Use %ull here.
[llvm/stm8.git] / lib / Transforms / Scalar / JumpThreading.cpp
blob8f90dfe1f25bc712769656a787f4fbd34aaad602
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
38 STATISTIC(NumThreads, "Number of jumps threaded");
39 STATISTIC(NumFolds, "Number of terminators folded");
40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
42 static cl::opt<unsigned>
43 Threshold("jump-threading-threshold",
44 cl::desc("Max block size to duplicate for jump threading"),
45 cl::init(6), cl::Hidden);
47 namespace {
48 // These are at global scope so static functions can use them too.
49 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
50 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
52 // This is used to keep track of what kind of constant we're currently hoping
53 // to find.
54 enum ConstantPreference {
55 WantInteger,
56 WantBlockAddress
59 /// This pass performs 'jump threading', which looks at blocks that have
60 /// multiple predecessors and multiple successors. If one or more of the
61 /// predecessors of the block can be proven to always jump to one of the
62 /// successors, we forward the edge from the predecessor to the successor by
63 /// duplicating the contents of this block.
64 ///
65 /// An example of when this can occur is code like this:
66 ///
67 /// if () { ...
68 /// X = 4;
69 /// }
70 /// if (X < 3) {
71 ///
72 /// In this case, the unconditional branch at the end of the first if can be
73 /// revectored to the false side of the second if.
74 ///
75 class JumpThreading : public FunctionPass {
76 TargetData *TD;
77 LazyValueInfo *LVI;
78 #ifdef NDEBUG
79 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
80 #else
81 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
82 #endif
83 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
85 // RAII helper for updating the recursion stack.
86 struct RecursionSetRemover {
87 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
88 std::pair<Value*, BasicBlock*> ThePair;
90 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
91 std::pair<Value*, BasicBlock*> P)
92 : TheSet(S), ThePair(P) { }
94 ~RecursionSetRemover() {
95 TheSet.erase(ThePair);
98 public:
99 static char ID; // Pass identification
100 JumpThreading() : FunctionPass(ID) {
101 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
104 bool runOnFunction(Function &F);
106 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
107 AU.addRequired<LazyValueInfo>();
108 AU.addPreserved<LazyValueInfo>();
111 void FindLoopHeaders(Function &F);
112 bool ProcessBlock(BasicBlock *BB);
113 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
114 BasicBlock *SuccBB);
115 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
116 const SmallVectorImpl<BasicBlock *> &PredBBs);
118 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
119 PredValueInfo &Result,
120 ConstantPreference Preference);
121 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
122 ConstantPreference Preference);
124 bool ProcessBranchOnPHI(PHINode *PN);
125 bool ProcessBranchOnXOR(BinaryOperator *BO);
127 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
131 char JumpThreading::ID = 0;
132 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
133 "Jump Threading", false, false)
134 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
135 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
136 "Jump Threading", false, false)
138 // Public interface to the Jump Threading pass
139 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
141 /// runOnFunction - Top level algorithm.
143 bool JumpThreading::runOnFunction(Function &F) {
144 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
145 TD = getAnalysisIfAvailable<TargetData>();
146 LVI = &getAnalysis<LazyValueInfo>();
148 FindLoopHeaders(F);
150 bool Changed, EverChanged = false;
151 do {
152 Changed = false;
153 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
154 BasicBlock *BB = I;
155 // Thread all of the branches we can over this block.
156 while (ProcessBlock(BB))
157 Changed = true;
159 ++I;
161 // If the block is trivially dead, zap it. This eliminates the successor
162 // edges which simplifies the CFG.
163 if (pred_begin(BB) == pred_end(BB) &&
164 BB != &BB->getParent()->getEntryBlock()) {
165 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
166 << "' with terminator: " << *BB->getTerminator() << '\n');
167 LoopHeaders.erase(BB);
168 LVI->eraseBlock(BB);
169 DeleteDeadBlock(BB);
170 Changed = true;
171 continue;
174 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
176 // Can't thread an unconditional jump, but if the block is "almost
177 // empty", we can replace uses of it with uses of the successor and make
178 // this dead.
179 if (BI && BI->isUnconditional() &&
180 BB != &BB->getParent()->getEntryBlock() &&
181 // If the terminator is the only non-phi instruction, try to nuke it.
182 BB->getFirstNonPHIOrDbg()->isTerminator()) {
183 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
184 // block, we have to make sure it isn't in the LoopHeaders set. We
185 // reinsert afterward if needed.
186 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
187 BasicBlock *Succ = BI->getSuccessor(0);
189 // FIXME: It is always conservatively correct to drop the info
190 // for a block even if it doesn't get erased. This isn't totally
191 // awesome, but it allows us to use AssertingVH to prevent nasty
192 // dangling pointer issues within LazyValueInfo.
193 LVI->eraseBlock(BB);
194 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
195 Changed = true;
196 // If we deleted BB and BB was the header of a loop, then the
197 // successor is now the header of the loop.
198 BB = Succ;
201 if (ErasedFromLoopHeaders)
202 LoopHeaders.insert(BB);
205 EverChanged |= Changed;
206 } while (Changed);
208 LoopHeaders.clear();
209 return EverChanged;
212 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
213 /// thread across it.
214 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
215 /// Ignore PHI nodes, these will be flattened when duplication happens.
216 BasicBlock::const_iterator I = BB->getFirstNonPHI();
218 // FIXME: THREADING will delete values that are just used to compute the
219 // branch, so they shouldn't count against the duplication cost.
222 // Sum up the cost of each instruction until we get to the terminator. Don't
223 // include the terminator because the copy won't include it.
224 unsigned Size = 0;
225 for (; !isa<TerminatorInst>(I); ++I) {
226 // Debugger intrinsics don't incur code size.
227 if (isa<DbgInfoIntrinsic>(I)) continue;
229 // If this is a pointer->pointer bitcast, it is free.
230 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
231 continue;
233 // All other instructions count for at least one unit.
234 ++Size;
236 // Calls are more expensive. If they are non-intrinsic calls, we model them
237 // as having cost of 4. If they are a non-vector intrinsic, we model them
238 // as having cost of 2 total, and if they are a vector intrinsic, we model
239 // them as having cost 1.
240 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
241 if (!isa<IntrinsicInst>(CI))
242 Size += 3;
243 else if (!CI->getType()->isVectorTy())
244 Size += 1;
248 // Threading through a switch statement is particularly profitable. If this
249 // block ends in a switch, decrease its cost to make it more likely to happen.
250 if (isa<SwitchInst>(I))
251 Size = Size > 6 ? Size-6 : 0;
253 // The same holds for indirect branches, but slightly more so.
254 if (isa<IndirectBrInst>(I))
255 Size = Size > 8 ? Size-8 : 0;
257 return Size;
260 /// FindLoopHeaders - We do not want jump threading to turn proper loop
261 /// structures into irreducible loops. Doing this breaks up the loop nesting
262 /// hierarchy and pessimizes later transformations. To prevent this from
263 /// happening, we first have to find the loop headers. Here we approximate this
264 /// by finding targets of backedges in the CFG.
266 /// Note that there definitely are cases when we want to allow threading of
267 /// edges across a loop header. For example, threading a jump from outside the
268 /// loop (the preheader) to an exit block of the loop is definitely profitable.
269 /// It is also almost always profitable to thread backedges from within the loop
270 /// to exit blocks, and is often profitable to thread backedges to other blocks
271 /// within the loop (forming a nested loop). This simple analysis is not rich
272 /// enough to track all of these properties and keep it up-to-date as the CFG
273 /// mutates, so we don't allow any of these transformations.
275 void JumpThreading::FindLoopHeaders(Function &F) {
276 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
277 FindFunctionBackedges(F, Edges);
279 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
280 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
283 /// getKnownConstant - Helper method to determine if we can thread over a
284 /// terminator with the given value as its condition, and if so what value to
285 /// use for that. What kind of value this is depends on whether we want an
286 /// integer or a block address, but an undef is always accepted.
287 /// Returns null if Val is null or not an appropriate constant.
288 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
289 if (!Val)
290 return 0;
292 // Undef is "known" enough.
293 if (UndefValue *U = dyn_cast<UndefValue>(Val))
294 return U;
296 if (Preference == WantBlockAddress)
297 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
299 return dyn_cast<ConstantInt>(Val);
302 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
303 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
304 /// in any of our predecessors. If so, return the known list of value and pred
305 /// BB in the result vector.
307 /// This returns true if there were any known values.
309 bool JumpThreading::
310 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
311 ConstantPreference Preference) {
312 // This method walks up use-def chains recursively. Because of this, we could
313 // get into an infinite loop going around loops in the use-def chain. To
314 // prevent this, keep track of what (value, block) pairs we've already visited
315 // and terminate the search if we loop back to them
316 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
317 return false;
319 // An RAII help to remove this pair from the recursion set once the recursion
320 // stack pops back out again.
321 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
323 // If V is a constant, then it is known in all predecessors.
324 if (Constant *KC = getKnownConstant(V, Preference)) {
325 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
326 Result.push_back(std::make_pair(KC, *PI));
328 return true;
331 // If V is a non-instruction value, or an instruction in a different block,
332 // then it can't be derived from a PHI.
333 Instruction *I = dyn_cast<Instruction>(V);
334 if (I == 0 || I->getParent() != BB) {
336 // Okay, if this is a live-in value, see if it has a known value at the end
337 // of any of our predecessors.
339 // FIXME: This should be an edge property, not a block end property.
340 /// TODO: Per PR2563, we could infer value range information about a
341 /// predecessor based on its terminator.
343 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
344 // "I" is a non-local compare-with-a-constant instruction. This would be
345 // able to handle value inequalities better, for example if the compare is
346 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
347 // Perhaps getConstantOnEdge should be smart enough to do this?
349 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
350 BasicBlock *P = *PI;
351 // If the value is known by LazyValueInfo to be a constant in a
352 // predecessor, use that information to try to thread this block.
353 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
354 if (Constant *KC = getKnownConstant(PredCst, Preference))
355 Result.push_back(std::make_pair(KC, P));
358 return !Result.empty();
361 /// If I is a PHI node, then we know the incoming values for any constants.
362 if (PHINode *PN = dyn_cast<PHINode>(I)) {
363 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364 Value *InVal = PN->getIncomingValue(i);
365 if (Constant *KC = getKnownConstant(InVal, Preference)) {
366 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
367 } else {
368 Constant *CI = LVI->getConstantOnEdge(InVal,
369 PN->getIncomingBlock(i), BB);
370 if (Constant *KC = getKnownConstant(CI, Preference))
371 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
375 return !Result.empty();
378 PredValueInfoTy LHSVals, RHSVals;
380 // Handle some boolean conditions.
381 if (I->getType()->getPrimitiveSizeInBits() == 1) {
382 assert(Preference == WantInteger && "One-bit non-integer type?");
383 // X | true -> true
384 // X & false -> false
385 if (I->getOpcode() == Instruction::Or ||
386 I->getOpcode() == Instruction::And) {
387 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
388 WantInteger);
389 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
390 WantInteger);
392 if (LHSVals.empty() && RHSVals.empty())
393 return false;
395 ConstantInt *InterestingVal;
396 if (I->getOpcode() == Instruction::Or)
397 InterestingVal = ConstantInt::getTrue(I->getContext());
398 else
399 InterestingVal = ConstantInt::getFalse(I->getContext());
401 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
403 // Scan for the sentinel. If we find an undef, force it to the
404 // interesting value: x|undef -> true and x&undef -> false.
405 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
406 if (LHSVals[i].first == InterestingVal ||
407 isa<UndefValue>(LHSVals[i].first)) {
408 Result.push_back(LHSVals[i]);
409 Result.back().first = InterestingVal;
410 LHSKnownBBs.insert(LHSVals[i].second);
412 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
413 if (RHSVals[i].first == InterestingVal ||
414 isa<UndefValue>(RHSVals[i].first)) {
415 // If we already inferred a value for this block on the LHS, don't
416 // re-add it.
417 if (!LHSKnownBBs.count(RHSVals[i].second)) {
418 Result.push_back(RHSVals[i]);
419 Result.back().first = InterestingVal;
423 return !Result.empty();
426 // Handle the NOT form of XOR.
427 if (I->getOpcode() == Instruction::Xor &&
428 isa<ConstantInt>(I->getOperand(1)) &&
429 cast<ConstantInt>(I->getOperand(1))->isOne()) {
430 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
431 WantInteger);
432 if (Result.empty())
433 return false;
435 // Invert the known values.
436 for (unsigned i = 0, e = Result.size(); i != e; ++i)
437 Result[i].first = ConstantExpr::getNot(Result[i].first);
439 return true;
442 // Try to simplify some other binary operator values.
443 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
444 assert(Preference != WantBlockAddress
445 && "A binary operator creating a block address?");
446 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
447 PredValueInfoTy LHSVals;
448 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
449 WantInteger);
451 // Try to use constant folding to simplify the binary operator.
452 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
453 Constant *V = LHSVals[i].first;
454 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
456 if (Constant *KC = getKnownConstant(Folded, WantInteger))
457 Result.push_back(std::make_pair(KC, LHSVals[i].second));
461 return !Result.empty();
464 // Handle compare with phi operand, where the PHI is defined in this block.
465 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
466 assert(Preference == WantInteger && "Compares only produce integers");
467 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
468 if (PN && PN->getParent() == BB) {
469 // We can do this simplification if any comparisons fold to true or false.
470 // See if any do.
471 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
472 BasicBlock *PredBB = PN->getIncomingBlock(i);
473 Value *LHS = PN->getIncomingValue(i);
474 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
476 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
477 if (Res == 0) {
478 if (!isa<Constant>(RHS))
479 continue;
481 LazyValueInfo::Tristate
482 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
483 cast<Constant>(RHS), PredBB, BB);
484 if (ResT == LazyValueInfo::Unknown)
485 continue;
486 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
489 if (Constant *KC = getKnownConstant(Res, WantInteger))
490 Result.push_back(std::make_pair(KC, PredBB));
493 return !Result.empty();
497 // If comparing a live-in value against a constant, see if we know the
498 // live-in value on any predecessors.
499 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
500 if (!isa<Instruction>(Cmp->getOperand(0)) ||
501 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
502 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
504 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
505 BasicBlock *P = *PI;
506 // If the value is known by LazyValueInfo to be a constant in a
507 // predecessor, use that information to try to thread this block.
508 LazyValueInfo::Tristate Res =
509 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
510 RHSCst, P, BB);
511 if (Res == LazyValueInfo::Unknown)
512 continue;
514 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
515 Result.push_back(std::make_pair(ResC, P));
518 return !Result.empty();
521 // Try to find a constant value for the LHS of a comparison,
522 // and evaluate it statically if we can.
523 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
524 PredValueInfoTy LHSVals;
525 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
526 WantInteger);
528 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
529 Constant *V = LHSVals[i].first;
530 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
531 V, CmpConst);
532 if (Constant *KC = getKnownConstant(Folded, WantInteger))
533 Result.push_back(std::make_pair(KC, LHSVals[i].second));
536 return !Result.empty();
541 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
542 // Handle select instructions where at least one operand is a known constant
543 // and we can figure out the condition value for any predecessor block.
544 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
545 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
546 PredValueInfoTy Conds;
547 if ((TrueVal || FalseVal) &&
548 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
549 WantInteger)) {
550 for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
551 Constant *Cond = Conds[i].first;
553 // Figure out what value to use for the condition.
554 bool KnownCond;
555 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
556 // A known boolean.
557 KnownCond = CI->isOne();
558 } else {
559 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
560 // Either operand will do, so be sure to pick the one that's a known
561 // constant.
562 // FIXME: Do this more cleverly if both values are known constants?
563 KnownCond = (TrueVal != 0);
566 // See if the select has a known constant value for this predecessor.
567 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
568 Result.push_back(std::make_pair(Val, Conds[i].second));
571 return !Result.empty();
575 // If all else fails, see if LVI can figure out a constant value for us.
576 Constant *CI = LVI->getConstant(V, BB);
577 if (Constant *KC = getKnownConstant(CI, Preference)) {
578 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
579 Result.push_back(std::make_pair(KC, *PI));
582 return !Result.empty();
587 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
588 /// in an undefined jump, decide which block is best to revector to.
590 /// Since we can pick an arbitrary destination, we pick the successor with the
591 /// fewest predecessors. This should reduce the in-degree of the others.
593 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
594 TerminatorInst *BBTerm = BB->getTerminator();
595 unsigned MinSucc = 0;
596 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
597 // Compute the successor with the minimum number of predecessors.
598 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
599 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
600 TestBB = BBTerm->getSuccessor(i);
601 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
602 if (NumPreds < MinNumPreds)
603 MinSucc = i;
606 return MinSucc;
609 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
610 if (!BB->hasAddressTaken()) return false;
612 // If the block has its address taken, it may be a tree of dead constants
613 // hanging off of it. These shouldn't keep the block alive.
614 BlockAddress *BA = BlockAddress::get(BB);
615 BA->removeDeadConstantUsers();
616 return !BA->use_empty();
619 /// ProcessBlock - If there are any predecessors whose control can be threaded
620 /// through to a successor, transform them now.
621 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
622 // If the block is trivially dead, just return and let the caller nuke it.
623 // This simplifies other transformations.
624 if (pred_begin(BB) == pred_end(BB) &&
625 BB != &BB->getParent()->getEntryBlock())
626 return false;
628 // If this block has a single predecessor, and if that pred has a single
629 // successor, merge the blocks. This encourages recursive jump threading
630 // because now the condition in this block can be threaded through
631 // predecessors of our predecessor block.
632 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
633 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
634 SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
635 // If SinglePred was a loop header, BB becomes one.
636 if (LoopHeaders.erase(SinglePred))
637 LoopHeaders.insert(BB);
639 // Remember if SinglePred was the entry block of the function. If so, we
640 // will need to move BB back to the entry position.
641 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
642 LVI->eraseBlock(SinglePred);
643 MergeBasicBlockIntoOnlyPred(BB);
645 if (isEntry && BB != &BB->getParent()->getEntryBlock())
646 BB->moveBefore(&BB->getParent()->getEntryBlock());
647 return true;
651 // What kind of constant we're looking for.
652 ConstantPreference Preference = WantInteger;
654 // Look to see if the terminator is a conditional branch, switch or indirect
655 // branch, if not we can't thread it.
656 Value *Condition;
657 Instruction *Terminator = BB->getTerminator();
658 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
659 // Can't thread an unconditional jump.
660 if (BI->isUnconditional()) return false;
661 Condition = BI->getCondition();
662 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
663 Condition = SI->getCondition();
664 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
665 Condition = IB->getAddress()->stripPointerCasts();
666 Preference = WantBlockAddress;
667 } else {
668 return false; // Must be an invoke.
671 // If the terminator is branching on an undef, we can pick any of the
672 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
673 if (isa<UndefValue>(Condition)) {
674 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
676 // Fold the branch/switch.
677 TerminatorInst *BBTerm = BB->getTerminator();
678 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
679 if (i == BestSucc) continue;
680 BBTerm->getSuccessor(i)->removePredecessor(BB, true);
683 DEBUG(dbgs() << " In block '" << BB->getName()
684 << "' folding undef terminator: " << *BBTerm << '\n');
685 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
686 BBTerm->eraseFromParent();
687 return true;
690 // If the terminator of this block is branching on a constant, simplify the
691 // terminator to an unconditional branch. This can occur due to threading in
692 // other blocks.
693 if (getKnownConstant(Condition, Preference)) {
694 DEBUG(dbgs() << " In block '" << BB->getName()
695 << "' folding terminator: " << *BB->getTerminator() << '\n');
696 ++NumFolds;
697 ConstantFoldTerminator(BB);
698 return true;
701 Instruction *CondInst = dyn_cast<Instruction>(Condition);
703 // All the rest of our checks depend on the condition being an instruction.
704 if (CondInst == 0) {
705 // FIXME: Unify this with code below.
706 if (ProcessThreadableEdges(Condition, BB, Preference))
707 return true;
708 return false;
712 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
713 // For a comparison where the LHS is outside this block, it's possible
714 // that we've branched on it before. Used LVI to see if we can simplify
715 // the branch based on that.
716 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
717 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
718 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
719 if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
720 (!isa<Instruction>(CondCmp->getOperand(0)) ||
721 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
722 // For predecessor edge, determine if the comparison is true or false
723 // on that edge. If they're all true or all false, we can simplify the
724 // branch.
725 // FIXME: We could handle mixed true/false by duplicating code.
726 LazyValueInfo::Tristate Baseline =
727 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
728 CondConst, *PI, BB);
729 if (Baseline != LazyValueInfo::Unknown) {
730 // Check that all remaining incoming values match the first one.
731 while (++PI != PE) {
732 LazyValueInfo::Tristate Ret =
733 LVI->getPredicateOnEdge(CondCmp->getPredicate(),
734 CondCmp->getOperand(0), CondConst, *PI, BB);
735 if (Ret != Baseline) break;
738 // If we terminated early, then one of the values didn't match.
739 if (PI == PE) {
740 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
741 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
742 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
743 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
744 CondBr->eraseFromParent();
745 return true;
751 // Check for some cases that are worth simplifying. Right now we want to look
752 // for loads that are used by a switch or by the condition for the branch. If
753 // we see one, check to see if it's partially redundant. If so, insert a PHI
754 // which can then be used to thread the values.
756 Value *SimplifyValue = CondInst;
757 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
758 if (isa<Constant>(CondCmp->getOperand(1)))
759 SimplifyValue = CondCmp->getOperand(0);
761 // TODO: There are other places where load PRE would be profitable, such as
762 // more complex comparisons.
763 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
764 if (SimplifyPartiallyRedundantLoad(LI))
765 return true;
768 // Handle a variety of cases where we are branching on something derived from
769 // a PHI node in the current block. If we can prove that any predecessors
770 // compute a predictable value based on a PHI node, thread those predecessors.
772 if (ProcessThreadableEdges(CondInst, BB, Preference))
773 return true;
775 // If this is an otherwise-unfoldable branch on a phi node in the current
776 // block, see if we can simplify.
777 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
778 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
779 return ProcessBranchOnPHI(PN);
782 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
783 if (CondInst->getOpcode() == Instruction::Xor &&
784 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
785 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
788 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
789 // "(X == 4)", thread through this block.
791 return false;
795 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
796 /// load instruction, eliminate it by replacing it with a PHI node. This is an
797 /// important optimization that encourages jump threading, and needs to be run
798 /// interlaced with other jump threading tasks.
799 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
800 // Don't hack volatile loads.
801 if (LI->isVolatile()) return false;
803 // If the load is defined in a block with exactly one predecessor, it can't be
804 // partially redundant.
805 BasicBlock *LoadBB = LI->getParent();
806 if (LoadBB->getSinglePredecessor())
807 return false;
809 Value *LoadedPtr = LI->getOperand(0);
811 // If the loaded operand is defined in the LoadBB, it can't be available.
812 // TODO: Could do simple PHI translation, that would be fun :)
813 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
814 if (PtrOp->getParent() == LoadBB)
815 return false;
817 // Scan a few instructions up from the load, to see if it is obviously live at
818 // the entry to its block.
819 BasicBlock::iterator BBIt = LI;
821 if (Value *AvailableVal =
822 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
823 // If the value if the load is locally available within the block, just use
824 // it. This frequently occurs for reg2mem'd allocas.
825 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
827 // If the returned value is the load itself, replace with an undef. This can
828 // only happen in dead loops.
829 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
830 LI->replaceAllUsesWith(AvailableVal);
831 LI->eraseFromParent();
832 return true;
835 // Otherwise, if we scanned the whole block and got to the top of the block,
836 // we know the block is locally transparent to the load. If not, something
837 // might clobber its value.
838 if (BBIt != LoadBB->begin())
839 return false;
842 SmallPtrSet<BasicBlock*, 8> PredsScanned;
843 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
844 AvailablePredsTy AvailablePreds;
845 BasicBlock *OneUnavailablePred = 0;
847 // If we got here, the loaded value is transparent through to the start of the
848 // block. Check to see if it is available in any of the predecessor blocks.
849 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
850 PI != PE; ++PI) {
851 BasicBlock *PredBB = *PI;
853 // If we already scanned this predecessor, skip it.
854 if (!PredsScanned.insert(PredBB))
855 continue;
857 // Scan the predecessor to see if the value is available in the pred.
858 BBIt = PredBB->end();
859 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
860 if (!PredAvailable) {
861 OneUnavailablePred = PredBB;
862 continue;
865 // If so, this load is partially redundant. Remember this info so that we
866 // can create a PHI node.
867 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
870 // If the loaded value isn't available in any predecessor, it isn't partially
871 // redundant.
872 if (AvailablePreds.empty()) return false;
874 // Okay, the loaded value is available in at least one (and maybe all!)
875 // predecessors. If the value is unavailable in more than one unique
876 // predecessor, we want to insert a merge block for those common predecessors.
877 // This ensures that we only have to insert one reload, thus not increasing
878 // code size.
879 BasicBlock *UnavailablePred = 0;
881 // If there is exactly one predecessor where the value is unavailable, the
882 // already computed 'OneUnavailablePred' block is it. If it ends in an
883 // unconditional branch, we know that it isn't a critical edge.
884 if (PredsScanned.size() == AvailablePreds.size()+1 &&
885 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
886 UnavailablePred = OneUnavailablePred;
887 } else if (PredsScanned.size() != AvailablePreds.size()) {
888 // Otherwise, we had multiple unavailable predecessors or we had a critical
889 // edge from the one.
890 SmallVector<BasicBlock*, 8> PredsToSplit;
891 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
893 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
894 AvailablePredSet.insert(AvailablePreds[i].first);
896 // Add all the unavailable predecessors to the PredsToSplit list.
897 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
898 PI != PE; ++PI) {
899 BasicBlock *P = *PI;
900 // If the predecessor is an indirect goto, we can't split the edge.
901 if (isa<IndirectBrInst>(P->getTerminator()))
902 return false;
904 if (!AvailablePredSet.count(P))
905 PredsToSplit.push_back(P);
908 // Split them out to their own block.
909 UnavailablePred =
910 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
911 "thread-pre-split", this);
914 // If the value isn't available in all predecessors, then there will be
915 // exactly one where it isn't available. Insert a load on that edge and add
916 // it to the AvailablePreds list.
917 if (UnavailablePred) {
918 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
919 "Can't handle critical edge here!");
920 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
921 LI->getAlignment(),
922 UnavailablePred->getTerminator());
923 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
926 // Now we know that each predecessor of this block has a value in
927 // AvailablePreds, sort them for efficient access as we're walking the preds.
928 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
930 // Create a PHI node at the start of the block for the PRE'd load value.
931 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
932 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
933 LoadBB->begin());
934 PN->takeName(LI);
936 // Insert new entries into the PHI for each predecessor. A single block may
937 // have multiple entries here.
938 for (pred_iterator PI = PB; PI != PE; ++PI) {
939 BasicBlock *P = *PI;
940 AvailablePredsTy::iterator I =
941 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
942 std::make_pair(P, (Value*)0));
944 assert(I != AvailablePreds.end() && I->first == P &&
945 "Didn't find entry for predecessor!");
947 PN->addIncoming(I->second, I->first);
950 //cerr << "PRE: " << *LI << *PN << "\n";
952 LI->replaceAllUsesWith(PN);
953 LI->eraseFromParent();
955 return true;
958 /// FindMostPopularDest - The specified list contains multiple possible
959 /// threadable destinations. Pick the one that occurs the most frequently in
960 /// the list.
961 static BasicBlock *
962 FindMostPopularDest(BasicBlock *BB,
963 const SmallVectorImpl<std::pair<BasicBlock*,
964 BasicBlock*> > &PredToDestList) {
965 assert(!PredToDestList.empty());
967 // Determine popularity. If there are multiple possible destinations, we
968 // explicitly choose to ignore 'undef' destinations. We prefer to thread
969 // blocks with known and real destinations to threading undef. We'll handle
970 // them later if interesting.
971 DenseMap<BasicBlock*, unsigned> DestPopularity;
972 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
973 if (PredToDestList[i].second)
974 DestPopularity[PredToDestList[i].second]++;
976 // Find the most popular dest.
977 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
978 BasicBlock *MostPopularDest = DPI->first;
979 unsigned Popularity = DPI->second;
980 SmallVector<BasicBlock*, 4> SamePopularity;
982 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
983 // If the popularity of this entry isn't higher than the popularity we've
984 // seen so far, ignore it.
985 if (DPI->second < Popularity)
986 ; // ignore.
987 else if (DPI->second == Popularity) {
988 // If it is the same as what we've seen so far, keep track of it.
989 SamePopularity.push_back(DPI->first);
990 } else {
991 // If it is more popular, remember it.
992 SamePopularity.clear();
993 MostPopularDest = DPI->first;
994 Popularity = DPI->second;
998 // Okay, now we know the most popular destination. If there is more than one
999 // destination, we need to determine one. This is arbitrary, but we need
1000 // to make a deterministic decision. Pick the first one that appears in the
1001 // successor list.
1002 if (!SamePopularity.empty()) {
1003 SamePopularity.push_back(MostPopularDest);
1004 TerminatorInst *TI = BB->getTerminator();
1005 for (unsigned i = 0; ; ++i) {
1006 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1008 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1009 TI->getSuccessor(i)) == SamePopularity.end())
1010 continue;
1012 MostPopularDest = TI->getSuccessor(i);
1013 break;
1017 // Okay, we have finally picked the most popular destination.
1018 return MostPopularDest;
1021 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1022 ConstantPreference Preference) {
1023 // If threading this would thread across a loop header, don't even try to
1024 // thread the edge.
1025 if (LoopHeaders.count(BB))
1026 return false;
1028 PredValueInfoTy PredValues;
1029 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1030 return false;
1032 assert(!PredValues.empty() &&
1033 "ComputeValueKnownInPredecessors returned true with no values");
1035 DEBUG(dbgs() << "IN BB: " << *BB;
1036 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1037 dbgs() << " BB '" << BB->getName() << "': FOUND condition = "
1038 << *PredValues[i].first
1039 << " for pred '" << PredValues[i].second->getName() << "'.\n";
1042 // Decide what we want to thread through. Convert our list of known values to
1043 // a list of known destinations for each pred. This also discards duplicate
1044 // predecessors and keeps track of the undefined inputs (which are represented
1045 // as a null dest in the PredToDestList).
1046 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1047 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1049 BasicBlock *OnlyDest = 0;
1050 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1052 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1053 BasicBlock *Pred = PredValues[i].second;
1054 if (!SeenPreds.insert(Pred))
1055 continue; // Duplicate predecessor entry.
1057 // If the predecessor ends with an indirect goto, we can't change its
1058 // destination.
1059 if (isa<IndirectBrInst>(Pred->getTerminator()))
1060 continue;
1062 Constant *Val = PredValues[i].first;
1064 BasicBlock *DestBB;
1065 if (isa<UndefValue>(Val))
1066 DestBB = 0;
1067 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1068 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1069 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1070 DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
1071 else {
1072 assert(isa<IndirectBrInst>(BB->getTerminator())
1073 && "Unexpected terminator");
1074 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1077 // If we have exactly one destination, remember it for efficiency below.
1078 if (PredToDestList.empty())
1079 OnlyDest = DestBB;
1080 else if (OnlyDest != DestBB)
1081 OnlyDest = MultipleDestSentinel;
1083 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1086 // If all edges were unthreadable, we fail.
1087 if (PredToDestList.empty())
1088 return false;
1090 // Determine which is the most common successor. If we have many inputs and
1091 // this block is a switch, we want to start by threading the batch that goes
1092 // to the most popular destination first. If we only know about one
1093 // threadable destination (the common case) we can avoid this.
1094 BasicBlock *MostPopularDest = OnlyDest;
1096 if (MostPopularDest == MultipleDestSentinel)
1097 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1099 // Now that we know what the most popular destination is, factor all
1100 // predecessors that will jump to it into a single predecessor.
1101 SmallVector<BasicBlock*, 16> PredsToFactor;
1102 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1103 if (PredToDestList[i].second == MostPopularDest) {
1104 BasicBlock *Pred = PredToDestList[i].first;
1106 // This predecessor may be a switch or something else that has multiple
1107 // edges to the block. Factor each of these edges by listing them
1108 // according to # occurrences in PredsToFactor.
1109 TerminatorInst *PredTI = Pred->getTerminator();
1110 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1111 if (PredTI->getSuccessor(i) == BB)
1112 PredsToFactor.push_back(Pred);
1115 // If the threadable edges are branching on an undefined value, we get to pick
1116 // the destination that these predecessors should get to.
1117 if (MostPopularDest == 0)
1118 MostPopularDest = BB->getTerminator()->
1119 getSuccessor(GetBestDestForJumpOnUndef(BB));
1121 // Ok, try to thread it!
1122 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1125 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1126 /// a PHI node in the current block. See if there are any simplifications we
1127 /// can do based on inputs to the phi node.
1129 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1130 BasicBlock *BB = PN->getParent();
1132 // TODO: We could make use of this to do it once for blocks with common PHI
1133 // values.
1134 SmallVector<BasicBlock*, 1> PredBBs;
1135 PredBBs.resize(1);
1137 // If any of the predecessor blocks end in an unconditional branch, we can
1138 // *duplicate* the conditional branch into that block in order to further
1139 // encourage jump threading and to eliminate cases where we have branch on a
1140 // phi of an icmp (branch on icmp is much better).
1141 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1142 BasicBlock *PredBB = PN->getIncomingBlock(i);
1143 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1144 if (PredBr->isUnconditional()) {
1145 PredBBs[0] = PredBB;
1146 // Try to duplicate BB into PredBB.
1147 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1148 return true;
1152 return false;
1155 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1156 /// a xor instruction in the current block. See if there are any
1157 /// simplifications we can do based on inputs to the xor.
1159 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1160 BasicBlock *BB = BO->getParent();
1162 // If either the LHS or RHS of the xor is a constant, don't do this
1163 // optimization.
1164 if (isa<ConstantInt>(BO->getOperand(0)) ||
1165 isa<ConstantInt>(BO->getOperand(1)))
1166 return false;
1168 // If the first instruction in BB isn't a phi, we won't be able to infer
1169 // anything special about any particular predecessor.
1170 if (!isa<PHINode>(BB->front()))
1171 return false;
1173 // If we have a xor as the branch input to this block, and we know that the
1174 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1175 // the condition into the predecessor and fix that value to true, saving some
1176 // logical ops on that path and encouraging other paths to simplify.
1178 // This copies something like this:
1180 // BB:
1181 // %X = phi i1 [1], [%X']
1182 // %Y = icmp eq i32 %A, %B
1183 // %Z = xor i1 %X, %Y
1184 // br i1 %Z, ...
1186 // Into:
1187 // BB':
1188 // %Y = icmp ne i32 %A, %B
1189 // br i1 %Z, ...
1191 PredValueInfoTy XorOpValues;
1192 bool isLHS = true;
1193 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1194 WantInteger)) {
1195 assert(XorOpValues.empty());
1196 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1197 WantInteger))
1198 return false;
1199 isLHS = false;
1202 assert(!XorOpValues.empty() &&
1203 "ComputeValueKnownInPredecessors returned true with no values");
1205 // Scan the information to see which is most popular: true or false. The
1206 // predecessors can be of the set true, false, or undef.
1207 unsigned NumTrue = 0, NumFalse = 0;
1208 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1209 if (isa<UndefValue>(XorOpValues[i].first))
1210 // Ignore undefs for the count.
1211 continue;
1212 if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1213 ++NumFalse;
1214 else
1215 ++NumTrue;
1218 // Determine which value to split on, true, false, or undef if neither.
1219 ConstantInt *SplitVal = 0;
1220 if (NumTrue > NumFalse)
1221 SplitVal = ConstantInt::getTrue(BB->getContext());
1222 else if (NumTrue != 0 || NumFalse != 0)
1223 SplitVal = ConstantInt::getFalse(BB->getContext());
1225 // Collect all of the blocks that this can be folded into so that we can
1226 // factor this once and clone it once.
1227 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1228 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1229 if (XorOpValues[i].first != SplitVal &&
1230 !isa<UndefValue>(XorOpValues[i].first))
1231 continue;
1233 BlocksToFoldInto.push_back(XorOpValues[i].second);
1236 // If we inferred a value for all of the predecessors, then duplication won't
1237 // help us. However, we can just replace the LHS or RHS with the constant.
1238 if (BlocksToFoldInto.size() ==
1239 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1240 if (SplitVal == 0) {
1241 // If all preds provide undef, just nuke the xor, because it is undef too.
1242 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1243 BO->eraseFromParent();
1244 } else if (SplitVal->isZero()) {
1245 // If all preds provide 0, replace the xor with the other input.
1246 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1247 BO->eraseFromParent();
1248 } else {
1249 // If all preds provide 1, set the computed value to 1.
1250 BO->setOperand(!isLHS, SplitVal);
1253 return true;
1256 // Try to duplicate BB into PredBB.
1257 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1261 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1262 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1263 /// NewPred using the entries from OldPred (suitably mapped).
1264 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1265 BasicBlock *OldPred,
1266 BasicBlock *NewPred,
1267 DenseMap<Instruction*, Value*> &ValueMap) {
1268 for (BasicBlock::iterator PNI = PHIBB->begin();
1269 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1270 // Ok, we have a PHI node. Figure out what the incoming value was for the
1271 // DestBlock.
1272 Value *IV = PN->getIncomingValueForBlock(OldPred);
1274 // Remap the value if necessary.
1275 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1276 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1277 if (I != ValueMap.end())
1278 IV = I->second;
1281 PN->addIncoming(IV, NewPred);
1285 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1286 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1287 /// across BB. Transform the IR to reflect this change.
1288 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1289 const SmallVectorImpl<BasicBlock*> &PredBBs,
1290 BasicBlock *SuccBB) {
1291 // If threading to the same block as we come from, we would infinite loop.
1292 if (SuccBB == BB) {
1293 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1294 << "' - would thread to self!\n");
1295 return false;
1298 // If threading this would thread across a loop header, don't thread the edge.
1299 // See the comments above FindLoopHeaders for justifications and caveats.
1300 if (LoopHeaders.count(BB)) {
1301 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
1302 << "' to dest BB '" << SuccBB->getName()
1303 << "' - it might create an irreducible loop!\n");
1304 return false;
1307 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1308 if (JumpThreadCost > Threshold) {
1309 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1310 << "' - Cost is too high: " << JumpThreadCost << "\n");
1311 return false;
1314 // And finally, do it! Start by factoring the predecessors is needed.
1315 BasicBlock *PredBB;
1316 if (PredBBs.size() == 1)
1317 PredBB = PredBBs[0];
1318 else {
1319 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1320 << " common predecessors.\n");
1321 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1322 ".thr_comm", this);
1325 // And finally, do it!
1326 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
1327 << SuccBB->getName() << "' with cost: " << JumpThreadCost
1328 << ", across block:\n "
1329 << *BB << "\n");
1331 LVI->threadEdge(PredBB, BB, SuccBB);
1333 // We are going to have to map operands from the original BB block to the new
1334 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1335 // account for entry from PredBB.
1336 DenseMap<Instruction*, Value*> ValueMapping;
1338 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1339 BB->getName()+".thread",
1340 BB->getParent(), BB);
1341 NewBB->moveAfter(PredBB);
1343 BasicBlock::iterator BI = BB->begin();
1344 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1345 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1347 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1348 // mapping and using it to remap operands in the cloned instructions.
1349 for (; !isa<TerminatorInst>(BI); ++BI) {
1350 Instruction *New = BI->clone();
1351 New->setName(BI->getName());
1352 NewBB->getInstList().push_back(New);
1353 ValueMapping[BI] = New;
1355 // Remap operands to patch up intra-block references.
1356 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1357 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1358 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1359 if (I != ValueMapping.end())
1360 New->setOperand(i, I->second);
1364 // We didn't copy the terminator from BB over to NewBB, because there is now
1365 // an unconditional jump to SuccBB. Insert the unconditional jump.
1366 BranchInst::Create(SuccBB, NewBB);
1368 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1369 // PHI nodes for NewBB now.
1370 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1372 // If there were values defined in BB that are used outside the block, then we
1373 // now have to update all uses of the value to use either the original value,
1374 // the cloned value, or some PHI derived value. This can require arbitrary
1375 // PHI insertion, of which we are prepared to do, clean these up now.
1376 SSAUpdater SSAUpdate;
1377 SmallVector<Use*, 16> UsesToRename;
1378 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1379 // Scan all uses of this instruction to see if it is used outside of its
1380 // block, and if so, record them in UsesToRename.
1381 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1382 ++UI) {
1383 Instruction *User = cast<Instruction>(*UI);
1384 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1385 if (UserPN->getIncomingBlock(UI) == BB)
1386 continue;
1387 } else if (User->getParent() == BB)
1388 continue;
1390 UsesToRename.push_back(&UI.getUse());
1393 // If there are no uses outside the block, we're done with this instruction.
1394 if (UsesToRename.empty())
1395 continue;
1397 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1399 // We found a use of I outside of BB. Rename all uses of I that are outside
1400 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1401 // with the two values we know.
1402 SSAUpdate.Initialize(I->getType(), I->getName());
1403 SSAUpdate.AddAvailableValue(BB, I);
1404 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1406 while (!UsesToRename.empty())
1407 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1408 DEBUG(dbgs() << "\n");
1412 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1413 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1414 // us to simplify any PHI nodes in BB.
1415 TerminatorInst *PredTerm = PredBB->getTerminator();
1416 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1417 if (PredTerm->getSuccessor(i) == BB) {
1418 BB->removePredecessor(PredBB, true);
1419 PredTerm->setSuccessor(i, NewBB);
1422 // At this point, the IR is fully up to date and consistent. Do a quick scan
1423 // over the new instructions and zap any that are constants or dead. This
1424 // frequently happens because of phi translation.
1425 SimplifyInstructionsInBlock(NewBB, TD);
1427 // Threaded an edge!
1428 ++NumThreads;
1429 return true;
1432 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1433 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1434 /// If we can duplicate the contents of BB up into PredBB do so now, this
1435 /// improves the odds that the branch will be on an analyzable instruction like
1436 /// a compare.
1437 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1438 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1439 assert(!PredBBs.empty() && "Can't handle an empty set");
1441 // If BB is a loop header, then duplicating this block outside the loop would
1442 // cause us to transform this into an irreducible loop, don't do this.
1443 // See the comments above FindLoopHeaders for justifications and caveats.
1444 if (LoopHeaders.count(BB)) {
1445 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
1446 << "' into predecessor block '" << PredBBs[0]->getName()
1447 << "' - it might create an irreducible loop!\n");
1448 return false;
1451 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1452 if (DuplicationCost > Threshold) {
1453 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
1454 << "' - Cost is too high: " << DuplicationCost << "\n");
1455 return false;
1458 // And finally, do it! Start by factoring the predecessors is needed.
1459 BasicBlock *PredBB;
1460 if (PredBBs.size() == 1)
1461 PredBB = PredBBs[0];
1462 else {
1463 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1464 << " common predecessors.\n");
1465 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1466 ".thr_comm", this);
1469 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1470 // of PredBB.
1471 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
1472 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1473 << DuplicationCost << " block is:" << *BB << "\n");
1475 // Unless PredBB ends with an unconditional branch, split the edge so that we
1476 // can just clone the bits from BB into the end of the new PredBB.
1477 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1479 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1480 PredBB = SplitEdge(PredBB, BB, this);
1481 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1484 // We are going to have to map operands from the original BB block into the
1485 // PredBB block. Evaluate PHI nodes in BB.
1486 DenseMap<Instruction*, Value*> ValueMapping;
1488 BasicBlock::iterator BI = BB->begin();
1489 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1490 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1492 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1493 // mapping and using it to remap operands in the cloned instructions.
1494 for (; BI != BB->end(); ++BI) {
1495 Instruction *New = BI->clone();
1497 // Remap operands to patch up intra-block references.
1498 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1499 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1500 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1501 if (I != ValueMapping.end())
1502 New->setOperand(i, I->second);
1505 // If this instruction can be simplified after the operands are updated,
1506 // just use the simplified value instead. This frequently happens due to
1507 // phi translation.
1508 if (Value *IV = SimplifyInstruction(New, TD)) {
1509 delete New;
1510 ValueMapping[BI] = IV;
1511 } else {
1512 // Otherwise, insert the new instruction into the block.
1513 New->setName(BI->getName());
1514 PredBB->getInstList().insert(OldPredBranch, New);
1515 ValueMapping[BI] = New;
1519 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1520 // add entries to the PHI nodes for branch from PredBB now.
1521 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1522 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1523 ValueMapping);
1524 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1525 ValueMapping);
1527 // If there were values defined in BB that are used outside the block, then we
1528 // now have to update all uses of the value to use either the original value,
1529 // the cloned value, or some PHI derived value. This can require arbitrary
1530 // PHI insertion, of which we are prepared to do, clean these up now.
1531 SSAUpdater SSAUpdate;
1532 SmallVector<Use*, 16> UsesToRename;
1533 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1534 // Scan all uses of this instruction to see if it is used outside of its
1535 // block, and if so, record them in UsesToRename.
1536 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1537 ++UI) {
1538 Instruction *User = cast<Instruction>(*UI);
1539 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1540 if (UserPN->getIncomingBlock(UI) == BB)
1541 continue;
1542 } else if (User->getParent() == BB)
1543 continue;
1545 UsesToRename.push_back(&UI.getUse());
1548 // If there are no uses outside the block, we're done with this instruction.
1549 if (UsesToRename.empty())
1550 continue;
1552 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1554 // We found a use of I outside of BB. Rename all uses of I that are outside
1555 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1556 // with the two values we know.
1557 SSAUpdate.Initialize(I->getType(), I->getName());
1558 SSAUpdate.AddAvailableValue(BB, I);
1559 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1561 while (!UsesToRename.empty())
1562 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1563 DEBUG(dbgs() << "\n");
1566 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1567 // that we nuked.
1568 BB->removePredecessor(PredBB, true);
1570 // Remove the unconditional branch at the end of the PredBB block.
1571 OldPredBranch->eraseFromParent();
1573 ++NumDupes;
1574 return true;