Use %ull here.
[llvm/stm8.git] / lib / Transforms / InstCombine / InstCombineCompares.cpp
blob8afd2f8d004448932d6ffaff60bd8e492428a1d2
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/MemoryBuiltins.h"
18 #include "llvm/Target/TargetData.h"
19 #include "llvm/Support/ConstantRange.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/Support/PatternMatch.h"
22 using namespace llvm;
23 using namespace PatternMatch;
25 static ConstantInt *getOne(Constant *C) {
26 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29 /// AddOne - Add one to a ConstantInt
30 static Constant *AddOne(Constant *C) {
31 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
33 /// SubOne - Subtract one from a ConstantInt
34 static Constant *SubOne(Constant *C) {
35 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
38 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
39 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42 static bool HasAddOverflow(ConstantInt *Result,
43 ConstantInt *In1, ConstantInt *In2,
44 bool IsSigned) {
45 if (IsSigned)
46 if (In2->getValue().isNegative())
47 return Result->getValue().sgt(In1->getValue());
48 else
49 return Result->getValue().slt(In1->getValue());
50 else
51 return Result->getValue().ult(In1->getValue());
54 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55 /// overflowed for this type.
56 static bool AddWithOverflow(Constant *&Result, Constant *In1,
57 Constant *In2, bool IsSigned = false) {
58 Result = ConstantExpr::getAdd(In1, In2);
60 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63 if (HasAddOverflow(ExtractElement(Result, Idx),
64 ExtractElement(In1, Idx),
65 ExtractElement(In2, Idx),
66 IsSigned))
67 return true;
69 return false;
72 return HasAddOverflow(cast<ConstantInt>(Result),
73 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74 IsSigned);
77 static bool HasSubOverflow(ConstantInt *Result,
78 ConstantInt *In1, ConstantInt *In2,
79 bool IsSigned) {
80 if (IsSigned)
81 if (In2->getValue().isNegative())
82 return Result->getValue().slt(In1->getValue());
83 else
84 return Result->getValue().sgt(In1->getValue());
85 else
86 return Result->getValue().ugt(In1->getValue());
89 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90 /// overflowed for this type.
91 static bool SubWithOverflow(Constant *&Result, Constant *In1,
92 Constant *In2, bool IsSigned = false) {
93 Result = ConstantExpr::getSub(In1, In2);
95 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98 if (HasSubOverflow(ExtractElement(Result, Idx),
99 ExtractElement(In1, Idx),
100 ExtractElement(In2, Idx),
101 IsSigned))
102 return true;
104 return false;
107 return HasSubOverflow(cast<ConstantInt>(Result),
108 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109 IsSigned);
112 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
113 /// comparison only checks the sign bit. If it only checks the sign bit, set
114 /// TrueIfSigned if the result of the comparison is true when the input value is
115 /// signed.
116 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117 bool &TrueIfSigned) {
118 switch (pred) {
119 case ICmpInst::ICMP_SLT: // True if LHS s< 0
120 TrueIfSigned = true;
121 return RHS->isZero();
122 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
123 TrueIfSigned = true;
124 return RHS->isAllOnesValue();
125 case ICmpInst::ICMP_SGT: // True if LHS s> -1
126 TrueIfSigned = false;
127 return RHS->isAllOnesValue();
128 case ICmpInst::ICMP_UGT:
129 // True if LHS u> RHS and RHS == high-bit-mask - 1
130 TrueIfSigned = true;
131 return RHS->getValue() ==
132 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
133 case ICmpInst::ICMP_UGE:
134 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135 TrueIfSigned = true;
136 return RHS->getValue().isSignBit();
137 default:
138 return false;
142 // isHighOnes - Return true if the constant is of the form 1+0+.
143 // This is the same as lowones(~X).
144 static bool isHighOnes(const ConstantInt *CI) {
145 return (~CI->getValue() + 1).isPowerOf2();
148 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149 /// set of known zero and one bits, compute the maximum and minimum values that
150 /// could have the specified known zero and known one bits, returning them in
151 /// min/max.
152 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
153 const APInt& KnownOne,
154 APInt& Min, APInt& Max) {
155 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
156 KnownZero.getBitWidth() == Min.getBitWidth() &&
157 KnownZero.getBitWidth() == Max.getBitWidth() &&
158 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159 APInt UnknownBits = ~(KnownZero|KnownOne);
161 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162 // bit if it is unknown.
163 Min = KnownOne;
164 Max = KnownOne|UnknownBits;
166 if (UnknownBits.isNegative()) { // Sign bit is unknown
167 Min.setBit(Min.getBitWidth()-1);
168 Max.clearBit(Max.getBitWidth()-1);
172 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173 // a set of known zero and one bits, compute the maximum and minimum values that
174 // could have the specified known zero and known one bits, returning them in
175 // min/max.
176 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
177 const APInt &KnownOne,
178 APInt &Min, APInt &Max) {
179 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
180 KnownZero.getBitWidth() == Min.getBitWidth() &&
181 KnownZero.getBitWidth() == Max.getBitWidth() &&
182 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183 APInt UnknownBits = ~(KnownZero|KnownOne);
185 // The minimum value is when the unknown bits are all zeros.
186 Min = KnownOne;
187 // The maximum value is when the unknown bits are all ones.
188 Max = KnownOne|UnknownBits;
193 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194 /// cmp pred (load (gep GV, ...)), cmpcst
195 /// where GV is a global variable with a constant initializer. Try to simplify
196 /// this into some simple computation that does not need the load. For example
197 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
199 /// If AndCst is non-null, then the loaded value is masked with that constant
200 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
201 Instruction *InstCombiner::
202 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
203 CmpInst &ICI, ConstantInt *AndCst) {
204 // We need TD information to know the pointer size unless this is inbounds.
205 if (!GEP->isInBounds() && TD == 0) return 0;
207 ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
208 if (Init == 0 || Init->getNumOperands() > 1024) return 0;
210 // There are many forms of this optimization we can handle, for now, just do
211 // the simple index into a single-dimensional array.
213 // Require: GEP GV, 0, i {{, constant indices}}
214 if (GEP->getNumOperands() < 3 ||
215 !isa<ConstantInt>(GEP->getOperand(1)) ||
216 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
217 isa<Constant>(GEP->getOperand(2)))
218 return 0;
220 // Check that indices after the variable are constants and in-range for the
221 // type they index. Collect the indices. This is typically for arrays of
222 // structs.
223 SmallVector<unsigned, 4> LaterIndices;
225 const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
226 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
227 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
228 if (Idx == 0) return 0; // Variable index.
230 uint64_t IdxVal = Idx->getZExtValue();
231 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
233 if (const StructType *STy = dyn_cast<StructType>(EltTy))
234 EltTy = STy->getElementType(IdxVal);
235 else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
236 if (IdxVal >= ATy->getNumElements()) return 0;
237 EltTy = ATy->getElementType();
238 } else {
239 return 0; // Unknown type.
242 LaterIndices.push_back(IdxVal);
245 enum { Overdefined = -3, Undefined = -2 };
247 // Variables for our state machines.
249 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
250 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
251 // and 87 is the second (and last) index. FirstTrueElement is -2 when
252 // undefined, otherwise set to the first true element. SecondTrueElement is
253 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
254 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
256 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
257 // form "i != 47 & i != 87". Same state transitions as for true elements.
258 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
260 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
261 /// define a state machine that triggers for ranges of values that the index
262 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
263 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
264 /// index in the range (inclusive). We use -2 for undefined here because we
265 /// use relative comparisons and don't want 0-1 to match -1.
266 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
268 // MagicBitvector - This is a magic bitvector where we set a bit if the
269 // comparison is true for element 'i'. If there are 64 elements or less in
270 // the array, this will fully represent all the comparison results.
271 uint64_t MagicBitvector = 0;
274 // Scan the array and see if one of our patterns matches.
275 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
276 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
277 Constant *Elt = Init->getOperand(i);
279 // If this is indexing an array of structures, get the structure element.
280 if (!LaterIndices.empty())
281 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
282 LaterIndices.size());
284 // If the element is masked, handle it.
285 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
287 // Find out if the comparison would be true or false for the i'th element.
288 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
289 CompareRHS, TD);
290 // If the result is undef for this element, ignore it.
291 if (isa<UndefValue>(C)) {
292 // Extend range state machines to cover this element in case there is an
293 // undef in the middle of the range.
294 if (TrueRangeEnd == (int)i-1)
295 TrueRangeEnd = i;
296 if (FalseRangeEnd == (int)i-1)
297 FalseRangeEnd = i;
298 continue;
301 // If we can't compute the result for any of the elements, we have to give
302 // up evaluating the entire conditional.
303 if (!isa<ConstantInt>(C)) return 0;
305 // Otherwise, we know if the comparison is true or false for this element,
306 // update our state machines.
307 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
309 // State machine for single/double/range index comparison.
310 if (IsTrueForElt) {
311 // Update the TrueElement state machine.
312 if (FirstTrueElement == Undefined)
313 FirstTrueElement = TrueRangeEnd = i; // First true element.
314 else {
315 // Update double-compare state machine.
316 if (SecondTrueElement == Undefined)
317 SecondTrueElement = i;
318 else
319 SecondTrueElement = Overdefined;
321 // Update range state machine.
322 if (TrueRangeEnd == (int)i-1)
323 TrueRangeEnd = i;
324 else
325 TrueRangeEnd = Overdefined;
327 } else {
328 // Update the FalseElement state machine.
329 if (FirstFalseElement == Undefined)
330 FirstFalseElement = FalseRangeEnd = i; // First false element.
331 else {
332 // Update double-compare state machine.
333 if (SecondFalseElement == Undefined)
334 SecondFalseElement = i;
335 else
336 SecondFalseElement = Overdefined;
338 // Update range state machine.
339 if (FalseRangeEnd == (int)i-1)
340 FalseRangeEnd = i;
341 else
342 FalseRangeEnd = Overdefined;
347 // If this element is in range, update our magic bitvector.
348 if (i < 64 && IsTrueForElt)
349 MagicBitvector |= 1ULL << i;
351 // If all of our states become overdefined, bail out early. Since the
352 // predicate is expensive, only check it every 8 elements. This is only
353 // really useful for really huge arrays.
354 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
355 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
356 FalseRangeEnd == Overdefined)
357 return 0;
360 // Now that we've scanned the entire array, emit our new comparison(s). We
361 // order the state machines in complexity of the generated code.
362 Value *Idx = GEP->getOperand(2);
364 // If the index is larger than the pointer size of the target, truncate the
365 // index down like the GEP would do implicitly. We don't have to do this for
366 // an inbounds GEP because the index can't be out of range.
367 if (!GEP->isInBounds() &&
368 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
369 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
371 // If the comparison is only true for one or two elements, emit direct
372 // comparisons.
373 if (SecondTrueElement != Overdefined) {
374 // None true -> false.
375 if (FirstTrueElement == Undefined)
376 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
378 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
380 // True for one element -> 'i == 47'.
381 if (SecondTrueElement == Undefined)
382 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
384 // True for two elements -> 'i == 47 | i == 72'.
385 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
386 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
387 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
388 return BinaryOperator::CreateOr(C1, C2);
391 // If the comparison is only false for one or two elements, emit direct
392 // comparisons.
393 if (SecondFalseElement != Overdefined) {
394 // None false -> true.
395 if (FirstFalseElement == Undefined)
396 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
398 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
400 // False for one element -> 'i != 47'.
401 if (SecondFalseElement == Undefined)
402 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
404 // False for two elements -> 'i != 47 & i != 72'.
405 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
406 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
407 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
408 return BinaryOperator::CreateAnd(C1, C2);
411 // If the comparison can be replaced with a range comparison for the elements
412 // where it is true, emit the range check.
413 if (TrueRangeEnd != Overdefined) {
414 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
416 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
417 if (FirstTrueElement) {
418 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
419 Idx = Builder->CreateAdd(Idx, Offs);
422 Value *End = ConstantInt::get(Idx->getType(),
423 TrueRangeEnd-FirstTrueElement+1);
424 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
427 // False range check.
428 if (FalseRangeEnd != Overdefined) {
429 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
430 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
431 if (FirstFalseElement) {
432 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
433 Idx = Builder->CreateAdd(Idx, Offs);
436 Value *End = ConstantInt::get(Idx->getType(),
437 FalseRangeEnd-FirstFalseElement);
438 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
442 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
443 // of this load, replace it with computation that does:
444 // ((magic_cst >> i) & 1) != 0
445 if (Init->getNumOperands() <= 32 ||
446 (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
447 const Type *Ty;
448 if (Init->getNumOperands() <= 32)
449 Ty = Type::getInt32Ty(Init->getContext());
450 else
451 Ty = Type::getInt64Ty(Init->getContext());
452 Value *V = Builder->CreateIntCast(Idx, Ty, false);
453 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
454 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
455 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
458 return 0;
462 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
463 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
464 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
465 /// be complex, and scales are involved. The above expression would also be
466 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
467 /// This later form is less amenable to optimization though, and we are allowed
468 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
470 /// If we can't emit an optimized form for this expression, this returns null.
471 ///
472 static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
473 InstCombiner &IC) {
474 TargetData &TD = *IC.getTargetData();
475 gep_type_iterator GTI = gep_type_begin(GEP);
477 // Check to see if this gep only has a single variable index. If so, and if
478 // any constant indices are a multiple of its scale, then we can compute this
479 // in terms of the scale of the variable index. For example, if the GEP
480 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
481 // because the expression will cross zero at the same point.
482 unsigned i, e = GEP->getNumOperands();
483 int64_t Offset = 0;
484 for (i = 1; i != e; ++i, ++GTI) {
485 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
486 // Compute the aggregate offset of constant indices.
487 if (CI->isZero()) continue;
489 // Handle a struct index, which adds its field offset to the pointer.
490 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
491 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
492 } else {
493 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
494 Offset += Size*CI->getSExtValue();
496 } else {
497 // Found our variable index.
498 break;
502 // If there are no variable indices, we must have a constant offset, just
503 // evaluate it the general way.
504 if (i == e) return 0;
506 Value *VariableIdx = GEP->getOperand(i);
507 // Determine the scale factor of the variable element. For example, this is
508 // 4 if the variable index is into an array of i32.
509 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
511 // Verify that there are no other variable indices. If so, emit the hard way.
512 for (++i, ++GTI; i != e; ++i, ++GTI) {
513 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
514 if (!CI) return 0;
516 // Compute the aggregate offset of constant indices.
517 if (CI->isZero()) continue;
519 // Handle a struct index, which adds its field offset to the pointer.
520 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
521 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522 } else {
523 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
524 Offset += Size*CI->getSExtValue();
528 // Okay, we know we have a single variable index, which must be a
529 // pointer/array/vector index. If there is no offset, life is simple, return
530 // the index.
531 unsigned IntPtrWidth = TD.getPointerSizeInBits();
532 if (Offset == 0) {
533 // Cast to intptrty in case a truncation occurs. If an extension is needed,
534 // we don't need to bother extending: the extension won't affect where the
535 // computation crosses zero.
536 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
537 VariableIdx = new TruncInst(VariableIdx,
538 TD.getIntPtrType(VariableIdx->getContext()),
539 VariableIdx->getName(), &I);
540 return VariableIdx;
543 // Otherwise, there is an index. The computation we will do will be modulo
544 // the pointer size, so get it.
545 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
547 Offset &= PtrSizeMask;
548 VariableScale &= PtrSizeMask;
550 // To do this transformation, any constant index must be a multiple of the
551 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
552 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
553 // multiple of the variable scale.
554 int64_t NewOffs = Offset / (int64_t)VariableScale;
555 if (Offset != NewOffs*(int64_t)VariableScale)
556 return 0;
558 // Okay, we can do this evaluation. Start by converting the index to intptr.
559 const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
560 if (VariableIdx->getType() != IntPtrTy)
561 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
562 true /*SExt*/,
563 VariableIdx->getName(), &I);
564 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
565 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
568 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
569 /// else. At this point we know that the GEP is on the LHS of the comparison.
570 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
571 ICmpInst::Predicate Cond,
572 Instruction &I) {
573 // Look through bitcasts.
574 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
575 RHS = BCI->getOperand(0);
577 Value *PtrBase = GEPLHS->getOperand(0);
578 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
579 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
580 // This transformation (ignoring the base and scales) is valid because we
581 // know pointers can't overflow since the gep is inbounds. See if we can
582 // output an optimized form.
583 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
585 // If not, synthesize the offset the hard way.
586 if (Offset == 0)
587 Offset = EmitGEPOffset(GEPLHS);
588 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
589 Constant::getNullValue(Offset->getType()));
590 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
591 // If the base pointers are different, but the indices are the same, just
592 // compare the base pointer.
593 if (PtrBase != GEPRHS->getOperand(0)) {
594 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
595 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
596 GEPRHS->getOperand(0)->getType();
597 if (IndicesTheSame)
598 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
599 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
600 IndicesTheSame = false;
601 break;
604 // If all indices are the same, just compare the base pointers.
605 if (IndicesTheSame)
606 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
607 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
609 // Otherwise, the base pointers are different and the indices are
610 // different, bail out.
611 return 0;
614 // If one of the GEPs has all zero indices, recurse.
615 bool AllZeros = true;
616 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
617 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
618 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
619 AllZeros = false;
620 break;
622 if (AllZeros)
623 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
624 ICmpInst::getSwappedPredicate(Cond), I);
626 // If the other GEP has all zero indices, recurse.
627 AllZeros = true;
628 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
629 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
630 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
631 AllZeros = false;
632 break;
634 if (AllZeros)
635 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
637 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
638 // If the GEPs only differ by one index, compare it.
639 unsigned NumDifferences = 0; // Keep track of # differences.
640 unsigned DiffOperand = 0; // The operand that differs.
641 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
642 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
644 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
645 // Irreconcilable differences.
646 NumDifferences = 2;
647 break;
648 } else {
649 if (NumDifferences++) break;
650 DiffOperand = i;
654 if (NumDifferences == 0) // SAME GEP?
655 return ReplaceInstUsesWith(I, // No comparison is needed here.
656 ConstantInt::get(Type::getInt1Ty(I.getContext()),
657 ICmpInst::isTrueWhenEqual(Cond)));
659 else if (NumDifferences == 1) {
660 Value *LHSV = GEPLHS->getOperand(DiffOperand);
661 Value *RHSV = GEPRHS->getOperand(DiffOperand);
662 // Make sure we do a signed comparison here.
663 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
667 // Only lower this if the icmp is the only user of the GEP or if we expect
668 // the result to fold to a constant!
669 if (TD &&
670 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
671 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
672 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
673 Value *L = EmitGEPOffset(GEPLHS);
674 Value *R = EmitGEPOffset(GEPRHS);
675 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
678 return 0;
681 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
682 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
683 Value *X, ConstantInt *CI,
684 ICmpInst::Predicate Pred,
685 Value *TheAdd) {
686 // If we have X+0, exit early (simplifying logic below) and let it get folded
687 // elsewhere. icmp X+0, X -> icmp X, X
688 if (CI->isZero()) {
689 bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
690 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
693 // (X+4) == X -> false.
694 if (Pred == ICmpInst::ICMP_EQ)
695 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
697 // (X+4) != X -> true.
698 if (Pred == ICmpInst::ICMP_NE)
699 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
701 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
702 // so the values can never be equal. Similiarly for all other "or equals"
703 // operators.
705 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
706 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
707 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
708 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
709 Value *R =
710 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
711 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
714 // (X+1) >u X --> X <u (0-1) --> X != 255
715 // (X+2) >u X --> X <u (0-2) --> X <u 254
716 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
717 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
718 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
720 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
721 ConstantInt *SMax = ConstantInt::get(X->getContext(),
722 APInt::getSignedMaxValue(BitWidth));
724 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
725 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
726 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
727 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
728 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
729 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
730 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
731 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
733 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
734 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
735 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
736 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
737 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
738 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
740 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
741 Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
742 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
745 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
746 /// and CmpRHS are both known to be integer constants.
747 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
748 ConstantInt *DivRHS) {
749 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
750 const APInt &CmpRHSV = CmpRHS->getValue();
752 // FIXME: If the operand types don't match the type of the divide
753 // then don't attempt this transform. The code below doesn't have the
754 // logic to deal with a signed divide and an unsigned compare (and
755 // vice versa). This is because (x /s C1) <s C2 produces different
756 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
757 // (x /u C1) <u C2. Simply casting the operands and result won't
758 // work. :( The if statement below tests that condition and bails
759 // if it finds it.
760 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
761 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
762 return 0;
763 if (DivRHS->isZero())
764 return 0; // The ProdOV computation fails on divide by zero.
765 if (DivIsSigned && DivRHS->isAllOnesValue())
766 return 0; // The overflow computation also screws up here
767 if (DivRHS->isOne()) {
768 // This eliminates some funny cases with INT_MIN.
769 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
770 return &ICI;
773 // Compute Prod = CI * DivRHS. We are essentially solving an equation
774 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
775 // C2 (CI). By solving for X we can turn this into a range check
776 // instead of computing a divide.
777 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
779 // Determine if the product overflows by seeing if the product is
780 // not equal to the divide. Make sure we do the same kind of divide
781 // as in the LHS instruction that we're folding.
782 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
783 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
785 // Get the ICmp opcode
786 ICmpInst::Predicate Pred = ICI.getPredicate();
788 /// If the division is known to be exact, then there is no remainder from the
789 /// divide, so the covered range size is unit, otherwise it is the divisor.
790 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
792 // Figure out the interval that is being checked. For example, a comparison
793 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
794 // Compute this interval based on the constants involved and the signedness of
795 // the compare/divide. This computes a half-open interval, keeping track of
796 // whether either value in the interval overflows. After analysis each
797 // overflow variable is set to 0 if it's corresponding bound variable is valid
798 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
799 int LoOverflow = 0, HiOverflow = 0;
800 Constant *LoBound = 0, *HiBound = 0;
802 if (!DivIsSigned) { // udiv
803 // e.g. X/5 op 3 --> [15, 20)
804 LoBound = Prod;
805 HiOverflow = LoOverflow = ProdOV;
806 if (!HiOverflow) {
807 // If this is not an exact divide, then many values in the range collapse
808 // to the same result value.
809 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
812 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
813 if (CmpRHSV == 0) { // (X / pos) op 0
814 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
815 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
816 HiBound = RangeSize;
817 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
818 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
819 HiOverflow = LoOverflow = ProdOV;
820 if (!HiOverflow)
821 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
822 } else { // (X / pos) op neg
823 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
824 HiBound = AddOne(Prod);
825 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
826 if (!LoOverflow) {
827 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
828 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
831 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
832 if (DivI->isExact())
833 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
834 if (CmpRHSV == 0) { // (X / neg) op 0
835 // e.g. X/-5 op 0 --> [-4, 5)
836 LoBound = AddOne(RangeSize);
837 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
838 if (HiBound == DivRHS) { // -INTMIN = INTMIN
839 HiOverflow = 1; // [INTMIN+1, overflow)
840 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
842 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
843 // e.g. X/-5 op 3 --> [-19, -14)
844 HiBound = AddOne(Prod);
845 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
846 if (!LoOverflow)
847 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
848 } else { // (X / neg) op neg
849 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
850 LoOverflow = HiOverflow = ProdOV;
851 if (!HiOverflow)
852 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
855 // Dividing by a negative swaps the condition. LT <-> GT
856 Pred = ICmpInst::getSwappedPredicate(Pred);
859 Value *X = DivI->getOperand(0);
860 switch (Pred) {
861 default: llvm_unreachable("Unhandled icmp opcode!");
862 case ICmpInst::ICMP_EQ:
863 if (LoOverflow && HiOverflow)
864 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
865 if (HiOverflow)
866 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
867 ICmpInst::ICMP_UGE, X, LoBound);
868 if (LoOverflow)
869 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
870 ICmpInst::ICMP_ULT, X, HiBound);
871 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
872 DivIsSigned, true));
873 case ICmpInst::ICMP_NE:
874 if (LoOverflow && HiOverflow)
875 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
876 if (HiOverflow)
877 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
878 ICmpInst::ICMP_ULT, X, LoBound);
879 if (LoOverflow)
880 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
881 ICmpInst::ICMP_UGE, X, HiBound);
882 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
883 DivIsSigned, false));
884 case ICmpInst::ICMP_ULT:
885 case ICmpInst::ICMP_SLT:
886 if (LoOverflow == +1) // Low bound is greater than input range.
887 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
888 if (LoOverflow == -1) // Low bound is less than input range.
889 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
890 return new ICmpInst(Pred, X, LoBound);
891 case ICmpInst::ICMP_UGT:
892 case ICmpInst::ICMP_SGT:
893 if (HiOverflow == +1) // High bound greater than input range.
894 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
895 if (HiOverflow == -1) // High bound less than input range.
896 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
897 if (Pred == ICmpInst::ICMP_UGT)
898 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
899 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
903 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
904 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
905 ConstantInt *ShAmt) {
906 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
908 // Check that the shift amount is in range. If not, don't perform
909 // undefined shifts. When the shift is visited it will be
910 // simplified.
911 uint32_t TypeBits = CmpRHSV.getBitWidth();
912 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
913 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
914 return 0;
916 if (!ICI.isEquality()) {
917 // If we have an unsigned comparison and an ashr, we can't simplify this.
918 // Similarly for signed comparisons with lshr.
919 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
920 return 0;
922 // Otherwise, all lshr and all exact ashr's are equivalent to a udiv/sdiv by
923 // a power of 2. Since we already have logic to simplify these, transform
924 // to div and then simplify the resultant comparison.
925 if (Shr->getOpcode() == Instruction::AShr &&
926 !Shr->isExact())
927 return 0;
929 // Revisit the shift (to delete it).
930 Worklist.Add(Shr);
932 Constant *DivCst =
933 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
935 Value *Tmp =
936 Shr->getOpcode() == Instruction::AShr ?
937 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
938 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
940 ICI.setOperand(0, Tmp);
942 // If the builder folded the binop, just return it.
943 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
944 if (TheDiv == 0)
945 return &ICI;
947 // Otherwise, fold this div/compare.
948 assert(TheDiv->getOpcode() == Instruction::SDiv ||
949 TheDiv->getOpcode() == Instruction::UDiv);
951 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
952 assert(Res && "This div/cst should have folded!");
953 return Res;
957 // If we are comparing against bits always shifted out, the
958 // comparison cannot succeed.
959 APInt Comp = CmpRHSV << ShAmtVal;
960 ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
961 if (Shr->getOpcode() == Instruction::LShr)
962 Comp = Comp.lshr(ShAmtVal);
963 else
964 Comp = Comp.ashr(ShAmtVal);
966 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
967 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
968 Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
969 IsICMP_NE);
970 return ReplaceInstUsesWith(ICI, Cst);
973 // Otherwise, check to see if the bits shifted out are known to be zero.
974 // If so, we can compare against the unshifted value:
975 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
976 if (Shr->hasOneUse() && Shr->isExact())
977 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
979 if (Shr->hasOneUse()) {
980 // Otherwise strength reduce the shift into an and.
981 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
982 Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
984 Value *And = Builder->CreateAnd(Shr->getOperand(0),
985 Mask, Shr->getName()+".mask");
986 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
988 return 0;
992 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
994 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
995 Instruction *LHSI,
996 ConstantInt *RHS) {
997 const APInt &RHSV = RHS->getValue();
999 switch (LHSI->getOpcode()) {
1000 case Instruction::Trunc:
1001 if (ICI.isEquality() && LHSI->hasOneUse()) {
1002 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1003 // of the high bits truncated out of x are known.
1004 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1005 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1006 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
1007 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1008 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
1010 // If all the high bits are known, we can do this xform.
1011 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1012 // Pull in the high bits from known-ones set.
1013 APInt NewRHS = RHS->getValue().zext(SrcBits);
1014 NewRHS |= KnownOne;
1015 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1016 ConstantInt::get(ICI.getContext(), NewRHS));
1019 break;
1021 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
1022 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1023 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1024 // fold the xor.
1025 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1026 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1027 Value *CompareVal = LHSI->getOperand(0);
1029 // If the sign bit of the XorCST is not set, there is no change to
1030 // the operation, just stop using the Xor.
1031 if (!XorCST->getValue().isNegative()) {
1032 ICI.setOperand(0, CompareVal);
1033 Worklist.Add(LHSI);
1034 return &ICI;
1037 // Was the old condition true if the operand is positive?
1038 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1040 // If so, the new one isn't.
1041 isTrueIfPositive ^= true;
1043 if (isTrueIfPositive)
1044 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1045 SubOne(RHS));
1046 else
1047 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1048 AddOne(RHS));
1051 if (LHSI->hasOneUse()) {
1052 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1053 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1054 const APInt &SignBit = XorCST->getValue();
1055 ICmpInst::Predicate Pred = ICI.isSigned()
1056 ? ICI.getUnsignedPredicate()
1057 : ICI.getSignedPredicate();
1058 return new ICmpInst(Pred, LHSI->getOperand(0),
1059 ConstantInt::get(ICI.getContext(),
1060 RHSV ^ SignBit));
1063 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1064 if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
1065 const APInt &NotSignBit = XorCST->getValue();
1066 ICmpInst::Predicate Pred = ICI.isSigned()
1067 ? ICI.getUnsignedPredicate()
1068 : ICI.getSignedPredicate();
1069 Pred = ICI.getSwappedPredicate(Pred);
1070 return new ICmpInst(Pred, LHSI->getOperand(0),
1071 ConstantInt::get(ICI.getContext(),
1072 RHSV ^ NotSignBit));
1076 break;
1077 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1078 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1079 LHSI->getOperand(0)->hasOneUse()) {
1080 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1082 // If the LHS is an AND of a truncating cast, we can widen the
1083 // and/compare to be the input width without changing the value
1084 // produced, eliminating a cast.
1085 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1086 // We can do this transformation if either the AND constant does not
1087 // have its sign bit set or if it is an equality comparison.
1088 // Extending a relational comparison when we're checking the sign
1089 // bit would not work.
1090 if (Cast->hasOneUse() &&
1091 (ICI.isEquality() ||
1092 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1093 uint32_t BitWidth =
1094 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
1095 APInt NewCST = AndCST->getValue().zext(BitWidth);
1096 APInt NewCI = RHSV.zext(BitWidth);
1097 Value *NewAnd =
1098 Builder->CreateAnd(Cast->getOperand(0),
1099 ConstantInt::get(ICI.getContext(), NewCST),
1100 LHSI->getName());
1101 return new ICmpInst(ICI.getPredicate(), NewAnd,
1102 ConstantInt::get(ICI.getContext(), NewCI));
1106 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1107 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1108 // happens a LOT in code produced by the C front-end, for bitfield
1109 // access.
1110 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1111 if (Shift && !Shift->isShift())
1112 Shift = 0;
1114 ConstantInt *ShAmt;
1115 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1116 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1117 const Type *AndTy = AndCST->getType(); // Type of the and.
1119 // We can fold this as long as we can't shift unknown bits
1120 // into the mask. This can only happen with signed shift
1121 // rights, as they sign-extend.
1122 if (ShAmt) {
1123 bool CanFold = Shift->isLogicalShift();
1124 if (!CanFold) {
1125 // To test for the bad case of the signed shr, see if any
1126 // of the bits shifted in could be tested after the mask.
1127 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1128 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1130 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1131 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1132 AndCST->getValue()) == 0)
1133 CanFold = true;
1136 if (CanFold) {
1137 Constant *NewCst;
1138 if (Shift->getOpcode() == Instruction::Shl)
1139 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1140 else
1141 NewCst = ConstantExpr::getShl(RHS, ShAmt);
1143 // Check to see if we are shifting out any of the bits being
1144 // compared.
1145 if (ConstantExpr::get(Shift->getOpcode(),
1146 NewCst, ShAmt) != RHS) {
1147 // If we shifted bits out, the fold is not going to work out.
1148 // As a special case, check to see if this means that the
1149 // result is always true or false now.
1150 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1151 return ReplaceInstUsesWith(ICI,
1152 ConstantInt::getFalse(ICI.getContext()));
1153 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1154 return ReplaceInstUsesWith(ICI,
1155 ConstantInt::getTrue(ICI.getContext()));
1156 } else {
1157 ICI.setOperand(1, NewCst);
1158 Constant *NewAndCST;
1159 if (Shift->getOpcode() == Instruction::Shl)
1160 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1161 else
1162 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1163 LHSI->setOperand(1, NewAndCST);
1164 LHSI->setOperand(0, Shift->getOperand(0));
1165 Worklist.Add(Shift); // Shift is dead.
1166 return &ICI;
1171 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1172 // preferable because it allows the C<<Y expression to be hoisted out
1173 // of a loop if Y is invariant and X is not.
1174 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1175 ICI.isEquality() && !Shift->isArithmeticShift() &&
1176 !isa<Constant>(Shift->getOperand(0))) {
1177 // Compute C << Y.
1178 Value *NS;
1179 if (Shift->getOpcode() == Instruction::LShr) {
1180 NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1181 } else {
1182 // Insert a logical shift.
1183 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1186 // Compute X & (C << Y).
1187 Value *NewAnd =
1188 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1190 ICI.setOperand(0, NewAnd);
1191 return &ICI;
1195 // Try to optimize things like "A[i]&42 == 0" to index computations.
1196 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1197 if (GetElementPtrInst *GEP =
1198 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1199 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1200 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1201 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1202 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1203 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1204 return Res;
1207 break;
1209 case Instruction::Or: {
1210 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1211 break;
1212 Value *P, *Q;
1213 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1214 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1215 // -> and (icmp eq P, null), (icmp eq Q, null).
1216 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1217 Constant::getNullValue(P->getType()));
1218 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1219 Constant::getNullValue(Q->getType()));
1220 Instruction *Op;
1221 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1222 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1223 else
1224 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1225 return Op;
1227 break;
1230 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1231 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1232 if (!ShAmt) break;
1234 uint32_t TypeBits = RHSV.getBitWidth();
1236 // Check that the shift amount is in range. If not, don't perform
1237 // undefined shifts. When the shift is visited it will be
1238 // simplified.
1239 if (ShAmt->uge(TypeBits))
1240 break;
1242 if (ICI.isEquality()) {
1243 // If we are comparing against bits always shifted out, the
1244 // comparison cannot succeed.
1245 Constant *Comp =
1246 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1247 ShAmt);
1248 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1249 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1250 Constant *Cst =
1251 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1252 return ReplaceInstUsesWith(ICI, Cst);
1255 // If the shift is NUW, then it is just shifting out zeros, no need for an
1256 // AND.
1257 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1258 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1259 ConstantExpr::getLShr(RHS, ShAmt));
1261 if (LHSI->hasOneUse()) {
1262 // Otherwise strength reduce the shift into an and.
1263 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1264 Constant *Mask =
1265 ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1266 TypeBits-ShAmtVal));
1268 Value *And =
1269 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1270 return new ICmpInst(ICI.getPredicate(), And,
1271 ConstantExpr::getLShr(RHS, ShAmt));
1275 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1276 bool TrueIfSigned = false;
1277 if (LHSI->hasOneUse() &&
1278 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1279 // (X << 31) <s 0 --> (X&1) != 0
1280 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1281 APInt::getOneBitSet(TypeBits,
1282 TypeBits-ShAmt->getZExtValue()-1));
1283 Value *And =
1284 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1285 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1286 And, Constant::getNullValue(And->getType()));
1288 break;
1291 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
1292 case Instruction::AShr: {
1293 // Handle equality comparisons of shift-by-constant.
1294 BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1295 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1296 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1297 return Res;
1300 // Handle exact shr's.
1301 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1302 if (RHSV.isMinValue())
1303 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1305 break;
1308 case Instruction::SDiv:
1309 case Instruction::UDiv:
1310 // Fold: icmp pred ([us]div X, C1), C2 -> range test
1311 // Fold this div into the comparison, producing a range check.
1312 // Determine, based on the divide type, what the range is being
1313 // checked. If there is an overflow on the low or high side, remember
1314 // it, otherwise compute the range [low, hi) bounding the new value.
1315 // See: InsertRangeTest above for the kinds of replacements possible.
1316 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1317 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1318 DivRHS))
1319 return R;
1320 break;
1322 case Instruction::Add:
1323 // Fold: icmp pred (add X, C1), C2
1324 if (!ICI.isEquality()) {
1325 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1326 if (!LHSC) break;
1327 const APInt &LHSV = LHSC->getValue();
1329 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1330 .subtract(LHSV);
1332 if (ICI.isSigned()) {
1333 if (CR.getLower().isSignBit()) {
1334 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1335 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1336 } else if (CR.getUpper().isSignBit()) {
1337 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1338 ConstantInt::get(ICI.getContext(),CR.getLower()));
1340 } else {
1341 if (CR.getLower().isMinValue()) {
1342 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1343 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1344 } else if (CR.getUpper().isMinValue()) {
1345 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1346 ConstantInt::get(ICI.getContext(),CR.getLower()));
1350 break;
1353 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1354 if (ICI.isEquality()) {
1355 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1357 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1358 // the second operand is a constant, simplify a bit.
1359 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1360 switch (BO->getOpcode()) {
1361 case Instruction::SRem:
1362 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1363 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1364 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1365 if (V.sgt(1) && V.isPowerOf2()) {
1366 Value *NewRem =
1367 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1368 BO->getName());
1369 return new ICmpInst(ICI.getPredicate(), NewRem,
1370 Constant::getNullValue(BO->getType()));
1373 break;
1374 case Instruction::Add:
1375 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1376 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1377 if (BO->hasOneUse())
1378 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1379 ConstantExpr::getSub(RHS, BOp1C));
1380 } else if (RHSV == 0) {
1381 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1382 // efficiently invertible, or if the add has just this one use.
1383 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1385 if (Value *NegVal = dyn_castNegVal(BOp1))
1386 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1387 else if (Value *NegVal = dyn_castNegVal(BOp0))
1388 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1389 else if (BO->hasOneUse()) {
1390 Value *Neg = Builder->CreateNeg(BOp1);
1391 Neg->takeName(BO);
1392 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1395 break;
1396 case Instruction::Xor:
1397 // For the xor case, we can xor two constants together, eliminating
1398 // the explicit xor.
1399 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1400 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1401 ConstantExpr::getXor(RHS, BOC));
1403 // FALLTHROUGH
1404 case Instruction::Sub:
1405 // Replace (([sub|xor] A, B) != 0) with (A != B)
1406 if (RHSV == 0)
1407 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1408 BO->getOperand(1));
1409 break;
1411 case Instruction::Or:
1412 // If bits are being or'd in that are not present in the constant we
1413 // are comparing against, then the comparison could never succeed!
1414 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1415 Constant *NotCI = ConstantExpr::getNot(RHS);
1416 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1417 return ReplaceInstUsesWith(ICI,
1418 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1419 isICMP_NE));
1421 break;
1423 case Instruction::And:
1424 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1425 // If bits are being compared against that are and'd out, then the
1426 // comparison can never succeed!
1427 if ((RHSV & ~BOC->getValue()) != 0)
1428 return ReplaceInstUsesWith(ICI,
1429 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1430 isICMP_NE));
1432 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1433 if (RHS == BOC && RHSV.isPowerOf2())
1434 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1435 ICmpInst::ICMP_NE, LHSI,
1436 Constant::getNullValue(RHS->getType()));
1438 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1439 if (BOC->getValue().isSignBit()) {
1440 Value *X = BO->getOperand(0);
1441 Constant *Zero = Constant::getNullValue(X->getType());
1442 ICmpInst::Predicate pred = isICMP_NE ?
1443 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1444 return new ICmpInst(pred, X, Zero);
1447 // ((X & ~7) == 0) --> X < 8
1448 if (RHSV == 0 && isHighOnes(BOC)) {
1449 Value *X = BO->getOperand(0);
1450 Constant *NegX = ConstantExpr::getNeg(BOC);
1451 ICmpInst::Predicate pred = isICMP_NE ?
1452 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1453 return new ICmpInst(pred, X, NegX);
1456 default: break;
1458 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1459 // Handle icmp {eq|ne} <intrinsic>, intcst.
1460 switch (II->getIntrinsicID()) {
1461 case Intrinsic::bswap:
1462 Worklist.Add(II);
1463 ICI.setOperand(0, II->getArgOperand(0));
1464 ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1465 return &ICI;
1466 case Intrinsic::ctlz:
1467 case Intrinsic::cttz:
1468 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1469 if (RHSV == RHS->getType()->getBitWidth()) {
1470 Worklist.Add(II);
1471 ICI.setOperand(0, II->getArgOperand(0));
1472 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1473 return &ICI;
1475 break;
1476 case Intrinsic::ctpop:
1477 // popcount(A) == 0 -> A == 0 and likewise for !=
1478 if (RHS->isZero()) {
1479 Worklist.Add(II);
1480 ICI.setOperand(0, II->getArgOperand(0));
1481 ICI.setOperand(1, RHS);
1482 return &ICI;
1484 break;
1485 default:
1486 break;
1490 return 0;
1493 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1494 /// We only handle extending casts so far.
1496 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1497 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1498 Value *LHSCIOp = LHSCI->getOperand(0);
1499 const Type *SrcTy = LHSCIOp->getType();
1500 const Type *DestTy = LHSCI->getType();
1501 Value *RHSCIOp;
1503 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1504 // integer type is the same size as the pointer type.
1505 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1506 TD->getPointerSizeInBits() ==
1507 cast<IntegerType>(DestTy)->getBitWidth()) {
1508 Value *RHSOp = 0;
1509 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1510 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1511 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1512 RHSOp = RHSC->getOperand(0);
1513 // If the pointer types don't match, insert a bitcast.
1514 if (LHSCIOp->getType() != RHSOp->getType())
1515 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1518 if (RHSOp)
1519 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1522 // The code below only handles extension cast instructions, so far.
1523 // Enforce this.
1524 if (LHSCI->getOpcode() != Instruction::ZExt &&
1525 LHSCI->getOpcode() != Instruction::SExt)
1526 return 0;
1528 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1529 bool isSignedCmp = ICI.isSigned();
1531 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1532 // Not an extension from the same type?
1533 RHSCIOp = CI->getOperand(0);
1534 if (RHSCIOp->getType() != LHSCIOp->getType())
1535 return 0;
1537 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1538 // and the other is a zext), then we can't handle this.
1539 if (CI->getOpcode() != LHSCI->getOpcode())
1540 return 0;
1542 // Deal with equality cases early.
1543 if (ICI.isEquality())
1544 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1546 // A signed comparison of sign extended values simplifies into a
1547 // signed comparison.
1548 if (isSignedCmp && isSignedExt)
1549 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1551 // The other three cases all fold into an unsigned comparison.
1552 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1555 // If we aren't dealing with a constant on the RHS, exit early
1556 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1557 if (!CI)
1558 return 0;
1560 // Compute the constant that would happen if we truncated to SrcTy then
1561 // reextended to DestTy.
1562 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1563 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1564 Res1, DestTy);
1566 // If the re-extended constant didn't change...
1567 if (Res2 == CI) {
1568 // Deal with equality cases early.
1569 if (ICI.isEquality())
1570 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1572 // A signed comparison of sign extended values simplifies into a
1573 // signed comparison.
1574 if (isSignedExt && isSignedCmp)
1575 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1577 // The other three cases all fold into an unsigned comparison.
1578 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1581 // The re-extended constant changed so the constant cannot be represented
1582 // in the shorter type. Consequently, we cannot emit a simple comparison.
1583 // All the cases that fold to true or false will have already been handled
1584 // by SimplifyICmpInst, so only deal with the tricky case.
1586 if (isSignedCmp || !isSignedExt)
1587 return 0;
1589 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1590 // should have been folded away previously and not enter in here.
1592 // We're performing an unsigned comp with a sign extended value.
1593 // This is true if the input is >= 0. [aka >s -1]
1594 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1595 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1597 // Finally, return the value computed.
1598 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1599 return ReplaceInstUsesWith(ICI, Result);
1601 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1602 return BinaryOperator::CreateNot(Result);
1605 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1606 /// I = icmp ugt (add (add A, B), CI2), CI1
1607 /// If this is of the form:
1608 /// sum = a + b
1609 /// if (sum+128 >u 255)
1610 /// Then replace it with llvm.sadd.with.overflow.i8.
1612 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1613 ConstantInt *CI2, ConstantInt *CI1,
1614 InstCombiner &IC) {
1615 // The transformation we're trying to do here is to transform this into an
1616 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1617 // with a narrower add, and discard the add-with-constant that is part of the
1618 // range check (if we can't eliminate it, this isn't profitable).
1620 // In order to eliminate the add-with-constant, the compare can be its only
1621 // use.
1622 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1623 if (!AddWithCst->hasOneUse()) return 0;
1625 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1626 if (!CI2->getValue().isPowerOf2()) return 0;
1627 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1628 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1630 // The width of the new add formed is 1 more than the bias.
1631 ++NewWidth;
1633 // Check to see that CI1 is an all-ones value with NewWidth bits.
1634 if (CI1->getBitWidth() == NewWidth ||
1635 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1636 return 0;
1638 // In order to replace the original add with a narrower
1639 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1640 // and truncates that discard the high bits of the add. Verify that this is
1641 // the case.
1642 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1643 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1644 UI != E; ++UI) {
1645 if (*UI == AddWithCst) continue;
1647 // Only accept truncates for now. We would really like a nice recursive
1648 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1649 // chain to see which bits of a value are actually demanded. If the
1650 // original add had another add which was then immediately truncated, we
1651 // could still do the transformation.
1652 TruncInst *TI = dyn_cast<TruncInst>(*UI);
1653 if (TI == 0 ||
1654 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1657 // If the pattern matches, truncate the inputs to the narrower type and
1658 // use the sadd_with_overflow intrinsic to efficiently compute both the
1659 // result and the overflow bit.
1660 Module *M = I.getParent()->getParent()->getParent();
1662 const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1663 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1664 &NewType, 1);
1666 InstCombiner::BuilderTy *Builder = IC.Builder;
1668 // Put the new code above the original add, in case there are any uses of the
1669 // add between the add and the compare.
1670 Builder->SetInsertPoint(OrigAdd);
1672 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1673 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1674 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1675 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1676 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1678 // The inner add was the result of the narrow add, zero extended to the
1679 // wider type. Replace it with the result computed by the intrinsic.
1680 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1682 // The original icmp gets replaced with the overflow value.
1683 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1686 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1687 InstCombiner &IC) {
1688 // Don't bother doing this transformation for pointers, don't do it for
1689 // vectors.
1690 if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1692 // If the add is a constant expr, then we don't bother transforming it.
1693 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1694 if (OrigAdd == 0) return 0;
1696 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1698 // Put the new code above the original add, in case there are any uses of the
1699 // add between the add and the compare.
1700 InstCombiner::BuilderTy *Builder = IC.Builder;
1701 Builder->SetInsertPoint(OrigAdd);
1703 Module *M = I.getParent()->getParent()->getParent();
1704 const Type *Ty = LHS->getType();
1705 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
1706 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1707 Value *Add = Builder->CreateExtractValue(Call, 0);
1709 IC.ReplaceInstUsesWith(*OrigAdd, Add);
1711 // The original icmp gets replaced with the overflow value.
1712 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1715 // DemandedBitsLHSMask - When performing a comparison against a constant,
1716 // it is possible that not all the bits in the LHS are demanded. This helper
1717 // method computes the mask that IS demanded.
1718 static APInt DemandedBitsLHSMask(ICmpInst &I,
1719 unsigned BitWidth, bool isSignCheck) {
1720 if (isSignCheck)
1721 return APInt::getSignBit(BitWidth);
1723 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1724 if (!CI) return APInt::getAllOnesValue(BitWidth);
1725 const APInt &RHS = CI->getValue();
1727 switch (I.getPredicate()) {
1728 // For a UGT comparison, we don't care about any bits that
1729 // correspond to the trailing ones of the comparand. The value of these
1730 // bits doesn't impact the outcome of the comparison, because any value
1731 // greater than the RHS must differ in a bit higher than these due to carry.
1732 case ICmpInst::ICMP_UGT: {
1733 unsigned trailingOnes = RHS.countTrailingOnes();
1734 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1735 return ~lowBitsSet;
1738 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1739 // Any value less than the RHS must differ in a higher bit because of carries.
1740 case ICmpInst::ICMP_ULT: {
1741 unsigned trailingZeros = RHS.countTrailingZeros();
1742 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1743 return ~lowBitsSet;
1746 default:
1747 return APInt::getAllOnesValue(BitWidth);
1752 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1753 bool Changed = false;
1754 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1756 /// Orders the operands of the compare so that they are listed from most
1757 /// complex to least complex. This puts constants before unary operators,
1758 /// before binary operators.
1759 if (getComplexity(Op0) < getComplexity(Op1)) {
1760 I.swapOperands();
1761 std::swap(Op0, Op1);
1762 Changed = true;
1765 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1766 return ReplaceInstUsesWith(I, V);
1768 const Type *Ty = Op0->getType();
1770 // icmp's with boolean values can always be turned into bitwise operations
1771 if (Ty->isIntegerTy(1)) {
1772 switch (I.getPredicate()) {
1773 default: llvm_unreachable("Invalid icmp instruction!");
1774 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
1775 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1776 return BinaryOperator::CreateNot(Xor);
1778 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
1779 return BinaryOperator::CreateXor(Op0, Op1);
1781 case ICmpInst::ICMP_UGT:
1782 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
1783 // FALL THROUGH
1784 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
1785 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1786 return BinaryOperator::CreateAnd(Not, Op1);
1788 case ICmpInst::ICMP_SGT:
1789 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
1790 // FALL THROUGH
1791 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
1792 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1793 return BinaryOperator::CreateAnd(Not, Op0);
1795 case ICmpInst::ICMP_UGE:
1796 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
1797 // FALL THROUGH
1798 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
1799 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1800 return BinaryOperator::CreateOr(Not, Op1);
1802 case ICmpInst::ICMP_SGE:
1803 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
1804 // FALL THROUGH
1805 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
1806 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1807 return BinaryOperator::CreateOr(Not, Op0);
1812 unsigned BitWidth = 0;
1813 if (Ty->isIntOrIntVectorTy())
1814 BitWidth = Ty->getScalarSizeInBits();
1815 else if (TD) // Pointers require TD info to get their size.
1816 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1818 bool isSignBit = false;
1820 // See if we are doing a comparison with a constant.
1821 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1822 Value *A = 0, *B = 0;
1824 // Match the following pattern, which is a common idiom when writing
1825 // overflow-safe integer arithmetic function. The source performs an
1826 // addition in wider type, and explicitly checks for overflow using
1827 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
1828 // sadd_with_overflow intrinsic.
1830 // TODO: This could probably be generalized to handle other overflow-safe
1831 // operations if we worked out the formulas to compute the appropriate
1832 // magic constants.
1834 // sum = a + b
1835 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1837 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1838 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
1839 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1840 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
1841 return Res;
1844 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1845 if (I.isEquality() && CI->isZero() &&
1846 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1847 // (icmp cond A B) if cond is equality
1848 return new ICmpInst(I.getPredicate(), A, B);
1851 // If we have an icmp le or icmp ge instruction, turn it into the
1852 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
1853 // them being folded in the code below. The SimplifyICmpInst code has
1854 // already handled the edge cases for us, so we just assert on them.
1855 switch (I.getPredicate()) {
1856 default: break;
1857 case ICmpInst::ICMP_ULE:
1858 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
1859 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1860 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1861 case ICmpInst::ICMP_SLE:
1862 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
1863 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1864 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1865 case ICmpInst::ICMP_UGE:
1866 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
1867 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1868 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1869 case ICmpInst::ICMP_SGE:
1870 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
1871 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1872 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1875 // If this comparison is a normal comparison, it demands all
1876 // bits, if it is a sign bit comparison, it only demands the sign bit.
1877 bool UnusedBit;
1878 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1881 // See if we can fold the comparison based on range information we can get
1882 // by checking whether bits are known to be zero or one in the input.
1883 if (BitWidth != 0) {
1884 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1885 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1887 if (SimplifyDemandedBits(I.getOperandUse(0),
1888 DemandedBitsLHSMask(I, BitWidth, isSignBit),
1889 Op0KnownZero, Op0KnownOne, 0))
1890 return &I;
1891 if (SimplifyDemandedBits(I.getOperandUse(1),
1892 APInt::getAllOnesValue(BitWidth),
1893 Op1KnownZero, Op1KnownOne, 0))
1894 return &I;
1896 // Given the known and unknown bits, compute a range that the LHS could be
1897 // in. Compute the Min, Max and RHS values based on the known bits. For the
1898 // EQ and NE we use unsigned values.
1899 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1900 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1901 if (I.isSigned()) {
1902 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1903 Op0Min, Op0Max);
1904 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1905 Op1Min, Op1Max);
1906 } else {
1907 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1908 Op0Min, Op0Max);
1909 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1910 Op1Min, Op1Max);
1913 // If Min and Max are known to be the same, then SimplifyDemandedBits
1914 // figured out that the LHS is a constant. Just constant fold this now so
1915 // that code below can assume that Min != Max.
1916 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1917 return new ICmpInst(I.getPredicate(),
1918 ConstantInt::get(Op0->getType(), Op0Min), Op1);
1919 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1920 return new ICmpInst(I.getPredicate(), Op0,
1921 ConstantInt::get(Op1->getType(), Op1Min));
1923 // Based on the range information we know about the LHS, see if we can
1924 // simplify this comparison. For example, (x&4) < 8 is always true.
1925 switch (I.getPredicate()) {
1926 default: llvm_unreachable("Unknown icmp opcode!");
1927 case ICmpInst::ICMP_EQ: {
1928 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1929 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
1931 // If all bits are known zero except for one, then we know at most one
1932 // bit is set. If the comparison is against zero, then this is a check
1933 // to see if *that* bit is set.
1934 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1935 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1936 // If the LHS is an AND with the same constant, look through it.
1937 Value *LHS = 0;
1938 ConstantInt *LHSC = 0;
1939 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1940 LHSC->getValue() != Op0KnownZeroInverted)
1941 LHS = Op0;
1943 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1944 // then turn "((1 << x)&8) == 0" into "x != 3".
1945 Value *X = 0;
1946 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1947 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1948 return new ICmpInst(ICmpInst::ICMP_NE, X,
1949 ConstantInt::get(X->getType(), CmpVal));
1952 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1953 // then turn "((8 >>u x)&1) == 0" into "x != 3".
1954 const APInt *CI;
1955 if (Op0KnownZeroInverted == 1 &&
1956 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1957 return new ICmpInst(ICmpInst::ICMP_NE, X,
1958 ConstantInt::get(X->getType(),
1959 CI->countTrailingZeros()));
1962 break;
1964 case ICmpInst::ICMP_NE: {
1965 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1966 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
1968 // If all bits are known zero except for one, then we know at most one
1969 // bit is set. If the comparison is against zero, then this is a check
1970 // to see if *that* bit is set.
1971 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1972 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1973 // If the LHS is an AND with the same constant, look through it.
1974 Value *LHS = 0;
1975 ConstantInt *LHSC = 0;
1976 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1977 LHSC->getValue() != Op0KnownZeroInverted)
1978 LHS = Op0;
1980 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1981 // then turn "((1 << x)&8) != 0" into "x == 3".
1982 Value *X = 0;
1983 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1984 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1985 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1986 ConstantInt::get(X->getType(), CmpVal));
1989 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1990 // then turn "((8 >>u x)&1) != 0" into "x == 3".
1991 const APInt *CI;
1992 if (Op0KnownZeroInverted == 1 &&
1993 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1994 return new ICmpInst(ICmpInst::ICMP_EQ, X,
1995 ConstantInt::get(X->getType(),
1996 CI->countTrailingZeros()));
1999 break;
2001 case ICmpInst::ICMP_ULT:
2002 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
2003 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2004 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
2005 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2006 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2007 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2008 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2009 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2010 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2011 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2013 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2014 if (CI->isMinValue(true))
2015 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2016 Constant::getAllOnesValue(Op0->getType()));
2018 break;
2019 case ICmpInst::ICMP_UGT:
2020 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
2021 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2022 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
2023 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2025 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2026 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2027 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2028 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2029 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2030 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2032 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2033 if (CI->isMaxValue(true))
2034 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2035 Constant::getNullValue(Op0->getType()));
2037 break;
2038 case ICmpInst::ICMP_SLT:
2039 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
2040 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2041 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
2042 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2043 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2044 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2045 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2046 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2047 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2048 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2050 break;
2051 case ICmpInst::ICMP_SGT:
2052 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
2053 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2054 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
2055 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2057 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2058 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2059 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2060 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2061 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2062 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2064 break;
2065 case ICmpInst::ICMP_SGE:
2066 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2067 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
2068 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2069 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
2070 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2071 break;
2072 case ICmpInst::ICMP_SLE:
2073 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2074 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
2075 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2076 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
2077 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2078 break;
2079 case ICmpInst::ICMP_UGE:
2080 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2081 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
2082 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2083 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
2084 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2085 break;
2086 case ICmpInst::ICMP_ULE:
2087 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2088 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
2089 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2090 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
2091 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2092 break;
2095 // Turn a signed comparison into an unsigned one if both operands
2096 // are known to have the same sign.
2097 if (I.isSigned() &&
2098 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2099 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2100 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2103 // Test if the ICmpInst instruction is used exclusively by a select as
2104 // part of a minimum or maximum operation. If so, refrain from doing
2105 // any other folding. This helps out other analyses which understand
2106 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2107 // and CodeGen. And in this case, at least one of the comparison
2108 // operands has at least one user besides the compare (the select),
2109 // which would often largely negate the benefit of folding anyway.
2110 if (I.hasOneUse())
2111 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2112 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2113 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2114 return 0;
2116 // See if we are doing a comparison between a constant and an instruction that
2117 // can be folded into the comparison.
2118 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2119 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2120 // instruction, see if that instruction also has constants so that the
2121 // instruction can be folded into the icmp
2122 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2123 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2124 return Res;
2127 // Handle icmp with constant (but not simple integer constant) RHS
2128 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2129 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2130 switch (LHSI->getOpcode()) {
2131 case Instruction::GetElementPtr:
2132 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2133 if (RHSC->isNullValue() &&
2134 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2135 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2136 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2137 break;
2138 case Instruction::PHI:
2139 // Only fold icmp into the PHI if the phi and icmp are in the same
2140 // block. If in the same block, we're encouraging jump threading. If
2141 // not, we are just pessimizing the code by making an i1 phi.
2142 if (LHSI->getParent() == I.getParent())
2143 if (Instruction *NV = FoldOpIntoPhi(I))
2144 return NV;
2145 break;
2146 case Instruction::Select: {
2147 // If either operand of the select is a constant, we can fold the
2148 // comparison into the select arms, which will cause one to be
2149 // constant folded and the select turned into a bitwise or.
2150 Value *Op1 = 0, *Op2 = 0;
2151 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2152 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2153 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2154 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2156 // We only want to perform this transformation if it will not lead to
2157 // additional code. This is true if either both sides of the select
2158 // fold to a constant (in which case the icmp is replaced with a select
2159 // which will usually simplify) or this is the only user of the
2160 // select (in which case we are trading a select+icmp for a simpler
2161 // select+icmp).
2162 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2163 if (!Op1)
2164 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2165 RHSC, I.getName());
2166 if (!Op2)
2167 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2168 RHSC, I.getName());
2169 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2171 break;
2173 case Instruction::IntToPtr:
2174 // icmp pred inttoptr(X), null -> icmp pred X, 0
2175 if (RHSC->isNullValue() && TD &&
2176 TD->getIntPtrType(RHSC->getContext()) ==
2177 LHSI->getOperand(0)->getType())
2178 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2179 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2180 break;
2182 case Instruction::Load:
2183 // Try to optimize things like "A[i] > 4" to index computations.
2184 if (GetElementPtrInst *GEP =
2185 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2186 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2187 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2188 !cast<LoadInst>(LHSI)->isVolatile())
2189 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2190 return Res;
2192 break;
2196 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2197 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2198 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2199 return NI;
2200 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2201 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2202 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2203 return NI;
2205 // Test to see if the operands of the icmp are casted versions of other
2206 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2207 // now.
2208 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2209 if (Op0->getType()->isPointerTy() &&
2210 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2211 // We keep moving the cast from the left operand over to the right
2212 // operand, where it can often be eliminated completely.
2213 Op0 = CI->getOperand(0);
2215 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2216 // so eliminate it as well.
2217 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2218 Op1 = CI2->getOperand(0);
2220 // If Op1 is a constant, we can fold the cast into the constant.
2221 if (Op0->getType() != Op1->getType()) {
2222 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2223 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2224 } else {
2225 // Otherwise, cast the RHS right before the icmp
2226 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2229 return new ICmpInst(I.getPredicate(), Op0, Op1);
2233 if (isa<CastInst>(Op0)) {
2234 // Handle the special case of: icmp (cast bool to X), <cst>
2235 // This comes up when you have code like
2236 // int X = A < B;
2237 // if (X) ...
2238 // For generality, we handle any zero-extension of any operand comparison
2239 // with a constant or another cast from the same type.
2240 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2241 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2242 return R;
2245 // Special logic for binary operators.
2246 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2247 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2248 if (BO0 || BO1) {
2249 CmpInst::Predicate Pred = I.getPredicate();
2250 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2251 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2252 NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2253 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2254 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2255 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2256 NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2257 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2258 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2260 // Analyze the case when either Op0 or Op1 is an add instruction.
2261 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2262 Value *A = 0, *B = 0, *C = 0, *D = 0;
2263 if (BO0 && BO0->getOpcode() == Instruction::Add)
2264 A = BO0->getOperand(0), B = BO0->getOperand(1);
2265 if (BO1 && BO1->getOpcode() == Instruction::Add)
2266 C = BO1->getOperand(0), D = BO1->getOperand(1);
2268 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2269 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2270 return new ICmpInst(Pred, A == Op1 ? B : A,
2271 Constant::getNullValue(Op1->getType()));
2273 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2274 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2275 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2276 C == Op0 ? D : C);
2278 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2279 if (A && C && (A == C || A == D || B == C || B == D) &&
2280 NoOp0WrapProblem && NoOp1WrapProblem &&
2281 // Try not to increase register pressure.
2282 BO0->hasOneUse() && BO1->hasOneUse()) {
2283 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2284 Value *Y = (A == C || A == D) ? B : A;
2285 Value *Z = (C == A || C == B) ? D : C;
2286 return new ICmpInst(Pred, Y, Z);
2289 // Analyze the case when either Op0 or Op1 is a sub instruction.
2290 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2291 A = 0; B = 0; C = 0; D = 0;
2292 if (BO0 && BO0->getOpcode() == Instruction::Sub)
2293 A = BO0->getOperand(0), B = BO0->getOperand(1);
2294 if (BO1 && BO1->getOpcode() == Instruction::Sub)
2295 C = BO1->getOperand(0), D = BO1->getOperand(1);
2297 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2298 if (A == Op1 && NoOp0WrapProblem)
2299 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2301 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2302 if (C == Op0 && NoOp1WrapProblem)
2303 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2305 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2306 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2307 // Try not to increase register pressure.
2308 BO0->hasOneUse() && BO1->hasOneUse())
2309 return new ICmpInst(Pred, A, C);
2311 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2312 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2313 // Try not to increase register pressure.
2314 BO0->hasOneUse() && BO1->hasOneUse())
2315 return new ICmpInst(Pred, D, B);
2317 BinaryOperator *SRem = NULL;
2318 // icmp (srem X, Y), Y
2319 if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2320 Op1 == BO0->getOperand(1))
2321 SRem = BO0;
2322 // icmp Y, (srem X, Y)
2323 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2324 Op0 == BO1->getOperand(1))
2325 SRem = BO1;
2326 if (SRem) {
2327 // We don't check hasOneUse to avoid increasing register pressure because
2328 // the value we use is the same value this instruction was already using.
2329 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2330 default: break;
2331 case ICmpInst::ICMP_EQ:
2332 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2333 case ICmpInst::ICMP_NE:
2334 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2335 case ICmpInst::ICMP_SGT:
2336 case ICmpInst::ICMP_SGE:
2337 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2338 Constant::getAllOnesValue(SRem->getType()));
2339 case ICmpInst::ICMP_SLT:
2340 case ICmpInst::ICMP_SLE:
2341 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2342 Constant::getNullValue(SRem->getType()));
2346 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2347 BO0->hasOneUse() && BO1->hasOneUse() &&
2348 BO0->getOperand(1) == BO1->getOperand(1)) {
2349 switch (BO0->getOpcode()) {
2350 default: break;
2351 case Instruction::Add:
2352 case Instruction::Sub:
2353 case Instruction::Xor:
2354 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2355 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2356 BO1->getOperand(0));
2357 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2358 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2359 if (CI->getValue().isSignBit()) {
2360 ICmpInst::Predicate Pred = I.isSigned()
2361 ? I.getUnsignedPredicate()
2362 : I.getSignedPredicate();
2363 return new ICmpInst(Pred, BO0->getOperand(0),
2364 BO1->getOperand(0));
2367 if (CI->getValue().isMaxSignedValue()) {
2368 ICmpInst::Predicate Pred = I.isSigned()
2369 ? I.getUnsignedPredicate()
2370 : I.getSignedPredicate();
2371 Pred = I.getSwappedPredicate(Pred);
2372 return new ICmpInst(Pred, BO0->getOperand(0),
2373 BO1->getOperand(0));
2376 break;
2377 case Instruction::Mul:
2378 if (!I.isEquality())
2379 break;
2381 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2382 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2383 // Mask = -1 >> count-trailing-zeros(Cst).
2384 if (!CI->isZero() && !CI->isOne()) {
2385 const APInt &AP = CI->getValue();
2386 ConstantInt *Mask = ConstantInt::get(I.getContext(),
2387 APInt::getLowBitsSet(AP.getBitWidth(),
2388 AP.getBitWidth() -
2389 AP.countTrailingZeros()));
2390 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2391 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2392 return new ICmpInst(I.getPredicate(), And1, And2);
2395 break;
2396 case Instruction::UDiv:
2397 case Instruction::LShr:
2398 if (I.isSigned())
2399 break;
2400 // fall-through
2401 case Instruction::SDiv:
2402 case Instruction::AShr:
2403 if (!BO0->isExact() && !BO1->isExact())
2404 break;
2405 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2406 BO1->getOperand(0));
2407 case Instruction::Shl: {
2408 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2409 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2410 if (!NUW && !NSW)
2411 break;
2412 if (!NSW && I.isSigned())
2413 break;
2414 return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2415 BO1->getOperand(0));
2421 { Value *A, *B;
2422 // ~x < ~y --> y < x
2423 // ~x < cst --> ~cst < x
2424 if (match(Op0, m_Not(m_Value(A)))) {
2425 if (match(Op1, m_Not(m_Value(B))))
2426 return new ICmpInst(I.getPredicate(), B, A);
2427 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2428 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2431 // (a+b) <u a --> llvm.uadd.with.overflow.
2432 // (a+b) <u b --> llvm.uadd.with.overflow.
2433 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2434 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2435 (Op1 == A || Op1 == B))
2436 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2437 return R;
2439 // a >u (a+b) --> llvm.uadd.with.overflow.
2440 // b >u (a+b) --> llvm.uadd.with.overflow.
2441 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2442 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2443 (Op0 == A || Op0 == B))
2444 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2445 return R;
2448 if (I.isEquality()) {
2449 Value *A, *B, *C, *D;
2451 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2452 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2453 Value *OtherVal = A == Op1 ? B : A;
2454 return new ICmpInst(I.getPredicate(), OtherVal,
2455 Constant::getNullValue(A->getType()));
2458 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2459 // A^c1 == C^c2 --> A == C^(c1^c2)
2460 ConstantInt *C1, *C2;
2461 if (match(B, m_ConstantInt(C1)) &&
2462 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2463 Constant *NC = ConstantInt::get(I.getContext(),
2464 C1->getValue() ^ C2->getValue());
2465 Value *Xor = Builder->CreateXor(C, NC, "tmp");
2466 return new ICmpInst(I.getPredicate(), A, Xor);
2469 // A^B == A^D -> B == D
2470 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2471 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2472 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2473 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2477 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2478 (A == Op0 || B == Op0)) {
2479 // A == (A^B) -> B == 0
2480 Value *OtherVal = A == Op0 ? B : A;
2481 return new ICmpInst(I.getPredicate(), OtherVal,
2482 Constant::getNullValue(A->getType()));
2485 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2486 if (Op0->hasOneUse() && Op1->hasOneUse() &&
2487 match(Op0, m_And(m_Value(A), m_Value(B))) &&
2488 match(Op1, m_And(m_Value(C), m_Value(D)))) {
2489 Value *X = 0, *Y = 0, *Z = 0;
2491 if (A == C) {
2492 X = B; Y = D; Z = A;
2493 } else if (A == D) {
2494 X = B; Y = C; Z = A;
2495 } else if (B == C) {
2496 X = A; Y = D; Z = B;
2497 } else if (B == D) {
2498 X = A; Y = C; Z = B;
2501 if (X) { // Build (X^Y) & Z
2502 Op1 = Builder->CreateXor(X, Y, "tmp");
2503 Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2504 I.setOperand(0, Op1);
2505 I.setOperand(1, Constant::getNullValue(Op1->getType()));
2506 return &I;
2512 Value *X; ConstantInt *Cst;
2513 // icmp X+Cst, X
2514 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2515 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2517 // icmp X, X+Cst
2518 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2519 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2521 return Changed ? &I : 0;
2529 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2531 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2532 Instruction *LHSI,
2533 Constant *RHSC) {
2534 if (!isa<ConstantFP>(RHSC)) return 0;
2535 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2537 // Get the width of the mantissa. We don't want to hack on conversions that
2538 // might lose information from the integer, e.g. "i64 -> float"
2539 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2540 if (MantissaWidth == -1) return 0; // Unknown.
2542 // Check to see that the input is converted from an integer type that is small
2543 // enough that preserves all bits. TODO: check here for "known" sign bits.
2544 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2545 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2547 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2548 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2549 if (LHSUnsigned)
2550 ++InputSize;
2552 // If the conversion would lose info, don't hack on this.
2553 if ((int)InputSize > MantissaWidth)
2554 return 0;
2556 // Otherwise, we can potentially simplify the comparison. We know that it
2557 // will always come through as an integer value and we know the constant is
2558 // not a NAN (it would have been previously simplified).
2559 assert(!RHS.isNaN() && "NaN comparison not already folded!");
2561 ICmpInst::Predicate Pred;
2562 switch (I.getPredicate()) {
2563 default: llvm_unreachable("Unexpected predicate!");
2564 case FCmpInst::FCMP_UEQ:
2565 case FCmpInst::FCMP_OEQ:
2566 Pred = ICmpInst::ICMP_EQ;
2567 break;
2568 case FCmpInst::FCMP_UGT:
2569 case FCmpInst::FCMP_OGT:
2570 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2571 break;
2572 case FCmpInst::FCMP_UGE:
2573 case FCmpInst::FCMP_OGE:
2574 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2575 break;
2576 case FCmpInst::FCMP_ULT:
2577 case FCmpInst::FCMP_OLT:
2578 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2579 break;
2580 case FCmpInst::FCMP_ULE:
2581 case FCmpInst::FCMP_OLE:
2582 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2583 break;
2584 case FCmpInst::FCMP_UNE:
2585 case FCmpInst::FCMP_ONE:
2586 Pred = ICmpInst::ICMP_NE;
2587 break;
2588 case FCmpInst::FCMP_ORD:
2589 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2590 case FCmpInst::FCMP_UNO:
2591 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2594 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2596 // Now we know that the APFloat is a normal number, zero or inf.
2598 // See if the FP constant is too large for the integer. For example,
2599 // comparing an i8 to 300.0.
2600 unsigned IntWidth = IntTy->getScalarSizeInBits();
2602 if (!LHSUnsigned) {
2603 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2604 // and large values.
2605 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2606 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2607 APFloat::rmNearestTiesToEven);
2608 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
2609 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
2610 Pred == ICmpInst::ICMP_SLE)
2611 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2612 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2614 } else {
2615 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2616 // +INF and large values.
2617 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2618 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2619 APFloat::rmNearestTiesToEven);
2620 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
2621 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
2622 Pred == ICmpInst::ICMP_ULE)
2623 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2624 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2628 if (!LHSUnsigned) {
2629 // See if the RHS value is < SignedMin.
2630 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2631 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2632 APFloat::rmNearestTiesToEven);
2633 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2634 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2635 Pred == ICmpInst::ICMP_SGE)
2636 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2637 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2641 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2642 // [0, UMAX], but it may still be fractional. See if it is fractional by
2643 // casting the FP value to the integer value and back, checking for equality.
2644 // Don't do this for zero, because -0.0 is not fractional.
2645 Constant *RHSInt = LHSUnsigned
2646 ? ConstantExpr::getFPToUI(RHSC, IntTy)
2647 : ConstantExpr::getFPToSI(RHSC, IntTy);
2648 if (!RHS.isZero()) {
2649 bool Equal = LHSUnsigned
2650 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2651 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2652 if (!Equal) {
2653 // If we had a comparison against a fractional value, we have to adjust
2654 // the compare predicate and sometimes the value. RHSC is rounded towards
2655 // zero at this point.
2656 switch (Pred) {
2657 default: llvm_unreachable("Unexpected integer comparison!");
2658 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
2659 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2660 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
2661 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2662 case ICmpInst::ICMP_ULE:
2663 // (float)int <= 4.4 --> int <= 4
2664 // (float)int <= -4.4 --> false
2665 if (RHS.isNegative())
2666 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2667 break;
2668 case ICmpInst::ICMP_SLE:
2669 // (float)int <= 4.4 --> int <= 4
2670 // (float)int <= -4.4 --> int < -4
2671 if (RHS.isNegative())
2672 Pred = ICmpInst::ICMP_SLT;
2673 break;
2674 case ICmpInst::ICMP_ULT:
2675 // (float)int < -4.4 --> false
2676 // (float)int < 4.4 --> int <= 4
2677 if (RHS.isNegative())
2678 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2679 Pred = ICmpInst::ICMP_ULE;
2680 break;
2681 case ICmpInst::ICMP_SLT:
2682 // (float)int < -4.4 --> int < -4
2683 // (float)int < 4.4 --> int <= 4
2684 if (!RHS.isNegative())
2685 Pred = ICmpInst::ICMP_SLE;
2686 break;
2687 case ICmpInst::ICMP_UGT:
2688 // (float)int > 4.4 --> int > 4
2689 // (float)int > -4.4 --> true
2690 if (RHS.isNegative())
2691 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2692 break;
2693 case ICmpInst::ICMP_SGT:
2694 // (float)int > 4.4 --> int > 4
2695 // (float)int > -4.4 --> int >= -4
2696 if (RHS.isNegative())
2697 Pred = ICmpInst::ICMP_SGE;
2698 break;
2699 case ICmpInst::ICMP_UGE:
2700 // (float)int >= -4.4 --> true
2701 // (float)int >= 4.4 --> int > 4
2702 if (!RHS.isNegative())
2703 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2704 Pred = ICmpInst::ICMP_UGT;
2705 break;
2706 case ICmpInst::ICMP_SGE:
2707 // (float)int >= -4.4 --> int >= -4
2708 // (float)int >= 4.4 --> int > 4
2709 if (!RHS.isNegative())
2710 Pred = ICmpInst::ICMP_SGT;
2711 break;
2716 // Lower this FP comparison into an appropriate integer version of the
2717 // comparison.
2718 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2721 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2722 bool Changed = false;
2724 /// Orders the operands of the compare so that they are listed from most
2725 /// complex to least complex. This puts constants before unary operators,
2726 /// before binary operators.
2727 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2728 I.swapOperands();
2729 Changed = true;
2732 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2734 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2735 return ReplaceInstUsesWith(I, V);
2737 // Simplify 'fcmp pred X, X'
2738 if (Op0 == Op1) {
2739 switch (I.getPredicate()) {
2740 default: llvm_unreachable("Unknown predicate!");
2741 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
2742 case FCmpInst::FCMP_ULT: // True if unordered or less than
2743 case FCmpInst::FCMP_UGT: // True if unordered or greater than
2744 case FCmpInst::FCMP_UNE: // True if unordered or not equal
2745 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2746 I.setPredicate(FCmpInst::FCMP_UNO);
2747 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2748 return &I;
2750 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
2751 case FCmpInst::FCMP_OEQ: // True if ordered and equal
2752 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
2753 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
2754 // Canonicalize these to be 'fcmp ord %X, 0.0'.
2755 I.setPredicate(FCmpInst::FCMP_ORD);
2756 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2757 return &I;
2761 // Handle fcmp with constant RHS
2762 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2763 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2764 switch (LHSI->getOpcode()) {
2765 case Instruction::FPExt: {
2766 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
2767 FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
2768 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
2769 if (!RHSF)
2770 break;
2772 // We can't convert a PPC double double.
2773 if (RHSF->getType()->isPPC_FP128Ty())
2774 break;
2776 const fltSemantics *Sem;
2777 // FIXME: This shouldn't be here.
2778 if (LHSExt->getSrcTy()->isFloatTy())
2779 Sem = &APFloat::IEEEsingle;
2780 else if (LHSExt->getSrcTy()->isDoubleTy())
2781 Sem = &APFloat::IEEEdouble;
2782 else if (LHSExt->getSrcTy()->isFP128Ty())
2783 Sem = &APFloat::IEEEquad;
2784 else if (LHSExt->getSrcTy()->isX86_FP80Ty())
2785 Sem = &APFloat::x87DoubleExtended;
2786 else
2787 break;
2789 bool Lossy;
2790 APFloat F = RHSF->getValueAPF();
2791 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
2793 // Avoid lossy conversions and denormals.
2794 if (!Lossy &&
2795 F.compare(APFloat::getSmallestNormalized(*Sem)) !=
2796 APFloat::cmpLessThan)
2797 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2798 ConstantFP::get(RHSC->getContext(), F));
2799 break;
2801 case Instruction::PHI:
2802 // Only fold fcmp into the PHI if the phi and fcmp are in the same
2803 // block. If in the same block, we're encouraging jump threading. If
2804 // not, we are just pessimizing the code by making an i1 phi.
2805 if (LHSI->getParent() == I.getParent())
2806 if (Instruction *NV = FoldOpIntoPhi(I))
2807 return NV;
2808 break;
2809 case Instruction::SIToFP:
2810 case Instruction::UIToFP:
2811 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2812 return NV;
2813 break;
2814 case Instruction::Select: {
2815 // If either operand of the select is a constant, we can fold the
2816 // comparison into the select arms, which will cause one to be
2817 // constant folded and the select turned into a bitwise or.
2818 Value *Op1 = 0, *Op2 = 0;
2819 if (LHSI->hasOneUse()) {
2820 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2821 // Fold the known value into the constant operand.
2822 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2823 // Insert a new FCmp of the other select operand.
2824 Op2 = Builder->CreateFCmp(I.getPredicate(),
2825 LHSI->getOperand(2), RHSC, I.getName());
2826 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2827 // Fold the known value into the constant operand.
2828 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2829 // Insert a new FCmp of the other select operand.
2830 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2831 RHSC, I.getName());
2835 if (Op1)
2836 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2837 break;
2839 case Instruction::FSub: {
2840 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
2841 Value *Op;
2842 if (match(LHSI, m_FNeg(m_Value(Op))))
2843 return new FCmpInst(I.getSwappedPredicate(), Op,
2844 ConstantExpr::getFNeg(RHSC));
2845 break;
2847 case Instruction::Load:
2848 if (GetElementPtrInst *GEP =
2849 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2850 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2851 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2852 !cast<LoadInst>(LHSI)->isVolatile())
2853 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2854 return Res;
2856 break;
2860 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
2861 Value *X, *Y;
2862 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
2863 return new FCmpInst(I.getSwappedPredicate(), X, Y);
2865 // fcmp (fpext x), (fpext y) -> fcmp x, y
2866 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
2867 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
2868 if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
2869 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
2870 RHSExt->getOperand(0));
2872 return Changed ? &I : 0;