Use %ull here.
[llvm/stm8.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
blobf6e2c88bc6ac1de1a58952245e625b8d51366dab
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // ...
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
36 // TODO: More sophistication in the way Formulae are generated and filtered.
38 // TODO: Handle multiple loops at a time.
40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41 // instead of a GlobalValue?
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
52 // use kind.
54 //===----------------------------------------------------------------------===//
56 #define DEBUG_TYPE "loop-reduce"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Constants.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/IntrinsicInst.h"
61 #include "llvm/DerivedTypes.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/Dominators.h"
64 #include "llvm/Analysis/LoopPass.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Assembly/Writer.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/ADT/SmallBitVector.h"
70 #include "llvm/ADT/SetVector.h"
71 #include "llvm/ADT/DenseSet.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ValueHandle.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Target/TargetLowering.h"
76 #include <algorithm>
77 using namespace llvm;
79 namespace {
81 /// RegSortData - This class holds data which is used to order reuse candidates.
82 class RegSortData {
83 public:
84 /// UsedByIndices - This represents the set of LSRUse indices which reference
85 /// a particular register.
86 SmallBitVector UsedByIndices;
88 RegSortData() {}
90 void print(raw_ostream &OS) const;
91 void dump() const;
96 void RegSortData::print(raw_ostream &OS) const {
97 OS << "[NumUses=" << UsedByIndices.count() << ']';
100 void RegSortData::dump() const {
101 print(errs()); errs() << '\n';
104 namespace {
106 /// RegUseTracker - Map register candidates to information about how they are
107 /// used.
108 class RegUseTracker {
109 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
111 RegUsesTy RegUsesMap;
112 SmallVector<const SCEV *, 16> RegSequence;
114 public:
115 void CountRegister(const SCEV *Reg, size_t LUIdx);
116 void DropRegister(const SCEV *Reg, size_t LUIdx);
117 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
119 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
121 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
123 void clear();
125 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
126 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
127 iterator begin() { return RegSequence.begin(); }
128 iterator end() { return RegSequence.end(); }
129 const_iterator begin() const { return RegSequence.begin(); }
130 const_iterator end() const { return RegSequence.end(); }
135 void
136 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
137 std::pair<RegUsesTy::iterator, bool> Pair =
138 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
139 RegSortData &RSD = Pair.first->second;
140 if (Pair.second)
141 RegSequence.push_back(Reg);
142 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
143 RSD.UsedByIndices.set(LUIdx);
146 void
147 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
148 RegUsesTy::iterator It = RegUsesMap.find(Reg);
149 assert(It != RegUsesMap.end());
150 RegSortData &RSD = It->second;
151 assert(RSD.UsedByIndices.size() > LUIdx);
152 RSD.UsedByIndices.reset(LUIdx);
155 void
156 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
157 assert(LUIdx <= LastLUIdx);
159 // Update RegUses. The data structure is not optimized for this purpose;
160 // we must iterate through it and update each of the bit vectors.
161 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
162 I != E; ++I) {
163 SmallBitVector &UsedByIndices = I->second.UsedByIndices;
164 if (LUIdx < UsedByIndices.size())
165 UsedByIndices[LUIdx] =
166 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
167 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
171 bool
172 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
173 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
174 if (I == RegUsesMap.end())
175 return false;
176 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
177 int i = UsedByIndices.find_first();
178 if (i == -1) return false;
179 if ((size_t)i != LUIdx) return true;
180 return UsedByIndices.find_next(i) != -1;
183 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
184 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
185 assert(I != RegUsesMap.end() && "Unknown register!");
186 return I->second.UsedByIndices;
189 void RegUseTracker::clear() {
190 RegUsesMap.clear();
191 RegSequence.clear();
194 namespace {
196 /// Formula - This class holds information that describes a formula for
197 /// computing satisfying a use. It may include broken-out immediates and scaled
198 /// registers.
199 struct Formula {
200 /// AM - This is used to represent complex addressing, as well as other kinds
201 /// of interesting uses.
202 TargetLowering::AddrMode AM;
204 /// BaseRegs - The list of "base" registers for this use. When this is
205 /// non-empty, AM.HasBaseReg should be set to true.
206 SmallVector<const SCEV *, 2> BaseRegs;
208 /// ScaledReg - The 'scaled' register for this use. This should be non-null
209 /// when AM.Scale is not zero.
210 const SCEV *ScaledReg;
212 Formula() : ScaledReg(0) {}
214 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
216 unsigned getNumRegs() const;
217 const Type *getType() const;
219 void DeleteBaseReg(const SCEV *&S);
221 bool referencesReg(const SCEV *S) const;
222 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
223 const RegUseTracker &RegUses) const;
225 void print(raw_ostream &OS) const;
226 void dump() const;
231 /// DoInitialMatch - Recursion helper for InitialMatch.
232 static void DoInitialMatch(const SCEV *S, Loop *L,
233 SmallVectorImpl<const SCEV *> &Good,
234 SmallVectorImpl<const SCEV *> &Bad,
235 ScalarEvolution &SE) {
236 // Collect expressions which properly dominate the loop header.
237 if (SE.properlyDominates(S, L->getHeader())) {
238 Good.push_back(S);
239 return;
242 // Look at add operands.
243 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
244 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
245 I != E; ++I)
246 DoInitialMatch(*I, L, Good, Bad, SE);
247 return;
250 // Look at addrec operands.
251 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
252 if (!AR->getStart()->isZero()) {
253 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
254 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
255 AR->getStepRecurrence(SE),
256 // FIXME: AR->getNoWrapFlags()
257 AR->getLoop(), SCEV::FlagAnyWrap),
258 L, Good, Bad, SE);
259 return;
262 // Handle a multiplication by -1 (negation) if it didn't fold.
263 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
264 if (Mul->getOperand(0)->isAllOnesValue()) {
265 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
266 const SCEV *NewMul = SE.getMulExpr(Ops);
268 SmallVector<const SCEV *, 4> MyGood;
269 SmallVector<const SCEV *, 4> MyBad;
270 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
271 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
272 SE.getEffectiveSCEVType(NewMul->getType())));
273 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
274 E = MyGood.end(); I != E; ++I)
275 Good.push_back(SE.getMulExpr(NegOne, *I));
276 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
277 E = MyBad.end(); I != E; ++I)
278 Bad.push_back(SE.getMulExpr(NegOne, *I));
279 return;
282 // Ok, we can't do anything interesting. Just stuff the whole thing into a
283 // register and hope for the best.
284 Bad.push_back(S);
287 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
288 /// attempting to keep all loop-invariant and loop-computable values in a
289 /// single base register.
290 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
291 SmallVector<const SCEV *, 4> Good;
292 SmallVector<const SCEV *, 4> Bad;
293 DoInitialMatch(S, L, Good, Bad, SE);
294 if (!Good.empty()) {
295 const SCEV *Sum = SE.getAddExpr(Good);
296 if (!Sum->isZero())
297 BaseRegs.push_back(Sum);
298 AM.HasBaseReg = true;
300 if (!Bad.empty()) {
301 const SCEV *Sum = SE.getAddExpr(Bad);
302 if (!Sum->isZero())
303 BaseRegs.push_back(Sum);
304 AM.HasBaseReg = true;
308 /// getNumRegs - Return the total number of register operands used by this
309 /// formula. This does not include register uses implied by non-constant
310 /// addrec strides.
311 unsigned Formula::getNumRegs() const {
312 return !!ScaledReg + BaseRegs.size();
315 /// getType - Return the type of this formula, if it has one, or null
316 /// otherwise. This type is meaningless except for the bit size.
317 const Type *Formula::getType() const {
318 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
319 ScaledReg ? ScaledReg->getType() :
320 AM.BaseGV ? AM.BaseGV->getType() :
324 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
325 void Formula::DeleteBaseReg(const SCEV *&S) {
326 if (&S != &BaseRegs.back())
327 std::swap(S, BaseRegs.back());
328 BaseRegs.pop_back();
331 /// referencesReg - Test if this formula references the given register.
332 bool Formula::referencesReg(const SCEV *S) const {
333 return S == ScaledReg ||
334 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
337 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
338 /// which are used by uses other than the use with the given index.
339 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
340 const RegUseTracker &RegUses) const {
341 if (ScaledReg)
342 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
343 return true;
344 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
345 E = BaseRegs.end(); I != E; ++I)
346 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
347 return true;
348 return false;
351 void Formula::print(raw_ostream &OS) const {
352 bool First = true;
353 if (AM.BaseGV) {
354 if (!First) OS << " + "; else First = false;
355 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
357 if (AM.BaseOffs != 0) {
358 if (!First) OS << " + "; else First = false;
359 OS << AM.BaseOffs;
361 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
362 E = BaseRegs.end(); I != E; ++I) {
363 if (!First) OS << " + "; else First = false;
364 OS << "reg(" << **I << ')';
366 if (AM.HasBaseReg && BaseRegs.empty()) {
367 if (!First) OS << " + "; else First = false;
368 OS << "**error: HasBaseReg**";
369 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
370 if (!First) OS << " + "; else First = false;
371 OS << "**error: !HasBaseReg**";
373 if (AM.Scale != 0) {
374 if (!First) OS << " + "; else First = false;
375 OS << AM.Scale << "*reg(";
376 if (ScaledReg)
377 OS << *ScaledReg;
378 else
379 OS << "<unknown>";
380 OS << ')';
384 void Formula::dump() const {
385 print(errs()); errs() << '\n';
388 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
389 /// without changing its value.
390 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
391 const Type *WideTy =
392 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
393 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
396 /// isAddSExtable - Return true if the given add can be sign-extended
397 /// without changing its value.
398 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
399 const Type *WideTy =
400 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
401 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
404 /// isMulSExtable - Return true if the given mul can be sign-extended
405 /// without changing its value.
406 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
407 const Type *WideTy =
408 IntegerType::get(SE.getContext(),
409 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
410 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
413 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
414 /// and if the remainder is known to be zero, or null otherwise. If
415 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
416 /// to Y, ignoring that the multiplication may overflow, which is useful when
417 /// the result will be used in a context where the most significant bits are
418 /// ignored.
419 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
420 ScalarEvolution &SE,
421 bool IgnoreSignificantBits = false) {
422 // Handle the trivial case, which works for any SCEV type.
423 if (LHS == RHS)
424 return SE.getConstant(LHS->getType(), 1);
426 // Handle a few RHS special cases.
427 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
428 if (RC) {
429 const APInt &RA = RC->getValue()->getValue();
430 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
431 // some folding.
432 if (RA.isAllOnesValue())
433 return SE.getMulExpr(LHS, RC);
434 // Handle x /s 1 as x.
435 if (RA == 1)
436 return LHS;
439 // Check for a division of a constant by a constant.
440 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
441 if (!RC)
442 return 0;
443 const APInt &LA = C->getValue()->getValue();
444 const APInt &RA = RC->getValue()->getValue();
445 if (LA.srem(RA) != 0)
446 return 0;
447 return SE.getConstant(LA.sdiv(RA));
450 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
451 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
452 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
453 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
454 IgnoreSignificantBits);
455 if (!Step) return 0;
456 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
457 IgnoreSignificantBits);
458 if (!Start) return 0;
459 // FlagNW is independent of the start value, step direction, and is
460 // preserved with smaller magnitude steps.
461 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
462 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
464 return 0;
467 // Distribute the sdiv over add operands, if the add doesn't overflow.
468 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
469 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
470 SmallVector<const SCEV *, 8> Ops;
471 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
472 I != E; ++I) {
473 const SCEV *Op = getExactSDiv(*I, RHS, SE,
474 IgnoreSignificantBits);
475 if (!Op) return 0;
476 Ops.push_back(Op);
478 return SE.getAddExpr(Ops);
480 return 0;
483 // Check for a multiply operand that we can pull RHS out of.
484 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
485 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
486 SmallVector<const SCEV *, 4> Ops;
487 bool Found = false;
488 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
489 I != E; ++I) {
490 const SCEV *S = *I;
491 if (!Found)
492 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
493 IgnoreSignificantBits)) {
494 S = Q;
495 Found = true;
497 Ops.push_back(S);
499 return Found ? SE.getMulExpr(Ops) : 0;
501 return 0;
504 // Otherwise we don't know.
505 return 0;
508 /// ExtractImmediate - If S involves the addition of a constant integer value,
509 /// return that integer value, and mutate S to point to a new SCEV with that
510 /// value excluded.
511 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
512 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
513 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
514 S = SE.getConstant(C->getType(), 0);
515 return C->getValue()->getSExtValue();
517 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
518 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
519 int64_t Result = ExtractImmediate(NewOps.front(), SE);
520 if (Result != 0)
521 S = SE.getAddExpr(NewOps);
522 return Result;
523 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
524 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
525 int64_t Result = ExtractImmediate(NewOps.front(), SE);
526 if (Result != 0)
527 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
528 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
529 SCEV::FlagAnyWrap);
530 return Result;
532 return 0;
535 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
536 /// return that symbol, and mutate S to point to a new SCEV with that
537 /// value excluded.
538 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
539 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
540 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
541 S = SE.getConstant(GV->getType(), 0);
542 return GV;
544 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
545 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
546 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
547 if (Result)
548 S = SE.getAddExpr(NewOps);
549 return Result;
550 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
551 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
552 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
553 if (Result)
554 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
555 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
556 SCEV::FlagAnyWrap);
557 return Result;
559 return 0;
562 /// isAddressUse - Returns true if the specified instruction is using the
563 /// specified value as an address.
564 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
565 bool isAddress = isa<LoadInst>(Inst);
566 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
567 if (SI->getOperand(1) == OperandVal)
568 isAddress = true;
569 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
570 // Addressing modes can also be folded into prefetches and a variety
571 // of intrinsics.
572 switch (II->getIntrinsicID()) {
573 default: break;
574 case Intrinsic::prefetch:
575 case Intrinsic::x86_sse_storeu_ps:
576 case Intrinsic::x86_sse2_storeu_pd:
577 case Intrinsic::x86_sse2_storeu_dq:
578 case Intrinsic::x86_sse2_storel_dq:
579 if (II->getArgOperand(0) == OperandVal)
580 isAddress = true;
581 break;
584 return isAddress;
587 /// getAccessType - Return the type of the memory being accessed.
588 static const Type *getAccessType(const Instruction *Inst) {
589 const Type *AccessTy = Inst->getType();
590 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
591 AccessTy = SI->getOperand(0)->getType();
592 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
593 // Addressing modes can also be folded into prefetches and a variety
594 // of intrinsics.
595 switch (II->getIntrinsicID()) {
596 default: break;
597 case Intrinsic::x86_sse_storeu_ps:
598 case Intrinsic::x86_sse2_storeu_pd:
599 case Intrinsic::x86_sse2_storeu_dq:
600 case Intrinsic::x86_sse2_storel_dq:
601 AccessTy = II->getArgOperand(0)->getType();
602 break;
606 // All pointers have the same requirements, so canonicalize them to an
607 // arbitrary pointer type to minimize variation.
608 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
609 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
610 PTy->getAddressSpace());
612 return AccessTy;
615 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
616 /// specified set are trivially dead, delete them and see if this makes any of
617 /// their operands subsequently dead.
618 static bool
619 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
620 bool Changed = false;
622 while (!DeadInsts.empty()) {
623 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
625 if (I == 0 || !isInstructionTriviallyDead(I))
626 continue;
628 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
629 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
630 *OI = 0;
631 if (U->use_empty())
632 DeadInsts.push_back(U);
635 I->eraseFromParent();
636 Changed = true;
639 return Changed;
642 namespace {
644 /// Cost - This class is used to measure and compare candidate formulae.
645 class Cost {
646 /// TODO: Some of these could be merged. Also, a lexical ordering
647 /// isn't always optimal.
648 unsigned NumRegs;
649 unsigned AddRecCost;
650 unsigned NumIVMuls;
651 unsigned NumBaseAdds;
652 unsigned ImmCost;
653 unsigned SetupCost;
655 public:
656 Cost()
657 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
658 SetupCost(0) {}
660 bool operator<(const Cost &Other) const;
662 void Loose();
664 void RateFormula(const Formula &F,
665 SmallPtrSet<const SCEV *, 16> &Regs,
666 const DenseSet<const SCEV *> &VisitedRegs,
667 const Loop *L,
668 const SmallVectorImpl<int64_t> &Offsets,
669 ScalarEvolution &SE, DominatorTree &DT);
671 void print(raw_ostream &OS) const;
672 void dump() const;
674 private:
675 void RateRegister(const SCEV *Reg,
676 SmallPtrSet<const SCEV *, 16> &Regs,
677 const Loop *L,
678 ScalarEvolution &SE, DominatorTree &DT);
679 void RatePrimaryRegister(const SCEV *Reg,
680 SmallPtrSet<const SCEV *, 16> &Regs,
681 const Loop *L,
682 ScalarEvolution &SE, DominatorTree &DT);
687 /// RateRegister - Tally up interesting quantities from the given register.
688 void Cost::RateRegister(const SCEV *Reg,
689 SmallPtrSet<const SCEV *, 16> &Regs,
690 const Loop *L,
691 ScalarEvolution &SE, DominatorTree &DT) {
692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
693 if (AR->getLoop() == L)
694 AddRecCost += 1; /// TODO: This should be a function of the stride.
696 // If this is an addrec for a loop that's already been visited by LSR,
697 // don't second-guess its addrec phi nodes. LSR isn't currently smart
698 // enough to reason about more than one loop at a time. Consider these
699 // registers free and leave them alone.
700 else if (L->contains(AR->getLoop()) ||
701 (!AR->getLoop()->contains(L) &&
702 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
703 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
704 PHINode *PN = dyn_cast<PHINode>(I); ++I)
705 if (SE.isSCEVable(PN->getType()) &&
706 (SE.getEffectiveSCEVType(PN->getType()) ==
707 SE.getEffectiveSCEVType(AR->getType())) &&
708 SE.getSCEV(PN) == AR)
709 return;
711 // If this isn't one of the addrecs that the loop already has, it
712 // would require a costly new phi and add. TODO: This isn't
713 // precisely modeled right now.
714 ++NumBaseAdds;
715 if (!Regs.count(AR->getStart()))
716 RateRegister(AR->getStart(), Regs, L, SE, DT);
719 // Add the step value register, if it needs one.
720 // TODO: The non-affine case isn't precisely modeled here.
721 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
722 if (!Regs.count(AR->getStart()))
723 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
725 ++NumRegs;
727 // Rough heuristic; favor registers which don't require extra setup
728 // instructions in the preheader.
729 if (!isa<SCEVUnknown>(Reg) &&
730 !isa<SCEVConstant>(Reg) &&
731 !(isa<SCEVAddRecExpr>(Reg) &&
732 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
733 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
734 ++SetupCost;
736 NumIVMuls += isa<SCEVMulExpr>(Reg) &&
737 SE.hasComputableLoopEvolution(Reg, L);
740 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
741 /// before, rate it.
742 void Cost::RatePrimaryRegister(const SCEV *Reg,
743 SmallPtrSet<const SCEV *, 16> &Regs,
744 const Loop *L,
745 ScalarEvolution &SE, DominatorTree &DT) {
746 if (Regs.insert(Reg))
747 RateRegister(Reg, Regs, L, SE, DT);
750 void Cost::RateFormula(const Formula &F,
751 SmallPtrSet<const SCEV *, 16> &Regs,
752 const DenseSet<const SCEV *> &VisitedRegs,
753 const Loop *L,
754 const SmallVectorImpl<int64_t> &Offsets,
755 ScalarEvolution &SE, DominatorTree &DT) {
756 // Tally up the registers.
757 if (const SCEV *ScaledReg = F.ScaledReg) {
758 if (VisitedRegs.count(ScaledReg)) {
759 Loose();
760 return;
762 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
764 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
765 E = F.BaseRegs.end(); I != E; ++I) {
766 const SCEV *BaseReg = *I;
767 if (VisitedRegs.count(BaseReg)) {
768 Loose();
769 return;
771 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
774 if (F.BaseRegs.size() > 1)
775 NumBaseAdds += F.BaseRegs.size() - 1;
777 // Tally up the non-zero immediates.
778 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
779 E = Offsets.end(); I != E; ++I) {
780 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
781 if (F.AM.BaseGV)
782 ImmCost += 64; // Handle symbolic values conservatively.
783 // TODO: This should probably be the pointer size.
784 else if (Offset != 0)
785 ImmCost += APInt(64, Offset, true).getMinSignedBits();
789 /// Loose - Set this cost to a loosing value.
790 void Cost::Loose() {
791 NumRegs = ~0u;
792 AddRecCost = ~0u;
793 NumIVMuls = ~0u;
794 NumBaseAdds = ~0u;
795 ImmCost = ~0u;
796 SetupCost = ~0u;
799 /// operator< - Choose the lower cost.
800 bool Cost::operator<(const Cost &Other) const {
801 if (NumRegs != Other.NumRegs)
802 return NumRegs < Other.NumRegs;
803 if (AddRecCost != Other.AddRecCost)
804 return AddRecCost < Other.AddRecCost;
805 if (NumIVMuls != Other.NumIVMuls)
806 return NumIVMuls < Other.NumIVMuls;
807 if (NumBaseAdds != Other.NumBaseAdds)
808 return NumBaseAdds < Other.NumBaseAdds;
809 if (ImmCost != Other.ImmCost)
810 return ImmCost < Other.ImmCost;
811 if (SetupCost != Other.SetupCost)
812 return SetupCost < Other.SetupCost;
813 return false;
816 void Cost::print(raw_ostream &OS) const {
817 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
818 if (AddRecCost != 0)
819 OS << ", with addrec cost " << AddRecCost;
820 if (NumIVMuls != 0)
821 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
822 if (NumBaseAdds != 0)
823 OS << ", plus " << NumBaseAdds << " base add"
824 << (NumBaseAdds == 1 ? "" : "s");
825 if (ImmCost != 0)
826 OS << ", plus " << ImmCost << " imm cost";
827 if (SetupCost != 0)
828 OS << ", plus " << SetupCost << " setup cost";
831 void Cost::dump() const {
832 print(errs()); errs() << '\n';
835 namespace {
837 /// LSRFixup - An operand value in an instruction which is to be replaced
838 /// with some equivalent, possibly strength-reduced, replacement.
839 struct LSRFixup {
840 /// UserInst - The instruction which will be updated.
841 Instruction *UserInst;
843 /// OperandValToReplace - The operand of the instruction which will
844 /// be replaced. The operand may be used more than once; every instance
845 /// will be replaced.
846 Value *OperandValToReplace;
848 /// PostIncLoops - If this user is to use the post-incremented value of an
849 /// induction variable, this variable is non-null and holds the loop
850 /// associated with the induction variable.
851 PostIncLoopSet PostIncLoops;
853 /// LUIdx - The index of the LSRUse describing the expression which
854 /// this fixup needs, minus an offset (below).
855 size_t LUIdx;
857 /// Offset - A constant offset to be added to the LSRUse expression.
858 /// This allows multiple fixups to share the same LSRUse with different
859 /// offsets, for example in an unrolled loop.
860 int64_t Offset;
862 bool isUseFullyOutsideLoop(const Loop *L) const;
864 LSRFixup();
866 void print(raw_ostream &OS) const;
867 void dump() const;
872 LSRFixup::LSRFixup()
873 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
875 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
876 /// value outside of the given loop.
877 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
878 // PHI nodes use their value in their incoming blocks.
879 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
880 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
881 if (PN->getIncomingValue(i) == OperandValToReplace &&
882 L->contains(PN->getIncomingBlock(i)))
883 return false;
884 return true;
887 return !L->contains(UserInst);
890 void LSRFixup::print(raw_ostream &OS) const {
891 OS << "UserInst=";
892 // Store is common and interesting enough to be worth special-casing.
893 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
894 OS << "store ";
895 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
896 } else if (UserInst->getType()->isVoidTy())
897 OS << UserInst->getOpcodeName();
898 else
899 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
901 OS << ", OperandValToReplace=";
902 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
904 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
905 E = PostIncLoops.end(); I != E; ++I) {
906 OS << ", PostIncLoop=";
907 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
910 if (LUIdx != ~size_t(0))
911 OS << ", LUIdx=" << LUIdx;
913 if (Offset != 0)
914 OS << ", Offset=" << Offset;
917 void LSRFixup::dump() const {
918 print(errs()); errs() << '\n';
921 namespace {
923 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
924 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
925 struct UniquifierDenseMapInfo {
926 static SmallVector<const SCEV *, 2> getEmptyKey() {
927 SmallVector<const SCEV *, 2> V;
928 V.push_back(reinterpret_cast<const SCEV *>(-1));
929 return V;
932 static SmallVector<const SCEV *, 2> getTombstoneKey() {
933 SmallVector<const SCEV *, 2> V;
934 V.push_back(reinterpret_cast<const SCEV *>(-2));
935 return V;
938 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
939 unsigned Result = 0;
940 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
941 E = V.end(); I != E; ++I)
942 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
943 return Result;
946 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
947 const SmallVector<const SCEV *, 2> &RHS) {
948 return LHS == RHS;
952 /// LSRUse - This class holds the state that LSR keeps for each use in
953 /// IVUsers, as well as uses invented by LSR itself. It includes information
954 /// about what kinds of things can be folded into the user, information about
955 /// the user itself, and information about how the use may be satisfied.
956 /// TODO: Represent multiple users of the same expression in common?
957 class LSRUse {
958 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
960 public:
961 /// KindType - An enum for a kind of use, indicating what types of
962 /// scaled and immediate operands it might support.
963 enum KindType {
964 Basic, ///< A normal use, with no folding.
965 Special, ///< A special case of basic, allowing -1 scales.
966 Address, ///< An address use; folding according to TargetLowering
967 ICmpZero ///< An equality icmp with both operands folded into one.
968 // TODO: Add a generic icmp too?
971 KindType Kind;
972 const Type *AccessTy;
974 SmallVector<int64_t, 8> Offsets;
975 int64_t MinOffset;
976 int64_t MaxOffset;
978 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
979 /// LSRUse are outside of the loop, in which case some special-case heuristics
980 /// may be used.
981 bool AllFixupsOutsideLoop;
983 /// WidestFixupType - This records the widest use type for any fixup using
984 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
985 /// max fixup widths to be equivalent, because the narrower one may be relying
986 /// on the implicit truncation to truncate away bogus bits.
987 const Type *WidestFixupType;
989 /// Formulae - A list of ways to build a value that can satisfy this user.
990 /// After the list is populated, one of these is selected heuristically and
991 /// used to formulate a replacement for OperandValToReplace in UserInst.
992 SmallVector<Formula, 12> Formulae;
994 /// Regs - The set of register candidates used by all formulae in this LSRUse.
995 SmallPtrSet<const SCEV *, 4> Regs;
997 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
998 MinOffset(INT64_MAX),
999 MaxOffset(INT64_MIN),
1000 AllFixupsOutsideLoop(true),
1001 WidestFixupType(0) {}
1003 bool HasFormulaWithSameRegs(const Formula &F) const;
1004 bool InsertFormula(const Formula &F);
1005 void DeleteFormula(Formula &F);
1006 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1008 void print(raw_ostream &OS) const;
1009 void dump() const;
1014 /// HasFormula - Test whether this use as a formula which has the same
1015 /// registers as the given formula.
1016 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1017 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1018 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1019 // Unstable sort by host order ok, because this is only used for uniquifying.
1020 std::sort(Key.begin(), Key.end());
1021 return Uniquifier.count(Key);
1024 /// InsertFormula - If the given formula has not yet been inserted, add it to
1025 /// the list, and return true. Return false otherwise.
1026 bool LSRUse::InsertFormula(const Formula &F) {
1027 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1028 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1029 // Unstable sort by host order ok, because this is only used for uniquifying.
1030 std::sort(Key.begin(), Key.end());
1032 if (!Uniquifier.insert(Key).second)
1033 return false;
1035 // Using a register to hold the value of 0 is not profitable.
1036 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1037 "Zero allocated in a scaled register!");
1038 #ifndef NDEBUG
1039 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1040 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1041 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1042 #endif
1044 // Add the formula to the list.
1045 Formulae.push_back(F);
1047 // Record registers now being used by this use.
1048 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1049 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1051 return true;
1054 /// DeleteFormula - Remove the given formula from this use's list.
1055 void LSRUse::DeleteFormula(Formula &F) {
1056 if (&F != &Formulae.back())
1057 std::swap(F, Formulae.back());
1058 Formulae.pop_back();
1059 assert(!Formulae.empty() && "LSRUse has no formulae left!");
1062 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
1063 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1064 // Now that we've filtered out some formulae, recompute the Regs set.
1065 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1066 Regs.clear();
1067 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1068 E = Formulae.end(); I != E; ++I) {
1069 const Formula &F = *I;
1070 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1071 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1074 // Update the RegTracker.
1075 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1076 E = OldRegs.end(); I != E; ++I)
1077 if (!Regs.count(*I))
1078 RegUses.DropRegister(*I, LUIdx);
1081 void LSRUse::print(raw_ostream &OS) const {
1082 OS << "LSR Use: Kind=";
1083 switch (Kind) {
1084 case Basic: OS << "Basic"; break;
1085 case Special: OS << "Special"; break;
1086 case ICmpZero: OS << "ICmpZero"; break;
1087 case Address:
1088 OS << "Address of ";
1089 if (AccessTy->isPointerTy())
1090 OS << "pointer"; // the full pointer type could be really verbose
1091 else
1092 OS << *AccessTy;
1095 OS << ", Offsets={";
1096 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1097 E = Offsets.end(); I != E; ++I) {
1098 OS << *I;
1099 if (llvm::next(I) != E)
1100 OS << ',';
1102 OS << '}';
1104 if (AllFixupsOutsideLoop)
1105 OS << ", all-fixups-outside-loop";
1107 if (WidestFixupType)
1108 OS << ", widest fixup type: " << *WidestFixupType;
1111 void LSRUse::dump() const {
1112 print(errs()); errs() << '\n';
1115 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1116 /// be completely folded into the user instruction at isel time. This includes
1117 /// address-mode folding and special icmp tricks.
1118 static bool isLegalUse(const TargetLowering::AddrMode &AM,
1119 LSRUse::KindType Kind, const Type *AccessTy,
1120 const TargetLowering *TLI) {
1121 switch (Kind) {
1122 case LSRUse::Address:
1123 // If we have low-level target information, ask the target if it can
1124 // completely fold this address.
1125 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1127 // Otherwise, just guess that reg+reg addressing is legal.
1128 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1130 case LSRUse::ICmpZero:
1131 // There's not even a target hook for querying whether it would be legal to
1132 // fold a GV into an ICmp.
1133 if (AM.BaseGV)
1134 return false;
1136 // ICmp only has two operands; don't allow more than two non-trivial parts.
1137 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1138 return false;
1140 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1141 // putting the scaled register in the other operand of the icmp.
1142 if (AM.Scale != 0 && AM.Scale != -1)
1143 return false;
1145 // If we have low-level target information, ask the target if it can fold an
1146 // integer immediate on an icmp.
1147 if (AM.BaseOffs != 0) {
1148 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1149 return false;
1152 return true;
1154 case LSRUse::Basic:
1155 // Only handle single-register values.
1156 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1158 case LSRUse::Special:
1159 // Only handle -1 scales, or no scale.
1160 return AM.Scale == 0 || AM.Scale == -1;
1163 return false;
1166 static bool isLegalUse(TargetLowering::AddrMode AM,
1167 int64_t MinOffset, int64_t MaxOffset,
1168 LSRUse::KindType Kind, const Type *AccessTy,
1169 const TargetLowering *TLI) {
1170 // Check for overflow.
1171 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1172 (MinOffset > 0))
1173 return false;
1174 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1175 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1176 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1177 // Check for overflow.
1178 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1179 (MaxOffset > 0))
1180 return false;
1181 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1182 return isLegalUse(AM, Kind, AccessTy, TLI);
1184 return false;
1187 static bool isAlwaysFoldable(int64_t BaseOffs,
1188 GlobalValue *BaseGV,
1189 bool HasBaseReg,
1190 LSRUse::KindType Kind, const Type *AccessTy,
1191 const TargetLowering *TLI) {
1192 // Fast-path: zero is always foldable.
1193 if (BaseOffs == 0 && !BaseGV) return true;
1195 // Conservatively, create an address with an immediate and a
1196 // base and a scale.
1197 TargetLowering::AddrMode AM;
1198 AM.BaseOffs = BaseOffs;
1199 AM.BaseGV = BaseGV;
1200 AM.HasBaseReg = HasBaseReg;
1201 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1203 // Canonicalize a scale of 1 to a base register if the formula doesn't
1204 // already have a base register.
1205 if (!AM.HasBaseReg && AM.Scale == 1) {
1206 AM.Scale = 0;
1207 AM.HasBaseReg = true;
1210 return isLegalUse(AM, Kind, AccessTy, TLI);
1213 static bool isAlwaysFoldable(const SCEV *S,
1214 int64_t MinOffset, int64_t MaxOffset,
1215 bool HasBaseReg,
1216 LSRUse::KindType Kind, const Type *AccessTy,
1217 const TargetLowering *TLI,
1218 ScalarEvolution &SE) {
1219 // Fast-path: zero is always foldable.
1220 if (S->isZero()) return true;
1222 // Conservatively, create an address with an immediate and a
1223 // base and a scale.
1224 int64_t BaseOffs = ExtractImmediate(S, SE);
1225 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1227 // If there's anything else involved, it's not foldable.
1228 if (!S->isZero()) return false;
1230 // Fast-path: zero is always foldable.
1231 if (BaseOffs == 0 && !BaseGV) return true;
1233 // Conservatively, create an address with an immediate and a
1234 // base and a scale.
1235 TargetLowering::AddrMode AM;
1236 AM.BaseOffs = BaseOffs;
1237 AM.BaseGV = BaseGV;
1238 AM.HasBaseReg = HasBaseReg;
1239 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1241 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1244 namespace {
1246 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1247 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1248 struct UseMapDenseMapInfo {
1249 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1250 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1253 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1254 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1257 static unsigned
1258 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1259 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1260 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1261 return Result;
1264 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1265 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1266 return LHS == RHS;
1270 /// LSRInstance - This class holds state for the main loop strength reduction
1271 /// logic.
1272 class LSRInstance {
1273 IVUsers &IU;
1274 ScalarEvolution &SE;
1275 DominatorTree &DT;
1276 LoopInfo &LI;
1277 const TargetLowering *const TLI;
1278 Loop *const L;
1279 bool Changed;
1281 /// IVIncInsertPos - This is the insert position that the current loop's
1282 /// induction variable increment should be placed. In simple loops, this is
1283 /// the latch block's terminator. But in more complicated cases, this is a
1284 /// position which will dominate all the in-loop post-increment users.
1285 Instruction *IVIncInsertPos;
1287 /// Factors - Interesting factors between use strides.
1288 SmallSetVector<int64_t, 8> Factors;
1290 /// Types - Interesting use types, to facilitate truncation reuse.
1291 SmallSetVector<const Type *, 4> Types;
1293 /// Fixups - The list of operands which are to be replaced.
1294 SmallVector<LSRFixup, 16> Fixups;
1296 /// Uses - The list of interesting uses.
1297 SmallVector<LSRUse, 16> Uses;
1299 /// RegUses - Track which uses use which register candidates.
1300 RegUseTracker RegUses;
1302 void OptimizeShadowIV();
1303 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1304 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1305 void OptimizeLoopTermCond();
1307 void CollectInterestingTypesAndFactors();
1308 void CollectFixupsAndInitialFormulae();
1310 LSRFixup &getNewFixup() {
1311 Fixups.push_back(LSRFixup());
1312 return Fixups.back();
1315 // Support for sharing of LSRUses between LSRFixups.
1316 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1317 size_t,
1318 UseMapDenseMapInfo> UseMapTy;
1319 UseMapTy UseMap;
1321 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1322 LSRUse::KindType Kind, const Type *AccessTy);
1324 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1325 LSRUse::KindType Kind,
1326 const Type *AccessTy);
1328 void DeleteUse(LSRUse &LU, size_t LUIdx);
1330 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1332 public:
1333 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1334 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1335 void CountRegisters(const Formula &F, size_t LUIdx);
1336 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1338 void CollectLoopInvariantFixupsAndFormulae();
1340 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1341 unsigned Depth = 0);
1342 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1343 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1344 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1345 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1346 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1347 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1348 void GenerateCrossUseConstantOffsets();
1349 void GenerateAllReuseFormulae();
1351 void FilterOutUndesirableDedicatedRegisters();
1353 size_t EstimateSearchSpaceComplexity() const;
1354 void NarrowSearchSpaceByDetectingSupersets();
1355 void NarrowSearchSpaceByCollapsingUnrolledCode();
1356 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1357 void NarrowSearchSpaceByPickingWinnerRegs();
1358 void NarrowSearchSpaceUsingHeuristics();
1360 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1361 Cost &SolutionCost,
1362 SmallVectorImpl<const Formula *> &Workspace,
1363 const Cost &CurCost,
1364 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1365 DenseSet<const SCEV *> &VisitedRegs) const;
1366 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1368 BasicBlock::iterator
1369 HoistInsertPosition(BasicBlock::iterator IP,
1370 const SmallVectorImpl<Instruction *> &Inputs) const;
1371 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1372 const LSRFixup &LF,
1373 const LSRUse &LU) const;
1375 Value *Expand(const LSRFixup &LF,
1376 const Formula &F,
1377 BasicBlock::iterator IP,
1378 SCEVExpander &Rewriter,
1379 SmallVectorImpl<WeakVH> &DeadInsts) const;
1380 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1381 const Formula &F,
1382 SCEVExpander &Rewriter,
1383 SmallVectorImpl<WeakVH> &DeadInsts,
1384 Pass *P) const;
1385 void Rewrite(const LSRFixup &LF,
1386 const Formula &F,
1387 SCEVExpander &Rewriter,
1388 SmallVectorImpl<WeakVH> &DeadInsts,
1389 Pass *P) const;
1390 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1391 Pass *P);
1393 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1395 bool getChanged() const { return Changed; }
1397 void print_factors_and_types(raw_ostream &OS) const;
1398 void print_fixups(raw_ostream &OS) const;
1399 void print_uses(raw_ostream &OS) const;
1400 void print(raw_ostream &OS) const;
1401 void dump() const;
1406 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1407 /// inside the loop then try to eliminate the cast operation.
1408 void LSRInstance::OptimizeShadowIV() {
1409 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1410 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1411 return;
1413 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1414 UI != E; /* empty */) {
1415 IVUsers::const_iterator CandidateUI = UI;
1416 ++UI;
1417 Instruction *ShadowUse = CandidateUI->getUser();
1418 const Type *DestTy = NULL;
1420 /* If shadow use is a int->float cast then insert a second IV
1421 to eliminate this cast.
1423 for (unsigned i = 0; i < n; ++i)
1424 foo((double)i);
1426 is transformed into
1428 double d = 0.0;
1429 for (unsigned i = 0; i < n; ++i, ++d)
1430 foo(d);
1432 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1433 DestTy = UCast->getDestTy();
1434 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1435 DestTy = SCast->getDestTy();
1436 if (!DestTy) continue;
1438 if (TLI) {
1439 // If target does not support DestTy natively then do not apply
1440 // this transformation.
1441 EVT DVT = TLI->getValueType(DestTy);
1442 if (!TLI->isTypeLegal(DVT)) continue;
1445 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1446 if (!PH) continue;
1447 if (PH->getNumIncomingValues() != 2) continue;
1449 const Type *SrcTy = PH->getType();
1450 int Mantissa = DestTy->getFPMantissaWidth();
1451 if (Mantissa == -1) continue;
1452 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1453 continue;
1455 unsigned Entry, Latch;
1456 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1457 Entry = 0;
1458 Latch = 1;
1459 } else {
1460 Entry = 1;
1461 Latch = 0;
1464 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1465 if (!Init) continue;
1466 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1468 BinaryOperator *Incr =
1469 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1470 if (!Incr) continue;
1471 if (Incr->getOpcode() != Instruction::Add
1472 && Incr->getOpcode() != Instruction::Sub)
1473 continue;
1475 /* Initialize new IV, double d = 0.0 in above example. */
1476 ConstantInt *C = NULL;
1477 if (Incr->getOperand(0) == PH)
1478 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1479 else if (Incr->getOperand(1) == PH)
1480 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1481 else
1482 continue;
1484 if (!C) continue;
1486 // Ignore negative constants, as the code below doesn't handle them
1487 // correctly. TODO: Remove this restriction.
1488 if (!C->getValue().isStrictlyPositive()) continue;
1490 /* Add new PHINode. */
1491 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1493 /* create new increment. '++d' in above example. */
1494 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1495 BinaryOperator *NewIncr =
1496 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1497 Instruction::FAdd : Instruction::FSub,
1498 NewPH, CFP, "IV.S.next.", Incr);
1500 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1501 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1503 /* Remove cast operation */
1504 ShadowUse->replaceAllUsesWith(NewPH);
1505 ShadowUse->eraseFromParent();
1506 Changed = true;
1507 break;
1511 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1512 /// set the IV user and stride information and return true, otherwise return
1513 /// false.
1514 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1515 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1516 if (UI->getUser() == Cond) {
1517 // NOTE: we could handle setcc instructions with multiple uses here, but
1518 // InstCombine does it as well for simple uses, it's not clear that it
1519 // occurs enough in real life to handle.
1520 CondUse = UI;
1521 return true;
1523 return false;
1526 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1527 /// a max computation.
1529 /// This is a narrow solution to a specific, but acute, problem. For loops
1530 /// like this:
1532 /// i = 0;
1533 /// do {
1534 /// p[i] = 0.0;
1535 /// } while (++i < n);
1537 /// the trip count isn't just 'n', because 'n' might not be positive. And
1538 /// unfortunately this can come up even for loops where the user didn't use
1539 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1540 /// will commonly be lowered like this:
1542 /// if (n > 0) {
1543 /// i = 0;
1544 /// do {
1545 /// p[i] = 0.0;
1546 /// } while (++i < n);
1547 /// }
1549 /// and then it's possible for subsequent optimization to obscure the if
1550 /// test in such a way that indvars can't find it.
1552 /// When indvars can't find the if test in loops like this, it creates a
1553 /// max expression, which allows it to give the loop a canonical
1554 /// induction variable:
1556 /// i = 0;
1557 /// max = n < 1 ? 1 : n;
1558 /// do {
1559 /// p[i] = 0.0;
1560 /// } while (++i != max);
1562 /// Canonical induction variables are necessary because the loop passes
1563 /// are designed around them. The most obvious example of this is the
1564 /// LoopInfo analysis, which doesn't remember trip count values. It
1565 /// expects to be able to rediscover the trip count each time it is
1566 /// needed, and it does this using a simple analysis that only succeeds if
1567 /// the loop has a canonical induction variable.
1569 /// However, when it comes time to generate code, the maximum operation
1570 /// can be quite costly, especially if it's inside of an outer loop.
1572 /// This function solves this problem by detecting this type of loop and
1573 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1574 /// the instructions for the maximum computation.
1576 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1577 // Check that the loop matches the pattern we're looking for.
1578 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1579 Cond->getPredicate() != CmpInst::ICMP_NE)
1580 return Cond;
1582 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1583 if (!Sel || !Sel->hasOneUse()) return Cond;
1585 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1586 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1587 return Cond;
1588 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1590 // Add one to the backedge-taken count to get the trip count.
1591 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1592 if (IterationCount != SE.getSCEV(Sel)) return Cond;
1594 // Check for a max calculation that matches the pattern. There's no check
1595 // for ICMP_ULE here because the comparison would be with zero, which
1596 // isn't interesting.
1597 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1598 const SCEVNAryExpr *Max = 0;
1599 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1600 Pred = ICmpInst::ICMP_SLE;
1601 Max = S;
1602 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1603 Pred = ICmpInst::ICMP_SLT;
1604 Max = S;
1605 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1606 Pred = ICmpInst::ICMP_ULT;
1607 Max = U;
1608 } else {
1609 // No match; bail.
1610 return Cond;
1613 // To handle a max with more than two operands, this optimization would
1614 // require additional checking and setup.
1615 if (Max->getNumOperands() != 2)
1616 return Cond;
1618 const SCEV *MaxLHS = Max->getOperand(0);
1619 const SCEV *MaxRHS = Max->getOperand(1);
1621 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1622 // for a comparison with 1. For <= and >=, a comparison with zero.
1623 if (!MaxLHS ||
1624 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1625 return Cond;
1627 // Check the relevant induction variable for conformance to
1628 // the pattern.
1629 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1630 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1631 if (!AR || !AR->isAffine() ||
1632 AR->getStart() != One ||
1633 AR->getStepRecurrence(SE) != One)
1634 return Cond;
1636 assert(AR->getLoop() == L &&
1637 "Loop condition operand is an addrec in a different loop!");
1639 // Check the right operand of the select, and remember it, as it will
1640 // be used in the new comparison instruction.
1641 Value *NewRHS = 0;
1642 if (ICmpInst::isTrueWhenEqual(Pred)) {
1643 // Look for n+1, and grab n.
1644 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1645 if (isa<ConstantInt>(BO->getOperand(1)) &&
1646 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1647 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1648 NewRHS = BO->getOperand(0);
1649 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1650 if (isa<ConstantInt>(BO->getOperand(1)) &&
1651 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1652 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1653 NewRHS = BO->getOperand(0);
1654 if (!NewRHS)
1655 return Cond;
1656 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1657 NewRHS = Sel->getOperand(1);
1658 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1659 NewRHS = Sel->getOperand(2);
1660 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1661 NewRHS = SU->getValue();
1662 else
1663 // Max doesn't match expected pattern.
1664 return Cond;
1666 // Determine the new comparison opcode. It may be signed or unsigned,
1667 // and the original comparison may be either equality or inequality.
1668 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1669 Pred = CmpInst::getInversePredicate(Pred);
1671 // Ok, everything looks ok to change the condition into an SLT or SGE and
1672 // delete the max calculation.
1673 ICmpInst *NewCond =
1674 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1676 // Delete the max calculation instructions.
1677 Cond->replaceAllUsesWith(NewCond);
1678 CondUse->setUser(NewCond);
1679 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1680 Cond->eraseFromParent();
1681 Sel->eraseFromParent();
1682 if (Cmp->use_empty())
1683 Cmp->eraseFromParent();
1684 return NewCond;
1687 /// OptimizeLoopTermCond - Change loop terminating condition to use the
1688 /// postinc iv when possible.
1689 void
1690 LSRInstance::OptimizeLoopTermCond() {
1691 SmallPtrSet<Instruction *, 4> PostIncs;
1693 BasicBlock *LatchBlock = L->getLoopLatch();
1694 SmallVector<BasicBlock*, 8> ExitingBlocks;
1695 L->getExitingBlocks(ExitingBlocks);
1697 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1698 BasicBlock *ExitingBlock = ExitingBlocks[i];
1700 // Get the terminating condition for the loop if possible. If we
1701 // can, we want to change it to use a post-incremented version of its
1702 // induction variable, to allow coalescing the live ranges for the IV into
1703 // one register value.
1705 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1706 if (!TermBr)
1707 continue;
1708 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1709 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1710 continue;
1712 // Search IVUsesByStride to find Cond's IVUse if there is one.
1713 IVStrideUse *CondUse = 0;
1714 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1715 if (!FindIVUserForCond(Cond, CondUse))
1716 continue;
1718 // If the trip count is computed in terms of a max (due to ScalarEvolution
1719 // being unable to find a sufficient guard, for example), change the loop
1720 // comparison to use SLT or ULT instead of NE.
1721 // One consequence of doing this now is that it disrupts the count-down
1722 // optimization. That's not always a bad thing though, because in such
1723 // cases it may still be worthwhile to avoid a max.
1724 Cond = OptimizeMax(Cond, CondUse);
1726 // If this exiting block dominates the latch block, it may also use
1727 // the post-inc value if it won't be shared with other uses.
1728 // Check for dominance.
1729 if (!DT.dominates(ExitingBlock, LatchBlock))
1730 continue;
1732 // Conservatively avoid trying to use the post-inc value in non-latch
1733 // exits if there may be pre-inc users in intervening blocks.
1734 if (LatchBlock != ExitingBlock)
1735 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1736 // Test if the use is reachable from the exiting block. This dominator
1737 // query is a conservative approximation of reachability.
1738 if (&*UI != CondUse &&
1739 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1740 // Conservatively assume there may be reuse if the quotient of their
1741 // strides could be a legal scale.
1742 const SCEV *A = IU.getStride(*CondUse, L);
1743 const SCEV *B = IU.getStride(*UI, L);
1744 if (!A || !B) continue;
1745 if (SE.getTypeSizeInBits(A->getType()) !=
1746 SE.getTypeSizeInBits(B->getType())) {
1747 if (SE.getTypeSizeInBits(A->getType()) >
1748 SE.getTypeSizeInBits(B->getType()))
1749 B = SE.getSignExtendExpr(B, A->getType());
1750 else
1751 A = SE.getSignExtendExpr(A, B->getType());
1753 if (const SCEVConstant *D =
1754 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1755 const ConstantInt *C = D->getValue();
1756 // Stride of one or negative one can have reuse with non-addresses.
1757 if (C->isOne() || C->isAllOnesValue())
1758 goto decline_post_inc;
1759 // Avoid weird situations.
1760 if (C->getValue().getMinSignedBits() >= 64 ||
1761 C->getValue().isMinSignedValue())
1762 goto decline_post_inc;
1763 // Without TLI, assume that any stride might be valid, and so any
1764 // use might be shared.
1765 if (!TLI)
1766 goto decline_post_inc;
1767 // Check for possible scaled-address reuse.
1768 const Type *AccessTy = getAccessType(UI->getUser());
1769 TargetLowering::AddrMode AM;
1770 AM.Scale = C->getSExtValue();
1771 if (TLI->isLegalAddressingMode(AM, AccessTy))
1772 goto decline_post_inc;
1773 AM.Scale = -AM.Scale;
1774 if (TLI->isLegalAddressingMode(AM, AccessTy))
1775 goto decline_post_inc;
1779 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
1780 << *Cond << '\n');
1782 // It's possible for the setcc instruction to be anywhere in the loop, and
1783 // possible for it to have multiple users. If it is not immediately before
1784 // the exiting block branch, move it.
1785 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1786 if (Cond->hasOneUse()) {
1787 Cond->moveBefore(TermBr);
1788 } else {
1789 // Clone the terminating condition and insert into the loopend.
1790 ICmpInst *OldCond = Cond;
1791 Cond = cast<ICmpInst>(Cond->clone());
1792 Cond->setName(L->getHeader()->getName() + ".termcond");
1793 ExitingBlock->getInstList().insert(TermBr, Cond);
1795 // Clone the IVUse, as the old use still exists!
1796 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1797 TermBr->replaceUsesOfWith(OldCond, Cond);
1801 // If we get to here, we know that we can transform the setcc instruction to
1802 // use the post-incremented version of the IV, allowing us to coalesce the
1803 // live ranges for the IV correctly.
1804 CondUse->transformToPostInc(L);
1805 Changed = true;
1807 PostIncs.insert(Cond);
1808 decline_post_inc:;
1811 // Determine an insertion point for the loop induction variable increment. It
1812 // must dominate all the post-inc comparisons we just set up, and it must
1813 // dominate the loop latch edge.
1814 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1815 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1816 E = PostIncs.end(); I != E; ++I) {
1817 BasicBlock *BB =
1818 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1819 (*I)->getParent());
1820 if (BB == (*I)->getParent())
1821 IVIncInsertPos = *I;
1822 else if (BB != IVIncInsertPos->getParent())
1823 IVIncInsertPos = BB->getTerminator();
1827 /// reconcileNewOffset - Determine if the given use can accomodate a fixup
1828 /// at the given offset and other details. If so, update the use and
1829 /// return true.
1830 bool
1831 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1832 LSRUse::KindType Kind, const Type *AccessTy) {
1833 int64_t NewMinOffset = LU.MinOffset;
1834 int64_t NewMaxOffset = LU.MaxOffset;
1835 const Type *NewAccessTy = AccessTy;
1837 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1838 // something conservative, however this can pessimize in the case that one of
1839 // the uses will have all its uses outside the loop, for example.
1840 if (LU.Kind != Kind)
1841 return false;
1842 // Conservatively assume HasBaseReg is true for now.
1843 if (NewOffset < LU.MinOffset) {
1844 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1845 Kind, AccessTy, TLI))
1846 return false;
1847 NewMinOffset = NewOffset;
1848 } else if (NewOffset > LU.MaxOffset) {
1849 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1850 Kind, AccessTy, TLI))
1851 return false;
1852 NewMaxOffset = NewOffset;
1854 // Check for a mismatched access type, and fall back conservatively as needed.
1855 // TODO: Be less conservative when the type is similar and can use the same
1856 // addressing modes.
1857 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1858 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1860 // Update the use.
1861 LU.MinOffset = NewMinOffset;
1862 LU.MaxOffset = NewMaxOffset;
1863 LU.AccessTy = NewAccessTy;
1864 if (NewOffset != LU.Offsets.back())
1865 LU.Offsets.push_back(NewOffset);
1866 return true;
1869 /// getUse - Return an LSRUse index and an offset value for a fixup which
1870 /// needs the given expression, with the given kind and optional access type.
1871 /// Either reuse an existing use or create a new one, as needed.
1872 std::pair<size_t, int64_t>
1873 LSRInstance::getUse(const SCEV *&Expr,
1874 LSRUse::KindType Kind, const Type *AccessTy) {
1875 const SCEV *Copy = Expr;
1876 int64_t Offset = ExtractImmediate(Expr, SE);
1878 // Basic uses can't accept any offset, for example.
1879 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1880 Expr = Copy;
1881 Offset = 0;
1884 std::pair<UseMapTy::iterator, bool> P =
1885 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1886 if (!P.second) {
1887 // A use already existed with this base.
1888 size_t LUIdx = P.first->second;
1889 LSRUse &LU = Uses[LUIdx];
1890 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1891 // Reuse this use.
1892 return std::make_pair(LUIdx, Offset);
1895 // Create a new use.
1896 size_t LUIdx = Uses.size();
1897 P.first->second = LUIdx;
1898 Uses.push_back(LSRUse(Kind, AccessTy));
1899 LSRUse &LU = Uses[LUIdx];
1901 // We don't need to track redundant offsets, but we don't need to go out
1902 // of our way here to avoid them.
1903 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1904 LU.Offsets.push_back(Offset);
1906 LU.MinOffset = Offset;
1907 LU.MaxOffset = Offset;
1908 return std::make_pair(LUIdx, Offset);
1911 /// DeleteUse - Delete the given use from the Uses list.
1912 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
1913 if (&LU != &Uses.back())
1914 std::swap(LU, Uses.back());
1915 Uses.pop_back();
1917 // Update RegUses.
1918 RegUses.SwapAndDropUse(LUIdx, Uses.size());
1921 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1922 /// a formula that has the same registers as the given formula.
1923 LSRUse *
1924 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1925 const LSRUse &OrigLU) {
1926 // Search all uses for the formula. This could be more clever.
1927 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1928 LSRUse &LU = Uses[LUIdx];
1929 // Check whether this use is close enough to OrigLU, to see whether it's
1930 // worthwhile looking through its formulae.
1931 // Ignore ICmpZero uses because they may contain formulae generated by
1932 // GenerateICmpZeroScales, in which case adding fixup offsets may
1933 // be invalid.
1934 if (&LU != &OrigLU &&
1935 LU.Kind != LSRUse::ICmpZero &&
1936 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1937 LU.WidestFixupType == OrigLU.WidestFixupType &&
1938 LU.HasFormulaWithSameRegs(OrigF)) {
1939 // Scan through this use's formulae.
1940 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1941 E = LU.Formulae.end(); I != E; ++I) {
1942 const Formula &F = *I;
1943 // Check to see if this formula has the same registers and symbols
1944 // as OrigF.
1945 if (F.BaseRegs == OrigF.BaseRegs &&
1946 F.ScaledReg == OrigF.ScaledReg &&
1947 F.AM.BaseGV == OrigF.AM.BaseGV &&
1948 F.AM.Scale == OrigF.AM.Scale) {
1949 if (F.AM.BaseOffs == 0)
1950 return &LU;
1951 // This is the formula where all the registers and symbols matched;
1952 // there aren't going to be any others. Since we declined it, we
1953 // can skip the rest of the formulae and procede to the next LSRUse.
1954 break;
1960 // Nothing looked good.
1961 return 0;
1964 void LSRInstance::CollectInterestingTypesAndFactors() {
1965 SmallSetVector<const SCEV *, 4> Strides;
1967 // Collect interesting types and strides.
1968 SmallVector<const SCEV *, 4> Worklist;
1969 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1970 const SCEV *Expr = IU.getExpr(*UI);
1972 // Collect interesting types.
1973 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1975 // Add strides for mentioned loops.
1976 Worklist.push_back(Expr);
1977 do {
1978 const SCEV *S = Worklist.pop_back_val();
1979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1980 Strides.insert(AR->getStepRecurrence(SE));
1981 Worklist.push_back(AR->getStart());
1982 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1983 Worklist.append(Add->op_begin(), Add->op_end());
1985 } while (!Worklist.empty());
1988 // Compute interesting factors from the set of interesting strides.
1989 for (SmallSetVector<const SCEV *, 4>::const_iterator
1990 I = Strides.begin(), E = Strides.end(); I != E; ++I)
1991 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
1992 llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
1993 const SCEV *OldStride = *I;
1994 const SCEV *NewStride = *NewStrideIter;
1996 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1997 SE.getTypeSizeInBits(NewStride->getType())) {
1998 if (SE.getTypeSizeInBits(OldStride->getType()) >
1999 SE.getTypeSizeInBits(NewStride->getType()))
2000 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2001 else
2002 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2004 if (const SCEVConstant *Factor =
2005 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2006 SE, true))) {
2007 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2008 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2009 } else if (const SCEVConstant *Factor =
2010 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2011 NewStride,
2012 SE, true))) {
2013 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2014 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2018 // If all uses use the same type, don't bother looking for truncation-based
2019 // reuse.
2020 if (Types.size() == 1)
2021 Types.clear();
2023 DEBUG(print_factors_and_types(dbgs()));
2026 void LSRInstance::CollectFixupsAndInitialFormulae() {
2027 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2028 // Record the uses.
2029 LSRFixup &LF = getNewFixup();
2030 LF.UserInst = UI->getUser();
2031 LF.OperandValToReplace = UI->getOperandValToReplace();
2032 LF.PostIncLoops = UI->getPostIncLoops();
2034 LSRUse::KindType Kind = LSRUse::Basic;
2035 const Type *AccessTy = 0;
2036 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2037 Kind = LSRUse::Address;
2038 AccessTy = getAccessType(LF.UserInst);
2041 const SCEV *S = IU.getExpr(*UI);
2043 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2044 // (N - i == 0), and this allows (N - i) to be the expression that we work
2045 // with rather than just N or i, so we can consider the register
2046 // requirements for both N and i at the same time. Limiting this code to
2047 // equality icmps is not a problem because all interesting loops use
2048 // equality icmps, thanks to IndVarSimplify.
2049 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2050 if (CI->isEquality()) {
2051 // Swap the operands if needed to put the OperandValToReplace on the
2052 // left, for consistency.
2053 Value *NV = CI->getOperand(1);
2054 if (NV == LF.OperandValToReplace) {
2055 CI->setOperand(1, CI->getOperand(0));
2056 CI->setOperand(0, NV);
2057 NV = CI->getOperand(1);
2058 Changed = true;
2061 // x == y --> x - y == 0
2062 const SCEV *N = SE.getSCEV(NV);
2063 if (SE.isLoopInvariant(N, L)) {
2064 Kind = LSRUse::ICmpZero;
2065 S = SE.getMinusSCEV(N, S);
2068 // -1 and the negations of all interesting strides (except the negation
2069 // of -1) are now also interesting.
2070 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2071 if (Factors[i] != -1)
2072 Factors.insert(-(uint64_t)Factors[i]);
2073 Factors.insert(-1);
2076 // Set up the initial formula for this use.
2077 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2078 LF.LUIdx = P.first;
2079 LF.Offset = P.second;
2080 LSRUse &LU = Uses[LF.LUIdx];
2081 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2082 if (!LU.WidestFixupType ||
2083 SE.getTypeSizeInBits(LU.WidestFixupType) <
2084 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2085 LU.WidestFixupType = LF.OperandValToReplace->getType();
2087 // If this is the first use of this LSRUse, give it a formula.
2088 if (LU.Formulae.empty()) {
2089 InsertInitialFormula(S, LU, LF.LUIdx);
2090 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2094 DEBUG(print_fixups(dbgs()));
2097 /// InsertInitialFormula - Insert a formula for the given expression into
2098 /// the given use, separating out loop-variant portions from loop-invariant
2099 /// and loop-computable portions.
2100 void
2101 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2102 Formula F;
2103 F.InitialMatch(S, L, SE);
2104 bool Inserted = InsertFormula(LU, LUIdx, F);
2105 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2108 /// InsertSupplementalFormula - Insert a simple single-register formula for
2109 /// the given expression into the given use.
2110 void
2111 LSRInstance::InsertSupplementalFormula(const SCEV *S,
2112 LSRUse &LU, size_t LUIdx) {
2113 Formula F;
2114 F.BaseRegs.push_back(S);
2115 F.AM.HasBaseReg = true;
2116 bool Inserted = InsertFormula(LU, LUIdx, F);
2117 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2120 /// CountRegisters - Note which registers are used by the given formula,
2121 /// updating RegUses.
2122 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2123 if (F.ScaledReg)
2124 RegUses.CountRegister(F.ScaledReg, LUIdx);
2125 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2126 E = F.BaseRegs.end(); I != E; ++I)
2127 RegUses.CountRegister(*I, LUIdx);
2130 /// InsertFormula - If the given formula has not yet been inserted, add it to
2131 /// the list, and return true. Return false otherwise.
2132 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2133 if (!LU.InsertFormula(F))
2134 return false;
2136 CountRegisters(F, LUIdx);
2137 return true;
2140 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2141 /// loop-invariant values which we're tracking. These other uses will pin these
2142 /// values in registers, making them less profitable for elimination.
2143 /// TODO: This currently misses non-constant addrec step registers.
2144 /// TODO: Should this give more weight to users inside the loop?
2145 void
2146 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2147 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2148 SmallPtrSet<const SCEV *, 8> Inserted;
2150 while (!Worklist.empty()) {
2151 const SCEV *S = Worklist.pop_back_val();
2153 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2154 Worklist.append(N->op_begin(), N->op_end());
2155 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2156 Worklist.push_back(C->getOperand());
2157 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2158 Worklist.push_back(D->getLHS());
2159 Worklist.push_back(D->getRHS());
2160 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2161 if (!Inserted.insert(U)) continue;
2162 const Value *V = U->getValue();
2163 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2164 // Look for instructions defined outside the loop.
2165 if (L->contains(Inst)) continue;
2166 } else if (isa<UndefValue>(V))
2167 // Undef doesn't have a live range, so it doesn't matter.
2168 continue;
2169 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2170 UI != UE; ++UI) {
2171 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2172 // Ignore non-instructions.
2173 if (!UserInst)
2174 continue;
2175 // Ignore instructions in other functions (as can happen with
2176 // Constants).
2177 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2178 continue;
2179 // Ignore instructions not dominated by the loop.
2180 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2181 UserInst->getParent() :
2182 cast<PHINode>(UserInst)->getIncomingBlock(
2183 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2184 if (!DT.dominates(L->getHeader(), UseBB))
2185 continue;
2186 // Ignore uses which are part of other SCEV expressions, to avoid
2187 // analyzing them multiple times.
2188 if (SE.isSCEVable(UserInst->getType())) {
2189 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2190 // If the user is a no-op, look through to its uses.
2191 if (!isa<SCEVUnknown>(UserS))
2192 continue;
2193 if (UserS == U) {
2194 Worklist.push_back(
2195 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2196 continue;
2199 // Ignore icmp instructions which are already being analyzed.
2200 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2201 unsigned OtherIdx = !UI.getOperandNo();
2202 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2203 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2204 continue;
2207 LSRFixup &LF = getNewFixup();
2208 LF.UserInst = const_cast<Instruction *>(UserInst);
2209 LF.OperandValToReplace = UI.getUse();
2210 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2211 LF.LUIdx = P.first;
2212 LF.Offset = P.second;
2213 LSRUse &LU = Uses[LF.LUIdx];
2214 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2215 if (!LU.WidestFixupType ||
2216 SE.getTypeSizeInBits(LU.WidestFixupType) <
2217 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2218 LU.WidestFixupType = LF.OperandValToReplace->getType();
2219 InsertSupplementalFormula(U, LU, LF.LUIdx);
2220 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2221 break;
2227 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
2228 /// separate registers. If C is non-null, multiply each subexpression by C.
2229 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2230 SmallVectorImpl<const SCEV *> &Ops,
2231 const Loop *L,
2232 ScalarEvolution &SE) {
2233 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2234 // Break out add operands.
2235 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2236 I != E; ++I)
2237 CollectSubexprs(*I, C, Ops, L, SE);
2238 return;
2239 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2240 // Split a non-zero base out of an addrec.
2241 if (!AR->getStart()->isZero()) {
2242 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2243 AR->getStepRecurrence(SE),
2244 AR->getLoop(),
2245 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2246 SCEV::FlagAnyWrap),
2247 C, Ops, L, SE);
2248 CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2249 return;
2251 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2252 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2253 if (Mul->getNumOperands() == 2)
2254 if (const SCEVConstant *Op0 =
2255 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2256 CollectSubexprs(Mul->getOperand(1),
2257 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2258 Ops, L, SE);
2259 return;
2263 // Otherwise use the value itself, optionally with a scale applied.
2264 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2267 /// GenerateReassociations - Split out subexpressions from adds and the bases of
2268 /// addrecs.
2269 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2270 Formula Base,
2271 unsigned Depth) {
2272 // Arbitrarily cap recursion to protect compile time.
2273 if (Depth >= 3) return;
2275 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2276 const SCEV *BaseReg = Base.BaseRegs[i];
2278 SmallVector<const SCEV *, 8> AddOps;
2279 CollectSubexprs(BaseReg, 0, AddOps, L, SE);
2281 if (AddOps.size() == 1) continue;
2283 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2284 JE = AddOps.end(); J != JE; ++J) {
2286 // Loop-variant "unknown" values are uninteresting; we won't be able to
2287 // do anything meaningful with them.
2288 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
2289 continue;
2291 // Don't pull a constant into a register if the constant could be folded
2292 // into an immediate field.
2293 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2294 Base.getNumRegs() > 1,
2295 LU.Kind, LU.AccessTy, TLI, SE))
2296 continue;
2298 // Collect all operands except *J.
2299 SmallVector<const SCEV *, 8> InnerAddOps
2300 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2301 InnerAddOps.append
2302 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2304 // Don't leave just a constant behind in a register if the constant could
2305 // be folded into an immediate field.
2306 if (InnerAddOps.size() == 1 &&
2307 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2308 Base.getNumRegs() > 1,
2309 LU.Kind, LU.AccessTy, TLI, SE))
2310 continue;
2312 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2313 if (InnerSum->isZero())
2314 continue;
2315 Formula F = Base;
2316 F.BaseRegs[i] = InnerSum;
2317 F.BaseRegs.push_back(*J);
2318 if (InsertFormula(LU, LUIdx, F))
2319 // If that formula hadn't been seen before, recurse to find more like
2320 // it.
2321 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2326 /// GenerateCombinations - Generate a formula consisting of all of the
2327 /// loop-dominating registers added into a single register.
2328 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2329 Formula Base) {
2330 // This method is only interesting on a plurality of registers.
2331 if (Base.BaseRegs.size() <= 1) return;
2333 Formula F = Base;
2334 F.BaseRegs.clear();
2335 SmallVector<const SCEV *, 4> Ops;
2336 for (SmallVectorImpl<const SCEV *>::const_iterator
2337 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2338 const SCEV *BaseReg = *I;
2339 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
2340 !SE.hasComputableLoopEvolution(BaseReg, L))
2341 Ops.push_back(BaseReg);
2342 else
2343 F.BaseRegs.push_back(BaseReg);
2345 if (Ops.size() > 1) {
2346 const SCEV *Sum = SE.getAddExpr(Ops);
2347 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2348 // opportunity to fold something. For now, just ignore such cases
2349 // rather than proceed with zero in a register.
2350 if (!Sum->isZero()) {
2351 F.BaseRegs.push_back(Sum);
2352 (void)InsertFormula(LU, LUIdx, F);
2357 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2358 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2359 Formula Base) {
2360 // We can't add a symbolic offset if the address already contains one.
2361 if (Base.AM.BaseGV) return;
2363 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2364 const SCEV *G = Base.BaseRegs[i];
2365 GlobalValue *GV = ExtractSymbol(G, SE);
2366 if (G->isZero() || !GV)
2367 continue;
2368 Formula F = Base;
2369 F.AM.BaseGV = GV;
2370 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2371 LU.Kind, LU.AccessTy, TLI))
2372 continue;
2373 F.BaseRegs[i] = G;
2374 (void)InsertFormula(LU, LUIdx, F);
2378 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2379 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2380 Formula Base) {
2381 // TODO: For now, just add the min and max offset, because it usually isn't
2382 // worthwhile looking at everything inbetween.
2383 SmallVector<int64_t, 2> Worklist;
2384 Worklist.push_back(LU.MinOffset);
2385 if (LU.MaxOffset != LU.MinOffset)
2386 Worklist.push_back(LU.MaxOffset);
2388 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2389 const SCEV *G = Base.BaseRegs[i];
2391 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2392 E = Worklist.end(); I != E; ++I) {
2393 Formula F = Base;
2394 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2395 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2396 LU.Kind, LU.AccessTy, TLI)) {
2397 // Add the offset to the base register.
2398 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
2399 // If it cancelled out, drop the base register, otherwise update it.
2400 if (NewG->isZero()) {
2401 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2402 F.BaseRegs.pop_back();
2403 } else
2404 F.BaseRegs[i] = NewG;
2406 (void)InsertFormula(LU, LUIdx, F);
2410 int64_t Imm = ExtractImmediate(G, SE);
2411 if (G->isZero() || Imm == 0)
2412 continue;
2413 Formula F = Base;
2414 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2415 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2416 LU.Kind, LU.AccessTy, TLI))
2417 continue;
2418 F.BaseRegs[i] = G;
2419 (void)InsertFormula(LU, LUIdx, F);
2423 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2424 /// the comparison. For example, x == y -> x*c == y*c.
2425 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2426 Formula Base) {
2427 if (LU.Kind != LSRUse::ICmpZero) return;
2429 // Determine the integer type for the base formula.
2430 const Type *IntTy = Base.getType();
2431 if (!IntTy) return;
2432 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2434 // Don't do this if there is more than one offset.
2435 if (LU.MinOffset != LU.MaxOffset) return;
2437 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2439 // Check each interesting stride.
2440 for (SmallSetVector<int64_t, 8>::const_iterator
2441 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2442 int64_t Factor = *I;
2444 // Check that the multiplication doesn't overflow.
2445 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2446 continue;
2447 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2448 if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2449 continue;
2451 // Check that multiplying with the use offset doesn't overflow.
2452 int64_t Offset = LU.MinOffset;
2453 if (Offset == INT64_MIN && Factor == -1)
2454 continue;
2455 Offset = (uint64_t)Offset * Factor;
2456 if (Offset / Factor != LU.MinOffset)
2457 continue;
2459 Formula F = Base;
2460 F.AM.BaseOffs = NewBaseOffs;
2462 // Check that this scale is legal.
2463 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2464 continue;
2466 // Compensate for the use having MinOffset built into it.
2467 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2469 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2471 // Check that multiplying with each base register doesn't overflow.
2472 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2473 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2474 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2475 goto next;
2478 // Check that multiplying with the scaled register doesn't overflow.
2479 if (F.ScaledReg) {
2480 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2481 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2482 continue;
2485 // If we make it here and it's legal, add it.
2486 (void)InsertFormula(LU, LUIdx, F);
2487 next:;
2491 /// GenerateScales - Generate stride factor reuse formulae by making use of
2492 /// scaled-offset address modes, for example.
2493 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2494 // Determine the integer type for the base formula.
2495 const Type *IntTy = Base.getType();
2496 if (!IntTy) return;
2498 // If this Formula already has a scaled register, we can't add another one.
2499 if (Base.AM.Scale != 0) return;
2501 // Check each interesting stride.
2502 for (SmallSetVector<int64_t, 8>::const_iterator
2503 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2504 int64_t Factor = *I;
2506 Base.AM.Scale = Factor;
2507 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2508 // Check whether this scale is going to be legal.
2509 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2510 LU.Kind, LU.AccessTy, TLI)) {
2511 // As a special-case, handle special out-of-loop Basic users specially.
2512 // TODO: Reconsider this special case.
2513 if (LU.Kind == LSRUse::Basic &&
2514 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2515 LSRUse::Special, LU.AccessTy, TLI) &&
2516 LU.AllFixupsOutsideLoop)
2517 LU.Kind = LSRUse::Special;
2518 else
2519 continue;
2521 // For an ICmpZero, negating a solitary base register won't lead to
2522 // new solutions.
2523 if (LU.Kind == LSRUse::ICmpZero &&
2524 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2525 continue;
2526 // For each addrec base reg, apply the scale, if possible.
2527 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2528 if (const SCEVAddRecExpr *AR =
2529 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2530 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2531 if (FactorS->isZero())
2532 continue;
2533 // Divide out the factor, ignoring high bits, since we'll be
2534 // scaling the value back up in the end.
2535 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2536 // TODO: This could be optimized to avoid all the copying.
2537 Formula F = Base;
2538 F.ScaledReg = Quotient;
2539 F.DeleteBaseReg(F.BaseRegs[i]);
2540 (void)InsertFormula(LU, LUIdx, F);
2546 /// GenerateTruncates - Generate reuse formulae from different IV types.
2547 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2548 // This requires TargetLowering to tell us which truncates are free.
2549 if (!TLI) return;
2551 // Don't bother truncating symbolic values.
2552 if (Base.AM.BaseGV) return;
2554 // Determine the integer type for the base formula.
2555 const Type *DstTy = Base.getType();
2556 if (!DstTy) return;
2557 DstTy = SE.getEffectiveSCEVType(DstTy);
2559 for (SmallSetVector<const Type *, 4>::const_iterator
2560 I = Types.begin(), E = Types.end(); I != E; ++I) {
2561 const Type *SrcTy = *I;
2562 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2563 Formula F = Base;
2565 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2566 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2567 JE = F.BaseRegs.end(); J != JE; ++J)
2568 *J = SE.getAnyExtendExpr(*J, SrcTy);
2570 // TODO: This assumes we've done basic processing on all uses and
2571 // have an idea what the register usage is.
2572 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2573 continue;
2575 (void)InsertFormula(LU, LUIdx, F);
2580 namespace {
2582 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2583 /// defer modifications so that the search phase doesn't have to worry about
2584 /// the data structures moving underneath it.
2585 struct WorkItem {
2586 size_t LUIdx;
2587 int64_t Imm;
2588 const SCEV *OrigReg;
2590 WorkItem(size_t LI, int64_t I, const SCEV *R)
2591 : LUIdx(LI), Imm(I), OrigReg(R) {}
2593 void print(raw_ostream &OS) const;
2594 void dump() const;
2599 void WorkItem::print(raw_ostream &OS) const {
2600 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2601 << " , add offset " << Imm;
2604 void WorkItem::dump() const {
2605 print(errs()); errs() << '\n';
2608 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2609 /// distance apart and try to form reuse opportunities between them.
2610 void LSRInstance::GenerateCrossUseConstantOffsets() {
2611 // Group the registers by their value without any added constant offset.
2612 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2613 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2614 RegMapTy Map;
2615 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2616 SmallVector<const SCEV *, 8> Sequence;
2617 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2618 I != E; ++I) {
2619 const SCEV *Reg = *I;
2620 int64_t Imm = ExtractImmediate(Reg, SE);
2621 std::pair<RegMapTy::iterator, bool> Pair =
2622 Map.insert(std::make_pair(Reg, ImmMapTy()));
2623 if (Pair.second)
2624 Sequence.push_back(Reg);
2625 Pair.first->second.insert(std::make_pair(Imm, *I));
2626 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2629 // Now examine each set of registers with the same base value. Build up
2630 // a list of work to do and do the work in a separate step so that we're
2631 // not adding formulae and register counts while we're searching.
2632 SmallVector<WorkItem, 32> WorkItems;
2633 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2634 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2635 E = Sequence.end(); I != E; ++I) {
2636 const SCEV *Reg = *I;
2637 const ImmMapTy &Imms = Map.find(Reg)->second;
2639 // It's not worthwhile looking for reuse if there's only one offset.
2640 if (Imms.size() == 1)
2641 continue;
2643 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2644 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2645 J != JE; ++J)
2646 dbgs() << ' ' << J->first;
2647 dbgs() << '\n');
2649 // Examine each offset.
2650 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2651 J != JE; ++J) {
2652 const SCEV *OrigReg = J->second;
2654 int64_t JImm = J->first;
2655 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2657 if (!isa<SCEVConstant>(OrigReg) &&
2658 UsedByIndicesMap[Reg].count() == 1) {
2659 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2660 continue;
2663 // Conservatively examine offsets between this orig reg a few selected
2664 // other orig regs.
2665 ImmMapTy::const_iterator OtherImms[] = {
2666 Imms.begin(), prior(Imms.end()),
2667 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2669 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2670 ImmMapTy::const_iterator M = OtherImms[i];
2671 if (M == J || M == JE) continue;
2673 // Compute the difference between the two.
2674 int64_t Imm = (uint64_t)JImm - M->first;
2675 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2676 LUIdx = UsedByIndices.find_next(LUIdx))
2677 // Make a memo of this use, offset, and register tuple.
2678 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2679 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2684 Map.clear();
2685 Sequence.clear();
2686 UsedByIndicesMap.clear();
2687 UniqueItems.clear();
2689 // Now iterate through the worklist and add new formulae.
2690 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2691 E = WorkItems.end(); I != E; ++I) {
2692 const WorkItem &WI = *I;
2693 size_t LUIdx = WI.LUIdx;
2694 LSRUse &LU = Uses[LUIdx];
2695 int64_t Imm = WI.Imm;
2696 const SCEV *OrigReg = WI.OrigReg;
2698 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2699 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2700 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2702 // TODO: Use a more targeted data structure.
2703 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2704 const Formula &F = LU.Formulae[L];
2705 // Use the immediate in the scaled register.
2706 if (F.ScaledReg == OrigReg) {
2707 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2708 Imm * (uint64_t)F.AM.Scale;
2709 // Don't create 50 + reg(-50).
2710 if (F.referencesReg(SE.getSCEV(
2711 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2712 continue;
2713 Formula NewF = F;
2714 NewF.AM.BaseOffs = Offs;
2715 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2716 LU.Kind, LU.AccessTy, TLI))
2717 continue;
2718 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2720 // If the new scale is a constant in a register, and adding the constant
2721 // value to the immediate would produce a value closer to zero than the
2722 // immediate itself, then the formula isn't worthwhile.
2723 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2724 if (C->getValue()->getValue().isNegative() !=
2725 (NewF.AM.BaseOffs < 0) &&
2726 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2727 .ule(abs64(NewF.AM.BaseOffs)))
2728 continue;
2730 // OK, looks good.
2731 (void)InsertFormula(LU, LUIdx, NewF);
2732 } else {
2733 // Use the immediate in a base register.
2734 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2735 const SCEV *BaseReg = F.BaseRegs[N];
2736 if (BaseReg != OrigReg)
2737 continue;
2738 Formula NewF = F;
2739 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2740 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2741 LU.Kind, LU.AccessTy, TLI))
2742 continue;
2743 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2745 // If the new formula has a constant in a register, and adding the
2746 // constant value to the immediate would produce a value closer to
2747 // zero than the immediate itself, then the formula isn't worthwhile.
2748 for (SmallVectorImpl<const SCEV *>::const_iterator
2749 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2750 J != JE; ++J)
2751 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2752 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2753 abs64(NewF.AM.BaseOffs)) &&
2754 (C->getValue()->getValue() +
2755 NewF.AM.BaseOffs).countTrailingZeros() >=
2756 CountTrailingZeros_64(NewF.AM.BaseOffs))
2757 goto skip_formula;
2759 // Ok, looks good.
2760 (void)InsertFormula(LU, LUIdx, NewF);
2761 break;
2762 skip_formula:;
2769 /// GenerateAllReuseFormulae - Generate formulae for each use.
2770 void
2771 LSRInstance::GenerateAllReuseFormulae() {
2772 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2773 // queries are more precise.
2774 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2775 LSRUse &LU = Uses[LUIdx];
2776 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2777 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2778 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2779 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2781 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2782 LSRUse &LU = Uses[LUIdx];
2783 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2784 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2785 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2786 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2787 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2788 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2789 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2790 GenerateScales(LU, LUIdx, LU.Formulae[i]);
2792 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2793 LSRUse &LU = Uses[LUIdx];
2794 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2795 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2798 GenerateCrossUseConstantOffsets();
2800 DEBUG(dbgs() << "\n"
2801 "After generating reuse formulae:\n";
2802 print_uses(dbgs()));
2805 /// If there are multiple formulae with the same set of registers used
2806 /// by other uses, pick the best one and delete the others.
2807 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2808 DenseSet<const SCEV *> VisitedRegs;
2809 SmallPtrSet<const SCEV *, 16> Regs;
2810 #ifndef NDEBUG
2811 bool ChangedFormulae = false;
2812 #endif
2814 // Collect the best formula for each unique set of shared registers. This
2815 // is reset for each use.
2816 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2817 BestFormulaeTy;
2818 BestFormulaeTy BestFormulae;
2820 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2821 LSRUse &LU = Uses[LUIdx];
2822 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2824 bool Any = false;
2825 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2826 FIdx != NumForms; ++FIdx) {
2827 Formula &F = LU.Formulae[FIdx];
2829 SmallVector<const SCEV *, 2> Key;
2830 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2831 JE = F.BaseRegs.end(); J != JE; ++J) {
2832 const SCEV *Reg = *J;
2833 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2834 Key.push_back(Reg);
2836 if (F.ScaledReg &&
2837 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2838 Key.push_back(F.ScaledReg);
2839 // Unstable sort by host order ok, because this is only used for
2840 // uniquifying.
2841 std::sort(Key.begin(), Key.end());
2843 std::pair<BestFormulaeTy::const_iterator, bool> P =
2844 BestFormulae.insert(std::make_pair(Key, FIdx));
2845 if (!P.second) {
2846 Formula &Best = LU.Formulae[P.first->second];
2848 Cost CostF;
2849 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2850 Regs.clear();
2851 Cost CostBest;
2852 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2853 Regs.clear();
2854 if (CostF < CostBest)
2855 std::swap(F, Best);
2856 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
2857 dbgs() << "\n"
2858 " in favor of formula "; Best.print(dbgs());
2859 dbgs() << '\n');
2860 #ifndef NDEBUG
2861 ChangedFormulae = true;
2862 #endif
2863 LU.DeleteFormula(F);
2864 --FIdx;
2865 --NumForms;
2866 Any = true;
2867 continue;
2871 // Now that we've filtered out some formulae, recompute the Regs set.
2872 if (Any)
2873 LU.RecomputeRegs(LUIdx, RegUses);
2875 // Reset this to prepare for the next use.
2876 BestFormulae.clear();
2879 DEBUG(if (ChangedFormulae) {
2880 dbgs() << "\n"
2881 "After filtering out undesirable candidates:\n";
2882 print_uses(dbgs());
2886 // This is a rough guess that seems to work fairly well.
2887 static const size_t ComplexityLimit = UINT16_MAX;
2889 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2890 /// solutions the solver might have to consider. It almost never considers
2891 /// this many solutions because it prune the search space, but the pruning
2892 /// isn't always sufficient.
2893 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2894 size_t Power = 1;
2895 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2896 E = Uses.end(); I != E; ++I) {
2897 size_t FSize = I->Formulae.size();
2898 if (FSize >= ComplexityLimit) {
2899 Power = ComplexityLimit;
2900 break;
2902 Power *= FSize;
2903 if (Power >= ComplexityLimit)
2904 break;
2906 return Power;
2909 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
2910 /// of the registers of another formula, it won't help reduce register
2911 /// pressure (though it may not necessarily hurt register pressure); remove
2912 /// it to simplify the system.
2913 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
2914 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2915 DEBUG(dbgs() << "The search space is too complex.\n");
2917 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2918 "which use a superset of registers used by other "
2919 "formulae.\n");
2921 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2922 LSRUse &LU = Uses[LUIdx];
2923 bool Any = false;
2924 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2925 Formula &F = LU.Formulae[i];
2926 // Look for a formula with a constant or GV in a register. If the use
2927 // also has a formula with that same value in an immediate field,
2928 // delete the one that uses a register.
2929 for (SmallVectorImpl<const SCEV *>::const_iterator
2930 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2931 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2932 Formula NewF = F;
2933 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2934 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2935 (I - F.BaseRegs.begin()));
2936 if (LU.HasFormulaWithSameRegs(NewF)) {
2937 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2938 LU.DeleteFormula(F);
2939 --i;
2940 --e;
2941 Any = true;
2942 break;
2944 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2945 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2946 if (!F.AM.BaseGV) {
2947 Formula NewF = F;
2948 NewF.AM.BaseGV = GV;
2949 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2950 (I - F.BaseRegs.begin()));
2951 if (LU.HasFormulaWithSameRegs(NewF)) {
2952 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
2953 dbgs() << '\n');
2954 LU.DeleteFormula(F);
2955 --i;
2956 --e;
2957 Any = true;
2958 break;
2964 if (Any)
2965 LU.RecomputeRegs(LUIdx, RegUses);
2968 DEBUG(dbgs() << "After pre-selection:\n";
2969 print_uses(dbgs()));
2973 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
2974 /// for expressions like A, A+1, A+2, etc., allocate a single register for
2975 /// them.
2976 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
2977 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2978 DEBUG(dbgs() << "The search space is too complex.\n");
2980 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2981 "separated by a constant offset will use the same "
2982 "registers.\n");
2984 // This is especially useful for unrolled loops.
2986 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2987 LSRUse &LU = Uses[LUIdx];
2988 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2989 E = LU.Formulae.end(); I != E; ++I) {
2990 const Formula &F = *I;
2991 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
2992 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
2993 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
2994 /*HasBaseReg=*/false,
2995 LU.Kind, LU.AccessTy)) {
2996 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
2997 dbgs() << '\n');
2999 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3001 // Update the relocs to reference the new use.
3002 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3003 E = Fixups.end(); I != E; ++I) {
3004 LSRFixup &Fixup = *I;
3005 if (Fixup.LUIdx == LUIdx) {
3006 Fixup.LUIdx = LUThatHas - &Uses.front();
3007 Fixup.Offset += F.AM.BaseOffs;
3008 // Add the new offset to LUThatHas' offset list.
3009 if (LUThatHas->Offsets.back() != Fixup.Offset) {
3010 LUThatHas->Offsets.push_back(Fixup.Offset);
3011 if (Fixup.Offset > LUThatHas->MaxOffset)
3012 LUThatHas->MaxOffset = Fixup.Offset;
3013 if (Fixup.Offset < LUThatHas->MinOffset)
3014 LUThatHas->MinOffset = Fixup.Offset;
3016 DEBUG(dbgs() << "New fixup has offset "
3017 << Fixup.Offset << '\n');
3019 if (Fixup.LUIdx == NumUses-1)
3020 Fixup.LUIdx = LUIdx;
3023 // Delete formulae from the new use which are no longer legal.
3024 bool Any = false;
3025 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3026 Formula &F = LUThatHas->Formulae[i];
3027 if (!isLegalUse(F.AM,
3028 LUThatHas->MinOffset, LUThatHas->MaxOffset,
3029 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3030 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3031 dbgs() << '\n');
3032 LUThatHas->DeleteFormula(F);
3033 --i;
3034 --e;
3035 Any = true;
3038 if (Any)
3039 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3041 // Delete the old use.
3042 DeleteUse(LU, LUIdx);
3043 --LUIdx;
3044 --NumUses;
3045 break;
3052 DEBUG(dbgs() << "After pre-selection:\n";
3053 print_uses(dbgs()));
3057 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3058 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3059 /// we've done more filtering, as it may be able to find more formulae to
3060 /// eliminate.
3061 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3062 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3063 DEBUG(dbgs() << "The search space is too complex.\n");
3065 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3066 "undesirable dedicated registers.\n");
3068 FilterOutUndesirableDedicatedRegisters();
3070 DEBUG(dbgs() << "After pre-selection:\n";
3071 print_uses(dbgs()));
3075 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3076 /// to be profitable, and then in any use which has any reference to that
3077 /// register, delete all formulae which do not reference that register.
3078 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3079 // With all other options exhausted, loop until the system is simple
3080 // enough to handle.
3081 SmallPtrSet<const SCEV *, 4> Taken;
3082 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3083 // Ok, we have too many of formulae on our hands to conveniently handle.
3084 // Use a rough heuristic to thin out the list.
3085 DEBUG(dbgs() << "The search space is too complex.\n");
3087 // Pick the register which is used by the most LSRUses, which is likely
3088 // to be a good reuse register candidate.
3089 const SCEV *Best = 0;
3090 unsigned BestNum = 0;
3091 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3092 I != E; ++I) {
3093 const SCEV *Reg = *I;
3094 if (Taken.count(Reg))
3095 continue;
3096 if (!Best)
3097 Best = Reg;
3098 else {
3099 unsigned Count = RegUses.getUsedByIndices(Reg).count();
3100 if (Count > BestNum) {
3101 Best = Reg;
3102 BestNum = Count;
3107 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3108 << " will yield profitable reuse.\n");
3109 Taken.insert(Best);
3111 // In any use with formulae which references this register, delete formulae
3112 // which don't reference it.
3113 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3114 LSRUse &LU = Uses[LUIdx];
3115 if (!LU.Regs.count(Best)) continue;
3117 bool Any = false;
3118 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3119 Formula &F = LU.Formulae[i];
3120 if (!F.referencesReg(Best)) {
3121 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
3122 LU.DeleteFormula(F);
3123 --e;
3124 --i;
3125 Any = true;
3126 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3127 continue;
3131 if (Any)
3132 LU.RecomputeRegs(LUIdx, RegUses);
3135 DEBUG(dbgs() << "After pre-selection:\n";
3136 print_uses(dbgs()));
3140 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3141 /// formulae to choose from, use some rough heuristics to prune down the number
3142 /// of formulae. This keeps the main solver from taking an extraordinary amount
3143 /// of time in some worst-case scenarios.
3144 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3145 NarrowSearchSpaceByDetectingSupersets();
3146 NarrowSearchSpaceByCollapsingUnrolledCode();
3147 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3148 NarrowSearchSpaceByPickingWinnerRegs();
3151 /// SolveRecurse - This is the recursive solver.
3152 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3153 Cost &SolutionCost,
3154 SmallVectorImpl<const Formula *> &Workspace,
3155 const Cost &CurCost,
3156 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3157 DenseSet<const SCEV *> &VisitedRegs) const {
3158 // Some ideas:
3159 // - prune more:
3160 // - use more aggressive filtering
3161 // - sort the formula so that the most profitable solutions are found first
3162 // - sort the uses too
3163 // - search faster:
3164 // - don't compute a cost, and then compare. compare while computing a cost
3165 // and bail early.
3166 // - track register sets with SmallBitVector
3168 const LSRUse &LU = Uses[Workspace.size()];
3170 // If this use references any register that's already a part of the
3171 // in-progress solution, consider it a requirement that a formula must
3172 // reference that register in order to be considered. This prunes out
3173 // unprofitable searching.
3174 SmallSetVector<const SCEV *, 4> ReqRegs;
3175 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3176 E = CurRegs.end(); I != E; ++I)
3177 if (LU.Regs.count(*I))
3178 ReqRegs.insert(*I);
3180 bool AnySatisfiedReqRegs = false;
3181 SmallPtrSet<const SCEV *, 16> NewRegs;
3182 Cost NewCost;
3183 retry:
3184 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3185 E = LU.Formulae.end(); I != E; ++I) {
3186 const Formula &F = *I;
3188 // Ignore formulae which do not use any of the required registers.
3189 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3190 JE = ReqRegs.end(); J != JE; ++J) {
3191 const SCEV *Reg = *J;
3192 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3193 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3194 F.BaseRegs.end())
3195 goto skip;
3197 AnySatisfiedReqRegs = true;
3199 // Evaluate the cost of the current formula. If it's already worse than
3200 // the current best, prune the search at that point.
3201 NewCost = CurCost;
3202 NewRegs = CurRegs;
3203 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3204 if (NewCost < SolutionCost) {
3205 Workspace.push_back(&F);
3206 if (Workspace.size() != Uses.size()) {
3207 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3208 NewRegs, VisitedRegs);
3209 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3210 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3211 } else {
3212 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3213 dbgs() << ". Regs:";
3214 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3215 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3216 dbgs() << ' ' << **I;
3217 dbgs() << '\n');
3219 SolutionCost = NewCost;
3220 Solution = Workspace;
3222 Workspace.pop_back();
3224 skip:;
3227 // If none of the formulae had all of the required registers, relax the
3228 // constraint so that we don't exclude all formulae.
3229 if (!AnySatisfiedReqRegs) {
3230 assert(!ReqRegs.empty() && "Solver failed even without required registers");
3231 ReqRegs.clear();
3232 goto retry;
3236 /// Solve - Choose one formula from each use. Return the results in the given
3237 /// Solution vector.
3238 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3239 SmallVector<const Formula *, 8> Workspace;
3240 Cost SolutionCost;
3241 SolutionCost.Loose();
3242 Cost CurCost;
3243 SmallPtrSet<const SCEV *, 16> CurRegs;
3244 DenseSet<const SCEV *> VisitedRegs;
3245 Workspace.reserve(Uses.size());
3247 // SolveRecurse does all the work.
3248 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3249 CurRegs, VisitedRegs);
3251 // Ok, we've now made all our decisions.
3252 DEBUG(dbgs() << "\n"
3253 "The chosen solution requires "; SolutionCost.print(dbgs());
3254 dbgs() << ":\n";
3255 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3256 dbgs() << " ";
3257 Uses[i].print(dbgs());
3258 dbgs() << "\n"
3259 " ";
3260 Solution[i]->print(dbgs());
3261 dbgs() << '\n';
3264 assert(Solution.size() == Uses.size() && "Malformed solution!");
3267 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3268 /// the dominator tree far as we can go while still being dominated by the
3269 /// input positions. This helps canonicalize the insert position, which
3270 /// encourages sharing.
3271 BasicBlock::iterator
3272 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3273 const SmallVectorImpl<Instruction *> &Inputs)
3274 const {
3275 for (;;) {
3276 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3277 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3279 BasicBlock *IDom;
3280 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3281 if (!Rung) return IP;
3282 Rung = Rung->getIDom();
3283 if (!Rung) return IP;
3284 IDom = Rung->getBlock();
3286 // Don't climb into a loop though.
3287 const Loop *IDomLoop = LI.getLoopFor(IDom);
3288 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3289 if (IDomDepth <= IPLoopDepth &&
3290 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3291 break;
3294 bool AllDominate = true;
3295 Instruction *BetterPos = 0;
3296 Instruction *Tentative = IDom->getTerminator();
3297 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3298 E = Inputs.end(); I != E; ++I) {
3299 Instruction *Inst = *I;
3300 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3301 AllDominate = false;
3302 break;
3304 // Attempt to find an insert position in the middle of the block,
3305 // instead of at the end, so that it can be used for other expansions.
3306 if (IDom == Inst->getParent() &&
3307 (!BetterPos || DT.dominates(BetterPos, Inst)))
3308 BetterPos = llvm::next(BasicBlock::iterator(Inst));
3310 if (!AllDominate)
3311 break;
3312 if (BetterPos)
3313 IP = BetterPos;
3314 else
3315 IP = Tentative;
3318 return IP;
3321 /// AdjustInsertPositionForExpand - Determine an input position which will be
3322 /// dominated by the operands and which will dominate the result.
3323 BasicBlock::iterator
3324 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3325 const LSRFixup &LF,
3326 const LSRUse &LU) const {
3327 // Collect some instructions which must be dominated by the
3328 // expanding replacement. These must be dominated by any operands that
3329 // will be required in the expansion.
3330 SmallVector<Instruction *, 4> Inputs;
3331 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3332 Inputs.push_back(I);
3333 if (LU.Kind == LSRUse::ICmpZero)
3334 if (Instruction *I =
3335 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3336 Inputs.push_back(I);
3337 if (LF.PostIncLoops.count(L)) {
3338 if (LF.isUseFullyOutsideLoop(L))
3339 Inputs.push_back(L->getLoopLatch()->getTerminator());
3340 else
3341 Inputs.push_back(IVIncInsertPos);
3343 // The expansion must also be dominated by the increment positions of any
3344 // loops it for which it is using post-inc mode.
3345 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3346 E = LF.PostIncLoops.end(); I != E; ++I) {
3347 const Loop *PIL = *I;
3348 if (PIL == L) continue;
3350 // Be dominated by the loop exit.
3351 SmallVector<BasicBlock *, 4> ExitingBlocks;
3352 PIL->getExitingBlocks(ExitingBlocks);
3353 if (!ExitingBlocks.empty()) {
3354 BasicBlock *BB = ExitingBlocks[0];
3355 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3356 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3357 Inputs.push_back(BB->getTerminator());
3361 // Then, climb up the immediate dominator tree as far as we can go while
3362 // still being dominated by the input positions.
3363 IP = HoistInsertPosition(IP, Inputs);
3365 // Don't insert instructions before PHI nodes.
3366 while (isa<PHINode>(IP)) ++IP;
3368 // Ignore debug intrinsics.
3369 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3371 return IP;
3374 /// Expand - Emit instructions for the leading candidate expression for this
3375 /// LSRUse (this is called "expanding").
3376 Value *LSRInstance::Expand(const LSRFixup &LF,
3377 const Formula &F,
3378 BasicBlock::iterator IP,
3379 SCEVExpander &Rewriter,
3380 SmallVectorImpl<WeakVH> &DeadInsts) const {
3381 const LSRUse &LU = Uses[LF.LUIdx];
3383 // Determine an input position which will be dominated by the operands and
3384 // which will dominate the result.
3385 IP = AdjustInsertPositionForExpand(IP, LF, LU);
3387 // Inform the Rewriter if we have a post-increment use, so that it can
3388 // perform an advantageous expansion.
3389 Rewriter.setPostInc(LF.PostIncLoops);
3391 // This is the type that the user actually needs.
3392 const Type *OpTy = LF.OperandValToReplace->getType();
3393 // This will be the type that we'll initially expand to.
3394 const Type *Ty = F.getType();
3395 if (!Ty)
3396 // No type known; just expand directly to the ultimate type.
3397 Ty = OpTy;
3398 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3399 // Expand directly to the ultimate type if it's the right size.
3400 Ty = OpTy;
3401 // This is the type to do integer arithmetic in.
3402 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3404 // Build up a list of operands to add together to form the full base.
3405 SmallVector<const SCEV *, 8> Ops;
3407 // Expand the BaseRegs portion.
3408 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3409 E = F.BaseRegs.end(); I != E; ++I) {
3410 const SCEV *Reg = *I;
3411 assert(!Reg->isZero() && "Zero allocated in a base register!");
3413 // If we're expanding for a post-inc user, make the post-inc adjustment.
3414 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3415 Reg = TransformForPostIncUse(Denormalize, Reg,
3416 LF.UserInst, LF.OperandValToReplace,
3417 Loops, SE, DT);
3419 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3422 // Flush the operand list to suppress SCEVExpander hoisting.
3423 if (!Ops.empty()) {
3424 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3425 Ops.clear();
3426 Ops.push_back(SE.getUnknown(FullV));
3429 // Expand the ScaledReg portion.
3430 Value *ICmpScaledV = 0;
3431 if (F.AM.Scale != 0) {
3432 const SCEV *ScaledS = F.ScaledReg;
3434 // If we're expanding for a post-inc user, make the post-inc adjustment.
3435 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3436 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3437 LF.UserInst, LF.OperandValToReplace,
3438 Loops, SE, DT);
3440 if (LU.Kind == LSRUse::ICmpZero) {
3441 // An interesting way of "folding" with an icmp is to use a negated
3442 // scale, which we'll implement by inserting it into the other operand
3443 // of the icmp.
3444 assert(F.AM.Scale == -1 &&
3445 "The only scale supported by ICmpZero uses is -1!");
3446 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3447 } else {
3448 // Otherwise just expand the scaled register and an explicit scale,
3449 // which is expected to be matched as part of the address.
3450 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3451 ScaledS = SE.getMulExpr(ScaledS,
3452 SE.getConstant(ScaledS->getType(), F.AM.Scale));
3453 Ops.push_back(ScaledS);
3455 // Flush the operand list to suppress SCEVExpander hoisting.
3456 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3457 Ops.clear();
3458 Ops.push_back(SE.getUnknown(FullV));
3462 // Expand the GV portion.
3463 if (F.AM.BaseGV) {
3464 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3466 // Flush the operand list to suppress SCEVExpander hoisting.
3467 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3468 Ops.clear();
3469 Ops.push_back(SE.getUnknown(FullV));
3472 // Expand the immediate portion.
3473 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3474 if (Offset != 0) {
3475 if (LU.Kind == LSRUse::ICmpZero) {
3476 // The other interesting way of "folding" with an ICmpZero is to use a
3477 // negated immediate.
3478 if (!ICmpScaledV)
3479 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3480 else {
3481 Ops.push_back(SE.getUnknown(ICmpScaledV));
3482 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3484 } else {
3485 // Just add the immediate values. These again are expected to be matched
3486 // as part of the address.
3487 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3491 // Emit instructions summing all the operands.
3492 const SCEV *FullS = Ops.empty() ?
3493 SE.getConstant(IntTy, 0) :
3494 SE.getAddExpr(Ops);
3495 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3497 // We're done expanding now, so reset the rewriter.
3498 Rewriter.clearPostInc();
3500 // An ICmpZero Formula represents an ICmp which we're handling as a
3501 // comparison against zero. Now that we've expanded an expression for that
3502 // form, update the ICmp's other operand.
3503 if (LU.Kind == LSRUse::ICmpZero) {
3504 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3505 DeadInsts.push_back(CI->getOperand(1));
3506 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3507 "a scale at the same time!");
3508 if (F.AM.Scale == -1) {
3509 if (ICmpScaledV->getType() != OpTy) {
3510 Instruction *Cast =
3511 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3512 OpTy, false),
3513 ICmpScaledV, OpTy, "tmp", CI);
3514 ICmpScaledV = Cast;
3516 CI->setOperand(1, ICmpScaledV);
3517 } else {
3518 assert(F.AM.Scale == 0 &&
3519 "ICmp does not support folding a global value and "
3520 "a scale at the same time!");
3521 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3522 -(uint64_t)Offset);
3523 if (C->getType() != OpTy)
3524 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3525 OpTy, false),
3526 C, OpTy);
3528 CI->setOperand(1, C);
3532 return FullV;
3535 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3536 /// of their operands effectively happens in their predecessor blocks, so the
3537 /// expression may need to be expanded in multiple places.
3538 void LSRInstance::RewriteForPHI(PHINode *PN,
3539 const LSRFixup &LF,
3540 const Formula &F,
3541 SCEVExpander &Rewriter,
3542 SmallVectorImpl<WeakVH> &DeadInsts,
3543 Pass *P) const {
3544 DenseMap<BasicBlock *, Value *> Inserted;
3545 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3546 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3547 BasicBlock *BB = PN->getIncomingBlock(i);
3549 // If this is a critical edge, split the edge so that we do not insert
3550 // the code on all predecessor/successor paths. We do this unless this
3551 // is the canonical backedge for this loop, which complicates post-inc
3552 // users.
3553 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3554 !isa<IndirectBrInst>(BB->getTerminator())) {
3555 Loop *PNLoop = LI.getLoopFor(PN->getParent());
3556 if (!PNLoop || PN->getParent() != PNLoop->getHeader()) {
3557 // Split the critical edge.
3558 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3560 // If PN is outside of the loop and BB is in the loop, we want to
3561 // move the block to be immediately before the PHI block, not
3562 // immediately after BB.
3563 if (L->contains(BB) && !L->contains(PN))
3564 NewBB->moveBefore(PN->getParent());
3566 // Splitting the edge can reduce the number of PHI entries we have.
3567 e = PN->getNumIncomingValues();
3568 BB = NewBB;
3569 i = PN->getBasicBlockIndex(BB);
3573 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3574 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3575 if (!Pair.second)
3576 PN->setIncomingValue(i, Pair.first->second);
3577 else {
3578 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3580 // If this is reuse-by-noop-cast, insert the noop cast.
3581 const Type *OpTy = LF.OperandValToReplace->getType();
3582 if (FullV->getType() != OpTy)
3583 FullV =
3584 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3585 OpTy, false),
3586 FullV, LF.OperandValToReplace->getType(),
3587 "tmp", BB->getTerminator());
3589 PN->setIncomingValue(i, FullV);
3590 Pair.first->second = FullV;
3595 /// Rewrite - Emit instructions for the leading candidate expression for this
3596 /// LSRUse (this is called "expanding"), and update the UserInst to reference
3597 /// the newly expanded value.
3598 void LSRInstance::Rewrite(const LSRFixup &LF,
3599 const Formula &F,
3600 SCEVExpander &Rewriter,
3601 SmallVectorImpl<WeakVH> &DeadInsts,
3602 Pass *P) const {
3603 // First, find an insertion point that dominates UserInst. For PHI nodes,
3604 // find the nearest block which dominates all the relevant uses.
3605 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3606 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3607 } else {
3608 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3610 // If this is reuse-by-noop-cast, insert the noop cast.
3611 const Type *OpTy = LF.OperandValToReplace->getType();
3612 if (FullV->getType() != OpTy) {
3613 Instruction *Cast =
3614 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3615 FullV, OpTy, "tmp", LF.UserInst);
3616 FullV = Cast;
3619 // Update the user. ICmpZero is handled specially here (for now) because
3620 // Expand may have updated one of the operands of the icmp already, and
3621 // its new value may happen to be equal to LF.OperandValToReplace, in
3622 // which case doing replaceUsesOfWith leads to replacing both operands
3623 // with the same value. TODO: Reorganize this.
3624 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3625 LF.UserInst->setOperand(0, FullV);
3626 else
3627 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3630 DeadInsts.push_back(LF.OperandValToReplace);
3633 /// ImplementSolution - Rewrite all the fixup locations with new values,
3634 /// following the chosen solution.
3635 void
3636 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3637 Pass *P) {
3638 // Keep track of instructions we may have made dead, so that
3639 // we can remove them after we are done working.
3640 SmallVector<WeakVH, 16> DeadInsts;
3642 SCEVExpander Rewriter(SE);
3643 Rewriter.disableCanonicalMode();
3644 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3646 // Expand the new value definitions and update the users.
3647 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3648 E = Fixups.end(); I != E; ++I) {
3649 const LSRFixup &Fixup = *I;
3651 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3653 Changed = true;
3656 // Clean up after ourselves. This must be done before deleting any
3657 // instructions.
3658 Rewriter.clear();
3660 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3663 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3664 : IU(P->getAnalysis<IVUsers>()),
3665 SE(P->getAnalysis<ScalarEvolution>()),
3666 DT(P->getAnalysis<DominatorTree>()),
3667 LI(P->getAnalysis<LoopInfo>()),
3668 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3670 // If LoopSimplify form is not available, stay out of trouble.
3671 if (!L->isLoopSimplifyForm()) return;
3673 // If there's no interesting work to be done, bail early.
3674 if (IU.empty()) return;
3676 DEBUG(dbgs() << "\nLSR on loop ";
3677 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3678 dbgs() << ":\n");
3680 // First, perform some low-level loop optimizations.
3681 OptimizeShadowIV();
3682 OptimizeLoopTermCond();
3684 // Start collecting data and preparing for the solver.
3685 CollectInterestingTypesAndFactors();
3686 CollectFixupsAndInitialFormulae();
3687 CollectLoopInvariantFixupsAndFormulae();
3689 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3690 print_uses(dbgs()));
3692 // Now use the reuse data to generate a bunch of interesting ways
3693 // to formulate the values needed for the uses.
3694 GenerateAllReuseFormulae();
3696 FilterOutUndesirableDedicatedRegisters();
3697 NarrowSearchSpaceUsingHeuristics();
3699 SmallVector<const Formula *, 8> Solution;
3700 Solve(Solution);
3702 // Release memory that is no longer needed.
3703 Factors.clear();
3704 Types.clear();
3705 RegUses.clear();
3707 #ifndef NDEBUG
3708 // Formulae should be legal.
3709 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3710 E = Uses.end(); I != E; ++I) {
3711 const LSRUse &LU = *I;
3712 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3713 JE = LU.Formulae.end(); J != JE; ++J)
3714 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3715 LU.Kind, LU.AccessTy, TLI) &&
3716 "Illegal formula generated!");
3718 #endif
3720 // Now that we've decided what we want, make it so.
3721 ImplementSolution(Solution, P);
3724 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3725 if (Factors.empty() && Types.empty()) return;
3727 OS << "LSR has identified the following interesting factors and types: ";
3728 bool First = true;
3730 for (SmallSetVector<int64_t, 8>::const_iterator
3731 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3732 if (!First) OS << ", ";
3733 First = false;
3734 OS << '*' << *I;
3737 for (SmallSetVector<const Type *, 4>::const_iterator
3738 I = Types.begin(), E = Types.end(); I != E; ++I) {
3739 if (!First) OS << ", ";
3740 First = false;
3741 OS << '(' << **I << ')';
3743 OS << '\n';
3746 void LSRInstance::print_fixups(raw_ostream &OS) const {
3747 OS << "LSR is examining the following fixup sites:\n";
3748 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3749 E = Fixups.end(); I != E; ++I) {
3750 dbgs() << " ";
3751 I->print(OS);
3752 OS << '\n';
3756 void LSRInstance::print_uses(raw_ostream &OS) const {
3757 OS << "LSR is examining the following uses:\n";
3758 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3759 E = Uses.end(); I != E; ++I) {
3760 const LSRUse &LU = *I;
3761 dbgs() << " ";
3762 LU.print(OS);
3763 OS << '\n';
3764 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3765 JE = LU.Formulae.end(); J != JE; ++J) {
3766 OS << " ";
3767 J->print(OS);
3768 OS << '\n';
3773 void LSRInstance::print(raw_ostream &OS) const {
3774 print_factors_and_types(OS);
3775 print_fixups(OS);
3776 print_uses(OS);
3779 void LSRInstance::dump() const {
3780 print(errs()); errs() << '\n';
3783 namespace {
3785 class LoopStrengthReduce : public LoopPass {
3786 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3787 /// transformation profitability.
3788 const TargetLowering *const TLI;
3790 public:
3791 static char ID; // Pass ID, replacement for typeid
3792 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3794 private:
3795 bool runOnLoop(Loop *L, LPPassManager &LPM);
3796 void getAnalysisUsage(AnalysisUsage &AU) const;
3801 char LoopStrengthReduce::ID = 0;
3802 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
3803 "Loop Strength Reduction", false, false)
3804 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3805 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3806 INITIALIZE_PASS_DEPENDENCY(IVUsers)
3807 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
3808 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3809 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
3810 "Loop Strength Reduction", false, false)
3813 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3814 return new LoopStrengthReduce(TLI);
3817 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3818 : LoopPass(ID), TLI(tli) {
3819 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3822 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3823 // We split critical edges, so we change the CFG. However, we do update
3824 // many analyses if they are around.
3825 AU.addPreservedID(LoopSimplifyID);
3827 AU.addRequired<LoopInfo>();
3828 AU.addPreserved<LoopInfo>();
3829 AU.addRequiredID(LoopSimplifyID);
3830 AU.addRequired<DominatorTree>();
3831 AU.addPreserved<DominatorTree>();
3832 AU.addRequired<ScalarEvolution>();
3833 AU.addPreserved<ScalarEvolution>();
3834 // Requiring LoopSimplify a second time here prevents IVUsers from running
3835 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
3836 AU.addRequiredID(LoopSimplifyID);
3837 AU.addRequired<IVUsers>();
3838 AU.addPreserved<IVUsers>();
3841 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3842 bool Changed = false;
3844 // Run the main LSR transformation.
3845 Changed |= LSRInstance(TLI, L, this).getChanged();
3847 // At this point, it is worth checking to see if any recurrence PHIs are also
3848 // dead, so that we can remove them as well.
3849 Changed |= DeleteDeadPHIs(L->getHeader());
3851 return Changed;