Use %ull here.
[llvm/stm8.git] / lib / Transforms / Scalar / ScalarReplAggregates.cpp
blob42246ff3216249572518494db3091b439d072170
1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Analysis/Dominators.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/GetElementPtrTypeIterator.h"
44 #include "llvm/Support/IRBuilder.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/ADT/SetVector.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 using namespace llvm;
52 STATISTIC(NumReplaced, "Number of allocas broken up");
53 STATISTIC(NumPromoted, "Number of allocas promoted");
54 STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
55 STATISTIC(NumConverted, "Number of aggregates converted to scalar");
56 STATISTIC(NumGlobals, "Number of allocas copied from constant global");
58 namespace {
59 struct SROA : public FunctionPass {
60 SROA(int T, bool hasDT, char &ID)
61 : FunctionPass(ID), HasDomTree(hasDT) {
62 if (T == -1)
63 SRThreshold = 128;
64 else
65 SRThreshold = T;
68 bool runOnFunction(Function &F);
70 bool performScalarRepl(Function &F);
71 bool performPromotion(Function &F);
73 private:
74 bool HasDomTree;
75 TargetData *TD;
77 /// DeadInsts - Keep track of instructions we have made dead, so that
78 /// we can remove them after we are done working.
79 SmallVector<Value*, 32> DeadInsts;
81 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82 /// information about the uses. All these fields are initialized to false
83 /// and set to true when something is learned.
84 struct AllocaInfo {
85 /// The alloca to promote.
86 AllocaInst *AI;
88 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89 /// looping and avoid redundant work.
90 SmallPtrSet<PHINode*, 8> CheckedPHIs;
92 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93 bool isUnsafe : 1;
95 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96 bool isMemCpySrc : 1;
98 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
99 bool isMemCpyDst : 1;
101 /// hasSubelementAccess - This is true if a subelement of the alloca is
102 /// ever accessed, or false if the alloca is only accessed with mem
103 /// intrinsics or load/store that only access the entire alloca at once.
104 bool hasSubelementAccess : 1;
106 /// hasALoadOrStore - This is true if there are any loads or stores to it.
107 /// The alloca may just be accessed with memcpy, for example, which would
108 /// not set this.
109 bool hasALoadOrStore : 1;
111 explicit AllocaInfo(AllocaInst *ai)
112 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113 hasSubelementAccess(false), hasALoadOrStore(false) {}
116 unsigned SRThreshold;
118 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119 I.isUnsafe = true;
120 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
123 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
125 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
126 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127 AllocaInfo &Info);
128 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
130 const Type *MemOpType, bool isStore, AllocaInfo &Info,
131 Instruction *TheAccess, bool AllowWholeAccess);
132 bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
133 uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134 const Type *&IdxTy);
136 void DoScalarReplacement(AllocaInst *AI,
137 std::vector<AllocaInst*> &WorkList);
138 void DeleteDeadInstructions();
140 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141 SmallVector<AllocaInst*, 32> &NewElts);
142 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143 SmallVector<AllocaInst*, 32> &NewElts);
144 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145 SmallVector<AllocaInst*, 32> &NewElts);
146 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
147 AllocaInst *AI,
148 SmallVector<AllocaInst*, 32> &NewElts);
149 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
150 SmallVector<AllocaInst*, 32> &NewElts);
151 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
152 SmallVector<AllocaInst*, 32> &NewElts);
154 static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
157 // SROA_DT - SROA that uses DominatorTree.
158 struct SROA_DT : public SROA {
159 static char ID;
160 public:
161 SROA_DT(int T = -1) : SROA(T, true, ID) {
162 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
165 // getAnalysisUsage - This pass does not require any passes, but we know it
166 // will not alter the CFG, so say so.
167 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168 AU.addRequired<DominatorTree>();
169 AU.setPreservesCFG();
173 // SROA_SSAUp - SROA that uses SSAUpdater.
174 struct SROA_SSAUp : public SROA {
175 static char ID;
176 public:
177 SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
181 // getAnalysisUsage - This pass does not require any passes, but we know it
182 // will not alter the CFG, so say so.
183 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184 AU.setPreservesCFG();
190 char SROA_DT::ID = 0;
191 char SROA_SSAUp::ID = 0;
193 INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194 "Scalar Replacement of Aggregates (DT)", false, false)
195 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
196 INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197 "Scalar Replacement of Aggregates (DT)", false, false)
199 INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200 "Scalar Replacement of Aggregates (SSAUp)", false, false)
201 INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202 "Scalar Replacement of Aggregates (SSAUp)", false, false)
204 // Public interface to the ScalarReplAggregates pass
205 FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
206 bool UseDomTree) {
207 if (UseDomTree)
208 return new SROA_DT(Threshold);
209 return new SROA_SSAUp(Threshold);
213 //===----------------------------------------------------------------------===//
214 // Convert To Scalar Optimization.
215 //===----------------------------------------------------------------------===//
217 namespace {
218 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219 /// optimization, which scans the uses of an alloca and determines if it can
220 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
221 class ConvertToScalarInfo {
222 /// AllocaSize - The size of the alloca being considered in bytes.
223 unsigned AllocaSize;
224 const TargetData &TD;
226 /// IsNotTrivial - This is set to true if there is some access to the object
227 /// which means that mem2reg can't promote it.
228 bool IsNotTrivial;
230 /// VectorTy - This tracks the type that we should promote the vector to if
231 /// it is possible to turn it into a vector. This starts out null, and if it
232 /// isn't possible to turn into a vector type, it gets set to VoidTy.
233 const Type *VectorTy;
235 /// HadAVector - True if there is at least one vector access to the alloca.
236 /// We don't want to turn random arrays into vectors and use vector element
237 /// insert/extract, but if there are element accesses to something that is
238 /// also declared as a vector, we do want to promote to a vector.
239 bool HadAVector;
241 /// HadNonMemTransferAccess - True if there is at least one access to the
242 /// alloca that is not a MemTransferInst. We don't want to turn structs into
243 /// large integers unless there is some potential for optimization.
244 bool HadNonMemTransferAccess;
246 public:
247 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
248 : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
249 HadAVector(false), HadNonMemTransferAccess(false) { }
251 AllocaInst *TryConvert(AllocaInst *AI);
253 private:
254 bool CanConvertToScalar(Value *V, uint64_t Offset);
255 void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
256 bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
257 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
259 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
260 uint64_t Offset, IRBuilder<> &Builder);
261 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
262 uint64_t Offset, IRBuilder<> &Builder);
264 } // end anonymous namespace.
267 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
269 /// alloca if possible or null if not.
270 AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
271 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
272 // out.
273 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
274 return 0;
276 // If we were able to find a vector type that can handle this with
277 // insert/extract elements, and if there was at least one use that had
278 // a vector type, promote this to a vector. We don't want to promote
279 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280 // we just get a lot of insert/extracts. If at least one vector is
281 // involved, then we probably really do have a union of vector/array.
282 const Type *NewTy;
283 if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
284 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
285 << *VectorTy << '\n');
286 NewTy = VectorTy; // Use the vector type.
287 } else {
288 unsigned BitWidth = AllocaSize * 8;
289 if (!HadAVector && !HadNonMemTransferAccess &&
290 !TD.fitsInLegalInteger(BitWidth))
291 return 0;
293 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
294 // Create and insert the integer alloca.
295 NewTy = IntegerType::get(AI->getContext(), BitWidth);
297 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
298 ConvertUsesToScalar(AI, NewAI, 0);
299 return NewAI;
302 /// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303 /// so far at the offset specified by Offset (which is specified in bytes).
305 /// There are three cases we handle here:
306 /// 1) A union of vector types of the same size and potentially its elements.
307 /// Here we turn element accesses into insert/extract element operations.
308 /// This promotes a <4 x float> with a store of float to the third element
309 /// into a <4 x float> that uses insert element.
310 /// 2) A union of vector types with power-of-2 size differences, e.g. a float,
311 /// <2 x float> and <4 x float>. Here we turn element accesses into insert
312 /// and extract element operations, and <2 x float> accesses into a cast to
313 /// <2 x double>, an extract, and a cast back to <2 x float>.
314 /// 3) A fully general blob of memory, which we turn into some (potentially
315 /// large) integer type with extract and insert operations where the loads
316 /// and stores would mutate the memory. We mark this by setting VectorTy
317 /// to VoidTy.
318 void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
319 bool IsLoadOrStore) {
320 // If we already decided to turn this into a blob of integer memory, there is
321 // nothing to be done.
322 if (VectorTy && VectorTy->isVoidTy())
323 return;
325 // If this could be contributing to a vector, analyze it.
327 // If the In type is a vector that is the same size as the alloca, see if it
328 // matches the existing VecTy.
329 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
330 if (MergeInVectorType(VInTy, Offset))
331 return;
332 } else if (In->isFloatTy() || In->isDoubleTy() ||
333 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
334 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
335 // Full width accesses can be ignored, because they can always be turned
336 // into bitcasts.
337 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
338 if (IsLoadOrStore && EltSize == AllocaSize)
339 return;
340 // If we're accessing something that could be an element of a vector, see
341 // if the implied vector agrees with what we already have and if Offset is
342 // compatible with it.
343 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
344 (VectorTy == 0 ||
345 cast<VectorType>(VectorTy)->getElementType()
346 ->getPrimitiveSizeInBits()/8 == EltSize)) {
347 if (VectorTy == 0)
348 VectorTy = VectorType::get(In, AllocaSize/EltSize);
349 return;
353 // Otherwise, we have a case that we can't handle with an optimized vector
354 // form. We can still turn this into a large integer.
355 VectorTy = Type::getVoidTy(In->getContext());
358 /// MergeInVectorType - Handles the vector case of MergeInType, returning true
359 /// if the type was successfully merged and false otherwise.
360 bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
361 uint64_t Offset) {
362 // Remember if we saw a vector type.
363 HadAVector = true;
365 // TODO: Support nonzero offsets?
366 if (Offset != 0)
367 return false;
369 // Only allow vectors that are a power-of-2 away from the size of the alloca.
370 if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
371 return false;
373 // If this the first vector we see, remember the type so that we know the
374 // element size.
375 if (!VectorTy) {
376 VectorTy = VInTy;
377 return true;
380 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
381 unsigned InBitWidth = VInTy->getBitWidth();
383 // Vectors of the same size can be converted using a simple bitcast.
384 if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
385 return true;
387 const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
388 const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
390 // Do not allow mixed integer and floating-point accesses from vectors of
391 // different sizes.
392 if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
393 return false;
395 if (ElementTy->isFloatingPointTy()) {
396 // Only allow floating-point vectors of different sizes if they have the
397 // same element type.
398 // TODO: This could be loosened a bit, but would anything benefit?
399 if (ElementTy != InElementTy)
400 return false;
402 // There are no arbitrary-precision floating-point types, which limits the
403 // number of legal vector types with larger element types that we can form
404 // to bitcast and extract a subvector.
405 // TODO: We could support some more cases with mixed fp128 and double here.
406 if (!(BitWidth == 64 || BitWidth == 128) ||
407 !(InBitWidth == 64 || InBitWidth == 128))
408 return false;
409 } else {
410 assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
411 "or floating-point.");
412 unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
413 unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
415 // Do not allow integer types smaller than a byte or types whose widths are
416 // not a multiple of a byte.
417 if (BitWidth < 8 || InBitWidth < 8 ||
418 BitWidth % 8 != 0 || InBitWidth % 8 != 0)
419 return false;
422 // Pick the largest of the two vector types.
423 if (InBitWidth > BitWidth)
424 VectorTy = VInTy;
426 return true;
429 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
430 /// its accesses to a single vector type, return true and set VecTy to
431 /// the new type. If we could convert the alloca into a single promotable
432 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
433 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
434 /// is the current offset from the base of the alloca being analyzed.
436 /// If we see at least one access to the value that is as a vector type, set the
437 /// SawVec flag.
438 bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
439 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
440 Instruction *User = cast<Instruction>(*UI);
442 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
443 // Don't break volatile loads.
444 if (LI->isVolatile())
445 return false;
446 // Don't touch MMX operations.
447 if (LI->getType()->isX86_MMXTy())
448 return false;
449 HadNonMemTransferAccess = true;
450 MergeInType(LI->getType(), Offset, true);
451 continue;
454 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
455 // Storing the pointer, not into the value?
456 if (SI->getOperand(0) == V || SI->isVolatile()) return false;
457 // Don't touch MMX operations.
458 if (SI->getOperand(0)->getType()->isX86_MMXTy())
459 return false;
460 HadNonMemTransferAccess = true;
461 MergeInType(SI->getOperand(0)->getType(), Offset, true);
462 continue;
465 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
466 IsNotTrivial = true; // Can't be mem2reg'd.
467 if (!CanConvertToScalar(BCI, Offset))
468 return false;
469 continue;
472 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
473 // If this is a GEP with a variable indices, we can't handle it.
474 if (!GEP->hasAllConstantIndices())
475 return false;
477 // Compute the offset that this GEP adds to the pointer.
478 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
479 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
480 &Indices[0], Indices.size());
481 // See if all uses can be converted.
482 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
483 return false;
484 IsNotTrivial = true; // Can't be mem2reg'd.
485 HadNonMemTransferAccess = true;
486 continue;
489 // If this is a constant sized memset of a constant value (e.g. 0) we can
490 // handle it.
491 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
492 // Store of constant value and constant size.
493 if (!isa<ConstantInt>(MSI->getValue()) ||
494 !isa<ConstantInt>(MSI->getLength()))
495 return false;
496 IsNotTrivial = true; // Can't be mem2reg'd.
497 HadNonMemTransferAccess = true;
498 continue;
501 // If this is a memcpy or memmove into or out of the whole allocation, we
502 // can handle it like a load or store of the scalar type.
503 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
504 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
505 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
506 return false;
508 IsNotTrivial = true; // Can't be mem2reg'd.
509 continue;
512 // Otherwise, we cannot handle this!
513 return false;
516 return true;
519 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
520 /// directly. This happens when we are converting an "integer union" to a
521 /// single integer scalar, or when we are converting a "vector union" to a
522 /// vector with insert/extractelement instructions.
524 /// Offset is an offset from the original alloca, in bits that need to be
525 /// shifted to the right. By the end of this, there should be no uses of Ptr.
526 void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
527 uint64_t Offset) {
528 while (!Ptr->use_empty()) {
529 Instruction *User = cast<Instruction>(Ptr->use_back());
531 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
532 ConvertUsesToScalar(CI, NewAI, Offset);
533 CI->eraseFromParent();
534 continue;
537 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
538 // Compute the offset that this GEP adds to the pointer.
539 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
540 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
541 &Indices[0], Indices.size());
542 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
543 GEP->eraseFromParent();
544 continue;
547 IRBuilder<> Builder(User);
549 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
550 // The load is a bit extract from NewAI shifted right by Offset bits.
551 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
552 Value *NewLoadVal
553 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
554 LI->replaceAllUsesWith(NewLoadVal);
555 LI->eraseFromParent();
556 continue;
559 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
560 assert(SI->getOperand(0) != Ptr && "Consistency error!");
561 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
562 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
563 Builder);
564 Builder.CreateStore(New, NewAI);
565 SI->eraseFromParent();
567 // If the load we just inserted is now dead, then the inserted store
568 // overwrote the entire thing.
569 if (Old->use_empty())
570 Old->eraseFromParent();
571 continue;
574 // If this is a constant sized memset of a constant value (e.g. 0) we can
575 // transform it into a store of the expanded constant value.
576 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
577 assert(MSI->getRawDest() == Ptr && "Consistency error!");
578 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
579 if (NumBytes != 0) {
580 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
582 // Compute the value replicated the right number of times.
583 APInt APVal(NumBytes*8, Val);
585 // Splat the value if non-zero.
586 if (Val)
587 for (unsigned i = 1; i != NumBytes; ++i)
588 APVal |= APVal << 8;
590 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
591 Value *New = ConvertScalar_InsertValue(
592 ConstantInt::get(User->getContext(), APVal),
593 Old, Offset, Builder);
594 Builder.CreateStore(New, NewAI);
596 // If the load we just inserted is now dead, then the memset overwrote
597 // the entire thing.
598 if (Old->use_empty())
599 Old->eraseFromParent();
601 MSI->eraseFromParent();
602 continue;
605 // If this is a memcpy or memmove into or out of the whole allocation, we
606 // can handle it like a load or store of the scalar type.
607 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
608 assert(Offset == 0 && "must be store to start of alloca");
610 // If the source and destination are both to the same alloca, then this is
611 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
612 // as appropriate.
613 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
615 if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
616 // Dest must be OrigAI, change this to be a load from the original
617 // pointer (bitcasted), then a store to our new alloca.
618 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
619 Value *SrcPtr = MTI->getSource();
620 const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
621 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
622 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
623 AIPTy = PointerType::get(AIPTy->getElementType(),
624 SPTy->getAddressSpace());
626 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
628 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
629 SrcVal->setAlignment(MTI->getAlignment());
630 Builder.CreateStore(SrcVal, NewAI);
631 } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
632 // Src must be OrigAI, change this to be a load from NewAI then a store
633 // through the original dest pointer (bitcasted).
634 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
635 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
637 const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
638 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
639 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
640 AIPTy = PointerType::get(AIPTy->getElementType(),
641 DPTy->getAddressSpace());
643 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
645 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
646 NewStore->setAlignment(MTI->getAlignment());
647 } else {
648 // Noop transfer. Src == Dst
651 MTI->eraseFromParent();
652 continue;
655 llvm_unreachable("Unsupported operation!");
659 /// getScaledElementType - Gets a scaled element type for a partial vector
660 /// access of an alloca. The input type must be an integer or float, and
661 /// the resulting type must be an integer, float or double.
662 static const Type *getScaledElementType(const Type *OldTy,
663 unsigned NewBitWidth) {
664 assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
665 "accesses must be scaled from integer or float elements.");
667 LLVMContext &Context = OldTy->getContext();
669 if (OldTy->isIntegerTy())
670 return Type::getIntNTy(Context, NewBitWidth);
671 if (NewBitWidth == 32)
672 return Type::getFloatTy(Context);
673 if (NewBitWidth == 64)
674 return Type::getDoubleTy(Context);
676 llvm_unreachable("Invalid type for a partial vector access of an alloca!");
679 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
680 /// or vector value FromVal, extracting the bits from the offset specified by
681 /// Offset. This returns the value, which is of type ToType.
683 /// This happens when we are converting an "integer union" to a single
684 /// integer scalar, or when we are converting a "vector union" to a vector with
685 /// insert/extractelement instructions.
687 /// Offset is an offset from the original alloca, in bits that need to be
688 /// shifted to the right.
689 Value *ConvertToScalarInfo::
690 ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
691 uint64_t Offset, IRBuilder<> &Builder) {
692 // If the load is of the whole new alloca, no conversion is needed.
693 if (FromVal->getType() == ToType && Offset == 0)
694 return FromVal;
696 // If the result alloca is a vector type, this is either an element
697 // access or a bitcast to another vector type of the same size.
698 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
699 unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
700 if (ToTypeSize == AllocaSize)
701 return Builder.CreateBitCast(FromVal, ToType, "tmp");
703 if (ToType->isVectorTy()) {
704 assert(isPowerOf2_64(AllocaSize / ToTypeSize) &&
705 "Partial vector access of an alloca must have a power-of-2 size "
706 "ratio.");
707 assert(Offset == 0 && "Can't extract a value of a smaller vector type "
708 "from a nonzero offset.");
710 const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
711 const Type *CastElementTy = getScaledElementType(ToElementTy,
712 ToTypeSize * 8);
713 unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
715 LLVMContext &Context = FromVal->getContext();
716 const Type *CastTy = VectorType::get(CastElementTy,
717 NumCastVectorElements);
718 Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
719 Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
720 Type::getInt32Ty(Context), 0), "tmp");
721 return Builder.CreateBitCast(Extract, ToType, "tmp");
724 // Otherwise it must be an element access.
725 unsigned Elt = 0;
726 if (Offset) {
727 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
728 Elt = Offset/EltSize;
729 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
731 // Return the element extracted out of it.
732 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
733 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
734 if (V->getType() != ToType)
735 V = Builder.CreateBitCast(V, ToType, "tmp");
736 return V;
739 // If ToType is a first class aggregate, extract out each of the pieces and
740 // use insertvalue's to form the FCA.
741 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
742 const StructLayout &Layout = *TD.getStructLayout(ST);
743 Value *Res = UndefValue::get(ST);
744 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
745 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
746 Offset+Layout.getElementOffsetInBits(i),
747 Builder);
748 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
750 return Res;
753 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
754 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
755 Value *Res = UndefValue::get(AT);
756 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
757 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
758 Offset+i*EltSize, Builder);
759 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
761 return Res;
764 // Otherwise, this must be a union that was converted to an integer value.
765 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
767 // If this is a big-endian system and the load is narrower than the
768 // full alloca type, we need to do a shift to get the right bits.
769 int ShAmt = 0;
770 if (TD.isBigEndian()) {
771 // On big-endian machines, the lowest bit is stored at the bit offset
772 // from the pointer given by getTypeStoreSizeInBits. This matters for
773 // integers with a bitwidth that is not a multiple of 8.
774 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
775 TD.getTypeStoreSizeInBits(ToType) - Offset;
776 } else {
777 ShAmt = Offset;
780 // Note: we support negative bitwidths (with shl) which are not defined.
781 // We do this to support (f.e.) loads off the end of a structure where
782 // only some bits are used.
783 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
784 FromVal = Builder.CreateLShr(FromVal,
785 ConstantInt::get(FromVal->getType(),
786 ShAmt), "tmp");
787 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
788 FromVal = Builder.CreateShl(FromVal,
789 ConstantInt::get(FromVal->getType(),
790 -ShAmt), "tmp");
792 // Finally, unconditionally truncate the integer to the right width.
793 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
794 if (LIBitWidth < NTy->getBitWidth())
795 FromVal =
796 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
797 LIBitWidth), "tmp");
798 else if (LIBitWidth > NTy->getBitWidth())
799 FromVal =
800 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
801 LIBitWidth), "tmp");
803 // If the result is an integer, this is a trunc or bitcast.
804 if (ToType->isIntegerTy()) {
805 // Should be done.
806 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
807 // Just do a bitcast, we know the sizes match up.
808 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
809 } else {
810 // Otherwise must be a pointer.
811 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
813 assert(FromVal->getType() == ToType && "Didn't convert right?");
814 return FromVal;
817 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
818 /// or vector value "Old" at the offset specified by Offset.
820 /// This happens when we are converting an "integer union" to a
821 /// single integer scalar, or when we are converting a "vector union" to a
822 /// vector with insert/extractelement instructions.
824 /// Offset is an offset from the original alloca, in bits that need to be
825 /// shifted to the right.
826 Value *ConvertToScalarInfo::
827 ConvertScalar_InsertValue(Value *SV, Value *Old,
828 uint64_t Offset, IRBuilder<> &Builder) {
829 // Convert the stored type to the actual type, shift it left to insert
830 // then 'or' into place.
831 const Type *AllocaType = Old->getType();
832 LLVMContext &Context = Old->getContext();
834 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
835 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
836 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
838 // Changing the whole vector with memset or with an access of a different
839 // vector type?
840 if (ValSize == VecSize)
841 return Builder.CreateBitCast(SV, AllocaType, "tmp");
843 if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
844 assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
845 "a nonzero offset.");
847 const Type *ToElementTy =
848 cast<VectorType>(SV->getType())->getElementType();
849 const Type *CastElementTy = getScaledElementType(ToElementTy, ValSize);
850 unsigned NumCastVectorElements = VecSize / ValSize;
852 LLVMContext &Context = SV->getContext();
853 const Type *OldCastTy = VectorType::get(CastElementTy,
854 NumCastVectorElements);
855 Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
857 Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
858 Value *Insert =
859 Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
860 Type::getInt32Ty(Context), 0), "tmp");
861 return Builder.CreateBitCast(Insert, AllocaType, "tmp");
864 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
866 // Must be an element insertion.
867 unsigned Elt = Offset/EltSize;
869 if (SV->getType() != VTy->getElementType())
870 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
872 SV = Builder.CreateInsertElement(Old, SV,
873 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
874 "tmp");
875 return SV;
878 // If SV is a first-class aggregate value, insert each value recursively.
879 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
880 const StructLayout &Layout = *TD.getStructLayout(ST);
881 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
882 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
883 Old = ConvertScalar_InsertValue(Elt, Old,
884 Offset+Layout.getElementOffsetInBits(i),
885 Builder);
887 return Old;
890 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
891 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
892 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
893 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
894 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
896 return Old;
899 // If SV is a float, convert it to the appropriate integer type.
900 // If it is a pointer, do the same.
901 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
902 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
903 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
904 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
905 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
906 SV = Builder.CreateBitCast(SV,
907 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
908 else if (SV->getType()->isPointerTy())
909 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
911 // Zero extend or truncate the value if needed.
912 if (SV->getType() != AllocaType) {
913 if (SV->getType()->getPrimitiveSizeInBits() <
914 AllocaType->getPrimitiveSizeInBits())
915 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
916 else {
917 // Truncation may be needed if storing more than the alloca can hold
918 // (undefined behavior).
919 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
920 SrcWidth = DestWidth;
921 SrcStoreWidth = DestStoreWidth;
925 // If this is a big-endian system and the store is narrower than the
926 // full alloca type, we need to do a shift to get the right bits.
927 int ShAmt = 0;
928 if (TD.isBigEndian()) {
929 // On big-endian machines, the lowest bit is stored at the bit offset
930 // from the pointer given by getTypeStoreSizeInBits. This matters for
931 // integers with a bitwidth that is not a multiple of 8.
932 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
933 } else {
934 ShAmt = Offset;
937 // Note: we support negative bitwidths (with shr) which are not defined.
938 // We do this to support (f.e.) stores off the end of a structure where
939 // only some bits in the structure are set.
940 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
941 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
942 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
943 ShAmt), "tmp");
944 Mask <<= ShAmt;
945 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
946 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
947 -ShAmt), "tmp");
948 Mask = Mask.lshr(-ShAmt);
951 // Mask out the bits we are about to insert from the old value, and or
952 // in the new bits.
953 if (SrcWidth != DestWidth) {
954 assert(DestWidth > SrcWidth);
955 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
956 SV = Builder.CreateOr(Old, SV, "ins");
958 return SV;
962 //===----------------------------------------------------------------------===//
963 // SRoA Driver
964 //===----------------------------------------------------------------------===//
967 bool SROA::runOnFunction(Function &F) {
968 TD = getAnalysisIfAvailable<TargetData>();
970 bool Changed = performPromotion(F);
972 // FIXME: ScalarRepl currently depends on TargetData more than it
973 // theoretically needs to. It should be refactored in order to support
974 // target-independent IR. Until this is done, just skip the actual
975 // scalar-replacement portion of this pass.
976 if (!TD) return Changed;
978 while (1) {
979 bool LocalChange = performScalarRepl(F);
980 if (!LocalChange) break; // No need to repromote if no scalarrepl
981 Changed = true;
982 LocalChange = performPromotion(F);
983 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
986 return Changed;
989 namespace {
990 class AllocaPromoter : public LoadAndStorePromoter {
991 AllocaInst *AI;
992 public:
993 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
994 : LoadAndStorePromoter(Insts, S), AI(0) {}
996 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
997 // Remember which alloca we're promoting (for isInstInList).
998 this->AI = AI;
999 LoadAndStorePromoter::run(Insts);
1000 AI->eraseFromParent();
1003 virtual bool isInstInList(Instruction *I,
1004 const SmallVectorImpl<Instruction*> &Insts) const {
1005 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1006 return LI->getOperand(0) == AI;
1007 return cast<StoreInst>(I)->getPointerOperand() == AI;
1010 } // end anon namespace
1012 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1013 /// subsequently loaded can be rewritten to load both input pointers and then
1014 /// select between the result, allowing the load of the alloca to be promoted.
1015 /// From this:
1016 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1017 /// %V = load i32* %P2
1018 /// to:
1019 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1020 /// %V2 = load i32* %Other
1021 /// %V = select i1 %cond, i32 %V1, i32 %V2
1023 /// We can do this to a select if its only uses are loads and if the operand to
1024 /// the select can be loaded unconditionally.
1025 static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1026 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1027 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1029 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1030 UI != UE; ++UI) {
1031 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1032 if (LI == 0 || LI->isVolatile()) return false;
1034 // Both operands to the select need to be dereferencable, either absolutely
1035 // (e.g. allocas) or at this point because we can see other accesses to it.
1036 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1037 LI->getAlignment(), TD))
1038 return false;
1039 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1040 LI->getAlignment(), TD))
1041 return false;
1044 return true;
1047 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1048 /// subsequently loaded can be rewritten to load both input pointers in the pred
1049 /// blocks and then PHI the results, allowing the load of the alloca to be
1050 /// promoted.
1051 /// From this:
1052 /// %P2 = phi [i32* %Alloca, i32* %Other]
1053 /// %V = load i32* %P2
1054 /// to:
1055 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1056 /// ...
1057 /// %V2 = load i32* %Other
1058 /// ...
1059 /// %V = phi [i32 %V1, i32 %V2]
1061 /// We can do this to a select if its only uses are loads and if the operand to
1062 /// the select can be loaded unconditionally.
1063 static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1064 // For now, we can only do this promotion if the load is in the same block as
1065 // the PHI, and if there are no stores between the phi and load.
1066 // TODO: Allow recursive phi users.
1067 // TODO: Allow stores.
1068 BasicBlock *BB = PN->getParent();
1069 unsigned MaxAlign = 0;
1070 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1071 UI != UE; ++UI) {
1072 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1073 if (LI == 0 || LI->isVolatile()) return false;
1075 // For now we only allow loads in the same block as the PHI. This is a
1076 // common case that happens when instcombine merges two loads through a PHI.
1077 if (LI->getParent() != BB) return false;
1079 // Ensure that there are no instructions between the PHI and the load that
1080 // could store.
1081 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1082 if (BBI->mayWriteToMemory())
1083 return false;
1085 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1088 // Okay, we know that we have one or more loads in the same block as the PHI.
1089 // We can transform this if it is safe to push the loads into the predecessor
1090 // blocks. The only thing to watch out for is that we can't put a possibly
1091 // trapping load in the predecessor if it is a critical edge.
1092 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1093 BasicBlock *Pred = PN->getIncomingBlock(i);
1095 // If the predecessor has a single successor, then the edge isn't critical.
1096 if (Pred->getTerminator()->getNumSuccessors() == 1)
1097 continue;
1099 Value *InVal = PN->getIncomingValue(i);
1101 // If the InVal is an invoke in the pred, we can't put a load on the edge.
1102 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1103 if (II->getParent() == Pred)
1104 return false;
1106 // If this pointer is always safe to load, or if we can prove that there is
1107 // already a load in the block, then we can move the load to the pred block.
1108 if (InVal->isDereferenceablePointer() ||
1109 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1110 continue;
1112 return false;
1115 return true;
1119 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1120 /// direct (non-volatile) loads and stores to it. If the alloca is close but
1121 /// not quite there, this will transform the code to allow promotion. As such,
1122 /// it is a non-pure predicate.
1123 static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1124 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1125 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1127 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1128 UI != UE; ++UI) {
1129 User *U = *UI;
1130 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1131 if (LI->isVolatile())
1132 return false;
1133 continue;
1136 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1137 if (SI->getOperand(0) == AI || SI->isVolatile())
1138 return false; // Don't allow a store OF the AI, only INTO the AI.
1139 continue;
1142 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1143 // If the condition being selected on is a constant, fold the select, yes
1144 // this does (rarely) happen early on.
1145 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1146 Value *Result = SI->getOperand(1+CI->isZero());
1147 SI->replaceAllUsesWith(Result);
1148 SI->eraseFromParent();
1150 // This is very rare and we just scrambled the use list of AI, start
1151 // over completely.
1152 return tryToMakeAllocaBePromotable(AI, TD);
1155 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1156 // loads, then we can transform this by rewriting the select.
1157 if (!isSafeSelectToSpeculate(SI, TD))
1158 return false;
1160 InstsToRewrite.insert(SI);
1161 continue;
1164 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1165 if (PN->use_empty()) { // Dead PHIs can be stripped.
1166 InstsToRewrite.insert(PN);
1167 continue;
1170 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1171 // in the pred blocks, then we can transform this by rewriting the PHI.
1172 if (!isSafePHIToSpeculate(PN, TD))
1173 return false;
1175 InstsToRewrite.insert(PN);
1176 continue;
1179 return false;
1182 // If there are no instructions to rewrite, then all uses are load/stores and
1183 // we're done!
1184 if (InstsToRewrite.empty())
1185 return true;
1187 // If we have instructions that need to be rewritten for this to be promotable
1188 // take care of it now.
1189 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1190 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1191 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1192 // loads with a new select.
1193 while (!SI->use_empty()) {
1194 LoadInst *LI = cast<LoadInst>(SI->use_back());
1196 IRBuilder<> Builder(LI);
1197 LoadInst *TrueLoad =
1198 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1199 LoadInst *FalseLoad =
1200 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1202 // Transfer alignment and TBAA info if present.
1203 TrueLoad->setAlignment(LI->getAlignment());
1204 FalseLoad->setAlignment(LI->getAlignment());
1205 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1206 TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1207 FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1210 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1211 V->takeName(LI);
1212 LI->replaceAllUsesWith(V);
1213 LI->eraseFromParent();
1216 // Now that all the loads are gone, the select is gone too.
1217 SI->eraseFromParent();
1218 continue;
1221 // Otherwise, we have a PHI node which allows us to push the loads into the
1222 // predecessors.
1223 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1224 if (PN->use_empty()) {
1225 PN->eraseFromParent();
1226 continue;
1229 const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1230 PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1231 PN->getName()+".ld", PN);
1233 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1234 // matter which one we get and if any differ, it doesn't matter.
1235 LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1236 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1237 unsigned Align = SomeLoad->getAlignment();
1239 // Rewrite all loads of the PN to use the new PHI.
1240 while (!PN->use_empty()) {
1241 LoadInst *LI = cast<LoadInst>(PN->use_back());
1242 LI->replaceAllUsesWith(NewPN);
1243 LI->eraseFromParent();
1246 // Inject loads into all of the pred blocks. Keep track of which blocks we
1247 // insert them into in case we have multiple edges from the same block.
1248 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1250 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1251 BasicBlock *Pred = PN->getIncomingBlock(i);
1252 LoadInst *&Load = InsertedLoads[Pred];
1253 if (Load == 0) {
1254 Load = new LoadInst(PN->getIncomingValue(i),
1255 PN->getName() + "." + Pred->getName(),
1256 Pred->getTerminator());
1257 Load->setAlignment(Align);
1258 if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1261 NewPN->addIncoming(Load, Pred);
1264 PN->eraseFromParent();
1267 ++NumAdjusted;
1268 return true;
1272 bool SROA::performPromotion(Function &F) {
1273 std::vector<AllocaInst*> Allocas;
1274 DominatorTree *DT = 0;
1275 if (HasDomTree)
1276 DT = &getAnalysis<DominatorTree>();
1278 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
1280 bool Changed = false;
1281 SmallVector<Instruction*, 64> Insts;
1282 while (1) {
1283 Allocas.clear();
1285 // Find allocas that are safe to promote, by looking at all instructions in
1286 // the entry node
1287 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1288 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
1289 if (tryToMakeAllocaBePromotable(AI, TD))
1290 Allocas.push_back(AI);
1292 if (Allocas.empty()) break;
1294 if (HasDomTree)
1295 PromoteMemToReg(Allocas, *DT);
1296 else {
1297 SSAUpdater SSA;
1298 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1299 AllocaInst *AI = Allocas[i];
1301 // Build list of instructions to promote.
1302 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1303 UI != E; ++UI)
1304 Insts.push_back(cast<Instruction>(*UI));
1306 AllocaPromoter(Insts, SSA).run(AI, Insts);
1307 Insts.clear();
1310 NumPromoted += Allocas.size();
1311 Changed = true;
1314 return Changed;
1318 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1319 /// SROA. It must be a struct or array type with a small number of elements.
1320 static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1321 const Type *T = AI->getAllocatedType();
1322 // Do not promote any struct into more than 32 separate vars.
1323 if (const StructType *ST = dyn_cast<StructType>(T))
1324 return ST->getNumElements() <= 32;
1325 // Arrays are much less likely to be safe for SROA; only consider
1326 // them if they are very small.
1327 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1328 return AT->getNumElements() <= 8;
1329 return false;
1333 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1334 // which runs on all of the malloc/alloca instructions in the function, removing
1335 // them if they are only used by getelementptr instructions.
1337 bool SROA::performScalarRepl(Function &F) {
1338 std::vector<AllocaInst*> WorkList;
1340 // Scan the entry basic block, adding allocas to the worklist.
1341 BasicBlock &BB = F.getEntryBlock();
1342 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1343 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1344 WorkList.push_back(A);
1346 // Process the worklist
1347 bool Changed = false;
1348 while (!WorkList.empty()) {
1349 AllocaInst *AI = WorkList.back();
1350 WorkList.pop_back();
1352 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1353 // with unused elements.
1354 if (AI->use_empty()) {
1355 AI->eraseFromParent();
1356 Changed = true;
1357 continue;
1360 // If this alloca is impossible for us to promote, reject it early.
1361 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1362 continue;
1364 // Check to see if this allocation is only modified by a memcpy/memmove from
1365 // a constant global. If this is the case, we can change all users to use
1366 // the constant global instead. This is commonly produced by the CFE by
1367 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1368 // is only subsequently read.
1369 if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1370 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1371 DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
1372 Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1373 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1374 TheCopy->eraseFromParent(); // Don't mutate the global.
1375 AI->eraseFromParent();
1376 ++NumGlobals;
1377 Changed = true;
1378 continue;
1381 // Check to see if we can perform the core SROA transformation. We cannot
1382 // transform the allocation instruction if it is an array allocation
1383 // (allocations OF arrays are ok though), and an allocation of a scalar
1384 // value cannot be decomposed at all.
1385 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1387 // Do not promote [0 x %struct].
1388 if (AllocaSize == 0) continue;
1390 // Do not promote any struct whose size is too big.
1391 if (AllocaSize > SRThreshold) continue;
1393 // If the alloca looks like a good candidate for scalar replacement, and if
1394 // all its users can be transformed, then split up the aggregate into its
1395 // separate elements.
1396 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1397 DoScalarReplacement(AI, WorkList);
1398 Changed = true;
1399 continue;
1402 // If we can turn this aggregate value (potentially with casts) into a
1403 // simple scalar value that can be mem2reg'd into a register value.
1404 // IsNotTrivial tracks whether this is something that mem2reg could have
1405 // promoted itself. If so, we don't want to transform it needlessly. Note
1406 // that we can't just check based on the type: the alloca may be of an i32
1407 // but that has pointer arithmetic to set byte 3 of it or something.
1408 if (AllocaInst *NewAI =
1409 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1410 NewAI->takeName(AI);
1411 AI->eraseFromParent();
1412 ++NumConverted;
1413 Changed = true;
1414 continue;
1417 // Otherwise, couldn't process this alloca.
1420 return Changed;
1423 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1424 /// predicate, do SROA now.
1425 void SROA::DoScalarReplacement(AllocaInst *AI,
1426 std::vector<AllocaInst*> &WorkList) {
1427 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1428 SmallVector<AllocaInst*, 32> ElementAllocas;
1429 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1430 ElementAllocas.reserve(ST->getNumContainedTypes());
1431 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1432 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1433 AI->getAlignment(),
1434 AI->getName() + "." + Twine(i), AI);
1435 ElementAllocas.push_back(NA);
1436 WorkList.push_back(NA); // Add to worklist for recursive processing
1438 } else {
1439 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1440 ElementAllocas.reserve(AT->getNumElements());
1441 const Type *ElTy = AT->getElementType();
1442 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1443 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1444 AI->getName() + "." + Twine(i), AI);
1445 ElementAllocas.push_back(NA);
1446 WorkList.push_back(NA); // Add to worklist for recursive processing
1450 // Now that we have created the new alloca instructions, rewrite all the
1451 // uses of the old alloca.
1452 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1454 // Now erase any instructions that were made dead while rewriting the alloca.
1455 DeleteDeadInstructions();
1456 AI->eraseFromParent();
1458 ++NumReplaced;
1461 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1462 /// recursively including all their operands that become trivially dead.
1463 void SROA::DeleteDeadInstructions() {
1464 while (!DeadInsts.empty()) {
1465 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1467 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1468 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1469 // Zero out the operand and see if it becomes trivially dead.
1470 // (But, don't add allocas to the dead instruction list -- they are
1471 // already on the worklist and will be deleted separately.)
1472 *OI = 0;
1473 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1474 DeadInsts.push_back(U);
1477 I->eraseFromParent();
1481 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1482 /// performing scalar replacement of alloca AI. The results are flagged in
1483 /// the Info parameter. Offset indicates the position within AI that is
1484 /// referenced by this instruction.
1485 void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1486 AllocaInfo &Info) {
1487 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1488 Instruction *User = cast<Instruction>(*UI);
1490 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1491 isSafeForScalarRepl(BC, Offset, Info);
1492 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1493 uint64_t GEPOffset = Offset;
1494 isSafeGEP(GEPI, GEPOffset, Info);
1495 if (!Info.isUnsafe)
1496 isSafeForScalarRepl(GEPI, GEPOffset, Info);
1497 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1498 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1499 if (Length == 0)
1500 return MarkUnsafe(Info, User);
1501 isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1502 UI.getOperandNo() == 0, Info, MI,
1503 true /*AllowWholeAccess*/);
1504 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1505 if (LI->isVolatile())
1506 return MarkUnsafe(Info, User);
1507 const Type *LIType = LI->getType();
1508 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1509 LIType, false, Info, LI, true /*AllowWholeAccess*/);
1510 Info.hasALoadOrStore = true;
1512 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1513 // Store is ok if storing INTO the pointer, not storing the pointer
1514 if (SI->isVolatile() || SI->getOperand(0) == I)
1515 return MarkUnsafe(Info, User);
1517 const Type *SIType = SI->getOperand(0)->getType();
1518 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1519 SIType, true, Info, SI, true /*AllowWholeAccess*/);
1520 Info.hasALoadOrStore = true;
1521 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1522 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1523 } else {
1524 return MarkUnsafe(Info, User);
1526 if (Info.isUnsafe) return;
1531 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1532 /// derived from the alloca, we can often still split the alloca into elements.
1533 /// This is useful if we have a large alloca where one element is phi'd
1534 /// together somewhere: we can SRoA and promote all the other elements even if
1535 /// we end up not being able to promote this one.
1537 /// All we require is that the uses of the PHI do not index into other parts of
1538 /// the alloca. The most important use case for this is single load and stores
1539 /// that are PHI'd together, which can happen due to code sinking.
1540 void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1541 AllocaInfo &Info) {
1542 // If we've already checked this PHI, don't do it again.
1543 if (PHINode *PN = dyn_cast<PHINode>(I))
1544 if (!Info.CheckedPHIs.insert(PN))
1545 return;
1547 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1548 Instruction *User = cast<Instruction>(*UI);
1550 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1551 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1552 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1553 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1554 // but would have to prove that we're staying inside of an element being
1555 // promoted.
1556 if (!GEPI->hasAllZeroIndices())
1557 return MarkUnsafe(Info, User);
1558 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1559 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1560 if (LI->isVolatile())
1561 return MarkUnsafe(Info, User);
1562 const Type *LIType = LI->getType();
1563 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1564 LIType, false, Info, LI, false /*AllowWholeAccess*/);
1565 Info.hasALoadOrStore = true;
1567 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1568 // Store is ok if storing INTO the pointer, not storing the pointer
1569 if (SI->isVolatile() || SI->getOperand(0) == I)
1570 return MarkUnsafe(Info, User);
1572 const Type *SIType = SI->getOperand(0)->getType();
1573 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1574 SIType, true, Info, SI, false /*AllowWholeAccess*/);
1575 Info.hasALoadOrStore = true;
1576 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1577 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1578 } else {
1579 return MarkUnsafe(Info, User);
1581 if (Info.isUnsafe) return;
1585 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1586 /// replacement. It is safe when all the indices are constant, in-bounds
1587 /// references, and when the resulting offset corresponds to an element within
1588 /// the alloca type. The results are flagged in the Info parameter. Upon
1589 /// return, Offset is adjusted as specified by the GEP indices.
1590 void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1591 uint64_t &Offset, AllocaInfo &Info) {
1592 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1593 if (GEPIt == E)
1594 return;
1596 // Walk through the GEP type indices, checking the types that this indexes
1597 // into.
1598 for (; GEPIt != E; ++GEPIt) {
1599 // Ignore struct elements, no extra checking needed for these.
1600 if ((*GEPIt)->isStructTy())
1601 continue;
1603 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1604 if (!IdxVal)
1605 return MarkUnsafe(Info, GEPI);
1608 // Compute the offset due to this GEP and check if the alloca has a
1609 // component element at that offset.
1610 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1611 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1612 &Indices[0], Indices.size());
1613 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1614 MarkUnsafe(Info, GEPI);
1617 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1618 /// elements of the same type (which is always true for arrays). If so,
1619 /// return true with NumElts and EltTy set to the number of elements and the
1620 /// element type, respectively.
1621 static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1622 const Type *&EltTy) {
1623 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1624 NumElts = AT->getNumElements();
1625 EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1626 return true;
1628 if (const StructType *ST = dyn_cast<StructType>(T)) {
1629 NumElts = ST->getNumContainedTypes();
1630 EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1631 for (unsigned n = 1; n < NumElts; ++n) {
1632 if (ST->getContainedType(n) != EltTy)
1633 return false;
1635 return true;
1637 return false;
1640 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1641 /// "homogeneous" aggregates with the same element type and number of elements.
1642 static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1643 if (T1 == T2)
1644 return true;
1646 unsigned NumElts1, NumElts2;
1647 const Type *EltTy1, *EltTy2;
1648 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1649 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1650 NumElts1 == NumElts2 &&
1651 EltTy1 == EltTy2)
1652 return true;
1654 return false;
1657 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1658 /// alloca or has an offset and size that corresponds to a component element
1659 /// within it. The offset checked here may have been formed from a GEP with a
1660 /// pointer bitcasted to a different type.
1662 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1663 /// unit. If false, it only allows accesses known to be in a single element.
1664 void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1665 const Type *MemOpType, bool isStore,
1666 AllocaInfo &Info, Instruction *TheAccess,
1667 bool AllowWholeAccess) {
1668 // Check if this is a load/store of the entire alloca.
1669 if (Offset == 0 && AllowWholeAccess &&
1670 MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1671 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1672 // loads/stores (which are essentially the same as the MemIntrinsics with
1673 // regard to copying padding between elements). But, if an alloca is
1674 // flagged as both a source and destination of such operations, we'll need
1675 // to check later for padding between elements.
1676 if (!MemOpType || MemOpType->isIntegerTy()) {
1677 if (isStore)
1678 Info.isMemCpyDst = true;
1679 else
1680 Info.isMemCpySrc = true;
1681 return;
1683 // This is also safe for references using a type that is compatible with
1684 // the type of the alloca, so that loads/stores can be rewritten using
1685 // insertvalue/extractvalue.
1686 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1687 Info.hasSubelementAccess = true;
1688 return;
1691 // Check if the offset/size correspond to a component within the alloca type.
1692 const Type *T = Info.AI->getAllocatedType();
1693 if (TypeHasComponent(T, Offset, MemSize)) {
1694 Info.hasSubelementAccess = true;
1695 return;
1698 return MarkUnsafe(Info, TheAccess);
1701 /// TypeHasComponent - Return true if T has a component type with the
1702 /// specified offset and size. If Size is zero, do not check the size.
1703 bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1704 const Type *EltTy;
1705 uint64_t EltSize;
1706 if (const StructType *ST = dyn_cast<StructType>(T)) {
1707 const StructLayout *Layout = TD->getStructLayout(ST);
1708 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1709 EltTy = ST->getContainedType(EltIdx);
1710 EltSize = TD->getTypeAllocSize(EltTy);
1711 Offset -= Layout->getElementOffset(EltIdx);
1712 } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1713 EltTy = AT->getElementType();
1714 EltSize = TD->getTypeAllocSize(EltTy);
1715 if (Offset >= AT->getNumElements() * EltSize)
1716 return false;
1717 Offset %= EltSize;
1718 } else {
1719 return false;
1721 if (Offset == 0 && (Size == 0 || EltSize == Size))
1722 return true;
1723 // Check if the component spans multiple elements.
1724 if (Offset + Size > EltSize)
1725 return false;
1726 return TypeHasComponent(EltTy, Offset, Size);
1729 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1730 /// the instruction I, which references it, to use the separate elements.
1731 /// Offset indicates the position within AI that is referenced by this
1732 /// instruction.
1733 void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1734 SmallVector<AllocaInst*, 32> &NewElts) {
1735 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1736 Use &TheUse = UI.getUse();
1737 Instruction *User = cast<Instruction>(*UI++);
1739 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1740 RewriteBitCast(BC, AI, Offset, NewElts);
1741 continue;
1744 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1745 RewriteGEP(GEPI, AI, Offset, NewElts);
1746 continue;
1749 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1750 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1751 uint64_t MemSize = Length->getZExtValue();
1752 if (Offset == 0 &&
1753 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1754 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1755 // Otherwise the intrinsic can only touch a single element and the
1756 // address operand will be updated, so nothing else needs to be done.
1757 continue;
1760 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1761 const Type *LIType = LI->getType();
1763 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1764 // Replace:
1765 // %res = load { i32, i32 }* %alloc
1766 // with:
1767 // %load.0 = load i32* %alloc.0
1768 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1769 // %load.1 = load i32* %alloc.1
1770 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1771 // (Also works for arrays instead of structs)
1772 Value *Insert = UndefValue::get(LIType);
1773 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1774 Value *Load = new LoadInst(NewElts[i], "load", LI);
1775 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1777 LI->replaceAllUsesWith(Insert);
1778 DeadInsts.push_back(LI);
1779 } else if (LIType->isIntegerTy() &&
1780 TD->getTypeAllocSize(LIType) ==
1781 TD->getTypeAllocSize(AI->getAllocatedType())) {
1782 // If this is a load of the entire alloca to an integer, rewrite it.
1783 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1785 continue;
1788 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1789 Value *Val = SI->getOperand(0);
1790 const Type *SIType = Val->getType();
1791 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1792 // Replace:
1793 // store { i32, i32 } %val, { i32, i32 }* %alloc
1794 // with:
1795 // %val.0 = extractvalue { i32, i32 } %val, 0
1796 // store i32 %val.0, i32* %alloc.0
1797 // %val.1 = extractvalue { i32, i32 } %val, 1
1798 // store i32 %val.1, i32* %alloc.1
1799 // (Also works for arrays instead of structs)
1800 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1801 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1802 new StoreInst(Extract, NewElts[i], SI);
1804 DeadInsts.push_back(SI);
1805 } else if (SIType->isIntegerTy() &&
1806 TD->getTypeAllocSize(SIType) ==
1807 TD->getTypeAllocSize(AI->getAllocatedType())) {
1808 // If this is a store of the entire alloca from an integer, rewrite it.
1809 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1811 continue;
1814 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1815 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1816 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1817 // the new pointer.
1818 if (!isa<AllocaInst>(I)) continue;
1820 assert(Offset == 0 && NewElts[0] &&
1821 "Direct alloca use should have a zero offset");
1823 // If we have a use of the alloca, we know the derived uses will be
1824 // utilizing just the first element of the scalarized result. Insert a
1825 // bitcast of the first alloca before the user as required.
1826 AllocaInst *NewAI = NewElts[0];
1827 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1828 NewAI->moveBefore(BCI);
1829 TheUse = BCI;
1830 continue;
1835 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1836 /// and recursively continue updating all of its uses.
1837 void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1838 SmallVector<AllocaInst*, 32> &NewElts) {
1839 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1840 if (BC->getOperand(0) != AI)
1841 return;
1843 // The bitcast references the original alloca. Replace its uses with
1844 // references to the first new element alloca.
1845 Instruction *Val = NewElts[0];
1846 if (Val->getType() != BC->getDestTy()) {
1847 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1848 Val->takeName(BC);
1850 BC->replaceAllUsesWith(Val);
1851 DeadInsts.push_back(BC);
1854 /// FindElementAndOffset - Return the index of the element containing Offset
1855 /// within the specified type, which must be either a struct or an array.
1856 /// Sets T to the type of the element and Offset to the offset within that
1857 /// element. IdxTy is set to the type of the index result to be used in a
1858 /// GEP instruction.
1859 uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1860 const Type *&IdxTy) {
1861 uint64_t Idx = 0;
1862 if (const StructType *ST = dyn_cast<StructType>(T)) {
1863 const StructLayout *Layout = TD->getStructLayout(ST);
1864 Idx = Layout->getElementContainingOffset(Offset);
1865 T = ST->getContainedType(Idx);
1866 Offset -= Layout->getElementOffset(Idx);
1867 IdxTy = Type::getInt32Ty(T->getContext());
1868 return Idx;
1870 const ArrayType *AT = cast<ArrayType>(T);
1871 T = AT->getElementType();
1872 uint64_t EltSize = TD->getTypeAllocSize(T);
1873 Idx = Offset / EltSize;
1874 Offset -= Idx * EltSize;
1875 IdxTy = Type::getInt64Ty(T->getContext());
1876 return Idx;
1879 /// RewriteGEP - Check if this GEP instruction moves the pointer across
1880 /// elements of the alloca that are being split apart, and if so, rewrite
1881 /// the GEP to be relative to the new element.
1882 void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1883 SmallVector<AllocaInst*, 32> &NewElts) {
1884 uint64_t OldOffset = Offset;
1885 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1886 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1887 &Indices[0], Indices.size());
1889 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1891 const Type *T = AI->getAllocatedType();
1892 const Type *IdxTy;
1893 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1894 if (GEPI->getOperand(0) == AI)
1895 OldIdx = ~0ULL; // Force the GEP to be rewritten.
1897 T = AI->getAllocatedType();
1898 uint64_t EltOffset = Offset;
1899 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1901 // If this GEP does not move the pointer across elements of the alloca
1902 // being split, then it does not needs to be rewritten.
1903 if (Idx == OldIdx)
1904 return;
1906 const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1907 SmallVector<Value*, 8> NewArgs;
1908 NewArgs.push_back(Constant::getNullValue(i32Ty));
1909 while (EltOffset != 0) {
1910 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1911 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1913 Instruction *Val = NewElts[Idx];
1914 if (NewArgs.size() > 1) {
1915 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1916 NewArgs.end(), "", GEPI);
1917 Val->takeName(GEPI);
1919 if (Val->getType() != GEPI->getType())
1920 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1921 GEPI->replaceAllUsesWith(Val);
1922 DeadInsts.push_back(GEPI);
1925 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1926 /// Rewrite it to copy or set the elements of the scalarized memory.
1927 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1928 AllocaInst *AI,
1929 SmallVector<AllocaInst*, 32> &NewElts) {
1930 // If this is a memcpy/memmove, construct the other pointer as the
1931 // appropriate type. The "Other" pointer is the pointer that goes to memory
1932 // that doesn't have anything to do with the alloca that we are promoting. For
1933 // memset, this Value* stays null.
1934 Value *OtherPtr = 0;
1935 unsigned MemAlignment = MI->getAlignment();
1936 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1937 if (Inst == MTI->getRawDest())
1938 OtherPtr = MTI->getRawSource();
1939 else {
1940 assert(Inst == MTI->getRawSource());
1941 OtherPtr = MTI->getRawDest();
1945 // If there is an other pointer, we want to convert it to the same pointer
1946 // type as AI has, so we can GEP through it safely.
1947 if (OtherPtr) {
1948 unsigned AddrSpace =
1949 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1951 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
1952 // optimization, but it's also required to detect the corner case where
1953 // both pointer operands are referencing the same memory, and where
1954 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
1955 // function is only called for mem intrinsics that access the whole
1956 // aggregate, so non-zero GEPs are not an issue here.)
1957 OtherPtr = OtherPtr->stripPointerCasts();
1959 // Copying the alloca to itself is a no-op: just delete it.
1960 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1961 // This code will run twice for a no-op memcpy -- once for each operand.
1962 // Put only one reference to MI on the DeadInsts list.
1963 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1964 E = DeadInsts.end(); I != E; ++I)
1965 if (*I == MI) return;
1966 DeadInsts.push_back(MI);
1967 return;
1970 // If the pointer is not the right type, insert a bitcast to the right
1971 // type.
1972 const Type *NewTy =
1973 PointerType::get(AI->getType()->getElementType(), AddrSpace);
1975 if (OtherPtr->getType() != NewTy)
1976 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1979 // Process each element of the aggregate.
1980 bool SROADest = MI->getRawDest() == Inst;
1982 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1984 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1985 // If this is a memcpy/memmove, emit a GEP of the other element address.
1986 Value *OtherElt = 0;
1987 unsigned OtherEltAlign = MemAlignment;
1989 if (OtherPtr) {
1990 Value *Idx[2] = { Zero,
1991 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1992 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1993 OtherPtr->getName()+"."+Twine(i),
1994 MI);
1995 uint64_t EltOffset;
1996 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1997 const Type *OtherTy = OtherPtrTy->getElementType();
1998 if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1999 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2000 } else {
2001 const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2002 EltOffset = TD->getTypeAllocSize(EltTy)*i;
2005 // The alignment of the other pointer is the guaranteed alignment of the
2006 // element, which is affected by both the known alignment of the whole
2007 // mem intrinsic and the alignment of the element. If the alignment of
2008 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2009 // known alignment is just 4 bytes.
2010 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2013 Value *EltPtr = NewElts[i];
2014 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2016 // If we got down to a scalar, insert a load or store as appropriate.
2017 if (EltTy->isSingleValueType()) {
2018 if (isa<MemTransferInst>(MI)) {
2019 if (SROADest) {
2020 // From Other to Alloca.
2021 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2022 new StoreInst(Elt, EltPtr, MI);
2023 } else {
2024 // From Alloca to Other.
2025 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2026 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2028 continue;
2030 assert(isa<MemSetInst>(MI));
2032 // If the stored element is zero (common case), just store a null
2033 // constant.
2034 Constant *StoreVal;
2035 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2036 if (CI->isZero()) {
2037 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
2038 } else {
2039 // If EltTy is a vector type, get the element type.
2040 const Type *ValTy = EltTy->getScalarType();
2042 // Construct an integer with the right value.
2043 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2044 APInt OneVal(EltSize, CI->getZExtValue());
2045 APInt TotalVal(OneVal);
2046 // Set each byte.
2047 for (unsigned i = 0; 8*i < EltSize; ++i) {
2048 TotalVal = TotalVal.shl(8);
2049 TotalVal |= OneVal;
2052 // Convert the integer value to the appropriate type.
2053 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2054 if (ValTy->isPointerTy())
2055 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2056 else if (ValTy->isFloatingPointTy())
2057 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2058 assert(StoreVal->getType() == ValTy && "Type mismatch!");
2060 // If the requested value was a vector constant, create it.
2061 if (EltTy != ValTy) {
2062 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2063 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2064 StoreVal = ConstantVector::get(Elts);
2067 new StoreInst(StoreVal, EltPtr, MI);
2068 continue;
2070 // Otherwise, if we're storing a byte variable, use a memset call for
2071 // this element.
2074 unsigned EltSize = TD->getTypeAllocSize(EltTy);
2076 IRBuilder<> Builder(MI);
2078 // Finally, insert the meminst for this element.
2079 if (isa<MemSetInst>(MI)) {
2080 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2081 MI->isVolatile());
2082 } else {
2083 assert(isa<MemTransferInst>(MI));
2084 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2085 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
2087 if (isa<MemCpyInst>(MI))
2088 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2089 else
2090 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2093 DeadInsts.push_back(MI);
2096 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2097 /// overwrites the entire allocation. Extract out the pieces of the stored
2098 /// integer and store them individually.
2099 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2100 SmallVector<AllocaInst*, 32> &NewElts){
2101 // Extract each element out of the integer according to its structure offset
2102 // and store the element value to the individual alloca.
2103 Value *SrcVal = SI->getOperand(0);
2104 const Type *AllocaEltTy = AI->getAllocatedType();
2105 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2107 IRBuilder<> Builder(SI);
2109 // Handle tail padding by extending the operand
2110 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2111 SrcVal = Builder.CreateZExt(SrcVal,
2112 IntegerType::get(SI->getContext(), AllocaSizeBits));
2114 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2115 << '\n');
2117 // There are two forms here: AI could be an array or struct. Both cases
2118 // have different ways to compute the element offset.
2119 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2120 const StructLayout *Layout = TD->getStructLayout(EltSTy);
2122 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2123 // Get the number of bits to shift SrcVal to get the value.
2124 const Type *FieldTy = EltSTy->getElementType(i);
2125 uint64_t Shift = Layout->getElementOffsetInBits(i);
2127 if (TD->isBigEndian())
2128 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2130 Value *EltVal = SrcVal;
2131 if (Shift) {
2132 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2133 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2136 // Truncate down to an integer of the right size.
2137 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2139 // Ignore zero sized fields like {}, they obviously contain no data.
2140 if (FieldSizeBits == 0) continue;
2142 if (FieldSizeBits != AllocaSizeBits)
2143 EltVal = Builder.CreateTrunc(EltVal,
2144 IntegerType::get(SI->getContext(), FieldSizeBits));
2145 Value *DestField = NewElts[i];
2146 if (EltVal->getType() == FieldTy) {
2147 // Storing to an integer field of this size, just do it.
2148 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2149 // Bitcast to the right element type (for fp/vector values).
2150 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2151 } else {
2152 // Otherwise, bitcast the dest pointer (for aggregates).
2153 DestField = Builder.CreateBitCast(DestField,
2154 PointerType::getUnqual(EltVal->getType()));
2156 new StoreInst(EltVal, DestField, SI);
2159 } else {
2160 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2161 const Type *ArrayEltTy = ATy->getElementType();
2162 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2163 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2165 uint64_t Shift;
2167 if (TD->isBigEndian())
2168 Shift = AllocaSizeBits-ElementOffset;
2169 else
2170 Shift = 0;
2172 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2173 // Ignore zero sized fields like {}, they obviously contain no data.
2174 if (ElementSizeBits == 0) continue;
2176 Value *EltVal = SrcVal;
2177 if (Shift) {
2178 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2179 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2182 // Truncate down to an integer of the right size.
2183 if (ElementSizeBits != AllocaSizeBits)
2184 EltVal = Builder.CreateTrunc(EltVal,
2185 IntegerType::get(SI->getContext(),
2186 ElementSizeBits));
2187 Value *DestField = NewElts[i];
2188 if (EltVal->getType() == ArrayEltTy) {
2189 // Storing to an integer field of this size, just do it.
2190 } else if (ArrayEltTy->isFloatingPointTy() ||
2191 ArrayEltTy->isVectorTy()) {
2192 // Bitcast to the right element type (for fp/vector values).
2193 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2194 } else {
2195 // Otherwise, bitcast the dest pointer (for aggregates).
2196 DestField = Builder.CreateBitCast(DestField,
2197 PointerType::getUnqual(EltVal->getType()));
2199 new StoreInst(EltVal, DestField, SI);
2201 if (TD->isBigEndian())
2202 Shift -= ElementOffset;
2203 else
2204 Shift += ElementOffset;
2208 DeadInsts.push_back(SI);
2211 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2212 /// an integer. Load the individual pieces to form the aggregate value.
2213 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2214 SmallVector<AllocaInst*, 32> &NewElts) {
2215 // Extract each element out of the NewElts according to its structure offset
2216 // and form the result value.
2217 const Type *AllocaEltTy = AI->getAllocatedType();
2218 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2220 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2221 << '\n');
2223 // There are two forms here: AI could be an array or struct. Both cases
2224 // have different ways to compute the element offset.
2225 const StructLayout *Layout = 0;
2226 uint64_t ArrayEltBitOffset = 0;
2227 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2228 Layout = TD->getStructLayout(EltSTy);
2229 } else {
2230 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2231 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2234 Value *ResultVal =
2235 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2237 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2238 // Load the value from the alloca. If the NewElt is an aggregate, cast
2239 // the pointer to an integer of the same size before doing the load.
2240 Value *SrcField = NewElts[i];
2241 const Type *FieldTy =
2242 cast<PointerType>(SrcField->getType())->getElementType();
2243 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2245 // Ignore zero sized fields like {}, they obviously contain no data.
2246 if (FieldSizeBits == 0) continue;
2248 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2249 FieldSizeBits);
2250 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2251 !FieldTy->isVectorTy())
2252 SrcField = new BitCastInst(SrcField,
2253 PointerType::getUnqual(FieldIntTy),
2254 "", LI);
2255 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2257 // If SrcField is a fp or vector of the right size but that isn't an
2258 // integer type, bitcast to an integer so we can shift it.
2259 if (SrcField->getType() != FieldIntTy)
2260 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2262 // Zero extend the field to be the same size as the final alloca so that
2263 // we can shift and insert it.
2264 if (SrcField->getType() != ResultVal->getType())
2265 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2267 // Determine the number of bits to shift SrcField.
2268 uint64_t Shift;
2269 if (Layout) // Struct case.
2270 Shift = Layout->getElementOffsetInBits(i);
2271 else // Array case.
2272 Shift = i*ArrayEltBitOffset;
2274 if (TD->isBigEndian())
2275 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2277 if (Shift) {
2278 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2279 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2282 // Don't create an 'or x, 0' on the first iteration.
2283 if (!isa<Constant>(ResultVal) ||
2284 !cast<Constant>(ResultVal)->isNullValue())
2285 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2286 else
2287 ResultVal = SrcField;
2290 // Handle tail padding by truncating the result
2291 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2292 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2294 LI->replaceAllUsesWith(ResultVal);
2295 DeadInsts.push_back(LI);
2298 /// HasPadding - Return true if the specified type has any structure or
2299 /// alignment padding in between the elements that would be split apart
2300 /// by SROA; return false otherwise.
2301 static bool HasPadding(const Type *Ty, const TargetData &TD) {
2302 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2303 Ty = ATy->getElementType();
2304 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2307 // SROA currently handles only Arrays and Structs.
2308 const StructType *STy = cast<StructType>(Ty);
2309 const StructLayout *SL = TD.getStructLayout(STy);
2310 unsigned PrevFieldBitOffset = 0;
2311 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2312 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2314 // Check to see if there is any padding between this element and the
2315 // previous one.
2316 if (i) {
2317 unsigned PrevFieldEnd =
2318 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2319 if (PrevFieldEnd < FieldBitOffset)
2320 return true;
2322 PrevFieldBitOffset = FieldBitOffset;
2324 // Check for tail padding.
2325 if (unsigned EltCount = STy->getNumElements()) {
2326 unsigned PrevFieldEnd = PrevFieldBitOffset +
2327 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2328 if (PrevFieldEnd < SL->getSizeInBits())
2329 return true;
2331 return false;
2334 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2335 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2336 /// or 1 if safe after canonicalization has been performed.
2337 bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2338 // Loop over the use list of the alloca. We can only transform it if all of
2339 // the users are safe to transform.
2340 AllocaInfo Info(AI);
2342 isSafeForScalarRepl(AI, 0, Info);
2343 if (Info.isUnsafe) {
2344 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2345 return false;
2348 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2349 // source and destination, we have to be careful. In particular, the memcpy
2350 // could be moving around elements that live in structure padding of the LLVM
2351 // types, but may actually be used. In these cases, we refuse to promote the
2352 // struct.
2353 if (Info.isMemCpySrc && Info.isMemCpyDst &&
2354 HasPadding(AI->getAllocatedType(), *TD))
2355 return false;
2357 // If the alloca never has an access to just *part* of it, but is accessed
2358 // via loads and stores, then we should use ConvertToScalarInfo to promote
2359 // the alloca instead of promoting each piece at a time and inserting fission
2360 // and fusion code.
2361 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2362 // If the struct/array just has one element, use basic SRoA.
2363 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2364 if (ST->getNumElements() > 1) return false;
2365 } else {
2366 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2367 return false;
2371 return true;
2376 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2377 /// some part of a constant global variable. This intentionally only accepts
2378 /// constant expressions because we don't can't rewrite arbitrary instructions.
2379 static bool PointsToConstantGlobal(Value *V) {
2380 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2381 return GV->isConstant();
2382 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2383 if (CE->getOpcode() == Instruction::BitCast ||
2384 CE->getOpcode() == Instruction::GetElementPtr)
2385 return PointsToConstantGlobal(CE->getOperand(0));
2386 return false;
2389 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2390 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
2391 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
2392 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
2393 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
2394 /// the alloca, and if the source pointer is a pointer to a constant global, we
2395 /// can optimize this.
2396 static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2397 bool isOffset) {
2398 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2399 User *U = cast<Instruction>(*UI);
2401 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2402 // Ignore non-volatile loads, they are always ok.
2403 if (LI->isVolatile()) return false;
2404 continue;
2407 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2408 // If uses of the bitcast are ok, we are ok.
2409 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2410 return false;
2411 continue;
2413 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2414 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2415 // doesn't, it does.
2416 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2417 isOffset || !GEP->hasAllZeroIndices()))
2418 return false;
2419 continue;
2422 if (CallSite CS = U) {
2423 // If this is a readonly/readnone call site, then we know it is just a
2424 // load and we can ignore it.
2425 if (CS.onlyReadsMemory())
2426 continue;
2428 // If this is the function being called then we treat it like a load and
2429 // ignore it.
2430 if (CS.isCallee(UI))
2431 continue;
2433 // If this is being passed as a byval argument, the caller is making a
2434 // copy, so it is only a read of the alloca.
2435 unsigned ArgNo = CS.getArgumentNo(UI);
2436 if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2437 continue;
2440 // If this is isn't our memcpy/memmove, reject it as something we can't
2441 // handle.
2442 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2443 if (MI == 0)
2444 return false;
2446 // If the transfer is using the alloca as a source of the transfer, then
2447 // ignore it since it is a load (unless the transfer is volatile).
2448 if (UI.getOperandNo() == 1) {
2449 if (MI->isVolatile()) return false;
2450 continue;
2453 // If we already have seen a copy, reject the second one.
2454 if (TheCopy) return false;
2456 // If the pointer has been offset from the start of the alloca, we can't
2457 // safely handle this.
2458 if (isOffset) return false;
2460 // If the memintrinsic isn't using the alloca as the dest, reject it.
2461 if (UI.getOperandNo() != 0) return false;
2463 // If the source of the memcpy/move is not a constant global, reject it.
2464 if (!PointsToConstantGlobal(MI->getSource()))
2465 return false;
2467 // Otherwise, the transform is safe. Remember the copy instruction.
2468 TheCopy = MI;
2470 return true;
2473 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2474 /// modified by a copy from a constant global. If we can prove this, we can
2475 /// replace any uses of the alloca with uses of the global directly.
2476 MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2477 MemTransferInst *TheCopy = 0;
2478 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2479 return TheCopy;
2480 return 0;