1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 // 1. All loops are transformed to have a SINGLE canonical induction variable
17 // which starts at zero and steps by one.
18 // 2. The canonical induction variable is guaranteed to be the first PHI node
19 // in the loop header block.
20 // 3. The canonical induction variable is guaranteed to be in a wide enough
21 // type so that IV expressions need not be (directly) zero-extended or
23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts.
25 // If the trip count of a loop is computable, this pass also makes the following
27 // 1. The exit condition for the loop is canonicalized to compare the
28 // induction value against the exit value. This turns loops like:
29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 // 2. Any use outside of the loop of an expression derived from the indvar
31 // is changed to compute the derived value outside of the loop, eliminating
32 // the dependence on the exit value of the induction variable. If the only
33 // purpose of the loop is to compute the exit value of some derived
34 // expression, this transformation will make the loop dead.
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
39 //===----------------------------------------------------------------------===//
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/Statistic.h"
62 #include "llvm/ADT/STLExtras.h"
65 STATISTIC(NumRemoved
, "Number of aux indvars removed");
66 STATISTIC(NumInserted
, "Number of canonical indvars added");
67 STATISTIC(NumReplaced
, "Number of exit values replaced");
68 STATISTIC(NumLFTR
, "Number of loop exit tests replaced");
71 class IndVarSimplify
: public LoopPass
{
76 SmallVector
<WeakVH
, 16> DeadInsts
;
80 static char ID
; // Pass identification, replacement for typeid
81 IndVarSimplify() : LoopPass(ID
) {
82 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
85 virtual bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
87 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
88 AU
.addRequired
<DominatorTree
>();
89 AU
.addRequired
<LoopInfo
>();
90 AU
.addRequired
<ScalarEvolution
>();
91 AU
.addRequiredID(LoopSimplifyID
);
92 AU
.addRequiredID(LCSSAID
);
93 AU
.addRequired
<IVUsers
>();
94 AU
.addPreserved
<ScalarEvolution
>();
95 AU
.addPreservedID(LoopSimplifyID
);
96 AU
.addPreservedID(LCSSAID
);
97 AU
.addPreserved
<IVUsers
>();
102 bool isValidRewrite(Value
*FromVal
, Value
*ToVal
);
104 void EliminateIVComparisons();
105 void EliminateIVRemainders();
106 void RewriteNonIntegerIVs(Loop
*L
);
108 ICmpInst
*LinearFunctionTestReplace(Loop
*L
, const SCEV
*BackedgeTakenCount
,
110 BasicBlock
*ExitingBlock
,
112 SCEVExpander
&Rewriter
);
113 void RewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
);
115 void RewriteIVExpressions(Loop
*L
, SCEVExpander
&Rewriter
);
117 void SinkUnusedInvariants(Loop
*L
);
119 void HandleFloatingPointIV(Loop
*L
, PHINode
*PH
);
123 char IndVarSimplify::ID
= 0;
124 INITIALIZE_PASS_BEGIN(IndVarSimplify
, "indvars",
125 "Canonicalize Induction Variables", false, false)
126 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
127 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
128 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution
)
129 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
130 INITIALIZE_PASS_DEPENDENCY(LCSSA
)
131 INITIALIZE_PASS_DEPENDENCY(IVUsers
)
132 INITIALIZE_PASS_END(IndVarSimplify
, "indvars",
133 "Canonicalize Induction Variables", false, false)
135 Pass
*llvm::createIndVarSimplifyPass() {
136 return new IndVarSimplify();
139 /// isValidRewrite - Return true if the SCEV expansion generated by the
140 /// rewriter can replace the original value. SCEV guarantees that it
141 /// produces the same value, but the way it is produced may be illegal IR.
142 /// Ideally, this function will only be called for verification.
143 bool IndVarSimplify::isValidRewrite(Value
*FromVal
, Value
*ToVal
) {
144 // If an SCEV expression subsumed multiple pointers, its expansion could
145 // reassociate the GEP changing the base pointer. This is illegal because the
146 // final address produced by a GEP chain must be inbounds relative to its
147 // underlying object. Otherwise basic alias analysis, among other things,
148 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
149 // producing an expression involving multiple pointers. Until then, we must
152 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
153 // because it understands lcssa phis while SCEV does not.
154 Value
*FromPtr
= FromVal
;
155 Value
*ToPtr
= ToVal
;
156 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(FromVal
)) {
157 FromPtr
= GEP
->getPointerOperand();
159 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(ToVal
)) {
160 ToPtr
= GEP
->getPointerOperand();
162 if (FromPtr
!= FromVal
|| ToPtr
!= ToVal
) {
163 // Quickly check the common case
164 if (FromPtr
== ToPtr
)
167 // SCEV may have rewritten an expression that produces the GEP's pointer
168 // operand. That's ok as long as the pointer operand has the same base
169 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
170 // base of a recurrence. This handles the case in which SCEV expansion
171 // converts a pointer type recurrence into a nonrecurrent pointer base
172 // indexed by an integer recurrence.
173 const SCEV
*FromBase
= SE
->getPointerBase(SE
->getSCEV(FromPtr
));
174 const SCEV
*ToBase
= SE
->getPointerBase(SE
->getSCEV(ToPtr
));
175 if (FromBase
== ToBase
)
178 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179 << *FromBase
<< " != " << *ToBase
<< "\n");
186 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
187 /// loop to be a canonical != comparison against the incremented loop induction
188 /// variable. This pass is able to rewrite the exit tests of any loop where the
189 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
190 /// is actually a much broader range than just linear tests.
191 ICmpInst
*IndVarSimplify::LinearFunctionTestReplace(Loop
*L
,
192 const SCEV
*BackedgeTakenCount
,
194 BasicBlock
*ExitingBlock
,
196 SCEVExpander
&Rewriter
) {
197 // Special case: If the backedge-taken count is a UDiv, it's very likely a
198 // UDiv that ScalarEvolution produced in order to compute a precise
199 // expression, rather than a UDiv from the user's code. If we can't find a
200 // UDiv in the code with some simple searching, assume the former and forego
201 // rewriting the loop.
202 if (isa
<SCEVUDivExpr
>(BackedgeTakenCount
)) {
203 ICmpInst
*OrigCond
= dyn_cast
<ICmpInst
>(BI
->getCondition());
204 if (!OrigCond
) return 0;
205 const SCEV
*R
= SE
->getSCEV(OrigCond
->getOperand(1));
206 R
= SE
->getMinusSCEV(R
, SE
->getConstant(R
->getType(), 1));
207 if (R
!= BackedgeTakenCount
) {
208 const SCEV
*L
= SE
->getSCEV(OrigCond
->getOperand(0));
209 L
= SE
->getMinusSCEV(L
, SE
->getConstant(L
->getType(), 1));
210 if (L
!= BackedgeTakenCount
)
215 // If the exiting block is not the same as the backedge block, we must compare
216 // against the preincremented value, otherwise we prefer to compare against
217 // the post-incremented value.
219 const SCEV
*RHS
= BackedgeTakenCount
;
220 if (ExitingBlock
== L
->getLoopLatch()) {
221 // Add one to the "backedge-taken" count to get the trip count.
222 // If this addition may overflow, we have to be more pessimistic and
223 // cast the induction variable before doing the add.
224 const SCEV
*Zero
= SE
->getConstant(BackedgeTakenCount
->getType(), 0);
226 SE
->getAddExpr(BackedgeTakenCount
,
227 SE
->getConstant(BackedgeTakenCount
->getType(), 1));
228 if ((isa
<SCEVConstant
>(N
) && !N
->isZero()) ||
229 SE
->isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, N
, Zero
)) {
230 // No overflow. Cast the sum.
231 RHS
= SE
->getTruncateOrZeroExtend(N
, IndVar
->getType());
233 // Potential overflow. Cast before doing the add.
234 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
236 RHS
= SE
->getAddExpr(RHS
,
237 SE
->getConstant(IndVar
->getType(), 1));
240 // The BackedgeTaken expression contains the number of times that the
241 // backedge branches to the loop header. This is one less than the
242 // number of times the loop executes, so use the incremented indvar.
243 CmpIndVar
= IndVar
->getIncomingValueForBlock(ExitingBlock
);
245 // We have to use the preincremented value...
246 RHS
= SE
->getTruncateOrZeroExtend(BackedgeTakenCount
,
251 // Expand the code for the iteration count.
252 assert(SE
->isLoopInvariant(RHS
, L
) &&
253 "Computed iteration count is not loop invariant!");
254 Value
*ExitCnt
= Rewriter
.expandCodeFor(RHS
, IndVar
->getType(), BI
);
256 // Insert a new icmp_ne or icmp_eq instruction before the branch.
257 ICmpInst::Predicate Opcode
;
258 if (L
->contains(BI
->getSuccessor(0)))
259 Opcode
= ICmpInst::ICMP_NE
;
261 Opcode
= ICmpInst::ICMP_EQ
;
263 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
264 << " LHS:" << *CmpIndVar
<< '\n'
266 << (Opcode
== ICmpInst::ICMP_NE
? "!=" : "==") << "\n"
267 << " RHS:\t" << *RHS
<< "\n");
269 ICmpInst
*Cond
= new ICmpInst(BI
, Opcode
, CmpIndVar
, ExitCnt
, "exitcond");
271 Value
*OrigCond
= BI
->getCondition();
272 // It's tempting to use replaceAllUsesWith here to fully replace the old
273 // comparison, but that's not immediately safe, since users of the old
274 // comparison may not be dominated by the new comparison. Instead, just
275 // update the branch to use the new comparison; in the common case this
276 // will make old comparison dead.
277 BI
->setCondition(Cond
);
278 DeadInsts
.push_back(OrigCond
);
285 /// RewriteLoopExitValues - Check to see if this loop has a computable
286 /// loop-invariant execution count. If so, this means that we can compute the
287 /// final value of any expressions that are recurrent in the loop, and
288 /// substitute the exit values from the loop into any instructions outside of
289 /// the loop that use the final values of the current expressions.
291 /// This is mostly redundant with the regular IndVarSimplify activities that
292 /// happen later, except that it's more powerful in some cases, because it's
293 /// able to brute-force evaluate arbitrary instructions as long as they have
294 /// constant operands at the beginning of the loop.
295 void IndVarSimplify::RewriteLoopExitValues(Loop
*L
, SCEVExpander
&Rewriter
) {
296 // Verify the input to the pass in already in LCSSA form.
297 assert(L
->isLCSSAForm(*DT
));
299 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
300 L
->getUniqueExitBlocks(ExitBlocks
);
302 // Find all values that are computed inside the loop, but used outside of it.
303 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
304 // the exit blocks of the loop to find them.
305 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
306 BasicBlock
*ExitBB
= ExitBlocks
[i
];
308 // If there are no PHI nodes in this exit block, then no values defined
309 // inside the loop are used on this path, skip it.
310 PHINode
*PN
= dyn_cast
<PHINode
>(ExitBB
->begin());
313 unsigned NumPreds
= PN
->getNumIncomingValues();
315 // Iterate over all of the PHI nodes.
316 BasicBlock::iterator BBI
= ExitBB
->begin();
317 while ((PN
= dyn_cast
<PHINode
>(BBI
++))) {
319 continue; // dead use, don't replace it
321 // SCEV only supports integer expressions for now.
322 if (!PN
->getType()->isIntegerTy() && !PN
->getType()->isPointerTy())
325 // It's necessary to tell ScalarEvolution about this explicitly so that
326 // it can walk the def-use list and forget all SCEVs, as it may not be
327 // watching the PHI itself. Once the new exit value is in place, there
328 // may not be a def-use connection between the loop and every instruction
329 // which got a SCEVAddRecExpr for that loop.
332 // Iterate over all of the values in all the PHI nodes.
333 for (unsigned i
= 0; i
!= NumPreds
; ++i
) {
334 // If the value being merged in is not integer or is not defined
335 // in the loop, skip it.
336 Value
*InVal
= PN
->getIncomingValue(i
);
337 if (!isa
<Instruction
>(InVal
))
340 // If this pred is for a subloop, not L itself, skip it.
341 if (LI
->getLoopFor(PN
->getIncomingBlock(i
)) != L
)
342 continue; // The Block is in a subloop, skip it.
344 // Check that InVal is defined in the loop.
345 Instruction
*Inst
= cast
<Instruction
>(InVal
);
346 if (!L
->contains(Inst
))
349 // Okay, this instruction has a user outside of the current loop
350 // and varies predictably *inside* the loop. Evaluate the value it
351 // contains when the loop exits, if possible.
352 const SCEV
*ExitValue
= SE
->getSCEVAtScope(Inst
, L
->getParentLoop());
353 if (!SE
->isLoopInvariant(ExitValue
, L
))
356 Value
*ExitVal
= Rewriter
.expandCodeFor(ExitValue
, PN
->getType(), Inst
);
358 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
<< '\n'
359 << " LoopVal = " << *Inst
<< "\n");
361 if (!isValidRewrite(Inst
, ExitVal
)) {
362 DeadInsts
.push_back(ExitVal
);
368 PN
->setIncomingValue(i
, ExitVal
);
370 // If this instruction is dead now, delete it.
371 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
374 // Completely replace a single-pred PHI. This is safe, because the
375 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
377 PN
->replaceAllUsesWith(ExitVal
);
378 RecursivelyDeleteTriviallyDeadInstructions(PN
);
382 // Clone the PHI and delete the original one. This lets IVUsers and
383 // any other maps purge the original user from their records.
384 PHINode
*NewPN
= cast
<PHINode
>(PN
->clone());
386 NewPN
->insertBefore(PN
);
387 PN
->replaceAllUsesWith(NewPN
);
388 PN
->eraseFromParent();
393 // The insertion point instruction may have been deleted; clear it out
394 // so that the rewriter doesn't trip over it later.
395 Rewriter
.clearInsertPoint();
398 void IndVarSimplify::RewriteNonIntegerIVs(Loop
*L
) {
399 // First step. Check to see if there are any floating-point recurrences.
400 // If there are, change them into integer recurrences, permitting analysis by
401 // the SCEV routines.
403 BasicBlock
*Header
= L
->getHeader();
405 SmallVector
<WeakVH
, 8> PHIs
;
406 for (BasicBlock::iterator I
= Header
->begin();
407 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
410 for (unsigned i
= 0, e
= PHIs
.size(); i
!= e
; ++i
)
411 if (PHINode
*PN
= dyn_cast_or_null
<PHINode
>(&*PHIs
[i
]))
412 HandleFloatingPointIV(L
, PN
);
414 // If the loop previously had floating-point IV, ScalarEvolution
415 // may not have been able to compute a trip count. Now that we've done some
416 // re-writing, the trip count may be computable.
421 void IndVarSimplify::EliminateIVComparisons() {
422 // Look for ICmp users.
423 for (IVUsers::iterator I
= IU
->begin(), E
= IU
->end(); I
!= E
; ++I
) {
424 IVStrideUse
&UI
= *I
;
425 ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(UI
.getUser());
428 bool Swapped
= UI
.getOperandValToReplace() == ICmp
->getOperand(1);
429 ICmpInst::Predicate Pred
= ICmp
->getPredicate();
430 if (Swapped
) Pred
= ICmpInst::getSwappedPredicate(Pred
);
432 // Get the SCEVs for the ICmp operands.
433 const SCEV
*S
= IU
->getReplacementExpr(UI
);
434 const SCEV
*X
= SE
->getSCEV(ICmp
->getOperand(!Swapped
));
436 // Simplify unnecessary loops away.
437 const Loop
*ICmpLoop
= LI
->getLoopFor(ICmp
->getParent());
438 S
= SE
->getSCEVAtScope(S
, ICmpLoop
);
439 X
= SE
->getSCEVAtScope(X
, ICmpLoop
);
441 // If the condition is always true or always false, replace it with
443 if (SE
->isKnownPredicate(Pred
, S
, X
))
444 ICmp
->replaceAllUsesWith(ConstantInt::getTrue(ICmp
->getContext()));
445 else if (SE
->isKnownPredicate(ICmpInst::getInversePredicate(Pred
), S
, X
))
446 ICmp
->replaceAllUsesWith(ConstantInt::getFalse(ICmp
->getContext()));
450 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp
<< '\n');
451 DeadInsts
.push_back(ICmp
);
455 void IndVarSimplify::EliminateIVRemainders() {
456 // Look for SRem and URem users.
457 for (IVUsers::iterator I
= IU
->begin(), E
= IU
->end(); I
!= E
; ++I
) {
458 IVStrideUse
&UI
= *I
;
459 BinaryOperator
*Rem
= dyn_cast
<BinaryOperator
>(UI
.getUser());
462 bool isSigned
= Rem
->getOpcode() == Instruction::SRem
;
463 if (!isSigned
&& Rem
->getOpcode() != Instruction::URem
)
466 // We're only interested in the case where we know something about
468 if (UI
.getOperandValToReplace() != Rem
->getOperand(0))
471 // Get the SCEVs for the ICmp operands.
472 const SCEV
*S
= SE
->getSCEV(Rem
->getOperand(0));
473 const SCEV
*X
= SE
->getSCEV(Rem
->getOperand(1));
475 // Simplify unnecessary loops away.
476 const Loop
*ICmpLoop
= LI
->getLoopFor(Rem
->getParent());
477 S
= SE
->getSCEVAtScope(S
, ICmpLoop
);
478 X
= SE
->getSCEVAtScope(X
, ICmpLoop
);
480 // i % n --> i if i is in [0,n).
481 if ((!isSigned
|| SE
->isKnownNonNegative(S
)) &&
482 SE
->isKnownPredicate(isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
484 Rem
->replaceAllUsesWith(Rem
->getOperand(0));
486 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
487 const SCEV
*LessOne
=
488 SE
->getMinusSCEV(S
, SE
->getConstant(S
->getType(), 1));
489 if ((!isSigned
|| SE
->isKnownNonNegative(LessOne
)) &&
490 SE
->isKnownPredicate(isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
,
492 ICmpInst
*ICmp
= new ICmpInst(Rem
, ICmpInst::ICMP_EQ
,
493 Rem
->getOperand(0), Rem
->getOperand(1),
496 SelectInst::Create(ICmp
,
497 ConstantInt::get(Rem
->getType(), 0),
498 Rem
->getOperand(0), "tmp", Rem
);
499 Rem
->replaceAllUsesWith(Sel
);
504 // Inform IVUsers about the new users.
505 if (Instruction
*I
= dyn_cast
<Instruction
>(Rem
->getOperand(0)))
506 IU
->AddUsersIfInteresting(I
);
508 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem
<< '\n');
509 DeadInsts
.push_back(Rem
);
513 bool IndVarSimplify::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
514 // If LoopSimplify form is not available, stay out of trouble. Some notes:
515 // - LSR currently only supports LoopSimplify-form loops. Indvars'
516 // canonicalization can be a pessimization without LSR to "clean up"
518 // - We depend on having a preheader; in particular,
519 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
520 // and we're in trouble if we can't find the induction variable even when
521 // we've manually inserted one.
522 if (!L
->isLoopSimplifyForm())
525 IU
= &getAnalysis
<IVUsers
>();
526 LI
= &getAnalysis
<LoopInfo
>();
527 SE
= &getAnalysis
<ScalarEvolution
>();
528 DT
= &getAnalysis
<DominatorTree
>();
532 // If there are any floating-point recurrences, attempt to
533 // transform them to use integer recurrences.
534 RewriteNonIntegerIVs(L
);
536 BasicBlock
*ExitingBlock
= L
->getExitingBlock(); // may be null
537 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
539 // Create a rewriter object which we'll use to transform the code with.
540 SCEVExpander
Rewriter(*SE
);
542 // Check to see if this loop has a computable loop-invariant execution count.
543 // If so, this means that we can compute the final value of any expressions
544 // that are recurrent in the loop, and substitute the exit values from the
545 // loop into any instructions outside of the loop that use the final values of
546 // the current expressions.
548 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
549 RewriteLoopExitValues(L
, Rewriter
);
551 // Simplify ICmp IV users.
552 EliminateIVComparisons();
554 // Simplify SRem and URem IV users.
555 EliminateIVRemainders();
557 // Compute the type of the largest recurrence expression, and decide whether
558 // a canonical induction variable should be inserted.
559 const Type
*LargestType
= 0;
560 bool NeedCannIV
= false;
561 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
)) {
562 LargestType
= BackedgeTakenCount
->getType();
563 LargestType
= SE
->getEffectiveSCEVType(LargestType
);
564 // If we have a known trip count and a single exit block, we'll be
565 // rewriting the loop exit test condition below, which requires a
566 // canonical induction variable.
570 for (IVUsers::const_iterator I
= IU
->begin(), E
= IU
->end(); I
!= E
; ++I
) {
572 SE
->getEffectiveSCEVType(I
->getOperandValToReplace()->getType());
574 SE
->getTypeSizeInBits(Ty
) >
575 SE
->getTypeSizeInBits(LargestType
))
580 // Now that we know the largest of the induction variable expressions
581 // in this loop, insert a canonical induction variable of the largest size.
584 // Check to see if the loop already has any canonical-looking induction
585 // variables. If any are present and wider than the planned canonical
586 // induction variable, temporarily remove them, so that the Rewriter
587 // doesn't attempt to reuse them.
588 SmallVector
<PHINode
*, 2> OldCannIVs
;
589 while (PHINode
*OldCannIV
= L
->getCanonicalInductionVariable()) {
590 if (SE
->getTypeSizeInBits(OldCannIV
->getType()) >
591 SE
->getTypeSizeInBits(LargestType
))
592 OldCannIV
->removeFromParent();
595 OldCannIVs
.push_back(OldCannIV
);
598 IndVar
= Rewriter
.getOrInsertCanonicalInductionVariable(L
, LargestType
);
602 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar
<< '\n');
604 // Now that the official induction variable is established, reinsert
605 // any old canonical-looking variables after it so that the IR remains
606 // consistent. They will be deleted as part of the dead-PHI deletion at
607 // the end of the pass.
608 while (!OldCannIVs
.empty()) {
609 PHINode
*OldCannIV
= OldCannIVs
.pop_back_val();
610 OldCannIV
->insertBefore(L
->getHeader()->getFirstNonPHI());
614 // If we have a trip count expression, rewrite the loop's exit condition
615 // using it. We can currently only handle loops with a single exit.
616 ICmpInst
*NewICmp
= 0;
617 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) &&
618 !BackedgeTakenCount
->isZero() &&
621 "LinearFunctionTestReplace requires a canonical induction variable");
622 // Can't rewrite non-branch yet.
623 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator()))
624 NewICmp
= LinearFunctionTestReplace(L
, BackedgeTakenCount
, IndVar
,
625 ExitingBlock
, BI
, Rewriter
);
628 // Rewrite IV-derived expressions.
629 RewriteIVExpressions(L
, Rewriter
);
631 // Clear the rewriter cache, because values that are in the rewriter's cache
632 // can be deleted in the loop below, causing the AssertingVH in the cache to
636 // Now that we're done iterating through lists, clean up any instructions
637 // which are now dead.
638 while (!DeadInsts
.empty())
639 if (Instruction
*Inst
=
640 dyn_cast_or_null
<Instruction
>(&*DeadInsts
.pop_back_val()))
641 RecursivelyDeleteTriviallyDeadInstructions(Inst
);
643 // The Rewriter may not be used from this point on.
645 // Loop-invariant instructions in the preheader that aren't used in the
646 // loop may be sunk below the loop to reduce register pressure.
647 SinkUnusedInvariants(L
);
649 // For completeness, inform IVUsers of the IV use in the newly-created
650 // loop exit test instruction.
652 IU
->AddUsersIfInteresting(cast
<Instruction
>(NewICmp
->getOperand(0)));
654 // Clean up dead instructions.
655 Changed
|= DeleteDeadPHIs(L
->getHeader());
656 // Check a post-condition.
657 assert(L
->isLCSSAForm(*DT
) && "Indvars did not leave the loop in lcssa form!");
661 // FIXME: It is an extremely bad idea to indvar substitute anything more
662 // complex than affine induction variables. Doing so will put expensive
663 // polynomial evaluations inside of the loop, and the str reduction pass
664 // currently can only reduce affine polynomials. For now just disable
665 // indvar subst on anything more complex than an affine addrec, unless
666 // it can be expanded to a trivial value.
667 static bool isSafe(const SCEV
*S
, const Loop
*L
, ScalarEvolution
*SE
) {
668 // Loop-invariant values are safe.
669 if (SE
->isLoopInvariant(S
, L
)) return true;
671 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
672 // to transform them into efficient code.
673 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
674 return AR
->isAffine();
676 // An add is safe it all its operands are safe.
677 if (const SCEVCommutativeExpr
*Commutative
= dyn_cast
<SCEVCommutativeExpr
>(S
)) {
678 for (SCEVCommutativeExpr::op_iterator I
= Commutative
->op_begin(),
679 E
= Commutative
->op_end(); I
!= E
; ++I
)
680 if (!isSafe(*I
, L
, SE
)) return false;
684 // A cast is safe if its operand is.
685 if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
686 return isSafe(C
->getOperand(), L
, SE
);
688 // A udiv is safe if its operands are.
689 if (const SCEVUDivExpr
*UD
= dyn_cast
<SCEVUDivExpr
>(S
))
690 return isSafe(UD
->getLHS(), L
, SE
) &&
691 isSafe(UD
->getRHS(), L
, SE
);
693 // SCEVUnknown is always safe.
694 if (isa
<SCEVUnknown
>(S
))
697 // Nothing else is safe.
701 void IndVarSimplify::RewriteIVExpressions(Loop
*L
, SCEVExpander
&Rewriter
) {
702 // Rewrite all induction variable expressions in terms of the canonical
703 // induction variable.
705 // If there were induction variables of other sizes or offsets, manually
706 // add the offsets to the primary induction variable and cast, avoiding
707 // the need for the code evaluation methods to insert induction variables
708 // of different sizes.
709 for (IVUsers::iterator UI
= IU
->begin(), E
= IU
->end(); UI
!= E
; ++UI
) {
710 Value
*Op
= UI
->getOperandValToReplace();
711 const Type
*UseTy
= Op
->getType();
712 Instruction
*User
= UI
->getUser();
714 // Compute the final addrec to expand into code.
715 const SCEV
*AR
= IU
->getReplacementExpr(*UI
);
717 // Evaluate the expression out of the loop, if possible.
718 if (!L
->contains(UI
->getUser())) {
719 const SCEV
*ExitVal
= SE
->getSCEVAtScope(AR
, L
->getParentLoop());
720 if (SE
->isLoopInvariant(ExitVal
, L
))
724 // FIXME: It is an extremely bad idea to indvar substitute anything more
725 // complex than affine induction variables. Doing so will put expensive
726 // polynomial evaluations inside of the loop, and the str reduction pass
727 // currently can only reduce affine polynomials. For now just disable
728 // indvar subst on anything more complex than an affine addrec, unless
729 // it can be expanded to a trivial value.
730 if (!isSafe(AR
, L
, SE
))
733 // Determine the insertion point for this user. By default, insert
734 // immediately before the user. The SCEVExpander class will automatically
735 // hoist loop invariants out of the loop. For PHI nodes, there may be
736 // multiple uses, so compute the nearest common dominator for the
738 Instruction
*InsertPt
= User
;
739 if (PHINode
*PHI
= dyn_cast
<PHINode
>(InsertPt
))
740 for (unsigned i
= 0, e
= PHI
->getNumIncomingValues(); i
!= e
; ++i
)
741 if (PHI
->getIncomingValue(i
) == Op
) {
742 if (InsertPt
== User
)
743 InsertPt
= PHI
->getIncomingBlock(i
)->getTerminator();
746 DT
->findNearestCommonDominator(InsertPt
->getParent(),
747 PHI
->getIncomingBlock(i
))
751 // Now expand it into actual Instructions and patch it into place.
752 Value
*NewVal
= Rewriter
.expandCodeFor(AR
, UseTy
, InsertPt
);
754 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR
<< "' " << *Op
<< '\n'
755 << " into = " << *NewVal
<< "\n");
757 if (!isValidRewrite(Op
, NewVal
)) {
758 DeadInsts
.push_back(NewVal
);
761 // Inform ScalarEvolution that this value is changing. The change doesn't
762 // affect its value, but it does potentially affect which use lists the
763 // value will be on after the replacement, which affects ScalarEvolution's
764 // ability to walk use lists and drop dangling pointers when a value is
766 SE
->forgetValue(User
);
768 // Patch the new value into place.
770 NewVal
->takeName(Op
);
771 User
->replaceUsesOfWith(Op
, NewVal
);
772 UI
->setOperandValToReplace(NewVal
);
777 // The old value may be dead now.
778 DeadInsts
.push_back(Op
);
782 /// If there's a single exit block, sink any loop-invariant values that
783 /// were defined in the preheader but not used inside the loop into the
784 /// exit block to reduce register pressure in the loop.
785 void IndVarSimplify::SinkUnusedInvariants(Loop
*L
) {
786 BasicBlock
*ExitBlock
= L
->getExitBlock();
787 if (!ExitBlock
) return;
789 BasicBlock
*Preheader
= L
->getLoopPreheader();
790 if (!Preheader
) return;
792 Instruction
*InsertPt
= ExitBlock
->getFirstNonPHI();
793 BasicBlock::iterator I
= Preheader
->getTerminator();
794 while (I
!= Preheader
->begin()) {
796 // New instructions were inserted at the end of the preheader.
800 // Don't move instructions which might have side effects, since the side
801 // effects need to complete before instructions inside the loop. Also don't
802 // move instructions which might read memory, since the loop may modify
803 // memory. Note that it's okay if the instruction might have undefined
804 // behavior: LoopSimplify guarantees that the preheader dominates the exit
806 if (I
->mayHaveSideEffects() || I
->mayReadFromMemory())
809 // Skip debug info intrinsics.
810 if (isa
<DbgInfoIntrinsic
>(I
))
813 // Don't sink static AllocaInsts out of the entry block, which would
814 // turn them into dynamic allocas!
815 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
816 if (AI
->isStaticAlloca())
819 // Determine if there is a use in or before the loop (direct or
821 bool UsedInLoop
= false;
822 for (Value::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
825 BasicBlock
*UseBB
= cast
<Instruction
>(U
)->getParent();
826 if (PHINode
*P
= dyn_cast
<PHINode
>(U
)) {
828 PHINode::getIncomingValueNumForOperand(UI
.getOperandNo());
829 UseBB
= P
->getIncomingBlock(i
);
831 if (UseBB
== Preheader
|| L
->contains(UseBB
)) {
837 // If there is, the def must remain in the preheader.
841 // Otherwise, sink it to the exit block.
842 Instruction
*ToMove
= I
;
845 if (I
!= Preheader
->begin()) {
846 // Skip debug info intrinsics.
849 } while (isa
<DbgInfoIntrinsic
>(I
) && I
!= Preheader
->begin());
851 if (isa
<DbgInfoIntrinsic
>(I
) && I
== Preheader
->begin())
857 ToMove
->moveBefore(InsertPt
);
863 /// ConvertToSInt - Convert APF to an integer, if possible.
864 static bool ConvertToSInt(const APFloat
&APF
, int64_t &IntVal
) {
865 bool isExact
= false;
866 if (&APF
.getSemantics() == &APFloat::PPCDoubleDouble
)
868 // See if we can convert this to an int64_t
870 if (APF
.convertToInteger(&UIntVal
, 64, true, APFloat::rmTowardZero
,
871 &isExact
) != APFloat::opOK
|| !isExact
)
877 /// HandleFloatingPointIV - If the loop has floating induction variable
878 /// then insert corresponding integer induction variable if possible.
880 /// for(double i = 0; i < 10000; ++i)
882 /// is converted into
883 /// for(int i = 0; i < 10000; ++i)
886 void IndVarSimplify::HandleFloatingPointIV(Loop
*L
, PHINode
*PN
) {
887 unsigned IncomingEdge
= L
->contains(PN
->getIncomingBlock(0));
888 unsigned BackEdge
= IncomingEdge
^1;
890 // Check incoming value.
891 ConstantFP
*InitValueVal
=
892 dyn_cast
<ConstantFP
>(PN
->getIncomingValue(IncomingEdge
));
895 if (!InitValueVal
|| !ConvertToSInt(InitValueVal
->getValueAPF(), InitValue
))
898 // Check IV increment. Reject this PN if increment operation is not
899 // an add or increment value can not be represented by an integer.
900 BinaryOperator
*Incr
=
901 dyn_cast
<BinaryOperator
>(PN
->getIncomingValue(BackEdge
));
902 if (Incr
== 0 || Incr
->getOpcode() != Instruction::FAdd
) return;
904 // If this is not an add of the PHI with a constantfp, or if the constant fp
905 // is not an integer, bail out.
906 ConstantFP
*IncValueVal
= dyn_cast
<ConstantFP
>(Incr
->getOperand(1));
908 if (IncValueVal
== 0 || Incr
->getOperand(0) != PN
||
909 !ConvertToSInt(IncValueVal
->getValueAPF(), IncValue
))
912 // Check Incr uses. One user is PN and the other user is an exit condition
913 // used by the conditional terminator.
914 Value::use_iterator IncrUse
= Incr
->use_begin();
915 Instruction
*U1
= cast
<Instruction
>(*IncrUse
++);
916 if (IncrUse
== Incr
->use_end()) return;
917 Instruction
*U2
= cast
<Instruction
>(*IncrUse
++);
918 if (IncrUse
!= Incr
->use_end()) return;
920 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
921 // only used by a branch, we can't transform it.
922 FCmpInst
*Compare
= dyn_cast
<FCmpInst
>(U1
);
924 Compare
= dyn_cast
<FCmpInst
>(U2
);
925 if (Compare
== 0 || !Compare
->hasOneUse() ||
926 !isa
<BranchInst
>(Compare
->use_back()))
929 BranchInst
*TheBr
= cast
<BranchInst
>(Compare
->use_back());
931 // We need to verify that the branch actually controls the iteration count
932 // of the loop. If not, the new IV can overflow and no one will notice.
933 // The branch block must be in the loop and one of the successors must be out
935 assert(TheBr
->isConditional() && "Can't use fcmp if not conditional");
936 if (!L
->contains(TheBr
->getParent()) ||
937 (L
->contains(TheBr
->getSuccessor(0)) &&
938 L
->contains(TheBr
->getSuccessor(1))))
942 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
944 ConstantFP
*ExitValueVal
= dyn_cast
<ConstantFP
>(Compare
->getOperand(1));
946 if (ExitValueVal
== 0 ||
947 !ConvertToSInt(ExitValueVal
->getValueAPF(), ExitValue
))
950 // Find new predicate for integer comparison.
951 CmpInst::Predicate NewPred
= CmpInst::BAD_ICMP_PREDICATE
;
952 switch (Compare
->getPredicate()) {
953 default: return; // Unknown comparison.
954 case CmpInst::FCMP_OEQ
:
955 case CmpInst::FCMP_UEQ
: NewPred
= CmpInst::ICMP_EQ
; break;
956 case CmpInst::FCMP_ONE
:
957 case CmpInst::FCMP_UNE
: NewPred
= CmpInst::ICMP_NE
; break;
958 case CmpInst::FCMP_OGT
:
959 case CmpInst::FCMP_UGT
: NewPred
= CmpInst::ICMP_SGT
; break;
960 case CmpInst::FCMP_OGE
:
961 case CmpInst::FCMP_UGE
: NewPred
= CmpInst::ICMP_SGE
; break;
962 case CmpInst::FCMP_OLT
:
963 case CmpInst::FCMP_ULT
: NewPred
= CmpInst::ICMP_SLT
; break;
964 case CmpInst::FCMP_OLE
:
965 case CmpInst::FCMP_ULE
: NewPred
= CmpInst::ICMP_SLE
; break;
968 // We convert the floating point induction variable to a signed i32 value if
969 // we can. This is only safe if the comparison will not overflow in a way
970 // that won't be trapped by the integer equivalent operations. Check for this
972 // TODO: We could use i64 if it is native and the range requires it.
974 // The start/stride/exit values must all fit in signed i32.
975 if (!isInt
<32>(InitValue
) || !isInt
<32>(IncValue
) || !isInt
<32>(ExitValue
))
978 // If not actually striding (add x, 0.0), avoid touching the code.
982 // Positive and negative strides have different safety conditions.
984 // If we have a positive stride, we require the init to be less than the
985 // exit value and an equality or less than comparison.
986 if (InitValue
>= ExitValue
||
987 NewPred
== CmpInst::ICMP_SGT
|| NewPred
== CmpInst::ICMP_SGE
)
990 uint32_t Range
= uint32_t(ExitValue
-InitValue
);
991 if (NewPred
== CmpInst::ICMP_SLE
) {
992 // Normalize SLE -> SLT, check for infinite loop.
993 if (++Range
== 0) return; // Range overflows.
996 unsigned Leftover
= Range
% uint32_t(IncValue
);
998 // If this is an equality comparison, we require that the strided value
999 // exactly land on the exit value, otherwise the IV condition will wrap
1000 // around and do things the fp IV wouldn't.
1001 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
1005 // If the stride would wrap around the i32 before exiting, we can't
1006 // transform the IV.
1007 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) < ExitValue
)
1011 // If we have a negative stride, we require the init to be greater than the
1012 // exit value and an equality or greater than comparison.
1013 if (InitValue
>= ExitValue
||
1014 NewPred
== CmpInst::ICMP_SLT
|| NewPred
== CmpInst::ICMP_SLE
)
1017 uint32_t Range
= uint32_t(InitValue
-ExitValue
);
1018 if (NewPred
== CmpInst::ICMP_SGE
) {
1019 // Normalize SGE -> SGT, check for infinite loop.
1020 if (++Range
== 0) return; // Range overflows.
1023 unsigned Leftover
= Range
% uint32_t(-IncValue
);
1025 // If this is an equality comparison, we require that the strided value
1026 // exactly land on the exit value, otherwise the IV condition will wrap
1027 // around and do things the fp IV wouldn't.
1028 if ((NewPred
== CmpInst::ICMP_EQ
|| NewPred
== CmpInst::ICMP_NE
) &&
1032 // If the stride would wrap around the i32 before exiting, we can't
1033 // transform the IV.
1034 if (Leftover
!= 0 && int32_t(ExitValue
+IncValue
) > ExitValue
)
1038 const IntegerType
*Int32Ty
= Type::getInt32Ty(PN
->getContext());
1040 // Insert new integer induction variable.
1041 PHINode
*NewPHI
= PHINode::Create(Int32Ty
, 2, PN
->getName()+".int", PN
);
1042 NewPHI
->addIncoming(ConstantInt::get(Int32Ty
, InitValue
),
1043 PN
->getIncomingBlock(IncomingEdge
));
1046 BinaryOperator::CreateAdd(NewPHI
, ConstantInt::get(Int32Ty
, IncValue
),
1047 Incr
->getName()+".int", Incr
);
1048 NewPHI
->addIncoming(NewAdd
, PN
->getIncomingBlock(BackEdge
));
1050 ICmpInst
*NewCompare
= new ICmpInst(TheBr
, NewPred
, NewAdd
,
1051 ConstantInt::get(Int32Ty
, ExitValue
),
1052 Compare
->getName());
1054 // In the following deletions, PN may become dead and may be deleted.
1055 // Use a WeakVH to observe whether this happens.
1058 // Delete the old floating point exit comparison. The branch starts using the
1060 NewCompare
->takeName(Compare
);
1061 Compare
->replaceAllUsesWith(NewCompare
);
1062 RecursivelyDeleteTriviallyDeadInstructions(Compare
);
1064 // Delete the old floating point increment.
1065 Incr
->replaceAllUsesWith(UndefValue::get(Incr
->getType()));
1066 RecursivelyDeleteTriviallyDeadInstructions(Incr
);
1068 // If the FP induction variable still has uses, this is because something else
1069 // in the loop uses its value. In order to canonicalize the induction
1070 // variable, we chose to eliminate the IV and rewrite it in terms of an
1073 // We give preference to sitofp over uitofp because it is faster on most
1076 Value
*Conv
= new SIToFPInst(NewPHI
, PN
->getType(), "indvar.conv",
1077 PN
->getParent()->getFirstNonPHI());
1078 PN
->replaceAllUsesWith(Conv
);
1079 RecursivelyDeleteTriviallyDeadInstructions(PN
);
1082 // Add a new IVUsers entry for the newly-created integer PHI.
1083 IU
->AddUsersIfInteresting(NewPHI
);