Fix think-o: emit all 8 bytes of the EOF marker. Also reflow a line in a
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / SelectionDAGISel.cpp
blobaf3188895edaec931e1b1d6c381c6a3361444fe8
1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
18 #include "llvm/CodeGen/SelectionDAGISel.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/Module.h"
29 #include "llvm/CodeGen/FastISel.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/GCMetadata.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38 #include "llvm/CodeGen/SchedulerRegistry.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetIntrinsicInfo.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Timer.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/ADT/PostOrderIterator.h"
53 #include "llvm/ADT/Statistic.h"
54 #include <algorithm>
55 using namespace llvm;
57 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
58 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
59 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
60 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
62 #ifndef NDEBUG
63 STATISTIC(NumBBWithOutOfOrderLineInfo,
64 "Number of blocks with out of order line number info");
65 STATISTIC(NumMBBWithOutOfOrderLineInfo,
66 "Number of machine blocks with out of order line number info");
67 #endif
69 static cl::opt<bool>
70 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
71 cl::desc("Enable verbose messages in the \"fast\" "
72 "instruction selector"));
73 static cl::opt<bool>
74 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
75 cl::desc("Enable abort calls when \"fast\" instruction fails"));
77 #ifndef NDEBUG
78 static cl::opt<bool>
79 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80 cl::desc("Pop up a window to show dags before the first "
81 "dag combine pass"));
82 static cl::opt<bool>
83 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84 cl::desc("Pop up a window to show dags before legalize types"));
85 static cl::opt<bool>
86 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87 cl::desc("Pop up a window to show dags before legalize"));
88 static cl::opt<bool>
89 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90 cl::desc("Pop up a window to show dags before the second "
91 "dag combine pass"));
92 static cl::opt<bool>
93 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94 cl::desc("Pop up a window to show dags before the post legalize types"
95 " dag combine pass"));
96 static cl::opt<bool>
97 ViewISelDAGs("view-isel-dags", cl::Hidden,
98 cl::desc("Pop up a window to show isel dags as they are selected"));
99 static cl::opt<bool>
100 ViewSchedDAGs("view-sched-dags", cl::Hidden,
101 cl::desc("Pop up a window to show sched dags as they are processed"));
102 static cl::opt<bool>
103 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104 cl::desc("Pop up a window to show SUnit dags after they are processed"));
105 #else
106 static const bool ViewDAGCombine1 = false,
107 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108 ViewDAGCombine2 = false,
109 ViewDAGCombineLT = false,
110 ViewISelDAGs = false, ViewSchedDAGs = false,
111 ViewSUnitDAGs = false;
112 #endif
114 //===---------------------------------------------------------------------===//
116 /// RegisterScheduler class - Track the registration of instruction schedulers.
118 //===---------------------------------------------------------------------===//
119 MachinePassRegistry RegisterScheduler::Registry;
121 //===---------------------------------------------------------------------===//
123 /// ISHeuristic command line option for instruction schedulers.
125 //===---------------------------------------------------------------------===//
126 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127 RegisterPassParser<RegisterScheduler> >
128 ISHeuristic("pre-RA-sched",
129 cl::init(&createDefaultScheduler),
130 cl::desc("Instruction schedulers available (before register"
131 " allocation):"));
133 static RegisterScheduler
134 defaultListDAGScheduler("default", "Best scheduler for the target",
135 createDefaultScheduler);
137 namespace llvm {
138 //===--------------------------------------------------------------------===//
139 /// createDefaultScheduler - This creates an instruction scheduler appropriate
140 /// for the target.
141 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142 CodeGenOpt::Level OptLevel) {
143 const TargetLowering &TLI = IS->getTargetLowering();
145 if (OptLevel == CodeGenOpt::None)
146 return createSourceListDAGScheduler(IS, OptLevel);
147 if (TLI.getSchedulingPreference() == Sched::Latency)
148 return createTDListDAGScheduler(IS, OptLevel);
149 if (TLI.getSchedulingPreference() == Sched::RegPressure)
150 return createBURRListDAGScheduler(IS, OptLevel);
151 if (TLI.getSchedulingPreference() == Sched::Hybrid)
152 return createHybridListDAGScheduler(IS, OptLevel);
153 assert(TLI.getSchedulingPreference() == Sched::ILP &&
154 "Unknown sched type!");
155 return createILPListDAGScheduler(IS, OptLevel);
159 // EmitInstrWithCustomInserter - This method should be implemented by targets
160 // that mark instructions with the 'usesCustomInserter' flag. These
161 // instructions are special in various ways, which require special support to
162 // insert. The specified MachineInstr is created but not inserted into any
163 // basic blocks, and this method is called to expand it into a sequence of
164 // instructions, potentially also creating new basic blocks and control flow.
165 // When new basic blocks are inserted and the edges from MBB to its successors
166 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
167 // DenseMap.
168 MachineBasicBlock *
169 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
170 MachineBasicBlock *MBB) const {
171 #ifndef NDEBUG
172 dbgs() << "If a target marks an instruction with "
173 "'usesCustomInserter', it must implement "
174 "TargetLowering::EmitInstrWithCustomInserter!";
175 #endif
176 llvm_unreachable(0);
177 return 0;
180 //===----------------------------------------------------------------------===//
181 // SelectionDAGISel code
182 //===----------------------------------------------------------------------===//
184 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
185 CodeGenOpt::Level OL) :
186 MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
187 FuncInfo(new FunctionLoweringInfo(TLI)),
188 CurDAG(new SelectionDAG(tm)),
189 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
190 GFI(),
191 OptLevel(OL),
192 DAGSize(0) {
193 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
194 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
197 SelectionDAGISel::~SelectionDAGISel() {
198 delete SDB;
199 delete CurDAG;
200 delete FuncInfo;
203 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
204 AU.addRequired<AliasAnalysis>();
205 AU.addPreserved<AliasAnalysis>();
206 AU.addRequired<GCModuleInfo>();
207 AU.addPreserved<GCModuleInfo>();
208 MachineFunctionPass::getAnalysisUsage(AU);
211 /// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
212 /// other function that gcc recognizes as "returning twice". This is used to
213 /// limit code-gen optimizations on the machine function.
215 /// FIXME: Remove after <rdar://problem/8031714> is fixed.
216 static bool FunctionCallsSetJmp(const Function *F) {
217 const Module *M = F->getParent();
218 static const char *ReturnsTwiceFns[] = {
219 "_setjmp",
220 "setjmp",
221 "sigsetjmp",
222 "setjmp_syscall",
223 "savectx",
224 "qsetjmp",
225 "vfork",
226 "getcontext"
228 #define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
230 for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
231 if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
232 if (!Callee->use_empty())
233 for (Value::const_use_iterator
234 I = Callee->use_begin(), E = Callee->use_end();
235 I != E; ++I)
236 if (const CallInst *CI = dyn_cast<CallInst>(*I))
237 if (CI->getParent()->getParent() == F)
238 return true;
241 return false;
242 #undef NUM_RETURNS_TWICE_FNS
245 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
246 /// may trap on it. In this case we have to split the edge so that the path
247 /// through the predecessor block that doesn't go to the phi block doesn't
248 /// execute the possibly trapping instruction.
250 /// This is required for correctness, so it must be done at -O0.
252 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
253 // Loop for blocks with phi nodes.
254 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
255 PHINode *PN = dyn_cast<PHINode>(BB->begin());
256 if (PN == 0) continue;
258 ReprocessBlock:
259 // For each block with a PHI node, check to see if any of the input values
260 // are potentially trapping constant expressions. Constant expressions are
261 // the only potentially trapping value that can occur as the argument to a
262 // PHI.
263 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
266 if (CE == 0 || !CE->canTrap()) continue;
268 // The only case we have to worry about is when the edge is critical.
269 // Since this block has a PHI Node, we assume it has multiple input
270 // edges: check to see if the pred has multiple successors.
271 BasicBlock *Pred = PN->getIncomingBlock(i);
272 if (Pred->getTerminator()->getNumSuccessors() == 1)
273 continue;
275 // Okay, we have to split this edge.
276 SplitCriticalEdge(Pred->getTerminator(),
277 GetSuccessorNumber(Pred, BB), SDISel, true);
278 goto ReprocessBlock;
283 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
284 // Do some sanity-checking on the command-line options.
285 assert((!EnableFastISelVerbose || EnableFastISel) &&
286 "-fast-isel-verbose requires -fast-isel");
287 assert((!EnableFastISelAbort || EnableFastISel) &&
288 "-fast-isel-abort requires -fast-isel");
290 const Function &Fn = *mf.getFunction();
291 const TargetInstrInfo &TII = *TM.getInstrInfo();
292 const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
294 MF = &mf;
295 RegInfo = &MF->getRegInfo();
296 AA = &getAnalysis<AliasAnalysis>();
297 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
299 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
301 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
303 CurDAG->init(*MF);
304 FuncInfo->set(Fn, *MF);
305 SDB->init(GFI, *AA);
307 SelectAllBasicBlocks(Fn);
309 // If the first basic block in the function has live ins that need to be
310 // copied into vregs, emit the copies into the top of the block before
311 // emitting the code for the block.
312 MachineBasicBlock *EntryMBB = MF->begin();
313 RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
315 DenseMap<unsigned, unsigned> LiveInMap;
316 if (!FuncInfo->ArgDbgValues.empty())
317 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
318 E = RegInfo->livein_end(); LI != E; ++LI)
319 if (LI->second)
320 LiveInMap.insert(std::make_pair(LI->first, LI->second));
322 // Insert DBG_VALUE instructions for function arguments to the entry block.
323 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
324 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
325 unsigned Reg = MI->getOperand(0).getReg();
326 if (TargetRegisterInfo::isPhysicalRegister(Reg))
327 EntryMBB->insert(EntryMBB->begin(), MI);
328 else {
329 MachineInstr *Def = RegInfo->getVRegDef(Reg);
330 MachineBasicBlock::iterator InsertPos = Def;
331 // FIXME: VR def may not be in entry block.
332 Def->getParent()->insert(llvm::next(InsertPos), MI);
335 // If Reg is live-in then update debug info to track its copy in a vreg.
336 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
337 if (LDI != LiveInMap.end()) {
338 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
339 MachineBasicBlock::iterator InsertPos = Def;
340 const MDNode *Variable =
341 MI->getOperand(MI->getNumOperands()-1).getMetadata();
342 unsigned Offset = MI->getOperand(1).getImm();
343 // Def is never a terminator here, so it is ok to increment InsertPos.
344 BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
345 TII.get(TargetOpcode::DBG_VALUE))
346 .addReg(LDI->second, RegState::Debug)
347 .addImm(Offset).addMetadata(Variable);
349 // If this vreg is directly copied into an exported register then
350 // that COPY instructions also need DBG_VALUE, if it is the only
351 // user of LDI->second.
352 MachineInstr *CopyUseMI = NULL;
353 for (MachineRegisterInfo::use_iterator
354 UI = RegInfo->use_begin(LDI->second);
355 MachineInstr *UseMI = UI.skipInstruction();) {
356 if (UseMI->isDebugValue()) continue;
357 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
358 CopyUseMI = UseMI; continue;
360 // Otherwise this is another use or second copy use.
361 CopyUseMI = NULL; break;
363 if (CopyUseMI) {
364 MachineInstr *NewMI =
365 BuildMI(*MF, CopyUseMI->getDebugLoc(),
366 TII.get(TargetOpcode::DBG_VALUE))
367 .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
368 .addImm(Offset).addMetadata(Variable);
369 EntryMBB->insertAfter(CopyUseMI, NewMI);
374 // Determine if there are any calls in this machine function.
375 MachineFrameInfo *MFI = MF->getFrameInfo();
376 if (!MFI->hasCalls()) {
377 for (MachineFunction::const_iterator
378 I = MF->begin(), E = MF->end(); I != E; ++I) {
379 const MachineBasicBlock *MBB = I;
380 for (MachineBasicBlock::const_iterator
381 II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
382 const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
384 if ((TID.isCall() && !TID.isReturn()) ||
385 II->isStackAligningInlineAsm()) {
386 MFI->setHasCalls(true);
387 goto done;
391 done:;
394 // Determine if there is a call to setjmp in the machine function.
395 MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
397 // Replace forward-declared registers with the registers containing
398 // the desired value.
399 MachineRegisterInfo &MRI = MF->getRegInfo();
400 for (DenseMap<unsigned, unsigned>::iterator
401 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
402 I != E; ++I) {
403 unsigned From = I->first;
404 unsigned To = I->second;
405 // If To is also scheduled to be replaced, find what its ultimate
406 // replacement is.
407 for (;;) {
408 DenseMap<unsigned, unsigned>::iterator J =
409 FuncInfo->RegFixups.find(To);
410 if (J == E) break;
411 To = J->second;
413 // Replace it.
414 MRI.replaceRegWith(From, To);
417 // Release function-specific state. SDB and CurDAG are already cleared
418 // at this point.
419 FuncInfo->clear();
421 return true;
424 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
425 BasicBlock::const_iterator End,
426 bool &HadTailCall) {
427 // Lower all of the non-terminator instructions. If a call is emitted
428 // as a tail call, cease emitting nodes for this block. Terminators
429 // are handled below.
430 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
431 SDB->visit(*I);
433 // Make sure the root of the DAG is up-to-date.
434 CurDAG->setRoot(SDB->getControlRoot());
435 HadTailCall = SDB->HasTailCall;
436 SDB->clear();
438 // Final step, emit the lowered DAG as machine code.
439 CodeGenAndEmitDAG();
442 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
443 SmallPtrSet<SDNode*, 128> VisitedNodes;
444 SmallVector<SDNode*, 128> Worklist;
446 Worklist.push_back(CurDAG->getRoot().getNode());
448 APInt Mask;
449 APInt KnownZero;
450 APInt KnownOne;
452 do {
453 SDNode *N = Worklist.pop_back_val();
455 // If we've already seen this node, ignore it.
456 if (!VisitedNodes.insert(N))
457 continue;
459 // Otherwise, add all chain operands to the worklist.
460 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
461 if (N->getOperand(i).getValueType() == MVT::Other)
462 Worklist.push_back(N->getOperand(i).getNode());
464 // If this is a CopyToReg with a vreg dest, process it.
465 if (N->getOpcode() != ISD::CopyToReg)
466 continue;
468 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
469 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
470 continue;
472 // Ignore non-scalar or non-integer values.
473 SDValue Src = N->getOperand(2);
474 EVT SrcVT = Src.getValueType();
475 if (!SrcVT.isInteger() || SrcVT.isVector())
476 continue;
478 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
479 Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
480 CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
481 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
482 } while (!Worklist.empty());
485 void SelectionDAGISel::CodeGenAndEmitDAG() {
486 std::string GroupName;
487 if (TimePassesIsEnabled)
488 GroupName = "Instruction Selection and Scheduling";
489 std::string BlockName;
490 int BlockNumber = -1;
491 #ifdef NDEBUG
492 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
493 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
494 ViewSUnitDAGs)
495 #endif
497 BlockNumber = FuncInfo->MBB->getNumber();
498 BlockName = MF->getFunction()->getNameStr() + ":" +
499 FuncInfo->MBB->getBasicBlock()->getNameStr();
501 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
502 << " '" << BlockName << "'\n"; CurDAG->dump());
504 if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
506 // Run the DAG combiner in pre-legalize mode.
508 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
509 CurDAG->Combine(Unrestricted, *AA, OptLevel);
512 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
513 << " '" << BlockName << "'\n"; CurDAG->dump());
515 // Second step, hack on the DAG until it only uses operations and types that
516 // the target supports.
517 if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
518 BlockName);
520 bool Changed;
522 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
523 Changed = CurDAG->LegalizeTypes();
526 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
527 << " '" << BlockName << "'\n"; CurDAG->dump());
529 if (Changed) {
530 if (ViewDAGCombineLT)
531 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
533 // Run the DAG combiner in post-type-legalize mode.
535 NamedRegionTimer T("DAG Combining after legalize types", GroupName,
536 TimePassesIsEnabled);
537 CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
540 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
541 << " '" << BlockName << "'\n"; CurDAG->dump());
545 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
546 Changed = CurDAG->LegalizeVectors();
549 if (Changed) {
551 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
552 CurDAG->LegalizeTypes();
555 if (ViewDAGCombineLT)
556 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
558 // Run the DAG combiner in post-type-legalize mode.
560 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
561 TimePassesIsEnabled);
562 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
565 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
566 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
569 if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
572 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
573 CurDAG->Legalize(OptLevel);
576 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
577 << " '" << BlockName << "'\n"; CurDAG->dump());
579 if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
581 // Run the DAG combiner in post-legalize mode.
583 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
584 CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
587 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
588 << " '" << BlockName << "'\n"; CurDAG->dump());
590 if (OptLevel != CodeGenOpt::None)
591 ComputeLiveOutVRegInfo();
593 if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
595 // Third, instruction select all of the operations to machine code, adding the
596 // code to the MachineBasicBlock.
598 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
599 DoInstructionSelection();
602 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
603 << " '" << BlockName << "'\n"; CurDAG->dump());
605 if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
607 // Schedule machine code.
608 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
610 NamedRegionTimer T("Instruction Scheduling", GroupName,
611 TimePassesIsEnabled);
612 Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
615 if (ViewSUnitDAGs) Scheduler->viewGraph();
617 // Emit machine code to BB. This can change 'BB' to the last block being
618 // inserted into.
619 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
621 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
623 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
624 FuncInfo->InsertPt = Scheduler->InsertPos;
627 // If the block was split, make sure we update any references that are used to
628 // update PHI nodes later on.
629 if (FirstMBB != LastMBB)
630 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
632 // Free the scheduler state.
634 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
635 TimePassesIsEnabled);
636 delete Scheduler;
639 // Free the SelectionDAG state, now that we're finished with it.
640 CurDAG->clear();
643 void SelectionDAGISel::DoInstructionSelection() {
644 DEBUG(errs() << "===== Instruction selection begins: BB#"
645 << FuncInfo->MBB->getNumber()
646 << " '" << FuncInfo->MBB->getName() << "'\n");
648 PreprocessISelDAG();
650 // Select target instructions for the DAG.
652 // Number all nodes with a topological order and set DAGSize.
653 DAGSize = CurDAG->AssignTopologicalOrder();
655 // Create a dummy node (which is not added to allnodes), that adds
656 // a reference to the root node, preventing it from being deleted,
657 // and tracking any changes of the root.
658 HandleSDNode Dummy(CurDAG->getRoot());
659 ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
660 ++ISelPosition;
662 // The AllNodes list is now topological-sorted. Visit the
663 // nodes by starting at the end of the list (the root of the
664 // graph) and preceding back toward the beginning (the entry
665 // node).
666 while (ISelPosition != CurDAG->allnodes_begin()) {
667 SDNode *Node = --ISelPosition;
668 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
669 // but there are currently some corner cases that it misses. Also, this
670 // makes it theoretically possible to disable the DAGCombiner.
671 if (Node->use_empty())
672 continue;
674 SDNode *ResNode = Select(Node);
676 // FIXME: This is pretty gross. 'Select' should be changed to not return
677 // anything at all and this code should be nuked with a tactical strike.
679 // If node should not be replaced, continue with the next one.
680 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
681 continue;
682 // Replace node.
683 if (ResNode)
684 ReplaceUses(Node, ResNode);
686 // If after the replacement this node is not used any more,
687 // remove this dead node.
688 if (Node->use_empty()) { // Don't delete EntryToken, etc.
689 ISelUpdater ISU(ISelPosition);
690 CurDAG->RemoveDeadNode(Node, &ISU);
694 CurDAG->setRoot(Dummy.getValue());
697 DEBUG(errs() << "===== Instruction selection ends:\n");
699 PostprocessISelDAG();
702 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
703 /// do other setup for EH landing-pad blocks.
704 void SelectionDAGISel::PrepareEHLandingPad() {
705 // Add a label to mark the beginning of the landing pad. Deletion of the
706 // landing pad can thus be detected via the MachineModuleInfo.
707 MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
709 const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
710 BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
711 .addSym(Label);
713 // Mark exception register as live in.
714 unsigned Reg = TLI.getExceptionAddressRegister();
715 if (Reg) FuncInfo->MBB->addLiveIn(Reg);
717 // Mark exception selector register as live in.
718 Reg = TLI.getExceptionSelectorRegister();
719 if (Reg) FuncInfo->MBB->addLiveIn(Reg);
721 // FIXME: Hack around an exception handling flaw (PR1508): the personality
722 // function and list of typeids logically belong to the invoke (or, if you
723 // like, the basic block containing the invoke), and need to be associated
724 // with it in the dwarf exception handling tables. Currently however the
725 // information is provided by an intrinsic (eh.selector) that can be moved
726 // to unexpected places by the optimizers: if the unwind edge is critical,
727 // then breaking it can result in the intrinsics being in the successor of
728 // the landing pad, not the landing pad itself. This results
729 // in exceptions not being caught because no typeids are associated with
730 // the invoke. This may not be the only way things can go wrong, but it
731 // is the only way we try to work around for the moment.
732 const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
733 const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
735 if (Br && Br->isUnconditional()) { // Critical edge?
736 BasicBlock::const_iterator I, E;
737 for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
738 if (isa<EHSelectorInst>(I))
739 break;
741 if (I == E)
742 // No catch info found - try to extract some from the successor.
743 CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
749 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
750 /// load into the specified FoldInst. Note that we could have a sequence where
751 /// multiple LLVM IR instructions are folded into the same machineinstr. For
752 /// example we could have:
753 /// A: x = load i32 *P
754 /// B: y = icmp A, 42
755 /// C: br y, ...
757 /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and
758 /// any other folded instructions) because it is between A and C.
760 /// If we succeed in folding the load into the operation, return true.
762 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
763 const Instruction *FoldInst,
764 FastISel *FastIS) {
765 SmallPtrSet<const Instruction*, 4> FoldedInsts;
766 for (BasicBlock::const_iterator II = FoldInst; &*II != LI; --II)
767 FoldedInsts.insert(II);
769 // We know that the load has a single use, but don't know what it is. If it
770 // isn't one of the folded instructions, then we can't succeed here.
771 if (!FoldedInsts.count(LI->use_back()))
772 return false;
774 // Don't try to fold volatile loads. Target has to deal with alignment
775 // constraints.
776 if (LI->isVolatile()) return false;
778 // Figure out which vreg this is going into.
779 unsigned LoadReg = FastIS->getRegForValue(LI);
780 assert(LoadReg && "Load isn't already assigned a vreg? ");
782 // Check to see what the uses of this vreg are. If it has no uses, or more
783 // than one use (at the machine instr level) then we can't fold it.
784 MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
785 if (RI == RegInfo->reg_end())
786 return false;
788 // See if there is exactly one use of the vreg. If there are multiple uses,
789 // then the instruction got lowered to multiple machine instructions or the
790 // use of the loaded value ended up being multiple operands of the result, in
791 // either case, we can't fold this.
792 MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
793 if (PostRI != RegInfo->reg_end())
794 return false;
796 assert(RI.getOperand().isUse() &&
797 "The only use of the vreg must be a use, we haven't emitted the def!");
799 MachineInstr *User = &*RI;
801 // Set the insertion point properly. Folding the load can cause generation of
802 // other random instructions (like sign extends) for addressing modes, make
803 // sure they get inserted in a logical place before the new instruction.
804 FuncInfo->InsertPt = User;
805 FuncInfo->MBB = User->getParent();
807 // Ask the target to try folding the load.
808 return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
811 #ifndef NDEBUG
812 /// CheckLineNumbers - Check if basic block instructions follow source order
813 /// or not.
814 static void CheckLineNumbers(const BasicBlock *BB) {
815 unsigned Line = 0;
816 unsigned Col = 0;
817 for (BasicBlock::const_iterator BI = BB->begin(),
818 BE = BB->end(); BI != BE; ++BI) {
819 const DebugLoc DL = BI->getDebugLoc();
820 if (DL.isUnknown()) continue;
821 unsigned L = DL.getLine();
822 unsigned C = DL.getCol();
823 if (L < Line || (L == Line && C < Col)) {
824 ++NumBBWithOutOfOrderLineInfo;
825 return;
827 Line = L;
828 Col = C;
832 /// CheckLineNumbers - Check if machine basic block instructions follow source
833 /// order or not.
834 static void CheckLineNumbers(const MachineBasicBlock *MBB) {
835 unsigned Line = 0;
836 unsigned Col = 0;
837 for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
838 MBE = MBB->end(); MBI != MBE; ++MBI) {
839 const DebugLoc DL = MBI->getDebugLoc();
840 if (DL.isUnknown()) continue;
841 unsigned L = DL.getLine();
842 unsigned C = DL.getCol();
843 if (L < Line || (L == Line && C < Col)) {
844 ++NumMBBWithOutOfOrderLineInfo;
845 return;
847 Line = L;
848 Col = C;
851 #endif
853 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
854 /// side-effect free and is either dead or folded into a generated instruction.
855 /// Return false if it needs to be emitted.
856 static bool isFoldedOrDeadInstruction(const Instruction *I,
857 FunctionLoweringInfo *FuncInfo) {
858 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
859 !isa<TerminatorInst>(I) && // Terminators aren't folded.
860 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
861 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
864 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
865 // Initialize the Fast-ISel state, if needed.
866 FastISel *FastIS = 0;
867 if (EnableFastISel)
868 FastIS = TLI.createFastISel(*FuncInfo);
870 // Iterate over all basic blocks in the function.
871 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
872 for (ReversePostOrderTraversal<const Function*>::rpo_iterator
873 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
874 const BasicBlock *LLVMBB = *I;
875 #ifndef NDEBUG
876 CheckLineNumbers(LLVMBB);
877 #endif
879 if (OptLevel != CodeGenOpt::None) {
880 bool AllPredsVisited = true;
881 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
882 PI != PE; ++PI) {
883 if (!FuncInfo->VisitedBBs.count(*PI)) {
884 AllPredsVisited = false;
885 break;
889 if (AllPredsVisited) {
890 for (BasicBlock::const_iterator I = LLVMBB->begin();
891 isa<PHINode>(I); ++I)
892 FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
893 } else {
894 for (BasicBlock::const_iterator I = LLVMBB->begin();
895 isa<PHINode>(I); ++I)
896 FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
899 FuncInfo->VisitedBBs.insert(LLVMBB);
902 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
903 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
905 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
906 BasicBlock::const_iterator const End = LLVMBB->end();
907 BasicBlock::const_iterator BI = End;
909 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
911 // Setup an EH landing-pad block.
912 if (FuncInfo->MBB->isLandingPad())
913 PrepareEHLandingPad();
915 // Lower any arguments needed in this block if this is the entry block.
916 if (LLVMBB == &Fn.getEntryBlock())
917 LowerArguments(LLVMBB);
919 // Before doing SelectionDAG ISel, see if FastISel has been requested.
920 if (FastIS) {
921 FastIS->startNewBlock();
923 // Emit code for any incoming arguments. This must happen before
924 // beginning FastISel on the entry block.
925 if (LLVMBB == &Fn.getEntryBlock()) {
926 CurDAG->setRoot(SDB->getControlRoot());
927 SDB->clear();
928 CodeGenAndEmitDAG();
930 // If we inserted any instructions at the beginning, make a note of
931 // where they are, so we can be sure to emit subsequent instructions
932 // after them.
933 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
934 FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
935 else
936 FastIS->setLastLocalValue(0);
939 // Do FastISel on as many instructions as possible.
940 for (; BI != Begin; --BI) {
941 const Instruction *Inst = llvm::prior(BI);
943 // If we no longer require this instruction, skip it.
944 if (isFoldedOrDeadInstruction(Inst, FuncInfo))
945 continue;
947 // Bottom-up: reset the insert pos at the top, after any local-value
948 // instructions.
949 FastIS->recomputeInsertPt();
951 // Try to select the instruction with FastISel.
952 if (FastIS->SelectInstruction(Inst)) {
953 // If fast isel succeeded, skip over all the folded instructions, and
954 // then see if there is a load right before the selected instructions.
955 // Try to fold the load if so.
956 const Instruction *BeforeInst = Inst;
957 while (BeforeInst != Begin) {
958 BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
959 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
960 break;
962 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
963 BeforeInst->hasOneUse() &&
964 TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
965 // If we succeeded, don't re-select the load.
966 BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
967 continue;
970 // Then handle certain instructions as single-LLVM-Instruction blocks.
971 if (isa<CallInst>(Inst)) {
972 ++NumFastIselFailures;
973 if (EnableFastISelVerbose || EnableFastISelAbort) {
974 dbgs() << "FastISel missed call: ";
975 Inst->dump();
978 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
979 unsigned &R = FuncInfo->ValueMap[Inst];
980 if (!R)
981 R = FuncInfo->CreateRegs(Inst->getType());
984 bool HadTailCall = false;
985 SelectBasicBlock(Inst, BI, HadTailCall);
987 // If the call was emitted as a tail call, we're done with the block.
988 if (HadTailCall) {
989 --BI;
990 break;
993 continue;
996 // Otherwise, give up on FastISel for the rest of the block.
997 // For now, be a little lenient about non-branch terminators.
998 if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
999 ++NumFastIselFailures;
1000 if (EnableFastISelVerbose || EnableFastISelAbort) {
1001 dbgs() << "FastISel miss: ";
1002 Inst->dump();
1004 if (EnableFastISelAbort)
1005 // The "fast" selector couldn't handle something and bailed.
1006 // For the purpose of debugging, just abort.
1007 llvm_unreachable("FastISel didn't select the entire block");
1009 break;
1012 FastIS->recomputeInsertPt();
1015 if (Begin != BI)
1016 ++NumDAGBlocks;
1017 else
1018 ++NumFastIselBlocks;
1020 if (Begin != BI) {
1021 // Run SelectionDAG instruction selection on the remainder of the block
1022 // not handled by FastISel. If FastISel is not run, this is the entire
1023 // block.
1024 bool HadTailCall;
1025 SelectBasicBlock(Begin, BI, HadTailCall);
1028 FinishBasicBlock();
1029 FuncInfo->PHINodesToUpdate.clear();
1032 delete FastIS;
1033 #ifndef NDEBUG
1034 for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
1035 MBI != MBE; ++MBI)
1036 CheckLineNumbers(MBI);
1037 #endif
1040 void
1041 SelectionDAGISel::FinishBasicBlock() {
1043 DEBUG(dbgs() << "Total amount of phi nodes to update: "
1044 << FuncInfo->PHINodesToUpdate.size() << "\n";
1045 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1046 dbgs() << "Node " << i << " : ("
1047 << FuncInfo->PHINodesToUpdate[i].first
1048 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1050 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1051 // PHI nodes in successors.
1052 if (SDB->SwitchCases.empty() &&
1053 SDB->JTCases.empty() &&
1054 SDB->BitTestCases.empty()) {
1055 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1056 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1057 assert(PHI->isPHI() &&
1058 "This is not a machine PHI node that we are updating!");
1059 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1060 continue;
1061 PHI->addOperand(
1062 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1063 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1065 return;
1068 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1069 // Lower header first, if it wasn't already lowered
1070 if (!SDB->BitTestCases[i].Emitted) {
1071 // Set the current basic block to the mbb we wish to insert the code into
1072 FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1073 FuncInfo->InsertPt = FuncInfo->MBB->end();
1074 // Emit the code
1075 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1076 CurDAG->setRoot(SDB->getRoot());
1077 SDB->clear();
1078 CodeGenAndEmitDAG();
1081 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1082 // Set the current basic block to the mbb we wish to insert the code into
1083 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1084 FuncInfo->InsertPt = FuncInfo->MBB->end();
1085 // Emit the code
1086 if (j+1 != ej)
1087 SDB->visitBitTestCase(SDB->BitTestCases[i],
1088 SDB->BitTestCases[i].Cases[j+1].ThisBB,
1089 SDB->BitTestCases[i].Reg,
1090 SDB->BitTestCases[i].Cases[j],
1091 FuncInfo->MBB);
1092 else
1093 SDB->visitBitTestCase(SDB->BitTestCases[i],
1094 SDB->BitTestCases[i].Default,
1095 SDB->BitTestCases[i].Reg,
1096 SDB->BitTestCases[i].Cases[j],
1097 FuncInfo->MBB);
1100 CurDAG->setRoot(SDB->getRoot());
1101 SDB->clear();
1102 CodeGenAndEmitDAG();
1105 // Update PHI Nodes
1106 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1107 pi != pe; ++pi) {
1108 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1109 MachineBasicBlock *PHIBB = PHI->getParent();
1110 assert(PHI->isPHI() &&
1111 "This is not a machine PHI node that we are updating!");
1112 // This is "default" BB. We have two jumps to it. From "header" BB and
1113 // from last "case" BB.
1114 if (PHIBB == SDB->BitTestCases[i].Default) {
1115 PHI->addOperand(MachineOperand::
1116 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1117 false));
1118 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1119 PHI->addOperand(MachineOperand::
1120 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1121 false));
1122 PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1123 back().ThisBB));
1125 // One of "cases" BB.
1126 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1127 j != ej; ++j) {
1128 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1129 if (cBB->isSuccessor(PHIBB)) {
1130 PHI->addOperand(MachineOperand::
1131 CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1132 false));
1133 PHI->addOperand(MachineOperand::CreateMBB(cBB));
1138 SDB->BitTestCases.clear();
1140 // If the JumpTable record is filled in, then we need to emit a jump table.
1141 // Updating the PHI nodes is tricky in this case, since we need to determine
1142 // whether the PHI is a successor of the range check MBB or the jump table MBB
1143 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1144 // Lower header first, if it wasn't already lowered
1145 if (!SDB->JTCases[i].first.Emitted) {
1146 // Set the current basic block to the mbb we wish to insert the code into
1147 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1148 FuncInfo->InsertPt = FuncInfo->MBB->end();
1149 // Emit the code
1150 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1151 FuncInfo->MBB);
1152 CurDAG->setRoot(SDB->getRoot());
1153 SDB->clear();
1154 CodeGenAndEmitDAG();
1157 // Set the current basic block to the mbb we wish to insert the code into
1158 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1159 FuncInfo->InsertPt = FuncInfo->MBB->end();
1160 // Emit the code
1161 SDB->visitJumpTable(SDB->JTCases[i].second);
1162 CurDAG->setRoot(SDB->getRoot());
1163 SDB->clear();
1164 CodeGenAndEmitDAG();
1166 // Update PHI Nodes
1167 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1168 pi != pe; ++pi) {
1169 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1170 MachineBasicBlock *PHIBB = PHI->getParent();
1171 assert(PHI->isPHI() &&
1172 "This is not a machine PHI node that we are updating!");
1173 // "default" BB. We can go there only from header BB.
1174 if (PHIBB == SDB->JTCases[i].second.Default) {
1175 PHI->addOperand
1176 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1177 false));
1178 PHI->addOperand
1179 (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1181 // JT BB. Just iterate over successors here
1182 if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1183 PHI->addOperand
1184 (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1185 false));
1186 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1190 SDB->JTCases.clear();
1192 // If the switch block involved a branch to one of the actual successors, we
1193 // need to update PHI nodes in that block.
1194 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1195 MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1196 assert(PHI->isPHI() &&
1197 "This is not a machine PHI node that we are updating!");
1198 if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1199 PHI->addOperand(
1200 MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1201 PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1205 // If we generated any switch lowering information, build and codegen any
1206 // additional DAGs necessary.
1207 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1208 // Set the current basic block to the mbb we wish to insert the code into
1209 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1210 FuncInfo->InsertPt = FuncInfo->MBB->end();
1212 // Determine the unique successors.
1213 SmallVector<MachineBasicBlock *, 2> Succs;
1214 Succs.push_back(SDB->SwitchCases[i].TrueBB);
1215 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1216 Succs.push_back(SDB->SwitchCases[i].FalseBB);
1218 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1219 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1220 CurDAG->setRoot(SDB->getRoot());
1221 SDB->clear();
1222 CodeGenAndEmitDAG();
1224 // Remember the last block, now that any splitting is done, for use in
1225 // populating PHI nodes in successors.
1226 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1228 // Handle any PHI nodes in successors of this chunk, as if we were coming
1229 // from the original BB before switch expansion. Note that PHI nodes can
1230 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1231 // handle them the right number of times.
1232 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1233 FuncInfo->MBB = Succs[i];
1234 FuncInfo->InsertPt = FuncInfo->MBB->end();
1235 // FuncInfo->MBB may have been removed from the CFG if a branch was
1236 // constant folded.
1237 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1238 for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1239 Phi != FuncInfo->MBB->end() && Phi->isPHI();
1240 ++Phi) {
1241 // This value for this PHI node is recorded in PHINodesToUpdate.
1242 for (unsigned pn = 0; ; ++pn) {
1243 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1244 "Didn't find PHI entry!");
1245 if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1246 Phi->addOperand(MachineOperand::
1247 CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1248 false));
1249 Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1250 break;
1257 SDB->SwitchCases.clear();
1261 /// Create the scheduler. If a specific scheduler was specified
1262 /// via the SchedulerRegistry, use it, otherwise select the
1263 /// one preferred by the target.
1265 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1266 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1268 if (!Ctor) {
1269 Ctor = ISHeuristic;
1270 RegisterScheduler::setDefault(Ctor);
1273 return Ctor(this, OptLevel);
1276 //===----------------------------------------------------------------------===//
1277 // Helper functions used by the generated instruction selector.
1278 //===----------------------------------------------------------------------===//
1279 // Calls to these methods are generated by tblgen.
1281 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1282 /// the dag combiner simplified the 255, we still want to match. RHS is the
1283 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1284 /// specified in the .td file (e.g. 255).
1285 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1286 int64_t DesiredMaskS) const {
1287 const APInt &ActualMask = RHS->getAPIntValue();
1288 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1290 // If the actual mask exactly matches, success!
1291 if (ActualMask == DesiredMask)
1292 return true;
1294 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1295 if (ActualMask.intersects(~DesiredMask))
1296 return false;
1298 // Otherwise, the DAG Combiner may have proven that the value coming in is
1299 // either already zero or is not demanded. Check for known zero input bits.
1300 APInt NeededMask = DesiredMask & ~ActualMask;
1301 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1302 return true;
1304 // TODO: check to see if missing bits are just not demanded.
1306 // Otherwise, this pattern doesn't match.
1307 return false;
1310 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1311 /// the dag combiner simplified the 255, we still want to match. RHS is the
1312 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1313 /// specified in the .td file (e.g. 255).
1314 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1315 int64_t DesiredMaskS) const {
1316 const APInt &ActualMask = RHS->getAPIntValue();
1317 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1319 // If the actual mask exactly matches, success!
1320 if (ActualMask == DesiredMask)
1321 return true;
1323 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1324 if (ActualMask.intersects(~DesiredMask))
1325 return false;
1327 // Otherwise, the DAG Combiner may have proven that the value coming in is
1328 // either already zero or is not demanded. Check for known zero input bits.
1329 APInt NeededMask = DesiredMask & ~ActualMask;
1331 APInt KnownZero, KnownOne;
1332 CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1334 // If all the missing bits in the or are already known to be set, match!
1335 if ((NeededMask & KnownOne) == NeededMask)
1336 return true;
1338 // TODO: check to see if missing bits are just not demanded.
1340 // Otherwise, this pattern doesn't match.
1341 return false;
1345 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1346 /// by tblgen. Others should not call it.
1347 void SelectionDAGISel::
1348 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1349 std::vector<SDValue> InOps;
1350 std::swap(InOps, Ops);
1352 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1353 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1354 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1355 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1357 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1358 if (InOps[e-1].getValueType() == MVT::Glue)
1359 --e; // Don't process a glue operand if it is here.
1361 while (i != e) {
1362 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1363 if (!InlineAsm::isMemKind(Flags)) {
1364 // Just skip over this operand, copying the operands verbatim.
1365 Ops.insert(Ops.end(), InOps.begin()+i,
1366 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1367 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1368 } else {
1369 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1370 "Memory operand with multiple values?");
1371 // Otherwise, this is a memory operand. Ask the target to select it.
1372 std::vector<SDValue> SelOps;
1373 if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1374 report_fatal_error("Could not match memory address. Inline asm"
1375 " failure!");
1377 // Add this to the output node.
1378 unsigned NewFlags =
1379 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1380 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1381 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1382 i += 2;
1386 // Add the glue input back if present.
1387 if (e != InOps.size())
1388 Ops.push_back(InOps.back());
1391 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1392 /// SDNode.
1394 static SDNode *findGlueUse(SDNode *N) {
1395 unsigned FlagResNo = N->getNumValues()-1;
1396 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1397 SDUse &Use = I.getUse();
1398 if (Use.getResNo() == FlagResNo)
1399 return Use.getUser();
1401 return NULL;
1404 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1405 /// This function recursively traverses up the operand chain, ignoring
1406 /// certain nodes.
1407 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1408 SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1409 bool IgnoreChains) {
1410 // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1411 // greater than all of its (recursive) operands. If we scan to a point where
1412 // 'use' is smaller than the node we're scanning for, then we know we will
1413 // never find it.
1415 // The Use may be -1 (unassigned) if it is a newly allocated node. This can
1416 // happen because we scan down to newly selected nodes in the case of glue
1417 // uses.
1418 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1419 return false;
1421 // Don't revisit nodes if we already scanned it and didn't fail, we know we
1422 // won't fail if we scan it again.
1423 if (!Visited.insert(Use))
1424 return false;
1426 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1427 // Ignore chain uses, they are validated by HandleMergeInputChains.
1428 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1429 continue;
1431 SDNode *N = Use->getOperand(i).getNode();
1432 if (N == Def) {
1433 if (Use == ImmedUse || Use == Root)
1434 continue; // We are not looking for immediate use.
1435 assert(N != Root);
1436 return true;
1439 // Traverse up the operand chain.
1440 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1441 return true;
1443 return false;
1446 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1447 /// operand node N of U during instruction selection that starts at Root.
1448 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1449 SDNode *Root) const {
1450 if (OptLevel == CodeGenOpt::None) return false;
1451 return N.hasOneUse();
1454 /// IsLegalToFold - Returns true if the specific operand node N of
1455 /// U can be folded during instruction selection that starts at Root.
1456 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1457 CodeGenOpt::Level OptLevel,
1458 bool IgnoreChains) {
1459 if (OptLevel == CodeGenOpt::None) return false;
1461 // If Root use can somehow reach N through a path that that doesn't contain
1462 // U then folding N would create a cycle. e.g. In the following
1463 // diagram, Root can reach N through X. If N is folded into into Root, then
1464 // X is both a predecessor and a successor of U.
1466 // [N*] //
1467 // ^ ^ //
1468 // / \ //
1469 // [U*] [X]? //
1470 // ^ ^ //
1471 // \ / //
1472 // \ / //
1473 // [Root*] //
1475 // * indicates nodes to be folded together.
1477 // If Root produces glue, then it gets (even more) interesting. Since it
1478 // will be "glued" together with its glue use in the scheduler, we need to
1479 // check if it might reach N.
1481 // [N*] //
1482 // ^ ^ //
1483 // / \ //
1484 // [U*] [X]? //
1485 // ^ ^ //
1486 // \ \ //
1487 // \ | //
1488 // [Root*] | //
1489 // ^ | //
1490 // f | //
1491 // | / //
1492 // [Y] / //
1493 // ^ / //
1494 // f / //
1495 // | / //
1496 // [GU] //
1498 // If GU (glue use) indirectly reaches N (the load), and Root folds N
1499 // (call it Fold), then X is a predecessor of GU and a successor of
1500 // Fold. But since Fold and GU are glued together, this will create
1501 // a cycle in the scheduling graph.
1503 // If the node has glue, walk down the graph to the "lowest" node in the
1504 // glueged set.
1505 EVT VT = Root->getValueType(Root->getNumValues()-1);
1506 while (VT == MVT::Glue) {
1507 SDNode *GU = findGlueUse(Root);
1508 if (GU == NULL)
1509 break;
1510 Root = GU;
1511 VT = Root->getValueType(Root->getNumValues()-1);
1513 // If our query node has a glue result with a use, we've walked up it. If
1514 // the user (which has already been selected) has a chain or indirectly uses
1515 // the chain, our WalkChainUsers predicate will not consider it. Because of
1516 // this, we cannot ignore chains in this predicate.
1517 IgnoreChains = false;
1521 SmallPtrSet<SDNode*, 16> Visited;
1522 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1525 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1526 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1527 SelectInlineAsmMemoryOperands(Ops);
1529 std::vector<EVT> VTs;
1530 VTs.push_back(MVT::Other);
1531 VTs.push_back(MVT::Glue);
1532 SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1533 VTs, &Ops[0], Ops.size());
1534 New->setNodeId(-1);
1535 return New.getNode();
1538 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1539 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1542 /// GetVBR - decode a vbr encoding whose top bit is set.
1543 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1544 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1545 assert(Val >= 128 && "Not a VBR");
1546 Val &= 127; // Remove first vbr bit.
1548 unsigned Shift = 7;
1549 uint64_t NextBits;
1550 do {
1551 NextBits = MatcherTable[Idx++];
1552 Val |= (NextBits&127) << Shift;
1553 Shift += 7;
1554 } while (NextBits & 128);
1556 return Val;
1560 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1561 /// interior glue and chain results to use the new glue and chain results.
1562 void SelectionDAGISel::
1563 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1564 const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1565 SDValue InputGlue,
1566 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1567 bool isMorphNodeTo) {
1568 SmallVector<SDNode*, 4> NowDeadNodes;
1570 ISelUpdater ISU(ISelPosition);
1572 // Now that all the normal results are replaced, we replace the chain and
1573 // glue results if present.
1574 if (!ChainNodesMatched.empty()) {
1575 assert(InputChain.getNode() != 0 &&
1576 "Matched input chains but didn't produce a chain");
1577 // Loop over all of the nodes we matched that produced a chain result.
1578 // Replace all the chain results with the final chain we ended up with.
1579 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1580 SDNode *ChainNode = ChainNodesMatched[i];
1582 // If this node was already deleted, don't look at it.
1583 if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1584 continue;
1586 // Don't replace the results of the root node if we're doing a
1587 // MorphNodeTo.
1588 if (ChainNode == NodeToMatch && isMorphNodeTo)
1589 continue;
1591 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1592 if (ChainVal.getValueType() == MVT::Glue)
1593 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1594 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1595 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1597 // If the node became dead and we haven't already seen it, delete it.
1598 if (ChainNode->use_empty() &&
1599 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1600 NowDeadNodes.push_back(ChainNode);
1604 // If the result produces glue, update any glue results in the matched
1605 // pattern with the glue result.
1606 if (InputGlue.getNode() != 0) {
1607 // Handle any interior nodes explicitly marked.
1608 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1609 SDNode *FRN = GlueResultNodesMatched[i];
1611 // If this node was already deleted, don't look at it.
1612 if (FRN->getOpcode() == ISD::DELETED_NODE)
1613 continue;
1615 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1616 "Doesn't have a glue result");
1617 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1618 InputGlue, &ISU);
1620 // If the node became dead and we haven't already seen it, delete it.
1621 if (FRN->use_empty() &&
1622 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1623 NowDeadNodes.push_back(FRN);
1627 if (!NowDeadNodes.empty())
1628 CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1630 DEBUG(errs() << "ISEL: Match complete!\n");
1633 enum ChainResult {
1634 CR_Simple,
1635 CR_InducesCycle,
1636 CR_LeadsToInteriorNode
1639 /// WalkChainUsers - Walk down the users of the specified chained node that is
1640 /// part of the pattern we're matching, looking at all of the users we find.
1641 /// This determines whether something is an interior node, whether we have a
1642 /// non-pattern node in between two pattern nodes (which prevent folding because
1643 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1644 /// between pattern nodes (in which case the TF becomes part of the pattern).
1646 /// The walk we do here is guaranteed to be small because we quickly get down to
1647 /// already selected nodes "below" us.
1648 static ChainResult
1649 WalkChainUsers(SDNode *ChainedNode,
1650 SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1651 SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1652 ChainResult Result = CR_Simple;
1654 for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1655 E = ChainedNode->use_end(); UI != E; ++UI) {
1656 // Make sure the use is of the chain, not some other value we produce.
1657 if (UI.getUse().getValueType() != MVT::Other) continue;
1659 SDNode *User = *UI;
1661 // If we see an already-selected machine node, then we've gone beyond the
1662 // pattern that we're selecting down into the already selected chunk of the
1663 // DAG.
1664 if (User->isMachineOpcode() ||
1665 User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
1666 continue;
1668 if (User->getOpcode() == ISD::CopyToReg ||
1669 User->getOpcode() == ISD::CopyFromReg ||
1670 User->getOpcode() == ISD::INLINEASM ||
1671 User->getOpcode() == ISD::EH_LABEL) {
1672 // If their node ID got reset to -1 then they've already been selected.
1673 // Treat them like a MachineOpcode.
1674 if (User->getNodeId() == -1)
1675 continue;
1678 // If we have a TokenFactor, we handle it specially.
1679 if (User->getOpcode() != ISD::TokenFactor) {
1680 // If the node isn't a token factor and isn't part of our pattern, then it
1681 // must be a random chained node in between two nodes we're selecting.
1682 // This happens when we have something like:
1683 // x = load ptr
1684 // call
1685 // y = x+4
1686 // store y -> ptr
1687 // Because we structurally match the load/store as a read/modify/write,
1688 // but the call is chained between them. We cannot fold in this case
1689 // because it would induce a cycle in the graph.
1690 if (!std::count(ChainedNodesInPattern.begin(),
1691 ChainedNodesInPattern.end(), User))
1692 return CR_InducesCycle;
1694 // Otherwise we found a node that is part of our pattern. For example in:
1695 // x = load ptr
1696 // y = x+4
1697 // store y -> ptr
1698 // This would happen when we're scanning down from the load and see the
1699 // store as a user. Record that there is a use of ChainedNode that is
1700 // part of the pattern and keep scanning uses.
1701 Result = CR_LeadsToInteriorNode;
1702 InteriorChainedNodes.push_back(User);
1703 continue;
1706 // If we found a TokenFactor, there are two cases to consider: first if the
1707 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1708 // uses of the TF are in our pattern) we just want to ignore it. Second,
1709 // the TokenFactor can be sandwiched in between two chained nodes, like so:
1710 // [Load chain]
1711 // ^
1712 // |
1713 // [Load]
1714 // ^ ^
1715 // | \ DAG's like cheese
1716 // / \ do you?
1717 // / |
1718 // [TokenFactor] [Op]
1719 // ^ ^
1720 // | |
1721 // \ /
1722 // \ /
1723 // [Store]
1725 // In this case, the TokenFactor becomes part of our match and we rewrite it
1726 // as a new TokenFactor.
1728 // To distinguish these two cases, do a recursive walk down the uses.
1729 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1730 case CR_Simple:
1731 // If the uses of the TokenFactor are just already-selected nodes, ignore
1732 // it, it is "below" our pattern.
1733 continue;
1734 case CR_InducesCycle:
1735 // If the uses of the TokenFactor lead to nodes that are not part of our
1736 // pattern that are not selected, folding would turn this into a cycle,
1737 // bail out now.
1738 return CR_InducesCycle;
1739 case CR_LeadsToInteriorNode:
1740 break; // Otherwise, keep processing.
1743 // Okay, we know we're in the interesting interior case. The TokenFactor
1744 // is now going to be considered part of the pattern so that we rewrite its
1745 // uses (it may have uses that are not part of the pattern) with the
1746 // ultimate chain result of the generated code. We will also add its chain
1747 // inputs as inputs to the ultimate TokenFactor we create.
1748 Result = CR_LeadsToInteriorNode;
1749 ChainedNodesInPattern.push_back(User);
1750 InteriorChainedNodes.push_back(User);
1751 continue;
1754 return Result;
1757 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1758 /// operation for when the pattern matched at least one node with a chains. The
1759 /// input vector contains a list of all of the chained nodes that we match. We
1760 /// must determine if this is a valid thing to cover (i.e. matching it won't
1761 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1762 /// be used as the input node chain for the generated nodes.
1763 static SDValue
1764 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1765 SelectionDAG *CurDAG) {
1766 // Walk all of the chained nodes we've matched, recursively scanning down the
1767 // users of the chain result. This adds any TokenFactor nodes that are caught
1768 // in between chained nodes to the chained and interior nodes list.
1769 SmallVector<SDNode*, 3> InteriorChainedNodes;
1770 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1771 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1772 InteriorChainedNodes) == CR_InducesCycle)
1773 return SDValue(); // Would induce a cycle.
1776 // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1777 // that we are interested in. Form our input TokenFactor node.
1778 SmallVector<SDValue, 3> InputChains;
1779 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1780 // Add the input chain of this node to the InputChains list (which will be
1781 // the operands of the generated TokenFactor) if it's not an interior node.
1782 SDNode *N = ChainNodesMatched[i];
1783 if (N->getOpcode() != ISD::TokenFactor) {
1784 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1785 continue;
1787 // Otherwise, add the input chain.
1788 SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1789 assert(InChain.getValueType() == MVT::Other && "Not a chain");
1790 InputChains.push_back(InChain);
1791 continue;
1794 // If we have a token factor, we want to add all inputs of the token factor
1795 // that are not part of the pattern we're matching.
1796 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1797 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1798 N->getOperand(op).getNode()))
1799 InputChains.push_back(N->getOperand(op));
1803 SDValue Res;
1804 if (InputChains.size() == 1)
1805 return InputChains[0];
1806 return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1807 MVT::Other, &InputChains[0], InputChains.size());
1810 /// MorphNode - Handle morphing a node in place for the selector.
1811 SDNode *SelectionDAGISel::
1812 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1813 const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1814 // It is possible we're using MorphNodeTo to replace a node with no
1815 // normal results with one that has a normal result (or we could be
1816 // adding a chain) and the input could have glue and chains as well.
1817 // In this case we need to shift the operands down.
1818 // FIXME: This is a horrible hack and broken in obscure cases, no worse
1819 // than the old isel though.
1820 int OldGlueResultNo = -1, OldChainResultNo = -1;
1822 unsigned NTMNumResults = Node->getNumValues();
1823 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1824 OldGlueResultNo = NTMNumResults-1;
1825 if (NTMNumResults != 1 &&
1826 Node->getValueType(NTMNumResults-2) == MVT::Other)
1827 OldChainResultNo = NTMNumResults-2;
1828 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1829 OldChainResultNo = NTMNumResults-1;
1831 // Call the underlying SelectionDAG routine to do the transmogrification. Note
1832 // that this deletes operands of the old node that become dead.
1833 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1835 // MorphNodeTo can operate in two ways: if an existing node with the
1836 // specified operands exists, it can just return it. Otherwise, it
1837 // updates the node in place to have the requested operands.
1838 if (Res == Node) {
1839 // If we updated the node in place, reset the node ID. To the isel,
1840 // this should be just like a newly allocated machine node.
1841 Res->setNodeId(-1);
1844 unsigned ResNumResults = Res->getNumValues();
1845 // Move the glue if needed.
1846 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1847 (unsigned)OldGlueResultNo != ResNumResults-1)
1848 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1849 SDValue(Res, ResNumResults-1));
1851 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1852 --ResNumResults;
1854 // Move the chain reference if needed.
1855 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1856 (unsigned)OldChainResultNo != ResNumResults-1)
1857 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1858 SDValue(Res, ResNumResults-1));
1860 // Otherwise, no replacement happened because the node already exists. Replace
1861 // Uses of the old node with the new one.
1862 if (Res != Node)
1863 CurDAG->ReplaceAllUsesWith(Node, Res);
1865 return Res;
1868 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1869 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1870 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1871 SDValue N,
1872 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1873 // Accept if it is exactly the same as a previously recorded node.
1874 unsigned RecNo = MatcherTable[MatcherIndex++];
1875 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1876 return N == RecordedNodes[RecNo].first;
1879 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1880 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1881 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1882 SelectionDAGISel &SDISel) {
1883 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1886 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
1887 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1888 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1889 SelectionDAGISel &SDISel, SDNode *N) {
1890 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1893 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1894 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1895 SDNode *N) {
1896 uint16_t Opc = MatcherTable[MatcherIndex++];
1897 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1898 return N->getOpcode() == Opc;
1901 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1902 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1903 SDValue N, const TargetLowering &TLI) {
1904 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1905 if (N.getValueType() == VT) return true;
1907 // Handle the case when VT is iPTR.
1908 return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1911 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1912 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1913 SDValue N, const TargetLowering &TLI,
1914 unsigned ChildNo) {
1915 if (ChildNo >= N.getNumOperands())
1916 return false; // Match fails if out of range child #.
1917 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1921 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1922 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1923 SDValue N) {
1924 return cast<CondCodeSDNode>(N)->get() ==
1925 (ISD::CondCode)MatcherTable[MatcherIndex++];
1928 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1929 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1930 SDValue N, const TargetLowering &TLI) {
1931 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1932 if (cast<VTSDNode>(N)->getVT() == VT)
1933 return true;
1935 // Handle the case when VT is iPTR.
1936 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1939 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1940 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1941 SDValue N) {
1942 int64_t Val = MatcherTable[MatcherIndex++];
1943 if (Val & 128)
1944 Val = GetVBR(Val, MatcherTable, MatcherIndex);
1946 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1947 return C != 0 && C->getSExtValue() == Val;
1950 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1951 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1952 SDValue N, SelectionDAGISel &SDISel) {
1953 int64_t Val = MatcherTable[MatcherIndex++];
1954 if (Val & 128)
1955 Val = GetVBR(Val, MatcherTable, MatcherIndex);
1957 if (N->getOpcode() != ISD::AND) return false;
1959 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1960 return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1963 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1964 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1965 SDValue N, SelectionDAGISel &SDISel) {
1966 int64_t Val = MatcherTable[MatcherIndex++];
1967 if (Val & 128)
1968 Val = GetVBR(Val, MatcherTable, MatcherIndex);
1970 if (N->getOpcode() != ISD::OR) return false;
1972 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1973 return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1976 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
1977 /// scope, evaluate the current node. If the current predicate is known to
1978 /// fail, set Result=true and return anything. If the current predicate is
1979 /// known to pass, set Result=false and return the MatcherIndex to continue
1980 /// with. If the current predicate is unknown, set Result=false and return the
1981 /// MatcherIndex to continue with.
1982 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1983 unsigned Index, SDValue N,
1984 bool &Result, SelectionDAGISel &SDISel,
1985 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1986 switch (Table[Index++]) {
1987 default:
1988 Result = false;
1989 return Index-1; // Could not evaluate this predicate.
1990 case SelectionDAGISel::OPC_CheckSame:
1991 Result = !::CheckSame(Table, Index, N, RecordedNodes);
1992 return Index;
1993 case SelectionDAGISel::OPC_CheckPatternPredicate:
1994 Result = !::CheckPatternPredicate(Table, Index, SDISel);
1995 return Index;
1996 case SelectionDAGISel::OPC_CheckPredicate:
1997 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1998 return Index;
1999 case SelectionDAGISel::OPC_CheckOpcode:
2000 Result = !::CheckOpcode(Table, Index, N.getNode());
2001 return Index;
2002 case SelectionDAGISel::OPC_CheckType:
2003 Result = !::CheckType(Table, Index, N, SDISel.TLI);
2004 return Index;
2005 case SelectionDAGISel::OPC_CheckChild0Type:
2006 case SelectionDAGISel::OPC_CheckChild1Type:
2007 case SelectionDAGISel::OPC_CheckChild2Type:
2008 case SelectionDAGISel::OPC_CheckChild3Type:
2009 case SelectionDAGISel::OPC_CheckChild4Type:
2010 case SelectionDAGISel::OPC_CheckChild5Type:
2011 case SelectionDAGISel::OPC_CheckChild6Type:
2012 case SelectionDAGISel::OPC_CheckChild7Type:
2013 Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2014 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2015 return Index;
2016 case SelectionDAGISel::OPC_CheckCondCode:
2017 Result = !::CheckCondCode(Table, Index, N);
2018 return Index;
2019 case SelectionDAGISel::OPC_CheckValueType:
2020 Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2021 return Index;
2022 case SelectionDAGISel::OPC_CheckInteger:
2023 Result = !::CheckInteger(Table, Index, N);
2024 return Index;
2025 case SelectionDAGISel::OPC_CheckAndImm:
2026 Result = !::CheckAndImm(Table, Index, N, SDISel);
2027 return Index;
2028 case SelectionDAGISel::OPC_CheckOrImm:
2029 Result = !::CheckOrImm(Table, Index, N, SDISel);
2030 return Index;
2034 namespace {
2036 struct MatchScope {
2037 /// FailIndex - If this match fails, this is the index to continue with.
2038 unsigned FailIndex;
2040 /// NodeStack - The node stack when the scope was formed.
2041 SmallVector<SDValue, 4> NodeStack;
2043 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2044 unsigned NumRecordedNodes;
2046 /// NumMatchedMemRefs - The number of matched memref entries.
2047 unsigned NumMatchedMemRefs;
2049 /// InputChain/InputGlue - The current chain/glue
2050 SDValue InputChain, InputGlue;
2052 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2053 bool HasChainNodesMatched, HasGlueResultNodesMatched;
2058 SDNode *SelectionDAGISel::
2059 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2060 unsigned TableSize) {
2061 // FIXME: Should these even be selected? Handle these cases in the caller?
2062 switch (NodeToMatch->getOpcode()) {
2063 default:
2064 break;
2065 case ISD::EntryToken: // These nodes remain the same.
2066 case ISD::BasicBlock:
2067 case ISD::Register:
2068 //case ISD::VALUETYPE:
2069 //case ISD::CONDCODE:
2070 case ISD::HANDLENODE:
2071 case ISD::MDNODE_SDNODE:
2072 case ISD::TargetConstant:
2073 case ISD::TargetConstantFP:
2074 case ISD::TargetConstantPool:
2075 case ISD::TargetFrameIndex:
2076 case ISD::TargetExternalSymbol:
2077 case ISD::TargetBlockAddress:
2078 case ISD::TargetJumpTable:
2079 case ISD::TargetGlobalTLSAddress:
2080 case ISD::TargetGlobalAddress:
2081 case ISD::TokenFactor:
2082 case ISD::CopyFromReg:
2083 case ISD::CopyToReg:
2084 case ISD::EH_LABEL:
2085 NodeToMatch->setNodeId(-1); // Mark selected.
2086 return 0;
2087 case ISD::AssertSext:
2088 case ISD::AssertZext:
2089 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2090 NodeToMatch->getOperand(0));
2091 return 0;
2092 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2093 case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
2096 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2098 // Set up the node stack with NodeToMatch as the only node on the stack.
2099 SmallVector<SDValue, 8> NodeStack;
2100 SDValue N = SDValue(NodeToMatch, 0);
2101 NodeStack.push_back(N);
2103 // MatchScopes - Scopes used when matching, if a match failure happens, this
2104 // indicates where to continue checking.
2105 SmallVector<MatchScope, 8> MatchScopes;
2107 // RecordedNodes - This is the set of nodes that have been recorded by the
2108 // state machine. The second value is the parent of the node, or null if the
2109 // root is recorded.
2110 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2112 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2113 // pattern.
2114 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2116 // These are the current input chain and glue for use when generating nodes.
2117 // Various Emit operations change these. For example, emitting a copytoreg
2118 // uses and updates these.
2119 SDValue InputChain, InputGlue;
2121 // ChainNodesMatched - If a pattern matches nodes that have input/output
2122 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2123 // which ones they are. The result is captured into this list so that we can
2124 // update the chain results when the pattern is complete.
2125 SmallVector<SDNode*, 3> ChainNodesMatched;
2126 SmallVector<SDNode*, 3> GlueResultNodesMatched;
2128 DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2129 NodeToMatch->dump(CurDAG);
2130 errs() << '\n');
2132 // Determine where to start the interpreter. Normally we start at opcode #0,
2133 // but if the state machine starts with an OPC_SwitchOpcode, then we
2134 // accelerate the first lookup (which is guaranteed to be hot) with the
2135 // OpcodeOffset table.
2136 unsigned MatcherIndex = 0;
2138 if (!OpcodeOffset.empty()) {
2139 // Already computed the OpcodeOffset table, just index into it.
2140 if (N.getOpcode() < OpcodeOffset.size())
2141 MatcherIndex = OpcodeOffset[N.getOpcode()];
2142 DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n");
2144 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2145 // Otherwise, the table isn't computed, but the state machine does start
2146 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2147 // is the first time we're selecting an instruction.
2148 unsigned Idx = 1;
2149 while (1) {
2150 // Get the size of this case.
2151 unsigned CaseSize = MatcherTable[Idx++];
2152 if (CaseSize & 128)
2153 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2154 if (CaseSize == 0) break;
2156 // Get the opcode, add the index to the table.
2157 uint16_t Opc = MatcherTable[Idx++];
2158 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2159 if (Opc >= OpcodeOffset.size())
2160 OpcodeOffset.resize((Opc+1)*2);
2161 OpcodeOffset[Opc] = Idx;
2162 Idx += CaseSize;
2165 // Okay, do the lookup for the first opcode.
2166 if (N.getOpcode() < OpcodeOffset.size())
2167 MatcherIndex = OpcodeOffset[N.getOpcode()];
2170 while (1) {
2171 assert(MatcherIndex < TableSize && "Invalid index");
2172 #ifndef NDEBUG
2173 unsigned CurrentOpcodeIndex = MatcherIndex;
2174 #endif
2175 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2176 switch (Opcode) {
2177 case OPC_Scope: {
2178 // Okay, the semantics of this operation are that we should push a scope
2179 // then evaluate the first child. However, pushing a scope only to have
2180 // the first check fail (which then pops it) is inefficient. If we can
2181 // determine immediately that the first check (or first several) will
2182 // immediately fail, don't even bother pushing a scope for them.
2183 unsigned FailIndex;
2185 while (1) {
2186 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2187 if (NumToSkip & 128)
2188 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2189 // Found the end of the scope with no match.
2190 if (NumToSkip == 0) {
2191 FailIndex = 0;
2192 break;
2195 FailIndex = MatcherIndex+NumToSkip;
2197 unsigned MatcherIndexOfPredicate = MatcherIndex;
2198 (void)MatcherIndexOfPredicate; // silence warning.
2200 // If we can't evaluate this predicate without pushing a scope (e.g. if
2201 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2202 // push the scope and evaluate the full predicate chain.
2203 bool Result;
2204 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2205 Result, *this, RecordedNodes);
2206 if (!Result)
2207 break;
2209 DEBUG(errs() << " Skipped scope entry (due to false predicate) at "
2210 << "index " << MatcherIndexOfPredicate
2211 << ", continuing at " << FailIndex << "\n");
2212 ++NumDAGIselRetries;
2214 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2215 // move to the next case.
2216 MatcherIndex = FailIndex;
2219 // If the whole scope failed to match, bail.
2220 if (FailIndex == 0) break;
2222 // Push a MatchScope which indicates where to go if the first child fails
2223 // to match.
2224 MatchScope NewEntry;
2225 NewEntry.FailIndex = FailIndex;
2226 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2227 NewEntry.NumRecordedNodes = RecordedNodes.size();
2228 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2229 NewEntry.InputChain = InputChain;
2230 NewEntry.InputGlue = InputGlue;
2231 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2232 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2233 MatchScopes.push_back(NewEntry);
2234 continue;
2236 case OPC_RecordNode: {
2237 // Remember this node, it may end up being an operand in the pattern.
2238 SDNode *Parent = 0;
2239 if (NodeStack.size() > 1)
2240 Parent = NodeStack[NodeStack.size()-2].getNode();
2241 RecordedNodes.push_back(std::make_pair(N, Parent));
2242 continue;
2245 case OPC_RecordChild0: case OPC_RecordChild1:
2246 case OPC_RecordChild2: case OPC_RecordChild3:
2247 case OPC_RecordChild4: case OPC_RecordChild5:
2248 case OPC_RecordChild6: case OPC_RecordChild7: {
2249 unsigned ChildNo = Opcode-OPC_RecordChild0;
2250 if (ChildNo >= N.getNumOperands())
2251 break; // Match fails if out of range child #.
2253 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2254 N.getNode()));
2255 continue;
2257 case OPC_RecordMemRef:
2258 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2259 continue;
2261 case OPC_CaptureGlueInput:
2262 // If the current node has an input glue, capture it in InputGlue.
2263 if (N->getNumOperands() != 0 &&
2264 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2265 InputGlue = N->getOperand(N->getNumOperands()-1);
2266 continue;
2268 case OPC_MoveChild: {
2269 unsigned ChildNo = MatcherTable[MatcherIndex++];
2270 if (ChildNo >= N.getNumOperands())
2271 break; // Match fails if out of range child #.
2272 N = N.getOperand(ChildNo);
2273 NodeStack.push_back(N);
2274 continue;
2277 case OPC_MoveParent:
2278 // Pop the current node off the NodeStack.
2279 NodeStack.pop_back();
2280 assert(!NodeStack.empty() && "Node stack imbalance!");
2281 N = NodeStack.back();
2282 continue;
2284 case OPC_CheckSame:
2285 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2286 continue;
2287 case OPC_CheckPatternPredicate:
2288 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2289 continue;
2290 case OPC_CheckPredicate:
2291 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2292 N.getNode()))
2293 break;
2294 continue;
2295 case OPC_CheckComplexPat: {
2296 unsigned CPNum = MatcherTable[MatcherIndex++];
2297 unsigned RecNo = MatcherTable[MatcherIndex++];
2298 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2299 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2300 RecordedNodes[RecNo].first, CPNum,
2301 RecordedNodes))
2302 break;
2303 continue;
2305 case OPC_CheckOpcode:
2306 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2307 continue;
2309 case OPC_CheckType:
2310 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2311 continue;
2313 case OPC_SwitchOpcode: {
2314 unsigned CurNodeOpcode = N.getOpcode();
2315 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2316 unsigned CaseSize;
2317 while (1) {
2318 // Get the size of this case.
2319 CaseSize = MatcherTable[MatcherIndex++];
2320 if (CaseSize & 128)
2321 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2322 if (CaseSize == 0) break;
2324 uint16_t Opc = MatcherTable[MatcherIndex++];
2325 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2327 // If the opcode matches, then we will execute this case.
2328 if (CurNodeOpcode == Opc)
2329 break;
2331 // Otherwise, skip over this case.
2332 MatcherIndex += CaseSize;
2335 // If no cases matched, bail out.
2336 if (CaseSize == 0) break;
2338 // Otherwise, execute the case we found.
2339 DEBUG(errs() << " OpcodeSwitch from " << SwitchStart
2340 << " to " << MatcherIndex << "\n");
2341 continue;
2344 case OPC_SwitchType: {
2345 MVT CurNodeVT = N.getValueType().getSimpleVT();
2346 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2347 unsigned CaseSize;
2348 while (1) {
2349 // Get the size of this case.
2350 CaseSize = MatcherTable[MatcherIndex++];
2351 if (CaseSize & 128)
2352 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2353 if (CaseSize == 0) break;
2355 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2356 if (CaseVT == MVT::iPTR)
2357 CaseVT = TLI.getPointerTy();
2359 // If the VT matches, then we will execute this case.
2360 if (CurNodeVT == CaseVT)
2361 break;
2363 // Otherwise, skip over this case.
2364 MatcherIndex += CaseSize;
2367 // If no cases matched, bail out.
2368 if (CaseSize == 0) break;
2370 // Otherwise, execute the case we found.
2371 DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2372 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2373 continue;
2375 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2376 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2377 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2378 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2379 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2380 Opcode-OPC_CheckChild0Type))
2381 break;
2382 continue;
2383 case OPC_CheckCondCode:
2384 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2385 continue;
2386 case OPC_CheckValueType:
2387 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2388 continue;
2389 case OPC_CheckInteger:
2390 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2391 continue;
2392 case OPC_CheckAndImm:
2393 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2394 continue;
2395 case OPC_CheckOrImm:
2396 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2397 continue;
2399 case OPC_CheckFoldableChainNode: {
2400 assert(NodeStack.size() != 1 && "No parent node");
2401 // Verify that all intermediate nodes between the root and this one have
2402 // a single use.
2403 bool HasMultipleUses = false;
2404 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2405 if (!NodeStack[i].hasOneUse()) {
2406 HasMultipleUses = true;
2407 break;
2409 if (HasMultipleUses) break;
2411 // Check to see that the target thinks this is profitable to fold and that
2412 // we can fold it without inducing cycles in the graph.
2413 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2414 NodeToMatch) ||
2415 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2416 NodeToMatch, OptLevel,
2417 true/*We validate our own chains*/))
2418 break;
2420 continue;
2422 case OPC_EmitInteger: {
2423 MVT::SimpleValueType VT =
2424 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2425 int64_t Val = MatcherTable[MatcherIndex++];
2426 if (Val & 128)
2427 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2428 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2429 CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2430 continue;
2432 case OPC_EmitRegister: {
2433 MVT::SimpleValueType VT =
2434 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2435 unsigned RegNo = MatcherTable[MatcherIndex++];
2436 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2437 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2438 continue;
2440 case OPC_EmitRegister2: {
2441 // For targets w/ more than 256 register names, the register enum
2442 // values are stored in two bytes in the matcher table (just like
2443 // opcodes).
2444 MVT::SimpleValueType VT =
2445 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2446 unsigned RegNo = MatcherTable[MatcherIndex++];
2447 RegNo |= MatcherTable[MatcherIndex++] << 8;
2448 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2449 CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2450 continue;
2453 case OPC_EmitConvertToTarget: {
2454 // Convert from IMM/FPIMM to target version.
2455 unsigned RecNo = MatcherTable[MatcherIndex++];
2456 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2457 SDValue Imm = RecordedNodes[RecNo].first;
2459 if (Imm->getOpcode() == ISD::Constant) {
2460 int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2461 Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2462 } else if (Imm->getOpcode() == ISD::ConstantFP) {
2463 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2464 Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2467 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2468 continue;
2471 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
2472 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
2473 // These are space-optimized forms of OPC_EmitMergeInputChains.
2474 assert(InputChain.getNode() == 0 &&
2475 "EmitMergeInputChains should be the first chain producing node");
2476 assert(ChainNodesMatched.empty() &&
2477 "Should only have one EmitMergeInputChains per match");
2479 // Read all of the chained nodes.
2480 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2481 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2482 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2484 // FIXME: What if other value results of the node have uses not matched
2485 // by this pattern?
2486 if (ChainNodesMatched.back() != NodeToMatch &&
2487 !RecordedNodes[RecNo].first.hasOneUse()) {
2488 ChainNodesMatched.clear();
2489 break;
2492 // Merge the input chains if they are not intra-pattern references.
2493 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2495 if (InputChain.getNode() == 0)
2496 break; // Failed to merge.
2497 continue;
2500 case OPC_EmitMergeInputChains: {
2501 assert(InputChain.getNode() == 0 &&
2502 "EmitMergeInputChains should be the first chain producing node");
2503 // This node gets a list of nodes we matched in the input that have
2504 // chains. We want to token factor all of the input chains to these nodes
2505 // together. However, if any of the input chains is actually one of the
2506 // nodes matched in this pattern, then we have an intra-match reference.
2507 // Ignore these because the newly token factored chain should not refer to
2508 // the old nodes.
2509 unsigned NumChains = MatcherTable[MatcherIndex++];
2510 assert(NumChains != 0 && "Can't TF zero chains");
2512 assert(ChainNodesMatched.empty() &&
2513 "Should only have one EmitMergeInputChains per match");
2515 // Read all of the chained nodes.
2516 for (unsigned i = 0; i != NumChains; ++i) {
2517 unsigned RecNo = MatcherTable[MatcherIndex++];
2518 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2519 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2521 // FIXME: What if other value results of the node have uses not matched
2522 // by this pattern?
2523 if (ChainNodesMatched.back() != NodeToMatch &&
2524 !RecordedNodes[RecNo].first.hasOneUse()) {
2525 ChainNodesMatched.clear();
2526 break;
2530 // If the inner loop broke out, the match fails.
2531 if (ChainNodesMatched.empty())
2532 break;
2534 // Merge the input chains if they are not intra-pattern references.
2535 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2537 if (InputChain.getNode() == 0)
2538 break; // Failed to merge.
2540 continue;
2543 case OPC_EmitCopyToReg: {
2544 unsigned RecNo = MatcherTable[MatcherIndex++];
2545 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2546 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2548 if (InputChain.getNode() == 0)
2549 InputChain = CurDAG->getEntryNode();
2551 InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2552 DestPhysReg, RecordedNodes[RecNo].first,
2553 InputGlue);
2555 InputGlue = InputChain.getValue(1);
2556 continue;
2559 case OPC_EmitNodeXForm: {
2560 unsigned XFormNo = MatcherTable[MatcherIndex++];
2561 unsigned RecNo = MatcherTable[MatcherIndex++];
2562 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2563 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2564 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2565 continue;
2568 case OPC_EmitNode:
2569 case OPC_MorphNodeTo: {
2570 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2571 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2572 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2573 // Get the result VT list.
2574 unsigned NumVTs = MatcherTable[MatcherIndex++];
2575 SmallVector<EVT, 4> VTs;
2576 for (unsigned i = 0; i != NumVTs; ++i) {
2577 MVT::SimpleValueType VT =
2578 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2579 if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2580 VTs.push_back(VT);
2583 if (EmitNodeInfo & OPFL_Chain)
2584 VTs.push_back(MVT::Other);
2585 if (EmitNodeInfo & OPFL_GlueOutput)
2586 VTs.push_back(MVT::Glue);
2588 // This is hot code, so optimize the two most common cases of 1 and 2
2589 // results.
2590 SDVTList VTList;
2591 if (VTs.size() == 1)
2592 VTList = CurDAG->getVTList(VTs[0]);
2593 else if (VTs.size() == 2)
2594 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2595 else
2596 VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2598 // Get the operand list.
2599 unsigned NumOps = MatcherTable[MatcherIndex++];
2600 SmallVector<SDValue, 8> Ops;
2601 for (unsigned i = 0; i != NumOps; ++i) {
2602 unsigned RecNo = MatcherTable[MatcherIndex++];
2603 if (RecNo & 128)
2604 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2606 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2607 Ops.push_back(RecordedNodes[RecNo].first);
2610 // If there are variadic operands to add, handle them now.
2611 if (EmitNodeInfo & OPFL_VariadicInfo) {
2612 // Determine the start index to copy from.
2613 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2614 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2615 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2616 "Invalid variadic node");
2617 // Copy all of the variadic operands, not including a potential glue
2618 // input.
2619 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2620 i != e; ++i) {
2621 SDValue V = NodeToMatch->getOperand(i);
2622 if (V.getValueType() == MVT::Glue) break;
2623 Ops.push_back(V);
2627 // If this has chain/glue inputs, add them.
2628 if (EmitNodeInfo & OPFL_Chain)
2629 Ops.push_back(InputChain);
2630 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2631 Ops.push_back(InputGlue);
2633 // Create the node.
2634 SDNode *Res = 0;
2635 if (Opcode != OPC_MorphNodeTo) {
2636 // If this is a normal EmitNode command, just create the new node and
2637 // add the results to the RecordedNodes list.
2638 Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2639 VTList, Ops.data(), Ops.size());
2641 // Add all the non-glue/non-chain results to the RecordedNodes list.
2642 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2643 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2644 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2645 (SDNode*) 0));
2648 } else {
2649 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2650 EmitNodeInfo);
2653 // If the node had chain/glue results, update our notion of the current
2654 // chain and glue.
2655 if (EmitNodeInfo & OPFL_GlueOutput) {
2656 InputGlue = SDValue(Res, VTs.size()-1);
2657 if (EmitNodeInfo & OPFL_Chain)
2658 InputChain = SDValue(Res, VTs.size()-2);
2659 } else if (EmitNodeInfo & OPFL_Chain)
2660 InputChain = SDValue(Res, VTs.size()-1);
2662 // If the OPFL_MemRefs glue is set on this node, slap all of the
2663 // accumulated memrefs onto it.
2665 // FIXME: This is vastly incorrect for patterns with multiple outputs
2666 // instructions that access memory and for ComplexPatterns that match
2667 // loads.
2668 if (EmitNodeInfo & OPFL_MemRefs) {
2669 MachineSDNode::mmo_iterator MemRefs =
2670 MF->allocateMemRefsArray(MatchedMemRefs.size());
2671 std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2672 cast<MachineSDNode>(Res)
2673 ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2676 DEBUG(errs() << " "
2677 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2678 << " node: "; Res->dump(CurDAG); errs() << "\n");
2680 // If this was a MorphNodeTo then we're completely done!
2681 if (Opcode == OPC_MorphNodeTo) {
2682 // Update chain and glue uses.
2683 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2684 InputGlue, GlueResultNodesMatched, true);
2685 return Res;
2688 continue;
2691 case OPC_MarkGlueResults: {
2692 unsigned NumNodes = MatcherTable[MatcherIndex++];
2694 // Read and remember all the glue-result nodes.
2695 for (unsigned i = 0; i != NumNodes; ++i) {
2696 unsigned RecNo = MatcherTable[MatcherIndex++];
2697 if (RecNo & 128)
2698 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2700 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2701 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2703 continue;
2706 case OPC_CompleteMatch: {
2707 // The match has been completed, and any new nodes (if any) have been
2708 // created. Patch up references to the matched dag to use the newly
2709 // created nodes.
2710 unsigned NumResults = MatcherTable[MatcherIndex++];
2712 for (unsigned i = 0; i != NumResults; ++i) {
2713 unsigned ResSlot = MatcherTable[MatcherIndex++];
2714 if (ResSlot & 128)
2715 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2717 assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2718 SDValue Res = RecordedNodes[ResSlot].first;
2720 assert(i < NodeToMatch->getNumValues() &&
2721 NodeToMatch->getValueType(i) != MVT::Other &&
2722 NodeToMatch->getValueType(i) != MVT::Glue &&
2723 "Invalid number of results to complete!");
2724 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2725 NodeToMatch->getValueType(i) == MVT::iPTR ||
2726 Res.getValueType() == MVT::iPTR ||
2727 NodeToMatch->getValueType(i).getSizeInBits() ==
2728 Res.getValueType().getSizeInBits()) &&
2729 "invalid replacement");
2730 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2733 // If the root node defines glue, add it to the glue nodes to update list.
2734 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2735 GlueResultNodesMatched.push_back(NodeToMatch);
2737 // Update chain and glue uses.
2738 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2739 InputGlue, GlueResultNodesMatched, false);
2741 assert(NodeToMatch->use_empty() &&
2742 "Didn't replace all uses of the node?");
2744 // FIXME: We just return here, which interacts correctly with SelectRoot
2745 // above. We should fix this to not return an SDNode* anymore.
2746 return 0;
2750 // If the code reached this point, then the match failed. See if there is
2751 // another child to try in the current 'Scope', otherwise pop it until we
2752 // find a case to check.
2753 DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
2754 ++NumDAGIselRetries;
2755 while (1) {
2756 if (MatchScopes.empty()) {
2757 CannotYetSelect(NodeToMatch);
2758 return 0;
2761 // Restore the interpreter state back to the point where the scope was
2762 // formed.
2763 MatchScope &LastScope = MatchScopes.back();
2764 RecordedNodes.resize(LastScope.NumRecordedNodes);
2765 NodeStack.clear();
2766 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2767 N = NodeStack.back();
2769 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2770 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2771 MatcherIndex = LastScope.FailIndex;
2773 DEBUG(errs() << " Continuing at " << MatcherIndex << "\n");
2775 InputChain = LastScope.InputChain;
2776 InputGlue = LastScope.InputGlue;
2777 if (!LastScope.HasChainNodesMatched)
2778 ChainNodesMatched.clear();
2779 if (!LastScope.HasGlueResultNodesMatched)
2780 GlueResultNodesMatched.clear();
2782 // Check to see what the offset is at the new MatcherIndex. If it is zero
2783 // we have reached the end of this scope, otherwise we have another child
2784 // in the current scope to try.
2785 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2786 if (NumToSkip & 128)
2787 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2789 // If we have another child in this scope to match, update FailIndex and
2790 // try it.
2791 if (NumToSkip != 0) {
2792 LastScope.FailIndex = MatcherIndex+NumToSkip;
2793 break;
2796 // End of this scope, pop it and try the next child in the containing
2797 // scope.
2798 MatchScopes.pop_back();
2805 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2806 std::string msg;
2807 raw_string_ostream Msg(msg);
2808 Msg << "Cannot select: ";
2810 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2811 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2812 N->getOpcode() != ISD::INTRINSIC_VOID) {
2813 N->printrFull(Msg, CurDAG);
2814 } else {
2815 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2816 unsigned iid =
2817 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2818 if (iid < Intrinsic::num_intrinsics)
2819 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2820 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2821 Msg << "target intrinsic %" << TII->getName(iid);
2822 else
2823 Msg << "unknown intrinsic #" << iid;
2825 report_fatal_error(Msg.str());
2828 char SelectionDAGISel::ID = 0;