1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
35 /// We are in the process of implementing a new TypeLegalization action
36 /// - the promotion of vector elements. This feature is disabled by default
37 /// and only enabled using this flag.
39 AllowPromoteIntElem("promote-elements", cl::Hidden
,
40 cl::desc("Allow promotion of integer vector element types"));
43 TLSModel::Model
getTLSModel(const GlobalValue
*GV
, Reloc::Model reloc
) {
44 bool isLocal
= GV
->hasLocalLinkage();
45 bool isDeclaration
= GV
->isDeclaration();
46 // FIXME: what should we do for protected and internal visibility?
47 // For variables, is internal different from hidden?
48 bool isHidden
= GV
->hasHiddenVisibility();
50 if (reloc
== Reloc::PIC_
) {
51 if (isLocal
|| isHidden
)
52 return TLSModel::LocalDynamic
;
54 return TLSModel::GeneralDynamic
;
56 if (!isDeclaration
|| isHidden
)
57 return TLSModel::LocalExec
;
59 return TLSModel::InitialExec
;
64 /// InitLibcallNames - Set default libcall names.
66 static void InitLibcallNames(const char **Names
) {
67 Names
[RTLIB::SHL_I16
] = "__ashlhi3";
68 Names
[RTLIB::SHL_I32
] = "__ashlsi3";
69 Names
[RTLIB::SHL_I64
] = "__ashldi3";
70 Names
[RTLIB::SHL_I128
] = "__ashlti3";
71 Names
[RTLIB::SRL_I16
] = "__lshrhi3";
72 Names
[RTLIB::SRL_I32
] = "__lshrsi3";
73 Names
[RTLIB::SRL_I64
] = "__lshrdi3";
74 Names
[RTLIB::SRL_I128
] = "__lshrti3";
75 Names
[RTLIB::SRA_I16
] = "__ashrhi3";
76 Names
[RTLIB::SRA_I32
] = "__ashrsi3";
77 Names
[RTLIB::SRA_I64
] = "__ashrdi3";
78 Names
[RTLIB::SRA_I128
] = "__ashrti3";
79 Names
[RTLIB::MUL_I8
] = "__mulqi3";
80 Names
[RTLIB::MUL_I16
] = "__mulhi3";
81 Names
[RTLIB::MUL_I32
] = "__mulsi3";
82 Names
[RTLIB::MUL_I64
] = "__muldi3";
83 Names
[RTLIB::MUL_I128
] = "__multi3";
84 Names
[RTLIB::SDIV_I8
] = "__divqi3";
85 Names
[RTLIB::SDIV_I16
] = "__divhi3";
86 Names
[RTLIB::SDIV_I32
] = "__divsi3";
87 Names
[RTLIB::SDIV_I64
] = "__divdi3";
88 Names
[RTLIB::SDIV_I128
] = "__divti3";
89 Names
[RTLIB::UDIV_I8
] = "__udivqi3";
90 Names
[RTLIB::UDIV_I16
] = "__udivhi3";
91 Names
[RTLIB::UDIV_I32
] = "__udivsi3";
92 Names
[RTLIB::UDIV_I64
] = "__udivdi3";
93 Names
[RTLIB::UDIV_I128
] = "__udivti3";
94 Names
[RTLIB::SREM_I8
] = "__modqi3";
95 Names
[RTLIB::SREM_I16
] = "__modhi3";
96 Names
[RTLIB::SREM_I32
] = "__modsi3";
97 Names
[RTLIB::SREM_I64
] = "__moddi3";
98 Names
[RTLIB::SREM_I128
] = "__modti3";
99 Names
[RTLIB::UREM_I8
] = "__umodqi3";
100 Names
[RTLIB::UREM_I16
] = "__umodhi3";
101 Names
[RTLIB::UREM_I32
] = "__umodsi3";
102 Names
[RTLIB::UREM_I64
] = "__umoddi3";
103 Names
[RTLIB::UREM_I128
] = "__umodti3";
105 // These are generally not available.
106 Names
[RTLIB::SDIVREM_I8
] = 0;
107 Names
[RTLIB::SDIVREM_I16
] = 0;
108 Names
[RTLIB::SDIVREM_I32
] = 0;
109 Names
[RTLIB::SDIVREM_I64
] = 0;
110 Names
[RTLIB::SDIVREM_I128
] = 0;
111 Names
[RTLIB::UDIVREM_I8
] = 0;
112 Names
[RTLIB::UDIVREM_I16
] = 0;
113 Names
[RTLIB::UDIVREM_I32
] = 0;
114 Names
[RTLIB::UDIVREM_I64
] = 0;
115 Names
[RTLIB::UDIVREM_I128
] = 0;
117 Names
[RTLIB::NEG_I32
] = "__negsi2";
118 Names
[RTLIB::NEG_I64
] = "__negdi2";
119 Names
[RTLIB::ADD_F32
] = "__addsf3";
120 Names
[RTLIB::ADD_F64
] = "__adddf3";
121 Names
[RTLIB::ADD_F80
] = "__addxf3";
122 Names
[RTLIB::ADD_PPCF128
] = "__gcc_qadd";
123 Names
[RTLIB::SUB_F32
] = "__subsf3";
124 Names
[RTLIB::SUB_F64
] = "__subdf3";
125 Names
[RTLIB::SUB_F80
] = "__subxf3";
126 Names
[RTLIB::SUB_PPCF128
] = "__gcc_qsub";
127 Names
[RTLIB::MUL_F32
] = "__mulsf3";
128 Names
[RTLIB::MUL_F64
] = "__muldf3";
129 Names
[RTLIB::MUL_F80
] = "__mulxf3";
130 Names
[RTLIB::MUL_PPCF128
] = "__gcc_qmul";
131 Names
[RTLIB::DIV_F32
] = "__divsf3";
132 Names
[RTLIB::DIV_F64
] = "__divdf3";
133 Names
[RTLIB::DIV_F80
] = "__divxf3";
134 Names
[RTLIB::DIV_PPCF128
] = "__gcc_qdiv";
135 Names
[RTLIB::REM_F32
] = "fmodf";
136 Names
[RTLIB::REM_F64
] = "fmod";
137 Names
[RTLIB::REM_F80
] = "fmodl";
138 Names
[RTLIB::REM_PPCF128
] = "fmodl";
139 Names
[RTLIB::POWI_F32
] = "__powisf2";
140 Names
[RTLIB::POWI_F64
] = "__powidf2";
141 Names
[RTLIB::POWI_F80
] = "__powixf2";
142 Names
[RTLIB::POWI_PPCF128
] = "__powitf2";
143 Names
[RTLIB::SQRT_F32
] = "sqrtf";
144 Names
[RTLIB::SQRT_F64
] = "sqrt";
145 Names
[RTLIB::SQRT_F80
] = "sqrtl";
146 Names
[RTLIB::SQRT_PPCF128
] = "sqrtl";
147 Names
[RTLIB::LOG_F32
] = "logf";
148 Names
[RTLIB::LOG_F64
] = "log";
149 Names
[RTLIB::LOG_F80
] = "logl";
150 Names
[RTLIB::LOG_PPCF128
] = "logl";
151 Names
[RTLIB::LOG2_F32
] = "log2f";
152 Names
[RTLIB::LOG2_F64
] = "log2";
153 Names
[RTLIB::LOG2_F80
] = "log2l";
154 Names
[RTLIB::LOG2_PPCF128
] = "log2l";
155 Names
[RTLIB::LOG10_F32
] = "log10f";
156 Names
[RTLIB::LOG10_F64
] = "log10";
157 Names
[RTLIB::LOG10_F80
] = "log10l";
158 Names
[RTLIB::LOG10_PPCF128
] = "log10l";
159 Names
[RTLIB::EXP_F32
] = "expf";
160 Names
[RTLIB::EXP_F64
] = "exp";
161 Names
[RTLIB::EXP_F80
] = "expl";
162 Names
[RTLIB::EXP_PPCF128
] = "expl";
163 Names
[RTLIB::EXP2_F32
] = "exp2f";
164 Names
[RTLIB::EXP2_F64
] = "exp2";
165 Names
[RTLIB::EXP2_F80
] = "exp2l";
166 Names
[RTLIB::EXP2_PPCF128
] = "exp2l";
167 Names
[RTLIB::SIN_F32
] = "sinf";
168 Names
[RTLIB::SIN_F64
] = "sin";
169 Names
[RTLIB::SIN_F80
] = "sinl";
170 Names
[RTLIB::SIN_PPCF128
] = "sinl";
171 Names
[RTLIB::COS_F32
] = "cosf";
172 Names
[RTLIB::COS_F64
] = "cos";
173 Names
[RTLIB::COS_F80
] = "cosl";
174 Names
[RTLIB::COS_PPCF128
] = "cosl";
175 Names
[RTLIB::POW_F32
] = "powf";
176 Names
[RTLIB::POW_F64
] = "pow";
177 Names
[RTLIB::POW_F80
] = "powl";
178 Names
[RTLIB::POW_PPCF128
] = "powl";
179 Names
[RTLIB::CEIL_F32
] = "ceilf";
180 Names
[RTLIB::CEIL_F64
] = "ceil";
181 Names
[RTLIB::CEIL_F80
] = "ceill";
182 Names
[RTLIB::CEIL_PPCF128
] = "ceill";
183 Names
[RTLIB::TRUNC_F32
] = "truncf";
184 Names
[RTLIB::TRUNC_F64
] = "trunc";
185 Names
[RTLIB::TRUNC_F80
] = "truncl";
186 Names
[RTLIB::TRUNC_PPCF128
] = "truncl";
187 Names
[RTLIB::RINT_F32
] = "rintf";
188 Names
[RTLIB::RINT_F64
] = "rint";
189 Names
[RTLIB::RINT_F80
] = "rintl";
190 Names
[RTLIB::RINT_PPCF128
] = "rintl";
191 Names
[RTLIB::NEARBYINT_F32
] = "nearbyintf";
192 Names
[RTLIB::NEARBYINT_F64
] = "nearbyint";
193 Names
[RTLIB::NEARBYINT_F80
] = "nearbyintl";
194 Names
[RTLIB::NEARBYINT_PPCF128
] = "nearbyintl";
195 Names
[RTLIB::FLOOR_F32
] = "floorf";
196 Names
[RTLIB::FLOOR_F64
] = "floor";
197 Names
[RTLIB::FLOOR_F80
] = "floorl";
198 Names
[RTLIB::FLOOR_PPCF128
] = "floorl";
199 Names
[RTLIB::COPYSIGN_F32
] = "copysignf";
200 Names
[RTLIB::COPYSIGN_F64
] = "copysign";
201 Names
[RTLIB::COPYSIGN_F80
] = "copysignl";
202 Names
[RTLIB::COPYSIGN_PPCF128
] = "copysignl";
203 Names
[RTLIB::FPEXT_F32_F64
] = "__extendsfdf2";
204 Names
[RTLIB::FPEXT_F16_F32
] = "__gnu_h2f_ieee";
205 Names
[RTLIB::FPROUND_F32_F16
] = "__gnu_f2h_ieee";
206 Names
[RTLIB::FPROUND_F64_F32
] = "__truncdfsf2";
207 Names
[RTLIB::FPROUND_F80_F32
] = "__truncxfsf2";
208 Names
[RTLIB::FPROUND_PPCF128_F32
] = "__trunctfsf2";
209 Names
[RTLIB::FPROUND_F80_F64
] = "__truncxfdf2";
210 Names
[RTLIB::FPROUND_PPCF128_F64
] = "__trunctfdf2";
211 Names
[RTLIB::FPTOSINT_F32_I8
] = "__fixsfqi";
212 Names
[RTLIB::FPTOSINT_F32_I16
] = "__fixsfhi";
213 Names
[RTLIB::FPTOSINT_F32_I32
] = "__fixsfsi";
214 Names
[RTLIB::FPTOSINT_F32_I64
] = "__fixsfdi";
215 Names
[RTLIB::FPTOSINT_F32_I128
] = "__fixsfti";
216 Names
[RTLIB::FPTOSINT_F64_I8
] = "__fixdfqi";
217 Names
[RTLIB::FPTOSINT_F64_I16
] = "__fixdfhi";
218 Names
[RTLIB::FPTOSINT_F64_I32
] = "__fixdfsi";
219 Names
[RTLIB::FPTOSINT_F64_I64
] = "__fixdfdi";
220 Names
[RTLIB::FPTOSINT_F64_I128
] = "__fixdfti";
221 Names
[RTLIB::FPTOSINT_F80_I32
] = "__fixxfsi";
222 Names
[RTLIB::FPTOSINT_F80_I64
] = "__fixxfdi";
223 Names
[RTLIB::FPTOSINT_F80_I128
] = "__fixxfti";
224 Names
[RTLIB::FPTOSINT_PPCF128_I32
] = "__fixtfsi";
225 Names
[RTLIB::FPTOSINT_PPCF128_I64
] = "__fixtfdi";
226 Names
[RTLIB::FPTOSINT_PPCF128_I128
] = "__fixtfti";
227 Names
[RTLIB::FPTOUINT_F32_I8
] = "__fixunssfqi";
228 Names
[RTLIB::FPTOUINT_F32_I16
] = "__fixunssfhi";
229 Names
[RTLIB::FPTOUINT_F32_I32
] = "__fixunssfsi";
230 Names
[RTLIB::FPTOUINT_F32_I64
] = "__fixunssfdi";
231 Names
[RTLIB::FPTOUINT_F32_I128
] = "__fixunssfti";
232 Names
[RTLIB::FPTOUINT_F64_I8
] = "__fixunsdfqi";
233 Names
[RTLIB::FPTOUINT_F64_I16
] = "__fixunsdfhi";
234 Names
[RTLIB::FPTOUINT_F64_I32
] = "__fixunsdfsi";
235 Names
[RTLIB::FPTOUINT_F64_I64
] = "__fixunsdfdi";
236 Names
[RTLIB::FPTOUINT_F64_I128
] = "__fixunsdfti";
237 Names
[RTLIB::FPTOUINT_F80_I32
] = "__fixunsxfsi";
238 Names
[RTLIB::FPTOUINT_F80_I64
] = "__fixunsxfdi";
239 Names
[RTLIB::FPTOUINT_F80_I128
] = "__fixunsxfti";
240 Names
[RTLIB::FPTOUINT_PPCF128_I32
] = "__fixunstfsi";
241 Names
[RTLIB::FPTOUINT_PPCF128_I64
] = "__fixunstfdi";
242 Names
[RTLIB::FPTOUINT_PPCF128_I128
] = "__fixunstfti";
243 Names
[RTLIB::SINTTOFP_I32_F32
] = "__floatsisf";
244 Names
[RTLIB::SINTTOFP_I32_F64
] = "__floatsidf";
245 Names
[RTLIB::SINTTOFP_I32_F80
] = "__floatsixf";
246 Names
[RTLIB::SINTTOFP_I32_PPCF128
] = "__floatsitf";
247 Names
[RTLIB::SINTTOFP_I64_F32
] = "__floatdisf";
248 Names
[RTLIB::SINTTOFP_I64_F64
] = "__floatdidf";
249 Names
[RTLIB::SINTTOFP_I64_F80
] = "__floatdixf";
250 Names
[RTLIB::SINTTOFP_I64_PPCF128
] = "__floatditf";
251 Names
[RTLIB::SINTTOFP_I128_F32
] = "__floattisf";
252 Names
[RTLIB::SINTTOFP_I128_F64
] = "__floattidf";
253 Names
[RTLIB::SINTTOFP_I128_F80
] = "__floattixf";
254 Names
[RTLIB::SINTTOFP_I128_PPCF128
] = "__floattitf";
255 Names
[RTLIB::UINTTOFP_I32_F32
] = "__floatunsisf";
256 Names
[RTLIB::UINTTOFP_I32_F64
] = "__floatunsidf";
257 Names
[RTLIB::UINTTOFP_I32_F80
] = "__floatunsixf";
258 Names
[RTLIB::UINTTOFP_I32_PPCF128
] = "__floatunsitf";
259 Names
[RTLIB::UINTTOFP_I64_F32
] = "__floatundisf";
260 Names
[RTLIB::UINTTOFP_I64_F64
] = "__floatundidf";
261 Names
[RTLIB::UINTTOFP_I64_F80
] = "__floatundixf";
262 Names
[RTLIB::UINTTOFP_I64_PPCF128
] = "__floatunditf";
263 Names
[RTLIB::UINTTOFP_I128_F32
] = "__floatuntisf";
264 Names
[RTLIB::UINTTOFP_I128_F64
] = "__floatuntidf";
265 Names
[RTLIB::UINTTOFP_I128_F80
] = "__floatuntixf";
266 Names
[RTLIB::UINTTOFP_I128_PPCF128
] = "__floatuntitf";
267 Names
[RTLIB::OEQ_F32
] = "__eqsf2";
268 Names
[RTLIB::OEQ_F64
] = "__eqdf2";
269 Names
[RTLIB::UNE_F32
] = "__nesf2";
270 Names
[RTLIB::UNE_F64
] = "__nedf2";
271 Names
[RTLIB::OGE_F32
] = "__gesf2";
272 Names
[RTLIB::OGE_F64
] = "__gedf2";
273 Names
[RTLIB::OLT_F32
] = "__ltsf2";
274 Names
[RTLIB::OLT_F64
] = "__ltdf2";
275 Names
[RTLIB::OLE_F32
] = "__lesf2";
276 Names
[RTLIB::OLE_F64
] = "__ledf2";
277 Names
[RTLIB::OGT_F32
] = "__gtsf2";
278 Names
[RTLIB::OGT_F64
] = "__gtdf2";
279 Names
[RTLIB::UO_F32
] = "__unordsf2";
280 Names
[RTLIB::UO_F64
] = "__unorddf2";
281 Names
[RTLIB::O_F32
] = "__unordsf2";
282 Names
[RTLIB::O_F64
] = "__unorddf2";
283 Names
[RTLIB::MEMCPY
] = "memcpy";
284 Names
[RTLIB::MEMMOVE
] = "memmove";
285 Names
[RTLIB::MEMSET
] = "memset";
286 Names
[RTLIB::UNWIND_RESUME
] = "_Unwind_Resume";
287 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1
] = "__sync_val_compare_and_swap_1";
288 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2
] = "__sync_val_compare_and_swap_2";
289 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4
] = "__sync_val_compare_and_swap_4";
290 Names
[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8
] = "__sync_val_compare_and_swap_8";
291 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_1
] = "__sync_lock_test_and_set_1";
292 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_2
] = "__sync_lock_test_and_set_2";
293 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_4
] = "__sync_lock_test_and_set_4";
294 Names
[RTLIB::SYNC_LOCK_TEST_AND_SET_8
] = "__sync_lock_test_and_set_8";
295 Names
[RTLIB::SYNC_FETCH_AND_ADD_1
] = "__sync_fetch_and_add_1";
296 Names
[RTLIB::SYNC_FETCH_AND_ADD_2
] = "__sync_fetch_and_add_2";
297 Names
[RTLIB::SYNC_FETCH_AND_ADD_4
] = "__sync_fetch_and_add_4";
298 Names
[RTLIB::SYNC_FETCH_AND_ADD_8
] = "__sync_fetch_and_add_8";
299 Names
[RTLIB::SYNC_FETCH_AND_SUB_1
] = "__sync_fetch_and_sub_1";
300 Names
[RTLIB::SYNC_FETCH_AND_SUB_2
] = "__sync_fetch_and_sub_2";
301 Names
[RTLIB::SYNC_FETCH_AND_SUB_4
] = "__sync_fetch_and_sub_4";
302 Names
[RTLIB::SYNC_FETCH_AND_SUB_8
] = "__sync_fetch_and_sub_8";
303 Names
[RTLIB::SYNC_FETCH_AND_AND_1
] = "__sync_fetch_and_and_1";
304 Names
[RTLIB::SYNC_FETCH_AND_AND_2
] = "__sync_fetch_and_and_2";
305 Names
[RTLIB::SYNC_FETCH_AND_AND_4
] = "__sync_fetch_and_and_4";
306 Names
[RTLIB::SYNC_FETCH_AND_AND_8
] = "__sync_fetch_and_and_8";
307 Names
[RTLIB::SYNC_FETCH_AND_OR_1
] = "__sync_fetch_and_or_1";
308 Names
[RTLIB::SYNC_FETCH_AND_OR_2
] = "__sync_fetch_and_or_2";
309 Names
[RTLIB::SYNC_FETCH_AND_OR_4
] = "__sync_fetch_and_or_4";
310 Names
[RTLIB::SYNC_FETCH_AND_OR_8
] = "__sync_fetch_and_or_8";
311 Names
[RTLIB::SYNC_FETCH_AND_XOR_1
] = "__sync_fetch_and_xor_1";
312 Names
[RTLIB::SYNC_FETCH_AND_XOR_2
] = "__sync_fetch_and_xor_2";
313 Names
[RTLIB::SYNC_FETCH_AND_XOR_4
] = "__sync_fetch_and-xor_4";
314 Names
[RTLIB::SYNC_FETCH_AND_XOR_8
] = "__sync_fetch_and_xor_8";
315 Names
[RTLIB::SYNC_FETCH_AND_NAND_1
] = "__sync_fetch_and_nand_1";
316 Names
[RTLIB::SYNC_FETCH_AND_NAND_2
] = "__sync_fetch_and_nand_2";
317 Names
[RTLIB::SYNC_FETCH_AND_NAND_4
] = "__sync_fetch_and_nand_4";
318 Names
[RTLIB::SYNC_FETCH_AND_NAND_8
] = "__sync_fetch_and_nand_8";
321 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
323 static void InitLibcallCallingConvs(CallingConv::ID
*CCs
) {
324 for (int i
= 0; i
< RTLIB::UNKNOWN_LIBCALL
; ++i
) {
325 CCs
[i
] = CallingConv::C
;
329 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
330 /// UNKNOWN_LIBCALL if there is none.
331 RTLIB::Libcall
RTLIB::getFPEXT(EVT OpVT
, EVT RetVT
) {
332 if (OpVT
== MVT::f32
) {
333 if (RetVT
== MVT::f64
)
334 return FPEXT_F32_F64
;
337 return UNKNOWN_LIBCALL
;
340 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
341 /// UNKNOWN_LIBCALL if there is none.
342 RTLIB::Libcall
RTLIB::getFPROUND(EVT OpVT
, EVT RetVT
) {
343 if (RetVT
== MVT::f32
) {
344 if (OpVT
== MVT::f64
)
345 return FPROUND_F64_F32
;
346 if (OpVT
== MVT::f80
)
347 return FPROUND_F80_F32
;
348 if (OpVT
== MVT::ppcf128
)
349 return FPROUND_PPCF128_F32
;
350 } else if (RetVT
== MVT::f64
) {
351 if (OpVT
== MVT::f80
)
352 return FPROUND_F80_F64
;
353 if (OpVT
== MVT::ppcf128
)
354 return FPROUND_PPCF128_F64
;
357 return UNKNOWN_LIBCALL
;
360 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
361 /// UNKNOWN_LIBCALL if there is none.
362 RTLIB::Libcall
RTLIB::getFPTOSINT(EVT OpVT
, EVT RetVT
) {
363 if (OpVT
== MVT::f32
) {
364 if (RetVT
== MVT::i8
)
365 return FPTOSINT_F32_I8
;
366 if (RetVT
== MVT::i16
)
367 return FPTOSINT_F32_I16
;
368 if (RetVT
== MVT::i32
)
369 return FPTOSINT_F32_I32
;
370 if (RetVT
== MVT::i64
)
371 return FPTOSINT_F32_I64
;
372 if (RetVT
== MVT::i128
)
373 return FPTOSINT_F32_I128
;
374 } else if (OpVT
== MVT::f64
) {
375 if (RetVT
== MVT::i8
)
376 return FPTOSINT_F64_I8
;
377 if (RetVT
== MVT::i16
)
378 return FPTOSINT_F64_I16
;
379 if (RetVT
== MVT::i32
)
380 return FPTOSINT_F64_I32
;
381 if (RetVT
== MVT::i64
)
382 return FPTOSINT_F64_I64
;
383 if (RetVT
== MVT::i128
)
384 return FPTOSINT_F64_I128
;
385 } else if (OpVT
== MVT::f80
) {
386 if (RetVT
== MVT::i32
)
387 return FPTOSINT_F80_I32
;
388 if (RetVT
== MVT::i64
)
389 return FPTOSINT_F80_I64
;
390 if (RetVT
== MVT::i128
)
391 return FPTOSINT_F80_I128
;
392 } else if (OpVT
== MVT::ppcf128
) {
393 if (RetVT
== MVT::i32
)
394 return FPTOSINT_PPCF128_I32
;
395 if (RetVT
== MVT::i64
)
396 return FPTOSINT_PPCF128_I64
;
397 if (RetVT
== MVT::i128
)
398 return FPTOSINT_PPCF128_I128
;
400 return UNKNOWN_LIBCALL
;
403 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
404 /// UNKNOWN_LIBCALL if there is none.
405 RTLIB::Libcall
RTLIB::getFPTOUINT(EVT OpVT
, EVT RetVT
) {
406 if (OpVT
== MVT::f32
) {
407 if (RetVT
== MVT::i8
)
408 return FPTOUINT_F32_I8
;
409 if (RetVT
== MVT::i16
)
410 return FPTOUINT_F32_I16
;
411 if (RetVT
== MVT::i32
)
412 return FPTOUINT_F32_I32
;
413 if (RetVT
== MVT::i64
)
414 return FPTOUINT_F32_I64
;
415 if (RetVT
== MVT::i128
)
416 return FPTOUINT_F32_I128
;
417 } else if (OpVT
== MVT::f64
) {
418 if (RetVT
== MVT::i8
)
419 return FPTOUINT_F64_I8
;
420 if (RetVT
== MVT::i16
)
421 return FPTOUINT_F64_I16
;
422 if (RetVT
== MVT::i32
)
423 return FPTOUINT_F64_I32
;
424 if (RetVT
== MVT::i64
)
425 return FPTOUINT_F64_I64
;
426 if (RetVT
== MVT::i128
)
427 return FPTOUINT_F64_I128
;
428 } else if (OpVT
== MVT::f80
) {
429 if (RetVT
== MVT::i32
)
430 return FPTOUINT_F80_I32
;
431 if (RetVT
== MVT::i64
)
432 return FPTOUINT_F80_I64
;
433 if (RetVT
== MVT::i128
)
434 return FPTOUINT_F80_I128
;
435 } else if (OpVT
== MVT::ppcf128
) {
436 if (RetVT
== MVT::i32
)
437 return FPTOUINT_PPCF128_I32
;
438 if (RetVT
== MVT::i64
)
439 return FPTOUINT_PPCF128_I64
;
440 if (RetVT
== MVT::i128
)
441 return FPTOUINT_PPCF128_I128
;
443 return UNKNOWN_LIBCALL
;
446 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
447 /// UNKNOWN_LIBCALL if there is none.
448 RTLIB::Libcall
RTLIB::getSINTTOFP(EVT OpVT
, EVT RetVT
) {
449 if (OpVT
== MVT::i32
) {
450 if (RetVT
== MVT::f32
)
451 return SINTTOFP_I32_F32
;
452 else if (RetVT
== MVT::f64
)
453 return SINTTOFP_I32_F64
;
454 else if (RetVT
== MVT::f80
)
455 return SINTTOFP_I32_F80
;
456 else if (RetVT
== MVT::ppcf128
)
457 return SINTTOFP_I32_PPCF128
;
458 } else if (OpVT
== MVT::i64
) {
459 if (RetVT
== MVT::f32
)
460 return SINTTOFP_I64_F32
;
461 else if (RetVT
== MVT::f64
)
462 return SINTTOFP_I64_F64
;
463 else if (RetVT
== MVT::f80
)
464 return SINTTOFP_I64_F80
;
465 else if (RetVT
== MVT::ppcf128
)
466 return SINTTOFP_I64_PPCF128
;
467 } else if (OpVT
== MVT::i128
) {
468 if (RetVT
== MVT::f32
)
469 return SINTTOFP_I128_F32
;
470 else if (RetVT
== MVT::f64
)
471 return SINTTOFP_I128_F64
;
472 else if (RetVT
== MVT::f80
)
473 return SINTTOFP_I128_F80
;
474 else if (RetVT
== MVT::ppcf128
)
475 return SINTTOFP_I128_PPCF128
;
477 return UNKNOWN_LIBCALL
;
480 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
481 /// UNKNOWN_LIBCALL if there is none.
482 RTLIB::Libcall
RTLIB::getUINTTOFP(EVT OpVT
, EVT RetVT
) {
483 if (OpVT
== MVT::i32
) {
484 if (RetVT
== MVT::f32
)
485 return UINTTOFP_I32_F32
;
486 else if (RetVT
== MVT::f64
)
487 return UINTTOFP_I32_F64
;
488 else if (RetVT
== MVT::f80
)
489 return UINTTOFP_I32_F80
;
490 else if (RetVT
== MVT::ppcf128
)
491 return UINTTOFP_I32_PPCF128
;
492 } else if (OpVT
== MVT::i64
) {
493 if (RetVT
== MVT::f32
)
494 return UINTTOFP_I64_F32
;
495 else if (RetVT
== MVT::f64
)
496 return UINTTOFP_I64_F64
;
497 else if (RetVT
== MVT::f80
)
498 return UINTTOFP_I64_F80
;
499 else if (RetVT
== MVT::ppcf128
)
500 return UINTTOFP_I64_PPCF128
;
501 } else if (OpVT
== MVT::i128
) {
502 if (RetVT
== MVT::f32
)
503 return UINTTOFP_I128_F32
;
504 else if (RetVT
== MVT::f64
)
505 return UINTTOFP_I128_F64
;
506 else if (RetVT
== MVT::f80
)
507 return UINTTOFP_I128_F80
;
508 else if (RetVT
== MVT::ppcf128
)
509 return UINTTOFP_I128_PPCF128
;
511 return UNKNOWN_LIBCALL
;
514 /// InitCmpLibcallCCs - Set default comparison libcall CC.
516 static void InitCmpLibcallCCs(ISD::CondCode
*CCs
) {
517 memset(CCs
, ISD::SETCC_INVALID
, sizeof(ISD::CondCode
)*RTLIB::UNKNOWN_LIBCALL
);
518 CCs
[RTLIB::OEQ_F32
] = ISD::SETEQ
;
519 CCs
[RTLIB::OEQ_F64
] = ISD::SETEQ
;
520 CCs
[RTLIB::UNE_F32
] = ISD::SETNE
;
521 CCs
[RTLIB::UNE_F64
] = ISD::SETNE
;
522 CCs
[RTLIB::OGE_F32
] = ISD::SETGE
;
523 CCs
[RTLIB::OGE_F64
] = ISD::SETGE
;
524 CCs
[RTLIB::OLT_F32
] = ISD::SETLT
;
525 CCs
[RTLIB::OLT_F64
] = ISD::SETLT
;
526 CCs
[RTLIB::OLE_F32
] = ISD::SETLE
;
527 CCs
[RTLIB::OLE_F64
] = ISD::SETLE
;
528 CCs
[RTLIB::OGT_F32
] = ISD::SETGT
;
529 CCs
[RTLIB::OGT_F64
] = ISD::SETGT
;
530 CCs
[RTLIB::UO_F32
] = ISD::SETNE
;
531 CCs
[RTLIB::UO_F64
] = ISD::SETNE
;
532 CCs
[RTLIB::O_F32
] = ISD::SETEQ
;
533 CCs
[RTLIB::O_F64
] = ISD::SETEQ
;
536 /// NOTE: The constructor takes ownership of TLOF.
537 TargetLowering::TargetLowering(const TargetMachine
&tm
,
538 const TargetLoweringObjectFile
*tlof
)
539 : TM(tm
), TD(TM
.getTargetData()), TLOF(*tlof
),
540 mayPromoteElements(AllowPromoteIntElem
) {
541 // All operations default to being supported.
542 memset(OpActions
, 0, sizeof(OpActions
));
543 memset(LoadExtActions
, 0, sizeof(LoadExtActions
));
544 memset(TruncStoreActions
, 0, sizeof(TruncStoreActions
));
545 memset(IndexedModeActions
, 0, sizeof(IndexedModeActions
));
546 memset(CondCodeActions
, 0, sizeof(CondCodeActions
));
548 // Set default actions for various operations.
549 for (unsigned VT
= 0; VT
!= (unsigned)MVT::LAST_VALUETYPE
; ++VT
) {
550 // Default all indexed load / store to expand.
551 for (unsigned IM
= (unsigned)ISD::PRE_INC
;
552 IM
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++IM
) {
553 setIndexedLoadAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
554 setIndexedStoreAction(IM
, (MVT::SimpleValueType
)VT
, Expand
);
557 // These operations default to expand.
558 setOperationAction(ISD::FGETSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
559 setOperationAction(ISD::CONCAT_VECTORS
, (MVT::SimpleValueType
)VT
, Expand
);
562 // Most targets ignore the @llvm.prefetch intrinsic.
563 setOperationAction(ISD::PREFETCH
, MVT::Other
, Expand
);
565 // ConstantFP nodes default to expand. Targets can either change this to
566 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
567 // to optimize expansions for certain constants.
568 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
569 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
570 setOperationAction(ISD::ConstantFP
, MVT::f80
, Expand
);
572 // These library functions default to expand.
573 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
574 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
575 setOperationAction(ISD::FLOG10
,MVT::f64
, Expand
);
576 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
577 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
578 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
579 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
580 setOperationAction(ISD::FLOG10
,MVT::f32
, Expand
);
581 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
582 setOperationAction(ISD::FEXP2
, MVT::f32
, Expand
);
584 // Default ISD::TRAP to expand (which turns it into abort).
585 setOperationAction(ISD::TRAP
, MVT::Other
, Expand
);
587 IsLittleEndian
= TD
->isLittleEndian();
588 PointerTy
= MVT::getIntegerVT(8*TD
->getPointerSize());
589 memset(RegClassForVT
, 0,MVT::LAST_VALUETYPE
*sizeof(TargetRegisterClass
*));
590 memset(TargetDAGCombineArray
, 0, array_lengthof(TargetDAGCombineArray
));
591 maxStoresPerMemset
= maxStoresPerMemcpy
= maxStoresPerMemmove
= 8;
592 maxStoresPerMemsetOptSize
= maxStoresPerMemcpyOptSize
593 = maxStoresPerMemmoveOptSize
= 4;
594 benefitFromCodePlacementOpt
= false;
595 UseUnderscoreSetJmp
= false;
596 UseUnderscoreLongJmp
= false;
597 SelectIsExpensive
= false;
598 IntDivIsCheap
= false;
599 Pow2DivIsCheap
= false;
600 JumpIsExpensive
= false;
601 StackPointerRegisterToSaveRestore
= 0;
602 ExceptionPointerRegister
= 0;
603 ExceptionSelectorRegister
= 0;
604 BooleanContents
= UndefinedBooleanContent
;
605 SchedPreferenceInfo
= Sched::Latency
;
607 JumpBufAlignment
= 0;
608 MinFunctionAlignment
= 0;
609 PrefFunctionAlignment
= 0;
610 PrefLoopAlignment
= 0;
611 MinStackArgumentAlignment
= 1;
612 ShouldFoldAtomicFences
= false;
614 InitLibcallNames(LibcallRoutineNames
);
615 InitCmpLibcallCCs(CmpLibcallCCs
);
616 InitLibcallCallingConvs(LibcallCallingConvs
);
619 TargetLowering::~TargetLowering() {
623 MVT
TargetLowering::getShiftAmountTy(EVT LHSTy
) const {
624 return MVT::getIntegerVT(8*TD
->getPointerSize());
627 /// canOpTrap - Returns true if the operation can trap for the value type.
628 /// VT must be a legal type.
629 bool TargetLowering::canOpTrap(unsigned Op
, EVT VT
) const {
630 assert(isTypeLegal(VT
));
645 static unsigned getVectorTypeBreakdownMVT(MVT VT
, MVT
&IntermediateVT
,
646 unsigned &NumIntermediates
,
648 TargetLowering
*TLI
) {
649 // Figure out the right, legal destination reg to copy into.
650 unsigned NumElts
= VT
.getVectorNumElements();
651 MVT EltTy
= VT
.getVectorElementType();
653 unsigned NumVectorRegs
= 1;
655 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
656 // could break down into LHS/RHS like LegalizeDAG does.
657 if (!isPowerOf2_32(NumElts
)) {
658 NumVectorRegs
= NumElts
;
662 // Divide the input until we get to a supported size. This will always
663 // end with a scalar if the target doesn't support vectors.
664 while (NumElts
> 1 && !TLI
->isTypeLegal(MVT::getVectorVT(EltTy
, NumElts
))) {
669 NumIntermediates
= NumVectorRegs
;
671 MVT NewVT
= MVT::getVectorVT(EltTy
, NumElts
);
672 if (!TLI
->isTypeLegal(NewVT
))
674 IntermediateVT
= NewVT
;
676 EVT DestVT
= TLI
->getRegisterType(NewVT
);
678 if (EVT(DestVT
).bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
679 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
681 // Otherwise, promotion or legal types use the same number of registers as
682 // the vector decimated to the appropriate level.
683 return NumVectorRegs
;
686 /// isLegalRC - Return true if the value types that can be represented by the
687 /// specified register class are all legal.
688 bool TargetLowering::isLegalRC(const TargetRegisterClass
*RC
) const {
689 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
697 /// hasLegalSuperRegRegClasses - Return true if the specified register class
698 /// has one or more super-reg register classes that are legal.
700 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass
*RC
) const{
701 if (*RC
->superregclasses_begin() == 0)
703 for (TargetRegisterInfo::regclass_iterator I
= RC
->superregclasses_begin(),
704 E
= RC
->superregclasses_end(); I
!= E
; ++I
) {
705 const TargetRegisterClass
*RRC
= *I
;
712 /// findRepresentativeClass - Return the largest legal super-reg register class
713 /// of the register class for the specified type and its associated "cost".
714 std::pair
<const TargetRegisterClass
*, uint8_t>
715 TargetLowering::findRepresentativeClass(EVT VT
) const {
716 const TargetRegisterClass
*RC
= RegClassForVT
[VT
.getSimpleVT().SimpleTy
];
718 return std::make_pair(RC
, 0);
719 const TargetRegisterClass
*BestRC
= RC
;
720 for (TargetRegisterInfo::regclass_iterator I
= RC
->superregclasses_begin(),
721 E
= RC
->superregclasses_end(); I
!= E
; ++I
) {
722 const TargetRegisterClass
*RRC
= *I
;
723 if (RRC
->isASubClass() || !isLegalRC(RRC
))
725 if (!hasLegalSuperRegRegClasses(RRC
))
726 return std::make_pair(RRC
, 1);
729 return std::make_pair(BestRC
, 1);
733 /// computeRegisterProperties - Once all of the register classes are added,
734 /// this allows us to compute derived properties we expose.
735 void TargetLowering::computeRegisterProperties() {
736 assert(MVT::LAST_VALUETYPE
<= MVT::MAX_ALLOWED_VALUETYPE
&&
737 "Too many value types for ValueTypeActions to hold!");
739 // Everything defaults to needing one register.
740 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
741 NumRegistersForVT
[i
] = 1;
742 RegisterTypeForVT
[i
] = TransformToType
[i
] = (MVT::SimpleValueType
)i
;
744 // ...except isVoid, which doesn't need any registers.
745 NumRegistersForVT
[MVT::isVoid
] = 0;
747 // Find the largest integer register class.
748 unsigned LargestIntReg
= MVT::LAST_INTEGER_VALUETYPE
;
749 for (; RegClassForVT
[LargestIntReg
] == 0; --LargestIntReg
)
750 assert(LargestIntReg
!= MVT::i1
&& "No integer registers defined!");
752 // Every integer value type larger than this largest register takes twice as
753 // many registers to represent as the previous ValueType.
754 for (unsigned ExpandedReg
= LargestIntReg
+ 1; ; ++ExpandedReg
) {
755 EVT ExpandedVT
= (MVT::SimpleValueType
)ExpandedReg
;
756 if (!ExpandedVT
.isInteger())
758 NumRegistersForVT
[ExpandedReg
] = 2*NumRegistersForVT
[ExpandedReg
-1];
759 RegisterTypeForVT
[ExpandedReg
] = (MVT::SimpleValueType
)LargestIntReg
;
760 TransformToType
[ExpandedReg
] = (MVT::SimpleValueType
)(ExpandedReg
- 1);
761 ValueTypeActions
.setTypeAction(ExpandedVT
, TypeExpandInteger
);
764 // Inspect all of the ValueType's smaller than the largest integer
765 // register to see which ones need promotion.
766 unsigned LegalIntReg
= LargestIntReg
;
767 for (unsigned IntReg
= LargestIntReg
- 1;
768 IntReg
>= (unsigned)MVT::i1
; --IntReg
) {
769 EVT IVT
= (MVT::SimpleValueType
)IntReg
;
770 if (isTypeLegal(IVT
)) {
771 LegalIntReg
= IntReg
;
773 RegisterTypeForVT
[IntReg
] = TransformToType
[IntReg
] =
774 (MVT::SimpleValueType
)LegalIntReg
;
775 ValueTypeActions
.setTypeAction(IVT
, TypePromoteInteger
);
779 // ppcf128 type is really two f64's.
780 if (!isTypeLegal(MVT::ppcf128
)) {
781 NumRegistersForVT
[MVT::ppcf128
] = 2*NumRegistersForVT
[MVT::f64
];
782 RegisterTypeForVT
[MVT::ppcf128
] = MVT::f64
;
783 TransformToType
[MVT::ppcf128
] = MVT::f64
;
784 ValueTypeActions
.setTypeAction(MVT::ppcf128
, TypeExpandFloat
);
787 // Decide how to handle f64. If the target does not have native f64 support,
788 // expand it to i64 and we will be generating soft float library calls.
789 if (!isTypeLegal(MVT::f64
)) {
790 NumRegistersForVT
[MVT::f64
] = NumRegistersForVT
[MVT::i64
];
791 RegisterTypeForVT
[MVT::f64
] = RegisterTypeForVT
[MVT::i64
];
792 TransformToType
[MVT::f64
] = MVT::i64
;
793 ValueTypeActions
.setTypeAction(MVT::f64
, TypeSoftenFloat
);
796 // Decide how to handle f32. If the target does not have native support for
797 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
798 if (!isTypeLegal(MVT::f32
)) {
799 if (isTypeLegal(MVT::f64
)) {
800 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::f64
];
801 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::f64
];
802 TransformToType
[MVT::f32
] = MVT::f64
;
803 ValueTypeActions
.setTypeAction(MVT::f32
, TypePromoteInteger
);
805 NumRegistersForVT
[MVT::f32
] = NumRegistersForVT
[MVT::i32
];
806 RegisterTypeForVT
[MVT::f32
] = RegisterTypeForVT
[MVT::i32
];
807 TransformToType
[MVT::f32
] = MVT::i32
;
808 ValueTypeActions
.setTypeAction(MVT::f32
, TypeSoftenFloat
);
812 // Loop over all of the vector value types to see which need transformations.
813 for (unsigned i
= MVT::FIRST_VECTOR_VALUETYPE
;
814 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
815 MVT VT
= (MVT::SimpleValueType
)i
;
816 if (isTypeLegal(VT
)) continue;
818 // Determine if there is a legal wider type. If so, we should promote to
819 // that wider vector type.
820 EVT EltVT
= VT
.getVectorElementType();
821 unsigned NElts
= VT
.getVectorNumElements();
823 bool IsLegalWiderType
= false;
824 for (unsigned nVT
= i
+1; nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
825 EVT SVT
= (MVT::SimpleValueType
)nVT
;
827 // If we allow the promotion of vector elements using a flag,
828 // then return TypePromoteInteger on vector elements.
829 if (mayPromoteElements
) {
830 // Promote vectors of integers to vectors with the same number
831 // of elements, with a wider element type.
832 if (SVT
.getVectorElementType().getSizeInBits() > EltVT
.getSizeInBits()
833 && SVT
.getVectorNumElements() == NElts
&&
834 isTypeLegal(SVT
) && SVT
.getScalarType().isInteger()) {
835 TransformToType
[i
] = SVT
;
836 RegisterTypeForVT
[i
] = SVT
;
837 NumRegistersForVT
[i
] = 1;
838 ValueTypeActions
.setTypeAction(VT
, TypePromoteInteger
);
839 IsLegalWiderType
= true;
844 if (SVT
.getVectorElementType() == EltVT
&&
845 SVT
.getVectorNumElements() > NElts
&&
847 TransformToType
[i
] = SVT
;
848 RegisterTypeForVT
[i
] = SVT
;
849 NumRegistersForVT
[i
] = 1;
850 ValueTypeActions
.setTypeAction(VT
, TypeWidenVector
);
851 IsLegalWiderType
= true;
855 if (IsLegalWiderType
) continue;
860 unsigned NumIntermediates
;
861 NumRegistersForVT
[i
] =
862 getVectorTypeBreakdownMVT(VT
, IntermediateVT
, NumIntermediates
,
864 RegisterTypeForVT
[i
] = RegisterVT
;
866 EVT NVT
= VT
.getPow2VectorType();
868 // Type is already a power of 2. The default action is to split.
869 TransformToType
[i
] = MVT::Other
;
870 unsigned NumElts
= VT
.getVectorNumElements();
871 ValueTypeActions
.setTypeAction(VT
,
872 NumElts
> 1 ? TypeSplitVector
: TypeScalarizeVector
);
874 TransformToType
[i
] = NVT
;
875 ValueTypeActions
.setTypeAction(VT
, TypeWidenVector
);
879 // Determine the 'representative' register class for each value type.
880 // An representative register class is the largest (meaning one which is
881 // not a sub-register class / subreg register class) legal register class for
882 // a group of value types. For example, on i386, i8, i16, and i32
883 // representative would be GR32; while on x86_64 it's GR64.
884 for (unsigned i
= 0; i
!= MVT::LAST_VALUETYPE
; ++i
) {
885 const TargetRegisterClass
* RRC
;
887 tie(RRC
, Cost
) = findRepresentativeClass((MVT::SimpleValueType
)i
);
888 RepRegClassForVT
[i
] = RRC
;
889 RepRegClassCostForVT
[i
] = Cost
;
893 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
898 MVT::SimpleValueType
TargetLowering::getSetCCResultType(EVT VT
) const {
899 return PointerTy
.SimpleTy
;
902 MVT::SimpleValueType
TargetLowering::getCmpLibcallReturnType() const {
903 return MVT::i32
; // return the default value
906 /// getVectorTypeBreakdown - Vector types are broken down into some number of
907 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
908 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
909 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
911 /// This method returns the number of registers needed, and the VT for each
912 /// register. It also returns the VT and quantity of the intermediate values
913 /// before they are promoted/expanded.
915 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext
&Context
, EVT VT
,
917 unsigned &NumIntermediates
,
918 EVT
&RegisterVT
) const {
919 unsigned NumElts
= VT
.getVectorNumElements();
921 // If there is a wider vector type with the same element type as this one,
922 // we should widen to that legal vector type. This handles things like
923 // <2 x float> -> <4 x float>.
924 if (NumElts
!= 1 && getTypeAction(Context
, VT
) == TypeWidenVector
) {
925 RegisterVT
= getTypeToTransformTo(Context
, VT
);
926 if (isTypeLegal(RegisterVT
)) {
927 IntermediateVT
= RegisterVT
;
928 NumIntermediates
= 1;
933 // Figure out the right, legal destination reg to copy into.
934 EVT EltTy
= VT
.getVectorElementType();
936 unsigned NumVectorRegs
= 1;
938 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
939 // could break down into LHS/RHS like LegalizeDAG does.
940 if (!isPowerOf2_32(NumElts
)) {
941 NumVectorRegs
= NumElts
;
945 // Divide the input until we get to a supported size. This will always
946 // end with a scalar if the target doesn't support vectors.
947 while (NumElts
> 1 && !isTypeLegal(
948 EVT::getVectorVT(Context
, EltTy
, NumElts
))) {
953 NumIntermediates
= NumVectorRegs
;
955 EVT NewVT
= EVT::getVectorVT(Context
, EltTy
, NumElts
);
956 if (!isTypeLegal(NewVT
))
958 IntermediateVT
= NewVT
;
960 EVT DestVT
= getRegisterType(Context
, NewVT
);
962 if (DestVT
.bitsLT(NewVT
)) // Value is expanded, e.g. i64 -> i16.
963 return NumVectorRegs
*(NewVT
.getSizeInBits()/DestVT
.getSizeInBits());
965 // Otherwise, promotion or legal types use the same number of registers as
966 // the vector decimated to the appropriate level.
967 return NumVectorRegs
;
970 /// Get the EVTs and ArgFlags collections that represent the legalized return
971 /// type of the given function. This does not require a DAG or a return value,
972 /// and is suitable for use before any DAGs for the function are constructed.
973 /// TODO: Move this out of TargetLowering.cpp.
974 void llvm::GetReturnInfo(const Type
* ReturnType
, Attributes attr
,
975 SmallVectorImpl
<ISD::OutputArg
> &Outs
,
976 const TargetLowering
&TLI
,
977 SmallVectorImpl
<uint64_t> *Offsets
) {
978 SmallVector
<EVT
, 4> ValueVTs
;
979 ComputeValueVTs(TLI
, ReturnType
, ValueVTs
);
980 unsigned NumValues
= ValueVTs
.size();
981 if (NumValues
== 0) return;
984 for (unsigned j
= 0, f
= NumValues
; j
!= f
; ++j
) {
985 EVT VT
= ValueVTs
[j
];
986 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
988 if (attr
& Attribute::SExt
)
989 ExtendKind
= ISD::SIGN_EXTEND
;
990 else if (attr
& Attribute::ZExt
)
991 ExtendKind
= ISD::ZERO_EXTEND
;
993 // FIXME: C calling convention requires the return type to be promoted to
994 // at least 32-bit. But this is not necessary for non-C calling
995 // conventions. The frontend should mark functions whose return values
996 // require promoting with signext or zeroext attributes.
997 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger()) {
998 EVT MinVT
= TLI
.getRegisterType(ReturnType
->getContext(), MVT::i32
);
999 if (VT
.bitsLT(MinVT
))
1003 unsigned NumParts
= TLI
.getNumRegisters(ReturnType
->getContext(), VT
);
1004 EVT PartVT
= TLI
.getRegisterType(ReturnType
->getContext(), VT
);
1005 unsigned PartSize
= TLI
.getTargetData()->getTypeAllocSize(
1006 PartVT
.getTypeForEVT(ReturnType
->getContext()));
1008 // 'inreg' on function refers to return value
1009 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1010 if (attr
& Attribute::InReg
)
1013 // Propagate extension type if any
1014 if (attr
& Attribute::SExt
)
1016 else if (attr
& Attribute::ZExt
)
1019 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1020 Outs
.push_back(ISD::OutputArg(Flags
, PartVT
, /*isFixed=*/true));
1022 Offsets
->push_back(Offset
);
1029 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1030 /// function arguments in the caller parameter area. This is the actual
1031 /// alignment, not its logarithm.
1032 unsigned TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
1033 return TD
->getCallFrameTypeAlignment(Ty
);
1036 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1037 /// current function. The returned value is a member of the
1038 /// MachineJumpTableInfo::JTEntryKind enum.
1039 unsigned TargetLowering::getJumpTableEncoding() const {
1040 // In non-pic modes, just use the address of a block.
1041 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
1042 return MachineJumpTableInfo::EK_BlockAddress
;
1044 // In PIC mode, if the target supports a GPRel32 directive, use it.
1045 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1046 return MachineJumpTableInfo::EK_GPRel32BlockAddress
;
1048 // Otherwise, use a label difference.
1049 return MachineJumpTableInfo::EK_LabelDifference32
;
1052 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1053 SelectionDAG
&DAG
) const {
1054 // If our PIC model is GP relative, use the global offset table as the base.
1055 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress
)
1056 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
1060 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1061 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1064 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
1065 unsigned JTI
,MCContext
&Ctx
) const{
1066 // The normal PIC reloc base is the label at the start of the jump table.
1067 return MCSymbolRefExpr::Create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
1071 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
1072 // Assume that everything is safe in static mode.
1073 if (getTargetMachine().getRelocationModel() == Reloc::Static
)
1076 // In dynamic-no-pic mode, assume that known defined values are safe.
1077 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC
&&
1079 !GA
->getGlobal()->isDeclaration() &&
1080 !GA
->getGlobal()->isWeakForLinker())
1083 // Otherwise assume nothing is safe.
1087 //===----------------------------------------------------------------------===//
1088 // Optimization Methods
1089 //===----------------------------------------------------------------------===//
1091 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1092 /// specified instruction is a constant integer. If so, check to see if there
1093 /// are any bits set in the constant that are not demanded. If so, shrink the
1094 /// constant and return true.
1095 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op
,
1096 const APInt
&Demanded
) {
1097 DebugLoc dl
= Op
.getDebugLoc();
1099 // FIXME: ISD::SELECT, ISD::SELECT_CC
1100 switch (Op
.getOpcode()) {
1105 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
1106 if (!C
) return false;
1108 if (Op
.getOpcode() == ISD::XOR
&&
1109 (C
->getAPIntValue() | (~Demanded
)).isAllOnesValue())
1112 // if we can expand it to have all bits set, do it
1113 if (C
->getAPIntValue().intersects(~Demanded
)) {
1114 EVT VT
= Op
.getValueType();
1115 SDValue New
= DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op
.getOperand(0),
1116 DAG
.getConstant(Demanded
&
1119 return CombineTo(Op
, New
);
1129 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1130 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1131 /// cast, but it could be generalized for targets with other types of
1132 /// implicit widening casts.
1134 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op
,
1136 const APInt
&Demanded
,
1138 assert(Op
.getNumOperands() == 2 &&
1139 "ShrinkDemandedOp only supports binary operators!");
1140 assert(Op
.getNode()->getNumValues() == 1 &&
1141 "ShrinkDemandedOp only supports nodes with one result!");
1143 // Don't do this if the node has another user, which may require the
1145 if (!Op
.getNode()->hasOneUse())
1148 // Search for the smallest integer type with free casts to and from
1149 // Op's type. For expedience, just check power-of-2 integer types.
1150 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1151 unsigned SmallVTBits
= BitWidth
- Demanded
.countLeadingZeros();
1152 if (!isPowerOf2_32(SmallVTBits
))
1153 SmallVTBits
= NextPowerOf2(SmallVTBits
);
1154 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
1155 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
1156 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
1157 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
1158 // We found a type with free casts.
1159 SDValue X
= DAG
.getNode(Op
.getOpcode(), dl
, SmallVT
,
1160 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
1161 Op
.getNode()->getOperand(0)),
1162 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
,
1163 Op
.getNode()->getOperand(1)));
1164 SDValue Z
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), X
);
1165 return CombineTo(Op
, Z
);
1171 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1172 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1173 /// use this information to simplify Op, create a new simplified DAG node and
1174 /// return true, returning the original and new nodes in Old and New. Otherwise,
1175 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1176 /// the expression (used to simplify the caller). The KnownZero/One bits may
1177 /// only be accurate for those bits in the DemandedMask.
1178 bool TargetLowering::SimplifyDemandedBits(SDValue Op
,
1179 const APInt
&DemandedMask
,
1182 TargetLoweringOpt
&TLO
,
1183 unsigned Depth
) const {
1184 unsigned BitWidth
= DemandedMask
.getBitWidth();
1185 assert(Op
.getValueType().getScalarType().getSizeInBits() == BitWidth
&&
1186 "Mask size mismatches value type size!");
1187 APInt NewMask
= DemandedMask
;
1188 DebugLoc dl
= Op
.getDebugLoc();
1190 // Don't know anything.
1191 KnownZero
= KnownOne
= APInt(BitWidth
, 0);
1193 // Other users may use these bits.
1194 if (!Op
.getNode()->hasOneUse()) {
1196 // If not at the root, Just compute the KnownZero/KnownOne bits to
1197 // simplify things downstream.
1198 TLO
.DAG
.ComputeMaskedBits(Op
, DemandedMask
, KnownZero
, KnownOne
, Depth
);
1201 // If this is the root being simplified, allow it to have multiple uses,
1202 // just set the NewMask to all bits.
1203 NewMask
= APInt::getAllOnesValue(BitWidth
);
1204 } else if (DemandedMask
== 0) {
1205 // Not demanding any bits from Op.
1206 if (Op
.getOpcode() != ISD::UNDEF
)
1207 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(Op
.getValueType()));
1209 } else if (Depth
== 6) { // Limit search depth.
1213 APInt KnownZero2
, KnownOne2
, KnownZeroOut
, KnownOneOut
;
1214 switch (Op
.getOpcode()) {
1216 // We know all of the bits for a constant!
1217 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & NewMask
;
1218 KnownZero
= ~KnownOne
& NewMask
;
1219 return false; // Don't fall through, will infinitely loop.
1221 // If the RHS is a constant, check to see if the LHS would be zero without
1222 // using the bits from the RHS. Below, we use knowledge about the RHS to
1223 // simplify the LHS, here we're using information from the LHS to simplify
1225 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1226 APInt LHSZero
, LHSOne
;
1227 // Do not increment Depth here; that can cause an infinite loop.
1228 TLO
.DAG
.ComputeMaskedBits(Op
.getOperand(0), NewMask
,
1229 LHSZero
, LHSOne
, Depth
);
1230 // If the LHS already has zeros where RHSC does, this and is dead.
1231 if ((LHSZero
& NewMask
) == (~RHSC
->getAPIntValue() & NewMask
))
1232 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1233 // If any of the set bits in the RHS are known zero on the LHS, shrink
1235 if (TLO
.ShrinkDemandedConstant(Op
, ~LHSZero
& NewMask
))
1239 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1240 KnownOne
, TLO
, Depth
+1))
1242 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1243 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownZero
& NewMask
,
1244 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1246 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1248 // If all of the demanded bits are known one on one side, return the other.
1249 // These bits cannot contribute to the result of the 'and'.
1250 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1251 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1252 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1253 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1254 // If all of the demanded bits in the inputs are known zeros, return zero.
1255 if ((NewMask
& (KnownZero
|KnownZero2
)) == NewMask
)
1256 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, Op
.getValueType()));
1257 // If the RHS is a constant, see if we can simplify it.
1258 if (TLO
.ShrinkDemandedConstant(Op
, ~KnownZero2
& NewMask
))
1260 // If the operation can be done in a smaller type, do so.
1261 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1264 // Output known-1 bits are only known if set in both the LHS & RHS.
1265 KnownOne
&= KnownOne2
;
1266 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1267 KnownZero
|= KnownZero2
;
1270 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1271 KnownOne
, TLO
, Depth
+1))
1273 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1274 if (SimplifyDemandedBits(Op
.getOperand(0), ~KnownOne
& NewMask
,
1275 KnownZero2
, KnownOne2
, TLO
, Depth
+1))
1277 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1279 // If all of the demanded bits are known zero on one side, return the other.
1280 // These bits cannot contribute to the result of the 'or'.
1281 if ((NewMask
& ~KnownOne2
& KnownZero
) == (~KnownOne2
& NewMask
))
1282 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1283 if ((NewMask
& ~KnownOne
& KnownZero2
) == (~KnownOne
& NewMask
))
1284 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1285 // If all of the potentially set bits on one side are known to be set on
1286 // the other side, just use the 'other' side.
1287 if ((NewMask
& ~KnownZero
& KnownOne2
) == (~KnownZero
& NewMask
))
1288 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1289 if ((NewMask
& ~KnownZero2
& KnownOne
) == (~KnownZero2
& NewMask
))
1290 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1291 // If the RHS is a constant, see if we can simplify it.
1292 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1294 // If the operation can be done in a smaller type, do so.
1295 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1298 // Output known-0 bits are only known if clear in both the LHS & RHS.
1299 KnownZero
&= KnownZero2
;
1300 // Output known-1 are known to be set if set in either the LHS | RHS.
1301 KnownOne
|= KnownOne2
;
1304 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero
,
1305 KnownOne
, TLO
, Depth
+1))
1307 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1308 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
, KnownZero2
,
1309 KnownOne2
, TLO
, Depth
+1))
1311 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1313 // If all of the demanded bits are known zero on one side, return the other.
1314 // These bits cannot contribute to the result of the 'xor'.
1315 if ((KnownZero
& NewMask
) == NewMask
)
1316 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1317 if ((KnownZero2
& NewMask
) == NewMask
)
1318 return TLO
.CombineTo(Op
, Op
.getOperand(1));
1319 // If the operation can be done in a smaller type, do so.
1320 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1323 // If all of the unknown bits are known to be zero on one side or the other
1324 // (but not both) turn this into an *inclusive* or.
1325 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1326 if ((NewMask
& ~KnownZero
& ~KnownZero2
) == 0)
1327 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, Op
.getValueType(),
1331 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1332 KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1333 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1334 KnownOneOut
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1336 // If all of the demanded bits on one side are known, and all of the set
1337 // bits on that side are also known to be set on the other side, turn this
1338 // into an AND, as we know the bits will be cleared.
1339 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1340 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
) { // all known
1341 if ((KnownOne
& KnownOne2
) == KnownOne
) {
1342 EVT VT
= Op
.getValueType();
1343 SDValue ANDC
= TLO
.DAG
.getConstant(~KnownOne
& NewMask
, VT
);
1344 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
,
1345 Op
.getOperand(0), ANDC
));
1349 // If the RHS is a constant, see if we can simplify it.
1350 // for XOR, we prefer to force bits to 1 if they will make a -1.
1351 // if we can't force bits, try to shrink constant
1352 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1353 APInt Expanded
= C
->getAPIntValue() | (~NewMask
);
1354 // if we can expand it to have all bits set, do it
1355 if (Expanded
.isAllOnesValue()) {
1356 if (Expanded
!= C
->getAPIntValue()) {
1357 EVT VT
= Op
.getValueType();
1358 SDValue New
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
,VT
, Op
.getOperand(0),
1359 TLO
.DAG
.getConstant(Expanded
, VT
));
1360 return TLO
.CombineTo(Op
, New
);
1362 // if it already has all the bits set, nothing to change
1363 // but don't shrink either!
1364 } else if (TLO
.ShrinkDemandedConstant(Op
, NewMask
)) {
1369 KnownZero
= KnownZeroOut
;
1370 KnownOne
= KnownOneOut
;
1373 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero
,
1374 KnownOne
, TLO
, Depth
+1))
1376 if (SimplifyDemandedBits(Op
.getOperand(1), NewMask
, KnownZero2
,
1377 KnownOne2
, TLO
, Depth
+1))
1379 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1380 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1382 // If the operands are constants, see if we can simplify them.
1383 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1386 // Only known if known in both the LHS and RHS.
1387 KnownOne
&= KnownOne2
;
1388 KnownZero
&= KnownZero2
;
1390 case ISD::SELECT_CC
:
1391 if (SimplifyDemandedBits(Op
.getOperand(3), NewMask
, KnownZero
,
1392 KnownOne
, TLO
, Depth
+1))
1394 if (SimplifyDemandedBits(Op
.getOperand(2), NewMask
, KnownZero2
,
1395 KnownOne2
, TLO
, Depth
+1))
1397 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1398 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1400 // If the operands are constants, see if we can simplify them.
1401 if (TLO
.ShrinkDemandedConstant(Op
, NewMask
))
1404 // Only known if known in both the LHS and RHS.
1405 KnownOne
&= KnownOne2
;
1406 KnownZero
&= KnownZero2
;
1409 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1410 unsigned ShAmt
= SA
->getZExtValue();
1411 SDValue InOp
= Op
.getOperand(0);
1413 // If the shift count is an invalid immediate, don't do anything.
1414 if (ShAmt
>= BitWidth
)
1417 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1418 // single shift. We can do this if the bottom bits (which are shifted
1419 // out) are never demanded.
1420 if (InOp
.getOpcode() == ISD::SRL
&&
1421 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1422 if (ShAmt
&& (NewMask
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1423 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1424 unsigned Opc
= ISD::SHL
;
1425 int Diff
= ShAmt
-C1
;
1432 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1433 EVT VT
= Op
.getValueType();
1434 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1435 InOp
.getOperand(0), NewSA
));
1439 if (SimplifyDemandedBits(InOp
, NewMask
.lshr(ShAmt
),
1440 KnownZero
, KnownOne
, TLO
, Depth
+1))
1443 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1444 // are not demanded. This will likely allow the anyext to be folded away.
1445 if (InOp
.getNode()->getOpcode() == ISD::ANY_EXTEND
) {
1446 SDValue InnerOp
= InOp
.getNode()->getOperand(0);
1447 EVT InnerVT
= InnerOp
.getValueType();
1448 if ((APInt::getHighBitsSet(BitWidth
,
1449 BitWidth
- InnerVT
.getSizeInBits()) &
1450 DemandedMask
) == 0 &&
1451 isTypeDesirableForOp(ISD::SHL
, InnerVT
)) {
1452 EVT ShTy
= getShiftAmountTy(InnerVT
);
1453 if (!APInt(BitWidth
, ShAmt
).isIntN(ShTy
.getSizeInBits()))
1456 TLO
.DAG
.getNode(ISD::SHL
, dl
, InnerVT
, InnerOp
,
1457 TLO
.DAG
.getConstant(ShAmt
, ShTy
));
1460 TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(),
1465 KnownZero
<<= SA
->getZExtValue();
1466 KnownOne
<<= SA
->getZExtValue();
1467 // low bits known zero.
1468 KnownZero
|= APInt::getLowBitsSet(BitWidth
, SA
->getZExtValue());
1472 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1473 EVT VT
= Op
.getValueType();
1474 unsigned ShAmt
= SA
->getZExtValue();
1475 unsigned VTSize
= VT
.getSizeInBits();
1476 SDValue InOp
= Op
.getOperand(0);
1478 // If the shift count is an invalid immediate, don't do anything.
1479 if (ShAmt
>= BitWidth
)
1482 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1483 // single shift. We can do this if the top bits (which are shifted out)
1484 // are never demanded.
1485 if (InOp
.getOpcode() == ISD::SHL
&&
1486 isa
<ConstantSDNode
>(InOp
.getOperand(1))) {
1487 if (ShAmt
&& (NewMask
& APInt::getHighBitsSet(VTSize
, ShAmt
)) == 0) {
1488 unsigned C1
= cast
<ConstantSDNode
>(InOp
.getOperand(1))->getZExtValue();
1489 unsigned Opc
= ISD::SRL
;
1490 int Diff
= ShAmt
-C1
;
1497 TLO
.DAG
.getConstant(Diff
, Op
.getOperand(1).getValueType());
1498 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
,
1499 InOp
.getOperand(0), NewSA
));
1503 // Compute the new bits that are at the top now.
1504 if (SimplifyDemandedBits(InOp
, (NewMask
<< ShAmt
),
1505 KnownZero
, KnownOne
, TLO
, Depth
+1))
1507 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1508 KnownZero
= KnownZero
.lshr(ShAmt
);
1509 KnownOne
= KnownOne
.lshr(ShAmt
);
1511 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1512 KnownZero
|= HighBits
; // High bits known zero.
1516 // If this is an arithmetic shift right and only the low-bit is set, we can
1517 // always convert this into a logical shr, even if the shift amount is
1518 // variable. The low bit of the shift cannot be an input sign bit unless
1519 // the shift amount is >= the size of the datatype, which is undefined.
1520 if (DemandedMask
== 1)
1521 return TLO
.CombineTo(Op
,
1522 TLO
.DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(),
1523 Op
.getOperand(0), Op
.getOperand(1)));
1525 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1526 EVT VT
= Op
.getValueType();
1527 unsigned ShAmt
= SA
->getZExtValue();
1529 // If the shift count is an invalid immediate, don't do anything.
1530 if (ShAmt
>= BitWidth
)
1533 APInt InDemandedMask
= (NewMask
<< ShAmt
);
1535 // If any of the demanded bits are produced by the sign extension, we also
1536 // demand the input sign bit.
1537 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
);
1538 if (HighBits
.intersects(NewMask
))
1539 InDemandedMask
|= APInt::getSignBit(VT
.getScalarType().getSizeInBits());
1541 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedMask
,
1542 KnownZero
, KnownOne
, TLO
, Depth
+1))
1544 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1545 KnownZero
= KnownZero
.lshr(ShAmt
);
1546 KnownOne
= KnownOne
.lshr(ShAmt
);
1548 // Handle the sign bit, adjusted to where it is now in the mask.
1549 APInt SignBit
= APInt::getSignBit(BitWidth
).lshr(ShAmt
);
1551 // If the input sign bit is known to be zero, or if none of the top bits
1552 // are demanded, turn this into an unsigned shift right.
1553 if (KnownZero
.intersects(SignBit
) || (HighBits
& ~NewMask
) == HighBits
) {
1554 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
,
1557 } else if (KnownOne
.intersects(SignBit
)) { // New bits are known one.
1558 KnownOne
|= HighBits
;
1562 case ISD::SIGN_EXTEND_INREG
: {
1563 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1565 // Sign extension. Compute the demanded bits in the result that are not
1566 // present in the input.
1568 APInt::getHighBitsSet(BitWidth
,
1569 BitWidth
- EVT
.getScalarType().getSizeInBits());
1571 // If none of the extended bits are demanded, eliminate the sextinreg.
1572 if ((NewBits
& NewMask
) == 0)
1573 return TLO
.CombineTo(Op
, Op
.getOperand(0));
1576 APInt::getSignBit(EVT
.getScalarType().getSizeInBits()).zext(BitWidth
);
1577 APInt InputDemandedBits
=
1578 APInt::getLowBitsSet(BitWidth
,
1579 EVT
.getScalarType().getSizeInBits()) &
1582 // Since the sign extended bits are demanded, we know that the sign
1584 InputDemandedBits
|= InSignBit
;
1586 if (SimplifyDemandedBits(Op
.getOperand(0), InputDemandedBits
,
1587 KnownZero
, KnownOne
, TLO
, Depth
+1))
1589 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1591 // If the sign bit of the input is known set or clear, then we know the
1592 // top bits of the result.
1594 // If the input sign bit is known zero, convert this into a zero extension.
1595 if (KnownZero
.intersects(InSignBit
))
1596 return TLO
.CombineTo(Op
,
1597 TLO
.DAG
.getZeroExtendInReg(Op
.getOperand(0),dl
,EVT
));
1599 if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1600 KnownOne
|= NewBits
;
1601 KnownZero
&= ~NewBits
;
1602 } else { // Input sign bit unknown
1603 KnownZero
&= ~NewBits
;
1604 KnownOne
&= ~NewBits
;
1608 case ISD::ZERO_EXTEND
: {
1609 unsigned OperandBitWidth
=
1610 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1611 APInt InMask
= NewMask
.trunc(OperandBitWidth
);
1613 // If none of the top bits are demanded, convert this into an any_extend.
1615 APInt::getHighBitsSet(BitWidth
, BitWidth
- OperandBitWidth
) & NewMask
;
1616 if (!NewBits
.intersects(NewMask
))
1617 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1621 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1622 KnownZero
, KnownOne
, TLO
, Depth
+1))
1624 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1625 KnownZero
= KnownZero
.zext(BitWidth
);
1626 KnownOne
= KnownOne
.zext(BitWidth
);
1627 KnownZero
|= NewBits
;
1630 case ISD::SIGN_EXTEND
: {
1631 EVT InVT
= Op
.getOperand(0).getValueType();
1632 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1633 APInt InMask
= APInt::getLowBitsSet(BitWidth
, InBits
);
1634 APInt InSignBit
= APInt::getBitsSet(BitWidth
, InBits
- 1, InBits
);
1635 APInt NewBits
= ~InMask
& NewMask
;
1637 // If none of the top bits are demanded, convert this into an any_extend.
1639 return TLO
.CombineTo(Op
,TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
,
1643 // Since some of the sign extended bits are demanded, we know that the sign
1645 APInt InDemandedBits
= InMask
& NewMask
;
1646 InDemandedBits
|= InSignBit
;
1647 InDemandedBits
= InDemandedBits
.trunc(InBits
);
1649 if (SimplifyDemandedBits(Op
.getOperand(0), InDemandedBits
, KnownZero
,
1650 KnownOne
, TLO
, Depth
+1))
1652 KnownZero
= KnownZero
.zext(BitWidth
);
1653 KnownOne
= KnownOne
.zext(BitWidth
);
1655 // If the sign bit is known zero, convert this to a zero extend.
1656 if (KnownZero
.intersects(InSignBit
))
1657 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
1661 // If the sign bit is known one, the top bits match.
1662 if (KnownOne
.intersects(InSignBit
)) {
1663 KnownOne
|= NewBits
;
1664 KnownZero
&= ~NewBits
;
1665 } else { // Otherwise, top bits aren't known.
1666 KnownOne
&= ~NewBits
;
1667 KnownZero
&= ~NewBits
;
1671 case ISD::ANY_EXTEND
: {
1672 unsigned OperandBitWidth
=
1673 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1674 APInt InMask
= NewMask
.trunc(OperandBitWidth
);
1675 if (SimplifyDemandedBits(Op
.getOperand(0), InMask
,
1676 KnownZero
, KnownOne
, TLO
, Depth
+1))
1678 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1679 KnownZero
= KnownZero
.zext(BitWidth
);
1680 KnownOne
= KnownOne
.zext(BitWidth
);
1683 case ISD::TRUNCATE
: {
1684 // Simplify the input, using demanded bit information, and compute the known
1685 // zero/one bits live out.
1686 unsigned OperandBitWidth
=
1687 Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
1688 APInt TruncMask
= NewMask
.zext(OperandBitWidth
);
1689 if (SimplifyDemandedBits(Op
.getOperand(0), TruncMask
,
1690 KnownZero
, KnownOne
, TLO
, Depth
+1))
1692 KnownZero
= KnownZero
.trunc(BitWidth
);
1693 KnownOne
= KnownOne
.trunc(BitWidth
);
1695 // If the input is only used by this truncate, see if we can shrink it based
1696 // on the known demanded bits.
1697 if (Op
.getOperand(0).getNode()->hasOneUse()) {
1698 SDValue In
= Op
.getOperand(0);
1699 switch (In
.getOpcode()) {
1702 // Shrink SRL by a constant if none of the high bits shifted in are
1704 if (TLO
.LegalTypes() &&
1705 !isTypeDesirableForOp(ISD::SRL
, Op
.getValueType()))
1706 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1709 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1));
1712 SDValue Shift
= In
.getOperand(1);
1713 if (TLO
.LegalTypes()) {
1714 uint64_t ShVal
= ShAmt
->getZExtValue();
1716 TLO
.DAG
.getConstant(ShVal
, getShiftAmountTy(Op
.getValueType()));
1719 APInt HighBits
= APInt::getHighBitsSet(OperandBitWidth
,
1720 OperandBitWidth
- BitWidth
);
1721 HighBits
= HighBits
.lshr(ShAmt
->getZExtValue()).trunc(BitWidth
);
1723 if (ShAmt
->getZExtValue() < BitWidth
&& !(HighBits
& NewMask
)) {
1724 // None of the shifted in bits are needed. Add a truncate of the
1725 // shift input, then shift it.
1726 SDValue NewTrunc
= TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
,
1729 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
,
1738 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1741 case ISD::AssertZext
: {
1742 // Demand all the bits of the input that are demanded in the output.
1743 // The low bits are obvious; the high bits are demanded because we're
1744 // asserting that they're zero here.
1745 if (SimplifyDemandedBits(Op
.getOperand(0), NewMask
,
1746 KnownZero
, KnownOne
, TLO
, Depth
+1))
1748 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1750 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1751 APInt InMask
= APInt::getLowBitsSet(BitWidth
,
1752 VT
.getSizeInBits());
1753 KnownZero
|= ~InMask
& NewMask
;
1757 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1758 // is demanded, turn this into a FGETSIGN.
1759 if (NewMask
== APInt::getSignBit(Op
.getValueType().getSizeInBits()) &&
1760 Op
.getOperand(0).getValueType().isFloatingPoint() &&
1761 !Op
.getOperand(0).getValueType().isVector()) {
1762 if (isOperationLegalOrCustom(ISD::FGETSIGN
, MVT::i32
)) {
1763 EVT Ty
= (isOperationLegalOrCustom(ISD::FGETSIGN
, Op
.getValueType())) ?
1764 Op
.getValueType() : MVT::i32
;
1765 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1766 // place. We expect the SHL to be eliminated by other optimizations.
1767 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, dl
, Ty
, Op
.getOperand(0));
1768 if (Ty
!= Op
.getValueType())
1769 Sign
= TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
, Op
.getValueType(), Sign
);
1770 unsigned ShVal
= Op
.getValueType().getSizeInBits()-1;
1771 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, Op
.getValueType());
1772 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SHL
, dl
,
1781 // Add, Sub, and Mul don't demand any bits in positions beyond that
1782 // of the highest bit demanded of them.
1783 APInt LoMask
= APInt::getLowBitsSet(BitWidth
,
1784 BitWidth
- NewMask
.countLeadingZeros());
1785 if (SimplifyDemandedBits(Op
.getOperand(0), LoMask
, KnownZero2
,
1786 KnownOne2
, TLO
, Depth
+1))
1788 if (SimplifyDemandedBits(Op
.getOperand(1), LoMask
, KnownZero2
,
1789 KnownOne2
, TLO
, Depth
+1))
1791 // See if the operation should be performed at a smaller bit width.
1792 if (TLO
.ShrinkDemandedOp(Op
, BitWidth
, NewMask
, dl
))
1797 // Just use ComputeMaskedBits to compute output bits.
1798 TLO
.DAG
.ComputeMaskedBits(Op
, NewMask
, KnownZero
, KnownOne
, Depth
);
1802 // If we know the value of all of the demanded bits, return this as a
1804 if ((NewMask
& (KnownZero
|KnownOne
)) == NewMask
)
1805 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(KnownOne
, Op
.getValueType()));
1810 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1811 /// in Mask are known to be either zero or one and return them in the
1812 /// KnownZero/KnownOne bitsets.
1813 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
1817 const SelectionDAG
&DAG
,
1818 unsigned Depth
) const {
1819 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1820 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1821 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1822 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1823 "Should use MaskedValueIsZero if you don't know whether Op"
1824 " is a target node!");
1825 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
1828 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1829 /// targets that want to expose additional information about sign bits to the
1831 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
1832 unsigned Depth
) const {
1833 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
1834 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
1835 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
1836 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
1837 "Should use ComputeNumSignBits if you don't know whether Op"
1838 " is a target node!");
1842 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1843 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1844 /// determine which bit is set.
1846 static bool ValueHasExactlyOneBitSet(SDValue Val
, const SelectionDAG
&DAG
) {
1847 // A left-shift of a constant one will have exactly one bit set, because
1848 // shifting the bit off the end is undefined.
1849 if (Val
.getOpcode() == ISD::SHL
)
1850 if (ConstantSDNode
*C
=
1851 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1852 if (C
->getAPIntValue() == 1)
1855 // Similarly, a right-shift of a constant sign-bit will have exactly
1857 if (Val
.getOpcode() == ISD::SRL
)
1858 if (ConstantSDNode
*C
=
1859 dyn_cast
<ConstantSDNode
>(Val
.getNode()->getOperand(0)))
1860 if (C
->getAPIntValue().isSignBit())
1863 // More could be done here, though the above checks are enough
1864 // to handle some common cases.
1866 // Fall back to ComputeMaskedBits to catch other known cases.
1867 EVT OpVT
= Val
.getValueType();
1868 unsigned BitWidth
= OpVT
.getScalarType().getSizeInBits();
1869 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
1870 APInt KnownZero
, KnownOne
;
1871 DAG
.ComputeMaskedBits(Val
, Mask
, KnownZero
, KnownOne
);
1872 return (KnownZero
.countPopulation() == BitWidth
- 1) &&
1873 (KnownOne
.countPopulation() == 1);
1876 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1877 /// and cc. If it is unable to simplify it, return a null SDValue.
1879 TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
1880 ISD::CondCode Cond
, bool foldBooleans
,
1881 DAGCombinerInfo
&DCI
, DebugLoc dl
) const {
1882 SelectionDAG
&DAG
= DCI
.DAG
;
1884 // These setcc operations always fold.
1888 case ISD::SETFALSE2
: return DAG
.getConstant(0, VT
);
1890 case ISD::SETTRUE2
: return DAG
.getConstant(1, VT
);
1893 // Ensure that the constant occurs on the RHS, and fold constant
1895 if (isa
<ConstantSDNode
>(N0
.getNode()))
1896 return DAG
.getSetCC(dl
, VT
, N1
, N0
, ISD::getSetCCSwappedOperands(Cond
));
1898 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1899 const APInt
&C1
= N1C
->getAPIntValue();
1901 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1902 // equality comparison, then we're just comparing whether X itself is
1904 if (N0
.getOpcode() == ISD::SRL
&& (C1
== 0 || C1
== 1) &&
1905 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
1906 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
1908 = cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
1909 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
1910 ShAmt
== Log2_32(N0
.getValueType().getSizeInBits())) {
1911 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
1912 // (srl (ctlz x), 5) == 0 -> X != 0
1913 // (srl (ctlz x), 5) != 1 -> X != 0
1916 // (srl (ctlz x), 5) != 0 -> X == 0
1917 // (srl (ctlz x), 5) == 1 -> X == 0
1920 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
1921 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
1927 // Look through truncs that don't change the value of a ctpop.
1928 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::TRUNCATE
)
1929 CTPOP
= N0
.getOperand(0);
1931 if (CTPOP
.hasOneUse() && CTPOP
.getOpcode() == ISD::CTPOP
&&
1932 (N0
== CTPOP
|| N0
.getValueType().getSizeInBits() >
1933 Log2_32_Ceil(CTPOP
.getValueType().getSizeInBits()))) {
1934 EVT CTVT
= CTPOP
.getValueType();
1935 SDValue CTOp
= CTPOP
.getOperand(0);
1937 // (ctpop x) u< 2 -> (x & x-1) == 0
1938 // (ctpop x) u> 1 -> (x & x-1) != 0
1939 if ((Cond
== ISD::SETULT
&& C1
== 2) || (Cond
== ISD::SETUGT
&& C1
== 1)){
1940 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, CTVT
, CTOp
,
1941 DAG
.getConstant(1, CTVT
));
1942 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Sub
);
1943 ISD::CondCode CC
= Cond
== ISD::SETULT
? ISD::SETEQ
: ISD::SETNE
;
1944 return DAG
.getSetCC(dl
, VT
, And
, DAG
.getConstant(0, CTVT
), CC
);
1947 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1950 // (zext x) == C --> x == (trunc C)
1951 if (DCI
.isBeforeLegalize() && N0
->hasOneUse() &&
1952 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
1953 unsigned MinBits
= N0
.getValueSizeInBits();
1955 if (N0
->getOpcode() == ISD::ZERO_EXTEND
) {
1957 MinBits
= N0
->getOperand(0).getValueSizeInBits();
1958 PreZExt
= N0
->getOperand(0);
1959 } else if (N0
->getOpcode() == ISD::AND
) {
1960 // DAGCombine turns costly ZExts into ANDs
1961 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1)))
1962 if ((C
->getAPIntValue()+1).isPowerOf2()) {
1963 MinBits
= C
->getAPIntValue().countTrailingOnes();
1964 PreZExt
= N0
->getOperand(0);
1966 } else if (LoadSDNode
*LN0
= dyn_cast
<LoadSDNode
>(N0
)) {
1968 if (LN0
->getExtensionType() == ISD::ZEXTLOAD
) {
1969 MinBits
= LN0
->getMemoryVT().getSizeInBits();
1974 // Make sure we're not loosing bits from the constant.
1975 if (MinBits
< C1
.getBitWidth() && MinBits
> C1
.getActiveBits()) {
1976 EVT MinVT
= EVT::getIntegerVT(*DAG
.getContext(), MinBits
);
1977 if (isTypeDesirableForOp(ISD::SETCC
, MinVT
)) {
1978 // Will get folded away.
1979 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, dl
, MinVT
, PreZExt
);
1980 SDValue C
= DAG
.getConstant(C1
.trunc(MinBits
), MinVT
);
1981 return DAG
.getSetCC(dl
, VT
, Trunc
, C
, Cond
);
1986 // If the LHS is '(and load, const)', the RHS is 0,
1987 // the test is for equality or unsigned, and all 1 bits of the const are
1988 // in the same partial word, see if we can shorten the load.
1989 if (DCI
.isBeforeLegalize() &&
1990 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
1991 N0
.getNode()->hasOneUse() &&
1992 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
1993 N0
.getOperand(0).getNode()->hasOneUse() &&
1994 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
1995 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
1997 unsigned bestWidth
= 0, bestOffset
= 0;
1998 if (!Lod
->isVolatile() && Lod
->isUnindexed()) {
1999 unsigned origWidth
= N0
.getValueType().getSizeInBits();
2000 unsigned maskWidth
= origWidth
;
2001 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2002 // 8 bits, but have to be careful...
2003 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
2004 origWidth
= Lod
->getMemoryVT().getSizeInBits();
2006 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
2007 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
2008 APInt newMask
= APInt::getLowBitsSet(maskWidth
, width
);
2009 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
2010 if ((newMask
& Mask
) == Mask
) {
2011 if (!TD
->isLittleEndian())
2012 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
2014 bestOffset
= (uint64_t)offset
* (width
/8);
2015 bestMask
= Mask
.lshr(offset
* (width
/8) * 8);
2019 newMask
= newMask
<< width
;
2024 EVT newVT
= EVT::getIntegerVT(*DAG
.getContext(), bestWidth
);
2025 if (newVT
.isRound()) {
2026 EVT PtrType
= Lod
->getOperand(1).getValueType();
2027 SDValue Ptr
= Lod
->getBasePtr();
2028 if (bestOffset
!= 0)
2029 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
2030 DAG
.getConstant(bestOffset
, PtrType
));
2031 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
2032 SDValue NewLoad
= DAG
.getLoad(newVT
, dl
, Lod
->getChain(), Ptr
,
2033 Lod
->getPointerInfo().getWithOffset(bestOffset
),
2034 false, false, NewAlign
);
2035 return DAG
.getSetCC(dl
, VT
,
2036 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
2037 DAG
.getConstant(bestMask
.trunc(bestWidth
),
2039 DAG
.getConstant(0LL, newVT
), Cond
);
2044 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2045 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
2046 unsigned InSize
= N0
.getOperand(0).getValueType().getSizeInBits();
2048 // If the comparison constant has bits in the upper part, the
2049 // zero-extended value could never match.
2050 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
2051 C1
.getBitWidth() - InSize
))) {
2055 case ISD::SETEQ
: return DAG
.getConstant(0, VT
);
2058 case ISD::SETNE
: return DAG
.getConstant(1, VT
);
2061 // True if the sign bit of C1 is set.
2062 return DAG
.getConstant(C1
.isNegative(), VT
);
2065 // True if the sign bit of C1 isn't set.
2066 return DAG
.getConstant(C1
.isNonNegative(), VT
);
2072 // Otherwise, we can perform the comparison with the low bits.
2080 EVT newVT
= N0
.getOperand(0).getValueType();
2081 if (DCI
.isBeforeLegalizeOps() ||
2082 (isOperationLegal(ISD::SETCC
, newVT
) &&
2083 getCondCodeAction(Cond
, newVT
)==Legal
))
2084 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2085 DAG
.getConstant(C1
.trunc(InSize
), newVT
),
2090 break; // todo, be more careful with signed comparisons
2092 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
2093 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2094 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
2095 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
2096 EVT ExtDstTy
= N0
.getValueType();
2097 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
2099 // If the constant doesn't fit into the number of bits for the source of
2100 // the sign extension, it is impossible for both sides to be equal.
2101 if (C1
.getMinSignedBits() > ExtSrcTyBits
)
2102 return DAG
.getConstant(Cond
== ISD::SETNE
, VT
);
2105 EVT Op0Ty
= N0
.getOperand(0).getValueType();
2106 if (Op0Ty
== ExtSrcTy
) {
2107 ZextOp
= N0
.getOperand(0);
2109 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
2110 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
2111 DAG
.getConstant(Imm
, Op0Ty
));
2113 if (!DCI
.isCalledByLegalizer())
2114 DCI
.AddToWorklist(ZextOp
.getNode());
2115 // Otherwise, make this a use of a zext.
2116 return DAG
.getSetCC(dl
, VT
, ZextOp
,
2117 DAG
.getConstant(C1
& APInt::getLowBitsSet(
2122 } else if ((N1C
->isNullValue() || N1C
->getAPIntValue() == 1) &&
2123 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2124 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2125 if (N0
.getOpcode() == ISD::SETCC
&&
2126 isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType())) {
2127 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (N1C
->getAPIntValue() != 1);
2129 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, N0
);
2130 // Invert the condition.
2131 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
2132 CC
= ISD::getSetCCInverse(CC
,
2133 N0
.getOperand(0).getValueType().isInteger());
2134 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
2137 if ((N0
.getOpcode() == ISD::XOR
||
2138 (N0
.getOpcode() == ISD::AND
&&
2139 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
2140 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
2141 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
2142 cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue() == 1) {
2143 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2144 // can only do this if the top bits are known zero.
2145 unsigned BitWidth
= N0
.getValueSizeInBits();
2146 if (DAG
.MaskedValueIsZero(N0
,
2147 APInt::getHighBitsSet(BitWidth
,
2149 // Okay, get the un-inverted input value.
2151 if (N0
.getOpcode() == ISD::XOR
)
2152 Val
= N0
.getOperand(0);
2154 assert(N0
.getOpcode() == ISD::AND
&&
2155 N0
.getOperand(0).getOpcode() == ISD::XOR
);
2156 // ((X^1)&1)^1 -> X & 1
2157 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
2158 N0
.getOperand(0).getOperand(0),
2162 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
2163 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
2165 } else if (N1C
->getAPIntValue() == 1 &&
2167 getBooleanContents() == ZeroOrOneBooleanContent
)) {
2169 if (Op0
.getOpcode() == ISD::TRUNCATE
)
2170 Op0
= Op0
.getOperand(0);
2172 if ((Op0
.getOpcode() == ISD::XOR
) &&
2173 Op0
.getOperand(0).getOpcode() == ISD::SETCC
&&
2174 Op0
.getOperand(1).getOpcode() == ISD::SETCC
) {
2175 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2176 Cond
= (Cond
== ISD::SETEQ
) ? ISD::SETNE
: ISD::SETEQ
;
2177 return DAG
.getSetCC(dl
, VT
, Op0
.getOperand(0), Op0
.getOperand(1),
2179 } else if (Op0
.getOpcode() == ISD::AND
&&
2180 isa
<ConstantSDNode
>(Op0
.getOperand(1)) &&
2181 cast
<ConstantSDNode
>(Op0
.getOperand(1))->getAPIntValue() == 1) {
2182 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2183 if (Op0
.getValueType().bitsGT(VT
))
2184 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
2185 DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op0
.getOperand(0)),
2186 DAG
.getConstant(1, VT
));
2187 else if (Op0
.getValueType().bitsLT(VT
))
2188 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
2189 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Op0
.getOperand(0)),
2190 DAG
.getConstant(1, VT
));
2192 return DAG
.getSetCC(dl
, VT
, Op0
,
2193 DAG
.getConstant(0, Op0
.getValueType()),
2194 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
2199 APInt MinVal
, MaxVal
;
2200 unsigned OperandBitSize
= N1C
->getValueType(0).getSizeInBits();
2201 if (ISD::isSignedIntSetCC(Cond
)) {
2202 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
2203 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
2205 MinVal
= APInt::getMinValue(OperandBitSize
);
2206 MaxVal
= APInt::getMaxValue(OperandBitSize
);
2209 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2210 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
2211 if (C1
== MinVal
) return DAG
.getConstant(1, VT
); // X >= MIN --> true
2212 // X >= C0 --> X > (C0-1)
2213 return DAG
.getSetCC(dl
, VT
, N0
,
2214 DAG
.getConstant(C1
-1, N1
.getValueType()),
2215 (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
);
2218 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
2219 if (C1
== MaxVal
) return DAG
.getConstant(1, VT
); // X <= MAX --> true
2220 // X <= C0 --> X < (C0+1)
2221 return DAG
.getSetCC(dl
, VT
, N0
,
2222 DAG
.getConstant(C1
+1, N1
.getValueType()),
2223 (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
);
2226 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
)
2227 return DAG
.getConstant(0, VT
); // X < MIN --> false
2228 if ((Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) && C1
== MinVal
)
2229 return DAG
.getConstant(1, VT
); // X >= MIN --> true
2230 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
)
2231 return DAG
.getConstant(0, VT
); // X > MAX --> false
2232 if ((Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) && C1
== MaxVal
)
2233 return DAG
.getConstant(1, VT
); // X <= MAX --> true
2235 // Canonicalize setgt X, Min --> setne X, Min
2236 if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MinVal
)
2237 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
2238 // Canonicalize setlt X, Max --> setne X, Max
2239 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MaxVal
)
2240 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
2242 // If we have setult X, 1, turn it into seteq X, 0
2243 if ((Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) && C1
== MinVal
+1)
2244 return DAG
.getSetCC(dl
, VT
, N0
,
2245 DAG
.getConstant(MinVal
, N0
.getValueType()),
2247 // If we have setugt X, Max-1, turn it into seteq X, Max
2248 else if ((Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) && C1
== MaxVal
-1)
2249 return DAG
.getSetCC(dl
, VT
, N0
,
2250 DAG
.getConstant(MaxVal
, N0
.getValueType()),
2253 // If we have "setcc X, C0", check to see if we can shrink the immediate
2256 // SETUGT X, SINTMAX -> SETLT X, 0
2257 if (Cond
== ISD::SETUGT
&&
2258 C1
== APInt::getSignedMaxValue(OperandBitSize
))
2259 return DAG
.getSetCC(dl
, VT
, N0
,
2260 DAG
.getConstant(0, N1
.getValueType()),
2263 // SETULT X, SINTMIN -> SETGT X, -1
2264 if (Cond
== ISD::SETULT
&&
2265 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
2266 SDValue ConstMinusOne
=
2267 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
),
2269 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
2272 // Fold bit comparisons when we can.
2273 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2274 (VT
== N0
.getValueType() ||
2275 (isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType()))) &&
2276 N0
.getOpcode() == ISD::AND
)
2277 if (ConstantSDNode
*AndRHS
=
2278 dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2279 EVT ShiftTy
= DCI
.isBeforeLegalize() ?
2280 getPointerTy() : getShiftAmountTy(N0
.getValueType());
2281 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
2282 // Perform the xform if the AND RHS is a single bit.
2283 if (AndRHS
->getAPIntValue().isPowerOf2()) {
2284 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
2285 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
2286 DAG
.getConstant(AndRHS
->getAPIntValue().logBase2(), ShiftTy
)));
2288 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getAPIntValue()) {
2289 // (X & 8) == 8 --> (X & 8) >> 3
2290 // Perform the xform if C1 is a single bit.
2291 if (C1
.isPowerOf2()) {
2292 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
2293 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
2294 DAG
.getConstant(C1
.logBase2(), ShiftTy
)));
2300 if (isa
<ConstantFPSDNode
>(N0
.getNode())) {
2301 // Constant fold or commute setcc.
2302 SDValue O
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
);
2303 if (O
.getNode()) return O
;
2304 } else if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
2305 // If the RHS of an FP comparison is a constant, simplify it away in
2307 if (CFP
->getValueAPF().isNaN()) {
2308 // If an operand is known to be a nan, we can fold it.
2309 switch (ISD::getUnorderedFlavor(Cond
)) {
2310 default: llvm_unreachable("Unknown flavor!");
2311 case 0: // Known false.
2312 return DAG
.getConstant(0, VT
);
2313 case 1: // Known true.
2314 return DAG
.getConstant(1, VT
);
2315 case 2: // Undefined.
2316 return DAG
.getUNDEF(VT
);
2320 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2321 // constant if knowing that the operand is non-nan is enough. We prefer to
2322 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2324 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
2325 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
2327 // If the condition is not legal, see if we can find an equivalent one
2329 if (!isCondCodeLegal(Cond
, N0
.getValueType())) {
2330 // If the comparison was an awkward floating-point == or != and one of
2331 // the comparison operands is infinity or negative infinity, convert the
2332 // condition to a less-awkward <= or >=.
2333 if (CFP
->getValueAPF().isInfinity()) {
2334 if (CFP
->getValueAPF().isNegative()) {
2335 if (Cond
== ISD::SETOEQ
&&
2336 isCondCodeLegal(ISD::SETOLE
, N0
.getValueType()))
2337 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLE
);
2338 if (Cond
== ISD::SETUEQ
&&
2339 isCondCodeLegal(ISD::SETOLE
, N0
.getValueType()))
2340 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULE
);
2341 if (Cond
== ISD::SETUNE
&&
2342 isCondCodeLegal(ISD::SETUGT
, N0
.getValueType()))
2343 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGT
);
2344 if (Cond
== ISD::SETONE
&&
2345 isCondCodeLegal(ISD::SETUGT
, N0
.getValueType()))
2346 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGT
);
2348 if (Cond
== ISD::SETOEQ
&&
2349 isCondCodeLegal(ISD::SETOGE
, N0
.getValueType()))
2350 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGE
);
2351 if (Cond
== ISD::SETUEQ
&&
2352 isCondCodeLegal(ISD::SETOGE
, N0
.getValueType()))
2353 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGE
);
2354 if (Cond
== ISD::SETUNE
&&
2355 isCondCodeLegal(ISD::SETULT
, N0
.getValueType()))
2356 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULT
);
2357 if (Cond
== ISD::SETONE
&&
2358 isCondCodeLegal(ISD::SETULT
, N0
.getValueType()))
2359 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLT
);
2366 // We can always fold X == X for integer setcc's.
2367 if (N0
.getValueType().isInteger())
2368 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
2369 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
2370 if (UOF
== 2) // FP operators that are undefined on NaNs.
2371 return DAG
.getConstant(ISD::isTrueWhenEqual(Cond
), VT
);
2372 if (UOF
== unsigned(ISD::isTrueWhenEqual(Cond
)))
2373 return DAG
.getConstant(UOF
, VT
);
2374 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2375 // if it is not already.
2376 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
2377 if (NewCond
!= Cond
)
2378 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
2381 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2382 N0
.getValueType().isInteger()) {
2383 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
2384 N0
.getOpcode() == ISD::XOR
) {
2385 // Simplify (X+Y) == (X+Z) --> Y == Z
2386 if (N0
.getOpcode() == N1
.getOpcode()) {
2387 if (N0
.getOperand(0) == N1
.getOperand(0))
2388 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
2389 if (N0
.getOperand(1) == N1
.getOperand(1))
2390 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
2391 if (DAG
.isCommutativeBinOp(N0
.getOpcode())) {
2392 // If X op Y == Y op X, try other combinations.
2393 if (N0
.getOperand(0) == N1
.getOperand(1))
2394 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
2396 if (N0
.getOperand(1) == N1
.getOperand(0))
2397 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
2402 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
2403 if (ConstantSDNode
*LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
2404 // Turn (X+C1) == C2 --> X == C2-C1
2405 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
2406 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2407 DAG
.getConstant(RHSC
->getAPIntValue()-
2408 LHSR
->getAPIntValue(),
2409 N0
.getValueType()), Cond
);
2412 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2413 if (N0
.getOpcode() == ISD::XOR
)
2414 // If we know that all of the inverted bits are zero, don't bother
2415 // performing the inversion.
2416 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
2418 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2419 DAG
.getConstant(LHSR
->getAPIntValue() ^
2420 RHSC
->getAPIntValue(),
2425 // Turn (C1-X) == C2 --> X == C1-C2
2426 if (ConstantSDNode
*SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
2427 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
2429 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2430 DAG
.getConstant(SUBC
->getAPIntValue() -
2431 RHSC
->getAPIntValue(),
2438 // Simplify (X+Z) == X --> Z == 0
2439 if (N0
.getOperand(0) == N1
)
2440 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
2441 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2442 if (N0
.getOperand(1) == N1
) {
2443 if (DAG
.isCommutativeBinOp(N0
.getOpcode()))
2444 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
2445 DAG
.getConstant(0, N0
.getValueType()), Cond
);
2446 else if (N0
.getNode()->hasOneUse()) {
2447 assert(N0
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2448 // (Z-X) == X --> Z == X<<1
2449 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(),
2451 DAG
.getConstant(1, getShiftAmountTy(N1
.getValueType())));
2452 if (!DCI
.isCalledByLegalizer())
2453 DCI
.AddToWorklist(SH
.getNode());
2454 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), SH
, Cond
);
2459 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
2460 N1
.getOpcode() == ISD::XOR
) {
2461 // Simplify X == (X+Z) --> Z == 0
2462 if (N1
.getOperand(0) == N0
) {
2463 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(1),
2464 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2465 } else if (N1
.getOperand(1) == N0
) {
2466 if (DAG
.isCommutativeBinOp(N1
.getOpcode())) {
2467 return DAG
.getSetCC(dl
, VT
, N1
.getOperand(0),
2468 DAG
.getConstant(0, N1
.getValueType()), Cond
);
2469 } else if (N1
.getNode()->hasOneUse()) {
2470 assert(N1
.getOpcode() == ISD::SUB
&& "Unexpected operation!");
2471 // X == (Z-X) --> X<<1 == Z
2472 SDValue SH
= DAG
.getNode(ISD::SHL
, dl
, N1
.getValueType(), N0
,
2473 DAG
.getConstant(1, getShiftAmountTy(N0
.getValueType())));
2474 if (!DCI
.isCalledByLegalizer())
2475 DCI
.AddToWorklist(SH
.getNode());
2476 return DAG
.getSetCC(dl
, VT
, SH
, N1
.getOperand(0), Cond
);
2481 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2482 // Note that where y is variable and is known to have at most
2483 // one bit set (for example, if it is z&1) we cannot do this;
2484 // the expressions are not equivalent when y==0.
2485 if (N0
.getOpcode() == ISD::AND
)
2486 if (N0
.getOperand(0) == N1
|| N0
.getOperand(1) == N1
) {
2487 if (ValueHasExactlyOneBitSet(N1
, DAG
)) {
2488 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2489 SDValue Zero
= DAG
.getConstant(0, N1
.getValueType());
2490 return DAG
.getSetCC(dl
, VT
, N0
, Zero
, Cond
);
2493 if (N1
.getOpcode() == ISD::AND
)
2494 if (N1
.getOperand(0) == N0
|| N1
.getOperand(1) == N0
) {
2495 if (ValueHasExactlyOneBitSet(N0
, DAG
)) {
2496 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2497 SDValue Zero
= DAG
.getConstant(0, N0
.getValueType());
2498 return DAG
.getSetCC(dl
, VT
, N1
, Zero
, Cond
);
2503 // Fold away ALL boolean setcc's.
2505 if (N0
.getValueType() == MVT::i1
&& foldBooleans
) {
2507 default: llvm_unreachable("Unknown integer setcc!");
2508 case ISD::SETEQ
: // X == Y -> ~(X^Y)
2509 Temp
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2510 N0
= DAG
.getNOT(dl
, Temp
, MVT::i1
);
2511 if (!DCI
.isCalledByLegalizer())
2512 DCI
.AddToWorklist(Temp
.getNode());
2514 case ISD::SETNE
: // X != Y --> (X^Y)
2515 N0
= DAG
.getNode(ISD::XOR
, dl
, MVT::i1
, N0
, N1
);
2517 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2518 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2519 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2520 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N1
, Temp
);
2521 if (!DCI
.isCalledByLegalizer())
2522 DCI
.AddToWorklist(Temp
.getNode());
2524 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2525 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2526 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2527 N0
= DAG
.getNode(ISD::AND
, dl
, MVT::i1
, N0
, Temp
);
2528 if (!DCI
.isCalledByLegalizer())
2529 DCI
.AddToWorklist(Temp
.getNode());
2531 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2532 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2533 Temp
= DAG
.getNOT(dl
, N0
, MVT::i1
);
2534 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N1
, Temp
);
2535 if (!DCI
.isCalledByLegalizer())
2536 DCI
.AddToWorklist(Temp
.getNode());
2538 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2539 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2540 Temp
= DAG
.getNOT(dl
, N1
, MVT::i1
);
2541 N0
= DAG
.getNode(ISD::OR
, dl
, MVT::i1
, N0
, Temp
);
2544 if (VT
!= MVT::i1
) {
2545 if (!DCI
.isCalledByLegalizer())
2546 DCI
.AddToWorklist(N0
.getNode());
2547 // FIXME: If running after legalize, we probably can't do this.
2548 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, N0
);
2553 // Could not fold it.
2557 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2558 /// node is a GlobalAddress + offset.
2559 bool TargetLowering::isGAPlusOffset(SDNode
*N
, const GlobalValue
*&GA
,
2560 int64_t &Offset
) const {
2561 if (isa
<GlobalAddressSDNode
>(N
)) {
2562 GlobalAddressSDNode
*GASD
= cast
<GlobalAddressSDNode
>(N
);
2563 GA
= GASD
->getGlobal();
2564 Offset
+= GASD
->getOffset();
2568 if (N
->getOpcode() == ISD::ADD
) {
2569 SDValue N1
= N
->getOperand(0);
2570 SDValue N2
= N
->getOperand(1);
2571 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
2572 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N2
);
2574 Offset
+= V
->getSExtValue();
2577 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
2578 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(N1
);
2580 Offset
+= V
->getSExtValue();
2590 SDValue
TargetLowering::
2591 PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
2592 // Default implementation: no optimization.
2596 //===----------------------------------------------------------------------===//
2597 // Inline Assembler Implementation Methods
2598 //===----------------------------------------------------------------------===//
2601 TargetLowering::ConstraintType
2602 TargetLowering::getConstraintType(const std::string
&Constraint
) const {
2603 // FIXME: lots more standard ones to handle.
2604 if (Constraint
.size() == 1) {
2605 switch (Constraint
[0]) {
2607 case 'r': return C_RegisterClass
;
2609 case 'o': // offsetable
2610 case 'V': // not offsetable
2612 case 'i': // Simple Integer or Relocatable Constant
2613 case 'n': // Simple Integer
2614 case 'E': // Floating Point Constant
2615 case 'F': // Floating Point Constant
2616 case 's': // Relocatable Constant
2617 case 'p': // Address.
2618 case 'X': // Allow ANY value.
2619 case 'I': // Target registers.
2633 if (Constraint
.size() > 1 && Constraint
[0] == '{' &&
2634 Constraint
[Constraint
.size()-1] == '}')
2639 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2640 /// with another that has more specific requirements based on the type of the
2641 /// corresponding operand.
2642 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const{
2643 if (ConstraintVT
.isInteger())
2645 if (ConstraintVT
.isFloatingPoint())
2646 return "f"; // works for many targets
2650 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2651 /// vector. If it is invalid, don't add anything to Ops.
2652 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
2653 char ConstraintLetter
,
2654 std::vector
<SDValue
> &Ops
,
2655 SelectionDAG
&DAG
) const {
2656 switch (ConstraintLetter
) {
2658 case 'X': // Allows any operand; labels (basic block) use this.
2659 if (Op
.getOpcode() == ISD::BasicBlock
) {
2664 case 'i': // Simple Integer or Relocatable Constant
2665 case 'n': // Simple Integer
2666 case 's': { // Relocatable Constant
2667 // These operands are interested in values of the form (GV+C), where C may
2668 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2669 // is possible and fine if either GV or C are missing.
2670 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2671 GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
);
2673 // If we have "(add GV, C)", pull out GV/C
2674 if (Op
.getOpcode() == ISD::ADD
) {
2675 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2676 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(0));
2677 if (C
== 0 || GA
== 0) {
2678 C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
2679 GA
= dyn_cast
<GlobalAddressSDNode
>(Op
.getOperand(1));
2681 if (C
== 0 || GA
== 0)
2685 // If we find a valid operand, map to the TargetXXX version so that the
2686 // value itself doesn't get selected.
2687 if (GA
) { // Either &GV or &GV+C
2688 if (ConstraintLetter
!= 'n') {
2689 int64_t Offs
= GA
->getOffset();
2690 if (C
) Offs
+= C
->getZExtValue();
2691 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(),
2692 C
? C
->getDebugLoc() : DebugLoc(),
2693 Op
.getValueType(), Offs
));
2697 if (C
) { // just C, no GV.
2698 // Simple constants are not allowed for 's'.
2699 if (ConstraintLetter
!= 's') {
2700 // gcc prints these as sign extended. Sign extend value to 64 bits
2701 // now; without this it would get ZExt'd later in
2702 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2703 Ops
.push_back(DAG
.getTargetConstant(C
->getAPIntValue().getSExtValue(),
2713 std::vector
<unsigned> TargetLowering::
2714 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
2716 return std::vector
<unsigned>();
2720 std::pair
<unsigned, const TargetRegisterClass
*> TargetLowering::
2721 getRegForInlineAsmConstraint(const std::string
&Constraint
,
2723 if (Constraint
[0] != '{')
2724 return std::make_pair(0u, static_cast<TargetRegisterClass
*>(0));
2725 assert(*(Constraint
.end()-1) == '}' && "Not a brace enclosed constraint?");
2727 // Remove the braces from around the name.
2728 StringRef
RegName(Constraint
.data()+1, Constraint
.size()-2);
2730 // Figure out which register class contains this reg.
2731 const TargetRegisterInfo
*RI
= TM
.getRegisterInfo();
2732 for (TargetRegisterInfo::regclass_iterator RCI
= RI
->regclass_begin(),
2733 E
= RI
->regclass_end(); RCI
!= E
; ++RCI
) {
2734 const TargetRegisterClass
*RC
= *RCI
;
2736 // If none of the value types for this register class are valid, we
2737 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2738 bool isLegal
= false;
2739 for (TargetRegisterClass::vt_iterator I
= RC
->vt_begin(), E
= RC
->vt_end();
2741 if (isTypeLegal(*I
)) {
2747 if (!isLegal
) continue;
2749 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
2751 if (RegName
.equals_lower(RI
->getName(*I
)))
2752 return std::make_pair(*I
, RC
);
2756 return std::make_pair(0u, static_cast<const TargetRegisterClass
*>(0));
2759 //===----------------------------------------------------------------------===//
2760 // Constraint Selection.
2762 /// isMatchingInputConstraint - Return true of this is an input operand that is
2763 /// a matching constraint like "4".
2764 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2765 assert(!ConstraintCode
.empty() && "No known constraint!");
2766 return isdigit(ConstraintCode
[0]);
2769 /// getMatchedOperand - If this is an input matching constraint, this method
2770 /// returns the output operand it matches.
2771 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2772 assert(!ConstraintCode
.empty() && "No known constraint!");
2773 return atoi(ConstraintCode
.c_str());
2777 /// ParseConstraints - Split up the constraint string from the inline
2778 /// assembly value into the specific constraints and their prefixes,
2779 /// and also tie in the associated operand values.
2780 /// If this returns an empty vector, and if the constraint string itself
2781 /// isn't empty, there was an error parsing.
2782 TargetLowering::AsmOperandInfoVector
TargetLowering::ParseConstraints(
2783 ImmutableCallSite CS
) const {
2784 /// ConstraintOperands - Information about all of the constraints.
2785 AsmOperandInfoVector ConstraintOperands
;
2786 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
2787 unsigned maCount
= 0; // Largest number of multiple alternative constraints.
2789 // Do a prepass over the constraints, canonicalizing them, and building up the
2790 // ConstraintOperands list.
2791 InlineAsm::ConstraintInfoVector
2792 ConstraintInfos
= IA
->ParseConstraints();
2794 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
2795 unsigned ResNo
= 0; // ResNo - The result number of the next output.
2797 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
2798 ConstraintOperands
.push_back(AsmOperandInfo(ConstraintInfos
[i
]));
2799 AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
2801 // Update multiple alternative constraint count.
2802 if (OpInfo
.multipleAlternatives
.size() > maCount
)
2803 maCount
= OpInfo
.multipleAlternatives
.size();
2805 OpInfo
.ConstraintVT
= MVT::Other
;
2807 // Compute the value type for each operand.
2808 switch (OpInfo
.Type
) {
2809 case InlineAsm::isOutput
:
2810 // Indirect outputs just consume an argument.
2811 if (OpInfo
.isIndirect
) {
2812 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
2816 // The return value of the call is this value. As such, there is no
2817 // corresponding argument.
2818 assert(!CS
.getType()->isVoidTy() &&
2820 if (const StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
2821 OpInfo
.ConstraintVT
= getValueType(STy
->getElementType(ResNo
));
2823 assert(ResNo
== 0 && "Asm only has one result!");
2824 OpInfo
.ConstraintVT
= getValueType(CS
.getType());
2828 case InlineAsm::isInput
:
2829 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
2831 case InlineAsm::isClobber
:
2836 if (OpInfo
.CallOperandVal
) {
2837 const llvm::Type
*OpTy
= OpInfo
.CallOperandVal
->getType();
2838 if (OpInfo
.isIndirect
) {
2839 const llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
2841 report_fatal_error("Indirect operand for inline asm not a pointer!");
2842 OpTy
= PtrTy
->getElementType();
2845 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2846 if (const StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
2847 if (STy
->getNumElements() == 1)
2848 OpTy
= STy
->getElementType(0);
2850 // If OpTy is not a single value, it may be a struct/union that we
2851 // can tile with integers.
2852 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
2853 unsigned BitSize
= TD
->getTypeSizeInBits(OpTy
);
2862 OpInfo
.ConstraintVT
=
2863 EVT::getEVT(IntegerType::get(OpTy
->getContext(), BitSize
), true);
2866 } else if (dyn_cast
<PointerType
>(OpTy
)) {
2867 OpInfo
.ConstraintVT
= MVT::getIntegerVT(8*TD
->getPointerSize());
2869 OpInfo
.ConstraintVT
= EVT::getEVT(OpTy
, true);
2874 // If we have multiple alternative constraints, select the best alternative.
2875 if (ConstraintInfos
.size()) {
2877 unsigned bestMAIndex
= 0;
2878 int bestWeight
= -1;
2879 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2882 // Compute the sums of the weights for each alternative, keeping track
2883 // of the best (highest weight) one so far.
2884 for (maIndex
= 0; maIndex
< maCount
; ++maIndex
) {
2886 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2887 cIndex
!= eIndex
; ++cIndex
) {
2888 AsmOperandInfo
& OpInfo
= ConstraintOperands
[cIndex
];
2889 if (OpInfo
.Type
== InlineAsm::isClobber
)
2892 // If this is an output operand with a matching input operand,
2893 // look up the matching input. If their types mismatch, e.g. one
2894 // is an integer, the other is floating point, or their sizes are
2895 // different, flag it as an maCantMatch.
2896 if (OpInfo
.hasMatchingInput()) {
2897 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
2898 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
2899 if ((OpInfo
.ConstraintVT
.isInteger() !=
2900 Input
.ConstraintVT
.isInteger()) ||
2901 (OpInfo
.ConstraintVT
.getSizeInBits() !=
2902 Input
.ConstraintVT
.getSizeInBits())) {
2903 weightSum
= -1; // Can't match.
2908 weight
= getMultipleConstraintMatchWeight(OpInfo
, maIndex
);
2913 weightSum
+= weight
;
2916 if (weightSum
> bestWeight
) {
2917 bestWeight
= weightSum
;
2918 bestMAIndex
= maIndex
;
2922 // Now select chosen alternative in each constraint.
2923 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2924 cIndex
!= eIndex
; ++cIndex
) {
2925 AsmOperandInfo
& cInfo
= ConstraintOperands
[cIndex
];
2926 if (cInfo
.Type
== InlineAsm::isClobber
)
2928 cInfo
.selectAlternative(bestMAIndex
);
2933 // Check and hook up tied operands, choose constraint code to use.
2934 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
2935 cIndex
!= eIndex
; ++cIndex
) {
2936 AsmOperandInfo
& OpInfo
= ConstraintOperands
[cIndex
];
2938 // If this is an output operand with a matching input operand, look up the
2939 // matching input. If their types mismatch, e.g. one is an integer, the
2940 // other is floating point, or their sizes are different, flag it as an
2942 if (OpInfo
.hasMatchingInput()) {
2943 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
2945 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
2946 if ((OpInfo
.ConstraintVT
.isInteger() !=
2947 Input
.ConstraintVT
.isInteger()) ||
2948 (OpInfo
.ConstraintVT
.getSizeInBits() !=
2949 Input
.ConstraintVT
.getSizeInBits())) {
2950 report_fatal_error("Unsupported asm: input constraint"
2951 " with a matching output constraint of"
2952 " incompatible type!");
2959 return ConstraintOperands
;
2963 /// getConstraintGenerality - Return an integer indicating how general CT
2965 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
2967 default: llvm_unreachable("Unknown constraint type!");
2968 case TargetLowering::C_Other
:
2969 case TargetLowering::C_Unknown
:
2971 case TargetLowering::C_Register
:
2973 case TargetLowering::C_RegisterClass
:
2975 case TargetLowering::C_Memory
:
2980 /// Examine constraint type and operand type and determine a weight value.
2981 /// This object must already have been set up with the operand type
2982 /// and the current alternative constraint selected.
2983 TargetLowering::ConstraintWeight
2984 TargetLowering::getMultipleConstraintMatchWeight(
2985 AsmOperandInfo
&info
, int maIndex
) const {
2986 InlineAsm::ConstraintCodeVector
*rCodes
;
2987 if (maIndex
>= (int)info
.multipleAlternatives
.size())
2988 rCodes
= &info
.Codes
;
2990 rCodes
= &info
.multipleAlternatives
[maIndex
].Codes
;
2991 ConstraintWeight BestWeight
= CW_Invalid
;
2993 // Loop over the options, keeping track of the most general one.
2994 for (unsigned i
= 0, e
= rCodes
->size(); i
!= e
; ++i
) {
2995 ConstraintWeight weight
=
2996 getSingleConstraintMatchWeight(info
, (*rCodes
)[i
].c_str());
2997 if (weight
> BestWeight
)
2998 BestWeight
= weight
;
3004 /// Examine constraint type and operand type and determine a weight value.
3005 /// This object must already have been set up with the operand type
3006 /// and the current alternative constraint selected.
3007 TargetLowering::ConstraintWeight
3008 TargetLowering::getSingleConstraintMatchWeight(
3009 AsmOperandInfo
&info
, const char *constraint
) const {
3010 ConstraintWeight weight
= CW_Invalid
;
3011 Value
*CallOperandVal
= info
.CallOperandVal
;
3012 // If we don't have a value, we can't do a match,
3013 // but allow it at the lowest weight.
3014 if (CallOperandVal
== NULL
)
3016 // Look at the constraint type.
3017 switch (*constraint
) {
3018 case 'i': // immediate integer.
3019 case 'n': // immediate integer with a known value.
3020 if (isa
<ConstantInt
>(CallOperandVal
))
3021 weight
= CW_Constant
;
3023 case 's': // non-explicit intregal immediate.
3024 if (isa
<GlobalValue
>(CallOperandVal
))
3025 weight
= CW_Constant
;
3027 case 'E': // immediate float if host format.
3028 case 'F': // immediate float.
3029 if (isa
<ConstantFP
>(CallOperandVal
))
3030 weight
= CW_Constant
;
3032 case '<': // memory operand with autodecrement.
3033 case '>': // memory operand with autoincrement.
3034 case 'm': // memory operand.
3035 case 'o': // offsettable memory operand
3036 case 'V': // non-offsettable memory operand
3039 case 'r': // general register.
3040 case 'g': // general register, memory operand or immediate integer.
3041 // note: Clang converts "g" to "imr".
3042 if (CallOperandVal
->getType()->isIntegerTy())
3043 weight
= CW_Register
;
3045 case 'X': // any operand.
3047 weight
= CW_Default
;
3053 /// ChooseConstraint - If there are multiple different constraints that we
3054 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3055 /// This is somewhat tricky: constraints fall into four classes:
3056 /// Other -> immediates and magic values
3057 /// Register -> one specific register
3058 /// RegisterClass -> a group of regs
3059 /// Memory -> memory
3060 /// Ideally, we would pick the most specific constraint possible: if we have
3061 /// something that fits into a register, we would pick it. The problem here
3062 /// is that if we have something that could either be in a register or in
3063 /// memory that use of the register could cause selection of *other*
3064 /// operands to fail: they might only succeed if we pick memory. Because of
3065 /// this the heuristic we use is:
3067 /// 1) If there is an 'other' constraint, and if the operand is valid for
3068 /// that constraint, use it. This makes us take advantage of 'i'
3069 /// constraints when available.
3070 /// 2) Otherwise, pick the most general constraint present. This prefers
3071 /// 'm' over 'r', for example.
3073 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
3074 const TargetLowering
&TLI
,
3075 SDValue Op
, SelectionDAG
*DAG
) {
3076 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
3077 unsigned BestIdx
= 0;
3078 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
3079 int BestGenerality
= -1;
3081 // Loop over the options, keeping track of the most general one.
3082 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
3083 TargetLowering::ConstraintType CType
=
3084 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
3086 // If this is an 'other' constraint, see if the operand is valid for it.
3087 // For example, on X86 we might have an 'rI' constraint. If the operand
3088 // is an integer in the range [0..31] we want to use I (saving a load
3089 // of a register), otherwise we must use 'r'.
3090 if (CType
== TargetLowering::C_Other
&& Op
.getNode()) {
3091 assert(OpInfo
.Codes
[i
].size() == 1 &&
3092 "Unhandled multi-letter 'other' constraint");
3093 std::vector
<SDValue
> ResultOps
;
3094 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
][0],
3096 if (!ResultOps
.empty()) {
3103 // Things with matching constraints can only be registers, per gcc
3104 // documentation. This mainly affects "g" constraints.
3105 if (CType
== TargetLowering::C_Memory
&& OpInfo
.hasMatchingInput())
3108 // This constraint letter is more general than the previous one, use it.
3109 int Generality
= getConstraintGenerality(CType
);
3110 if (Generality
> BestGenerality
) {
3113 BestGenerality
= Generality
;
3117 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
3118 OpInfo
.ConstraintType
= BestType
;
3121 /// ComputeConstraintToUse - Determines the constraint code and constraint
3122 /// type to use for the specific AsmOperandInfo, setting
3123 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3124 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
3126 SelectionDAG
*DAG
) const {
3127 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
3129 // Single-letter constraints ('r') are very common.
3130 if (OpInfo
.Codes
.size() == 1) {
3131 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
3132 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
3134 ChooseConstraint(OpInfo
, *this, Op
, DAG
);
3137 // 'X' matches anything.
3138 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
3139 // Labels and constants are handled elsewhere ('X' is the only thing
3140 // that matches labels). For Functions, the type here is the type of
3141 // the result, which is not what we want to look at; leave them alone.
3142 Value
*v
= OpInfo
.CallOperandVal
;
3143 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
3144 OpInfo
.CallOperandVal
= v
;
3148 // Otherwise, try to resolve it to something we know about by looking at
3149 // the actual operand type.
3150 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
3151 OpInfo
.ConstraintCode
= Repl
;
3152 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
3157 //===----------------------------------------------------------------------===//
3158 // Loop Strength Reduction hooks
3159 //===----------------------------------------------------------------------===//
3161 /// isLegalAddressingMode - Return true if the addressing mode represented
3162 /// by AM is legal for this target, for a load/store of the specified type.
3163 bool TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
3164 const Type
*Ty
) const {
3165 // The default implementation of this implements a conservative RISCy, r+r and
3168 // Allows a sign-extended 16-bit immediate field.
3169 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
3172 // No global is ever allowed as a base.
3176 // Only support r+r,
3178 case 0: // "r+i" or just "i", depending on HasBaseReg.
3181 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
3183 // Otherwise we have r+r or r+i.
3186 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
3188 // Allow 2*r as r+r.
3195 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3196 /// return a DAG expression to select that will generate the same value by
3197 /// multiplying by a magic number. See:
3198 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3199 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
3200 std::vector
<SDNode
*>* Created
) const {
3201 EVT VT
= N
->getValueType(0);
3202 DebugLoc dl
= N
->getDebugLoc();
3204 // Check to see if we can do this.
3205 // FIXME: We should be more aggressive here.
3206 if (!isTypeLegal(VT
))
3209 APInt d
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
3210 APInt::ms magics
= d
.magic();
3212 // Multiply the numerator (operand 0) by the magic value
3213 // FIXME: We should support doing a MUL in a wider type
3215 if (isOperationLegalOrCustom(ISD::MULHS
, VT
))
3216 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N
->getOperand(0),
3217 DAG
.getConstant(magics
.m
, VT
));
3218 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
))
3219 Q
= SDValue(DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
),
3221 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
3223 return SDValue(); // No mulhs or equvialent
3224 // If d > 0 and m < 0, add the numerator
3225 if (d
.isStrictlyPositive() && magics
.m
.isNegative()) {
3226 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, N
->getOperand(0));
3228 Created
->push_back(Q
.getNode());
3230 // If d < 0 and m > 0, subtract the numerator.
3231 if (d
.isNegative() && magics
.m
.isStrictlyPositive()) {
3232 Q
= DAG
.getNode(ISD::SUB
, dl
, VT
, Q
, N
->getOperand(0));
3234 Created
->push_back(Q
.getNode());
3236 // Shift right algebraic if shift value is nonzero
3238 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
,
3239 DAG
.getConstant(magics
.s
, getShiftAmountTy(Q
.getValueType())));
3241 Created
->push_back(Q
.getNode());
3243 // Extract the sign bit and add it to the quotient
3245 DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, DAG
.getConstant(VT
.getSizeInBits()-1,
3246 getShiftAmountTy(Q
.getValueType())));
3248 Created
->push_back(T
.getNode());
3249 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
3252 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3253 /// return a DAG expression to select that will generate the same value by
3254 /// multiplying by a magic number. See:
3255 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3256 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
3257 std::vector
<SDNode
*>* Created
) const {
3258 EVT VT
= N
->getValueType(0);
3259 DebugLoc dl
= N
->getDebugLoc();
3261 // Check to see if we can do this.
3262 // FIXME: We should be more aggressive here.
3263 if (!isTypeLegal(VT
))
3266 // FIXME: We should use a narrower constant when the upper
3267 // bits are known to be zero.
3268 const APInt
&N1C
= cast
<ConstantSDNode
>(N
->getOperand(1))->getAPIntValue();
3269 APInt::mu magics
= N1C
.magicu();
3271 SDValue Q
= N
->getOperand(0);
3273 // If the divisor is even, we can avoid using the expensive fixup by shifting
3274 // the divided value upfront.
3275 if (magics
.a
!= 0 && !N1C
[0]) {
3276 unsigned Shift
= N1C
.countTrailingZeros();
3277 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
3278 DAG
.getConstant(Shift
, getShiftAmountTy(Q
.getValueType())));
3280 Created
->push_back(Q
.getNode());
3282 // Get magic number for the shifted divisor.
3283 magics
= N1C
.lshr(Shift
).magicu(Shift
);
3284 assert(magics
.a
== 0 && "Should use cheap fixup now");
3287 // Multiply the numerator (operand 0) by the magic value
3288 // FIXME: We should support doing a MUL in a wider type
3289 if (isOperationLegalOrCustom(ISD::MULHU
, VT
))
3290 Q
= DAG
.getNode(ISD::MULHU
, dl
, VT
, Q
, DAG
.getConstant(magics
.m
, VT
));
3291 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
))
3292 Q
= SDValue(DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), Q
,
3293 DAG
.getConstant(magics
.m
, VT
)).getNode(), 1);
3295 return SDValue(); // No mulhu or equvialent
3297 Created
->push_back(Q
.getNode());
3299 if (magics
.a
== 0) {
3300 assert(magics
.s
< N1C
.getBitWidth() &&
3301 "We shouldn't generate an undefined shift!");
3302 return DAG
.getNode(ISD::SRL
, dl
, VT
, Q
,
3303 DAG
.getConstant(magics
.s
, getShiftAmountTy(Q
.getValueType())));
3305 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N
->getOperand(0), Q
);
3307 Created
->push_back(NPQ
.getNode());
3308 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
3309 DAG
.getConstant(1, getShiftAmountTy(NPQ
.getValueType())));
3311 Created
->push_back(NPQ
.getNode());
3312 NPQ
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
3314 Created
->push_back(NPQ
.getNode());
3315 return DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
,
3316 DAG
.getConstant(magics
.s
-1, getShiftAmountTy(NPQ
.getValueType())));