identical node already exists, use it.
4265 void *IP = 0;
4266 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4267 FoldingSetNodeID ID;
4268 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4269 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4270 return ON;
4273 if (!RemoveNodeFromCSEMaps(N))
4274 IP = 0;
4276 // Start the morphing.
4277 N->NodeType = Opc;
4278 N->ValueList = VTs.VTs;
4279 N->NumValues = VTs.NumVTs;
4281 // Clear the operands list, updating used nodes to remove this from their
4282 // use list. Keep track of any operands that become dead as a result.
4283 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4284 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4285 SDUse &Use = *I++;
4286 SDNode *Used = Use.getNode();
4287 Use.set(SDValue());
4288 if (Used->use_empty())
4289 DeadNodeSet.insert(Used);
4292 // If NumOps is larger than the # of operands we currently have, reallocate
4293 // the operand list.
4294 if (NumOps > N->NumOperands) {
4295 if (N->OperandsNeedDelete)
4296 delete[] N->OperandList;
4298 if (N->isMachineOpcode()) {
4299 // We're creating a final node that will live unmorphed for the
4300 // remainder of the current SelectionDAG iteration, so we can allocate
4301 // the operands directly out of a pool with no recycling metadata.
4302 N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4303 N->OperandsNeedDelete = false;
4304 } else {
4305 N->OperandList = new SDUse[NumOps];
4306 N->OperandsNeedDelete = true;
4310 // Assign the new operands.
4311 N->NumOperands = NumOps;
4312 for (unsigned i = 0, e = NumOps; i != e; ++i) {
4313 N->OperandList[i].setUser(N);
4314 N->OperandList[i].setInitial(Ops[i]);
4317 // Delete any nodes that are still dead after adding the uses for the
4318 // new operands.
4319 SmallVector<SDNode *, 16> DeadNodes;
4320 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4321 E = DeadNodeSet.end(); I != E; ++I)
4322 if ((*I)->use_empty())
4323 DeadNodes.push_back(*I);
4324 RemoveDeadNodes(DeadNodes);
4326 if (IP)
4327 CSEMap.InsertNode(N, IP); // Memoize the new node.
4328 return N;
4332 /// getTargetNode - These are used for target selectors to create a new node
4333 /// with specified return type(s), target opcode, and operands.
4335 /// Note that getTargetNode returns the resultant node. If there is already a
4336 /// node of the specified opcode and operands, it returns that node instead of
4337 /// the current one.
4338 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4339 return getNode(~Opcode, dl, VT).getNode();
4342 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4343 SDValue Op1) {
4344 return getNode(~Opcode, dl, VT, Op1).getNode();
4347 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4348 SDValue Op1, SDValue Op2) {
4349 return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4352 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4353 SDValue Op1, SDValue Op2,
4354 SDValue Op3) {
4355 return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4358 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4359 const SDValue *Ops, unsigned NumOps) {
4360 return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4363 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4364 MVT VT1, MVT VT2) {
4365 const MVT *VTs = getNodeValueTypes(VT1, VT2);
4366 SDValue Op;
4367 return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4370 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4371 MVT VT2, SDValue Op1) {
4372 const MVT *VTs = getNodeValueTypes(VT1, VT2);
4373 return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4376 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4377 MVT VT2, SDValue Op1,
4378 SDValue Op2) {
4379 const MVT *VTs = getNodeValueTypes(VT1, VT2);
4380 SDValue Ops[] = { Op1, Op2 };
4381 return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4384 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4385 MVT VT2, SDValue Op1,
4386 SDValue Op2, SDValue Op3) {
4387 const MVT *VTs = getNodeValueTypes(VT1, VT2);
4388 SDValue Ops[] = { Op1, Op2, Op3 };
4389 return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4392 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4393 MVT VT1, MVT VT2,
4394 const SDValue *Ops, unsigned NumOps) {
4395 const MVT *VTs = getNodeValueTypes(VT1, VT2);
4396 return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4399 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4400 MVT VT1, MVT VT2, MVT VT3,
4401 SDValue Op1, SDValue Op2) {
4402 const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4403 SDValue Ops[] = { Op1, Op2 };
4404 return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4407 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4408 MVT VT1, MVT VT2, MVT VT3,
4409 SDValue Op1, SDValue Op2,
4410 SDValue Op3) {
4411 const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4412 SDValue Ops[] = { Op1, Op2, Op3 };
4413 return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4416 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4417 MVT VT1, MVT VT2, MVT VT3,
4418 const SDValue *Ops, unsigned NumOps) {
4419 const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4420 return getNode(~Opcode, dl, VTs, 3, Ops, NumOps).getNode();
4423 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4424 MVT VT2, MVT VT3, MVT VT4,
4425 const SDValue *Ops, unsigned NumOps) {
4426 std::vector<MVT> VTList;
4427 VTList.push_back(VT1);
4428 VTList.push_back(VT2);
4429 VTList.push_back(VT3);
4430 VTList.push_back(VT4);
4431 const MVT *VTs = getNodeValueTypes(VTList);
4432 return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4435 SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4436 const std::vector<MVT> &ResultTys,
4437 const SDValue *Ops, unsigned NumOps) {
4438 const MVT *VTs = getNodeValueTypes(ResultTys);
4439 return getNode(~Opcode, dl, VTs, ResultTys.size(),
4440 Ops, NumOps).getNode();
4443 /// getNodeIfExists - Get the specified node if it's already available, or
4444 /// else return NULL.
4445 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4446 const SDValue *Ops, unsigned NumOps) {
4447 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4448 FoldingSetNodeID ID;
4449 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4450 void *IP = 0;
4451 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4452 return E;
4454 return NULL;
4457 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4458 /// This can cause recursive merging of nodes in the DAG.
4460 /// This version assumes From has a single result value.
4462 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4463 DAGUpdateListener *UpdateListener) {
4464 SDNode *From = FromN.getNode();
4465 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4466 "Cannot replace with this method!");
4467 assert(From != To.getNode() && "Cannot replace uses of with self");
4469 // Iterate over all the existing uses of From. New uses will be added
4470 // to the beginning of the use list, which we avoid visiting.
4471 // This specifically avoids visiting uses of From that arise while the
4472 // replacement is happening, because any such uses would be the result
4473 // of CSE: If an existing node looks like From after one of its operands
4474 // is replaced by To, we don't want to replace of all its users with To
4475 // too. See PR3018 for more info.
4476 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4477 while (UI != UE) {
4478 SDNode *User = *UI;
4480 // This node is about to morph, remove its old self from the CSE maps.
4481 RemoveNodeFromCSEMaps(User);
4483 // A user can appear in a use list multiple times, and when this
4484 // happens the uses are usually next to each other in the list.
4485 // To help reduce the number of CSE recomputations, process all
4486 // the uses of this user that we can find this way.
4487 do {
4488 SDUse &Use = UI.getUse();
4489 ++UI;
4490 Use.set(To);
4491 } while (UI != UE && *UI == User);
4493 // Now that we have modified User, add it back to the CSE maps. If it
4494 // already exists there, recursively merge the results together.
4495 AddModifiedNodeToCSEMaps(User, UpdateListener);
4499 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4500 /// This can cause recursive merging of nodes in the DAG.
4502 /// This version assumes From/To have matching types and numbers of result
4503 /// values.
4505 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4506 DAGUpdateListener *UpdateListener) {
4507 assert(From->getVTList().VTs == To->getVTList().VTs &&
4508 From->getNumValues() == To->getNumValues() &&
4509 "Cannot use this version of ReplaceAllUsesWith!");
4511 // Handle the trivial case.
4512 if (From == To)
4513 return;
4515 // Iterate over just the existing users of From. See the comments in
4516 // the ReplaceAllUsesWith above.
4517 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4518 while (UI != UE) {
4519 SDNode *User = *UI;
4521 // This node is about to morph, remove its old self from the CSE maps.
4522 RemoveNodeFromCSEMaps(User);
4524 // A user can appear in a use list multiple times, and when this
4525 // happens the uses are usually next to each other in the list.
4526 // To help reduce the number of CSE recomputations, process all
4527 // the uses of this user that we can find this way.
4528 do {
4529 SDUse &Use = UI.getUse();
4530 ++UI;
4531 Use.setNode(To);
4532 } while (UI != UE && *UI == User);
4534 // Now that we have modified User, add it back to the CSE maps. If it
4535 // already exists there, recursively merge the results together.
4536 AddModifiedNodeToCSEMaps(User, UpdateListener);
4540 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4541 /// This can cause recursive merging of nodes in the DAG.
4543 /// This version can replace From with any result values. To must match the
4544 /// number and types of values returned by From.
4545 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4546 const SDValue *To,
4547 DAGUpdateListener *UpdateListener) {
4548 if (From->getNumValues() == 1) // Handle the simple case efficiently.
4549 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4551 // Iterate over just the existing users of From. See the comments in
4552 // the ReplaceAllUsesWith above.
4553 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4554 while (UI != UE) {
4555 SDNode *User = *UI;
4557 // This node is about to morph, remove its old self from the CSE maps.
4558 RemoveNodeFromCSEMaps(User);
4560 // A user can appear in a use list multiple times, and when this
4561 // happens the uses are usually next to each other in the list.
4562 // To help reduce the number of CSE recomputations, process all
4563 // the uses of this user that we can find this way.
4564 do {
4565 SDUse &Use = UI.getUse();
4566 const SDValue &ToOp = To[Use.getResNo()];
4567 ++UI;
4568 Use.set(ToOp);
4569 } while (UI != UE && *UI == User);
4571 // Now that we have modified User, add it back to the CSE maps. If it
4572 // already exists there, recursively merge the results together.
4573 AddModifiedNodeToCSEMaps(User, UpdateListener);
4577 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4578 /// uses of other values produced by From.getNode() alone. The Deleted
4579 /// vector is handled the same way as for ReplaceAllUsesWith.
4580 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4581 DAGUpdateListener *UpdateListener){
4582 // Handle the really simple, really trivial case efficiently.
4583 if (From == To) return;
4585 // Handle the simple, trivial, case efficiently.
4586 if (From.getNode()->getNumValues() == 1) {
4587 ReplaceAllUsesWith(From, To, UpdateListener);
4588 return;
4591 // Iterate over just the existing users of From. See the comments in
4592 // the ReplaceAllUsesWith above.
4593 SDNode::use_iterator UI = From.getNode()->use_begin(),
4594 UE = From.getNode()->use_end();
4595 while (UI != UE) {
4596 SDNode *User = *UI;
4597 bool UserRemovedFromCSEMaps = false;
4599 // A user can appear in a use list multiple times, and when this
4600 // happens the uses are usually next to each other in the list.
4601 // To help reduce the number of CSE recomputations, process all
4602 // the uses of this user that we can find this way.
4603 do {
4604 SDUse &Use = UI.getUse();
4606 // Skip uses of different values from the same node.
4607 if (Use.getResNo() != From.getResNo()) {
4608 ++UI;
4609 continue;
4612 // If this node hasn't been modified yet, it's still in the CSE maps,
4613 // so remove its old self from the CSE maps.
4614 if (!UserRemovedFromCSEMaps) {
4615 RemoveNodeFromCSEMaps(User);
4616 UserRemovedFromCSEMaps = true;
4619 ++UI;
4620 Use.set(To);
4621 } while (UI != UE && *UI == User);
4623 // We are iterating over all uses of the From node, so if a use
4624 // doesn't use the specific value, no changes are made.
4625 if (!UserRemovedFromCSEMaps)
4626 continue;
4628 // Now that we have modified User, add it back to the CSE maps. If it
4629 // already exists there, recursively merge the results together.
4630 AddModifiedNodeToCSEMaps(User, UpdateListener);
4634 namespace {
4635 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4636 /// to record information about a use.
4637 struct UseMemo {
4638 SDNode *User;
4639 unsigned Index;
4640 SDUse *Use;
4643 /// operator< - Sort Memos by User.
4644 bool operator<(const UseMemo &L, const UseMemo &R) {
4645 return (intptr_t)L.User < (intptr_t)R.User;
4649 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4650 /// uses of other values produced by From.getNode() alone. The same value
4651 /// may appear in both the From and To list. The Deleted vector is
4652 /// handled the same way as for ReplaceAllUsesWith.
4653 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4654 const SDValue *To,
4655 unsigned Num,
4656 DAGUpdateListener *UpdateListener){
4657 // Handle the simple, trivial case efficiently.
4658 if (Num == 1)
4659 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4661 // Read up all the uses and make records of them. This helps
4662 // processing new uses that are introduced during the
4663 // replacement process.
4664 SmallVector<UseMemo, 4> Uses;
4665 for (unsigned i = 0; i != Num; ++i) {
4666 unsigned FromResNo = From[i].getResNo();
4667 SDNode *FromNode = From[i].getNode();
4668 for (SDNode::use_iterator UI = FromNode->use_begin(),
4669 E = FromNode->use_end(); UI != E; ++UI) {
4670 SDUse &Use = UI.getUse();
4671 if (Use.getResNo() == FromResNo) {
4672 UseMemo Memo = { *UI, i, &Use };
4673 Uses.push_back(Memo);
4678 // Sort the uses, so that all the uses from a given User are together.
4679 std::sort(Uses.begin(), Uses.end());
4681 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4682 UseIndex != UseIndexEnd; ) {
4683 // We know that this user uses some value of From. If it is the right
4684 // value, update it.
4685 SDNode *User = Uses[UseIndex].User;
4687 // This node is about to morph, remove its old self from the CSE maps.
4688 RemoveNodeFromCSEMaps(User);
4690 // The Uses array is sorted, so all the uses for a given User
4691 // are next to each other in the list.
4692 // To help reduce the number of CSE recomputations, process all
4693 // the uses of this user that we can find this way.
4694 do {
4695 unsigned i = Uses[UseIndex].Index;
4696 SDUse &Use = *Uses[UseIndex].Use;
4697 ++UseIndex;
4699 Use.set(To[i]);
4700 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4702 // Now that we have modified User, add it back to the CSE maps. If it
4703 // already exists there, recursively merge the results together.
4704 AddModifiedNodeToCSEMaps(User, UpdateListener);
4708 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4709 /// based on their topological order. It returns the maximum id and a vector
4710 /// of the SDNodes* in assigned order by reference.
4711 unsigned SelectionDAG::AssignTopologicalOrder() {
4713 unsigned DAGSize = 0;
4715 // SortedPos tracks the progress of the algorithm. Nodes before it are
4716 // sorted, nodes after it are unsorted. When the algorithm completes
4717 // it is at the end of the list.
4718 allnodes_iterator SortedPos = allnodes_begin();
4720 // Visit all the nodes. Move nodes with no operands to the front of
4721 // the list immediately. Annotate nodes that do have operands with their
4722 // operand count. Before we do this, the Node Id fields of the nodes
4723 // may contain arbitrary values. After, the Node Id fields for nodes
4724 // before SortedPos will contain the topological sort index, and the
4725 // Node Id fields for nodes At SortedPos and after will contain the
4726 // count of outstanding operands.
4727 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4728 SDNode *N = I++;
4729 unsigned Degree = N->getNumOperands();
4730 if (Degree == 0) {
4731 // A node with no uses, add it to the result array immediately.
4732 N->setNodeId(DAGSize++);
4733 allnodes_iterator Q = N;
4734 if (Q != SortedPos)
4735 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4736 ++SortedPos;
4737 } else {
4738 // Temporarily use the Node Id as scratch space for the degree count.
4739 N->setNodeId(Degree);
4743 // Visit all the nodes. As we iterate, moves nodes into sorted order,
4744 // such that by the time the end is reached all nodes will be sorted.
4745 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4746 SDNode *N = I;
4747 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4748 UI != UE; ++UI) {
4749 SDNode *P = *UI;
4750 unsigned Degree = P->getNodeId();
4751 --Degree;
4752 if (Degree == 0) {
4753 // All of P's operands are sorted, so P may sorted now.
4754 P->setNodeId(DAGSize++);
4755 if (P != SortedPos)
4756 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4757 ++SortedPos;
4758 } else {
4759 // Update P's outstanding operand count.
4760 P->setNodeId(Degree);
4765 assert(SortedPos == AllNodes.end() &&
4766 "Topological sort incomplete!");
4767 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4768 "First node in topological sort is not the entry token!");
4769 assert(AllNodes.front().getNodeId() == 0 &&
4770 "First node in topological sort has non-zero id!");
4771 assert(AllNodes.front().getNumOperands() == 0 &&
4772 "First node in topological sort has operands!");
4773 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4774 "Last node in topologic sort has unexpected id!");
4775 assert(AllNodes.back().use_empty() &&
4776 "Last node in topologic sort has users!");
4777 assert(DAGSize == allnodes_size() && "Node count mismatch!");
4778 return DAGSize;
4783 //===----------------------------------------------------------------------===//
4784 // SDNode Class
4785 //===----------------------------------------------------------------------===//
4787 HandleSDNode::~HandleSDNode() {
4788 DropOperands();
4791 GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4792 MVT VT, int64_t o)
4793 : SDNode(isa<GlobalVariable>(GA) &&
4794 cast<GlobalVariable>(GA)->isThreadLocal() ?
4795 // Thread Local
4796 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4797 // Non Thread Local
4798 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4799 DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4800 TheGlobal = const_cast<GlobalValue*>(GA);
4803 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4804 const Value *srcValue, int SVO,
4805 unsigned alignment, bool vol)
4806 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4807 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4808 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4809 assert(getAlignment() == alignment && "Alignment representation error!");
4810 assert(isVolatile() == vol && "Volatile representation error!");
4813 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4814 const SDValue *Ops,
4815 unsigned NumOps, MVT memvt, const Value *srcValue,
4816 int SVO, unsigned alignment, bool vol)
4817 : SDNode(Opc, dl, VTs, Ops, NumOps),
4818 MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4819 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4820 assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4821 assert(getAlignment() == alignment && "Alignment representation error!");
4822 assert(isVolatile() == vol && "Volatile representation error!");
4825 /// getMemOperand - Return a MachineMemOperand object describing the memory
4826 /// reference performed by this memory reference.
4827 MachineMemOperand MemSDNode::getMemOperand() const {
4828 int Flags = 0;
4829 if (isa<LoadSDNode>(this))
4830 Flags = MachineMemOperand::MOLoad;
4831 else if (isa<StoreSDNode>(this))
4832 Flags = MachineMemOperand::MOStore;
4833 else if (isa<AtomicSDNode>(this)) {
4834 Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4836 else {
4837 const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4838 assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4839 if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4840 if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4843 int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4844 if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4846 // Check if the memory reference references a frame index
4847 const FrameIndexSDNode *FI =
4848 dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4849 if (!getSrcValue() && FI)
4850 return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4851 Flags, 0, Size, getAlignment());
4852 else
4853 return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4854 Size, getAlignment());
4857 /// Profile - Gather unique data for the node.
4859 void SDNode::Profile(FoldingSetNodeID &ID) const {
4860 AddNodeIDNode(ID, this);
4863 /// getValueTypeList - Return a pointer to the specified value type.
4865 const MVT *SDNode::getValueTypeList(MVT VT) {
4866 if (VT.isExtended()) {
4867 static std::set<MVT, MVT::compareRawBits> EVTs;
4868 return &(*EVTs.insert(VT).first);
4869 } else {
4870 static MVT VTs[MVT::LAST_VALUETYPE];
4871 VTs[VT.getSimpleVT()] = VT;
4872 return &VTs[VT.getSimpleVT()];
4876 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4877 /// indicated value. This method ignores uses of other values defined by this
4878 /// operation.
4879 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4880 assert(Value < getNumValues() && "Bad value!");
4882 // TODO: Only iterate over uses of a given value of the node
4883 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4884 if (UI.getUse().getResNo() == Value) {
4885 if (NUses == 0)
4886 return false;
4887 --NUses;
4891 // Found exactly the right number of uses?
4892 return NUses == 0;
4896 /// hasAnyUseOfValue - Return true if there are any use of the indicated
4897 /// value. This method ignores uses of other values defined by this operation.
4898 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4899 assert(Value < getNumValues() && "Bad value!");
4901 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4902 if (UI.getUse().getResNo() == Value)
4903 return true;
4905 return false;
4909 /// isOnlyUserOf - Return true if this node is the only use of N.
4911 bool SDNode::isOnlyUserOf(SDNode *N) const {
4912 bool Seen = false;
4913 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4914 SDNode *User = *I;
4915 if (User == this)
4916 Seen = true;
4917 else
4918 return false;
4921 return Seen;
4924 /// isOperand - Return true if this node is an operand of N.
4926 bool SDValue::isOperandOf(SDNode *N) const {
4927 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4928 if (*this == N->getOperand(i))
4929 return true;
4930 return false;
4933 bool SDNode::isOperandOf(SDNode *N) const {
4934 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4935 if (this == N->OperandList[i].getNode())
4936 return true;
4937 return false;
4940 /// reachesChainWithoutSideEffects - Return true if this operand (which must
4941 /// be a chain) reaches the specified operand without crossing any
4942 /// side-effecting instructions. In practice, this looks through token
4943 /// factors and non-volatile loads. In order to remain efficient, this only
4944 /// looks a couple of nodes in, it does not do an exhaustive search.
4945 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4946 unsigned Depth) const {
4947 if (*this == Dest) return true;
4949 // Don't search too deeply, we just want to be able to see through
4950 // TokenFactor's etc.
4951 if (Depth == 0) return false;
4953 // If this is a token factor, all inputs to the TF happen in parallel. If any
4954 // of the operands of the TF reach dest, then we can do the xform.
4955 if (getOpcode() == ISD::TokenFactor) {
4956 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4957 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4958 return true;
4959 return false;
4962 // Loads don't have side effects, look through them.
4963 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4964 if (!Ld->isVolatile())
4965 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4967 return false;
4971 static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4972 SmallPtrSet<SDNode *, 32> &Visited) {
4973 if (found || !Visited.insert(N))
4974 return;
4976 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4977 SDNode *Op = N->getOperand(i).getNode();
4978 if (Op == P) {
4979 found = true;
4980 return;
4982 findPredecessor(Op, P, found, Visited);
4986 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
4987 /// is either an operand of N or it can be reached by recursively traversing
4988 /// up the operands.
4989 /// NOTE: this is an expensive method. Use it carefully.
4990 bool SDNode::isPredecessorOf(SDNode *N) const {
4991 SmallPtrSet<SDNode *, 32> Visited;
4992 bool found = false;
4993 findPredecessor(N, this, found, Visited);
4994 return found;
4997 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4998 assert(Num < NumOperands && "Invalid child # of SDNode!");
4999 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5002 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5003 switch (getOpcode()) {
5004 default:
5005 if (getOpcode() < ISD::BUILTIN_OP_END)
5006 return "<<Unknown DAG Node>>";
5007 if (isMachineOpcode()) {
5008 if (G)
5009 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5010 if (getMachineOpcode() < TII->getNumOpcodes())
5011 return TII->get(getMachineOpcode()).getName();
5012 return "<<Unknown Machine Node>>";
5014 if (G) {
5015 const TargetLowering &TLI = G->getTargetLoweringInfo();
5016 const char *Name = TLI.getTargetNodeName(getOpcode());
5017 if (Name) return Name;
5018 return "<<Unknown Target Node>>";
5020 return "<<Unknown Node>>";
5022 #ifndef NDEBUG
5023 case ISD::DELETED_NODE:
5024 return "<<Deleted Node!>>";
5025 #endif
5026 case ISD::PREFETCH: return "Prefetch";
5027 case ISD::MEMBARRIER: return "MemBarrier";
5028 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5029 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5030 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5031 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5032 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5033 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5034 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5035 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5036 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5037 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5038 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5039 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5040 case ISD::PCMARKER: return "PCMarker";
5041 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5042 case ISD::SRCVALUE: return "SrcValue";
5043 case ISD::MEMOPERAND: return "MemOperand";
5044 case ISD::EntryToken: return "EntryToken";
5045 case ISD::TokenFactor: return "TokenFactor";
5046 case ISD::AssertSext: return "AssertSext";
5047 case ISD::AssertZext: return "AssertZext";
5049 case ISD::BasicBlock: return "BasicBlock";
5050 case ISD::ARG_FLAGS: return "ArgFlags";
5051 case ISD::VALUETYPE: return "ValueType";
5052 case ISD::Register: return "Register";
5054 case ISD::Constant: return "Constant";
5055 case ISD::ConstantFP: return "ConstantFP";
5056 case ISD::GlobalAddress: return "GlobalAddress";
5057 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5058 case ISD::FrameIndex: return "FrameIndex";
5059 case ISD::JumpTable: return "JumpTable";
5060 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5061 case ISD::RETURNADDR: return "RETURNADDR";
5062 case ISD::FRAMEADDR: return "FRAMEADDR";
5063 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5064 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5065 case ISD::EHSELECTION: return "EHSELECTION";
5066 case ISD::EH_RETURN: return "EH_RETURN";
5067 case ISD::ConstantPool: return "ConstantPool";
5068 case ISD::ExternalSymbol: return "ExternalSymbol";
5069 case ISD::INTRINSIC_WO_CHAIN: {
5070 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5071 return Intrinsic::getName((Intrinsic::ID)IID);
5073 case ISD::INTRINSIC_VOID:
5074 case ISD::INTRINSIC_W_CHAIN: {
5075 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5076 return Intrinsic::getName((Intrinsic::ID)IID);
5079 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5080 case ISD::TargetConstant: return "TargetConstant";
5081 case ISD::TargetConstantFP:return "TargetConstantFP";
5082 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5083 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5084 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5085 case ISD::TargetJumpTable: return "TargetJumpTable";
5086 case ISD::TargetConstantPool: return "TargetConstantPool";
5087 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5089 case ISD::CopyToReg: return "CopyToReg";
5090 case ISD::CopyFromReg: return "CopyFromReg";
5091 case ISD::UNDEF: return "undef";
5092 case ISD::MERGE_VALUES: return "merge_values";
5093 case ISD::INLINEASM: return "inlineasm";
5094 case ISD::DBG_LABEL: return "dbg_label";
5095 case ISD::EH_LABEL: return "eh_label";
5096 case ISD::DECLARE: return "declare";
5097 case ISD::HANDLENODE: return "handlenode";
5098 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5099 case ISD::CALL: return "call";
5101 // Unary operators
5102 case ISD::FABS: return "fabs";
5103 case ISD::FNEG: return "fneg";
5104 case ISD::FSQRT: return "fsqrt";
5105 case ISD::FSIN: return "fsin";
5106 case ISD::FCOS: return "fcos";
5107 case ISD::FPOWI: return "fpowi";
5108 case ISD::FPOW: return "fpow";
5109 case ISD::FTRUNC: return "ftrunc";
5110 case ISD::FFLOOR: return "ffloor";
5111 case ISD::FCEIL: return "fceil";
5112 case ISD::FRINT: return "frint";
5113 case ISD::FNEARBYINT: return "fnearbyint";
5115 // Binary operators
5116 case ISD::ADD: return "add";
5117 case ISD::SUB: return "sub";
5118 case ISD::MUL: return "mul";
5119 case ISD::MULHU: return "mulhu";
5120 case ISD::MULHS: return "mulhs";
5121 case ISD::SDIV: return "sdiv";
5122 case ISD::UDIV: return "udiv";
5123 case ISD::SREM: return "srem";
5124 case ISD::UREM: return "urem";
5125 case ISD::SMUL_LOHI: return "smul_lohi";
5126 case ISD::UMUL_LOHI: return "umul_lohi";
5127 case ISD::SDIVREM: return "sdivrem";
5128 case ISD::UDIVREM: return "udivrem";
5129 case ISD::AND: return "and";
5130 case ISD::OR: return "or";
5131 case ISD::XOR: return "xor";
5132 case ISD::SHL: return "shl";
5133 case ISD::SRA: return "sra";
5134 case ISD::SRL: return "srl";
5135 case ISD::ROTL: return "rotl";
5136 case ISD::ROTR: return "rotr";
5137 case ISD::FADD: return "fadd";
5138 case ISD::FSUB: return "fsub";
5139 case ISD::FMUL: return "fmul";
5140 case ISD::FDIV: return "fdiv";
5141 case ISD::FREM: return "frem";
5142 case ISD::FCOPYSIGN: return "fcopysign";
5143 case ISD::FGETSIGN: return "fgetsign";
5145 case ISD::SETCC: return "setcc";
5146 case ISD::VSETCC: return "vsetcc";
5147 case ISD::SELECT: return "select";
5148 case ISD::SELECT_CC: return "select_cc";
5149 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5150 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5151 case ISD::CONCAT_VECTORS: return "concat_vectors";
5152 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5153 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5154 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5155 case ISD::CARRY_FALSE: return "carry_false";
5156 case ISD::ADDC: return "addc";
5157 case ISD::ADDE: return "adde";
5158 case ISD::SADDO: return "saddo";
5159 case ISD::UADDO: return "uaddo";
5160 case ISD::SSUBO: return "ssubo";
5161 case ISD::USUBO: return "usubo";
5162 case ISD::SMULO: return "smulo";
5163 case ISD::UMULO: return "umulo";
5164 case ISD::SUBC: return "subc";
5165 case ISD::SUBE: return "sube";
5166 case ISD::SHL_PARTS: return "shl_parts";
5167 case ISD::SRA_PARTS: return "sra_parts";
5168 case ISD::SRL_PARTS: return "srl_parts";
5170 case ISD::EXTRACT_SUBREG: return "extract_subreg";
5171 case ISD::INSERT_SUBREG: return "insert_subreg";
5173 // Conversion operators.
5174 case ISD::SIGN_EXTEND: return "sign_extend";
5175 case ISD::ZERO_EXTEND: return "zero_extend";
5176 case ISD::ANY_EXTEND: return "any_extend";
5177 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5178 case ISD::TRUNCATE: return "truncate";
5179 case ISD::FP_ROUND: return "fp_round";
5180 case ISD::FLT_ROUNDS_: return "flt_rounds";
5181 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5182 case ISD::FP_EXTEND: return "fp_extend";
5184 case ISD::SINT_TO_FP: return "sint_to_fp";
5185 case ISD::UINT_TO_FP: return "uint_to_fp";
5186 case ISD::FP_TO_SINT: return "fp_to_sint";
5187 case ISD::FP_TO_UINT: return "fp_to_uint";
5188 case ISD::BIT_CONVERT: return "bit_convert";
5190 case ISD::CONVERT_RNDSAT: {
5191 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5192 default: assert(0 && "Unknown cvt code!");
5193 case ISD::CVT_FF: return "cvt_ff";
5194 case ISD::CVT_FS: return "cvt_fs";
5195 case ISD::CVT_FU: return "cvt_fu";
5196 case ISD::CVT_SF: return "cvt_sf";
5197 case ISD::CVT_UF: return "cvt_uf";
5198 case ISD::CVT_SS: return "cvt_ss";
5199 case ISD::CVT_SU: return "cvt_su";
5200 case ISD::CVT_US: return "cvt_us";
5201 case ISD::CVT_UU: return "cvt_uu";
5205 // Control flow instructions
5206 case ISD::BR: return "br";
5207 case ISD::BRIND: return "brind";
5208 case ISD::BR_JT: return "br_jt";
5209 case ISD::BRCOND: return "brcond";
5210 case ISD::BR_CC: return "br_cc";
5211 case ISD::RET: return "ret";
5212 case ISD::CALLSEQ_START: return "callseq_start";
5213 case ISD::CALLSEQ_END: return "callseq_end";
5215 // Other operators
5216 case ISD::LOAD: return "load";
5217 case ISD::STORE: return "store";
5218 case ISD::VAARG: return "vaarg";
5219 case ISD::VACOPY: return "vacopy";
5220 case ISD::VAEND: return "vaend";
5221 case ISD::VASTART: return "vastart";
5222 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5223 case ISD::EXTRACT_ELEMENT: return "extract_element";
5224 case ISD::BUILD_PAIR: return "build_pair";
5225 case ISD::STACKSAVE: return "stacksave";
5226 case ISD::STACKRESTORE: return "stackrestore";
5227 case ISD::TRAP: return "trap";
5229 // Bit manipulation
5230 case ISD::BSWAP: return "bswap";
5231 case ISD::CTPOP: return "ctpop";
5232 case ISD::CTTZ: return "cttz";
5233 case ISD::CTLZ: return "ctlz";
5235 // Debug info
5236 case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5237 case ISD::DEBUG_LOC: return "debug_loc";
5239 // Trampolines
5240 case ISD::TRAMPOLINE: return "trampoline";
5242 case ISD::CONDCODE:
5243 switch (cast<CondCodeSDNode>(this)->get()) {
5244 default: assert(0 && "Unknown setcc condition!");
5245 case ISD::SETOEQ: return "setoeq";
5246 case ISD::SETOGT: return "setogt";
5247 case ISD::SETOGE: return "setoge";
5248 case ISD::SETOLT: return "setolt";
5249 case ISD::SETOLE: return "setole";
5250 case ISD::SETONE: return "setone";
5252 case ISD::SETO: return "seto";
5253 case ISD::SETUO: return "setuo";
5254 case ISD::SETUEQ: return "setue";
5255 case ISD::SETUGT: return "setugt";
5256 case ISD::SETUGE: return "setuge";
5257 case ISD::SETULT: return "setult";
5258 case ISD::SETULE: return "setule";
5259 case ISD::SETUNE: return "setune";
5261 case ISD::SETEQ: return "seteq";
5262 case ISD::SETGT: return "setgt";
5263 case ISD::SETGE: return "setge";
5264 case ISD::SETLT: return "setlt";
5265 case ISD::SETLE: return "setle";
5266 case ISD::SETNE: return "setne";
5271 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5272 switch (AM) {
5273 default:
5274 return "";
5275 case ISD::PRE_INC:
5276 return "<pre-inc>";
5277 case ISD::PRE_DEC:
5278 return "<pre-dec>";
5279 case ISD::POST_INC:
5280 return "<post-inc>";
5281 case ISD::POST_DEC:
5282 return "<post-dec>";
5286 std::string ISD::ArgFlagsTy::getArgFlagsString() {
5287 std::string S = "< ";
5289 if (isZExt())
5290 S += "zext ";
5291 if (isSExt())
5292 S += "sext ";
5293 if (isInReg())
5294 S += "inreg ";
5295 if (isSRet())
5296 S += "sret ";
5297 if (isByVal())
5298 S += "byval ";
5299 if (isNest())
5300 S += "nest ";
5301 if (getByValAlign())
5302 S += "byval-align:" + utostr(getByValAlign()) + " ";
5303 if (getOrigAlign())
5304 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5305 if (getByValSize())
5306 S += "byval-size:" + utostr(getByValSize()) + " ";
5307 return S + ">";
5310 void SDNode::dump() const { dump(0); }
5311 void SDNode::dump(const SelectionDAG *G) const {
5312 print(errs(), G);
5313 errs().flush();
5316 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5317 OS << (void*)this << ": ";
5319 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5320 if (i) OS << ",";
5321 if (getValueType(i) == MVT::Other)
5322 OS << "ch";
5323 else
5324 OS << getValueType(i).getMVTString();
5326 OS << " = " << getOperationName(G);
5329 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5330 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5331 SDNode *Mask = getOperand(2).getNode();
5332 OS << "<";
5333 for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5334 if (i) OS << ",";
5335 if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5336 OS << "u";
5337 else
5338 OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5340 OS << ">";
5343 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5344 OS << '<' << CSDN->getAPIntValue() << '>';
5345 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5346 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5347 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5348 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5349 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5350 else {
5351 OS << "<APFloat(";
5352 CSDN->getValueAPF().bitcastToAPInt().dump();
5353 OS << ")>";
5355 } else if (const GlobalAddressSDNode *GADN =
5356 dyn_cast<GlobalAddressSDNode>(this)) {
5357 int64_t offset = GADN->getOffset();
5358 OS << '<';
5359 WriteAsOperand(OS, GADN->getGlobal());
5360 OS << '>';
5361 if (offset > 0)
5362 OS << " + " << offset;
5363 else
5364 OS << " " << offset;
5365 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5366 OS << "<" << FIDN->getIndex() << ">";
5367 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5368 OS << "<" << JTDN->getIndex() << ">";
5369 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5370 int offset = CP->getOffset();
5371 if (CP->isMachineConstantPoolEntry())
5372 OS << "<" << *CP->getMachineCPVal() << ">";
5373 else
5374 OS << "<" << *CP->getConstVal() << ">";
5375 if (offset > 0)
5376 OS << " + " << offset;
5377 else
5378 OS << " " << offset;
5379 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5380 OS << "<";
5381 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5382 if (LBB)
5383 OS << LBB->getName() << " ";
5384 OS << (const void*)BBDN->getBasicBlock() << ">";
5385 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5386 if (G && R->getReg() &&
5387 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5388 OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5389 } else {
5390 OS << " #" << R->getReg();
5392 } else if (const ExternalSymbolSDNode *ES =
5393 dyn_cast<ExternalSymbolSDNode>(this)) {
5394 OS << "'" << ES->getSymbol() << "'";
5395 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5396 if (M->getValue())
5397 OS << "<" << M->getValue() << ">";
5398 else
5399 OS << "<null>";
5400 } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5401 if (M->MO.getValue())
5402 OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5403 else
5404 OS << "<null:" << M->MO.getOffset() << ">";
5405 } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5406 OS << N->getArgFlags().getArgFlagsString();
5407 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5408 OS << ":" << N->getVT().getMVTString();
5410 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5411 const Value *SrcValue = LD->getSrcValue();
5412 int SrcOffset = LD->getSrcValueOffset();
5413 OS << " <";
5414 if (SrcValue)
5415 OS << SrcValue;
5416 else
5417 OS << "null";
5418 OS << ":" << SrcOffset << ">";
5420 bool doExt = true;
5421 switch (LD->getExtensionType()) {
5422 default: doExt = false; break;
5423 case ISD::EXTLOAD: OS << " <anyext "; break;
5424 case ISD::SEXTLOAD: OS << " <sext "; break;
5425 case ISD::ZEXTLOAD: OS << " <zext "; break;
5427 if (doExt)
5428 OS << LD->getMemoryVT().getMVTString() << ">";
5430 const char *AM = getIndexedModeName(LD->getAddressingMode());
5431 if (*AM)
5432 OS << " " << AM;
5433 if (LD->isVolatile())
5434 OS << " <volatile>";
5435 OS << " alignment=" << LD->getAlignment();
5436 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5437 const Value *SrcValue = ST->getSrcValue();
5438 int SrcOffset = ST->getSrcValueOffset();
5439 OS << " <";
5440 if (SrcValue)
5441 OS << SrcValue;
5442 else
5443 OS << "null";
5444 OS << ":" << SrcOffset << ">";
5446 if (ST->isTruncatingStore())
5447 OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5449 const char *AM = getIndexedModeName(ST->getAddressingMode());
5450 if (*AM)
5451 OS << " " << AM;
5452 if (ST->isVolatile())
5453 OS << " <volatile>";
5454 OS << " alignment=" << ST->getAlignment();
5455 } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5456 const Value *SrcValue = AT->getSrcValue();
5457 int SrcOffset = AT->getSrcValueOffset();
5458 OS << " <";
5459 if (SrcValue)
5460 OS << SrcValue;
5461 else
5462 OS << "null";
5463 OS << ":" << SrcOffset << ">";
5464 if (AT->isVolatile())
5465 OS << " <volatile>";
5466 OS << " alignment=" << AT->getAlignment();
5470 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5471 print_types(OS, G);
5472 OS << " ";
5473 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5474 if (i) OS << ", ";
5475 OS << (void*)getOperand(i).getNode();
5476 if (unsigned RN = getOperand(i).getResNo())
5477 OS << ":" << RN;
5479 print_details(OS, G);
5482 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5483 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5484 if (N->getOperand(i).getNode()->hasOneUse())
5485 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5486 else
5487 cerr << "\n" << std::string(indent+2, ' ')
5488 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5491 cerr << "\n" << std::string(indent, ' ');
5492 N->dump(G);
5495 void SelectionDAG::dump() const {
5496 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5498 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5499 I != E; ++I) {
5500 const SDNode *N = I;
5501 if (!N->hasOneUse() && N != getRoot().getNode())
5502 DumpNodes(N, 2, this);
5505 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5507 cerr << "\n\n";
5510 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5511 print_types(OS, G);
5512 print_details(OS, G);
5515 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5516 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5517 const SelectionDAG *G, VisitedSDNodeSet &once) {
5518 if (!once.insert(N)) // If we've been here before, return now.
5519 return;
5520 // Dump the current SDNode, but don't end the line yet.
5521 OS << std::string(indent, ' ');
5522 N->printr(OS, G);
5523 // Having printed this SDNode, walk the children:
5524 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5525 const SDNode *child = N->getOperand(i).getNode();
5526 if (i) OS << ",";
5527 OS << " ";
5528 if (child->getNumOperands() == 0) {
5529 // This child has no grandchildren; print it inline right here.
5530 child->printr(OS, G);
5531 once.insert(child);
5532 } else { // Just the address. FIXME: also print the child's opcode
5533 OS << (void*)child;
5534 if (unsigned RN = N->getOperand(i).getResNo())
5535 OS << ":" << RN;
5538 OS << "\n";
5539 // Dump children that have grandchildren on their own line(s).
5540 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5541 const SDNode *child = N->getOperand(i).getNode();
5542 DumpNodesr(OS, child, indent+2, G, once);
5546 void SDNode::dumpr() const {
5547 VisitedSDNodeSet once;
5548 DumpNodesr(errs(), this, 0, 0, once);
5549 errs().flush();
5552 const Type *ConstantPoolSDNode::getType() const {
5553 if (isMachineConstantPoolEntry())
5554 return Val.MachineCPVal->getType();
5555 return Val.ConstVal->getType();
5558 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5559 APInt &SplatUndef,
5560 unsigned &SplatBitSize,
5561 bool &HasAnyUndefs,
5562 unsigned MinSplatBits) {
5563 MVT VT = getValueType(0);
5564 assert(VT.isVector() && "Expected a vector type");
5565 unsigned sz = VT.getSizeInBits();
5566 if (MinSplatBits > sz)
5567 return false;
5569 SplatValue = APInt(sz, 0);
5570 SplatUndef = APInt(sz, 0);
5572 // Get the bits. Bits with undefined values (when the corresponding element
5573 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5574 // in SplatValue. If any of the values are not constant, give up and return
5575 // false.
5576 unsigned int nOps = getNumOperands();
5577 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5578 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5579 for (unsigned i = 0; i < nOps; ++i) {
5580 SDValue OpVal = getOperand(i);
5581 unsigned BitPos = i * EltBitSize;
5583 if (OpVal.getOpcode() == ISD::UNDEF)
5584 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5585 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5586 SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(sz) << BitPos;
5587 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5588 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5589 else
5590 return false;
5593 // The build_vector is all constants or undefs. Find the smallest element
5594 // size that splats the vector.
5596 HasAnyUndefs = (SplatUndef != 0);
5597 while (sz > 8) {
5599 unsigned HalfSize = sz / 2;
5600 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5601 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5602 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5603 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5605 // If the two halves do not match (ignoring undef bits), stop here.
5606 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5607 MinSplatBits > HalfSize)
5608 break;
5610 SplatValue = HighValue | LowValue;
5611 SplatUndef = HighUndef & LowUndef;
5613 sz = HalfSize;
5616 SplatBitSize = sz;
5617 return true;