1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "memcpyopt"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/GlobalVariable.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GetElementPtrTypeIterator.h"
28 #include "llvm/Support/IRBuilder.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetData.h"
34 STATISTIC(NumMemCpyInstr
, "Number of memcpy instructions deleted");
35 STATISTIC(NumMemSetInfer
, "Number of memsets inferred");
36 STATISTIC(NumMoveToCpy
, "Number of memmoves converted to memcpy");
37 STATISTIC(NumCpyToSet
, "Number of memcpys converted to memset");
39 static int64_t GetOffsetFromIndex(const GetElementPtrInst
*GEP
, unsigned Idx
,
40 bool &VariableIdxFound
, const TargetData
&TD
){
41 // Skip over the first indices.
42 gep_type_iterator GTI
= gep_type_begin(GEP
);
43 for (unsigned i
= 1; i
!= Idx
; ++i
, ++GTI
)
46 // Compute the offset implied by the rest of the indices.
48 for (unsigned i
= Idx
, e
= GEP
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
49 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
51 return VariableIdxFound
= true;
52 if (OpC
->isZero()) continue; // No offset.
54 // Handle struct indices, which add their field offset to the pointer.
55 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
56 Offset
+= TD
.getStructLayout(STy
)->getElementOffset(OpC
->getZExtValue());
60 // Otherwise, we have a sequential type like an array or vector. Multiply
61 // the index by the ElementSize.
62 uint64_t Size
= TD
.getTypeAllocSize(GTI
.getIndexedType());
63 Offset
+= Size
*OpC
->getSExtValue();
69 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
70 /// constant offset, and return that constant offset. For example, Ptr1 might
71 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
72 static bool IsPointerOffset(Value
*Ptr1
, Value
*Ptr2
, int64_t &Offset
,
73 const TargetData
&TD
) {
74 Ptr1
= Ptr1
->stripPointerCasts();
75 Ptr2
= Ptr2
->stripPointerCasts();
76 GetElementPtrInst
*GEP1
= dyn_cast
<GetElementPtrInst
>(Ptr1
);
77 GetElementPtrInst
*GEP2
= dyn_cast
<GetElementPtrInst
>(Ptr2
);
79 bool VariableIdxFound
= false;
81 // If one pointer is a GEP and the other isn't, then see if the GEP is a
82 // constant offset from the base, as in "P" and "gep P, 1".
83 if (GEP1
&& GEP2
== 0 && GEP1
->getOperand(0)->stripPointerCasts() == Ptr2
) {
84 Offset
= -GetOffsetFromIndex(GEP1
, 1, VariableIdxFound
, TD
);
85 return !VariableIdxFound
;
88 if (GEP2
&& GEP1
== 0 && GEP2
->getOperand(0)->stripPointerCasts() == Ptr1
) {
89 Offset
= GetOffsetFromIndex(GEP2
, 1, VariableIdxFound
, TD
);
90 return !VariableIdxFound
;
93 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
94 // base. After that base, they may have some number of common (and
95 // potentially variable) indices. After that they handle some constant
96 // offset, which determines their offset from each other. At this point, we
97 // handle no other case.
98 if (!GEP1
|| !GEP2
|| GEP1
->getOperand(0) != GEP2
->getOperand(0))
101 // Skip any common indices and track the GEP types.
103 for (; Idx
!= GEP1
->getNumOperands() && Idx
!= GEP2
->getNumOperands(); ++Idx
)
104 if (GEP1
->getOperand(Idx
) != GEP2
->getOperand(Idx
))
107 int64_t Offset1
= GetOffsetFromIndex(GEP1
, Idx
, VariableIdxFound
, TD
);
108 int64_t Offset2
= GetOffsetFromIndex(GEP2
, Idx
, VariableIdxFound
, TD
);
109 if (VariableIdxFound
) return false;
111 Offset
= Offset2
-Offset1
;
116 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
117 /// This allows us to analyze stores like:
122 /// which sometimes happens with stores to arrays of structs etc. When we see
123 /// the first store, we make a range [1, 2). The second store extends the range
124 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
125 /// two ranges into [0, 3) which is memset'able.
128 // Start/End - A semi range that describes the span that this range covers.
129 // The range is closed at the start and open at the end: [Start, End).
132 /// StartPtr - The getelementptr instruction that points to the start of the
136 /// Alignment - The known alignment of the first store.
139 /// TheStores - The actual stores that make up this range.
140 SmallVector
<Instruction
*, 16> TheStores
;
142 bool isProfitableToUseMemset(const TargetData
&TD
) const;
145 } // end anon namespace
147 bool MemsetRange::isProfitableToUseMemset(const TargetData
&TD
) const {
148 // If we found more than 8 stores to merge or 64 bytes, use memset.
149 if (TheStores
.size() >= 8 || End
-Start
>= 64) return true;
151 // If there is nothing to merge, don't do anything.
152 if (TheStores
.size() < 2) return false;
154 // If any of the stores are a memset, then it is always good to extend the
156 for (unsigned i
= 0, e
= TheStores
.size(); i
!= e
; ++i
)
157 if (!isa
<StoreInst
>(TheStores
[i
]))
160 // Assume that the code generator is capable of merging pairs of stores
161 // together if it wants to.
162 if (TheStores
.size() == 2) return false;
164 // If we have fewer than 8 stores, it can still be worthwhile to do this.
165 // For example, merging 4 i8 stores into an i32 store is useful almost always.
166 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
167 // memset will be split into 2 32-bit stores anyway) and doing so can
168 // pessimize the llvm optimizer.
170 // Since we don't have perfect knowledge here, make some assumptions: assume
171 // the maximum GPR width is the same size as the pointer size and assume that
172 // this width can be stored. If so, check to see whether we will end up
173 // actually reducing the number of stores used.
174 unsigned Bytes
= unsigned(End
-Start
);
175 unsigned NumPointerStores
= Bytes
/TD
.getPointerSize();
177 // Assume the remaining bytes if any are done a byte at a time.
178 unsigned NumByteStores
= Bytes
- NumPointerStores
*TD
.getPointerSize();
180 // If we will reduce the # stores (according to this heuristic), do the
181 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
183 return TheStores
.size() > NumPointerStores
+NumByteStores
;
189 /// Ranges - A sorted list of the memset ranges. We use std::list here
190 /// because each element is relatively large and expensive to copy.
191 std::list
<MemsetRange
> Ranges
;
192 typedef std::list
<MemsetRange
>::iterator range_iterator
;
193 const TargetData
&TD
;
195 MemsetRanges(const TargetData
&td
) : TD(td
) {}
197 typedef std::list
<MemsetRange
>::const_iterator const_iterator
;
198 const_iterator
begin() const { return Ranges
.begin(); }
199 const_iterator
end() const { return Ranges
.end(); }
200 bool empty() const { return Ranges
.empty(); }
202 void addInst(int64_t OffsetFromFirst
, Instruction
*Inst
) {
203 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
204 addStore(OffsetFromFirst
, SI
);
206 addMemSet(OffsetFromFirst
, cast
<MemSetInst
>(Inst
));
209 void addStore(int64_t OffsetFromFirst
, StoreInst
*SI
) {
210 int64_t StoreSize
= TD
.getTypeStoreSize(SI
->getOperand(0)->getType());
212 addRange(OffsetFromFirst
, StoreSize
,
213 SI
->getPointerOperand(), SI
->getAlignment(), SI
);
216 void addMemSet(int64_t OffsetFromFirst
, MemSetInst
*MSI
) {
217 int64_t Size
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
218 addRange(OffsetFromFirst
, Size
, MSI
->getDest(), MSI
->getAlignment(), MSI
);
221 void addRange(int64_t Start
, int64_t Size
, Value
*Ptr
,
222 unsigned Alignment
, Instruction
*Inst
);
226 } // end anon namespace
229 /// addRange - Add a new store to the MemsetRanges data structure. This adds a
230 /// new range for the specified store at the specified offset, merging into
231 /// existing ranges as appropriate.
233 /// Do a linear search of the ranges to see if this can be joined and/or to
234 /// find the insertion point in the list. We keep the ranges sorted for
235 /// simplicity here. This is a linear search of a linked list, which is ugly,
236 /// however the number of ranges is limited, so this won't get crazy slow.
237 void MemsetRanges::addRange(int64_t Start
, int64_t Size
, Value
*Ptr
,
238 unsigned Alignment
, Instruction
*Inst
) {
239 int64_t End
= Start
+Size
;
240 range_iterator I
= Ranges
.begin(), E
= Ranges
.end();
242 while (I
!= E
&& Start
> I
->End
)
245 // We now know that I == E, in which case we didn't find anything to merge
246 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
247 // to insert a new range. Handle this now.
248 if (I
== E
|| End
< I
->Start
) {
249 MemsetRange
&R
= *Ranges
.insert(I
, MemsetRange());
253 R
.Alignment
= Alignment
;
254 R
.TheStores
.push_back(Inst
);
258 // This store overlaps with I, add it.
259 I
->TheStores
.push_back(Inst
);
261 // At this point, we may have an interval that completely contains our store.
262 // If so, just add it to the interval and return.
263 if (I
->Start
<= Start
&& I
->End
>= End
)
266 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
267 // but is not entirely contained within the range.
269 // See if the range extends the start of the range. In this case, it couldn't
270 // possibly cause it to join the prior range, because otherwise we would have
272 if (Start
< I
->Start
) {
275 I
->Alignment
= Alignment
;
278 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
279 // is in or right at the end of I), and that End >= I->Start. Extend I out to
283 range_iterator NextI
= I
;
284 while (++NextI
!= E
&& End
>= NextI
->Start
) {
285 // Merge the range in.
286 I
->TheStores
.append(NextI
->TheStores
.begin(), NextI
->TheStores
.end());
287 if (NextI
->End
> I
->End
)
295 //===----------------------------------------------------------------------===//
297 //===----------------------------------------------------------------------===//
300 class MemCpyOpt
: public FunctionPass
{
301 MemoryDependenceAnalysis
*MD
;
302 const TargetData
*TD
;
304 static char ID
; // Pass identification, replacement for typeid
305 MemCpyOpt() : FunctionPass(ID
) {
306 initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
310 bool runOnFunction(Function
&F
);
313 // This transformation requires dominator postdominator info
314 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
315 AU
.setPreservesCFG();
316 AU
.addRequired
<DominatorTree
>();
317 AU
.addRequired
<MemoryDependenceAnalysis
>();
318 AU
.addRequired
<AliasAnalysis
>();
319 AU
.addPreserved
<AliasAnalysis
>();
320 AU
.addPreserved
<MemoryDependenceAnalysis
>();
324 bool processStore(StoreInst
*SI
, BasicBlock::iterator
&BBI
);
325 bool processMemSet(MemSetInst
*SI
, BasicBlock::iterator
&BBI
);
326 bool processMemCpy(MemCpyInst
*M
);
327 bool processMemMove(MemMoveInst
*M
);
328 bool performCallSlotOptzn(Instruction
*cpy
, Value
*cpyDst
, Value
*cpySrc
,
329 uint64_t cpyLen
, CallInst
*C
);
330 bool processMemCpyMemCpyDependence(MemCpyInst
*M
, MemCpyInst
*MDep
,
332 bool processByValArgument(CallSite CS
, unsigned ArgNo
);
333 Instruction
*tryMergingIntoMemset(Instruction
*I
, Value
*StartPtr
,
336 bool iterateOnFunction(Function
&F
);
339 char MemCpyOpt::ID
= 0;
342 // createMemCpyOptPass - The public interface to this file...
343 FunctionPass
*llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
345 INITIALIZE_PASS_BEGIN(MemCpyOpt
, "memcpyopt", "MemCpy Optimization",
347 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
348 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis
)
349 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
350 INITIALIZE_PASS_END(MemCpyOpt
, "memcpyopt", "MemCpy Optimization",
353 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
354 /// some other patterns to fold away. In particular, this looks for stores to
355 /// neighboring locations of memory. If it sees enough consecutive ones, it
356 /// attempts to merge them together into a memcpy/memset.
357 Instruction
*MemCpyOpt::tryMergingIntoMemset(Instruction
*StartInst
,
358 Value
*StartPtr
, Value
*ByteVal
) {
359 if (TD
== 0) return 0;
361 // Okay, so we now have a single store that can be splatable. Scan to find
362 // all subsequent stores of the same value to offset from the same pointer.
363 // Join these together into ranges, so we can decide whether contiguous blocks
365 MemsetRanges
Ranges(*TD
);
367 BasicBlock::iterator BI
= StartInst
;
368 for (++BI
; !isa
<TerminatorInst
>(BI
); ++BI
) {
369 if (!isa
<StoreInst
>(BI
) && !isa
<MemSetInst
>(BI
)) {
370 // If the instruction is readnone, ignore it, otherwise bail out. We
371 // don't even allow readonly here because we don't want something like:
372 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
373 if (BI
->mayWriteToMemory() || BI
->mayReadFromMemory())
378 if (StoreInst
*NextStore
= dyn_cast
<StoreInst
>(BI
)) {
379 // If this is a store, see if we can merge it in.
380 if (NextStore
->isVolatile()) break;
382 // Check to see if this stored value is of the same byte-splattable value.
383 if (ByteVal
!= isBytewiseValue(NextStore
->getOperand(0)))
386 // Check to see if this store is to a constant offset from the start ptr.
388 if (!IsPointerOffset(StartPtr
, NextStore
->getPointerOperand(),
392 Ranges
.addStore(Offset
, NextStore
);
394 MemSetInst
*MSI
= cast
<MemSetInst
>(BI
);
396 if (MSI
->isVolatile() || ByteVal
!= MSI
->getValue() ||
397 !isa
<ConstantInt
>(MSI
->getLength()))
400 // Check to see if this store is to a constant offset from the start ptr.
402 if (!IsPointerOffset(StartPtr
, MSI
->getDest(), Offset
, *TD
))
405 Ranges
.addMemSet(Offset
, MSI
);
409 // If we have no ranges, then we just had a single store with nothing that
410 // could be merged in. This is a very common case of course.
414 // If we had at least one store that could be merged in, add the starting
415 // store as well. We try to avoid this unless there is at least something
416 // interesting as a small compile-time optimization.
417 Ranges
.addInst(0, StartInst
);
419 // If we create any memsets, we put it right before the first instruction that
420 // isn't part of the memset block. This ensure that the memset is dominated
421 // by any addressing instruction needed by the start of the block.
422 IRBuilder
<> Builder(BI
);
424 // Now that we have full information about ranges, loop over the ranges and
425 // emit memset's for anything big enough to be worthwhile.
426 Instruction
*AMemSet
= 0;
427 for (MemsetRanges::const_iterator I
= Ranges
.begin(), E
= Ranges
.end();
429 const MemsetRange
&Range
= *I
;
431 if (Range
.TheStores
.size() == 1) continue;
433 // If it is profitable to lower this range to memset, do so now.
434 if (!Range
.isProfitableToUseMemset(*TD
))
437 // Otherwise, we do want to transform this! Create a new memset.
438 // Get the starting pointer of the block.
439 StartPtr
= Range
.StartPtr
;
441 // Determine alignment
442 unsigned Alignment
= Range
.Alignment
;
443 if (Alignment
== 0) {
444 const Type
*EltType
=
445 cast
<PointerType
>(StartPtr
->getType())->getElementType();
446 Alignment
= TD
->getABITypeAlignment(EltType
);
450 Builder
.CreateMemSet(StartPtr
, ByteVal
, Range
.End
-Range
.Start
, Alignment
);
452 DEBUG(dbgs() << "Replace stores:\n";
453 for (unsigned i
= 0, e
= Range
.TheStores
.size(); i
!= e
; ++i
)
454 dbgs() << *Range
.TheStores
[i
] << '\n';
455 dbgs() << "With: " << *AMemSet
<< '\n');
457 // Zap all the stores.
458 for (SmallVector
<Instruction
*, 16>::const_iterator
459 SI
= Range
.TheStores
.begin(),
460 SE
= Range
.TheStores
.end(); SI
!= SE
; ++SI
) {
461 MD
->removeInstruction(*SI
);
462 (*SI
)->eraseFromParent();
471 bool MemCpyOpt::processStore(StoreInst
*SI
, BasicBlock::iterator
&BBI
) {
472 if (SI
->isVolatile()) return false;
474 if (TD
== 0) return false;
476 // Detect cases where we're performing call slot forwarding, but
477 // happen to be using a load-store pair to implement it, rather than
479 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(SI
->getOperand(0))) {
480 if (!LI
->isVolatile() && LI
->hasOneUse()) {
481 MemDepResult dep
= MD
->getDependency(LI
);
483 if (dep
.isClobber() && !isa
<MemCpyInst
>(dep
.getInst()))
484 C
= dyn_cast
<CallInst
>(dep
.getInst());
487 bool changed
= performCallSlotOptzn(LI
,
488 SI
->getPointerOperand()->stripPointerCasts(),
489 LI
->getPointerOperand()->stripPointerCasts(),
490 TD
->getTypeStoreSize(SI
->getOperand(0)->getType()), C
);
492 MD
->removeInstruction(SI
);
493 SI
->eraseFromParent();
494 MD
->removeInstruction(LI
);
495 LI
->eraseFromParent();
503 // There are two cases that are interesting for this code to handle: memcpy
504 // and memset. Right now we only handle memset.
506 // Ensure that the value being stored is something that can be memset'able a
507 // byte at a time like "0" or "-1" or any width, as well as things like
508 // 0xA0A0A0A0 and 0.0.
509 if (Value
*ByteVal
= isBytewiseValue(SI
->getOperand(0)))
510 if (Instruction
*I
= tryMergingIntoMemset(SI
, SI
->getPointerOperand(),
512 BBI
= I
; // Don't invalidate iterator.
519 bool MemCpyOpt::processMemSet(MemSetInst
*MSI
, BasicBlock::iterator
&BBI
) {
520 // See if there is another memset or store neighboring this memset which
521 // allows us to widen out the memset to do a single larger store.
522 if (isa
<ConstantInt
>(MSI
->getLength()) && !MSI
->isVolatile())
523 if (Instruction
*I
= tryMergingIntoMemset(MSI
, MSI
->getDest(),
525 BBI
= I
; // Don't invalidate iterator.
532 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
533 /// and checks for the possibility of a call slot optimization by having
534 /// the call write its result directly into the destination of the memcpy.
535 bool MemCpyOpt::performCallSlotOptzn(Instruction
*cpy
,
536 Value
*cpyDest
, Value
*cpySrc
,
537 uint64_t cpyLen
, CallInst
*C
) {
538 // The general transformation to keep in mind is
540 // call @func(..., src, ...)
541 // memcpy(dest, src, ...)
545 // memcpy(dest, src, ...)
546 // call @func(..., dest, ...)
548 // Since moving the memcpy is technically awkward, we additionally check that
549 // src only holds uninitialized values at the moment of the call, meaning that
550 // the memcpy can be discarded rather than moved.
552 // Deliberately get the source and destination with bitcasts stripped away,
553 // because we'll need to do type comparisons based on the underlying type.
556 // Require that src be an alloca. This simplifies the reasoning considerably.
557 AllocaInst
*srcAlloca
= dyn_cast
<AllocaInst
>(cpySrc
);
561 // Check that all of src is copied to dest.
562 if (TD
== 0) return false;
564 ConstantInt
*srcArraySize
= dyn_cast
<ConstantInt
>(srcAlloca
->getArraySize());
568 uint64_t srcSize
= TD
->getTypeAllocSize(srcAlloca
->getAllocatedType()) *
569 srcArraySize
->getZExtValue();
571 if (cpyLen
< srcSize
)
574 // Check that accessing the first srcSize bytes of dest will not cause a
575 // trap. Otherwise the transform is invalid since it might cause a trap
576 // to occur earlier than it otherwise would.
577 if (AllocaInst
*A
= dyn_cast
<AllocaInst
>(cpyDest
)) {
578 // The destination is an alloca. Check it is larger than srcSize.
579 ConstantInt
*destArraySize
= dyn_cast
<ConstantInt
>(A
->getArraySize());
583 uint64_t destSize
= TD
->getTypeAllocSize(A
->getAllocatedType()) *
584 destArraySize
->getZExtValue();
586 if (destSize
< srcSize
)
588 } else if (Argument
*A
= dyn_cast
<Argument
>(cpyDest
)) {
589 // If the destination is an sret parameter then only accesses that are
590 // outside of the returned struct type can trap.
591 if (!A
->hasStructRetAttr())
594 const Type
*StructTy
= cast
<PointerType
>(A
->getType())->getElementType();
595 uint64_t destSize
= TD
->getTypeAllocSize(StructTy
);
597 if (destSize
< srcSize
)
603 // Check that src is not accessed except via the call and the memcpy. This
604 // guarantees that it holds only undefined values when passed in (so the final
605 // memcpy can be dropped), that it is not read or written between the call and
606 // the memcpy, and that writing beyond the end of it is undefined.
607 SmallVector
<User
*, 8> srcUseList(srcAlloca
->use_begin(),
608 srcAlloca
->use_end());
609 while (!srcUseList
.empty()) {
610 User
*UI
= srcUseList
.pop_back_val();
612 if (isa
<BitCastInst
>(UI
)) {
613 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
615 srcUseList
.push_back(*I
);
616 } else if (GetElementPtrInst
*G
= dyn_cast
<GetElementPtrInst
>(UI
)) {
617 if (G
->hasAllZeroIndices())
618 for (User::use_iterator I
= UI
->use_begin(), E
= UI
->use_end();
620 srcUseList
.push_back(*I
);
623 } else if (UI
!= C
&& UI
!= cpy
) {
628 // Since we're changing the parameter to the callsite, we need to make sure
629 // that what would be the new parameter dominates the callsite.
630 DominatorTree
&DT
= getAnalysis
<DominatorTree
>();
631 if (Instruction
*cpyDestInst
= dyn_cast
<Instruction
>(cpyDest
))
632 if (!DT
.dominates(cpyDestInst
, C
))
635 // In addition to knowing that the call does not access src in some
636 // unexpected manner, for example via a global, which we deduce from
637 // the use analysis, we also need to know that it does not sneakily
638 // access dest. We rely on AA to figure this out for us.
639 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
640 if (AA
.getModRefInfo(C
, cpyDest
, srcSize
) != AliasAnalysis::NoModRef
)
643 // All the checks have passed, so do the transformation.
644 bool changedArgument
= false;
645 for (unsigned i
= 0; i
< CS
.arg_size(); ++i
)
646 if (CS
.getArgument(i
)->stripPointerCasts() == cpySrc
) {
647 if (cpySrc
->getType() != cpyDest
->getType())
648 cpyDest
= CastInst::CreatePointerCast(cpyDest
, cpySrc
->getType(),
649 cpyDest
->getName(), C
);
650 changedArgument
= true;
651 if (CS
.getArgument(i
)->getType() == cpyDest
->getType())
652 CS
.setArgument(i
, cpyDest
);
654 CS
.setArgument(i
, CastInst::CreatePointerCast(cpyDest
,
655 CS
.getArgument(i
)->getType(), cpyDest
->getName(), C
));
658 if (!changedArgument
)
661 // Drop any cached information about the call, because we may have changed
662 // its dependence information by changing its parameter.
663 MD
->removeInstruction(C
);
665 // Remove the memcpy.
666 MD
->removeInstruction(cpy
);
672 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
673 /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
674 /// copy from MDep's input if we can. MSize is the size of M's copy.
676 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst
*M
, MemCpyInst
*MDep
,
678 // We can only transforms memcpy's where the dest of one is the source of the
680 if (M
->getSource() != MDep
->getDest() || MDep
->isVolatile())
683 // If dep instruction is reading from our current input, then it is a noop
684 // transfer and substituting the input won't change this instruction. Just
685 // ignore the input and let someone else zap MDep. This handles cases like:
688 if (M
->getSource() == MDep
->getSource())
691 // Second, the length of the memcpy's must be the same, or the preceeding one
692 // must be larger than the following one.
693 ConstantInt
*MDepLen
= dyn_cast
<ConstantInt
>(MDep
->getLength());
694 ConstantInt
*MLen
= dyn_cast
<ConstantInt
>(M
->getLength());
695 if (!MDepLen
|| !MLen
|| MDepLen
->getZExtValue() < MLen
->getZExtValue())
698 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
700 // Verify that the copied-from memory doesn't change in between the two
701 // transfers. For example, in:
705 // It would be invalid to transform the second memcpy into memcpy(c <- b).
707 // TODO: If the code between M and MDep is transparent to the destination "c",
708 // then we could still perform the xform by moving M up to the first memcpy.
710 // NOTE: This is conservative, it will stop on any read from the source loc,
711 // not just the defining memcpy.
712 MemDepResult SourceDep
=
713 MD
->getPointerDependencyFrom(AA
.getLocationForSource(MDep
),
714 false, M
, M
->getParent());
715 if (!SourceDep
.isClobber() || SourceDep
.getInst() != MDep
)
718 // If the dest of the second might alias the source of the first, then the
719 // source and dest might overlap. We still want to eliminate the intermediate
720 // value, but we have to generate a memmove instead of memcpy.
721 bool UseMemMove
= false;
722 if (!AA
.isNoAlias(AA
.getLocationForDest(M
), AA
.getLocationForSource(MDep
)))
725 // If all checks passed, then we can transform M.
727 // Make sure to use the lesser of the alignment of the source and the dest
728 // since we're changing where we're reading from, but don't want to increase
729 // the alignment past what can be read from or written to.
730 // TODO: Is this worth it if we're creating a less aligned memcpy? For
731 // example we could be moving from movaps -> movq on x86.
732 unsigned Align
= std::min(MDep
->getAlignment(), M
->getAlignment());
734 IRBuilder
<> Builder(M
);
736 Builder
.CreateMemMove(M
->getRawDest(), MDep
->getRawSource(), M
->getLength(),
737 Align
, M
->isVolatile());
739 Builder
.CreateMemCpy(M
->getRawDest(), MDep
->getRawSource(), M
->getLength(),
740 Align
, M
->isVolatile());
742 // Remove the instruction we're replacing.
743 MD
->removeInstruction(M
);
744 M
->eraseFromParent();
750 /// processMemCpy - perform simplification of memcpy's. If we have memcpy A
751 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
752 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
753 /// circumstances). This allows later passes to remove the first memcpy
755 bool MemCpyOpt::processMemCpy(MemCpyInst
*M
) {
756 // We can only optimize statically-sized memcpy's that are non-volatile.
757 ConstantInt
*CopySize
= dyn_cast
<ConstantInt
>(M
->getLength());
758 if (CopySize
== 0 || M
->isVolatile()) return false;
760 // If the source and destination of the memcpy are the same, then zap it.
761 if (M
->getSource() == M
->getDest()) {
762 MD
->removeInstruction(M
);
763 M
->eraseFromParent();
767 // If copying from a constant, try to turn the memcpy into a memset.
768 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(M
->getSource()))
769 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
770 if (Value
*ByteVal
= isBytewiseValue(GV
->getInitializer())) {
771 IRBuilder
<> Builder(M
);
772 Builder
.CreateMemSet(M
->getRawDest(), ByteVal
, CopySize
,
773 M
->getAlignment(), false);
774 MD
->removeInstruction(M
);
775 M
->eraseFromParent();
780 // The are two possible optimizations we can do for memcpy:
781 // a) memcpy-memcpy xform which exposes redundance for DSE.
782 // b) call-memcpy xform for return slot optimization.
783 MemDepResult DepInfo
= MD
->getDependency(M
);
784 if (!DepInfo
.isClobber())
787 if (MemCpyInst
*MDep
= dyn_cast
<MemCpyInst
>(DepInfo
.getInst()))
788 return processMemCpyMemCpyDependence(M
, MDep
, CopySize
->getZExtValue());
790 if (CallInst
*C
= dyn_cast
<CallInst
>(DepInfo
.getInst())) {
791 if (performCallSlotOptzn(M
, M
->getDest(), M
->getSource(),
792 CopySize
->getZExtValue(), C
)) {
793 MD
->removeInstruction(M
);
794 M
->eraseFromParent();
802 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
803 /// are guaranteed not to alias.
804 bool MemCpyOpt::processMemMove(MemMoveInst
*M
) {
805 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
807 // See if the pointers alias.
808 if (!AA
.isNoAlias(AA
.getLocationForDest(M
), AA
.getLocationForSource(M
)))
811 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M
<< "\n");
813 // If not, then we know we can transform this.
814 Module
*Mod
= M
->getParent()->getParent()->getParent();
815 const Type
*ArgTys
[3] = { M
->getRawDest()->getType(),
816 M
->getRawSource()->getType(),
817 M
->getLength()->getType() };
818 M
->setCalledFunction(Intrinsic::getDeclaration(Mod
, Intrinsic::memcpy
,
821 // MemDep may have over conservative information about this instruction, just
822 // conservatively flush it from the cache.
823 MD
->removeInstruction(M
);
829 /// processByValArgument - This is called on every byval argument in call sites.
830 bool MemCpyOpt::processByValArgument(CallSite CS
, unsigned ArgNo
) {
831 if (TD
== 0) return false;
833 // Find out what feeds this byval argument.
834 Value
*ByValArg
= CS
.getArgument(ArgNo
);
835 const Type
*ByValTy
=cast
<PointerType
>(ByValArg
->getType())->getElementType();
836 uint64_t ByValSize
= TD
->getTypeAllocSize(ByValTy
);
837 MemDepResult DepInfo
=
838 MD
->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg
, ByValSize
),
839 true, CS
.getInstruction(),
840 CS
.getInstruction()->getParent());
841 if (!DepInfo
.isClobber())
844 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
845 // a memcpy, see if we can byval from the source of the memcpy instead of the
847 MemCpyInst
*MDep
= dyn_cast
<MemCpyInst
>(DepInfo
.getInst());
848 if (MDep
== 0 || MDep
->isVolatile() ||
849 ByValArg
->stripPointerCasts() != MDep
->getDest())
852 // The length of the memcpy must be larger or equal to the size of the byval.
853 ConstantInt
*C1
= dyn_cast
<ConstantInt
>(MDep
->getLength());
854 if (C1
== 0 || C1
->getValue().getZExtValue() < ByValSize
)
857 // Get the alignment of the byval. If it is greater than the memcpy, then we
858 // can't do the substitution. If the call doesn't specify the alignment, then
859 // it is some target specific value that we can't know.
860 unsigned ByValAlign
= CS
.getParamAlignment(ArgNo
+1);
861 if (ByValAlign
== 0 || MDep
->getAlignment() < ByValAlign
)
864 // Verify that the copied-from memory doesn't change in between the memcpy and
869 // It would be invalid to transform the second memcpy into foo(*b).
871 // NOTE: This is conservative, it will stop on any read from the source loc,
872 // not just the defining memcpy.
873 MemDepResult SourceDep
=
874 MD
->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep
),
875 false, CS
.getInstruction(), MDep
->getParent());
876 if (!SourceDep
.isClobber() || SourceDep
.getInst() != MDep
)
879 Value
*TmpCast
= MDep
->getSource();
880 if (MDep
->getSource()->getType() != ByValArg
->getType())
881 TmpCast
= new BitCastInst(MDep
->getSource(), ByValArg
->getType(),
882 "tmpcast", CS
.getInstruction());
884 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
885 << " " << *MDep
<< "\n"
886 << " " << *CS
.getInstruction() << "\n");
888 // Otherwise we're good! Update the byval argument.
889 CS
.setArgument(ArgNo
, TmpCast
);
894 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
895 bool MemCpyOpt::iterateOnFunction(Function
&F
) {
896 bool MadeChange
= false;
898 // Walk all instruction in the function.
899 for (Function::iterator BB
= F
.begin(), BBE
= F
.end(); BB
!= BBE
; ++BB
) {
900 for (BasicBlock::iterator BI
= BB
->begin(), BE
= BB
->end(); BI
!= BE
;) {
901 // Avoid invalidating the iterator.
902 Instruction
*I
= BI
++;
904 bool RepeatInstruction
= false;
906 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
907 MadeChange
|= processStore(SI
, BI
);
908 else if (MemSetInst
*M
= dyn_cast
<MemSetInst
>(I
))
909 RepeatInstruction
= processMemSet(M
, BI
);
910 else if (MemCpyInst
*M
= dyn_cast
<MemCpyInst
>(I
))
911 RepeatInstruction
= processMemCpy(M
);
912 else if (MemMoveInst
*M
= dyn_cast
<MemMoveInst
>(I
))
913 RepeatInstruction
= processMemMove(M
);
914 else if (CallSite CS
= (Value
*)I
) {
915 for (unsigned i
= 0, e
= CS
.arg_size(); i
!= e
; ++i
)
916 if (CS
.paramHasAttr(i
+1, Attribute::ByVal
))
917 MadeChange
|= processByValArgument(CS
, i
);
920 // Reprocess the instruction if desired.
921 if (RepeatInstruction
) {
922 if (BI
!= BB
->begin()) --BI
;
931 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
934 bool MemCpyOpt::runOnFunction(Function
&F
) {
935 bool MadeChange
= false;
936 MD
= &getAnalysis
<MemoryDependenceAnalysis
>();
937 TD
= getAnalysisIfAvailable
<TargetData
>();
939 if (!iterateOnFunction(F
))