1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 #include "llvm/Support/raw_ostream.h"
38 STATISTIC(NumThreads
, "Number of jumps threaded");
39 STATISTIC(NumFolds
, "Number of terminators folded");
40 STATISTIC(NumDupes
, "Number of branch blocks duplicated to eliminate phi");
42 static cl::opt
<unsigned>
43 Threshold("jump-threading-threshold",
44 cl::desc("Max block size to duplicate for jump threading"),
45 cl::init(6), cl::Hidden
);
48 // These are at global scope so static functions can use them too.
49 typedef SmallVectorImpl
<std::pair
<Constant
*, BasicBlock
*> > PredValueInfo
;
50 typedef SmallVector
<std::pair
<Constant
*, BasicBlock
*>, 8> PredValueInfoTy
;
52 // This is used to keep track of what kind of constant we're currently hoping
54 enum ConstantPreference
{
59 /// This pass performs 'jump threading', which looks at blocks that have
60 /// multiple predecessors and multiple successors. If one or more of the
61 /// predecessors of the block can be proven to always jump to one of the
62 /// successors, we forward the edge from the predecessor to the successor by
63 /// duplicating the contents of this block.
65 /// An example of when this can occur is code like this:
72 /// In this case, the unconditional branch at the end of the first if can be
73 /// revectored to the false side of the second if.
75 class JumpThreading
: public FunctionPass
{
79 SmallPtrSet
<BasicBlock
*, 16> LoopHeaders
;
81 SmallSet
<AssertingVH
<BasicBlock
>, 16> LoopHeaders
;
83 DenseSet
<std::pair
<Value
*, BasicBlock
*> > RecursionSet
;
85 // RAII helper for updating the recursion stack.
86 struct RecursionSetRemover
{
87 DenseSet
<std::pair
<Value
*, BasicBlock
*> > &TheSet
;
88 std::pair
<Value
*, BasicBlock
*> ThePair
;
90 RecursionSetRemover(DenseSet
<std::pair
<Value
*, BasicBlock
*> > &S
,
91 std::pair
<Value
*, BasicBlock
*> P
)
92 : TheSet(S
), ThePair(P
) { }
94 ~RecursionSetRemover() {
95 TheSet
.erase(ThePair
);
99 static char ID
; // Pass identification
100 JumpThreading() : FunctionPass(ID
) {
101 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
104 bool runOnFunction(Function
&F
);
106 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
107 AU
.addRequired
<LazyValueInfo
>();
108 AU
.addPreserved
<LazyValueInfo
>();
111 void FindLoopHeaders(Function
&F
);
112 bool ProcessBlock(BasicBlock
*BB
);
113 bool ThreadEdge(BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
115 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock
*BB
,
116 const SmallVectorImpl
<BasicBlock
*> &PredBBs
);
118 bool ComputeValueKnownInPredecessors(Value
*V
, BasicBlock
*BB
,
119 PredValueInfo
&Result
,
120 ConstantPreference Preference
);
121 bool ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
122 ConstantPreference Preference
);
124 bool ProcessBranchOnPHI(PHINode
*PN
);
125 bool ProcessBranchOnXOR(BinaryOperator
*BO
);
127 bool SimplifyPartiallyRedundantLoad(LoadInst
*LI
);
131 char JumpThreading::ID
= 0;
132 INITIALIZE_PASS_BEGIN(JumpThreading
, "jump-threading",
133 "Jump Threading", false, false)
134 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo
)
135 INITIALIZE_PASS_END(JumpThreading
, "jump-threading",
136 "Jump Threading", false, false)
138 // Public interface to the Jump Threading pass
139 FunctionPass
*llvm::createJumpThreadingPass() { return new JumpThreading(); }
141 /// runOnFunction - Top level algorithm.
143 bool JumpThreading::runOnFunction(Function
&F
) {
144 DEBUG(dbgs() << "Jump threading on function '" << F
.getName() << "'\n");
145 TD
= getAnalysisIfAvailable
<TargetData
>();
146 LVI
= &getAnalysis
<LazyValueInfo
>();
150 bool Changed
, EverChanged
= false;
153 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
;) {
155 // Thread all of the branches we can over this block.
156 while (ProcessBlock(BB
))
161 // If the block is trivially dead, zap it. This eliminates the successor
162 // edges which simplifies the CFG.
163 if (pred_begin(BB
) == pred_end(BB
) &&
164 BB
!= &BB
->getParent()->getEntryBlock()) {
165 DEBUG(dbgs() << " JT: Deleting dead block '" << BB
->getName()
166 << "' with terminator: " << *BB
->getTerminator() << '\n');
167 LoopHeaders
.erase(BB
);
174 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
176 // Can't thread an unconditional jump, but if the block is "almost
177 // empty", we can replace uses of it with uses of the successor and make
179 if (BI
&& BI
->isUnconditional() &&
180 BB
!= &BB
->getParent()->getEntryBlock() &&
181 // If the terminator is the only non-phi instruction, try to nuke it.
182 BB
->getFirstNonPHIOrDbg()->isTerminator()) {
183 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
184 // block, we have to make sure it isn't in the LoopHeaders set. We
185 // reinsert afterward if needed.
186 bool ErasedFromLoopHeaders
= LoopHeaders
.erase(BB
);
187 BasicBlock
*Succ
= BI
->getSuccessor(0);
189 // FIXME: It is always conservatively correct to drop the info
190 // for a block even if it doesn't get erased. This isn't totally
191 // awesome, but it allows us to use AssertingVH to prevent nasty
192 // dangling pointer issues within LazyValueInfo.
194 if (TryToSimplifyUncondBranchFromEmptyBlock(BB
)) {
196 // If we deleted BB and BB was the header of a loop, then the
197 // successor is now the header of the loop.
201 if (ErasedFromLoopHeaders
)
202 LoopHeaders
.insert(BB
);
205 EverChanged
|= Changed
;
212 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
213 /// thread across it.
214 static unsigned getJumpThreadDuplicationCost(const BasicBlock
*BB
) {
215 /// Ignore PHI nodes, these will be flattened when duplication happens.
216 BasicBlock::const_iterator I
= BB
->getFirstNonPHI();
218 // FIXME: THREADING will delete values that are just used to compute the
219 // branch, so they shouldn't count against the duplication cost.
222 // Sum up the cost of each instruction until we get to the terminator. Don't
223 // include the terminator because the copy won't include it.
225 for (; !isa
<TerminatorInst
>(I
); ++I
) {
226 // Debugger intrinsics don't incur code size.
227 if (isa
<DbgInfoIntrinsic
>(I
)) continue;
229 // If this is a pointer->pointer bitcast, it is free.
230 if (isa
<BitCastInst
>(I
) && I
->getType()->isPointerTy())
233 // All other instructions count for at least one unit.
236 // Calls are more expensive. If they are non-intrinsic calls, we model them
237 // as having cost of 4. If they are a non-vector intrinsic, we model them
238 // as having cost of 2 total, and if they are a vector intrinsic, we model
239 // them as having cost 1.
240 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
241 if (!isa
<IntrinsicInst
>(CI
))
243 else if (!CI
->getType()->isVectorTy())
248 // Threading through a switch statement is particularly profitable. If this
249 // block ends in a switch, decrease its cost to make it more likely to happen.
250 if (isa
<SwitchInst
>(I
))
251 Size
= Size
> 6 ? Size
-6 : 0;
253 // The same holds for indirect branches, but slightly more so.
254 if (isa
<IndirectBrInst
>(I
))
255 Size
= Size
> 8 ? Size
-8 : 0;
260 /// FindLoopHeaders - We do not want jump threading to turn proper loop
261 /// structures into irreducible loops. Doing this breaks up the loop nesting
262 /// hierarchy and pessimizes later transformations. To prevent this from
263 /// happening, we first have to find the loop headers. Here we approximate this
264 /// by finding targets of backedges in the CFG.
266 /// Note that there definitely are cases when we want to allow threading of
267 /// edges across a loop header. For example, threading a jump from outside the
268 /// loop (the preheader) to an exit block of the loop is definitely profitable.
269 /// It is also almost always profitable to thread backedges from within the loop
270 /// to exit blocks, and is often profitable to thread backedges to other blocks
271 /// within the loop (forming a nested loop). This simple analysis is not rich
272 /// enough to track all of these properties and keep it up-to-date as the CFG
273 /// mutates, so we don't allow any of these transformations.
275 void JumpThreading::FindLoopHeaders(Function
&F
) {
276 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
277 FindFunctionBackedges(F
, Edges
);
279 for (unsigned i
= 0, e
= Edges
.size(); i
!= e
; ++i
)
280 LoopHeaders
.insert(const_cast<BasicBlock
*>(Edges
[i
].second
));
283 /// getKnownConstant - Helper method to determine if we can thread over a
284 /// terminator with the given value as its condition, and if so what value to
285 /// use for that. What kind of value this is depends on whether we want an
286 /// integer or a block address, but an undef is always accepted.
287 /// Returns null if Val is null or not an appropriate constant.
288 static Constant
*getKnownConstant(Value
*Val
, ConstantPreference Preference
) {
292 // Undef is "known" enough.
293 if (UndefValue
*U
= dyn_cast
<UndefValue
>(Val
))
296 if (Preference
== WantBlockAddress
)
297 return dyn_cast
<BlockAddress
>(Val
->stripPointerCasts());
299 return dyn_cast
<ConstantInt
>(Val
);
302 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
303 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
304 /// in any of our predecessors. If so, return the known list of value and pred
305 /// BB in the result vector.
307 /// This returns true if there were any known values.
310 ComputeValueKnownInPredecessors(Value
*V
, BasicBlock
*BB
, PredValueInfo
&Result
,
311 ConstantPreference Preference
) {
312 // This method walks up use-def chains recursively. Because of this, we could
313 // get into an infinite loop going around loops in the use-def chain. To
314 // prevent this, keep track of what (value, block) pairs we've already visited
315 // and terminate the search if we loop back to them
316 if (!RecursionSet
.insert(std::make_pair(V
, BB
)).second
)
319 // An RAII help to remove this pair from the recursion set once the recursion
320 // stack pops back out again.
321 RecursionSetRemover
remover(RecursionSet
, std::make_pair(V
, BB
));
323 // If V is a constant, then it is known in all predecessors.
324 if (Constant
*KC
= getKnownConstant(V
, Preference
)) {
325 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
326 Result
.push_back(std::make_pair(KC
, *PI
));
331 // If V is a non-instruction value, or an instruction in a different block,
332 // then it can't be derived from a PHI.
333 Instruction
*I
= dyn_cast
<Instruction
>(V
);
334 if (I
== 0 || I
->getParent() != BB
) {
336 // Okay, if this is a live-in value, see if it has a known value at the end
337 // of any of our predecessors.
339 // FIXME: This should be an edge property, not a block end property.
340 /// TODO: Per PR2563, we could infer value range information about a
341 /// predecessor based on its terminator.
343 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
344 // "I" is a non-local compare-with-a-constant instruction. This would be
345 // able to handle value inequalities better, for example if the compare is
346 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
347 // Perhaps getConstantOnEdge should be smart enough to do this?
349 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
351 // If the value is known by LazyValueInfo to be a constant in a
352 // predecessor, use that information to try to thread this block.
353 Constant
*PredCst
= LVI
->getConstantOnEdge(V
, P
, BB
);
354 if (Constant
*KC
= getKnownConstant(PredCst
, Preference
))
355 Result
.push_back(std::make_pair(KC
, P
));
358 return !Result
.empty();
361 /// If I is a PHI node, then we know the incoming values for any constants.
362 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
363 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
364 Value
*InVal
= PN
->getIncomingValue(i
);
365 if (Constant
*KC
= getKnownConstant(InVal
, Preference
)) {
366 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
368 Constant
*CI
= LVI
->getConstantOnEdge(InVal
,
369 PN
->getIncomingBlock(i
), BB
);
370 if (Constant
*KC
= getKnownConstant(CI
, Preference
))
371 Result
.push_back(std::make_pair(KC
, PN
->getIncomingBlock(i
)));
375 return !Result
.empty();
378 PredValueInfoTy LHSVals
, RHSVals
;
380 // Handle some boolean conditions.
381 if (I
->getType()->getPrimitiveSizeInBits() == 1) {
382 assert(Preference
== WantInteger
&& "One-bit non-integer type?");
384 // X & false -> false
385 if (I
->getOpcode() == Instruction::Or
||
386 I
->getOpcode() == Instruction::And
) {
387 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, LHSVals
,
389 ComputeValueKnownInPredecessors(I
->getOperand(1), BB
, RHSVals
,
392 if (LHSVals
.empty() && RHSVals
.empty())
395 ConstantInt
*InterestingVal
;
396 if (I
->getOpcode() == Instruction::Or
)
397 InterestingVal
= ConstantInt::getTrue(I
->getContext());
399 InterestingVal
= ConstantInt::getFalse(I
->getContext());
401 SmallPtrSet
<BasicBlock
*, 4> LHSKnownBBs
;
403 // Scan for the sentinel. If we find an undef, force it to the
404 // interesting value: x|undef -> true and x&undef -> false.
405 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
)
406 if (LHSVals
[i
].first
== InterestingVal
||
407 isa
<UndefValue
>(LHSVals
[i
].first
)) {
408 Result
.push_back(LHSVals
[i
]);
409 Result
.back().first
= InterestingVal
;
410 LHSKnownBBs
.insert(LHSVals
[i
].second
);
412 for (unsigned i
= 0, e
= RHSVals
.size(); i
!= e
; ++i
)
413 if (RHSVals
[i
].first
== InterestingVal
||
414 isa
<UndefValue
>(RHSVals
[i
].first
)) {
415 // If we already inferred a value for this block on the LHS, don't
417 if (!LHSKnownBBs
.count(RHSVals
[i
].second
)) {
418 Result
.push_back(RHSVals
[i
]);
419 Result
.back().first
= InterestingVal
;
423 return !Result
.empty();
426 // Handle the NOT form of XOR.
427 if (I
->getOpcode() == Instruction::Xor
&&
428 isa
<ConstantInt
>(I
->getOperand(1)) &&
429 cast
<ConstantInt
>(I
->getOperand(1))->isOne()) {
430 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, Result
,
435 // Invert the known values.
436 for (unsigned i
= 0, e
= Result
.size(); i
!= e
; ++i
)
437 Result
[i
].first
= ConstantExpr::getNot(Result
[i
].first
);
442 // Try to simplify some other binary operator values.
443 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
444 assert(Preference
!= WantBlockAddress
445 && "A binary operator creating a block address?");
446 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
447 PredValueInfoTy LHSVals
;
448 ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, LHSVals
,
451 // Try to use constant folding to simplify the binary operator.
452 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
) {
453 Constant
*V
= LHSVals
[i
].first
;
454 Constant
*Folded
= ConstantExpr::get(BO
->getOpcode(), V
, CI
);
456 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
457 Result
.push_back(std::make_pair(KC
, LHSVals
[i
].second
));
461 return !Result
.empty();
464 // Handle compare with phi operand, where the PHI is defined in this block.
465 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
466 assert(Preference
== WantInteger
&& "Compares only produce integers");
467 PHINode
*PN
= dyn_cast
<PHINode
>(Cmp
->getOperand(0));
468 if (PN
&& PN
->getParent() == BB
) {
469 // We can do this simplification if any comparisons fold to true or false.
471 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
472 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
473 Value
*LHS
= PN
->getIncomingValue(i
);
474 Value
*RHS
= Cmp
->getOperand(1)->DoPHITranslation(BB
, PredBB
);
476 Value
*Res
= SimplifyCmpInst(Cmp
->getPredicate(), LHS
, RHS
, TD
);
478 if (!isa
<Constant
>(RHS
))
481 LazyValueInfo::Tristate
482 ResT
= LVI
->getPredicateOnEdge(Cmp
->getPredicate(), LHS
,
483 cast
<Constant
>(RHS
), PredBB
, BB
);
484 if (ResT
== LazyValueInfo::Unknown
)
486 Res
= ConstantInt::get(Type::getInt1Ty(LHS
->getContext()), ResT
);
489 if (Constant
*KC
= getKnownConstant(Res
, WantInteger
))
490 Result
.push_back(std::make_pair(KC
, PredBB
));
493 return !Result
.empty();
497 // If comparing a live-in value against a constant, see if we know the
498 // live-in value on any predecessors.
499 if (isa
<Constant
>(Cmp
->getOperand(1)) && Cmp
->getType()->isIntegerTy()) {
500 if (!isa
<Instruction
>(Cmp
->getOperand(0)) ||
501 cast
<Instruction
>(Cmp
->getOperand(0))->getParent() != BB
) {
502 Constant
*RHSCst
= cast
<Constant
>(Cmp
->getOperand(1));
504 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
);PI
!= E
; ++PI
){
506 // If the value is known by LazyValueInfo to be a constant in a
507 // predecessor, use that information to try to thread this block.
508 LazyValueInfo::Tristate Res
=
509 LVI
->getPredicateOnEdge(Cmp
->getPredicate(), Cmp
->getOperand(0),
511 if (Res
== LazyValueInfo::Unknown
)
514 Constant
*ResC
= ConstantInt::get(Cmp
->getType(), Res
);
515 Result
.push_back(std::make_pair(ResC
, P
));
518 return !Result
.empty();
521 // Try to find a constant value for the LHS of a comparison,
522 // and evaluate it statically if we can.
523 if (Constant
*CmpConst
= dyn_cast
<Constant
>(Cmp
->getOperand(1))) {
524 PredValueInfoTy LHSVals
;
525 ComputeValueKnownInPredecessors(I
->getOperand(0), BB
, LHSVals
,
528 for (unsigned i
= 0, e
= LHSVals
.size(); i
!= e
; ++i
) {
529 Constant
*V
= LHSVals
[i
].first
;
530 Constant
*Folded
= ConstantExpr::getCompare(Cmp
->getPredicate(),
532 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
533 Result
.push_back(std::make_pair(KC
, LHSVals
[i
].second
));
536 return !Result
.empty();
541 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
542 // Handle select instructions where at least one operand is a known constant
543 // and we can figure out the condition value for any predecessor block.
544 Constant
*TrueVal
= getKnownConstant(SI
->getTrueValue(), Preference
);
545 Constant
*FalseVal
= getKnownConstant(SI
->getFalseValue(), Preference
);
546 PredValueInfoTy Conds
;
547 if ((TrueVal
|| FalseVal
) &&
548 ComputeValueKnownInPredecessors(SI
->getCondition(), BB
, Conds
,
550 for (unsigned i
= 0, e
= Conds
.size(); i
!= e
; ++i
) {
551 Constant
*Cond
= Conds
[i
].first
;
553 // Figure out what value to use for the condition.
555 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Cond
)) {
557 KnownCond
= CI
->isOne();
559 assert(isa
<UndefValue
>(Cond
) && "Unexpected condition value");
560 // Either operand will do, so be sure to pick the one that's a known
562 // FIXME: Do this more cleverly if both values are known constants?
563 KnownCond
= (TrueVal
!= 0);
566 // See if the select has a known constant value for this predecessor.
567 if (Constant
*Val
= KnownCond
? TrueVal
: FalseVal
)
568 Result
.push_back(std::make_pair(Val
, Conds
[i
].second
));
571 return !Result
.empty();
575 // If all else fails, see if LVI can figure out a constant value for us.
576 Constant
*CI
= LVI
->getConstant(V
, BB
);
577 if (Constant
*KC
= getKnownConstant(CI
, Preference
)) {
578 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
579 Result
.push_back(std::make_pair(KC
, *PI
));
582 return !Result
.empty();
587 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
588 /// in an undefined jump, decide which block is best to revector to.
590 /// Since we can pick an arbitrary destination, we pick the successor with the
591 /// fewest predecessors. This should reduce the in-degree of the others.
593 static unsigned GetBestDestForJumpOnUndef(BasicBlock
*BB
) {
594 TerminatorInst
*BBTerm
= BB
->getTerminator();
595 unsigned MinSucc
= 0;
596 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
597 // Compute the successor with the minimum number of predecessors.
598 unsigned MinNumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
599 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
600 TestBB
= BBTerm
->getSuccessor(i
);
601 unsigned NumPreds
= std::distance(pred_begin(TestBB
), pred_end(TestBB
));
602 if (NumPreds
< MinNumPreds
)
609 static bool hasAddressTakenAndUsed(BasicBlock
*BB
) {
610 if (!BB
->hasAddressTaken()) return false;
612 // If the block has its address taken, it may be a tree of dead constants
613 // hanging off of it. These shouldn't keep the block alive.
614 BlockAddress
*BA
= BlockAddress::get(BB
);
615 BA
->removeDeadConstantUsers();
616 return !BA
->use_empty();
619 /// ProcessBlock - If there are any predecessors whose control can be threaded
620 /// through to a successor, transform them now.
621 bool JumpThreading::ProcessBlock(BasicBlock
*BB
) {
622 // If the block is trivially dead, just return and let the caller nuke it.
623 // This simplifies other transformations.
624 if (pred_begin(BB
) == pred_end(BB
) &&
625 BB
!= &BB
->getParent()->getEntryBlock())
628 // If this block has a single predecessor, and if that pred has a single
629 // successor, merge the blocks. This encourages recursive jump threading
630 // because now the condition in this block can be threaded through
631 // predecessors of our predecessor block.
632 if (BasicBlock
*SinglePred
= BB
->getSinglePredecessor()) {
633 if (SinglePred
->getTerminator()->getNumSuccessors() == 1 &&
634 SinglePred
!= BB
&& !hasAddressTakenAndUsed(BB
)) {
635 // If SinglePred was a loop header, BB becomes one.
636 if (LoopHeaders
.erase(SinglePred
))
637 LoopHeaders
.insert(BB
);
639 // Remember if SinglePred was the entry block of the function. If so, we
640 // will need to move BB back to the entry position.
641 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
642 LVI
->eraseBlock(SinglePred
);
643 MergeBasicBlockIntoOnlyPred(BB
);
645 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
646 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
651 // What kind of constant we're looking for.
652 ConstantPreference Preference
= WantInteger
;
654 // Look to see if the terminator is a conditional branch, switch or indirect
655 // branch, if not we can't thread it.
657 Instruction
*Terminator
= BB
->getTerminator();
658 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Terminator
)) {
659 // Can't thread an unconditional jump.
660 if (BI
->isUnconditional()) return false;
661 Condition
= BI
->getCondition();
662 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Terminator
)) {
663 Condition
= SI
->getCondition();
664 } else if (IndirectBrInst
*IB
= dyn_cast
<IndirectBrInst
>(Terminator
)) {
665 Condition
= IB
->getAddress()->stripPointerCasts();
666 Preference
= WantBlockAddress
;
668 return false; // Must be an invoke.
671 // If the terminator is branching on an undef, we can pick any of the
672 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
673 if (isa
<UndefValue
>(Condition
)) {
674 unsigned BestSucc
= GetBestDestForJumpOnUndef(BB
);
676 // Fold the branch/switch.
677 TerminatorInst
*BBTerm
= BB
->getTerminator();
678 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
679 if (i
== BestSucc
) continue;
680 BBTerm
->getSuccessor(i
)->removePredecessor(BB
, true);
683 DEBUG(dbgs() << " In block '" << BB
->getName()
684 << "' folding undef terminator: " << *BBTerm
<< '\n');
685 BranchInst::Create(BBTerm
->getSuccessor(BestSucc
), BBTerm
);
686 BBTerm
->eraseFromParent();
690 // If the terminator of this block is branching on a constant, simplify the
691 // terminator to an unconditional branch. This can occur due to threading in
693 if (getKnownConstant(Condition
, Preference
)) {
694 DEBUG(dbgs() << " In block '" << BB
->getName()
695 << "' folding terminator: " << *BB
->getTerminator() << '\n');
697 ConstantFoldTerminator(BB
);
701 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
703 // All the rest of our checks depend on the condition being an instruction.
705 // FIXME: Unify this with code below.
706 if (ProcessThreadableEdges(Condition
, BB
, Preference
))
712 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondInst
)) {
713 // For a comparison where the LHS is outside this block, it's possible
714 // that we've branched on it before. Used LVI to see if we can simplify
715 // the branch based on that.
716 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
717 Constant
*CondConst
= dyn_cast
<Constant
>(CondCmp
->getOperand(1));
718 pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
);
719 if (CondBr
&& CondConst
&& CondBr
->isConditional() && PI
!= PE
&&
720 (!isa
<Instruction
>(CondCmp
->getOperand(0)) ||
721 cast
<Instruction
>(CondCmp
->getOperand(0))->getParent() != BB
)) {
722 // For predecessor edge, determine if the comparison is true or false
723 // on that edge. If they're all true or all false, we can simplify the
725 // FIXME: We could handle mixed true/false by duplicating code.
726 LazyValueInfo::Tristate Baseline
=
727 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), CondCmp
->getOperand(0),
729 if (Baseline
!= LazyValueInfo::Unknown
) {
730 // Check that all remaining incoming values match the first one.
732 LazyValueInfo::Tristate Ret
=
733 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(),
734 CondCmp
->getOperand(0), CondConst
, *PI
, BB
);
735 if (Ret
!= Baseline
) break;
738 // If we terminated early, then one of the values didn't match.
740 unsigned ToRemove
= Baseline
== LazyValueInfo::True
? 1 : 0;
741 unsigned ToKeep
= Baseline
== LazyValueInfo::True
? 0 : 1;
742 CondBr
->getSuccessor(ToRemove
)->removePredecessor(BB
, true);
743 BranchInst::Create(CondBr
->getSuccessor(ToKeep
), CondBr
);
744 CondBr
->eraseFromParent();
751 // Check for some cases that are worth simplifying. Right now we want to look
752 // for loads that are used by a switch or by the condition for the branch. If
753 // we see one, check to see if it's partially redundant. If so, insert a PHI
754 // which can then be used to thread the values.
756 Value
*SimplifyValue
= CondInst
;
757 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
758 if (isa
<Constant
>(CondCmp
->getOperand(1)))
759 SimplifyValue
= CondCmp
->getOperand(0);
761 // TODO: There are other places where load PRE would be profitable, such as
762 // more complex comparisons.
763 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(SimplifyValue
))
764 if (SimplifyPartiallyRedundantLoad(LI
))
768 // Handle a variety of cases where we are branching on something derived from
769 // a PHI node in the current block. If we can prove that any predecessors
770 // compute a predictable value based on a PHI node, thread those predecessors.
772 if (ProcessThreadableEdges(CondInst
, BB
, Preference
))
775 // If this is an otherwise-unfoldable branch on a phi node in the current
776 // block, see if we can simplify.
777 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
778 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
779 return ProcessBranchOnPHI(PN
);
782 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
783 if (CondInst
->getOpcode() == Instruction::Xor
&&
784 CondInst
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
785 return ProcessBranchOnXOR(cast
<BinaryOperator
>(CondInst
));
788 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
789 // "(X == 4)", thread through this block.
795 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
796 /// load instruction, eliminate it by replacing it with a PHI node. This is an
797 /// important optimization that encourages jump threading, and needs to be run
798 /// interlaced with other jump threading tasks.
799 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst
*LI
) {
800 // Don't hack volatile loads.
801 if (LI
->isVolatile()) return false;
803 // If the load is defined in a block with exactly one predecessor, it can't be
804 // partially redundant.
805 BasicBlock
*LoadBB
= LI
->getParent();
806 if (LoadBB
->getSinglePredecessor())
809 Value
*LoadedPtr
= LI
->getOperand(0);
811 // If the loaded operand is defined in the LoadBB, it can't be available.
812 // TODO: Could do simple PHI translation, that would be fun :)
813 if (Instruction
*PtrOp
= dyn_cast
<Instruction
>(LoadedPtr
))
814 if (PtrOp
->getParent() == LoadBB
)
817 // Scan a few instructions up from the load, to see if it is obviously live at
818 // the entry to its block.
819 BasicBlock::iterator BBIt
= LI
;
821 if (Value
*AvailableVal
=
822 FindAvailableLoadedValue(LoadedPtr
, LoadBB
, BBIt
, 6)) {
823 // If the value if the load is locally available within the block, just use
824 // it. This frequently occurs for reg2mem'd allocas.
825 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
827 // If the returned value is the load itself, replace with an undef. This can
828 // only happen in dead loops.
829 if (AvailableVal
== LI
) AvailableVal
= UndefValue::get(LI
->getType());
830 LI
->replaceAllUsesWith(AvailableVal
);
831 LI
->eraseFromParent();
835 // Otherwise, if we scanned the whole block and got to the top of the block,
836 // we know the block is locally transparent to the load. If not, something
837 // might clobber its value.
838 if (BBIt
!= LoadBB
->begin())
842 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
843 typedef SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> AvailablePredsTy
;
844 AvailablePredsTy AvailablePreds
;
845 BasicBlock
*OneUnavailablePred
= 0;
847 // If we got here, the loaded value is transparent through to the start of the
848 // block. Check to see if it is available in any of the predecessor blocks.
849 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
851 BasicBlock
*PredBB
= *PI
;
853 // If we already scanned this predecessor, skip it.
854 if (!PredsScanned
.insert(PredBB
))
857 // Scan the predecessor to see if the value is available in the pred.
858 BBIt
= PredBB
->end();
859 Value
*PredAvailable
= FindAvailableLoadedValue(LoadedPtr
, PredBB
, BBIt
, 6);
860 if (!PredAvailable
) {
861 OneUnavailablePred
= PredBB
;
865 // If so, this load is partially redundant. Remember this info so that we
866 // can create a PHI node.
867 AvailablePreds
.push_back(std::make_pair(PredBB
, PredAvailable
));
870 // If the loaded value isn't available in any predecessor, it isn't partially
872 if (AvailablePreds
.empty()) return false;
874 // Okay, the loaded value is available in at least one (and maybe all!)
875 // predecessors. If the value is unavailable in more than one unique
876 // predecessor, we want to insert a merge block for those common predecessors.
877 // This ensures that we only have to insert one reload, thus not increasing
879 BasicBlock
*UnavailablePred
= 0;
881 // If there is exactly one predecessor where the value is unavailable, the
882 // already computed 'OneUnavailablePred' block is it. If it ends in an
883 // unconditional branch, we know that it isn't a critical edge.
884 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
885 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
886 UnavailablePred
= OneUnavailablePred
;
887 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
888 // Otherwise, we had multiple unavailable predecessors or we had a critical
889 // edge from the one.
890 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
891 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
893 for (unsigned i
= 0, e
= AvailablePreds
.size(); i
!= e
; ++i
)
894 AvailablePredSet
.insert(AvailablePreds
[i
].first
);
896 // Add all the unavailable predecessors to the PredsToSplit list.
897 for (pred_iterator PI
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
900 // If the predecessor is an indirect goto, we can't split the edge.
901 if (isa
<IndirectBrInst
>(P
->getTerminator()))
904 if (!AvailablePredSet
.count(P
))
905 PredsToSplit
.push_back(P
);
908 // Split them out to their own block.
910 SplitBlockPredecessors(LoadBB
, &PredsToSplit
[0], PredsToSplit
.size(),
911 "thread-pre-split", this);
914 // If the value isn't available in all predecessors, then there will be
915 // exactly one where it isn't available. Insert a load on that edge and add
916 // it to the AvailablePreds list.
917 if (UnavailablePred
) {
918 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
919 "Can't handle critical edge here!");
920 Value
*NewVal
= new LoadInst(LoadedPtr
, LI
->getName()+".pr", false,
922 UnavailablePred
->getTerminator());
923 AvailablePreds
.push_back(std::make_pair(UnavailablePred
, NewVal
));
926 // Now we know that each predecessor of this block has a value in
927 // AvailablePreds, sort them for efficient access as we're walking the preds.
928 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
930 // Create a PHI node at the start of the block for the PRE'd load value.
931 pred_iterator PB
= pred_begin(LoadBB
), PE
= pred_end(LoadBB
);
932 PHINode
*PN
= PHINode::Create(LI
->getType(), std::distance(PB
, PE
), "",
936 // Insert new entries into the PHI for each predecessor. A single block may
937 // have multiple entries here.
938 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
940 AvailablePredsTy::iterator I
=
941 std::lower_bound(AvailablePreds
.begin(), AvailablePreds
.end(),
942 std::make_pair(P
, (Value
*)0));
944 assert(I
!= AvailablePreds
.end() && I
->first
== P
&&
945 "Didn't find entry for predecessor!");
947 PN
->addIncoming(I
->second
, I
->first
);
950 //cerr << "PRE: " << *LI << *PN << "\n";
952 LI
->replaceAllUsesWith(PN
);
953 LI
->eraseFromParent();
958 /// FindMostPopularDest - The specified list contains multiple possible
959 /// threadable destinations. Pick the one that occurs the most frequently in
962 FindMostPopularDest(BasicBlock
*BB
,
963 const SmallVectorImpl
<std::pair
<BasicBlock
*,
964 BasicBlock
*> > &PredToDestList
) {
965 assert(!PredToDestList
.empty());
967 // Determine popularity. If there are multiple possible destinations, we
968 // explicitly choose to ignore 'undef' destinations. We prefer to thread
969 // blocks with known and real destinations to threading undef. We'll handle
970 // them later if interesting.
971 DenseMap
<BasicBlock
*, unsigned> DestPopularity
;
972 for (unsigned i
= 0, e
= PredToDestList
.size(); i
!= e
; ++i
)
973 if (PredToDestList
[i
].second
)
974 DestPopularity
[PredToDestList
[i
].second
]++;
976 // Find the most popular dest.
977 DenseMap
<BasicBlock
*, unsigned>::iterator DPI
= DestPopularity
.begin();
978 BasicBlock
*MostPopularDest
= DPI
->first
;
979 unsigned Popularity
= DPI
->second
;
980 SmallVector
<BasicBlock
*, 4> SamePopularity
;
982 for (++DPI
; DPI
!= DestPopularity
.end(); ++DPI
) {
983 // If the popularity of this entry isn't higher than the popularity we've
984 // seen so far, ignore it.
985 if (DPI
->second
< Popularity
)
987 else if (DPI
->second
== Popularity
) {
988 // If it is the same as what we've seen so far, keep track of it.
989 SamePopularity
.push_back(DPI
->first
);
991 // If it is more popular, remember it.
992 SamePopularity
.clear();
993 MostPopularDest
= DPI
->first
;
994 Popularity
= DPI
->second
;
998 // Okay, now we know the most popular destination. If there is more than one
999 // destination, we need to determine one. This is arbitrary, but we need
1000 // to make a deterministic decision. Pick the first one that appears in the
1002 if (!SamePopularity
.empty()) {
1003 SamePopularity
.push_back(MostPopularDest
);
1004 TerminatorInst
*TI
= BB
->getTerminator();
1005 for (unsigned i
= 0; ; ++i
) {
1006 assert(i
!= TI
->getNumSuccessors() && "Didn't find any successor!");
1008 if (std::find(SamePopularity
.begin(), SamePopularity
.end(),
1009 TI
->getSuccessor(i
)) == SamePopularity
.end())
1012 MostPopularDest
= TI
->getSuccessor(i
);
1017 // Okay, we have finally picked the most popular destination.
1018 return MostPopularDest
;
1021 bool JumpThreading::ProcessThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
1022 ConstantPreference Preference
) {
1023 // If threading this would thread across a loop header, don't even try to
1025 if (LoopHeaders
.count(BB
))
1028 PredValueInfoTy PredValues
;
1029 if (!ComputeValueKnownInPredecessors(Cond
, BB
, PredValues
, Preference
))
1032 assert(!PredValues
.empty() &&
1033 "ComputeValueKnownInPredecessors returned true with no values");
1035 DEBUG(dbgs() << "IN BB: " << *BB
;
1036 for (unsigned i
= 0, e
= PredValues
.size(); i
!= e
; ++i
) {
1037 dbgs() << " BB '" << BB
->getName() << "': FOUND condition = "
1038 << *PredValues
[i
].first
1039 << " for pred '" << PredValues
[i
].second
->getName() << "'.\n";
1042 // Decide what we want to thread through. Convert our list of known values to
1043 // a list of known destinations for each pred. This also discards duplicate
1044 // predecessors and keeps track of the undefined inputs (which are represented
1045 // as a null dest in the PredToDestList).
1046 SmallPtrSet
<BasicBlock
*, 16> SeenPreds
;
1047 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 16> PredToDestList
;
1049 BasicBlock
*OnlyDest
= 0;
1050 BasicBlock
*MultipleDestSentinel
= (BasicBlock
*)(intptr_t)~0ULL;
1052 for (unsigned i
= 0, e
= PredValues
.size(); i
!= e
; ++i
) {
1053 BasicBlock
*Pred
= PredValues
[i
].second
;
1054 if (!SeenPreds
.insert(Pred
))
1055 continue; // Duplicate predecessor entry.
1057 // If the predecessor ends with an indirect goto, we can't change its
1059 if (isa
<IndirectBrInst
>(Pred
->getTerminator()))
1062 Constant
*Val
= PredValues
[i
].first
;
1065 if (isa
<UndefValue
>(Val
))
1067 else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator()))
1068 DestBB
= BI
->getSuccessor(cast
<ConstantInt
>(Val
)->isZero());
1069 else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
1070 DestBB
= SI
->getSuccessor(SI
->findCaseValue(cast
<ConstantInt
>(Val
)));
1072 assert(isa
<IndirectBrInst
>(BB
->getTerminator())
1073 && "Unexpected terminator");
1074 DestBB
= cast
<BlockAddress
>(Val
)->getBasicBlock();
1077 // If we have exactly one destination, remember it for efficiency below.
1078 if (PredToDestList
.empty())
1080 else if (OnlyDest
!= DestBB
)
1081 OnlyDest
= MultipleDestSentinel
;
1083 PredToDestList
.push_back(std::make_pair(Pred
, DestBB
));
1086 // If all edges were unthreadable, we fail.
1087 if (PredToDestList
.empty())
1090 // Determine which is the most common successor. If we have many inputs and
1091 // this block is a switch, we want to start by threading the batch that goes
1092 // to the most popular destination first. If we only know about one
1093 // threadable destination (the common case) we can avoid this.
1094 BasicBlock
*MostPopularDest
= OnlyDest
;
1096 if (MostPopularDest
== MultipleDestSentinel
)
1097 MostPopularDest
= FindMostPopularDest(BB
, PredToDestList
);
1099 // Now that we know what the most popular destination is, factor all
1100 // predecessors that will jump to it into a single predecessor.
1101 SmallVector
<BasicBlock
*, 16> PredsToFactor
;
1102 for (unsigned i
= 0, e
= PredToDestList
.size(); i
!= e
; ++i
)
1103 if (PredToDestList
[i
].second
== MostPopularDest
) {
1104 BasicBlock
*Pred
= PredToDestList
[i
].first
;
1106 // This predecessor may be a switch or something else that has multiple
1107 // edges to the block. Factor each of these edges by listing them
1108 // according to # occurrences in PredsToFactor.
1109 TerminatorInst
*PredTI
= Pred
->getTerminator();
1110 for (unsigned i
= 0, e
= PredTI
->getNumSuccessors(); i
!= e
; ++i
)
1111 if (PredTI
->getSuccessor(i
) == BB
)
1112 PredsToFactor
.push_back(Pred
);
1115 // If the threadable edges are branching on an undefined value, we get to pick
1116 // the destination that these predecessors should get to.
1117 if (MostPopularDest
== 0)
1118 MostPopularDest
= BB
->getTerminator()->
1119 getSuccessor(GetBestDestForJumpOnUndef(BB
));
1121 // Ok, try to thread it!
1122 return ThreadEdge(BB
, PredsToFactor
, MostPopularDest
);
1125 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1126 /// a PHI node in the current block. See if there are any simplifications we
1127 /// can do based on inputs to the phi node.
1129 bool JumpThreading::ProcessBranchOnPHI(PHINode
*PN
) {
1130 BasicBlock
*BB
= PN
->getParent();
1132 // TODO: We could make use of this to do it once for blocks with common PHI
1134 SmallVector
<BasicBlock
*, 1> PredBBs
;
1137 // If any of the predecessor blocks end in an unconditional branch, we can
1138 // *duplicate* the conditional branch into that block in order to further
1139 // encourage jump threading and to eliminate cases where we have branch on a
1140 // phi of an icmp (branch on icmp is much better).
1141 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1142 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1143 if (BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator()))
1144 if (PredBr
->isUnconditional()) {
1145 PredBBs
[0] = PredBB
;
1146 // Try to duplicate BB into PredBB.
1147 if (DuplicateCondBranchOnPHIIntoPred(BB
, PredBBs
))
1155 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1156 /// a xor instruction in the current block. See if there are any
1157 /// simplifications we can do based on inputs to the xor.
1159 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator
*BO
) {
1160 BasicBlock
*BB
= BO
->getParent();
1162 // If either the LHS or RHS of the xor is a constant, don't do this
1164 if (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1165 isa
<ConstantInt
>(BO
->getOperand(1)))
1168 // If the first instruction in BB isn't a phi, we won't be able to infer
1169 // anything special about any particular predecessor.
1170 if (!isa
<PHINode
>(BB
->front()))
1173 // If we have a xor as the branch input to this block, and we know that the
1174 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1175 // the condition into the predecessor and fix that value to true, saving some
1176 // logical ops on that path and encouraging other paths to simplify.
1178 // This copies something like this:
1181 // %X = phi i1 [1], [%X']
1182 // %Y = icmp eq i32 %A, %B
1183 // %Z = xor i1 %X, %Y
1188 // %Y = icmp ne i32 %A, %B
1191 PredValueInfoTy XorOpValues
;
1193 if (!ComputeValueKnownInPredecessors(BO
->getOperand(0), BB
, XorOpValues
,
1195 assert(XorOpValues
.empty());
1196 if (!ComputeValueKnownInPredecessors(BO
->getOperand(1), BB
, XorOpValues
,
1202 assert(!XorOpValues
.empty() &&
1203 "ComputeValueKnownInPredecessors returned true with no values");
1205 // Scan the information to see which is most popular: true or false. The
1206 // predecessors can be of the set true, false, or undef.
1207 unsigned NumTrue
= 0, NumFalse
= 0;
1208 for (unsigned i
= 0, e
= XorOpValues
.size(); i
!= e
; ++i
) {
1209 if (isa
<UndefValue
>(XorOpValues
[i
].first
))
1210 // Ignore undefs for the count.
1212 if (cast
<ConstantInt
>(XorOpValues
[i
].first
)->isZero())
1218 // Determine which value to split on, true, false, or undef if neither.
1219 ConstantInt
*SplitVal
= 0;
1220 if (NumTrue
> NumFalse
)
1221 SplitVal
= ConstantInt::getTrue(BB
->getContext());
1222 else if (NumTrue
!= 0 || NumFalse
!= 0)
1223 SplitVal
= ConstantInt::getFalse(BB
->getContext());
1225 // Collect all of the blocks that this can be folded into so that we can
1226 // factor this once and clone it once.
1227 SmallVector
<BasicBlock
*, 8> BlocksToFoldInto
;
1228 for (unsigned i
= 0, e
= XorOpValues
.size(); i
!= e
; ++i
) {
1229 if (XorOpValues
[i
].first
!= SplitVal
&&
1230 !isa
<UndefValue
>(XorOpValues
[i
].first
))
1233 BlocksToFoldInto
.push_back(XorOpValues
[i
].second
);
1236 // If we inferred a value for all of the predecessors, then duplication won't
1237 // help us. However, we can just replace the LHS or RHS with the constant.
1238 if (BlocksToFoldInto
.size() ==
1239 cast
<PHINode
>(BB
->front()).getNumIncomingValues()) {
1240 if (SplitVal
== 0) {
1241 // If all preds provide undef, just nuke the xor, because it is undef too.
1242 BO
->replaceAllUsesWith(UndefValue::get(BO
->getType()));
1243 BO
->eraseFromParent();
1244 } else if (SplitVal
->isZero()) {
1245 // If all preds provide 0, replace the xor with the other input.
1246 BO
->replaceAllUsesWith(BO
->getOperand(isLHS
));
1247 BO
->eraseFromParent();
1249 // If all preds provide 1, set the computed value to 1.
1250 BO
->setOperand(!isLHS
, SplitVal
);
1256 // Try to duplicate BB into PredBB.
1257 return DuplicateCondBranchOnPHIIntoPred(BB
, BlocksToFoldInto
);
1261 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1262 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1263 /// NewPred using the entries from OldPred (suitably mapped).
1264 static void AddPHINodeEntriesForMappedBlock(BasicBlock
*PHIBB
,
1265 BasicBlock
*OldPred
,
1266 BasicBlock
*NewPred
,
1267 DenseMap
<Instruction
*, Value
*> &ValueMap
) {
1268 for (BasicBlock::iterator PNI
= PHIBB
->begin();
1269 PHINode
*PN
= dyn_cast
<PHINode
>(PNI
); ++PNI
) {
1270 // Ok, we have a PHI node. Figure out what the incoming value was for the
1272 Value
*IV
= PN
->getIncomingValueForBlock(OldPred
);
1274 // Remap the value if necessary.
1275 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
1276 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMap
.find(Inst
);
1277 if (I
!= ValueMap
.end())
1281 PN
->addIncoming(IV
, NewPred
);
1285 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1286 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1287 /// across BB. Transform the IR to reflect this change.
1288 bool JumpThreading::ThreadEdge(BasicBlock
*BB
,
1289 const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
1290 BasicBlock
*SuccBB
) {
1291 // If threading to the same block as we come from, we would infinite loop.
1293 DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
1294 << "' - would thread to self!\n");
1298 // If threading this would thread across a loop header, don't thread the edge.
1299 // See the comments above FindLoopHeaders for justifications and caveats.
1300 if (LoopHeaders
.count(BB
)) {
1301 DEBUG(dbgs() << " Not threading across loop header BB '" << BB
->getName()
1302 << "' to dest BB '" << SuccBB
->getName()
1303 << "' - it might create an irreducible loop!\n");
1307 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(BB
);
1308 if (JumpThreadCost
> Threshold
) {
1309 DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
1310 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
1314 // And finally, do it! Start by factoring the predecessors is needed.
1316 if (PredBBs
.size() == 1)
1317 PredBB
= PredBBs
[0];
1319 DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1320 << " common predecessors.\n");
1321 PredBB
= SplitBlockPredecessors(BB
, &PredBBs
[0], PredBBs
.size(),
1325 // And finally, do it!
1326 DEBUG(dbgs() << " Threading edge from '" << PredBB
->getName() << "' to '"
1327 << SuccBB
->getName() << "' with cost: " << JumpThreadCost
1328 << ", across block:\n "
1331 LVI
->threadEdge(PredBB
, BB
, SuccBB
);
1333 // We are going to have to map operands from the original BB block to the new
1334 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1335 // account for entry from PredBB.
1336 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1338 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(),
1339 BB
->getName()+".thread",
1340 BB
->getParent(), BB
);
1341 NewBB
->moveAfter(PredBB
);
1343 BasicBlock::iterator BI
= BB
->begin();
1344 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
1345 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1347 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1348 // mapping and using it to remap operands in the cloned instructions.
1349 for (; !isa
<TerminatorInst
>(BI
); ++BI
) {
1350 Instruction
*New
= BI
->clone();
1351 New
->setName(BI
->getName());
1352 NewBB
->getInstList().push_back(New
);
1353 ValueMapping
[BI
] = New
;
1355 // Remap operands to patch up intra-block references.
1356 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
1357 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
1358 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
1359 if (I
!= ValueMapping
.end())
1360 New
->setOperand(i
, I
->second
);
1364 // We didn't copy the terminator from BB over to NewBB, because there is now
1365 // an unconditional jump to SuccBB. Insert the unconditional jump.
1366 BranchInst::Create(SuccBB
, NewBB
);
1368 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1369 // PHI nodes for NewBB now.
1370 AddPHINodeEntriesForMappedBlock(SuccBB
, BB
, NewBB
, ValueMapping
);
1372 // If there were values defined in BB that are used outside the block, then we
1373 // now have to update all uses of the value to use either the original value,
1374 // the cloned value, or some PHI derived value. This can require arbitrary
1375 // PHI insertion, of which we are prepared to do, clean these up now.
1376 SSAUpdater SSAUpdate
;
1377 SmallVector
<Use
*, 16> UsesToRename
;
1378 for (BasicBlock::iterator I
= BB
->begin(); I
!= BB
->end(); ++I
) {
1379 // Scan all uses of this instruction to see if it is used outside of its
1380 // block, and if so, record them in UsesToRename.
1381 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
1383 Instruction
*User
= cast
<Instruction
>(*UI
);
1384 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1385 if (UserPN
->getIncomingBlock(UI
) == BB
)
1387 } else if (User
->getParent() == BB
)
1390 UsesToRename
.push_back(&UI
.getUse());
1393 // If there are no uses outside the block, we're done with this instruction.
1394 if (UsesToRename
.empty())
1397 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I
<< "\n");
1399 // We found a use of I outside of BB. Rename all uses of I that are outside
1400 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1401 // with the two values we know.
1402 SSAUpdate
.Initialize(I
->getType(), I
->getName());
1403 SSAUpdate
.AddAvailableValue(BB
, I
);
1404 SSAUpdate
.AddAvailableValue(NewBB
, ValueMapping
[I
]);
1406 while (!UsesToRename
.empty())
1407 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
1408 DEBUG(dbgs() << "\n");
1412 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1413 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1414 // us to simplify any PHI nodes in BB.
1415 TerminatorInst
*PredTerm
= PredBB
->getTerminator();
1416 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
1417 if (PredTerm
->getSuccessor(i
) == BB
) {
1418 BB
->removePredecessor(PredBB
, true);
1419 PredTerm
->setSuccessor(i
, NewBB
);
1422 // At this point, the IR is fully up to date and consistent. Do a quick scan
1423 // over the new instructions and zap any that are constants or dead. This
1424 // frequently happens because of phi translation.
1425 SimplifyInstructionsInBlock(NewBB
, TD
);
1427 // Threaded an edge!
1432 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1433 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1434 /// If we can duplicate the contents of BB up into PredBB do so now, this
1435 /// improves the odds that the branch will be on an analyzable instruction like
1437 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock
*BB
,
1438 const SmallVectorImpl
<BasicBlock
*> &PredBBs
) {
1439 assert(!PredBBs
.empty() && "Can't handle an empty set");
1441 // If BB is a loop header, then duplicating this block outside the loop would
1442 // cause us to transform this into an irreducible loop, don't do this.
1443 // See the comments above FindLoopHeaders for justifications and caveats.
1444 if (LoopHeaders
.count(BB
)) {
1445 DEBUG(dbgs() << " Not duplicating loop header '" << BB
->getName()
1446 << "' into predecessor block '" << PredBBs
[0]->getName()
1447 << "' - it might create an irreducible loop!\n");
1451 unsigned DuplicationCost
= getJumpThreadDuplicationCost(BB
);
1452 if (DuplicationCost
> Threshold
) {
1453 DEBUG(dbgs() << " Not duplicating BB '" << BB
->getName()
1454 << "' - Cost is too high: " << DuplicationCost
<< "\n");
1458 // And finally, do it! Start by factoring the predecessors is needed.
1460 if (PredBBs
.size() == 1)
1461 PredBB
= PredBBs
[0];
1463 DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
1464 << " common predecessors.\n");
1465 PredBB
= SplitBlockPredecessors(BB
, &PredBBs
[0], PredBBs
.size(),
1469 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1471 DEBUG(dbgs() << " Duplicating block '" << BB
->getName() << "' into end of '"
1472 << PredBB
->getName() << "' to eliminate branch on phi. Cost: "
1473 << DuplicationCost
<< " block is:" << *BB
<< "\n");
1475 // Unless PredBB ends with an unconditional branch, split the edge so that we
1476 // can just clone the bits from BB into the end of the new PredBB.
1477 BranchInst
*OldPredBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
1479 if (OldPredBranch
== 0 || !OldPredBranch
->isUnconditional()) {
1480 PredBB
= SplitEdge(PredBB
, BB
, this);
1481 OldPredBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
1484 // We are going to have to map operands from the original BB block into the
1485 // PredBB block. Evaluate PHI nodes in BB.
1486 DenseMap
<Instruction
*, Value
*> ValueMapping
;
1488 BasicBlock::iterator BI
= BB
->begin();
1489 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
1490 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
1492 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1493 // mapping and using it to remap operands in the cloned instructions.
1494 for (; BI
!= BB
->end(); ++BI
) {
1495 Instruction
*New
= BI
->clone();
1497 // Remap operands to patch up intra-block references.
1498 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
1499 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
1500 DenseMap
<Instruction
*, Value
*>::iterator I
= ValueMapping
.find(Inst
);
1501 if (I
!= ValueMapping
.end())
1502 New
->setOperand(i
, I
->second
);
1505 // If this instruction can be simplified after the operands are updated,
1506 // just use the simplified value instead. This frequently happens due to
1508 if (Value
*IV
= SimplifyInstruction(New
, TD
)) {
1510 ValueMapping
[BI
] = IV
;
1512 // Otherwise, insert the new instruction into the block.
1513 New
->setName(BI
->getName());
1514 PredBB
->getInstList().insert(OldPredBranch
, New
);
1515 ValueMapping
[BI
] = New
;
1519 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1520 // add entries to the PHI nodes for branch from PredBB now.
1521 BranchInst
*BBBranch
= cast
<BranchInst
>(BB
->getTerminator());
1522 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(0), BB
, PredBB
,
1524 AddPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(1), BB
, PredBB
,
1527 // If there were values defined in BB that are used outside the block, then we
1528 // now have to update all uses of the value to use either the original value,
1529 // the cloned value, or some PHI derived value. This can require arbitrary
1530 // PHI insertion, of which we are prepared to do, clean these up now.
1531 SSAUpdater SSAUpdate
;
1532 SmallVector
<Use
*, 16> UsesToRename
;
1533 for (BasicBlock::iterator I
= BB
->begin(); I
!= BB
->end(); ++I
) {
1534 // Scan all uses of this instruction to see if it is used outside of its
1535 // block, and if so, record them in UsesToRename.
1536 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
1538 Instruction
*User
= cast
<Instruction
>(*UI
);
1539 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1540 if (UserPN
->getIncomingBlock(UI
) == BB
)
1542 } else if (User
->getParent() == BB
)
1545 UsesToRename
.push_back(&UI
.getUse());
1548 // If there are no uses outside the block, we're done with this instruction.
1549 if (UsesToRename
.empty())
1552 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I
<< "\n");
1554 // We found a use of I outside of BB. Rename all uses of I that are outside
1555 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1556 // with the two values we know.
1557 SSAUpdate
.Initialize(I
->getType(), I
->getName());
1558 SSAUpdate
.AddAvailableValue(BB
, I
);
1559 SSAUpdate
.AddAvailableValue(PredBB
, ValueMapping
[I
]);
1561 while (!UsesToRename
.empty())
1562 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
1563 DEBUG(dbgs() << "\n");
1566 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1568 BB
->removePredecessor(PredBB
, true);
1570 // Remove the unconditional branch at the end of the PredBB block.
1571 OldPredBranch
->eraseFromParent();