1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
13 // For example: 4 + (x + 5) -> x + (4 + 5)
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
21 //===----------------------------------------------------------------------===//
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Constants.h"
27 #include "llvm/DerivedTypes.h"
28 #include "llvm/Function.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Assembly/Writer.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ValueHandle.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/DenseMap.h"
43 STATISTIC(NumLinear
, "Number of insts linearized");
44 STATISTIC(NumChanged
, "Number of insts reassociated");
45 STATISTIC(NumAnnihil
, "Number of expr tree annihilated");
46 STATISTIC(NumFactor
, "Number of multiplies factored");
52 ValueEntry(unsigned R
, Value
*O
) : Rank(R
), Op(O
) {}
54 inline bool operator<(const ValueEntry
&LHS
, const ValueEntry
&RHS
) {
55 return LHS
.Rank
> RHS
.Rank
; // Sort so that highest rank goes to start.
60 /// PrintOps - Print out the expression identified in the Ops list.
62 static void PrintOps(Instruction
*I
, const SmallVectorImpl
<ValueEntry
> &Ops
) {
63 Module
*M
= I
->getParent()->getParent()->getParent();
64 dbgs() << Instruction::getOpcodeName(I
->getOpcode()) << " "
65 << *Ops
[0].Op
->getType() << '\t';
66 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
68 WriteAsOperand(dbgs(), Ops
[i
].Op
, false, M
);
69 dbgs() << ", #" << Ops
[i
].Rank
<< "] ";
75 class Reassociate
: public FunctionPass
{
76 DenseMap
<BasicBlock
*, unsigned> RankMap
;
77 DenseMap
<AssertingVH
<>, unsigned> ValueRankMap
;
78 SmallVector
<WeakVH
, 8> RedoInsts
;
79 SmallVector
<WeakVH
, 8> DeadInsts
;
82 static char ID
; // Pass identification, replacement for typeid
83 Reassociate() : FunctionPass(ID
) {
84 initializeReassociatePass(*PassRegistry::getPassRegistry());
87 bool runOnFunction(Function
&F
);
89 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
93 void BuildRankMap(Function
&F
);
94 unsigned getRank(Value
*V
);
95 Value
*ReassociateExpression(BinaryOperator
*I
);
96 void RewriteExprTree(BinaryOperator
*I
, SmallVectorImpl
<ValueEntry
> &Ops
,
98 Value
*OptimizeExpression(BinaryOperator
*I
,
99 SmallVectorImpl
<ValueEntry
> &Ops
);
100 Value
*OptimizeAdd(Instruction
*I
, SmallVectorImpl
<ValueEntry
> &Ops
);
101 void LinearizeExprTree(BinaryOperator
*I
, SmallVectorImpl
<ValueEntry
> &Ops
);
102 void LinearizeExpr(BinaryOperator
*I
);
103 Value
*RemoveFactorFromExpression(Value
*V
, Value
*Factor
);
104 void ReassociateInst(BasicBlock::iterator
&BBI
);
106 void RemoveDeadBinaryOp(Value
*V
);
110 char Reassociate::ID
= 0;
111 INITIALIZE_PASS(Reassociate
, "reassociate",
112 "Reassociate expressions", false, false)
114 // Public interface to the Reassociate pass
115 FunctionPass
*llvm::createReassociatePass() { return new Reassociate(); }
117 void Reassociate::RemoveDeadBinaryOp(Value
*V
) {
118 Instruction
*Op
= dyn_cast
<Instruction
>(V
);
119 if (!Op
|| !isa
<BinaryOperator
>(Op
))
122 Value
*LHS
= Op
->getOperand(0), *RHS
= Op
->getOperand(1);
124 ValueRankMap
.erase(Op
);
125 DeadInsts
.push_back(Op
);
126 RemoveDeadBinaryOp(LHS
);
127 RemoveDeadBinaryOp(RHS
);
131 static bool isUnmovableInstruction(Instruction
*I
) {
132 if (I
->getOpcode() == Instruction::PHI
||
133 I
->getOpcode() == Instruction::Alloca
||
134 I
->getOpcode() == Instruction::Load
||
135 I
->getOpcode() == Instruction::Invoke
||
136 (I
->getOpcode() == Instruction::Call
&&
137 !isa
<DbgInfoIntrinsic
>(I
)) ||
138 I
->getOpcode() == Instruction::UDiv
||
139 I
->getOpcode() == Instruction::SDiv
||
140 I
->getOpcode() == Instruction::FDiv
||
141 I
->getOpcode() == Instruction::URem
||
142 I
->getOpcode() == Instruction::SRem
||
143 I
->getOpcode() == Instruction::FRem
)
148 void Reassociate::BuildRankMap(Function
&F
) {
151 // Assign distinct ranks to function arguments
152 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end(); I
!= E
; ++I
)
153 ValueRankMap
[&*I
] = ++i
;
155 ReversePostOrderTraversal
<Function
*> RPOT(&F
);
156 for (ReversePostOrderTraversal
<Function
*>::rpo_iterator I
= RPOT
.begin(),
157 E
= RPOT
.end(); I
!= E
; ++I
) {
159 unsigned BBRank
= RankMap
[BB
] = ++i
<< 16;
161 // Walk the basic block, adding precomputed ranks for any instructions that
162 // we cannot move. This ensures that the ranks for these instructions are
163 // all different in the block.
164 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
165 if (isUnmovableInstruction(I
))
166 ValueRankMap
[&*I
] = ++BBRank
;
170 unsigned Reassociate::getRank(Value
*V
) {
171 Instruction
*I
= dyn_cast
<Instruction
>(V
);
173 if (isa
<Argument
>(V
)) return ValueRankMap
[V
]; // Function argument.
174 return 0; // Otherwise it's a global or constant, rank 0.
177 if (unsigned Rank
= ValueRankMap
[I
])
178 return Rank
; // Rank already known?
180 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181 // we can reassociate expressions for code motion! Since we do not recurse
182 // for PHI nodes, we cannot have infinite recursion here, because there
183 // cannot be loops in the value graph that do not go through PHI nodes.
184 unsigned Rank
= 0, MaxRank
= RankMap
[I
->getParent()];
185 for (unsigned i
= 0, e
= I
->getNumOperands();
186 i
!= e
&& Rank
!= MaxRank
; ++i
)
187 Rank
= std::max(Rank
, getRank(I
->getOperand(i
)));
189 // If this is a not or neg instruction, do not count it for rank. This
190 // assures us that X and ~X will have the same rank.
191 if (!I
->getType()->isIntegerTy() ||
192 (!BinaryOperator::isNot(I
) && !BinaryOperator::isNeg(I
)))
195 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
198 return ValueRankMap
[I
] = Rank
;
201 /// isReassociableOp - Return true if V is an instruction of the specified
202 /// opcode and if it only has one use.
203 static BinaryOperator
*isReassociableOp(Value
*V
, unsigned Opcode
) {
204 if ((V
->hasOneUse() || V
->use_empty()) && isa
<Instruction
>(V
) &&
205 cast
<Instruction
>(V
)->getOpcode() == Opcode
)
206 return cast
<BinaryOperator
>(V
);
210 /// LowerNegateToMultiply - Replace 0-X with X*-1.
212 static Instruction
*LowerNegateToMultiply(Instruction
*Neg
,
213 DenseMap
<AssertingVH
<>, unsigned> &ValueRankMap
) {
214 Constant
*Cst
= Constant::getAllOnesValue(Neg
->getType());
216 Instruction
*Res
= BinaryOperator::CreateMul(Neg
->getOperand(1), Cst
, "",Neg
);
217 ValueRankMap
.erase(Neg
);
219 Neg
->replaceAllUsesWith(Res
);
220 Neg
->eraseFromParent();
224 // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
225 // Note that if D is also part of the expression tree that we recurse to
226 // linearize it as well. Besides that case, this does not recurse into A,B, or
228 void Reassociate::LinearizeExpr(BinaryOperator
*I
) {
229 BinaryOperator
*LHS
= cast
<BinaryOperator
>(I
->getOperand(0));
230 BinaryOperator
*RHS
= cast
<BinaryOperator
>(I
->getOperand(1));
231 assert(isReassociableOp(LHS
, I
->getOpcode()) &&
232 isReassociableOp(RHS
, I
->getOpcode()) &&
233 "Not an expression that needs linearization?");
235 DEBUG(dbgs() << "Linear" << *LHS
<< '\n' << *RHS
<< '\n' << *I
<< '\n');
237 // Move the RHS instruction to live immediately before I, avoiding breaking
238 // dominator properties.
241 // Move operands around to do the linearization.
242 I
->setOperand(1, RHS
->getOperand(0));
243 RHS
->setOperand(0, LHS
);
244 I
->setOperand(0, RHS
);
246 // Conservatively clear all the optional flags, which may not hold
247 // after the reassociation.
248 I
->clearSubclassOptionalData();
249 LHS
->clearSubclassOptionalData();
250 RHS
->clearSubclassOptionalData();
254 DEBUG(dbgs() << "Linearized: " << *I
<< '\n');
256 // If D is part of this expression tree, tail recurse.
257 if (isReassociableOp(I
->getOperand(1), I
->getOpcode()))
262 /// LinearizeExprTree - Given an associative binary expression tree, traverse
263 /// all of the uses putting it into canonical form. This forces a left-linear
264 /// form of the expression (((a+b)+c)+d), and collects information about the
265 /// rank of the non-tree operands.
267 /// NOTE: These intentionally destroys the expression tree operands (turning
268 /// them into undef values) to reduce #uses of the values. This means that the
269 /// caller MUST use something like RewriteExprTree to put the values back in.
271 void Reassociate::LinearizeExprTree(BinaryOperator
*I
,
272 SmallVectorImpl
<ValueEntry
> &Ops
) {
273 Value
*LHS
= I
->getOperand(0), *RHS
= I
->getOperand(1);
274 unsigned Opcode
= I
->getOpcode();
276 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
277 BinaryOperator
*LHSBO
= isReassociableOp(LHS
, Opcode
);
278 BinaryOperator
*RHSBO
= isReassociableOp(RHS
, Opcode
);
280 // If this is a multiply expression tree and it contains internal negations,
281 // transform them into multiplies by -1 so they can be reassociated.
282 if (I
->getOpcode() == Instruction::Mul
) {
283 if (!LHSBO
&& LHS
->hasOneUse() && BinaryOperator::isNeg(LHS
)) {
284 LHS
= LowerNegateToMultiply(cast
<Instruction
>(LHS
), ValueRankMap
);
285 LHSBO
= isReassociableOp(LHS
, Opcode
);
287 if (!RHSBO
&& RHS
->hasOneUse() && BinaryOperator::isNeg(RHS
)) {
288 RHS
= LowerNegateToMultiply(cast
<Instruction
>(RHS
), ValueRankMap
);
289 RHSBO
= isReassociableOp(RHS
, Opcode
);
295 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
296 // such, just remember these operands and their rank.
297 Ops
.push_back(ValueEntry(getRank(LHS
), LHS
));
298 Ops
.push_back(ValueEntry(getRank(RHS
), RHS
));
300 // Clear the leaves out.
301 I
->setOperand(0, UndefValue::get(I
->getType()));
302 I
->setOperand(1, UndefValue::get(I
->getType()));
306 // Turn X+(Y+Z) -> (Y+Z)+X
307 std::swap(LHSBO
, RHSBO
);
309 bool Success
= !I
->swapOperands();
310 assert(Success
&& "swapOperands failed");
314 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
315 // part of the expression tree.
317 LHS
= LHSBO
= cast
<BinaryOperator
>(I
->getOperand(0));
318 RHS
= I
->getOperand(1);
322 // Okay, now we know that the LHS is a nested expression and that the RHS is
323 // not. Perform reassociation.
324 assert(!isReassociableOp(RHS
, Opcode
) && "LinearizeExpr failed!");
326 // Move LHS right before I to make sure that the tree expression dominates all
328 LHSBO
->moveBefore(I
);
330 // Linearize the expression tree on the LHS.
331 LinearizeExprTree(LHSBO
, Ops
);
333 // Remember the RHS operand and its rank.
334 Ops
.push_back(ValueEntry(getRank(RHS
), RHS
));
336 // Clear the RHS leaf out.
337 I
->setOperand(1, UndefValue::get(I
->getType()));
340 // RewriteExprTree - Now that the operands for this expression tree are
341 // linearized and optimized, emit them in-order. This function is written to be
343 void Reassociate::RewriteExprTree(BinaryOperator
*I
,
344 SmallVectorImpl
<ValueEntry
> &Ops
,
346 if (i
+2 == Ops
.size()) {
347 if (I
->getOperand(0) != Ops
[i
].Op
||
348 I
->getOperand(1) != Ops
[i
+1].Op
) {
349 Value
*OldLHS
= I
->getOperand(0);
350 DEBUG(dbgs() << "RA: " << *I
<< '\n');
351 I
->setOperand(0, Ops
[i
].Op
);
352 I
->setOperand(1, Ops
[i
+1].Op
);
354 // Clear all the optional flags, which may not hold after the
355 // reassociation if the expression involved more than just this operation.
357 I
->clearSubclassOptionalData();
359 DEBUG(dbgs() << "TO: " << *I
<< '\n');
363 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
364 // delete the extra, now dead, nodes.
365 RemoveDeadBinaryOp(OldLHS
);
369 assert(i
+2 < Ops
.size() && "Ops index out of range!");
371 if (I
->getOperand(1) != Ops
[i
].Op
) {
372 DEBUG(dbgs() << "RA: " << *I
<< '\n');
373 I
->setOperand(1, Ops
[i
].Op
);
375 // Conservatively clear all the optional flags, which may not hold
376 // after the reassociation.
377 I
->clearSubclassOptionalData();
379 DEBUG(dbgs() << "TO: " << *I
<< '\n');
384 BinaryOperator
*LHS
= cast
<BinaryOperator
>(I
->getOperand(0));
385 assert(LHS
->getOpcode() == I
->getOpcode() &&
386 "Improper expression tree!");
388 // Compactify the tree instructions together with each other to guarantee
389 // that the expression tree is dominated by all of Ops.
391 RewriteExprTree(LHS
, Ops
, i
+1);
396 // NegateValue - Insert instructions before the instruction pointed to by BI,
397 // that computes the negative version of the value specified. The negative
398 // version of the value is returned, and BI is left pointing at the instruction
399 // that should be processed next by the reassociation pass.
401 static Value
*NegateValue(Value
*V
, Instruction
*BI
) {
402 if (Constant
*C
= dyn_cast
<Constant
>(V
))
403 return ConstantExpr::getNeg(C
);
405 // We are trying to expose opportunity for reassociation. One of the things
406 // that we want to do to achieve this is to push a negation as deep into an
407 // expression chain as possible, to expose the add instructions. In practice,
408 // this means that we turn this:
409 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
410 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
411 // the constants. We assume that instcombine will clean up the mess later if
412 // we introduce tons of unnecessary negation instructions.
414 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
415 if (I
->getOpcode() == Instruction::Add
&& I
->hasOneUse()) {
416 // Push the negates through the add.
417 I
->setOperand(0, NegateValue(I
->getOperand(0), BI
));
418 I
->setOperand(1, NegateValue(I
->getOperand(1), BI
));
420 // We must move the add instruction here, because the neg instructions do
421 // not dominate the old add instruction in general. By moving it, we are
422 // assured that the neg instructions we just inserted dominate the
423 // instruction we are about to insert after them.
426 I
->setName(I
->getName()+".neg");
430 // Okay, we need to materialize a negated version of V with an instruction.
431 // Scan the use lists of V to see if we have one already.
432 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!= E
;++UI
){
434 if (!BinaryOperator::isNeg(U
)) continue;
436 // We found one! Now we have to make sure that the definition dominates
437 // this use. We do this by moving it to the entry block (if it is a
438 // non-instruction value) or right after the definition. These negates will
439 // be zapped by reassociate later, so we don't need much finesse here.
440 BinaryOperator
*TheNeg
= cast
<BinaryOperator
>(U
);
442 // Verify that the negate is in this function, V might be a constant expr.
443 if (TheNeg
->getParent()->getParent() != BI
->getParent()->getParent())
446 BasicBlock::iterator InsertPt
;
447 if (Instruction
*InstInput
= dyn_cast
<Instruction
>(V
)) {
448 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(InstInput
)) {
449 InsertPt
= II
->getNormalDest()->begin();
451 InsertPt
= InstInput
;
454 while (isa
<PHINode
>(InsertPt
)) ++InsertPt
;
456 InsertPt
= TheNeg
->getParent()->getParent()->getEntryBlock().begin();
458 TheNeg
->moveBefore(InsertPt
);
462 // Insert a 'neg' instruction that subtracts the value from zero to get the
464 return BinaryOperator::CreateNeg(V
, V
->getName() + ".neg", BI
);
467 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
468 /// X-Y into (X + -Y).
469 static bool ShouldBreakUpSubtract(Instruction
*Sub
) {
470 // If this is a negation, we can't split it up!
471 if (BinaryOperator::isNeg(Sub
))
474 // Don't bother to break this up unless either the LHS is an associable add or
475 // subtract or if this is only used by one.
476 if (isReassociableOp(Sub
->getOperand(0), Instruction::Add
) ||
477 isReassociableOp(Sub
->getOperand(0), Instruction::Sub
))
479 if (isReassociableOp(Sub
->getOperand(1), Instruction::Add
) ||
480 isReassociableOp(Sub
->getOperand(1), Instruction::Sub
))
482 if (Sub
->hasOneUse() &&
483 (isReassociableOp(Sub
->use_back(), Instruction::Add
) ||
484 isReassociableOp(Sub
->use_back(), Instruction::Sub
)))
490 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
491 /// only used by an add, transform this into (X+(0-Y)) to promote better
493 static Instruction
*BreakUpSubtract(Instruction
*Sub
,
494 DenseMap
<AssertingVH
<>, unsigned> &ValueRankMap
) {
495 // Convert a subtract into an add and a neg instruction. This allows sub
496 // instructions to be commuted with other add instructions.
498 // Calculate the negative value of Operand 1 of the sub instruction,
499 // and set it as the RHS of the add instruction we just made.
501 Value
*NegVal
= NegateValue(Sub
->getOperand(1), Sub
);
503 BinaryOperator::CreateAdd(Sub
->getOperand(0), NegVal
, "", Sub
);
506 // Everyone now refers to the add instruction.
507 ValueRankMap
.erase(Sub
);
508 Sub
->replaceAllUsesWith(New
);
509 Sub
->eraseFromParent();
511 DEBUG(dbgs() << "Negated: " << *New
<< '\n');
515 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
516 /// by one, change this into a multiply by a constant to assist with further
518 static Instruction
*ConvertShiftToMul(Instruction
*Shl
,
519 DenseMap
<AssertingVH
<>, unsigned> &ValueRankMap
) {
520 // If an operand of this shift is a reassociable multiply, or if the shift
521 // is used by a reassociable multiply or add, turn into a multiply.
522 if (isReassociableOp(Shl
->getOperand(0), Instruction::Mul
) ||
524 (isReassociableOp(Shl
->use_back(), Instruction::Mul
) ||
525 isReassociableOp(Shl
->use_back(), Instruction::Add
)))) {
526 Constant
*MulCst
= ConstantInt::get(Shl
->getType(), 1);
527 MulCst
= ConstantExpr::getShl(MulCst
, cast
<Constant
>(Shl
->getOperand(1)));
530 BinaryOperator::CreateMul(Shl
->getOperand(0), MulCst
, "", Shl
);
531 ValueRankMap
.erase(Shl
);
533 Shl
->replaceAllUsesWith(Mul
);
534 Shl
->eraseFromParent();
540 // Scan backwards and forwards among values with the same rank as element i to
541 // see if X exists. If X does not exist, return i. This is useful when
542 // scanning for 'x' when we see '-x' because they both get the same rank.
543 static unsigned FindInOperandList(SmallVectorImpl
<ValueEntry
> &Ops
, unsigned i
,
545 unsigned XRank
= Ops
[i
].Rank
;
546 unsigned e
= Ops
.size();
547 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
].Rank
== XRank
; ++j
)
551 for (unsigned j
= i
-1; j
!= ~0U && Ops
[j
].Rank
== XRank
; --j
)
557 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
558 /// and returning the result. Insert the tree before I.
559 static Value
*EmitAddTreeOfValues(Instruction
*I
, SmallVectorImpl
<Value
*> &Ops
){
560 if (Ops
.size() == 1) return Ops
.back();
562 Value
*V1
= Ops
.back();
564 Value
*V2
= EmitAddTreeOfValues(I
, Ops
);
565 return BinaryOperator::CreateAdd(V2
, V1
, "tmp", I
);
568 /// RemoveFactorFromExpression - If V is an expression tree that is a
569 /// multiplication sequence, and if this sequence contains a multiply by Factor,
570 /// remove Factor from the tree and return the new tree.
571 Value
*Reassociate::RemoveFactorFromExpression(Value
*V
, Value
*Factor
) {
572 BinaryOperator
*BO
= isReassociableOp(V
, Instruction::Mul
);
575 SmallVector
<ValueEntry
, 8> Factors
;
576 LinearizeExprTree(BO
, Factors
);
578 bool FoundFactor
= false;
579 bool NeedsNegate
= false;
580 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
581 if (Factors
[i
].Op
== Factor
) {
583 Factors
.erase(Factors
.begin()+i
);
587 // If this is a negative version of this factor, remove it.
588 if (ConstantInt
*FC1
= dyn_cast
<ConstantInt
>(Factor
))
589 if (ConstantInt
*FC2
= dyn_cast
<ConstantInt
>(Factors
[i
].Op
))
590 if (FC1
->getValue() == -FC2
->getValue()) {
591 FoundFactor
= NeedsNegate
= true;
592 Factors
.erase(Factors
.begin()+i
);
598 // Make sure to restore the operands to the expression tree.
599 RewriteExprTree(BO
, Factors
);
603 BasicBlock::iterator InsertPt
= BO
; ++InsertPt
;
605 // If this was just a single multiply, remove the multiply and return the only
606 // remaining operand.
607 if (Factors
.size() == 1) {
608 ValueRankMap
.erase(BO
);
609 DeadInsts
.push_back(BO
);
612 RewriteExprTree(BO
, Factors
);
617 V
= BinaryOperator::CreateNeg(V
, "neg", InsertPt
);
622 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
623 /// add its operands as factors, otherwise add V to the list of factors.
625 /// Ops is the top-level list of add operands we're trying to factor.
626 static void FindSingleUseMultiplyFactors(Value
*V
,
627 SmallVectorImpl
<Value
*> &Factors
,
628 const SmallVectorImpl
<ValueEntry
> &Ops
,
631 if (!(V
->hasOneUse() || V
->use_empty()) || // More than one use.
632 !(BO
= dyn_cast
<BinaryOperator
>(V
)) ||
633 BO
->getOpcode() != Instruction::Mul
) {
634 Factors
.push_back(V
);
638 // If this value has a single use because it is another input to the add
639 // tree we're reassociating and we dropped its use, it actually has two
640 // uses and we can't factor it.
642 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
643 if (Ops
[i
].Op
== V
) {
644 Factors
.push_back(V
);
650 // Otherwise, add the LHS and RHS to the list of factors.
651 FindSingleUseMultiplyFactors(BO
->getOperand(1), Factors
, Ops
, false);
652 FindSingleUseMultiplyFactors(BO
->getOperand(0), Factors
, Ops
, false);
655 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
656 /// instruction. This optimizes based on identities. If it can be reduced to
657 /// a single Value, it is returned, otherwise the Ops list is mutated as
659 static Value
*OptimizeAndOrXor(unsigned Opcode
,
660 SmallVectorImpl
<ValueEntry
> &Ops
) {
661 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
662 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
663 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
664 // First, check for X and ~X in the operand list.
665 assert(i
< Ops
.size());
666 if (BinaryOperator::isNot(Ops
[i
].Op
)) { // Cannot occur for ^.
667 Value
*X
= BinaryOperator::getNotArgument(Ops
[i
].Op
);
668 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
670 if (Opcode
== Instruction::And
) // ...&X&~X = 0
671 return Constant::getNullValue(X
->getType());
673 if (Opcode
== Instruction::Or
) // ...|X|~X = -1
674 return Constant::getAllOnesValue(X
->getType());
678 // Next, check for duplicate pairs of values, which we assume are next to
679 // each other, due to our sorting criteria.
680 assert(i
< Ops
.size());
681 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== Ops
[i
].Op
) {
682 if (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) {
683 // Drop duplicate values for And and Or.
684 Ops
.erase(Ops
.begin()+i
);
690 // Drop pairs of values for Xor.
691 assert(Opcode
== Instruction::Xor
);
693 return Constant::getNullValue(Ops
[0].Op
->getType());
696 Ops
.erase(Ops
.begin()+i
, Ops
.begin()+i
+2);
704 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
705 /// optimizes based on identities. If it can be reduced to a single Value, it
706 /// is returned, otherwise the Ops list is mutated as necessary.
707 Value
*Reassociate::OptimizeAdd(Instruction
*I
,
708 SmallVectorImpl
<ValueEntry
> &Ops
) {
709 // Scan the operand lists looking for X and -X pairs. If we find any, we
710 // can simplify the expression. X+-X == 0. While we're at it, scan for any
711 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
713 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
715 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
716 Value
*TheOp
= Ops
[i
].Op
;
717 // Check to see if we've seen this operand before. If so, we factor all
718 // instances of the operand together. Due to our sorting criteria, we know
719 // that these need to be next to each other in the vector.
720 if (i
+1 != Ops
.size() && Ops
[i
+1].Op
== TheOp
) {
721 // Rescan the list, remove all instances of this operand from the expr.
722 unsigned NumFound
= 0;
724 Ops
.erase(Ops
.begin()+i
);
726 } while (i
!= Ops
.size() && Ops
[i
].Op
== TheOp
);
728 DEBUG(errs() << "\nFACTORING [" << NumFound
<< "]: " << *TheOp
<< '\n');
731 // Insert a new multiply.
732 Value
*Mul
= ConstantInt::get(cast
<IntegerType
>(I
->getType()), NumFound
);
733 Mul
= BinaryOperator::CreateMul(TheOp
, Mul
, "factor", I
);
735 // Now that we have inserted a multiply, optimize it. This allows us to
736 // handle cases that require multiple factoring steps, such as this:
737 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
738 RedoInsts
.push_back(Mul
);
740 // If every add operand was a duplicate, return the multiply.
744 // Otherwise, we had some input that didn't have the dupe, such as
745 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
746 // things being added by this operation.
747 Ops
.insert(Ops
.begin(), ValueEntry(getRank(Mul
), Mul
));
754 // Check for X and -X in the operand list.
755 if (!BinaryOperator::isNeg(TheOp
))
758 Value
*X
= BinaryOperator::getNegArgument(TheOp
);
759 unsigned FoundX
= FindInOperandList(Ops
, i
, X
);
763 // Remove X and -X from the operand list.
765 return Constant::getNullValue(X
->getType());
767 Ops
.erase(Ops
.begin()+i
);
771 --i
; // Need to back up an extra one.
772 Ops
.erase(Ops
.begin()+FoundX
);
774 --i
; // Revisit element.
775 e
-= 2; // Removed two elements.
778 // Scan the operand list, checking to see if there are any common factors
779 // between operands. Consider something like A*A+A*B*C+D. We would like to
780 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
781 // To efficiently find this, we count the number of times a factor occurs
782 // for any ADD operands that are MULs.
783 DenseMap
<Value
*, unsigned> FactorOccurrences
;
785 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
786 // where they are actually the same multiply.
788 Value
*MaxOccVal
= 0;
789 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
790 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(Ops
[i
].Op
);
791 if (BOp
== 0 || BOp
->getOpcode() != Instruction::Mul
|| !BOp
->use_empty())
794 // Compute all of the factors of this added value.
795 SmallVector
<Value
*, 8> Factors
;
796 FindSingleUseMultiplyFactors(BOp
, Factors
, Ops
, true);
797 assert(Factors
.size() > 1 && "Bad linearize!");
799 // Add one to FactorOccurrences for each unique factor in this op.
800 SmallPtrSet
<Value
*, 8> Duplicates
;
801 for (unsigned i
= 0, e
= Factors
.size(); i
!= e
; ++i
) {
802 Value
*Factor
= Factors
[i
];
803 if (!Duplicates
.insert(Factor
)) continue;
805 unsigned Occ
= ++FactorOccurrences
[Factor
];
806 if (Occ
> MaxOcc
) { MaxOcc
= Occ
; MaxOccVal
= Factor
; }
808 // If Factor is a negative constant, add the negated value as a factor
809 // because we can percolate the negate out. Watch for minint, which
810 // cannot be positivified.
811 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Factor
))
812 if (CI
->getValue().isNegative() && !CI
->getValue().isMinSignedValue()) {
813 Factor
= ConstantInt::get(CI
->getContext(), -CI
->getValue());
814 assert(!Duplicates
.count(Factor
) &&
815 "Shouldn't have two constant factors, missed a canonicalize");
817 unsigned Occ
= ++FactorOccurrences
[Factor
];
818 if (Occ
> MaxOcc
) { MaxOcc
= Occ
; MaxOccVal
= Factor
; }
823 // If any factor occurred more than one time, we can pull it out.
825 DEBUG(errs() << "\nFACTORING [" << MaxOcc
<< "]: " << *MaxOccVal
<< '\n');
828 // Create a new instruction that uses the MaxOccVal twice. If we don't do
829 // this, we could otherwise run into situations where removing a factor
830 // from an expression will drop a use of maxocc, and this can cause
831 // RemoveFactorFromExpression on successive values to behave differently.
832 Instruction
*DummyInst
= BinaryOperator::CreateAdd(MaxOccVal
, MaxOccVal
);
833 SmallVector
<Value
*, 4> NewMulOps
;
834 for (unsigned i
= 0; i
!= Ops
.size(); ++i
) {
835 // Only try to remove factors from expressions we're allowed to.
836 BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(Ops
[i
].Op
);
837 if (BOp
== 0 || BOp
->getOpcode() != Instruction::Mul
|| !BOp
->use_empty())
840 if (Value
*V
= RemoveFactorFromExpression(Ops
[i
].Op
, MaxOccVal
)) {
841 // The factorized operand may occur several times. Convert them all in
843 for (unsigned j
= Ops
.size(); j
!= i
;) {
845 if (Ops
[j
].Op
== Ops
[i
].Op
) {
846 NewMulOps
.push_back(V
);
847 Ops
.erase(Ops
.begin()+j
);
854 // No need for extra uses anymore.
857 unsigned NumAddedValues
= NewMulOps
.size();
858 Value
*V
= EmitAddTreeOfValues(I
, NewMulOps
);
860 // Now that we have inserted the add tree, optimize it. This allows us to
861 // handle cases that require multiple factoring steps, such as this:
862 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
863 assert(NumAddedValues
> 1 && "Each occurrence should contribute a value");
864 (void)NumAddedValues
;
865 V
= ReassociateExpression(cast
<BinaryOperator
>(V
));
867 // Create the multiply.
868 Value
*V2
= BinaryOperator::CreateMul(V
, MaxOccVal
, "tmp", I
);
870 // Rerun associate on the multiply in case the inner expression turned into
871 // a multiply. We want to make sure that we keep things in canonical form.
872 V2
= ReassociateExpression(cast
<BinaryOperator
>(V2
));
874 // If every add operand included the factor (e.g. "A*B + A*C"), then the
875 // entire result expression is just the multiply "A*(B+C)".
879 // Otherwise, we had some input that didn't have the factor, such as
880 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
881 // things being added by this operation.
882 Ops
.insert(Ops
.begin(), ValueEntry(getRank(V2
), V2
));
888 Value
*Reassociate::OptimizeExpression(BinaryOperator
*I
,
889 SmallVectorImpl
<ValueEntry
> &Ops
) {
890 // Now that we have the linearized expression tree, try to optimize it.
891 // Start by folding any constants that we found.
892 bool IterateOptimization
= false;
893 if (Ops
.size() == 1) return Ops
[0].Op
;
895 unsigned Opcode
= I
->getOpcode();
897 if (Constant
*V1
= dyn_cast
<Constant
>(Ops
[Ops
.size()-2].Op
))
898 if (Constant
*V2
= dyn_cast
<Constant
>(Ops
.back().Op
)) {
900 Ops
.back().Op
= ConstantExpr::get(Opcode
, V1
, V2
);
901 return OptimizeExpression(I
, Ops
);
904 // Check for destructive annihilation due to a constant being used.
905 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(Ops
.back().Op
))
908 case Instruction::And
:
909 if (CstVal
->isZero()) // X & 0 -> 0
911 if (CstVal
->isAllOnesValue()) // X & -1 -> X
914 case Instruction::Mul
:
915 if (CstVal
->isZero()) { // X * 0 -> 0
920 if (cast
<ConstantInt
>(CstVal
)->isOne())
921 Ops
.pop_back(); // X * 1 -> X
923 case Instruction::Or
:
924 if (CstVal
->isAllOnesValue()) // X | -1 -> -1
927 case Instruction::Add
:
928 case Instruction::Xor
:
929 if (CstVal
->isZero()) // X [|^+] 0 -> X
933 if (Ops
.size() == 1) return Ops
[0].Op
;
935 // Handle destructive annihilation due to identities between elements in the
936 // argument list here.
939 case Instruction::And
:
940 case Instruction::Or
:
941 case Instruction::Xor
: {
942 unsigned NumOps
= Ops
.size();
943 if (Value
*Result
= OptimizeAndOrXor(Opcode
, Ops
))
945 IterateOptimization
|= Ops
.size() != NumOps
;
949 case Instruction::Add
: {
950 unsigned NumOps
= Ops
.size();
951 if (Value
*Result
= OptimizeAdd(I
, Ops
))
953 IterateOptimization
|= Ops
.size() != NumOps
;
957 //case Instruction::Mul:
960 if (IterateOptimization
)
961 return OptimizeExpression(I
, Ops
);
966 /// ReassociateInst - Inspect and reassociate the instruction at the
967 /// given position, post-incrementing the position.
968 void Reassociate::ReassociateInst(BasicBlock::iterator
&BBI
) {
969 Instruction
*BI
= BBI
++;
970 if (BI
->getOpcode() == Instruction::Shl
&&
971 isa
<ConstantInt
>(BI
->getOperand(1)))
972 if (Instruction
*NI
= ConvertShiftToMul(BI
, ValueRankMap
)) {
977 // Reject cases where it is pointless to do this.
978 if (!isa
<BinaryOperator
>(BI
) || BI
->getType()->isFloatingPointTy() ||
979 BI
->getType()->isVectorTy())
980 return; // Floating point ops are not associative.
982 // Do not reassociate boolean (i1) expressions. We want to preserve the
983 // original order of evaluation for short-circuited comparisons that
984 // SimplifyCFG has folded to AND/OR expressions. If the expression
985 // is not further optimized, it is likely to be transformed back to a
986 // short-circuited form for code gen, and the source order may have been
987 // optimized for the most likely conditions.
988 if (BI
->getType()->isIntegerTy(1))
991 // If this is a subtract instruction which is not already in negate form,
992 // see if we can convert it to X+-Y.
993 if (BI
->getOpcode() == Instruction::Sub
) {
994 if (ShouldBreakUpSubtract(BI
)) {
995 BI
= BreakUpSubtract(BI
, ValueRankMap
);
996 // Reset the BBI iterator in case BreakUpSubtract changed the
997 // instruction it points to.
1001 } else if (BinaryOperator::isNeg(BI
)) {
1002 // Otherwise, this is a negation. See if the operand is a multiply tree
1003 // and if this is not an inner node of a multiply tree.
1004 if (isReassociableOp(BI
->getOperand(1), Instruction::Mul
) &&
1005 (!BI
->hasOneUse() ||
1006 !isReassociableOp(BI
->use_back(), Instruction::Mul
))) {
1007 BI
= LowerNegateToMultiply(BI
, ValueRankMap
);
1013 // If this instruction is a commutative binary operator, process it.
1014 if (!BI
->isAssociative()) return;
1015 BinaryOperator
*I
= cast
<BinaryOperator
>(BI
);
1017 // If this is an interior node of a reassociable tree, ignore it until we
1018 // get to the root of the tree, to avoid N^2 analysis.
1019 if (I
->hasOneUse() && isReassociableOp(I
->use_back(), I
->getOpcode()))
1022 // If this is an add tree that is used by a sub instruction, ignore it
1023 // until we process the subtract.
1024 if (I
->hasOneUse() && I
->getOpcode() == Instruction::Add
&&
1025 cast
<Instruction
>(I
->use_back())->getOpcode() == Instruction::Sub
)
1028 ReassociateExpression(I
);
1031 Value
*Reassociate::ReassociateExpression(BinaryOperator
*I
) {
1033 // First, walk the expression tree, linearizing the tree, collecting the
1034 // operand information.
1035 SmallVector
<ValueEntry
, 8> Ops
;
1036 LinearizeExprTree(I
, Ops
);
1038 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
1040 // Now that we have linearized the tree to a list and have gathered all of
1041 // the operands and their ranks, sort the operands by their rank. Use a
1042 // stable_sort so that values with equal ranks will have their relative
1043 // positions maintained (and so the compiler is deterministic). Note that
1044 // this sorts so that the highest ranking values end up at the beginning of
1046 std::stable_sort(Ops
.begin(), Ops
.end());
1048 // OptimizeExpression - Now that we have the expression tree in a convenient
1049 // sorted form, optimize it globally if possible.
1050 if (Value
*V
= OptimizeExpression(I
, Ops
)) {
1051 // This expression tree simplified to something that isn't a tree,
1053 DEBUG(dbgs() << "Reassoc to scalar: " << *V
<< '\n');
1054 I
->replaceAllUsesWith(V
);
1055 RemoveDeadBinaryOp(I
);
1060 // We want to sink immediates as deeply as possible except in the case where
1061 // this is a multiply tree used only by an add, and the immediate is a -1.
1062 // In this case we reassociate to put the negation on the outside so that we
1063 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1064 if (I
->getOpcode() == Instruction::Mul
&& I
->hasOneUse() &&
1065 cast
<Instruction
>(I
->use_back())->getOpcode() == Instruction::Add
&&
1066 isa
<ConstantInt
>(Ops
.back().Op
) &&
1067 cast
<ConstantInt
>(Ops
.back().Op
)->isAllOnesValue()) {
1068 ValueEntry Tmp
= Ops
.pop_back_val();
1069 Ops
.insert(Ops
.begin(), Tmp
);
1072 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I
, Ops
); dbgs() << '\n');
1074 if (Ops
.size() == 1) {
1075 // This expression tree simplified to something that isn't a tree,
1077 I
->replaceAllUsesWith(Ops
[0].Op
);
1078 RemoveDeadBinaryOp(I
);
1082 // Now that we ordered and optimized the expressions, splat them back into
1083 // the expression tree, removing any unneeded nodes.
1084 RewriteExprTree(I
, Ops
);
1089 bool Reassociate::runOnFunction(Function
&F
) {
1090 // Recalculate the rank map for F
1094 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
; ++FI
)
1095 for (BasicBlock::iterator BBI
= FI
->begin(); BBI
!= FI
->end(); )
1096 ReassociateInst(BBI
);
1098 // Now that we're done, revisit any instructions which are likely to
1099 // have secondary reassociation opportunities.
1100 while (!RedoInsts
.empty())
1101 if (Value
*V
= RedoInsts
.pop_back_val()) {
1102 BasicBlock::iterator BBI
= cast
<Instruction
>(V
);
1103 ReassociateInst(BBI
);
1106 // Now that we're done, delete any instructions which are no longer used.
1107 while (!DeadInsts
.empty())
1108 if (Value
*V
= DeadInsts
.pop_back_val())
1109 RecursivelyDeleteTriviallyDeadInstructions(V
);
1111 // We are done with the rank map.
1113 ValueRankMap
.clear();