Only read *predecessor once so as to fix a theoretical issue where it changes
[llvm/stm8.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
blob09d569a097dddfb6f5e339183e62c0e7d8c4dbde
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. The canonical induction variable is guaranteed to be in a wide enough
21 // type so that IV expressions need not be (directly) zero-extended or
22 // sign-extended.
23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts.
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 // 1. The exit condition for the loop is canonicalized to compare the
28 // induction value against the exit value. This turns loops like:
29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 // 2. Any use outside of the loop of an expression derived from the indvar
31 // is changed to compute the derived value outside of the loop, eliminating
32 // the dependence on the exit value of the induction variable. If the only
33 // purpose of the loop is to compute the exit value of some derived
34 // expression, this transformation will make the loop dead.
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
39 //===----------------------------------------------------------------------===//
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/Statistic.h"
62 #include "llvm/ADT/STLExtras.h"
63 using namespace llvm;
65 STATISTIC(NumRemoved , "Number of aux indvars removed");
66 STATISTIC(NumInserted, "Number of canonical indvars added");
67 STATISTIC(NumReplaced, "Number of exit values replaced");
68 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
70 namespace {
71 class IndVarSimplify : public LoopPass {
72 IVUsers *IU;
73 LoopInfo *LI;
74 ScalarEvolution *SE;
75 DominatorTree *DT;
76 SmallVector<WeakVH, 16> DeadInsts;
77 bool Changed;
78 public:
80 static char ID; // Pass identification, replacement for typeid
81 IndVarSimplify() : LoopPass(ID) {
82 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
85 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
87 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88 AU.addRequired<DominatorTree>();
89 AU.addRequired<LoopInfo>();
90 AU.addRequired<ScalarEvolution>();
91 AU.addRequiredID(LoopSimplifyID);
92 AU.addRequiredID(LCSSAID);
93 AU.addRequired<IVUsers>();
94 AU.addPreserved<ScalarEvolution>();
95 AU.addPreservedID(LoopSimplifyID);
96 AU.addPreservedID(LCSSAID);
97 AU.addPreserved<IVUsers>();
98 AU.setPreservesCFG();
101 private:
102 bool isValidRewrite(Value *FromVal, Value *ToVal);
104 void EliminateIVComparisons();
105 void EliminateIVRemainders();
106 void RewriteNonIntegerIVs(Loop *L);
108 ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
109 PHINode *IndVar,
110 BasicBlock *ExitingBlock,
111 BranchInst *BI,
112 SCEVExpander &Rewriter);
113 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
115 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
117 void SinkUnusedInvariants(Loop *L);
119 void HandleFloatingPointIV(Loop *L, PHINode *PH);
123 char IndVarSimplify::ID = 0;
124 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
125 "Canonicalize Induction Variables", false, false)
126 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
127 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
128 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
129 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
130 INITIALIZE_PASS_DEPENDENCY(LCSSA)
131 INITIALIZE_PASS_DEPENDENCY(IVUsers)
132 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
133 "Canonicalize Induction Variables", false, false)
135 Pass *llvm::createIndVarSimplifyPass() {
136 return new IndVarSimplify();
139 /// isValidRewrite - Return true if the SCEV expansion generated by the
140 /// rewriter can replace the original value. SCEV guarantees that it
141 /// produces the same value, but the way it is produced may be illegal IR.
142 /// Ideally, this function will only be called for verification.
143 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
144 // If an SCEV expression subsumed multiple pointers, its expansion could
145 // reassociate the GEP changing the base pointer. This is illegal because the
146 // final address produced by a GEP chain must be inbounds relative to its
147 // underlying object. Otherwise basic alias analysis, among other things,
148 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
149 // producing an expression involving multiple pointers. Until then, we must
150 // bail out here.
152 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
153 // because it understands lcssa phis while SCEV does not.
154 Value *FromPtr = FromVal;
155 Value *ToPtr = ToVal;
156 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
157 FromPtr = GEP->getPointerOperand();
159 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
160 ToPtr = GEP->getPointerOperand();
162 if (FromPtr != FromVal || ToPtr != ToVal) {
163 // Quickly check the common case
164 if (FromPtr == ToPtr)
165 return true;
167 // SCEV may have rewritten an expression that produces the GEP's pointer
168 // operand. That's ok as long as the pointer operand has the same base
169 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
170 // base of a recurrence. This handles the case in which SCEV expansion
171 // converts a pointer type recurrence into a nonrecurrent pointer base
172 // indexed by an integer recurrence.
173 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175 if (FromBase == ToBase)
176 return true;
178 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179 << *FromBase << " != " << *ToBase << "\n");
181 return false;
183 return true;
186 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
187 /// loop to be a canonical != comparison against the incremented loop induction
188 /// variable. This pass is able to rewrite the exit tests of any loop where the
189 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
190 /// is actually a much broader range than just linear tests.
191 ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
192 const SCEV *BackedgeTakenCount,
193 PHINode *IndVar,
194 BasicBlock *ExitingBlock,
195 BranchInst *BI,
196 SCEVExpander &Rewriter) {
197 // Special case: If the backedge-taken count is a UDiv, it's very likely a
198 // UDiv that ScalarEvolution produced in order to compute a precise
199 // expression, rather than a UDiv from the user's code. If we can't find a
200 // UDiv in the code with some simple searching, assume the former and forego
201 // rewriting the loop.
202 if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
203 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
204 if (!OrigCond) return 0;
205 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
206 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
207 if (R != BackedgeTakenCount) {
208 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
209 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
210 if (L != BackedgeTakenCount)
211 return 0;
215 // If the exiting block is not the same as the backedge block, we must compare
216 // against the preincremented value, otherwise we prefer to compare against
217 // the post-incremented value.
218 Value *CmpIndVar;
219 const SCEV *RHS = BackedgeTakenCount;
220 if (ExitingBlock == L->getLoopLatch()) {
221 // Add one to the "backedge-taken" count to get the trip count.
222 // If this addition may overflow, we have to be more pessimistic and
223 // cast the induction variable before doing the add.
224 const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
225 const SCEV *N =
226 SE->getAddExpr(BackedgeTakenCount,
227 SE->getConstant(BackedgeTakenCount->getType(), 1));
228 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
229 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
230 // No overflow. Cast the sum.
231 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
232 } else {
233 // Potential overflow. Cast before doing the add.
234 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
235 IndVar->getType());
236 RHS = SE->getAddExpr(RHS,
237 SE->getConstant(IndVar->getType(), 1));
240 // The BackedgeTaken expression contains the number of times that the
241 // backedge branches to the loop header. This is one less than the
242 // number of times the loop executes, so use the incremented indvar.
243 CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBlock);
244 } else {
245 // We have to use the preincremented value...
246 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
247 IndVar->getType());
248 CmpIndVar = IndVar;
251 // Expand the code for the iteration count.
252 assert(SE->isLoopInvariant(RHS, L) &&
253 "Computed iteration count is not loop invariant!");
254 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
256 // Insert a new icmp_ne or icmp_eq instruction before the branch.
257 ICmpInst::Predicate Opcode;
258 if (L->contains(BI->getSuccessor(0)))
259 Opcode = ICmpInst::ICMP_NE;
260 else
261 Opcode = ICmpInst::ICMP_EQ;
263 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
264 << " LHS:" << *CmpIndVar << '\n'
265 << " op:\t"
266 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
267 << " RHS:\t" << *RHS << "\n");
269 ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
271 Value *OrigCond = BI->getCondition();
272 // It's tempting to use replaceAllUsesWith here to fully replace the old
273 // comparison, but that's not immediately safe, since users of the old
274 // comparison may not be dominated by the new comparison. Instead, just
275 // update the branch to use the new comparison; in the common case this
276 // will make old comparison dead.
277 BI->setCondition(Cond);
278 DeadInsts.push_back(OrigCond);
280 ++NumLFTR;
281 Changed = true;
282 return Cond;
285 /// RewriteLoopExitValues - Check to see if this loop has a computable
286 /// loop-invariant execution count. If so, this means that we can compute the
287 /// final value of any expressions that are recurrent in the loop, and
288 /// substitute the exit values from the loop into any instructions outside of
289 /// the loop that use the final values of the current expressions.
291 /// This is mostly redundant with the regular IndVarSimplify activities that
292 /// happen later, except that it's more powerful in some cases, because it's
293 /// able to brute-force evaluate arbitrary instructions as long as they have
294 /// constant operands at the beginning of the loop.
295 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
296 // Verify the input to the pass in already in LCSSA form.
297 assert(L->isLCSSAForm(*DT));
299 SmallVector<BasicBlock*, 8> ExitBlocks;
300 L->getUniqueExitBlocks(ExitBlocks);
302 // Find all values that are computed inside the loop, but used outside of it.
303 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
304 // the exit blocks of the loop to find them.
305 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
306 BasicBlock *ExitBB = ExitBlocks[i];
308 // If there are no PHI nodes in this exit block, then no values defined
309 // inside the loop are used on this path, skip it.
310 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
311 if (!PN) continue;
313 unsigned NumPreds = PN->getNumIncomingValues();
315 // Iterate over all of the PHI nodes.
316 BasicBlock::iterator BBI = ExitBB->begin();
317 while ((PN = dyn_cast<PHINode>(BBI++))) {
318 if (PN->use_empty())
319 continue; // dead use, don't replace it
321 // SCEV only supports integer expressions for now.
322 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
323 continue;
325 // It's necessary to tell ScalarEvolution about this explicitly so that
326 // it can walk the def-use list and forget all SCEVs, as it may not be
327 // watching the PHI itself. Once the new exit value is in place, there
328 // may not be a def-use connection between the loop and every instruction
329 // which got a SCEVAddRecExpr for that loop.
330 SE->forgetValue(PN);
332 // Iterate over all of the values in all the PHI nodes.
333 for (unsigned i = 0; i != NumPreds; ++i) {
334 // If the value being merged in is not integer or is not defined
335 // in the loop, skip it.
336 Value *InVal = PN->getIncomingValue(i);
337 if (!isa<Instruction>(InVal))
338 continue;
340 // If this pred is for a subloop, not L itself, skip it.
341 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
342 continue; // The Block is in a subloop, skip it.
344 // Check that InVal is defined in the loop.
345 Instruction *Inst = cast<Instruction>(InVal);
346 if (!L->contains(Inst))
347 continue;
349 // Okay, this instruction has a user outside of the current loop
350 // and varies predictably *inside* the loop. Evaluate the value it
351 // contains when the loop exits, if possible.
352 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
353 if (!SE->isLoopInvariant(ExitValue, L))
354 continue;
356 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
358 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
359 << " LoopVal = " << *Inst << "\n");
361 if (!isValidRewrite(Inst, ExitVal)) {
362 DeadInsts.push_back(ExitVal);
363 continue;
365 Changed = true;
366 ++NumReplaced;
368 PN->setIncomingValue(i, ExitVal);
370 // If this instruction is dead now, delete it.
371 RecursivelyDeleteTriviallyDeadInstructions(Inst);
373 if (NumPreds == 1) {
374 // Completely replace a single-pred PHI. This is safe, because the
375 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
376 // node anymore.
377 PN->replaceAllUsesWith(ExitVal);
378 RecursivelyDeleteTriviallyDeadInstructions(PN);
381 if (NumPreds != 1) {
382 // Clone the PHI and delete the original one. This lets IVUsers and
383 // any other maps purge the original user from their records.
384 PHINode *NewPN = cast<PHINode>(PN->clone());
385 NewPN->takeName(PN);
386 NewPN->insertBefore(PN);
387 PN->replaceAllUsesWith(NewPN);
388 PN->eraseFromParent();
393 // The insertion point instruction may have been deleted; clear it out
394 // so that the rewriter doesn't trip over it later.
395 Rewriter.clearInsertPoint();
398 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
399 // First step. Check to see if there are any floating-point recurrences.
400 // If there are, change them into integer recurrences, permitting analysis by
401 // the SCEV routines.
403 BasicBlock *Header = L->getHeader();
405 SmallVector<WeakVH, 8> PHIs;
406 for (BasicBlock::iterator I = Header->begin();
407 PHINode *PN = dyn_cast<PHINode>(I); ++I)
408 PHIs.push_back(PN);
410 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
411 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
412 HandleFloatingPointIV(L, PN);
414 // If the loop previously had floating-point IV, ScalarEvolution
415 // may not have been able to compute a trip count. Now that we've done some
416 // re-writing, the trip count may be computable.
417 if (Changed)
418 SE->forgetLoop(L);
421 void IndVarSimplify::EliminateIVComparisons() {
422 // Look for ICmp users.
423 for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
424 IVStrideUse &UI = *I;
425 ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser());
426 if (!ICmp) continue;
428 bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1);
429 ICmpInst::Predicate Pred = ICmp->getPredicate();
430 if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred);
432 // Get the SCEVs for the ICmp operands.
433 const SCEV *S = IU->getReplacementExpr(UI);
434 const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped));
436 // Simplify unnecessary loops away.
437 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
438 S = SE->getSCEVAtScope(S, ICmpLoop);
439 X = SE->getSCEVAtScope(X, ICmpLoop);
441 // If the condition is always true or always false, replace it with
442 // a constant value.
443 if (SE->isKnownPredicate(Pred, S, X))
444 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
445 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
446 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
447 else
448 continue;
450 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
451 DeadInsts.push_back(ICmp);
455 void IndVarSimplify::EliminateIVRemainders() {
456 // Look for SRem and URem users.
457 for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
458 IVStrideUse &UI = *I;
459 BinaryOperator *Rem = dyn_cast<BinaryOperator>(UI.getUser());
460 if (!Rem) continue;
462 bool isSigned = Rem->getOpcode() == Instruction::SRem;
463 if (!isSigned && Rem->getOpcode() != Instruction::URem)
464 continue;
466 // We're only interested in the case where we know something about
467 // the numerator.
468 if (UI.getOperandValToReplace() != Rem->getOperand(0))
469 continue;
471 // Get the SCEVs for the ICmp operands.
472 const SCEV *S = SE->getSCEV(Rem->getOperand(0));
473 const SCEV *X = SE->getSCEV(Rem->getOperand(1));
475 // Simplify unnecessary loops away.
476 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
477 S = SE->getSCEVAtScope(S, ICmpLoop);
478 X = SE->getSCEVAtScope(X, ICmpLoop);
480 // i % n --> i if i is in [0,n).
481 if ((!isSigned || SE->isKnownNonNegative(S)) &&
482 SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
483 S, X))
484 Rem->replaceAllUsesWith(Rem->getOperand(0));
485 else {
486 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
487 const SCEV *LessOne =
488 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
489 if ((!isSigned || SE->isKnownNonNegative(LessOne)) &&
490 SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
491 LessOne, X)) {
492 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
493 Rem->getOperand(0), Rem->getOperand(1),
494 "tmp");
495 SelectInst *Sel =
496 SelectInst::Create(ICmp,
497 ConstantInt::get(Rem->getType(), 0),
498 Rem->getOperand(0), "tmp", Rem);
499 Rem->replaceAllUsesWith(Sel);
500 } else
501 continue;
504 // Inform IVUsers about the new users.
505 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
506 IU->AddUsersIfInteresting(I);
508 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
509 DeadInsts.push_back(Rem);
513 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
514 // If LoopSimplify form is not available, stay out of trouble. Some notes:
515 // - LSR currently only supports LoopSimplify-form loops. Indvars'
516 // canonicalization can be a pessimization without LSR to "clean up"
517 // afterwards.
518 // - We depend on having a preheader; in particular,
519 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
520 // and we're in trouble if we can't find the induction variable even when
521 // we've manually inserted one.
522 if (!L->isLoopSimplifyForm())
523 return false;
525 IU = &getAnalysis<IVUsers>();
526 LI = &getAnalysis<LoopInfo>();
527 SE = &getAnalysis<ScalarEvolution>();
528 DT = &getAnalysis<DominatorTree>();
529 DeadInsts.clear();
530 Changed = false;
532 // If there are any floating-point recurrences, attempt to
533 // transform them to use integer recurrences.
534 RewriteNonIntegerIVs(L);
536 BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
537 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
539 // Create a rewriter object which we'll use to transform the code with.
540 SCEVExpander Rewriter(*SE);
542 // Check to see if this loop has a computable loop-invariant execution count.
543 // If so, this means that we can compute the final value of any expressions
544 // that are recurrent in the loop, and substitute the exit values from the
545 // loop into any instructions outside of the loop that use the final values of
546 // the current expressions.
548 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
549 RewriteLoopExitValues(L, Rewriter);
551 // Simplify ICmp IV users.
552 EliminateIVComparisons();
554 // Simplify SRem and URem IV users.
555 EliminateIVRemainders();
557 // Compute the type of the largest recurrence expression, and decide whether
558 // a canonical induction variable should be inserted.
559 const Type *LargestType = 0;
560 bool NeedCannIV = false;
561 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
562 LargestType = BackedgeTakenCount->getType();
563 LargestType = SE->getEffectiveSCEVType(LargestType);
564 // If we have a known trip count and a single exit block, we'll be
565 // rewriting the loop exit test condition below, which requires a
566 // canonical induction variable.
567 if (ExitingBlock)
568 NeedCannIV = true;
570 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
571 const Type *Ty =
572 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
573 if (!LargestType ||
574 SE->getTypeSizeInBits(Ty) >
575 SE->getTypeSizeInBits(LargestType))
576 LargestType = Ty;
577 NeedCannIV = true;
580 // Now that we know the largest of the induction variable expressions
581 // in this loop, insert a canonical induction variable of the largest size.
582 PHINode *IndVar = 0;
583 if (NeedCannIV) {
584 // Check to see if the loop already has any canonical-looking induction
585 // variables. If any are present and wider than the planned canonical
586 // induction variable, temporarily remove them, so that the Rewriter
587 // doesn't attempt to reuse them.
588 SmallVector<PHINode *, 2> OldCannIVs;
589 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
590 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
591 SE->getTypeSizeInBits(LargestType))
592 OldCannIV->removeFromParent();
593 else
594 break;
595 OldCannIVs.push_back(OldCannIV);
598 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
600 ++NumInserted;
601 Changed = true;
602 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
604 // Now that the official induction variable is established, reinsert
605 // any old canonical-looking variables after it so that the IR remains
606 // consistent. They will be deleted as part of the dead-PHI deletion at
607 // the end of the pass.
608 while (!OldCannIVs.empty()) {
609 PHINode *OldCannIV = OldCannIVs.pop_back_val();
610 OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
614 // If we have a trip count expression, rewrite the loop's exit condition
615 // using it. We can currently only handle loops with a single exit.
616 ICmpInst *NewICmp = 0;
617 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
618 !BackedgeTakenCount->isZero() &&
619 ExitingBlock) {
620 assert(NeedCannIV &&
621 "LinearFunctionTestReplace requires a canonical induction variable");
622 // Can't rewrite non-branch yet.
623 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
624 NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
625 ExitingBlock, BI, Rewriter);
628 // Rewrite IV-derived expressions.
629 RewriteIVExpressions(L, Rewriter);
631 // Clear the rewriter cache, because values that are in the rewriter's cache
632 // can be deleted in the loop below, causing the AssertingVH in the cache to
633 // trigger.
634 Rewriter.clear();
636 // Now that we're done iterating through lists, clean up any instructions
637 // which are now dead.
638 while (!DeadInsts.empty())
639 if (Instruction *Inst =
640 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
641 RecursivelyDeleteTriviallyDeadInstructions(Inst);
643 // The Rewriter may not be used from this point on.
645 // Loop-invariant instructions in the preheader that aren't used in the
646 // loop may be sunk below the loop to reduce register pressure.
647 SinkUnusedInvariants(L);
649 // For completeness, inform IVUsers of the IV use in the newly-created
650 // loop exit test instruction.
651 if (NewICmp)
652 IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
654 // Clean up dead instructions.
655 Changed |= DeleteDeadPHIs(L->getHeader());
656 // Check a post-condition.
657 assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
658 return Changed;
661 // FIXME: It is an extremely bad idea to indvar substitute anything more
662 // complex than affine induction variables. Doing so will put expensive
663 // polynomial evaluations inside of the loop, and the str reduction pass
664 // currently can only reduce affine polynomials. For now just disable
665 // indvar subst on anything more complex than an affine addrec, unless
666 // it can be expanded to a trivial value.
667 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
668 // Loop-invariant values are safe.
669 if (SE->isLoopInvariant(S, L)) return true;
671 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
672 // to transform them into efficient code.
673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
674 return AR->isAffine();
676 // An add is safe it all its operands are safe.
677 if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
678 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
679 E = Commutative->op_end(); I != E; ++I)
680 if (!isSafe(*I, L, SE)) return false;
681 return true;
684 // A cast is safe if its operand is.
685 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
686 return isSafe(C->getOperand(), L, SE);
688 // A udiv is safe if its operands are.
689 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
690 return isSafe(UD->getLHS(), L, SE) &&
691 isSafe(UD->getRHS(), L, SE);
693 // SCEVUnknown is always safe.
694 if (isa<SCEVUnknown>(S))
695 return true;
697 // Nothing else is safe.
698 return false;
701 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
702 // Rewrite all induction variable expressions in terms of the canonical
703 // induction variable.
705 // If there were induction variables of other sizes or offsets, manually
706 // add the offsets to the primary induction variable and cast, avoiding
707 // the need for the code evaluation methods to insert induction variables
708 // of different sizes.
709 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
710 Value *Op = UI->getOperandValToReplace();
711 const Type *UseTy = Op->getType();
712 Instruction *User = UI->getUser();
714 // Compute the final addrec to expand into code.
715 const SCEV *AR = IU->getReplacementExpr(*UI);
717 // Evaluate the expression out of the loop, if possible.
718 if (!L->contains(UI->getUser())) {
719 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
720 if (SE->isLoopInvariant(ExitVal, L))
721 AR = ExitVal;
724 // FIXME: It is an extremely bad idea to indvar substitute anything more
725 // complex than affine induction variables. Doing so will put expensive
726 // polynomial evaluations inside of the loop, and the str reduction pass
727 // currently can only reduce affine polynomials. For now just disable
728 // indvar subst on anything more complex than an affine addrec, unless
729 // it can be expanded to a trivial value.
730 if (!isSafe(AR, L, SE))
731 continue;
733 // Determine the insertion point for this user. By default, insert
734 // immediately before the user. The SCEVExpander class will automatically
735 // hoist loop invariants out of the loop. For PHI nodes, there may be
736 // multiple uses, so compute the nearest common dominator for the
737 // incoming blocks.
738 Instruction *InsertPt = User;
739 if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
740 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
741 if (PHI->getIncomingValue(i) == Op) {
742 if (InsertPt == User)
743 InsertPt = PHI->getIncomingBlock(i)->getTerminator();
744 else
745 InsertPt =
746 DT->findNearestCommonDominator(InsertPt->getParent(),
747 PHI->getIncomingBlock(i))
748 ->getTerminator();
751 // Now expand it into actual Instructions and patch it into place.
752 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
754 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
755 << " into = " << *NewVal << "\n");
757 if (!isValidRewrite(Op, NewVal)) {
758 DeadInsts.push_back(NewVal);
759 continue;
761 // Inform ScalarEvolution that this value is changing. The change doesn't
762 // affect its value, but it does potentially affect which use lists the
763 // value will be on after the replacement, which affects ScalarEvolution's
764 // ability to walk use lists and drop dangling pointers when a value is
765 // deleted.
766 SE->forgetValue(User);
768 // Patch the new value into place.
769 if (Op->hasName())
770 NewVal->takeName(Op);
771 User->replaceUsesOfWith(Op, NewVal);
772 UI->setOperandValToReplace(NewVal);
774 ++NumRemoved;
775 Changed = true;
777 // The old value may be dead now.
778 DeadInsts.push_back(Op);
782 /// If there's a single exit block, sink any loop-invariant values that
783 /// were defined in the preheader but not used inside the loop into the
784 /// exit block to reduce register pressure in the loop.
785 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
786 BasicBlock *ExitBlock = L->getExitBlock();
787 if (!ExitBlock) return;
789 BasicBlock *Preheader = L->getLoopPreheader();
790 if (!Preheader) return;
792 Instruction *InsertPt = ExitBlock->getFirstNonPHI();
793 BasicBlock::iterator I = Preheader->getTerminator();
794 while (I != Preheader->begin()) {
795 --I;
796 // New instructions were inserted at the end of the preheader.
797 if (isa<PHINode>(I))
798 break;
800 // Don't move instructions which might have side effects, since the side
801 // effects need to complete before instructions inside the loop. Also don't
802 // move instructions which might read memory, since the loop may modify
803 // memory. Note that it's okay if the instruction might have undefined
804 // behavior: LoopSimplify guarantees that the preheader dominates the exit
805 // block.
806 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
807 continue;
809 // Skip debug info intrinsics.
810 if (isa<DbgInfoIntrinsic>(I))
811 continue;
813 // Don't sink static AllocaInsts out of the entry block, which would
814 // turn them into dynamic allocas!
815 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
816 if (AI->isStaticAlloca())
817 continue;
819 // Determine if there is a use in or before the loop (direct or
820 // otherwise).
821 bool UsedInLoop = false;
822 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
823 UI != UE; ++UI) {
824 User *U = *UI;
825 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
826 if (PHINode *P = dyn_cast<PHINode>(U)) {
827 unsigned i =
828 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
829 UseBB = P->getIncomingBlock(i);
831 if (UseBB == Preheader || L->contains(UseBB)) {
832 UsedInLoop = true;
833 break;
837 // If there is, the def must remain in the preheader.
838 if (UsedInLoop)
839 continue;
841 // Otherwise, sink it to the exit block.
842 Instruction *ToMove = I;
843 bool Done = false;
845 if (I != Preheader->begin()) {
846 // Skip debug info intrinsics.
847 do {
848 --I;
849 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
851 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
852 Done = true;
853 } else {
854 Done = true;
857 ToMove->moveBefore(InsertPt);
858 if (Done) break;
859 InsertPt = ToMove;
863 /// ConvertToSInt - Convert APF to an integer, if possible.
864 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
865 bool isExact = false;
866 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
867 return false;
868 // See if we can convert this to an int64_t
869 uint64_t UIntVal;
870 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
871 &isExact) != APFloat::opOK || !isExact)
872 return false;
873 IntVal = UIntVal;
874 return true;
877 /// HandleFloatingPointIV - If the loop has floating induction variable
878 /// then insert corresponding integer induction variable if possible.
879 /// For example,
880 /// for(double i = 0; i < 10000; ++i)
881 /// bar(i)
882 /// is converted into
883 /// for(int i = 0; i < 10000; ++i)
884 /// bar((double)i);
886 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
887 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
888 unsigned BackEdge = IncomingEdge^1;
890 // Check incoming value.
891 ConstantFP *InitValueVal =
892 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
894 int64_t InitValue;
895 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
896 return;
898 // Check IV increment. Reject this PN if increment operation is not
899 // an add or increment value can not be represented by an integer.
900 BinaryOperator *Incr =
901 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
902 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
904 // If this is not an add of the PHI with a constantfp, or if the constant fp
905 // is not an integer, bail out.
906 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
907 int64_t IncValue;
908 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
909 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
910 return;
912 // Check Incr uses. One user is PN and the other user is an exit condition
913 // used by the conditional terminator.
914 Value::use_iterator IncrUse = Incr->use_begin();
915 Instruction *U1 = cast<Instruction>(*IncrUse++);
916 if (IncrUse == Incr->use_end()) return;
917 Instruction *U2 = cast<Instruction>(*IncrUse++);
918 if (IncrUse != Incr->use_end()) return;
920 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
921 // only used by a branch, we can't transform it.
922 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
923 if (!Compare)
924 Compare = dyn_cast<FCmpInst>(U2);
925 if (Compare == 0 || !Compare->hasOneUse() ||
926 !isa<BranchInst>(Compare->use_back()))
927 return;
929 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
931 // We need to verify that the branch actually controls the iteration count
932 // of the loop. If not, the new IV can overflow and no one will notice.
933 // The branch block must be in the loop and one of the successors must be out
934 // of the loop.
935 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
936 if (!L->contains(TheBr->getParent()) ||
937 (L->contains(TheBr->getSuccessor(0)) &&
938 L->contains(TheBr->getSuccessor(1))))
939 return;
942 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
943 // transform it.
944 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
945 int64_t ExitValue;
946 if (ExitValueVal == 0 ||
947 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
948 return;
950 // Find new predicate for integer comparison.
951 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
952 switch (Compare->getPredicate()) {
953 default: return; // Unknown comparison.
954 case CmpInst::FCMP_OEQ:
955 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
956 case CmpInst::FCMP_ONE:
957 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
958 case CmpInst::FCMP_OGT:
959 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
960 case CmpInst::FCMP_OGE:
961 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
962 case CmpInst::FCMP_OLT:
963 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
964 case CmpInst::FCMP_OLE:
965 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
968 // We convert the floating point induction variable to a signed i32 value if
969 // we can. This is only safe if the comparison will not overflow in a way
970 // that won't be trapped by the integer equivalent operations. Check for this
971 // now.
972 // TODO: We could use i64 if it is native and the range requires it.
974 // The start/stride/exit values must all fit in signed i32.
975 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
976 return;
978 // If not actually striding (add x, 0.0), avoid touching the code.
979 if (IncValue == 0)
980 return;
982 // Positive and negative strides have different safety conditions.
983 if (IncValue > 0) {
984 // If we have a positive stride, we require the init to be less than the
985 // exit value and an equality or less than comparison.
986 if (InitValue >= ExitValue ||
987 NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
988 return;
990 uint32_t Range = uint32_t(ExitValue-InitValue);
991 if (NewPred == CmpInst::ICMP_SLE) {
992 // Normalize SLE -> SLT, check for infinite loop.
993 if (++Range == 0) return; // Range overflows.
996 unsigned Leftover = Range % uint32_t(IncValue);
998 // If this is an equality comparison, we require that the strided value
999 // exactly land on the exit value, otherwise the IV condition will wrap
1000 // around and do things the fp IV wouldn't.
1001 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1002 Leftover != 0)
1003 return;
1005 // If the stride would wrap around the i32 before exiting, we can't
1006 // transform the IV.
1007 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
1008 return;
1010 } else {
1011 // If we have a negative stride, we require the init to be greater than the
1012 // exit value and an equality or greater than comparison.
1013 if (InitValue >= ExitValue ||
1014 NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
1015 return;
1017 uint32_t Range = uint32_t(InitValue-ExitValue);
1018 if (NewPred == CmpInst::ICMP_SGE) {
1019 // Normalize SGE -> SGT, check for infinite loop.
1020 if (++Range == 0) return; // Range overflows.
1023 unsigned Leftover = Range % uint32_t(-IncValue);
1025 // If this is an equality comparison, we require that the strided value
1026 // exactly land on the exit value, otherwise the IV condition will wrap
1027 // around and do things the fp IV wouldn't.
1028 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1029 Leftover != 0)
1030 return;
1032 // If the stride would wrap around the i32 before exiting, we can't
1033 // transform the IV.
1034 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
1035 return;
1038 const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
1040 // Insert new integer induction variable.
1041 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
1042 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
1043 PN->getIncomingBlock(IncomingEdge));
1045 Value *NewAdd =
1046 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
1047 Incr->getName()+".int", Incr);
1048 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
1050 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
1051 ConstantInt::get(Int32Ty, ExitValue),
1052 Compare->getName());
1054 // In the following deletions, PN may become dead and may be deleted.
1055 // Use a WeakVH to observe whether this happens.
1056 WeakVH WeakPH = PN;
1058 // Delete the old floating point exit comparison. The branch starts using the
1059 // new comparison.
1060 NewCompare->takeName(Compare);
1061 Compare->replaceAllUsesWith(NewCompare);
1062 RecursivelyDeleteTriviallyDeadInstructions(Compare);
1064 // Delete the old floating point increment.
1065 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1066 RecursivelyDeleteTriviallyDeadInstructions(Incr);
1068 // If the FP induction variable still has uses, this is because something else
1069 // in the loop uses its value. In order to canonicalize the induction
1070 // variable, we chose to eliminate the IV and rewrite it in terms of an
1071 // int->fp cast.
1073 // We give preference to sitofp over uitofp because it is faster on most
1074 // platforms.
1075 if (WeakPH) {
1076 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
1077 PN->getParent()->getFirstNonPHI());
1078 PN->replaceAllUsesWith(Conv);
1079 RecursivelyDeleteTriviallyDeadInstructions(PN);
1082 // Add a new IVUsers entry for the newly-created integer PHI.
1083 IU->AddUsersIfInteresting(NewPHI);