1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAGISel class.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
18 #include "llvm/CodeGen/SelectionDAGISel.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/DebugInfo.h"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/InlineAsm.h"
24 #include "llvm/Instructions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/Module.h"
29 #include "llvm/CodeGen/FastISel.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/GCMetadata.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38 #include "llvm/CodeGen/SchedulerRegistry.h"
39 #include "llvm/CodeGen/SelectionDAG.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetIntrinsicInfo.h"
42 #include "llvm/Target/TargetInstrInfo.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Timer.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/ADT/PostOrderIterator.h"
53 #include "llvm/ADT/Statistic.h"
57 STATISTIC(NumFastIselFailures
, "Number of instructions fast isel failed on");
58 STATISTIC(NumFastIselBlocks
, "Number of blocks selected entirely by fast isel");
59 STATISTIC(NumDAGBlocks
, "Number of blocks selected using DAG");
60 STATISTIC(NumDAGIselRetries
,"Number of times dag isel has to try another path");
63 STATISTIC(NumBBWithOutOfOrderLineInfo
,
64 "Number of blocks with out of order line number info");
65 STATISTIC(NumMBBWithOutOfOrderLineInfo
,
66 "Number of machine blocks with out of order line number info");
70 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden
,
71 cl::desc("Enable verbose messages in the \"fast\" "
72 "instruction selector"));
74 EnableFastISelAbort("fast-isel-abort", cl::Hidden
,
75 cl::desc("Enable abort calls when \"fast\" instruction fails"));
79 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden
,
80 cl::desc("Pop up a window to show dags before the first "
83 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden
,
84 cl::desc("Pop up a window to show dags before legalize types"));
86 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden
,
87 cl::desc("Pop up a window to show dags before legalize"));
89 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden
,
90 cl::desc("Pop up a window to show dags before the second "
93 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden
,
94 cl::desc("Pop up a window to show dags before the post legalize types"
95 " dag combine pass"));
97 ViewISelDAGs("view-isel-dags", cl::Hidden
,
98 cl::desc("Pop up a window to show isel dags as they are selected"));
100 ViewSchedDAGs("view-sched-dags", cl::Hidden
,
101 cl::desc("Pop up a window to show sched dags as they are processed"));
103 ViewSUnitDAGs("view-sunit-dags", cl::Hidden
,
104 cl::desc("Pop up a window to show SUnit dags after they are processed"));
106 static const bool ViewDAGCombine1
= false,
107 ViewLegalizeTypesDAGs
= false, ViewLegalizeDAGs
= false,
108 ViewDAGCombine2
= false,
109 ViewDAGCombineLT
= false,
110 ViewISelDAGs
= false, ViewSchedDAGs
= false,
111 ViewSUnitDAGs
= false;
114 //===---------------------------------------------------------------------===//
116 /// RegisterScheduler class - Track the registration of instruction schedulers.
118 //===---------------------------------------------------------------------===//
119 MachinePassRegistry
RegisterScheduler::Registry
;
121 //===---------------------------------------------------------------------===//
123 /// ISHeuristic command line option for instruction schedulers.
125 //===---------------------------------------------------------------------===//
126 static cl::opt
<RegisterScheduler::FunctionPassCtor
, false,
127 RegisterPassParser
<RegisterScheduler
> >
128 ISHeuristic("pre-RA-sched",
129 cl::init(&createDefaultScheduler
),
130 cl::desc("Instruction schedulers available (before register"
133 static RegisterScheduler
134 defaultListDAGScheduler("default", "Best scheduler for the target",
135 createDefaultScheduler
);
138 //===--------------------------------------------------------------------===//
139 /// createDefaultScheduler - This creates an instruction scheduler appropriate
141 ScheduleDAGSDNodes
* createDefaultScheduler(SelectionDAGISel
*IS
,
142 CodeGenOpt::Level OptLevel
) {
143 const TargetLowering
&TLI
= IS
->getTargetLowering();
145 if (OptLevel
== CodeGenOpt::None
)
146 return createSourceListDAGScheduler(IS
, OptLevel
);
147 if (TLI
.getSchedulingPreference() == Sched::Latency
)
148 return createTDListDAGScheduler(IS
, OptLevel
);
149 if (TLI
.getSchedulingPreference() == Sched::RegPressure
)
150 return createBURRListDAGScheduler(IS
, OptLevel
);
151 if (TLI
.getSchedulingPreference() == Sched::Hybrid
)
152 return createHybridListDAGScheduler(IS
, OptLevel
);
153 assert(TLI
.getSchedulingPreference() == Sched::ILP
&&
154 "Unknown sched type!");
155 return createILPListDAGScheduler(IS
, OptLevel
);
159 // EmitInstrWithCustomInserter - This method should be implemented by targets
160 // that mark instructions with the 'usesCustomInserter' flag. These
161 // instructions are special in various ways, which require special support to
162 // insert. The specified MachineInstr is created but not inserted into any
163 // basic blocks, and this method is called to expand it into a sequence of
164 // instructions, potentially also creating new basic blocks and control flow.
165 // When new basic blocks are inserted and the edges from MBB to its successors
166 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
169 TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
170 MachineBasicBlock
*MBB
) const {
172 dbgs() << "If a target marks an instruction with "
173 "'usesCustomInserter', it must implement "
174 "TargetLowering::EmitInstrWithCustomInserter!";
180 //===----------------------------------------------------------------------===//
181 // SelectionDAGISel code
182 //===----------------------------------------------------------------------===//
184 SelectionDAGISel::SelectionDAGISel(const TargetMachine
&tm
,
185 CodeGenOpt::Level OL
) :
186 MachineFunctionPass(ID
), TM(tm
), TLI(*tm
.getTargetLowering()),
187 FuncInfo(new FunctionLoweringInfo(TLI
)),
188 CurDAG(new SelectionDAG(tm
)),
189 SDB(new SelectionDAGBuilder(*CurDAG
, *FuncInfo
, OL
)),
193 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
194 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
197 SelectionDAGISel::~SelectionDAGISel() {
203 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
204 AU
.addRequired
<AliasAnalysis
>();
205 AU
.addPreserved
<AliasAnalysis
>();
206 AU
.addRequired
<GCModuleInfo
>();
207 AU
.addPreserved
<GCModuleInfo
>();
208 MachineFunctionPass::getAnalysisUsage(AU
);
211 /// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
212 /// other function that gcc recognizes as "returning twice". This is used to
213 /// limit code-gen optimizations on the machine function.
215 /// FIXME: Remove after <rdar://problem/8031714> is fixed.
216 static bool FunctionCallsSetJmp(const Function
*F
) {
217 const Module
*M
= F
->getParent();
218 static const char *ReturnsTwiceFns
[] = {
228 #define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
230 for (unsigned I
= 0; I
< NUM_RETURNS_TWICE_FNS
; ++I
)
231 if (const Function
*Callee
= M
->getFunction(ReturnsTwiceFns
[I
])) {
232 if (!Callee
->use_empty())
233 for (Value::const_use_iterator
234 I
= Callee
->use_begin(), E
= Callee
->use_end();
236 if (const CallInst
*CI
= dyn_cast
<CallInst
>(*I
))
237 if (CI
->getParent()->getParent() == F
)
242 #undef NUM_RETURNS_TWICE_FNS
245 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
246 /// may trap on it. In this case we have to split the edge so that the path
247 /// through the predecessor block that doesn't go to the phi block doesn't
248 /// execute the possibly trapping instruction.
250 /// This is required for correctness, so it must be done at -O0.
252 static void SplitCriticalSideEffectEdges(Function
&Fn
, Pass
*SDISel
) {
253 // Loop for blocks with phi nodes.
254 for (Function::iterator BB
= Fn
.begin(), E
= Fn
.end(); BB
!= E
; ++BB
) {
255 PHINode
*PN
= dyn_cast
<PHINode
>(BB
->begin());
256 if (PN
== 0) continue;
259 // For each block with a PHI node, check to see if any of the input values
260 // are potentially trapping constant expressions. Constant expressions are
261 // the only potentially trapping value that can occur as the argument to a
263 for (BasicBlock::iterator I
= BB
->begin(); (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
264 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
265 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(PN
->getIncomingValue(i
));
266 if (CE
== 0 || !CE
->canTrap()) continue;
268 // The only case we have to worry about is when the edge is critical.
269 // Since this block has a PHI Node, we assume it has multiple input
270 // edges: check to see if the pred has multiple successors.
271 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
272 if (Pred
->getTerminator()->getNumSuccessors() == 1)
275 // Okay, we have to split this edge.
276 SplitCriticalEdge(Pred
->getTerminator(),
277 GetSuccessorNumber(Pred
, BB
), SDISel
, true);
283 bool SelectionDAGISel::runOnMachineFunction(MachineFunction
&mf
) {
284 // Do some sanity-checking on the command-line options.
285 assert((!EnableFastISelVerbose
|| EnableFastISel
) &&
286 "-fast-isel-verbose requires -fast-isel");
287 assert((!EnableFastISelAbort
|| EnableFastISel
) &&
288 "-fast-isel-abort requires -fast-isel");
290 const Function
&Fn
= *mf
.getFunction();
291 const TargetInstrInfo
&TII
= *TM
.getInstrInfo();
292 const TargetRegisterInfo
&TRI
= *TM
.getRegisterInfo();
295 RegInfo
= &MF
->getRegInfo();
296 AA
= &getAnalysis
<AliasAnalysis
>();
297 GFI
= Fn
.hasGC() ? &getAnalysis
<GCModuleInfo
>().getFunctionInfo(Fn
) : 0;
299 DEBUG(dbgs() << "\n\n\n=== " << Fn
.getName() << "\n");
301 SplitCriticalSideEffectEdges(const_cast<Function
&>(Fn
), this);
304 FuncInfo
->set(Fn
, *MF
);
307 SelectAllBasicBlocks(Fn
);
309 // If the first basic block in the function has live ins that need to be
310 // copied into vregs, emit the copies into the top of the block before
311 // emitting the code for the block.
312 MachineBasicBlock
*EntryMBB
= MF
->begin();
313 RegInfo
->EmitLiveInCopies(EntryMBB
, TRI
, TII
);
315 DenseMap
<unsigned, unsigned> LiveInMap
;
316 if (!FuncInfo
->ArgDbgValues
.empty())
317 for (MachineRegisterInfo::livein_iterator LI
= RegInfo
->livein_begin(),
318 E
= RegInfo
->livein_end(); LI
!= E
; ++LI
)
320 LiveInMap
.insert(std::make_pair(LI
->first
, LI
->second
));
322 // Insert DBG_VALUE instructions for function arguments to the entry block.
323 for (unsigned i
= 0, e
= FuncInfo
->ArgDbgValues
.size(); i
!= e
; ++i
) {
324 MachineInstr
*MI
= FuncInfo
->ArgDbgValues
[e
-i
-1];
325 unsigned Reg
= MI
->getOperand(0).getReg();
326 if (TargetRegisterInfo::isPhysicalRegister(Reg
))
327 EntryMBB
->insert(EntryMBB
->begin(), MI
);
329 MachineInstr
*Def
= RegInfo
->getVRegDef(Reg
);
330 MachineBasicBlock::iterator InsertPos
= Def
;
331 // FIXME: VR def may not be in entry block.
332 Def
->getParent()->insert(llvm::next(InsertPos
), MI
);
335 // If Reg is live-in then update debug info to track its copy in a vreg.
336 DenseMap
<unsigned, unsigned>::iterator LDI
= LiveInMap
.find(Reg
);
337 if (LDI
!= LiveInMap
.end()) {
338 MachineInstr
*Def
= RegInfo
->getVRegDef(LDI
->second
);
339 MachineBasicBlock::iterator InsertPos
= Def
;
340 const MDNode
*Variable
=
341 MI
->getOperand(MI
->getNumOperands()-1).getMetadata();
342 unsigned Offset
= MI
->getOperand(1).getImm();
343 // Def is never a terminator here, so it is ok to increment InsertPos.
344 BuildMI(*EntryMBB
, ++InsertPos
, MI
->getDebugLoc(),
345 TII
.get(TargetOpcode::DBG_VALUE
))
346 .addReg(LDI
->second
, RegState::Debug
)
347 .addImm(Offset
).addMetadata(Variable
);
349 // If this vreg is directly copied into an exported register then
350 // that COPY instructions also need DBG_VALUE, if it is the only
351 // user of LDI->second.
352 MachineInstr
*CopyUseMI
= NULL
;
353 for (MachineRegisterInfo::use_iterator
354 UI
= RegInfo
->use_begin(LDI
->second
);
355 MachineInstr
*UseMI
= UI
.skipInstruction();) {
356 if (UseMI
->isDebugValue()) continue;
357 if (UseMI
->isCopy() && !CopyUseMI
&& UseMI
->getParent() == EntryMBB
) {
358 CopyUseMI
= UseMI
; continue;
360 // Otherwise this is another use or second copy use.
361 CopyUseMI
= NULL
; break;
364 MachineInstr
*NewMI
=
365 BuildMI(*MF
, CopyUseMI
->getDebugLoc(),
366 TII
.get(TargetOpcode::DBG_VALUE
))
367 .addReg(CopyUseMI
->getOperand(0).getReg(), RegState::Debug
)
368 .addImm(Offset
).addMetadata(Variable
);
369 EntryMBB
->insertAfter(CopyUseMI
, NewMI
);
374 // Determine if there are any calls in this machine function.
375 MachineFrameInfo
*MFI
= MF
->getFrameInfo();
376 if (!MFI
->hasCalls()) {
377 for (MachineFunction::const_iterator
378 I
= MF
->begin(), E
= MF
->end(); I
!= E
; ++I
) {
379 const MachineBasicBlock
*MBB
= I
;
380 for (MachineBasicBlock::const_iterator
381 II
= MBB
->begin(), IE
= MBB
->end(); II
!= IE
; ++II
) {
382 const TargetInstrDesc
&TID
= TM
.getInstrInfo()->get(II
->getOpcode());
384 if ((TID
.isCall() && !TID
.isReturn()) ||
385 II
->isStackAligningInlineAsm()) {
386 MFI
->setHasCalls(true);
394 // Determine if there is a call to setjmp in the machine function.
395 MF
->setCallsSetJmp(FunctionCallsSetJmp(&Fn
));
397 // Replace forward-declared registers with the registers containing
398 // the desired value.
399 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
400 for (DenseMap
<unsigned, unsigned>::iterator
401 I
= FuncInfo
->RegFixups
.begin(), E
= FuncInfo
->RegFixups
.end();
403 unsigned From
= I
->first
;
404 unsigned To
= I
->second
;
405 // If To is also scheduled to be replaced, find what its ultimate
408 DenseMap
<unsigned, unsigned>::iterator J
=
409 FuncInfo
->RegFixups
.find(To
);
414 MRI
.replaceRegWith(From
, To
);
417 // Release function-specific state. SDB and CurDAG are already cleared
424 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin
,
425 BasicBlock::const_iterator End
,
427 // Lower all of the non-terminator instructions. If a call is emitted
428 // as a tail call, cease emitting nodes for this block. Terminators
429 // are handled below.
430 for (BasicBlock::const_iterator I
= Begin
; I
!= End
&& !SDB
->HasTailCall
; ++I
)
433 // Make sure the root of the DAG is up-to-date.
434 CurDAG
->setRoot(SDB
->getControlRoot());
435 HadTailCall
= SDB
->HasTailCall
;
438 // Final step, emit the lowered DAG as machine code.
442 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
443 SmallPtrSet
<SDNode
*, 128> VisitedNodes
;
444 SmallVector
<SDNode
*, 128> Worklist
;
446 Worklist
.push_back(CurDAG
->getRoot().getNode());
453 SDNode
*N
= Worklist
.pop_back_val();
455 // If we've already seen this node, ignore it.
456 if (!VisitedNodes
.insert(N
))
459 // Otherwise, add all chain operands to the worklist.
460 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
461 if (N
->getOperand(i
).getValueType() == MVT::Other
)
462 Worklist
.push_back(N
->getOperand(i
).getNode());
464 // If this is a CopyToReg with a vreg dest, process it.
465 if (N
->getOpcode() != ISD::CopyToReg
)
468 unsigned DestReg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
469 if (!TargetRegisterInfo::isVirtualRegister(DestReg
))
472 // Ignore non-scalar or non-integer values.
473 SDValue Src
= N
->getOperand(2);
474 EVT SrcVT
= Src
.getValueType();
475 if (!SrcVT
.isInteger() || SrcVT
.isVector())
478 unsigned NumSignBits
= CurDAG
->ComputeNumSignBits(Src
);
479 Mask
= APInt::getAllOnesValue(SrcVT
.getSizeInBits());
480 CurDAG
->ComputeMaskedBits(Src
, Mask
, KnownZero
, KnownOne
);
481 FuncInfo
->AddLiveOutRegInfo(DestReg
, NumSignBits
, KnownZero
, KnownOne
);
482 } while (!Worklist
.empty());
485 void SelectionDAGISel::CodeGenAndEmitDAG() {
486 std::string GroupName
;
487 if (TimePassesIsEnabled
)
488 GroupName
= "Instruction Selection and Scheduling";
489 std::string BlockName
;
490 int BlockNumber
= -1;
492 if (ViewDAGCombine1
|| ViewLegalizeTypesDAGs
|| ViewLegalizeDAGs
||
493 ViewDAGCombine2
|| ViewDAGCombineLT
|| ViewISelDAGs
|| ViewSchedDAGs
||
497 BlockNumber
= FuncInfo
->MBB
->getNumber();
498 BlockName
= MF
->getFunction()->getNameStr() + ":" +
499 FuncInfo
->MBB
->getBasicBlock()->getNameStr();
501 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
502 << " '" << BlockName
<< "'\n"; CurDAG
->dump());
504 if (ViewDAGCombine1
) CurDAG
->viewGraph("dag-combine1 input for " + BlockName
);
506 // Run the DAG combiner in pre-legalize mode.
508 NamedRegionTimer
T("DAG Combining 1", GroupName
, TimePassesIsEnabled
);
509 CurDAG
->Combine(Unrestricted
, *AA
, OptLevel
);
512 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
513 << " '" << BlockName
<< "'\n"; CurDAG
->dump());
515 // Second step, hack on the DAG until it only uses operations and types that
516 // the target supports.
517 if (ViewLegalizeTypesDAGs
) CurDAG
->viewGraph("legalize-types input for " +
522 NamedRegionTimer
T("Type Legalization", GroupName
, TimePassesIsEnabled
);
523 Changed
= CurDAG
->LegalizeTypes();
526 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
527 << " '" << BlockName
<< "'\n"; CurDAG
->dump());
530 if (ViewDAGCombineLT
)
531 CurDAG
->viewGraph("dag-combine-lt input for " + BlockName
);
533 // Run the DAG combiner in post-type-legalize mode.
535 NamedRegionTimer
T("DAG Combining after legalize types", GroupName
,
536 TimePassesIsEnabled
);
537 CurDAG
->Combine(NoIllegalTypes
, *AA
, OptLevel
);
540 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
541 << " '" << BlockName
<< "'\n"; CurDAG
->dump());
545 NamedRegionTimer
T("Vector Legalization", GroupName
, TimePassesIsEnabled
);
546 Changed
= CurDAG
->LegalizeVectors();
551 NamedRegionTimer
T("Type Legalization 2", GroupName
, TimePassesIsEnabled
);
552 CurDAG
->LegalizeTypes();
555 if (ViewDAGCombineLT
)
556 CurDAG
->viewGraph("dag-combine-lv input for " + BlockName
);
558 // Run the DAG combiner in post-type-legalize mode.
560 NamedRegionTimer
T("DAG Combining after legalize vectors", GroupName
,
561 TimePassesIsEnabled
);
562 CurDAG
->Combine(NoIllegalOperations
, *AA
, OptLevel
);
565 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
566 << BlockNumber
<< " '" << BlockName
<< "'\n"; CurDAG
->dump());
569 if (ViewLegalizeDAGs
) CurDAG
->viewGraph("legalize input for " + BlockName
);
572 NamedRegionTimer
T("DAG Legalization", GroupName
, TimePassesIsEnabled
);
573 CurDAG
->Legalize(OptLevel
);
576 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
577 << " '" << BlockName
<< "'\n"; CurDAG
->dump());
579 if (ViewDAGCombine2
) CurDAG
->viewGraph("dag-combine2 input for " + BlockName
);
581 // Run the DAG combiner in post-legalize mode.
583 NamedRegionTimer
T("DAG Combining 2", GroupName
, TimePassesIsEnabled
);
584 CurDAG
->Combine(NoIllegalOperations
, *AA
, OptLevel
);
587 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
588 << " '" << BlockName
<< "'\n"; CurDAG
->dump());
590 if (OptLevel
!= CodeGenOpt::None
)
591 ComputeLiveOutVRegInfo();
593 if (ViewISelDAGs
) CurDAG
->viewGraph("isel input for " + BlockName
);
595 // Third, instruction select all of the operations to machine code, adding the
596 // code to the MachineBasicBlock.
598 NamedRegionTimer
T("Instruction Selection", GroupName
, TimePassesIsEnabled
);
599 DoInstructionSelection();
602 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
603 << " '" << BlockName
<< "'\n"; CurDAG
->dump());
605 if (ViewSchedDAGs
) CurDAG
->viewGraph("scheduler input for " + BlockName
);
607 // Schedule machine code.
608 ScheduleDAGSDNodes
*Scheduler
= CreateScheduler();
610 NamedRegionTimer
T("Instruction Scheduling", GroupName
,
611 TimePassesIsEnabled
);
612 Scheduler
->Run(CurDAG
, FuncInfo
->MBB
, FuncInfo
->InsertPt
);
615 if (ViewSUnitDAGs
) Scheduler
->viewGraph();
617 // Emit machine code to BB. This can change 'BB' to the last block being
619 MachineBasicBlock
*FirstMBB
= FuncInfo
->MBB
, *LastMBB
;
621 NamedRegionTimer
T("Instruction Creation", GroupName
, TimePassesIsEnabled
);
623 LastMBB
= FuncInfo
->MBB
= Scheduler
->EmitSchedule();
624 FuncInfo
->InsertPt
= Scheduler
->InsertPos
;
627 // If the block was split, make sure we update any references that are used to
628 // update PHI nodes later on.
629 if (FirstMBB
!= LastMBB
)
630 SDB
->UpdateSplitBlock(FirstMBB
, LastMBB
);
632 // Free the scheduler state.
634 NamedRegionTimer
T("Instruction Scheduling Cleanup", GroupName
,
635 TimePassesIsEnabled
);
639 // Free the SelectionDAG state, now that we're finished with it.
643 void SelectionDAGISel::DoInstructionSelection() {
644 DEBUG(errs() << "===== Instruction selection begins: BB#"
645 << FuncInfo
->MBB
->getNumber()
646 << " '" << FuncInfo
->MBB
->getName() << "'\n");
650 // Select target instructions for the DAG.
652 // Number all nodes with a topological order and set DAGSize.
653 DAGSize
= CurDAG
->AssignTopologicalOrder();
655 // Create a dummy node (which is not added to allnodes), that adds
656 // a reference to the root node, preventing it from being deleted,
657 // and tracking any changes of the root.
658 HandleSDNode
Dummy(CurDAG
->getRoot());
659 ISelPosition
= SelectionDAG::allnodes_iterator(CurDAG
->getRoot().getNode());
662 // The AllNodes list is now topological-sorted. Visit the
663 // nodes by starting at the end of the list (the root of the
664 // graph) and preceding back toward the beginning (the entry
666 while (ISelPosition
!= CurDAG
->allnodes_begin()) {
667 SDNode
*Node
= --ISelPosition
;
668 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
669 // but there are currently some corner cases that it misses. Also, this
670 // makes it theoretically possible to disable the DAGCombiner.
671 if (Node
->use_empty())
674 SDNode
*ResNode
= Select(Node
);
676 // FIXME: This is pretty gross. 'Select' should be changed to not return
677 // anything at all and this code should be nuked with a tactical strike.
679 // If node should not be replaced, continue with the next one.
680 if (ResNode
== Node
|| Node
->getOpcode() == ISD::DELETED_NODE
)
684 ReplaceUses(Node
, ResNode
);
686 // If after the replacement this node is not used any more,
687 // remove this dead node.
688 if (Node
->use_empty()) { // Don't delete EntryToken, etc.
689 ISelUpdater
ISU(ISelPosition
);
690 CurDAG
->RemoveDeadNode(Node
, &ISU
);
694 CurDAG
->setRoot(Dummy
.getValue());
697 DEBUG(errs() << "===== Instruction selection ends:\n");
699 PostprocessISelDAG();
702 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
703 /// do other setup for EH landing-pad blocks.
704 void SelectionDAGISel::PrepareEHLandingPad() {
705 // Add a label to mark the beginning of the landing pad. Deletion of the
706 // landing pad can thus be detected via the MachineModuleInfo.
707 MCSymbol
*Label
= MF
->getMMI().addLandingPad(FuncInfo
->MBB
);
709 const TargetInstrDesc
&II
= TM
.getInstrInfo()->get(TargetOpcode::EH_LABEL
);
710 BuildMI(*FuncInfo
->MBB
, FuncInfo
->InsertPt
, SDB
->getCurDebugLoc(), II
)
713 // Mark exception register as live in.
714 unsigned Reg
= TLI
.getExceptionAddressRegister();
715 if (Reg
) FuncInfo
->MBB
->addLiveIn(Reg
);
717 // Mark exception selector register as live in.
718 Reg
= TLI
.getExceptionSelectorRegister();
719 if (Reg
) FuncInfo
->MBB
->addLiveIn(Reg
);
721 // FIXME: Hack around an exception handling flaw (PR1508): the personality
722 // function and list of typeids logically belong to the invoke (or, if you
723 // like, the basic block containing the invoke), and need to be associated
724 // with it in the dwarf exception handling tables. Currently however the
725 // information is provided by an intrinsic (eh.selector) that can be moved
726 // to unexpected places by the optimizers: if the unwind edge is critical,
727 // then breaking it can result in the intrinsics being in the successor of
728 // the landing pad, not the landing pad itself. This results
729 // in exceptions not being caught because no typeids are associated with
730 // the invoke. This may not be the only way things can go wrong, but it
731 // is the only way we try to work around for the moment.
732 const BasicBlock
*LLVMBB
= FuncInfo
->MBB
->getBasicBlock();
733 const BranchInst
*Br
= dyn_cast
<BranchInst
>(LLVMBB
->getTerminator());
735 if (Br
&& Br
->isUnconditional()) { // Critical edge?
736 BasicBlock::const_iterator I
, E
;
737 for (I
= LLVMBB
->begin(), E
= --LLVMBB
->end(); I
!= E
; ++I
)
738 if (isa
<EHSelectorInst
>(I
))
742 // No catch info found - try to extract some from the successor.
743 CopyCatchInfo(Br
->getSuccessor(0), LLVMBB
, &MF
->getMMI(), *FuncInfo
);
749 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
750 /// load into the specified FoldInst. Note that we could have a sequence where
751 /// multiple LLVM IR instructions are folded into the same machineinstr. For
752 /// example we could have:
753 /// A: x = load i32 *P
754 /// B: y = icmp A, 42
757 /// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and
758 /// any other folded instructions) because it is between A and C.
760 /// If we succeed in folding the load into the operation, return true.
762 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst
*LI
,
763 const Instruction
*FoldInst
,
765 SmallPtrSet
<const Instruction
*, 4> FoldedInsts
;
766 for (BasicBlock::const_iterator II
= FoldInst
; &*II
!= LI
; --II
)
767 FoldedInsts
.insert(II
);
769 // We know that the load has a single use, but don't know what it is. If it
770 // isn't one of the folded instructions, then we can't succeed here.
771 if (!FoldedInsts
.count(LI
->use_back()))
774 // Don't try to fold volatile loads. Target has to deal with alignment
776 if (LI
->isVolatile()) return false;
778 // Figure out which vreg this is going into.
779 unsigned LoadReg
= FastIS
->getRegForValue(LI
);
780 assert(LoadReg
&& "Load isn't already assigned a vreg? ");
782 // Check to see what the uses of this vreg are. If it has no uses, or more
783 // than one use (at the machine instr level) then we can't fold it.
784 MachineRegisterInfo::reg_iterator RI
= RegInfo
->reg_begin(LoadReg
);
785 if (RI
== RegInfo
->reg_end())
788 // See if there is exactly one use of the vreg. If there are multiple uses,
789 // then the instruction got lowered to multiple machine instructions or the
790 // use of the loaded value ended up being multiple operands of the result, in
791 // either case, we can't fold this.
792 MachineRegisterInfo::reg_iterator PostRI
= RI
; ++PostRI
;
793 if (PostRI
!= RegInfo
->reg_end())
796 assert(RI
.getOperand().isUse() &&
797 "The only use of the vreg must be a use, we haven't emitted the def!");
799 MachineInstr
*User
= &*RI
;
801 // Set the insertion point properly. Folding the load can cause generation of
802 // other random instructions (like sign extends) for addressing modes, make
803 // sure they get inserted in a logical place before the new instruction.
804 FuncInfo
->InsertPt
= User
;
805 FuncInfo
->MBB
= User
->getParent();
807 // Ask the target to try folding the load.
808 return FastIS
->TryToFoldLoad(User
, RI
.getOperandNo(), LI
);
812 /// CheckLineNumbers - Check if basic block instructions follow source order
814 static void CheckLineNumbers(const BasicBlock
*BB
) {
817 for (BasicBlock::const_iterator BI
= BB
->begin(),
818 BE
= BB
->end(); BI
!= BE
; ++BI
) {
819 const DebugLoc DL
= BI
->getDebugLoc();
820 if (DL
.isUnknown()) continue;
821 unsigned L
= DL
.getLine();
822 unsigned C
= DL
.getCol();
823 if (L
< Line
|| (L
== Line
&& C
< Col
)) {
824 ++NumBBWithOutOfOrderLineInfo
;
832 /// CheckLineNumbers - Check if machine basic block instructions follow source
834 static void CheckLineNumbers(const MachineBasicBlock
*MBB
) {
837 for (MachineBasicBlock::const_iterator MBI
= MBB
->begin(),
838 MBE
= MBB
->end(); MBI
!= MBE
; ++MBI
) {
839 const DebugLoc DL
= MBI
->getDebugLoc();
840 if (DL
.isUnknown()) continue;
841 unsigned L
= DL
.getLine();
842 unsigned C
= DL
.getCol();
843 if (L
< Line
|| (L
== Line
&& C
< Col
)) {
844 ++NumMBBWithOutOfOrderLineInfo
;
853 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
854 /// side-effect free and is either dead or folded into a generated instruction.
855 /// Return false if it needs to be emitted.
856 static bool isFoldedOrDeadInstruction(const Instruction
*I
,
857 FunctionLoweringInfo
*FuncInfo
) {
858 return !I
->mayWriteToMemory() && // Side-effecting instructions aren't folded.
859 !isa
<TerminatorInst
>(I
) && // Terminators aren't folded.
860 !isa
<DbgInfoIntrinsic
>(I
) && // Debug instructions aren't folded.
861 !FuncInfo
->isExportedInst(I
); // Exported instrs must be computed.
864 void SelectionDAGISel::SelectAllBasicBlocks(const Function
&Fn
) {
865 // Initialize the Fast-ISel state, if needed.
866 FastISel
*FastIS
= 0;
868 FastIS
= TLI
.createFastISel(*FuncInfo
);
870 // Iterate over all basic blocks in the function.
871 ReversePostOrderTraversal
<const Function
*> RPOT(&Fn
);
872 for (ReversePostOrderTraversal
<const Function
*>::rpo_iterator
873 I
= RPOT
.begin(), E
= RPOT
.end(); I
!= E
; ++I
) {
874 const BasicBlock
*LLVMBB
= *I
;
876 CheckLineNumbers(LLVMBB
);
879 if (OptLevel
!= CodeGenOpt::None
) {
880 bool AllPredsVisited
= true;
881 for (const_pred_iterator PI
= pred_begin(LLVMBB
), PE
= pred_end(LLVMBB
);
883 if (!FuncInfo
->VisitedBBs
.count(*PI
)) {
884 AllPredsVisited
= false;
889 if (AllPredsVisited
) {
890 for (BasicBlock::const_iterator I
= LLVMBB
->begin();
891 isa
<PHINode
>(I
); ++I
)
892 FuncInfo
->ComputePHILiveOutRegInfo(cast
<PHINode
>(I
));
894 for (BasicBlock::const_iterator I
= LLVMBB
->begin();
895 isa
<PHINode
>(I
); ++I
)
896 FuncInfo
->InvalidatePHILiveOutRegInfo(cast
<PHINode
>(I
));
899 FuncInfo
->VisitedBBs
.insert(LLVMBB
);
902 FuncInfo
->MBB
= FuncInfo
->MBBMap
[LLVMBB
];
903 FuncInfo
->InsertPt
= FuncInfo
->MBB
->getFirstNonPHI();
905 BasicBlock::const_iterator
const Begin
= LLVMBB
->getFirstNonPHI();
906 BasicBlock::const_iterator
const End
= LLVMBB
->end();
907 BasicBlock::const_iterator BI
= End
;
909 FuncInfo
->InsertPt
= FuncInfo
->MBB
->getFirstNonPHI();
911 // Setup an EH landing-pad block.
912 if (FuncInfo
->MBB
->isLandingPad())
913 PrepareEHLandingPad();
915 // Lower any arguments needed in this block if this is the entry block.
916 if (LLVMBB
== &Fn
.getEntryBlock())
917 LowerArguments(LLVMBB
);
919 // Before doing SelectionDAG ISel, see if FastISel has been requested.
921 FastIS
->startNewBlock();
923 // Emit code for any incoming arguments. This must happen before
924 // beginning FastISel on the entry block.
925 if (LLVMBB
== &Fn
.getEntryBlock()) {
926 CurDAG
->setRoot(SDB
->getControlRoot());
930 // If we inserted any instructions at the beginning, make a note of
931 // where they are, so we can be sure to emit subsequent instructions
933 if (FuncInfo
->InsertPt
!= FuncInfo
->MBB
->begin())
934 FastIS
->setLastLocalValue(llvm::prior(FuncInfo
->InsertPt
));
936 FastIS
->setLastLocalValue(0);
939 // Do FastISel on as many instructions as possible.
940 for (; BI
!= Begin
; --BI
) {
941 const Instruction
*Inst
= llvm::prior(BI
);
943 // If we no longer require this instruction, skip it.
944 if (isFoldedOrDeadInstruction(Inst
, FuncInfo
))
947 // Bottom-up: reset the insert pos at the top, after any local-value
949 FastIS
->recomputeInsertPt();
951 // Try to select the instruction with FastISel.
952 if (FastIS
->SelectInstruction(Inst
)) {
953 // If fast isel succeeded, skip over all the folded instructions, and
954 // then see if there is a load right before the selected instructions.
955 // Try to fold the load if so.
956 const Instruction
*BeforeInst
= Inst
;
957 while (BeforeInst
!= Begin
) {
958 BeforeInst
= llvm::prior(BasicBlock::const_iterator(BeforeInst
));
959 if (!isFoldedOrDeadInstruction(BeforeInst
, FuncInfo
))
962 if (BeforeInst
!= Inst
&& isa
<LoadInst
>(BeforeInst
) &&
963 BeforeInst
->hasOneUse() &&
964 TryToFoldFastISelLoad(cast
<LoadInst
>(BeforeInst
), Inst
, FastIS
))
965 // If we succeeded, don't re-select the load.
966 BI
= llvm::next(BasicBlock::const_iterator(BeforeInst
));
970 // Then handle certain instructions as single-LLVM-Instruction blocks.
971 if (isa
<CallInst
>(Inst
)) {
972 ++NumFastIselFailures
;
973 if (EnableFastISelVerbose
|| EnableFastISelAbort
) {
974 dbgs() << "FastISel missed call: ";
978 if (!Inst
->getType()->isVoidTy() && !Inst
->use_empty()) {
979 unsigned &R
= FuncInfo
->ValueMap
[Inst
];
981 R
= FuncInfo
->CreateRegs(Inst
->getType());
984 bool HadTailCall
= false;
985 SelectBasicBlock(Inst
, BI
, HadTailCall
);
987 // If the call was emitted as a tail call, we're done with the block.
996 // Otherwise, give up on FastISel for the rest of the block.
997 // For now, be a little lenient about non-branch terminators.
998 if (!isa
<TerminatorInst
>(Inst
) || isa
<BranchInst
>(Inst
)) {
999 ++NumFastIselFailures
;
1000 if (EnableFastISelVerbose
|| EnableFastISelAbort
) {
1001 dbgs() << "FastISel miss: ";
1004 if (EnableFastISelAbort
)
1005 // The "fast" selector couldn't handle something and bailed.
1006 // For the purpose of debugging, just abort.
1007 llvm_unreachable("FastISel didn't select the entire block");
1012 FastIS
->recomputeInsertPt();
1018 ++NumFastIselBlocks
;
1021 // Run SelectionDAG instruction selection on the remainder of the block
1022 // not handled by FastISel. If FastISel is not run, this is the entire
1025 SelectBasicBlock(Begin
, BI
, HadTailCall
);
1029 FuncInfo
->PHINodesToUpdate
.clear();
1034 for (MachineFunction::const_iterator MBI
= MF
->begin(), MBE
= MF
->end();
1036 CheckLineNumbers(MBI
);
1041 SelectionDAGISel::FinishBasicBlock() {
1043 DEBUG(dbgs() << "Total amount of phi nodes to update: "
1044 << FuncInfo
->PHINodesToUpdate
.size() << "\n";
1045 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
)
1046 dbgs() << "Node " << i
<< " : ("
1047 << FuncInfo
->PHINodesToUpdate
[i
].first
1048 << ", " << FuncInfo
->PHINodesToUpdate
[i
].second
<< ")\n");
1050 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1051 // PHI nodes in successors.
1052 if (SDB
->SwitchCases
.empty() &&
1053 SDB
->JTCases
.empty() &&
1054 SDB
->BitTestCases
.empty()) {
1055 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1056 MachineInstr
*PHI
= FuncInfo
->PHINodesToUpdate
[i
].first
;
1057 assert(PHI
->isPHI() &&
1058 "This is not a machine PHI node that we are updating!");
1059 if (!FuncInfo
->MBB
->isSuccessor(PHI
->getParent()))
1062 MachineOperand::CreateReg(FuncInfo
->PHINodesToUpdate
[i
].second
, false));
1063 PHI
->addOperand(MachineOperand::CreateMBB(FuncInfo
->MBB
));
1068 for (unsigned i
= 0, e
= SDB
->BitTestCases
.size(); i
!= e
; ++i
) {
1069 // Lower header first, if it wasn't already lowered
1070 if (!SDB
->BitTestCases
[i
].Emitted
) {
1071 // Set the current basic block to the mbb we wish to insert the code into
1072 FuncInfo
->MBB
= SDB
->BitTestCases
[i
].Parent
;
1073 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1075 SDB
->visitBitTestHeader(SDB
->BitTestCases
[i
], FuncInfo
->MBB
);
1076 CurDAG
->setRoot(SDB
->getRoot());
1078 CodeGenAndEmitDAG();
1081 for (unsigned j
= 0, ej
= SDB
->BitTestCases
[i
].Cases
.size(); j
!= ej
; ++j
) {
1082 // Set the current basic block to the mbb we wish to insert the code into
1083 FuncInfo
->MBB
= SDB
->BitTestCases
[i
].Cases
[j
].ThisBB
;
1084 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1087 SDB
->visitBitTestCase(SDB
->BitTestCases
[i
],
1088 SDB
->BitTestCases
[i
].Cases
[j
+1].ThisBB
,
1089 SDB
->BitTestCases
[i
].Reg
,
1090 SDB
->BitTestCases
[i
].Cases
[j
],
1093 SDB
->visitBitTestCase(SDB
->BitTestCases
[i
],
1094 SDB
->BitTestCases
[i
].Default
,
1095 SDB
->BitTestCases
[i
].Reg
,
1096 SDB
->BitTestCases
[i
].Cases
[j
],
1100 CurDAG
->setRoot(SDB
->getRoot());
1102 CodeGenAndEmitDAG();
1106 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1108 MachineInstr
*PHI
= FuncInfo
->PHINodesToUpdate
[pi
].first
;
1109 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1110 assert(PHI
->isPHI() &&
1111 "This is not a machine PHI node that we are updating!");
1112 // This is "default" BB. We have two jumps to it. From "header" BB and
1113 // from last "case" BB.
1114 if (PHIBB
== SDB
->BitTestCases
[i
].Default
) {
1115 PHI
->addOperand(MachineOperand::
1116 CreateReg(FuncInfo
->PHINodesToUpdate
[pi
].second
,
1118 PHI
->addOperand(MachineOperand::CreateMBB(SDB
->BitTestCases
[i
].Parent
));
1119 PHI
->addOperand(MachineOperand::
1120 CreateReg(FuncInfo
->PHINodesToUpdate
[pi
].second
,
1122 PHI
->addOperand(MachineOperand::CreateMBB(SDB
->BitTestCases
[i
].Cases
.
1125 // One of "cases" BB.
1126 for (unsigned j
= 0, ej
= SDB
->BitTestCases
[i
].Cases
.size();
1128 MachineBasicBlock
* cBB
= SDB
->BitTestCases
[i
].Cases
[j
].ThisBB
;
1129 if (cBB
->isSuccessor(PHIBB
)) {
1130 PHI
->addOperand(MachineOperand::
1131 CreateReg(FuncInfo
->PHINodesToUpdate
[pi
].second
,
1133 PHI
->addOperand(MachineOperand::CreateMBB(cBB
));
1138 SDB
->BitTestCases
.clear();
1140 // If the JumpTable record is filled in, then we need to emit a jump table.
1141 // Updating the PHI nodes is tricky in this case, since we need to determine
1142 // whether the PHI is a successor of the range check MBB or the jump table MBB
1143 for (unsigned i
= 0, e
= SDB
->JTCases
.size(); i
!= e
; ++i
) {
1144 // Lower header first, if it wasn't already lowered
1145 if (!SDB
->JTCases
[i
].first
.Emitted
) {
1146 // Set the current basic block to the mbb we wish to insert the code into
1147 FuncInfo
->MBB
= SDB
->JTCases
[i
].first
.HeaderBB
;
1148 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1150 SDB
->visitJumpTableHeader(SDB
->JTCases
[i
].second
, SDB
->JTCases
[i
].first
,
1152 CurDAG
->setRoot(SDB
->getRoot());
1154 CodeGenAndEmitDAG();
1157 // Set the current basic block to the mbb we wish to insert the code into
1158 FuncInfo
->MBB
= SDB
->JTCases
[i
].second
.MBB
;
1159 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1161 SDB
->visitJumpTable(SDB
->JTCases
[i
].second
);
1162 CurDAG
->setRoot(SDB
->getRoot());
1164 CodeGenAndEmitDAG();
1167 for (unsigned pi
= 0, pe
= FuncInfo
->PHINodesToUpdate
.size();
1169 MachineInstr
*PHI
= FuncInfo
->PHINodesToUpdate
[pi
].first
;
1170 MachineBasicBlock
*PHIBB
= PHI
->getParent();
1171 assert(PHI
->isPHI() &&
1172 "This is not a machine PHI node that we are updating!");
1173 // "default" BB. We can go there only from header BB.
1174 if (PHIBB
== SDB
->JTCases
[i
].second
.Default
) {
1176 (MachineOperand::CreateReg(FuncInfo
->PHINodesToUpdate
[pi
].second
,
1179 (MachineOperand::CreateMBB(SDB
->JTCases
[i
].first
.HeaderBB
));
1181 // JT BB. Just iterate over successors here
1182 if (FuncInfo
->MBB
->isSuccessor(PHIBB
)) {
1184 (MachineOperand::CreateReg(FuncInfo
->PHINodesToUpdate
[pi
].second
,
1186 PHI
->addOperand(MachineOperand::CreateMBB(FuncInfo
->MBB
));
1190 SDB
->JTCases
.clear();
1192 // If the switch block involved a branch to one of the actual successors, we
1193 // need to update PHI nodes in that block.
1194 for (unsigned i
= 0, e
= FuncInfo
->PHINodesToUpdate
.size(); i
!= e
; ++i
) {
1195 MachineInstr
*PHI
= FuncInfo
->PHINodesToUpdate
[i
].first
;
1196 assert(PHI
->isPHI() &&
1197 "This is not a machine PHI node that we are updating!");
1198 if (FuncInfo
->MBB
->isSuccessor(PHI
->getParent())) {
1200 MachineOperand::CreateReg(FuncInfo
->PHINodesToUpdate
[i
].second
, false));
1201 PHI
->addOperand(MachineOperand::CreateMBB(FuncInfo
->MBB
));
1205 // If we generated any switch lowering information, build and codegen any
1206 // additional DAGs necessary.
1207 for (unsigned i
= 0, e
= SDB
->SwitchCases
.size(); i
!= e
; ++i
) {
1208 // Set the current basic block to the mbb we wish to insert the code into
1209 FuncInfo
->MBB
= SDB
->SwitchCases
[i
].ThisBB
;
1210 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1212 // Determine the unique successors.
1213 SmallVector
<MachineBasicBlock
*, 2> Succs
;
1214 Succs
.push_back(SDB
->SwitchCases
[i
].TrueBB
);
1215 if (SDB
->SwitchCases
[i
].TrueBB
!= SDB
->SwitchCases
[i
].FalseBB
)
1216 Succs
.push_back(SDB
->SwitchCases
[i
].FalseBB
);
1218 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1219 SDB
->visitSwitchCase(SDB
->SwitchCases
[i
], FuncInfo
->MBB
);
1220 CurDAG
->setRoot(SDB
->getRoot());
1222 CodeGenAndEmitDAG();
1224 // Remember the last block, now that any splitting is done, for use in
1225 // populating PHI nodes in successors.
1226 MachineBasicBlock
*ThisBB
= FuncInfo
->MBB
;
1228 // Handle any PHI nodes in successors of this chunk, as if we were coming
1229 // from the original BB before switch expansion. Note that PHI nodes can
1230 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1231 // handle them the right number of times.
1232 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
) {
1233 FuncInfo
->MBB
= Succs
[i
];
1234 FuncInfo
->InsertPt
= FuncInfo
->MBB
->end();
1235 // FuncInfo->MBB may have been removed from the CFG if a branch was
1237 if (ThisBB
->isSuccessor(FuncInfo
->MBB
)) {
1238 for (MachineBasicBlock::iterator Phi
= FuncInfo
->MBB
->begin();
1239 Phi
!= FuncInfo
->MBB
->end() && Phi
->isPHI();
1241 // This value for this PHI node is recorded in PHINodesToUpdate.
1242 for (unsigned pn
= 0; ; ++pn
) {
1243 assert(pn
!= FuncInfo
->PHINodesToUpdate
.size() &&
1244 "Didn't find PHI entry!");
1245 if (FuncInfo
->PHINodesToUpdate
[pn
].first
== Phi
) {
1246 Phi
->addOperand(MachineOperand::
1247 CreateReg(FuncInfo
->PHINodesToUpdate
[pn
].second
,
1249 Phi
->addOperand(MachineOperand::CreateMBB(ThisBB
));
1257 SDB
->SwitchCases
.clear();
1261 /// Create the scheduler. If a specific scheduler was specified
1262 /// via the SchedulerRegistry, use it, otherwise select the
1263 /// one preferred by the target.
1265 ScheduleDAGSDNodes
*SelectionDAGISel::CreateScheduler() {
1266 RegisterScheduler::FunctionPassCtor Ctor
= RegisterScheduler::getDefault();
1270 RegisterScheduler::setDefault(Ctor
);
1273 return Ctor(this, OptLevel
);
1276 //===----------------------------------------------------------------------===//
1277 // Helper functions used by the generated instruction selector.
1278 //===----------------------------------------------------------------------===//
1279 // Calls to these methods are generated by tblgen.
1281 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1282 /// the dag combiner simplified the 255, we still want to match. RHS is the
1283 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1284 /// specified in the .td file (e.g. 255).
1285 bool SelectionDAGISel::CheckAndMask(SDValue LHS
, ConstantSDNode
*RHS
,
1286 int64_t DesiredMaskS
) const {
1287 const APInt
&ActualMask
= RHS
->getAPIntValue();
1288 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1290 // If the actual mask exactly matches, success!
1291 if (ActualMask
== DesiredMask
)
1294 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1295 if (ActualMask
.intersects(~DesiredMask
))
1298 // Otherwise, the DAG Combiner may have proven that the value coming in is
1299 // either already zero or is not demanded. Check for known zero input bits.
1300 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1301 if (CurDAG
->MaskedValueIsZero(LHS
, NeededMask
))
1304 // TODO: check to see if missing bits are just not demanded.
1306 // Otherwise, this pattern doesn't match.
1310 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1311 /// the dag combiner simplified the 255, we still want to match. RHS is the
1312 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1313 /// specified in the .td file (e.g. 255).
1314 bool SelectionDAGISel::CheckOrMask(SDValue LHS
, ConstantSDNode
*RHS
,
1315 int64_t DesiredMaskS
) const {
1316 const APInt
&ActualMask
= RHS
->getAPIntValue();
1317 const APInt
&DesiredMask
= APInt(LHS
.getValueSizeInBits(), DesiredMaskS
);
1319 // If the actual mask exactly matches, success!
1320 if (ActualMask
== DesiredMask
)
1323 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1324 if (ActualMask
.intersects(~DesiredMask
))
1327 // Otherwise, the DAG Combiner may have proven that the value coming in is
1328 // either already zero or is not demanded. Check for known zero input bits.
1329 APInt NeededMask
= DesiredMask
& ~ActualMask
;
1331 APInt KnownZero
, KnownOne
;
1332 CurDAG
->ComputeMaskedBits(LHS
, NeededMask
, KnownZero
, KnownOne
);
1334 // If all the missing bits in the or are already known to be set, match!
1335 if ((NeededMask
& KnownOne
) == NeededMask
)
1338 // TODO: check to see if missing bits are just not demanded.
1340 // Otherwise, this pattern doesn't match.
1345 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1346 /// by tblgen. Others should not call it.
1347 void SelectionDAGISel::
1348 SelectInlineAsmMemoryOperands(std::vector
<SDValue
> &Ops
) {
1349 std::vector
<SDValue
> InOps
;
1350 std::swap(InOps
, Ops
);
1352 Ops
.push_back(InOps
[InlineAsm::Op_InputChain
]); // 0
1353 Ops
.push_back(InOps
[InlineAsm::Op_AsmString
]); // 1
1354 Ops
.push_back(InOps
[InlineAsm::Op_MDNode
]); // 2, !srcloc
1355 Ops
.push_back(InOps
[InlineAsm::Op_ExtraInfo
]); // 3 (SideEffect, AlignStack)
1357 unsigned i
= InlineAsm::Op_FirstOperand
, e
= InOps
.size();
1358 if (InOps
[e
-1].getValueType() == MVT::Glue
)
1359 --e
; // Don't process a glue operand if it is here.
1362 unsigned Flags
= cast
<ConstantSDNode
>(InOps
[i
])->getZExtValue();
1363 if (!InlineAsm::isMemKind(Flags
)) {
1364 // Just skip over this operand, copying the operands verbatim.
1365 Ops
.insert(Ops
.end(), InOps
.begin()+i
,
1366 InOps
.begin()+i
+InlineAsm::getNumOperandRegisters(Flags
) + 1);
1367 i
+= InlineAsm::getNumOperandRegisters(Flags
) + 1;
1369 assert(InlineAsm::getNumOperandRegisters(Flags
) == 1 &&
1370 "Memory operand with multiple values?");
1371 // Otherwise, this is a memory operand. Ask the target to select it.
1372 std::vector
<SDValue
> SelOps
;
1373 if (SelectInlineAsmMemoryOperand(InOps
[i
+1], 'm', SelOps
))
1374 report_fatal_error("Could not match memory address. Inline asm"
1377 // Add this to the output node.
1379 InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, SelOps
.size());
1380 Ops
.push_back(CurDAG
->getTargetConstant(NewFlags
, MVT::i32
));
1381 Ops
.insert(Ops
.end(), SelOps
.begin(), SelOps
.end());
1386 // Add the glue input back if present.
1387 if (e
!= InOps
.size())
1388 Ops
.push_back(InOps
.back());
1391 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1394 static SDNode
*findGlueUse(SDNode
*N
) {
1395 unsigned FlagResNo
= N
->getNumValues()-1;
1396 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
1397 SDUse
&Use
= I
.getUse();
1398 if (Use
.getResNo() == FlagResNo
)
1399 return Use
.getUser();
1404 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1405 /// This function recursively traverses up the operand chain, ignoring
1407 static bool findNonImmUse(SDNode
*Use
, SDNode
* Def
, SDNode
*ImmedUse
,
1408 SDNode
*Root
, SmallPtrSet
<SDNode
*, 16> &Visited
,
1409 bool IgnoreChains
) {
1410 // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1411 // greater than all of its (recursive) operands. If we scan to a point where
1412 // 'use' is smaller than the node we're scanning for, then we know we will
1415 // The Use may be -1 (unassigned) if it is a newly allocated node. This can
1416 // happen because we scan down to newly selected nodes in the case of glue
1418 if ((Use
->getNodeId() < Def
->getNodeId() && Use
->getNodeId() != -1))
1421 // Don't revisit nodes if we already scanned it and didn't fail, we know we
1422 // won't fail if we scan it again.
1423 if (!Visited
.insert(Use
))
1426 for (unsigned i
= 0, e
= Use
->getNumOperands(); i
!= e
; ++i
) {
1427 // Ignore chain uses, they are validated by HandleMergeInputChains.
1428 if (Use
->getOperand(i
).getValueType() == MVT::Other
&& IgnoreChains
)
1431 SDNode
*N
= Use
->getOperand(i
).getNode();
1433 if (Use
== ImmedUse
|| Use
== Root
)
1434 continue; // We are not looking for immediate use.
1439 // Traverse up the operand chain.
1440 if (findNonImmUse(N
, Def
, ImmedUse
, Root
, Visited
, IgnoreChains
))
1446 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1447 /// operand node N of U during instruction selection that starts at Root.
1448 bool SelectionDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
1449 SDNode
*Root
) const {
1450 if (OptLevel
== CodeGenOpt::None
) return false;
1451 return N
.hasOneUse();
1454 /// IsLegalToFold - Returns true if the specific operand node N of
1455 /// U can be folded during instruction selection that starts at Root.
1456 bool SelectionDAGISel::IsLegalToFold(SDValue N
, SDNode
*U
, SDNode
*Root
,
1457 CodeGenOpt::Level OptLevel
,
1458 bool IgnoreChains
) {
1459 if (OptLevel
== CodeGenOpt::None
) return false;
1461 // If Root use can somehow reach N through a path that that doesn't contain
1462 // U then folding N would create a cycle. e.g. In the following
1463 // diagram, Root can reach N through X. If N is folded into into Root, then
1464 // X is both a predecessor and a successor of U.
1475 // * indicates nodes to be folded together.
1477 // If Root produces glue, then it gets (even more) interesting. Since it
1478 // will be "glued" together with its glue use in the scheduler, we need to
1479 // check if it might reach N.
1498 // If GU (glue use) indirectly reaches N (the load), and Root folds N
1499 // (call it Fold), then X is a predecessor of GU and a successor of
1500 // Fold. But since Fold and GU are glued together, this will create
1501 // a cycle in the scheduling graph.
1503 // If the node has glue, walk down the graph to the "lowest" node in the
1505 EVT VT
= Root
->getValueType(Root
->getNumValues()-1);
1506 while (VT
== MVT::Glue
) {
1507 SDNode
*GU
= findGlueUse(Root
);
1511 VT
= Root
->getValueType(Root
->getNumValues()-1);
1513 // If our query node has a glue result with a use, we've walked up it. If
1514 // the user (which has already been selected) has a chain or indirectly uses
1515 // the chain, our WalkChainUsers predicate will not consider it. Because of
1516 // this, we cannot ignore chains in this predicate.
1517 IgnoreChains
= false;
1521 SmallPtrSet
<SDNode
*, 16> Visited
;
1522 return !findNonImmUse(Root
, N
.getNode(), U
, Root
, Visited
, IgnoreChains
);
1525 SDNode
*SelectionDAGISel::Select_INLINEASM(SDNode
*N
) {
1526 std::vector
<SDValue
> Ops(N
->op_begin(), N
->op_end());
1527 SelectInlineAsmMemoryOperands(Ops
);
1529 std::vector
<EVT
> VTs
;
1530 VTs
.push_back(MVT::Other
);
1531 VTs
.push_back(MVT::Glue
);
1532 SDValue New
= CurDAG
->getNode(ISD::INLINEASM
, N
->getDebugLoc(),
1533 VTs
, &Ops
[0], Ops
.size());
1535 return New
.getNode();
1538 SDNode
*SelectionDAGISel::Select_UNDEF(SDNode
*N
) {
1539 return CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
,N
->getValueType(0));
1542 /// GetVBR - decode a vbr encoding whose top bit is set.
1543 LLVM_ATTRIBUTE_ALWAYS_INLINE
static uint64_t
1544 GetVBR(uint64_t Val
, const unsigned char *MatcherTable
, unsigned &Idx
) {
1545 assert(Val
>= 128 && "Not a VBR");
1546 Val
&= 127; // Remove first vbr bit.
1551 NextBits
= MatcherTable
[Idx
++];
1552 Val
|= (NextBits
&127) << Shift
;
1554 } while (NextBits
& 128);
1560 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1561 /// interior glue and chain results to use the new glue and chain results.
1562 void SelectionDAGISel::
1563 UpdateChainsAndGlue(SDNode
*NodeToMatch
, SDValue InputChain
,
1564 const SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
1566 const SmallVectorImpl
<SDNode
*> &GlueResultNodesMatched
,
1567 bool isMorphNodeTo
) {
1568 SmallVector
<SDNode
*, 4> NowDeadNodes
;
1570 ISelUpdater
ISU(ISelPosition
);
1572 // Now that all the normal results are replaced, we replace the chain and
1573 // glue results if present.
1574 if (!ChainNodesMatched
.empty()) {
1575 assert(InputChain
.getNode() != 0 &&
1576 "Matched input chains but didn't produce a chain");
1577 // Loop over all of the nodes we matched that produced a chain result.
1578 // Replace all the chain results with the final chain we ended up with.
1579 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
1580 SDNode
*ChainNode
= ChainNodesMatched
[i
];
1582 // If this node was already deleted, don't look at it.
1583 if (ChainNode
->getOpcode() == ISD::DELETED_NODE
)
1586 // Don't replace the results of the root node if we're doing a
1588 if (ChainNode
== NodeToMatch
&& isMorphNodeTo
)
1591 SDValue ChainVal
= SDValue(ChainNode
, ChainNode
->getNumValues()-1);
1592 if (ChainVal
.getValueType() == MVT::Glue
)
1593 ChainVal
= ChainVal
.getValue(ChainVal
->getNumValues()-2);
1594 assert(ChainVal
.getValueType() == MVT::Other
&& "Not a chain?");
1595 CurDAG
->ReplaceAllUsesOfValueWith(ChainVal
, InputChain
, &ISU
);
1597 // If the node became dead and we haven't already seen it, delete it.
1598 if (ChainNode
->use_empty() &&
1599 !std::count(NowDeadNodes
.begin(), NowDeadNodes
.end(), ChainNode
))
1600 NowDeadNodes
.push_back(ChainNode
);
1604 // If the result produces glue, update any glue results in the matched
1605 // pattern with the glue result.
1606 if (InputGlue
.getNode() != 0) {
1607 // Handle any interior nodes explicitly marked.
1608 for (unsigned i
= 0, e
= GlueResultNodesMatched
.size(); i
!= e
; ++i
) {
1609 SDNode
*FRN
= GlueResultNodesMatched
[i
];
1611 // If this node was already deleted, don't look at it.
1612 if (FRN
->getOpcode() == ISD::DELETED_NODE
)
1615 assert(FRN
->getValueType(FRN
->getNumValues()-1) == MVT::Glue
&&
1616 "Doesn't have a glue result");
1617 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(FRN
, FRN
->getNumValues()-1),
1620 // If the node became dead and we haven't already seen it, delete it.
1621 if (FRN
->use_empty() &&
1622 !std::count(NowDeadNodes
.begin(), NowDeadNodes
.end(), FRN
))
1623 NowDeadNodes
.push_back(FRN
);
1627 if (!NowDeadNodes
.empty())
1628 CurDAG
->RemoveDeadNodes(NowDeadNodes
, &ISU
);
1630 DEBUG(errs() << "ISEL: Match complete!\n");
1636 CR_LeadsToInteriorNode
1639 /// WalkChainUsers - Walk down the users of the specified chained node that is
1640 /// part of the pattern we're matching, looking at all of the users we find.
1641 /// This determines whether something is an interior node, whether we have a
1642 /// non-pattern node in between two pattern nodes (which prevent folding because
1643 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1644 /// between pattern nodes (in which case the TF becomes part of the pattern).
1646 /// The walk we do here is guaranteed to be small because we quickly get down to
1647 /// already selected nodes "below" us.
1649 WalkChainUsers(SDNode
*ChainedNode
,
1650 SmallVectorImpl
<SDNode
*> &ChainedNodesInPattern
,
1651 SmallVectorImpl
<SDNode
*> &InteriorChainedNodes
) {
1652 ChainResult Result
= CR_Simple
;
1654 for (SDNode::use_iterator UI
= ChainedNode
->use_begin(),
1655 E
= ChainedNode
->use_end(); UI
!= E
; ++UI
) {
1656 // Make sure the use is of the chain, not some other value we produce.
1657 if (UI
.getUse().getValueType() != MVT::Other
) continue;
1661 // If we see an already-selected machine node, then we've gone beyond the
1662 // pattern that we're selecting down into the already selected chunk of the
1664 if (User
->isMachineOpcode() ||
1665 User
->getOpcode() == ISD::HANDLENODE
) // Root of the graph.
1668 if (User
->getOpcode() == ISD::CopyToReg
||
1669 User
->getOpcode() == ISD::CopyFromReg
||
1670 User
->getOpcode() == ISD::INLINEASM
||
1671 User
->getOpcode() == ISD::EH_LABEL
) {
1672 // If their node ID got reset to -1 then they've already been selected.
1673 // Treat them like a MachineOpcode.
1674 if (User
->getNodeId() == -1)
1678 // If we have a TokenFactor, we handle it specially.
1679 if (User
->getOpcode() != ISD::TokenFactor
) {
1680 // If the node isn't a token factor and isn't part of our pattern, then it
1681 // must be a random chained node in between two nodes we're selecting.
1682 // This happens when we have something like:
1687 // Because we structurally match the load/store as a read/modify/write,
1688 // but the call is chained between them. We cannot fold in this case
1689 // because it would induce a cycle in the graph.
1690 if (!std::count(ChainedNodesInPattern
.begin(),
1691 ChainedNodesInPattern
.end(), User
))
1692 return CR_InducesCycle
;
1694 // Otherwise we found a node that is part of our pattern. For example in:
1698 // This would happen when we're scanning down from the load and see the
1699 // store as a user. Record that there is a use of ChainedNode that is
1700 // part of the pattern and keep scanning uses.
1701 Result
= CR_LeadsToInteriorNode
;
1702 InteriorChainedNodes
.push_back(User
);
1706 // If we found a TokenFactor, there are two cases to consider: first if the
1707 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1708 // uses of the TF are in our pattern) we just want to ignore it. Second,
1709 // the TokenFactor can be sandwiched in between two chained nodes, like so:
1715 // | \ DAG's like cheese
1718 // [TokenFactor] [Op]
1725 // In this case, the TokenFactor becomes part of our match and we rewrite it
1726 // as a new TokenFactor.
1728 // To distinguish these two cases, do a recursive walk down the uses.
1729 switch (WalkChainUsers(User
, ChainedNodesInPattern
, InteriorChainedNodes
)) {
1731 // If the uses of the TokenFactor are just already-selected nodes, ignore
1732 // it, it is "below" our pattern.
1734 case CR_InducesCycle
:
1735 // If the uses of the TokenFactor lead to nodes that are not part of our
1736 // pattern that are not selected, folding would turn this into a cycle,
1738 return CR_InducesCycle
;
1739 case CR_LeadsToInteriorNode
:
1740 break; // Otherwise, keep processing.
1743 // Okay, we know we're in the interesting interior case. The TokenFactor
1744 // is now going to be considered part of the pattern so that we rewrite its
1745 // uses (it may have uses that are not part of the pattern) with the
1746 // ultimate chain result of the generated code. We will also add its chain
1747 // inputs as inputs to the ultimate TokenFactor we create.
1748 Result
= CR_LeadsToInteriorNode
;
1749 ChainedNodesInPattern
.push_back(User
);
1750 InteriorChainedNodes
.push_back(User
);
1757 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1758 /// operation for when the pattern matched at least one node with a chains. The
1759 /// input vector contains a list of all of the chained nodes that we match. We
1760 /// must determine if this is a valid thing to cover (i.e. matching it won't
1761 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1762 /// be used as the input node chain for the generated nodes.
1764 HandleMergeInputChains(SmallVectorImpl
<SDNode
*> &ChainNodesMatched
,
1765 SelectionDAG
*CurDAG
) {
1766 // Walk all of the chained nodes we've matched, recursively scanning down the
1767 // users of the chain result. This adds any TokenFactor nodes that are caught
1768 // in between chained nodes to the chained and interior nodes list.
1769 SmallVector
<SDNode
*, 3> InteriorChainedNodes
;
1770 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
1771 if (WalkChainUsers(ChainNodesMatched
[i
], ChainNodesMatched
,
1772 InteriorChainedNodes
) == CR_InducesCycle
)
1773 return SDValue(); // Would induce a cycle.
1776 // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1777 // that we are interested in. Form our input TokenFactor node.
1778 SmallVector
<SDValue
, 3> InputChains
;
1779 for (unsigned i
= 0, e
= ChainNodesMatched
.size(); i
!= e
; ++i
) {
1780 // Add the input chain of this node to the InputChains list (which will be
1781 // the operands of the generated TokenFactor) if it's not an interior node.
1782 SDNode
*N
= ChainNodesMatched
[i
];
1783 if (N
->getOpcode() != ISD::TokenFactor
) {
1784 if (std::count(InteriorChainedNodes
.begin(),InteriorChainedNodes
.end(),N
))
1787 // Otherwise, add the input chain.
1788 SDValue InChain
= ChainNodesMatched
[i
]->getOperand(0);
1789 assert(InChain
.getValueType() == MVT::Other
&& "Not a chain");
1790 InputChains
.push_back(InChain
);
1794 // If we have a token factor, we want to add all inputs of the token factor
1795 // that are not part of the pattern we're matching.
1796 for (unsigned op
= 0, e
= N
->getNumOperands(); op
!= e
; ++op
) {
1797 if (!std::count(ChainNodesMatched
.begin(), ChainNodesMatched
.end(),
1798 N
->getOperand(op
).getNode()))
1799 InputChains
.push_back(N
->getOperand(op
));
1804 if (InputChains
.size() == 1)
1805 return InputChains
[0];
1806 return CurDAG
->getNode(ISD::TokenFactor
, ChainNodesMatched
[0]->getDebugLoc(),
1807 MVT::Other
, &InputChains
[0], InputChains
.size());
1810 /// MorphNode - Handle morphing a node in place for the selector.
1811 SDNode
*SelectionDAGISel::
1812 MorphNode(SDNode
*Node
, unsigned TargetOpc
, SDVTList VTList
,
1813 const SDValue
*Ops
, unsigned NumOps
, unsigned EmitNodeInfo
) {
1814 // It is possible we're using MorphNodeTo to replace a node with no
1815 // normal results with one that has a normal result (or we could be
1816 // adding a chain) and the input could have glue and chains as well.
1817 // In this case we need to shift the operands down.
1818 // FIXME: This is a horrible hack and broken in obscure cases, no worse
1819 // than the old isel though.
1820 int OldGlueResultNo
= -1, OldChainResultNo
= -1;
1822 unsigned NTMNumResults
= Node
->getNumValues();
1823 if (Node
->getValueType(NTMNumResults
-1) == MVT::Glue
) {
1824 OldGlueResultNo
= NTMNumResults
-1;
1825 if (NTMNumResults
!= 1 &&
1826 Node
->getValueType(NTMNumResults
-2) == MVT::Other
)
1827 OldChainResultNo
= NTMNumResults
-2;
1828 } else if (Node
->getValueType(NTMNumResults
-1) == MVT::Other
)
1829 OldChainResultNo
= NTMNumResults
-1;
1831 // Call the underlying SelectionDAG routine to do the transmogrification. Note
1832 // that this deletes operands of the old node that become dead.
1833 SDNode
*Res
= CurDAG
->MorphNodeTo(Node
, ~TargetOpc
, VTList
, Ops
, NumOps
);
1835 // MorphNodeTo can operate in two ways: if an existing node with the
1836 // specified operands exists, it can just return it. Otherwise, it
1837 // updates the node in place to have the requested operands.
1839 // If we updated the node in place, reset the node ID. To the isel,
1840 // this should be just like a newly allocated machine node.
1844 unsigned ResNumResults
= Res
->getNumValues();
1845 // Move the glue if needed.
1846 if ((EmitNodeInfo
& OPFL_GlueOutput
) && OldGlueResultNo
!= -1 &&
1847 (unsigned)OldGlueResultNo
!= ResNumResults
-1)
1848 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(Node
, OldGlueResultNo
),
1849 SDValue(Res
, ResNumResults
-1));
1851 if ((EmitNodeInfo
& OPFL_GlueOutput
) != 0)
1854 // Move the chain reference if needed.
1855 if ((EmitNodeInfo
& OPFL_Chain
) && OldChainResultNo
!= -1 &&
1856 (unsigned)OldChainResultNo
!= ResNumResults
-1)
1857 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(Node
, OldChainResultNo
),
1858 SDValue(Res
, ResNumResults
-1));
1860 // Otherwise, no replacement happened because the node already exists. Replace
1861 // Uses of the old node with the new one.
1863 CurDAG
->ReplaceAllUsesWith(Node
, Res
);
1868 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1869 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1870 CheckSame(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1872 const SmallVectorImpl
<std::pair
<SDValue
, SDNode
*> > &RecordedNodes
) {
1873 // Accept if it is exactly the same as a previously recorded node.
1874 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
1875 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
1876 return N
== RecordedNodes
[RecNo
].first
;
1879 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1880 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1881 CheckPatternPredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1882 SelectionDAGISel
&SDISel
) {
1883 return SDISel
.CheckPatternPredicate(MatcherTable
[MatcherIndex
++]);
1886 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
1887 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1888 CheckNodePredicate(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1889 SelectionDAGISel
&SDISel
, SDNode
*N
) {
1890 return SDISel
.CheckNodePredicate(N
, MatcherTable
[MatcherIndex
++]);
1893 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1894 CheckOpcode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1896 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
1897 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
1898 return N
->getOpcode() == Opc
;
1901 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1902 CheckType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1903 SDValue N
, const TargetLowering
&TLI
) {
1904 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
1905 if (N
.getValueType() == VT
) return true;
1907 // Handle the case when VT is iPTR.
1908 return VT
== MVT::iPTR
&& N
.getValueType() == TLI
.getPointerTy();
1911 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1912 CheckChildType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1913 SDValue N
, const TargetLowering
&TLI
,
1915 if (ChildNo
>= N
.getNumOperands())
1916 return false; // Match fails if out of range child #.
1917 return ::CheckType(MatcherTable
, MatcherIndex
, N
.getOperand(ChildNo
), TLI
);
1921 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1922 CheckCondCode(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1924 return cast
<CondCodeSDNode
>(N
)->get() ==
1925 (ISD::CondCode
)MatcherTable
[MatcherIndex
++];
1928 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1929 CheckValueType(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1930 SDValue N
, const TargetLowering
&TLI
) {
1931 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
1932 if (cast
<VTSDNode
>(N
)->getVT() == VT
)
1935 // Handle the case when VT is iPTR.
1936 return VT
== MVT::iPTR
&& cast
<VTSDNode
>(N
)->getVT() == TLI
.getPointerTy();
1939 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1940 CheckInteger(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1942 int64_t Val
= MatcherTable
[MatcherIndex
++];
1944 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
1946 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
);
1947 return C
!= 0 && C
->getSExtValue() == Val
;
1950 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1951 CheckAndImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1952 SDValue N
, SelectionDAGISel
&SDISel
) {
1953 int64_t Val
= MatcherTable
[MatcherIndex
++];
1955 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
1957 if (N
->getOpcode() != ISD::AND
) return false;
1959 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
1960 return C
!= 0 && SDISel
.CheckAndMask(N
.getOperand(0), C
, Val
);
1963 LLVM_ATTRIBUTE_ALWAYS_INLINE
static bool
1964 CheckOrImm(const unsigned char *MatcherTable
, unsigned &MatcherIndex
,
1965 SDValue N
, SelectionDAGISel
&SDISel
) {
1966 int64_t Val
= MatcherTable
[MatcherIndex
++];
1968 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
1970 if (N
->getOpcode() != ISD::OR
) return false;
1972 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
1973 return C
!= 0 && SDISel
.CheckOrMask(N
.getOperand(0), C
, Val
);
1976 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
1977 /// scope, evaluate the current node. If the current predicate is known to
1978 /// fail, set Result=true and return anything. If the current predicate is
1979 /// known to pass, set Result=false and return the MatcherIndex to continue
1980 /// with. If the current predicate is unknown, set Result=false and return the
1981 /// MatcherIndex to continue with.
1982 static unsigned IsPredicateKnownToFail(const unsigned char *Table
,
1983 unsigned Index
, SDValue N
,
1984 bool &Result
, SelectionDAGISel
&SDISel
,
1985 SmallVectorImpl
<std::pair
<SDValue
, SDNode
*> > &RecordedNodes
) {
1986 switch (Table
[Index
++]) {
1989 return Index
-1; // Could not evaluate this predicate.
1990 case SelectionDAGISel::OPC_CheckSame
:
1991 Result
= !::CheckSame(Table
, Index
, N
, RecordedNodes
);
1993 case SelectionDAGISel::OPC_CheckPatternPredicate
:
1994 Result
= !::CheckPatternPredicate(Table
, Index
, SDISel
);
1996 case SelectionDAGISel::OPC_CheckPredicate
:
1997 Result
= !::CheckNodePredicate(Table
, Index
, SDISel
, N
.getNode());
1999 case SelectionDAGISel::OPC_CheckOpcode
:
2000 Result
= !::CheckOpcode(Table
, Index
, N
.getNode());
2002 case SelectionDAGISel::OPC_CheckType
:
2003 Result
= !::CheckType(Table
, Index
, N
, SDISel
.TLI
);
2005 case SelectionDAGISel::OPC_CheckChild0Type
:
2006 case SelectionDAGISel::OPC_CheckChild1Type
:
2007 case SelectionDAGISel::OPC_CheckChild2Type
:
2008 case SelectionDAGISel::OPC_CheckChild3Type
:
2009 case SelectionDAGISel::OPC_CheckChild4Type
:
2010 case SelectionDAGISel::OPC_CheckChild5Type
:
2011 case SelectionDAGISel::OPC_CheckChild6Type
:
2012 case SelectionDAGISel::OPC_CheckChild7Type
:
2013 Result
= !::CheckChildType(Table
, Index
, N
, SDISel
.TLI
,
2014 Table
[Index
-1] - SelectionDAGISel::OPC_CheckChild0Type
);
2016 case SelectionDAGISel::OPC_CheckCondCode
:
2017 Result
= !::CheckCondCode(Table
, Index
, N
);
2019 case SelectionDAGISel::OPC_CheckValueType
:
2020 Result
= !::CheckValueType(Table
, Index
, N
, SDISel
.TLI
);
2022 case SelectionDAGISel::OPC_CheckInteger
:
2023 Result
= !::CheckInteger(Table
, Index
, N
);
2025 case SelectionDAGISel::OPC_CheckAndImm
:
2026 Result
= !::CheckAndImm(Table
, Index
, N
, SDISel
);
2028 case SelectionDAGISel::OPC_CheckOrImm
:
2029 Result
= !::CheckOrImm(Table
, Index
, N
, SDISel
);
2037 /// FailIndex - If this match fails, this is the index to continue with.
2040 /// NodeStack - The node stack when the scope was formed.
2041 SmallVector
<SDValue
, 4> NodeStack
;
2043 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2044 unsigned NumRecordedNodes
;
2046 /// NumMatchedMemRefs - The number of matched memref entries.
2047 unsigned NumMatchedMemRefs
;
2049 /// InputChain/InputGlue - The current chain/glue
2050 SDValue InputChain
, InputGlue
;
2052 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2053 bool HasChainNodesMatched
, HasGlueResultNodesMatched
;
2058 SDNode
*SelectionDAGISel::
2059 SelectCodeCommon(SDNode
*NodeToMatch
, const unsigned char *MatcherTable
,
2060 unsigned TableSize
) {
2061 // FIXME: Should these even be selected? Handle these cases in the caller?
2062 switch (NodeToMatch
->getOpcode()) {
2065 case ISD::EntryToken
: // These nodes remain the same.
2066 case ISD::BasicBlock
:
2068 //case ISD::VALUETYPE:
2069 //case ISD::CONDCODE:
2070 case ISD::HANDLENODE
:
2071 case ISD::MDNODE_SDNODE
:
2072 case ISD::TargetConstant
:
2073 case ISD::TargetConstantFP
:
2074 case ISD::TargetConstantPool
:
2075 case ISD::TargetFrameIndex
:
2076 case ISD::TargetExternalSymbol
:
2077 case ISD::TargetBlockAddress
:
2078 case ISD::TargetJumpTable
:
2079 case ISD::TargetGlobalTLSAddress
:
2080 case ISD::TargetGlobalAddress
:
2081 case ISD::TokenFactor
:
2082 case ISD::CopyFromReg
:
2083 case ISD::CopyToReg
:
2085 NodeToMatch
->setNodeId(-1); // Mark selected.
2087 case ISD::AssertSext
:
2088 case ISD::AssertZext
:
2089 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch
, 0),
2090 NodeToMatch
->getOperand(0));
2092 case ISD::INLINEASM
: return Select_INLINEASM(NodeToMatch
);
2093 case ISD::UNDEF
: return Select_UNDEF(NodeToMatch
);
2096 assert(!NodeToMatch
->isMachineOpcode() && "Node already selected!");
2098 // Set up the node stack with NodeToMatch as the only node on the stack.
2099 SmallVector
<SDValue
, 8> NodeStack
;
2100 SDValue N
= SDValue(NodeToMatch
, 0);
2101 NodeStack
.push_back(N
);
2103 // MatchScopes - Scopes used when matching, if a match failure happens, this
2104 // indicates where to continue checking.
2105 SmallVector
<MatchScope
, 8> MatchScopes
;
2107 // RecordedNodes - This is the set of nodes that have been recorded by the
2108 // state machine. The second value is the parent of the node, or null if the
2109 // root is recorded.
2110 SmallVector
<std::pair
<SDValue
, SDNode
*>, 8> RecordedNodes
;
2112 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2114 SmallVector
<MachineMemOperand
*, 2> MatchedMemRefs
;
2116 // These are the current input chain and glue for use when generating nodes.
2117 // Various Emit operations change these. For example, emitting a copytoreg
2118 // uses and updates these.
2119 SDValue InputChain
, InputGlue
;
2121 // ChainNodesMatched - If a pattern matches nodes that have input/output
2122 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2123 // which ones they are. The result is captured into this list so that we can
2124 // update the chain results when the pattern is complete.
2125 SmallVector
<SDNode
*, 3> ChainNodesMatched
;
2126 SmallVector
<SDNode
*, 3> GlueResultNodesMatched
;
2128 DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2129 NodeToMatch
->dump(CurDAG
);
2132 // Determine where to start the interpreter. Normally we start at opcode #0,
2133 // but if the state machine starts with an OPC_SwitchOpcode, then we
2134 // accelerate the first lookup (which is guaranteed to be hot) with the
2135 // OpcodeOffset table.
2136 unsigned MatcherIndex
= 0;
2138 if (!OpcodeOffset
.empty()) {
2139 // Already computed the OpcodeOffset table, just index into it.
2140 if (N
.getOpcode() < OpcodeOffset
.size())
2141 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2142 DEBUG(errs() << " Initial Opcode index to " << MatcherIndex
<< "\n");
2144 } else if (MatcherTable
[0] == OPC_SwitchOpcode
) {
2145 // Otherwise, the table isn't computed, but the state machine does start
2146 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2147 // is the first time we're selecting an instruction.
2150 // Get the size of this case.
2151 unsigned CaseSize
= MatcherTable
[Idx
++];
2153 CaseSize
= GetVBR(CaseSize
, MatcherTable
, Idx
);
2154 if (CaseSize
== 0) break;
2156 // Get the opcode, add the index to the table.
2157 uint16_t Opc
= MatcherTable
[Idx
++];
2158 Opc
|= (unsigned short)MatcherTable
[Idx
++] << 8;
2159 if (Opc
>= OpcodeOffset
.size())
2160 OpcodeOffset
.resize((Opc
+1)*2);
2161 OpcodeOffset
[Opc
] = Idx
;
2165 // Okay, do the lookup for the first opcode.
2166 if (N
.getOpcode() < OpcodeOffset
.size())
2167 MatcherIndex
= OpcodeOffset
[N
.getOpcode()];
2171 assert(MatcherIndex
< TableSize
&& "Invalid index");
2173 unsigned CurrentOpcodeIndex
= MatcherIndex
;
2175 BuiltinOpcodes Opcode
= (BuiltinOpcodes
)MatcherTable
[MatcherIndex
++];
2178 // Okay, the semantics of this operation are that we should push a scope
2179 // then evaluate the first child. However, pushing a scope only to have
2180 // the first check fail (which then pops it) is inefficient. If we can
2181 // determine immediately that the first check (or first several) will
2182 // immediately fail, don't even bother pushing a scope for them.
2186 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
2187 if (NumToSkip
& 128)
2188 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
2189 // Found the end of the scope with no match.
2190 if (NumToSkip
== 0) {
2195 FailIndex
= MatcherIndex
+NumToSkip
;
2197 unsigned MatcherIndexOfPredicate
= MatcherIndex
;
2198 (void)MatcherIndexOfPredicate
; // silence warning.
2200 // If we can't evaluate this predicate without pushing a scope (e.g. if
2201 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2202 // push the scope and evaluate the full predicate chain.
2204 MatcherIndex
= IsPredicateKnownToFail(MatcherTable
, MatcherIndex
, N
,
2205 Result
, *this, RecordedNodes
);
2209 DEBUG(errs() << " Skipped scope entry (due to false predicate) at "
2210 << "index " << MatcherIndexOfPredicate
2211 << ", continuing at " << FailIndex
<< "\n");
2212 ++NumDAGIselRetries
;
2214 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2215 // move to the next case.
2216 MatcherIndex
= FailIndex
;
2219 // If the whole scope failed to match, bail.
2220 if (FailIndex
== 0) break;
2222 // Push a MatchScope which indicates where to go if the first child fails
2224 MatchScope NewEntry
;
2225 NewEntry
.FailIndex
= FailIndex
;
2226 NewEntry
.NodeStack
.append(NodeStack
.begin(), NodeStack
.end());
2227 NewEntry
.NumRecordedNodes
= RecordedNodes
.size();
2228 NewEntry
.NumMatchedMemRefs
= MatchedMemRefs
.size();
2229 NewEntry
.InputChain
= InputChain
;
2230 NewEntry
.InputGlue
= InputGlue
;
2231 NewEntry
.HasChainNodesMatched
= !ChainNodesMatched
.empty();
2232 NewEntry
.HasGlueResultNodesMatched
= !GlueResultNodesMatched
.empty();
2233 MatchScopes
.push_back(NewEntry
);
2236 case OPC_RecordNode
: {
2237 // Remember this node, it may end up being an operand in the pattern.
2239 if (NodeStack
.size() > 1)
2240 Parent
= NodeStack
[NodeStack
.size()-2].getNode();
2241 RecordedNodes
.push_back(std::make_pair(N
, Parent
));
2245 case OPC_RecordChild0
: case OPC_RecordChild1
:
2246 case OPC_RecordChild2
: case OPC_RecordChild3
:
2247 case OPC_RecordChild4
: case OPC_RecordChild5
:
2248 case OPC_RecordChild6
: case OPC_RecordChild7
: {
2249 unsigned ChildNo
= Opcode
-OPC_RecordChild0
;
2250 if (ChildNo
>= N
.getNumOperands())
2251 break; // Match fails if out of range child #.
2253 RecordedNodes
.push_back(std::make_pair(N
->getOperand(ChildNo
),
2257 case OPC_RecordMemRef
:
2258 MatchedMemRefs
.push_back(cast
<MemSDNode
>(N
)->getMemOperand());
2261 case OPC_CaptureGlueInput
:
2262 // If the current node has an input glue, capture it in InputGlue.
2263 if (N
->getNumOperands() != 0 &&
2264 N
->getOperand(N
->getNumOperands()-1).getValueType() == MVT::Glue
)
2265 InputGlue
= N
->getOperand(N
->getNumOperands()-1);
2268 case OPC_MoveChild
: {
2269 unsigned ChildNo
= MatcherTable
[MatcherIndex
++];
2270 if (ChildNo
>= N
.getNumOperands())
2271 break; // Match fails if out of range child #.
2272 N
= N
.getOperand(ChildNo
);
2273 NodeStack
.push_back(N
);
2277 case OPC_MoveParent
:
2278 // Pop the current node off the NodeStack.
2279 NodeStack
.pop_back();
2280 assert(!NodeStack
.empty() && "Node stack imbalance!");
2281 N
= NodeStack
.back();
2285 if (!::CheckSame(MatcherTable
, MatcherIndex
, N
, RecordedNodes
)) break;
2287 case OPC_CheckPatternPredicate
:
2288 if (!::CheckPatternPredicate(MatcherTable
, MatcherIndex
, *this)) break;
2290 case OPC_CheckPredicate
:
2291 if (!::CheckNodePredicate(MatcherTable
, MatcherIndex
, *this,
2295 case OPC_CheckComplexPat
: {
2296 unsigned CPNum
= MatcherTable
[MatcherIndex
++];
2297 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2298 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckComplexPat");
2299 if (!CheckComplexPattern(NodeToMatch
, RecordedNodes
[RecNo
].second
,
2300 RecordedNodes
[RecNo
].first
, CPNum
,
2305 case OPC_CheckOpcode
:
2306 if (!::CheckOpcode(MatcherTable
, MatcherIndex
, N
.getNode())) break;
2310 if (!::CheckType(MatcherTable
, MatcherIndex
, N
, TLI
)) break;
2313 case OPC_SwitchOpcode
: {
2314 unsigned CurNodeOpcode
= N
.getOpcode();
2315 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
2318 // Get the size of this case.
2319 CaseSize
= MatcherTable
[MatcherIndex
++];
2321 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
2322 if (CaseSize
== 0) break;
2324 uint16_t Opc
= MatcherTable
[MatcherIndex
++];
2325 Opc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
2327 // If the opcode matches, then we will execute this case.
2328 if (CurNodeOpcode
== Opc
)
2331 // Otherwise, skip over this case.
2332 MatcherIndex
+= CaseSize
;
2335 // If no cases matched, bail out.
2336 if (CaseSize
== 0) break;
2338 // Otherwise, execute the case we found.
2339 DEBUG(errs() << " OpcodeSwitch from " << SwitchStart
2340 << " to " << MatcherIndex
<< "\n");
2344 case OPC_SwitchType
: {
2345 MVT CurNodeVT
= N
.getValueType().getSimpleVT();
2346 unsigned SwitchStart
= MatcherIndex
-1; (void)SwitchStart
;
2349 // Get the size of this case.
2350 CaseSize
= MatcherTable
[MatcherIndex
++];
2352 CaseSize
= GetVBR(CaseSize
, MatcherTable
, MatcherIndex
);
2353 if (CaseSize
== 0) break;
2355 MVT CaseVT
= (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2356 if (CaseVT
== MVT::iPTR
)
2357 CaseVT
= TLI
.getPointerTy();
2359 // If the VT matches, then we will execute this case.
2360 if (CurNodeVT
== CaseVT
)
2363 // Otherwise, skip over this case.
2364 MatcherIndex
+= CaseSize
;
2367 // If no cases matched, bail out.
2368 if (CaseSize
== 0) break;
2370 // Otherwise, execute the case we found.
2371 DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT
).getEVTString()
2372 << "] from " << SwitchStart
<< " to " << MatcherIndex
<<'\n');
2375 case OPC_CheckChild0Type
: case OPC_CheckChild1Type
:
2376 case OPC_CheckChild2Type
: case OPC_CheckChild3Type
:
2377 case OPC_CheckChild4Type
: case OPC_CheckChild5Type
:
2378 case OPC_CheckChild6Type
: case OPC_CheckChild7Type
:
2379 if (!::CheckChildType(MatcherTable
, MatcherIndex
, N
, TLI
,
2380 Opcode
-OPC_CheckChild0Type
))
2383 case OPC_CheckCondCode
:
2384 if (!::CheckCondCode(MatcherTable
, MatcherIndex
, N
)) break;
2386 case OPC_CheckValueType
:
2387 if (!::CheckValueType(MatcherTable
, MatcherIndex
, N
, TLI
)) break;
2389 case OPC_CheckInteger
:
2390 if (!::CheckInteger(MatcherTable
, MatcherIndex
, N
)) break;
2392 case OPC_CheckAndImm
:
2393 if (!::CheckAndImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
2395 case OPC_CheckOrImm
:
2396 if (!::CheckOrImm(MatcherTable
, MatcherIndex
, N
, *this)) break;
2399 case OPC_CheckFoldableChainNode
: {
2400 assert(NodeStack
.size() != 1 && "No parent node");
2401 // Verify that all intermediate nodes between the root and this one have
2403 bool HasMultipleUses
= false;
2404 for (unsigned i
= 1, e
= NodeStack
.size()-1; i
!= e
; ++i
)
2405 if (!NodeStack
[i
].hasOneUse()) {
2406 HasMultipleUses
= true;
2409 if (HasMultipleUses
) break;
2411 // Check to see that the target thinks this is profitable to fold and that
2412 // we can fold it without inducing cycles in the graph.
2413 if (!IsProfitableToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
2415 !IsLegalToFold(N
, NodeStack
[NodeStack
.size()-2].getNode(),
2416 NodeToMatch
, OptLevel
,
2417 true/*We validate our own chains*/))
2422 case OPC_EmitInteger
: {
2423 MVT::SimpleValueType VT
=
2424 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2425 int64_t Val
= MatcherTable
[MatcherIndex
++];
2427 Val
= GetVBR(Val
, MatcherTable
, MatcherIndex
);
2428 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
2429 CurDAG
->getTargetConstant(Val
, VT
), (SDNode
*)0));
2432 case OPC_EmitRegister
: {
2433 MVT::SimpleValueType VT
=
2434 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2435 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
2436 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
2437 CurDAG
->getRegister(RegNo
, VT
), (SDNode
*)0));
2440 case OPC_EmitRegister2
: {
2441 // For targets w/ more than 256 register names, the register enum
2442 // values are stored in two bytes in the matcher table (just like
2444 MVT::SimpleValueType VT
=
2445 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2446 unsigned RegNo
= MatcherTable
[MatcherIndex
++];
2447 RegNo
|= MatcherTable
[MatcherIndex
++] << 8;
2448 RecordedNodes
.push_back(std::pair
<SDValue
, SDNode
*>(
2449 CurDAG
->getRegister(RegNo
, VT
), (SDNode
*)0));
2453 case OPC_EmitConvertToTarget
: {
2454 // Convert from IMM/FPIMM to target version.
2455 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2456 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2457 SDValue Imm
= RecordedNodes
[RecNo
].first
;
2459 if (Imm
->getOpcode() == ISD::Constant
) {
2460 int64_t Val
= cast
<ConstantSDNode
>(Imm
)->getZExtValue();
2461 Imm
= CurDAG
->getTargetConstant(Val
, Imm
.getValueType());
2462 } else if (Imm
->getOpcode() == ISD::ConstantFP
) {
2463 const ConstantFP
*Val
=cast
<ConstantFPSDNode
>(Imm
)->getConstantFPValue();
2464 Imm
= CurDAG
->getTargetConstantFP(*Val
, Imm
.getValueType());
2467 RecordedNodes
.push_back(std::make_pair(Imm
, RecordedNodes
[RecNo
].second
));
2471 case OPC_EmitMergeInputChains1_0
: // OPC_EmitMergeInputChains, 1, 0
2472 case OPC_EmitMergeInputChains1_1
: { // OPC_EmitMergeInputChains, 1, 1
2473 // These are space-optimized forms of OPC_EmitMergeInputChains.
2474 assert(InputChain
.getNode() == 0 &&
2475 "EmitMergeInputChains should be the first chain producing node");
2476 assert(ChainNodesMatched
.empty() &&
2477 "Should only have one EmitMergeInputChains per match");
2479 // Read all of the chained nodes.
2480 unsigned RecNo
= Opcode
== OPC_EmitMergeInputChains1_1
;
2481 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2482 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
2484 // FIXME: What if other value results of the node have uses not matched
2486 if (ChainNodesMatched
.back() != NodeToMatch
&&
2487 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
2488 ChainNodesMatched
.clear();
2492 // Merge the input chains if they are not intra-pattern references.
2493 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
2495 if (InputChain
.getNode() == 0)
2496 break; // Failed to merge.
2500 case OPC_EmitMergeInputChains
: {
2501 assert(InputChain
.getNode() == 0 &&
2502 "EmitMergeInputChains should be the first chain producing node");
2503 // This node gets a list of nodes we matched in the input that have
2504 // chains. We want to token factor all of the input chains to these nodes
2505 // together. However, if any of the input chains is actually one of the
2506 // nodes matched in this pattern, then we have an intra-match reference.
2507 // Ignore these because the newly token factored chain should not refer to
2509 unsigned NumChains
= MatcherTable
[MatcherIndex
++];
2510 assert(NumChains
!= 0 && "Can't TF zero chains");
2512 assert(ChainNodesMatched
.empty() &&
2513 "Should only have one EmitMergeInputChains per match");
2515 // Read all of the chained nodes.
2516 for (unsigned i
= 0; i
!= NumChains
; ++i
) {
2517 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2518 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2519 ChainNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
2521 // FIXME: What if other value results of the node have uses not matched
2523 if (ChainNodesMatched
.back() != NodeToMatch
&&
2524 !RecordedNodes
[RecNo
].first
.hasOneUse()) {
2525 ChainNodesMatched
.clear();
2530 // If the inner loop broke out, the match fails.
2531 if (ChainNodesMatched
.empty())
2534 // Merge the input chains if they are not intra-pattern references.
2535 InputChain
= HandleMergeInputChains(ChainNodesMatched
, CurDAG
);
2537 if (InputChain
.getNode() == 0)
2538 break; // Failed to merge.
2543 case OPC_EmitCopyToReg
: {
2544 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2545 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2546 unsigned DestPhysReg
= MatcherTable
[MatcherIndex
++];
2548 if (InputChain
.getNode() == 0)
2549 InputChain
= CurDAG
->getEntryNode();
2551 InputChain
= CurDAG
->getCopyToReg(InputChain
, NodeToMatch
->getDebugLoc(),
2552 DestPhysReg
, RecordedNodes
[RecNo
].first
,
2555 InputGlue
= InputChain
.getValue(1);
2559 case OPC_EmitNodeXForm
: {
2560 unsigned XFormNo
= MatcherTable
[MatcherIndex
++];
2561 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2562 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2563 SDValue Res
= RunSDNodeXForm(RecordedNodes
[RecNo
].first
, XFormNo
);
2564 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(Res
, (SDNode
*) 0));
2569 case OPC_MorphNodeTo
: {
2570 uint16_t TargetOpc
= MatcherTable
[MatcherIndex
++];
2571 TargetOpc
|= (unsigned short)MatcherTable
[MatcherIndex
++] << 8;
2572 unsigned EmitNodeInfo
= MatcherTable
[MatcherIndex
++];
2573 // Get the result VT list.
2574 unsigned NumVTs
= MatcherTable
[MatcherIndex
++];
2575 SmallVector
<EVT
, 4> VTs
;
2576 for (unsigned i
= 0; i
!= NumVTs
; ++i
) {
2577 MVT::SimpleValueType VT
=
2578 (MVT::SimpleValueType
)MatcherTable
[MatcherIndex
++];
2579 if (VT
== MVT::iPTR
) VT
= TLI
.getPointerTy().SimpleTy
;
2583 if (EmitNodeInfo
& OPFL_Chain
)
2584 VTs
.push_back(MVT::Other
);
2585 if (EmitNodeInfo
& OPFL_GlueOutput
)
2586 VTs
.push_back(MVT::Glue
);
2588 // This is hot code, so optimize the two most common cases of 1 and 2
2591 if (VTs
.size() == 1)
2592 VTList
= CurDAG
->getVTList(VTs
[0]);
2593 else if (VTs
.size() == 2)
2594 VTList
= CurDAG
->getVTList(VTs
[0], VTs
[1]);
2596 VTList
= CurDAG
->getVTList(VTs
.data(), VTs
.size());
2598 // Get the operand list.
2599 unsigned NumOps
= MatcherTable
[MatcherIndex
++];
2600 SmallVector
<SDValue
, 8> Ops
;
2601 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2602 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2604 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
2606 assert(RecNo
< RecordedNodes
.size() && "Invalid EmitNode");
2607 Ops
.push_back(RecordedNodes
[RecNo
].first
);
2610 // If there are variadic operands to add, handle them now.
2611 if (EmitNodeInfo
& OPFL_VariadicInfo
) {
2612 // Determine the start index to copy from.
2613 unsigned FirstOpToCopy
= getNumFixedFromVariadicInfo(EmitNodeInfo
);
2614 FirstOpToCopy
+= (EmitNodeInfo
& OPFL_Chain
) ? 1 : 0;
2615 assert(NodeToMatch
->getNumOperands() >= FirstOpToCopy
&&
2616 "Invalid variadic node");
2617 // Copy all of the variadic operands, not including a potential glue
2619 for (unsigned i
= FirstOpToCopy
, e
= NodeToMatch
->getNumOperands();
2621 SDValue V
= NodeToMatch
->getOperand(i
);
2622 if (V
.getValueType() == MVT::Glue
) break;
2627 // If this has chain/glue inputs, add them.
2628 if (EmitNodeInfo
& OPFL_Chain
)
2629 Ops
.push_back(InputChain
);
2630 if ((EmitNodeInfo
& OPFL_GlueInput
) && InputGlue
.getNode() != 0)
2631 Ops
.push_back(InputGlue
);
2635 if (Opcode
!= OPC_MorphNodeTo
) {
2636 // If this is a normal EmitNode command, just create the new node and
2637 // add the results to the RecordedNodes list.
2638 Res
= CurDAG
->getMachineNode(TargetOpc
, NodeToMatch
->getDebugLoc(),
2639 VTList
, Ops
.data(), Ops
.size());
2641 // Add all the non-glue/non-chain results to the RecordedNodes list.
2642 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
2643 if (VTs
[i
] == MVT::Other
|| VTs
[i
] == MVT::Glue
) break;
2644 RecordedNodes
.push_back(std::pair
<SDValue
,SDNode
*>(SDValue(Res
, i
),
2649 Res
= MorphNode(NodeToMatch
, TargetOpc
, VTList
, Ops
.data(), Ops
.size(),
2653 // If the node had chain/glue results, update our notion of the current
2655 if (EmitNodeInfo
& OPFL_GlueOutput
) {
2656 InputGlue
= SDValue(Res
, VTs
.size()-1);
2657 if (EmitNodeInfo
& OPFL_Chain
)
2658 InputChain
= SDValue(Res
, VTs
.size()-2);
2659 } else if (EmitNodeInfo
& OPFL_Chain
)
2660 InputChain
= SDValue(Res
, VTs
.size()-1);
2662 // If the OPFL_MemRefs glue is set on this node, slap all of the
2663 // accumulated memrefs onto it.
2665 // FIXME: This is vastly incorrect for patterns with multiple outputs
2666 // instructions that access memory and for ComplexPatterns that match
2668 if (EmitNodeInfo
& OPFL_MemRefs
) {
2669 MachineSDNode::mmo_iterator MemRefs
=
2670 MF
->allocateMemRefsArray(MatchedMemRefs
.size());
2671 std::copy(MatchedMemRefs
.begin(), MatchedMemRefs
.end(), MemRefs
);
2672 cast
<MachineSDNode
>(Res
)
2673 ->setMemRefs(MemRefs
, MemRefs
+ MatchedMemRefs
.size());
2677 << (Opcode
== OPC_MorphNodeTo
? "Morphed" : "Created")
2678 << " node: "; Res
->dump(CurDAG
); errs() << "\n");
2680 // If this was a MorphNodeTo then we're completely done!
2681 if (Opcode
== OPC_MorphNodeTo
) {
2682 // Update chain and glue uses.
2683 UpdateChainsAndGlue(NodeToMatch
, InputChain
, ChainNodesMatched
,
2684 InputGlue
, GlueResultNodesMatched
, true);
2691 case OPC_MarkGlueResults
: {
2692 unsigned NumNodes
= MatcherTable
[MatcherIndex
++];
2694 // Read and remember all the glue-result nodes.
2695 for (unsigned i
= 0; i
!= NumNodes
; ++i
) {
2696 unsigned RecNo
= MatcherTable
[MatcherIndex
++];
2698 RecNo
= GetVBR(RecNo
, MatcherTable
, MatcherIndex
);
2700 assert(RecNo
< RecordedNodes
.size() && "Invalid CheckSame");
2701 GlueResultNodesMatched
.push_back(RecordedNodes
[RecNo
].first
.getNode());
2706 case OPC_CompleteMatch
: {
2707 // The match has been completed, and any new nodes (if any) have been
2708 // created. Patch up references to the matched dag to use the newly
2710 unsigned NumResults
= MatcherTable
[MatcherIndex
++];
2712 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
2713 unsigned ResSlot
= MatcherTable
[MatcherIndex
++];
2715 ResSlot
= GetVBR(ResSlot
, MatcherTable
, MatcherIndex
);
2717 assert(ResSlot
< RecordedNodes
.size() && "Invalid CheckSame");
2718 SDValue Res
= RecordedNodes
[ResSlot
].first
;
2720 assert(i
< NodeToMatch
->getNumValues() &&
2721 NodeToMatch
->getValueType(i
) != MVT::Other
&&
2722 NodeToMatch
->getValueType(i
) != MVT::Glue
&&
2723 "Invalid number of results to complete!");
2724 assert((NodeToMatch
->getValueType(i
) == Res
.getValueType() ||
2725 NodeToMatch
->getValueType(i
) == MVT::iPTR
||
2726 Res
.getValueType() == MVT::iPTR
||
2727 NodeToMatch
->getValueType(i
).getSizeInBits() ==
2728 Res
.getValueType().getSizeInBits()) &&
2729 "invalid replacement");
2730 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch
, i
), Res
);
2733 // If the root node defines glue, add it to the glue nodes to update list.
2734 if (NodeToMatch
->getValueType(NodeToMatch
->getNumValues()-1) == MVT::Glue
)
2735 GlueResultNodesMatched
.push_back(NodeToMatch
);
2737 // Update chain and glue uses.
2738 UpdateChainsAndGlue(NodeToMatch
, InputChain
, ChainNodesMatched
,
2739 InputGlue
, GlueResultNodesMatched
, false);
2741 assert(NodeToMatch
->use_empty() &&
2742 "Didn't replace all uses of the node?");
2744 // FIXME: We just return here, which interacts correctly with SelectRoot
2745 // above. We should fix this to not return an SDNode* anymore.
2750 // If the code reached this point, then the match failed. See if there is
2751 // another child to try in the current 'Scope', otherwise pop it until we
2752 // find a case to check.
2753 DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex
<< "\n");
2754 ++NumDAGIselRetries
;
2756 if (MatchScopes
.empty()) {
2757 CannotYetSelect(NodeToMatch
);
2761 // Restore the interpreter state back to the point where the scope was
2763 MatchScope
&LastScope
= MatchScopes
.back();
2764 RecordedNodes
.resize(LastScope
.NumRecordedNodes
);
2766 NodeStack
.append(LastScope
.NodeStack
.begin(), LastScope
.NodeStack
.end());
2767 N
= NodeStack
.back();
2769 if (LastScope
.NumMatchedMemRefs
!= MatchedMemRefs
.size())
2770 MatchedMemRefs
.resize(LastScope
.NumMatchedMemRefs
);
2771 MatcherIndex
= LastScope
.FailIndex
;
2773 DEBUG(errs() << " Continuing at " << MatcherIndex
<< "\n");
2775 InputChain
= LastScope
.InputChain
;
2776 InputGlue
= LastScope
.InputGlue
;
2777 if (!LastScope
.HasChainNodesMatched
)
2778 ChainNodesMatched
.clear();
2779 if (!LastScope
.HasGlueResultNodesMatched
)
2780 GlueResultNodesMatched
.clear();
2782 // Check to see what the offset is at the new MatcherIndex. If it is zero
2783 // we have reached the end of this scope, otherwise we have another child
2784 // in the current scope to try.
2785 unsigned NumToSkip
= MatcherTable
[MatcherIndex
++];
2786 if (NumToSkip
& 128)
2787 NumToSkip
= GetVBR(NumToSkip
, MatcherTable
, MatcherIndex
);
2789 // If we have another child in this scope to match, update FailIndex and
2791 if (NumToSkip
!= 0) {
2792 LastScope
.FailIndex
= MatcherIndex
+NumToSkip
;
2796 // End of this scope, pop it and try the next child in the containing
2798 MatchScopes
.pop_back();
2805 void SelectionDAGISel::CannotYetSelect(SDNode
*N
) {
2807 raw_string_ostream
Msg(msg
);
2808 Msg
<< "Cannot select: ";
2810 if (N
->getOpcode() != ISD::INTRINSIC_W_CHAIN
&&
2811 N
->getOpcode() != ISD::INTRINSIC_WO_CHAIN
&&
2812 N
->getOpcode() != ISD::INTRINSIC_VOID
) {
2813 N
->printrFull(Msg
, CurDAG
);
2815 bool HasInputChain
= N
->getOperand(0).getValueType() == MVT::Other
;
2817 cast
<ConstantSDNode
>(N
->getOperand(HasInputChain
))->getZExtValue();
2818 if (iid
< Intrinsic::num_intrinsics
)
2819 Msg
<< "intrinsic %" << Intrinsic::getName((Intrinsic::ID
)iid
);
2820 else if (const TargetIntrinsicInfo
*TII
= TM
.getIntrinsicInfo())
2821 Msg
<< "target intrinsic %" << TII
->getName(iid
);
2823 Msg
<< "unknown intrinsic #" << iid
;
2825 report_fatal_error(Msg
.str());
2828 char SelectionDAGISel::ID
= 0;