1 //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation implements the well known scalar replacement of
11 // aggregates transformation. This xform breaks up alloca instructions of
12 // aggregate type (structure or array) into individual alloca instructions for
13 // each member (if possible). Then, if possible, it transforms the individual
14 // alloca instructions into nice clean scalar SSA form.
16 // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17 // often interact, especially for C++ programs. As such, iterating between
18 // SRoA, then Mem2Reg until we run out of things to promote works well.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "scalarrepl"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Analysis/Dominators.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/GetElementPtrTypeIterator.h"
44 #include "llvm/Support/IRBuilder.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/ADT/SetVector.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
52 STATISTIC(NumReplaced
, "Number of allocas broken up");
53 STATISTIC(NumPromoted
, "Number of allocas promoted");
54 STATISTIC(NumAdjusted
, "Number of scalar allocas adjusted to allow promotion");
55 STATISTIC(NumConverted
, "Number of aggregates converted to scalar");
56 STATISTIC(NumGlobals
, "Number of allocas copied from constant global");
59 struct SROA
: public FunctionPass
{
60 SROA(int T
, bool hasDT
, char &ID
)
61 : FunctionPass(ID
), HasDomTree(hasDT
) {
68 bool runOnFunction(Function
&F
);
70 bool performScalarRepl(Function
&F
);
71 bool performPromotion(Function
&F
);
77 /// DeadInsts - Keep track of instructions we have made dead, so that
78 /// we can remove them after we are done working.
79 SmallVector
<Value
*, 32> DeadInsts
;
81 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82 /// information about the uses. All these fields are initialized to false
83 /// and set to true when something is learned.
85 /// The alloca to promote.
88 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89 /// looping and avoid redundant work.
90 SmallPtrSet
<PHINode
*, 8> CheckedPHIs
;
92 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101 /// hasSubelementAccess - This is true if a subelement of the alloca is
102 /// ever accessed, or false if the alloca is only accessed with mem
103 /// intrinsics or load/store that only access the entire alloca at once.
104 bool hasSubelementAccess
: 1;
106 /// hasALoadOrStore - This is true if there are any loads or stores to it.
107 /// The alloca may just be accessed with memcpy, for example, which would
109 bool hasALoadOrStore
: 1;
111 explicit AllocaInfo(AllocaInst
*ai
)
112 : AI(ai
), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113 hasSubelementAccess(false), hasALoadOrStore(false) {}
116 unsigned SRThreshold
;
118 void MarkUnsafe(AllocaInfo
&I
, Instruction
*User
) {
120 DEBUG(dbgs() << " Transformation preventing inst: " << *User
<< '\n');
123 bool isSafeAllocaToScalarRepl(AllocaInst
*AI
);
125 void isSafeForScalarRepl(Instruction
*I
, uint64_t Offset
, AllocaInfo
&Info
);
126 void isSafePHISelectUseForScalarRepl(Instruction
*User
, uint64_t Offset
,
128 void isSafeGEP(GetElementPtrInst
*GEPI
, uint64_t &Offset
, AllocaInfo
&Info
);
129 void isSafeMemAccess(uint64_t Offset
, uint64_t MemSize
,
130 const Type
*MemOpType
, bool isStore
, AllocaInfo
&Info
,
131 Instruction
*TheAccess
, bool AllowWholeAccess
);
132 bool TypeHasComponent(const Type
*T
, uint64_t Offset
, uint64_t Size
);
133 uint64_t FindElementAndOffset(const Type
*&T
, uint64_t &Offset
,
136 void DoScalarReplacement(AllocaInst
*AI
,
137 std::vector
<AllocaInst
*> &WorkList
);
138 void DeleteDeadInstructions();
140 void RewriteForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
141 SmallVector
<AllocaInst
*, 32> &NewElts
);
142 void RewriteBitCast(BitCastInst
*BC
, AllocaInst
*AI
, uint64_t Offset
,
143 SmallVector
<AllocaInst
*, 32> &NewElts
);
144 void RewriteGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
, uint64_t Offset
,
145 SmallVector
<AllocaInst
*, 32> &NewElts
);
146 void RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*Inst
,
148 SmallVector
<AllocaInst
*, 32> &NewElts
);
149 void RewriteStoreUserOfWholeAlloca(StoreInst
*SI
, AllocaInst
*AI
,
150 SmallVector
<AllocaInst
*, 32> &NewElts
);
151 void RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocaInst
*AI
,
152 SmallVector
<AllocaInst
*, 32> &NewElts
);
154 static MemTransferInst
*isOnlyCopiedFromConstantGlobal(AllocaInst
*AI
);
157 // SROA_DT - SROA that uses DominatorTree.
158 struct SROA_DT
: public SROA
{
161 SROA_DT(int T
= -1) : SROA(T
, true, ID
) {
162 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
165 // getAnalysisUsage - This pass does not require any passes, but we know it
166 // will not alter the CFG, so say so.
167 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
168 AU
.addRequired
<DominatorTree
>();
169 AU
.setPreservesCFG();
173 // SROA_SSAUp - SROA that uses SSAUpdater.
174 struct SROA_SSAUp
: public SROA
{
177 SROA_SSAUp(int T
= -1) : SROA(T
, false, ID
) {
178 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
181 // getAnalysisUsage - This pass does not require any passes, but we know it
182 // will not alter the CFG, so say so.
183 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
184 AU
.setPreservesCFG();
190 char SROA_DT::ID
= 0;
191 char SROA_SSAUp::ID
= 0;
193 INITIALIZE_PASS_BEGIN(SROA_DT
, "scalarrepl",
194 "Scalar Replacement of Aggregates (DT)", false, false)
195 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
196 INITIALIZE_PASS_END(SROA_DT
, "scalarrepl",
197 "Scalar Replacement of Aggregates (DT)", false, false)
199 INITIALIZE_PASS_BEGIN(SROA_SSAUp
, "scalarrepl-ssa",
200 "Scalar Replacement of Aggregates (SSAUp)", false, false)
201 INITIALIZE_PASS_END(SROA_SSAUp
, "scalarrepl-ssa",
202 "Scalar Replacement of Aggregates (SSAUp)", false, false)
204 // Public interface to the ScalarReplAggregates pass
205 FunctionPass
*llvm::createScalarReplAggregatesPass(int Threshold
,
208 return new SROA_DT(Threshold
);
209 return new SROA_SSAUp(Threshold
);
213 //===----------------------------------------------------------------------===//
214 // Convert To Scalar Optimization.
215 //===----------------------------------------------------------------------===//
218 /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219 /// optimization, which scans the uses of an alloca and determines if it can
220 /// rewrite it in terms of a single new alloca that can be mem2reg'd.
221 class ConvertToScalarInfo
{
222 /// AllocaSize - The size of the alloca being considered in bytes.
224 const TargetData
&TD
;
226 /// IsNotTrivial - This is set to true if there is some access to the object
227 /// which means that mem2reg can't promote it.
230 /// VectorTy - This tracks the type that we should promote the vector to if
231 /// it is possible to turn it into a vector. This starts out null, and if it
232 /// isn't possible to turn into a vector type, it gets set to VoidTy.
233 const Type
*VectorTy
;
235 /// HadAVector - True if there is at least one vector access to the alloca.
236 /// We don't want to turn random arrays into vectors and use vector element
237 /// insert/extract, but if there are element accesses to something that is
238 /// also declared as a vector, we do want to promote to a vector.
241 /// HadNonMemTransferAccess - True if there is at least one access to the
242 /// alloca that is not a MemTransferInst. We don't want to turn structs into
243 /// large integers unless there is some potential for optimization.
244 bool HadNonMemTransferAccess
;
247 explicit ConvertToScalarInfo(unsigned Size
, const TargetData
&td
)
248 : AllocaSize(Size
), TD(td
), IsNotTrivial(false), VectorTy(0),
249 HadAVector(false), HadNonMemTransferAccess(false) { }
251 AllocaInst
*TryConvert(AllocaInst
*AI
);
254 bool CanConvertToScalar(Value
*V
, uint64_t Offset
);
255 void MergeInType(const Type
*In
, uint64_t Offset
, bool IsLoadOrStore
);
256 bool MergeInVectorType(const VectorType
*VInTy
, uint64_t Offset
);
257 void ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
, uint64_t Offset
);
259 Value
*ConvertScalar_ExtractValue(Value
*NV
, const Type
*ToType
,
260 uint64_t Offset
, IRBuilder
<> &Builder
);
261 Value
*ConvertScalar_InsertValue(Value
*StoredVal
, Value
*ExistingVal
,
262 uint64_t Offset
, IRBuilder
<> &Builder
);
264 } // end anonymous namespace.
267 /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268 /// rewrite it to be a new alloca which is mem2reg'able. This returns the new
269 /// alloca if possible or null if not.
270 AllocaInst
*ConvertToScalarInfo::TryConvert(AllocaInst
*AI
) {
271 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
273 if (!CanConvertToScalar(AI
, 0) || !IsNotTrivial
)
276 // If we were able to find a vector type that can handle this with
277 // insert/extract elements, and if there was at least one use that had
278 // a vector type, promote this to a vector. We don't want to promote
279 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280 // we just get a lot of insert/extracts. If at least one vector is
281 // involved, then we probably really do have a union of vector/array.
283 if (VectorTy
&& VectorTy
->isVectorTy() && HadAVector
) {
284 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI
<< "\n TYPE = "
285 << *VectorTy
<< '\n');
286 NewTy
= VectorTy
; // Use the vector type.
288 unsigned BitWidth
= AllocaSize
* 8;
289 if (!HadAVector
&& !HadNonMemTransferAccess
&&
290 !TD
.fitsInLegalInteger(BitWidth
))
293 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI
<< "\n");
294 // Create and insert the integer alloca.
295 NewTy
= IntegerType::get(AI
->getContext(), BitWidth
);
297 AllocaInst
*NewAI
= new AllocaInst(NewTy
, 0, "", AI
->getParent()->begin());
298 ConvertUsesToScalar(AI
, NewAI
, 0);
302 /// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303 /// so far at the offset specified by Offset (which is specified in bytes).
305 /// There are three cases we handle here:
306 /// 1) A union of vector types of the same size and potentially its elements.
307 /// Here we turn element accesses into insert/extract element operations.
308 /// This promotes a <4 x float> with a store of float to the third element
309 /// into a <4 x float> that uses insert element.
310 /// 2) A union of vector types with power-of-2 size differences, e.g. a float,
311 /// <2 x float> and <4 x float>. Here we turn element accesses into insert
312 /// and extract element operations, and <2 x float> accesses into a cast to
313 /// <2 x double>, an extract, and a cast back to <2 x float>.
314 /// 3) A fully general blob of memory, which we turn into some (potentially
315 /// large) integer type with extract and insert operations where the loads
316 /// and stores would mutate the memory. We mark this by setting VectorTy
318 void ConvertToScalarInfo::MergeInType(const Type
*In
, uint64_t Offset
,
319 bool IsLoadOrStore
) {
320 // If we already decided to turn this into a blob of integer memory, there is
321 // nothing to be done.
322 if (VectorTy
&& VectorTy
->isVoidTy())
325 // If this could be contributing to a vector, analyze it.
327 // If the In type is a vector that is the same size as the alloca, see if it
328 // matches the existing VecTy.
329 if (const VectorType
*VInTy
= dyn_cast
<VectorType
>(In
)) {
330 if (MergeInVectorType(VInTy
, Offset
))
332 } else if (In
->isFloatTy() || In
->isDoubleTy() ||
333 (In
->isIntegerTy() && In
->getPrimitiveSizeInBits() >= 8 &&
334 isPowerOf2_32(In
->getPrimitiveSizeInBits()))) {
335 // Full width accesses can be ignored, because they can always be turned
337 unsigned EltSize
= In
->getPrimitiveSizeInBits()/8;
338 if (IsLoadOrStore
&& EltSize
== AllocaSize
)
340 // If we're accessing something that could be an element of a vector, see
341 // if the implied vector agrees with what we already have and if Offset is
342 // compatible with it.
343 if (Offset
% EltSize
== 0 && AllocaSize
% EltSize
== 0 &&
345 cast
<VectorType
>(VectorTy
)->getElementType()
346 ->getPrimitiveSizeInBits()/8 == EltSize
)) {
348 VectorTy
= VectorType::get(In
, AllocaSize
/EltSize
);
353 // Otherwise, we have a case that we can't handle with an optimized vector
354 // form. We can still turn this into a large integer.
355 VectorTy
= Type::getVoidTy(In
->getContext());
358 /// MergeInVectorType - Handles the vector case of MergeInType, returning true
359 /// if the type was successfully merged and false otherwise.
360 bool ConvertToScalarInfo::MergeInVectorType(const VectorType
*VInTy
,
362 // Remember if we saw a vector type.
365 // TODO: Support nonzero offsets?
369 // Only allow vectors that are a power-of-2 away from the size of the alloca.
370 if (!isPowerOf2_64(AllocaSize
/ (VInTy
->getBitWidth() / 8)))
373 // If this the first vector we see, remember the type so that we know the
380 unsigned BitWidth
= cast
<VectorType
>(VectorTy
)->getBitWidth();
381 unsigned InBitWidth
= VInTy
->getBitWidth();
383 // Vectors of the same size can be converted using a simple bitcast.
384 if (InBitWidth
== BitWidth
&& AllocaSize
== (InBitWidth
/ 8))
387 const Type
*ElementTy
= cast
<VectorType
>(VectorTy
)->getElementType();
388 const Type
*InElementTy
= cast
<VectorType
>(VInTy
)->getElementType();
390 // Do not allow mixed integer and floating-point accesses from vectors of
392 if (ElementTy
->isFloatingPointTy() != InElementTy
->isFloatingPointTy())
395 if (ElementTy
->isFloatingPointTy()) {
396 // Only allow floating-point vectors of different sizes if they have the
397 // same element type.
398 // TODO: This could be loosened a bit, but would anything benefit?
399 if (ElementTy
!= InElementTy
)
402 // There are no arbitrary-precision floating-point types, which limits the
403 // number of legal vector types with larger element types that we can form
404 // to bitcast and extract a subvector.
405 // TODO: We could support some more cases with mixed fp128 and double here.
406 if (!(BitWidth
== 64 || BitWidth
== 128) ||
407 !(InBitWidth
== 64 || InBitWidth
== 128))
410 assert(ElementTy
->isIntegerTy() && "Vector elements must be either integer "
411 "or floating-point.");
412 unsigned BitWidth
= ElementTy
->getPrimitiveSizeInBits();
413 unsigned InBitWidth
= InElementTy
->getPrimitiveSizeInBits();
415 // Do not allow integer types smaller than a byte or types whose widths are
416 // not a multiple of a byte.
417 if (BitWidth
< 8 || InBitWidth
< 8 ||
418 BitWidth
% 8 != 0 || InBitWidth
% 8 != 0)
422 // Pick the largest of the two vector types.
423 if (InBitWidth
> BitWidth
)
429 /// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
430 /// its accesses to a single vector type, return true and set VecTy to
431 /// the new type. If we could convert the alloca into a single promotable
432 /// integer, return true but set VecTy to VoidTy. Further, if the use is not a
433 /// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
434 /// is the current offset from the base of the alloca being analyzed.
436 /// If we see at least one access to the value that is as a vector type, set the
438 bool ConvertToScalarInfo::CanConvertToScalar(Value
*V
, uint64_t Offset
) {
439 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
440 Instruction
*User
= cast
<Instruction
>(*UI
);
442 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
443 // Don't break volatile loads.
444 if (LI
->isVolatile())
446 // Don't touch MMX operations.
447 if (LI
->getType()->isX86_MMXTy())
449 HadNonMemTransferAccess
= true;
450 MergeInType(LI
->getType(), Offset
, true);
454 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
455 // Storing the pointer, not into the value?
456 if (SI
->getOperand(0) == V
|| SI
->isVolatile()) return false;
457 // Don't touch MMX operations.
458 if (SI
->getOperand(0)->getType()->isX86_MMXTy())
460 HadNonMemTransferAccess
= true;
461 MergeInType(SI
->getOperand(0)->getType(), Offset
, true);
465 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(User
)) {
466 IsNotTrivial
= true; // Can't be mem2reg'd.
467 if (!CanConvertToScalar(BCI
, Offset
))
472 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
473 // If this is a GEP with a variable indices, we can't handle it.
474 if (!GEP
->hasAllConstantIndices())
477 // Compute the offset that this GEP adds to the pointer.
478 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
479 uint64_t GEPOffset
= TD
.getIndexedOffset(GEP
->getPointerOperandType(),
480 &Indices
[0], Indices
.size());
481 // See if all uses can be converted.
482 if (!CanConvertToScalar(GEP
, Offset
+GEPOffset
))
484 IsNotTrivial
= true; // Can't be mem2reg'd.
485 HadNonMemTransferAccess
= true;
489 // If this is a constant sized memset of a constant value (e.g. 0) we can
491 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
492 // Store of constant value and constant size.
493 if (!isa
<ConstantInt
>(MSI
->getValue()) ||
494 !isa
<ConstantInt
>(MSI
->getLength()))
496 IsNotTrivial
= true; // Can't be mem2reg'd.
497 HadNonMemTransferAccess
= true;
501 // If this is a memcpy or memmove into or out of the whole allocation, we
502 // can handle it like a load or store of the scalar type.
503 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
504 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(MTI
->getLength());
505 if (Len
== 0 || Len
->getZExtValue() != AllocaSize
|| Offset
!= 0)
508 IsNotTrivial
= true; // Can't be mem2reg'd.
512 // Otherwise, we cannot handle this!
519 /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
520 /// directly. This happens when we are converting an "integer union" to a
521 /// single integer scalar, or when we are converting a "vector union" to a
522 /// vector with insert/extractelement instructions.
524 /// Offset is an offset from the original alloca, in bits that need to be
525 /// shifted to the right. By the end of this, there should be no uses of Ptr.
526 void ConvertToScalarInfo::ConvertUsesToScalar(Value
*Ptr
, AllocaInst
*NewAI
,
528 while (!Ptr
->use_empty()) {
529 Instruction
*User
= cast
<Instruction
>(Ptr
->use_back());
531 if (BitCastInst
*CI
= dyn_cast
<BitCastInst
>(User
)) {
532 ConvertUsesToScalar(CI
, NewAI
, Offset
);
533 CI
->eraseFromParent();
537 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(User
)) {
538 // Compute the offset that this GEP adds to the pointer.
539 SmallVector
<Value
*, 8> Indices(GEP
->op_begin()+1, GEP
->op_end());
540 uint64_t GEPOffset
= TD
.getIndexedOffset(GEP
->getPointerOperandType(),
541 &Indices
[0], Indices
.size());
542 ConvertUsesToScalar(GEP
, NewAI
, Offset
+GEPOffset
*8);
543 GEP
->eraseFromParent();
547 IRBuilder
<> Builder(User
);
549 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
550 // The load is a bit extract from NewAI shifted right by Offset bits.
551 Value
*LoadedVal
= Builder
.CreateLoad(NewAI
, "tmp");
553 = ConvertScalar_ExtractValue(LoadedVal
, LI
->getType(), Offset
, Builder
);
554 LI
->replaceAllUsesWith(NewLoadVal
);
555 LI
->eraseFromParent();
559 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
560 assert(SI
->getOperand(0) != Ptr
&& "Consistency error!");
561 Instruction
*Old
= Builder
.CreateLoad(NewAI
, NewAI
->getName()+".in");
562 Value
*New
= ConvertScalar_InsertValue(SI
->getOperand(0), Old
, Offset
,
564 Builder
.CreateStore(New
, NewAI
);
565 SI
->eraseFromParent();
567 // If the load we just inserted is now dead, then the inserted store
568 // overwrote the entire thing.
569 if (Old
->use_empty())
570 Old
->eraseFromParent();
574 // If this is a constant sized memset of a constant value (e.g. 0) we can
575 // transform it into a store of the expanded constant value.
576 if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(User
)) {
577 assert(MSI
->getRawDest() == Ptr
&& "Consistency error!");
578 unsigned NumBytes
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
580 unsigned Val
= cast
<ConstantInt
>(MSI
->getValue())->getZExtValue();
582 // Compute the value replicated the right number of times.
583 APInt
APVal(NumBytes
*8, Val
);
585 // Splat the value if non-zero.
587 for (unsigned i
= 1; i
!= NumBytes
; ++i
)
590 Instruction
*Old
= Builder
.CreateLoad(NewAI
, NewAI
->getName()+".in");
591 Value
*New
= ConvertScalar_InsertValue(
592 ConstantInt::get(User
->getContext(), APVal
),
593 Old
, Offset
, Builder
);
594 Builder
.CreateStore(New
, NewAI
);
596 // If the load we just inserted is now dead, then the memset overwrote
598 if (Old
->use_empty())
599 Old
->eraseFromParent();
601 MSI
->eraseFromParent();
605 // If this is a memcpy or memmove into or out of the whole allocation, we
606 // can handle it like a load or store of the scalar type.
607 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(User
)) {
608 assert(Offset
== 0 && "must be store to start of alloca");
610 // If the source and destination are both to the same alloca, then this is
611 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
613 AllocaInst
*OrigAI
= cast
<AllocaInst
>(GetUnderlyingObject(Ptr
, &TD
, 0));
615 if (GetUnderlyingObject(MTI
->getSource(), &TD
, 0) != OrigAI
) {
616 // Dest must be OrigAI, change this to be a load from the original
617 // pointer (bitcasted), then a store to our new alloca.
618 assert(MTI
->getRawDest() == Ptr
&& "Neither use is of pointer?");
619 Value
*SrcPtr
= MTI
->getSource();
620 const PointerType
* SPTy
= cast
<PointerType
>(SrcPtr
->getType());
621 const PointerType
* AIPTy
= cast
<PointerType
>(NewAI
->getType());
622 if (SPTy
->getAddressSpace() != AIPTy
->getAddressSpace()) {
623 AIPTy
= PointerType::get(AIPTy
->getElementType(),
624 SPTy
->getAddressSpace());
626 SrcPtr
= Builder
.CreateBitCast(SrcPtr
, AIPTy
);
628 LoadInst
*SrcVal
= Builder
.CreateLoad(SrcPtr
, "srcval");
629 SrcVal
->setAlignment(MTI
->getAlignment());
630 Builder
.CreateStore(SrcVal
, NewAI
);
631 } else if (GetUnderlyingObject(MTI
->getDest(), &TD
, 0) != OrigAI
) {
632 // Src must be OrigAI, change this to be a load from NewAI then a store
633 // through the original dest pointer (bitcasted).
634 assert(MTI
->getRawSource() == Ptr
&& "Neither use is of pointer?");
635 LoadInst
*SrcVal
= Builder
.CreateLoad(NewAI
, "srcval");
637 const PointerType
* DPTy
= cast
<PointerType
>(MTI
->getDest()->getType());
638 const PointerType
* AIPTy
= cast
<PointerType
>(NewAI
->getType());
639 if (DPTy
->getAddressSpace() != AIPTy
->getAddressSpace()) {
640 AIPTy
= PointerType::get(AIPTy
->getElementType(),
641 DPTy
->getAddressSpace());
643 Value
*DstPtr
= Builder
.CreateBitCast(MTI
->getDest(), AIPTy
);
645 StoreInst
*NewStore
= Builder
.CreateStore(SrcVal
, DstPtr
);
646 NewStore
->setAlignment(MTI
->getAlignment());
648 // Noop transfer. Src == Dst
651 MTI
->eraseFromParent();
655 llvm_unreachable("Unsupported operation!");
659 /// getScaledElementType - Gets a scaled element type for a partial vector
660 /// access of an alloca. The input type must be an integer or float, and
661 /// the resulting type must be an integer, float or double.
662 static const Type
*getScaledElementType(const Type
*OldTy
,
663 unsigned NewBitWidth
) {
664 assert((OldTy
->isIntegerTy() || OldTy
->isFloatTy()) && "Partial vector "
665 "accesses must be scaled from integer or float elements.");
667 LLVMContext
&Context
= OldTy
->getContext();
669 if (OldTy
->isIntegerTy())
670 return Type::getIntNTy(Context
, NewBitWidth
);
671 if (NewBitWidth
== 32)
672 return Type::getFloatTy(Context
);
673 if (NewBitWidth
== 64)
674 return Type::getDoubleTy(Context
);
676 llvm_unreachable("Invalid type for a partial vector access of an alloca!");
679 /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
680 /// or vector value FromVal, extracting the bits from the offset specified by
681 /// Offset. This returns the value, which is of type ToType.
683 /// This happens when we are converting an "integer union" to a single
684 /// integer scalar, or when we are converting a "vector union" to a vector with
685 /// insert/extractelement instructions.
687 /// Offset is an offset from the original alloca, in bits that need to be
688 /// shifted to the right.
689 Value
*ConvertToScalarInfo::
690 ConvertScalar_ExtractValue(Value
*FromVal
, const Type
*ToType
,
691 uint64_t Offset
, IRBuilder
<> &Builder
) {
692 // If the load is of the whole new alloca, no conversion is needed.
693 if (FromVal
->getType() == ToType
&& Offset
== 0)
696 // If the result alloca is a vector type, this is either an element
697 // access or a bitcast to another vector type of the same size.
698 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(FromVal
->getType())) {
699 unsigned ToTypeSize
= TD
.getTypeAllocSize(ToType
);
700 if (ToTypeSize
== AllocaSize
)
701 return Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
703 if (ToType
->isVectorTy()) {
704 assert(isPowerOf2_64(AllocaSize
/ ToTypeSize
) &&
705 "Partial vector access of an alloca must have a power-of-2 size "
707 assert(Offset
== 0 && "Can't extract a value of a smaller vector type "
708 "from a nonzero offset.");
710 const Type
*ToElementTy
= cast
<VectorType
>(ToType
)->getElementType();
711 const Type
*CastElementTy
= getScaledElementType(ToElementTy
,
713 unsigned NumCastVectorElements
= AllocaSize
/ ToTypeSize
;
715 LLVMContext
&Context
= FromVal
->getContext();
716 const Type
*CastTy
= VectorType::get(CastElementTy
,
717 NumCastVectorElements
);
718 Value
*Cast
= Builder
.CreateBitCast(FromVal
, CastTy
, "tmp");
719 Value
*Extract
= Builder
.CreateExtractElement(Cast
, ConstantInt::get(
720 Type::getInt32Ty(Context
), 0), "tmp");
721 return Builder
.CreateBitCast(Extract
, ToType
, "tmp");
724 // Otherwise it must be an element access.
727 unsigned EltSize
= TD
.getTypeAllocSizeInBits(VTy
->getElementType());
728 Elt
= Offset
/EltSize
;
729 assert(EltSize
*Elt
== Offset
&& "Invalid modulus in validity checking");
731 // Return the element extracted out of it.
732 Value
*V
= Builder
.CreateExtractElement(FromVal
, ConstantInt::get(
733 Type::getInt32Ty(FromVal
->getContext()), Elt
), "tmp");
734 if (V
->getType() != ToType
)
735 V
= Builder
.CreateBitCast(V
, ToType
, "tmp");
739 // If ToType is a first class aggregate, extract out each of the pieces and
740 // use insertvalue's to form the FCA.
741 if (const StructType
*ST
= dyn_cast
<StructType
>(ToType
)) {
742 const StructLayout
&Layout
= *TD
.getStructLayout(ST
);
743 Value
*Res
= UndefValue::get(ST
);
744 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
745 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, ST
->getElementType(i
),
746 Offset
+Layout
.getElementOffsetInBits(i
),
748 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
753 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(ToType
)) {
754 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(AT
->getElementType());
755 Value
*Res
= UndefValue::get(AT
);
756 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
757 Value
*Elt
= ConvertScalar_ExtractValue(FromVal
, AT
->getElementType(),
758 Offset
+i
*EltSize
, Builder
);
759 Res
= Builder
.CreateInsertValue(Res
, Elt
, i
, "tmp");
764 // Otherwise, this must be a union that was converted to an integer value.
765 const IntegerType
*NTy
= cast
<IntegerType
>(FromVal
->getType());
767 // If this is a big-endian system and the load is narrower than the
768 // full alloca type, we need to do a shift to get the right bits.
770 if (TD
.isBigEndian()) {
771 // On big-endian machines, the lowest bit is stored at the bit offset
772 // from the pointer given by getTypeStoreSizeInBits. This matters for
773 // integers with a bitwidth that is not a multiple of 8.
774 ShAmt
= TD
.getTypeStoreSizeInBits(NTy
) -
775 TD
.getTypeStoreSizeInBits(ToType
) - Offset
;
780 // Note: we support negative bitwidths (with shl) which are not defined.
781 // We do this to support (f.e.) loads off the end of a structure where
782 // only some bits are used.
783 if (ShAmt
> 0 && (unsigned)ShAmt
< NTy
->getBitWidth())
784 FromVal
= Builder
.CreateLShr(FromVal
,
785 ConstantInt::get(FromVal
->getType(),
787 else if (ShAmt
< 0 && (unsigned)-ShAmt
< NTy
->getBitWidth())
788 FromVal
= Builder
.CreateShl(FromVal
,
789 ConstantInt::get(FromVal
->getType(),
792 // Finally, unconditionally truncate the integer to the right width.
793 unsigned LIBitWidth
= TD
.getTypeSizeInBits(ToType
);
794 if (LIBitWidth
< NTy
->getBitWidth())
796 Builder
.CreateTrunc(FromVal
, IntegerType::get(FromVal
->getContext(),
798 else if (LIBitWidth
> NTy
->getBitWidth())
800 Builder
.CreateZExt(FromVal
, IntegerType::get(FromVal
->getContext(),
803 // If the result is an integer, this is a trunc or bitcast.
804 if (ToType
->isIntegerTy()) {
806 } else if (ToType
->isFloatingPointTy() || ToType
->isVectorTy()) {
807 // Just do a bitcast, we know the sizes match up.
808 FromVal
= Builder
.CreateBitCast(FromVal
, ToType
, "tmp");
810 // Otherwise must be a pointer.
811 FromVal
= Builder
.CreateIntToPtr(FromVal
, ToType
, "tmp");
813 assert(FromVal
->getType() == ToType
&& "Didn't convert right?");
817 /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
818 /// or vector value "Old" at the offset specified by Offset.
820 /// This happens when we are converting an "integer union" to a
821 /// single integer scalar, or when we are converting a "vector union" to a
822 /// vector with insert/extractelement instructions.
824 /// Offset is an offset from the original alloca, in bits that need to be
825 /// shifted to the right.
826 Value
*ConvertToScalarInfo::
827 ConvertScalar_InsertValue(Value
*SV
, Value
*Old
,
828 uint64_t Offset
, IRBuilder
<> &Builder
) {
829 // Convert the stored type to the actual type, shift it left to insert
830 // then 'or' into place.
831 const Type
*AllocaType
= Old
->getType();
832 LLVMContext
&Context
= Old
->getContext();
834 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(AllocaType
)) {
835 uint64_t VecSize
= TD
.getTypeAllocSizeInBits(VTy
);
836 uint64_t ValSize
= TD
.getTypeAllocSizeInBits(SV
->getType());
838 // Changing the whole vector with memset or with an access of a different
840 if (ValSize
== VecSize
)
841 return Builder
.CreateBitCast(SV
, AllocaType
, "tmp");
843 if (SV
->getType()->isVectorTy() && isPowerOf2_64(VecSize
/ ValSize
)) {
844 assert(Offset
== 0 && "Can't insert a value of a smaller vector type at "
845 "a nonzero offset.");
847 const Type
*ToElementTy
=
848 cast
<VectorType
>(SV
->getType())->getElementType();
849 const Type
*CastElementTy
= getScaledElementType(ToElementTy
, ValSize
);
850 unsigned NumCastVectorElements
= VecSize
/ ValSize
;
852 LLVMContext
&Context
= SV
->getContext();
853 const Type
*OldCastTy
= VectorType::get(CastElementTy
,
854 NumCastVectorElements
);
855 Value
*OldCast
= Builder
.CreateBitCast(Old
, OldCastTy
, "tmp");
857 Value
*SVCast
= Builder
.CreateBitCast(SV
, CastElementTy
, "tmp");
859 Builder
.CreateInsertElement(OldCast
, SVCast
, ConstantInt::get(
860 Type::getInt32Ty(Context
), 0), "tmp");
861 return Builder
.CreateBitCast(Insert
, AllocaType
, "tmp");
864 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(VTy
->getElementType());
866 // Must be an element insertion.
867 unsigned Elt
= Offset
/EltSize
;
869 if (SV
->getType() != VTy
->getElementType())
870 SV
= Builder
.CreateBitCast(SV
, VTy
->getElementType(), "tmp");
872 SV
= Builder
.CreateInsertElement(Old
, SV
,
873 ConstantInt::get(Type::getInt32Ty(SV
->getContext()), Elt
),
878 // If SV is a first-class aggregate value, insert each value recursively.
879 if (const StructType
*ST
= dyn_cast
<StructType
>(SV
->getType())) {
880 const StructLayout
&Layout
= *TD
.getStructLayout(ST
);
881 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
) {
882 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
883 Old
= ConvertScalar_InsertValue(Elt
, Old
,
884 Offset
+Layout
.getElementOffsetInBits(i
),
890 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(SV
->getType())) {
891 uint64_t EltSize
= TD
.getTypeAllocSizeInBits(AT
->getElementType());
892 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
893 Value
*Elt
= Builder
.CreateExtractValue(SV
, i
, "tmp");
894 Old
= ConvertScalar_InsertValue(Elt
, Old
, Offset
+i
*EltSize
, Builder
);
899 // If SV is a float, convert it to the appropriate integer type.
900 // If it is a pointer, do the same.
901 unsigned SrcWidth
= TD
.getTypeSizeInBits(SV
->getType());
902 unsigned DestWidth
= TD
.getTypeSizeInBits(AllocaType
);
903 unsigned SrcStoreWidth
= TD
.getTypeStoreSizeInBits(SV
->getType());
904 unsigned DestStoreWidth
= TD
.getTypeStoreSizeInBits(AllocaType
);
905 if (SV
->getType()->isFloatingPointTy() || SV
->getType()->isVectorTy())
906 SV
= Builder
.CreateBitCast(SV
,
907 IntegerType::get(SV
->getContext(),SrcWidth
), "tmp");
908 else if (SV
->getType()->isPointerTy())
909 SV
= Builder
.CreatePtrToInt(SV
, TD
.getIntPtrType(SV
->getContext()), "tmp");
911 // Zero extend or truncate the value if needed.
912 if (SV
->getType() != AllocaType
) {
913 if (SV
->getType()->getPrimitiveSizeInBits() <
914 AllocaType
->getPrimitiveSizeInBits())
915 SV
= Builder
.CreateZExt(SV
, AllocaType
, "tmp");
917 // Truncation may be needed if storing more than the alloca can hold
918 // (undefined behavior).
919 SV
= Builder
.CreateTrunc(SV
, AllocaType
, "tmp");
920 SrcWidth
= DestWidth
;
921 SrcStoreWidth
= DestStoreWidth
;
925 // If this is a big-endian system and the store is narrower than the
926 // full alloca type, we need to do a shift to get the right bits.
928 if (TD
.isBigEndian()) {
929 // On big-endian machines, the lowest bit is stored at the bit offset
930 // from the pointer given by getTypeStoreSizeInBits. This matters for
931 // integers with a bitwidth that is not a multiple of 8.
932 ShAmt
= DestStoreWidth
- SrcStoreWidth
- Offset
;
937 // Note: we support negative bitwidths (with shr) which are not defined.
938 // We do this to support (f.e.) stores off the end of a structure where
939 // only some bits in the structure are set.
940 APInt
Mask(APInt::getLowBitsSet(DestWidth
, SrcWidth
));
941 if (ShAmt
> 0 && (unsigned)ShAmt
< DestWidth
) {
942 SV
= Builder
.CreateShl(SV
, ConstantInt::get(SV
->getType(),
945 } else if (ShAmt
< 0 && (unsigned)-ShAmt
< DestWidth
) {
946 SV
= Builder
.CreateLShr(SV
, ConstantInt::get(SV
->getType(),
948 Mask
= Mask
.lshr(-ShAmt
);
951 // Mask out the bits we are about to insert from the old value, and or
953 if (SrcWidth
!= DestWidth
) {
954 assert(DestWidth
> SrcWidth
);
955 Old
= Builder
.CreateAnd(Old
, ConstantInt::get(Context
, ~Mask
), "mask");
956 SV
= Builder
.CreateOr(Old
, SV
, "ins");
962 //===----------------------------------------------------------------------===//
964 //===----------------------------------------------------------------------===//
967 bool SROA::runOnFunction(Function
&F
) {
968 TD
= getAnalysisIfAvailable
<TargetData
>();
970 bool Changed
= performPromotion(F
);
972 // FIXME: ScalarRepl currently depends on TargetData more than it
973 // theoretically needs to. It should be refactored in order to support
974 // target-independent IR. Until this is done, just skip the actual
975 // scalar-replacement portion of this pass.
976 if (!TD
) return Changed
;
979 bool LocalChange
= performScalarRepl(F
);
980 if (!LocalChange
) break; // No need to repromote if no scalarrepl
982 LocalChange
= performPromotion(F
);
983 if (!LocalChange
) break; // No need to re-scalarrepl if no promotion
990 class AllocaPromoter
: public LoadAndStorePromoter
{
993 AllocaPromoter(const SmallVectorImpl
<Instruction
*> &Insts
, SSAUpdater
&S
)
994 : LoadAndStorePromoter(Insts
, S
), AI(0) {}
996 void run(AllocaInst
*AI
, const SmallVectorImpl
<Instruction
*> &Insts
) {
997 // Remember which alloca we're promoting (for isInstInList).
999 LoadAndStorePromoter::run(Insts
);
1000 AI
->eraseFromParent();
1003 virtual bool isInstInList(Instruction
*I
,
1004 const SmallVectorImpl
<Instruction
*> &Insts
) const {
1005 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
1006 return LI
->getOperand(0) == AI
;
1007 return cast
<StoreInst
>(I
)->getPointerOperand() == AI
;
1010 } // end anon namespace
1012 /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1013 /// subsequently loaded can be rewritten to load both input pointers and then
1014 /// select between the result, allowing the load of the alloca to be promoted.
1016 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1017 /// %V = load i32* %P2
1019 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1020 /// %V2 = load i32* %Other
1021 /// %V = select i1 %cond, i32 %V1, i32 %V2
1023 /// We can do this to a select if its only uses are loads and if the operand to
1024 /// the select can be loaded unconditionally.
1025 static bool isSafeSelectToSpeculate(SelectInst
*SI
, const TargetData
*TD
) {
1026 bool TDerefable
= SI
->getTrueValue()->isDereferenceablePointer();
1027 bool FDerefable
= SI
->getFalseValue()->isDereferenceablePointer();
1029 for (Value::use_iterator UI
= SI
->use_begin(), UE
= SI
->use_end();
1031 LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
);
1032 if (LI
== 0 || LI
->isVolatile()) return false;
1034 // Both operands to the select need to be dereferencable, either absolutely
1035 // (e.g. allocas) or at this point because we can see other accesses to it.
1036 if (!TDerefable
&& !isSafeToLoadUnconditionally(SI
->getTrueValue(), LI
,
1037 LI
->getAlignment(), TD
))
1039 if (!FDerefable
&& !isSafeToLoadUnconditionally(SI
->getFalseValue(), LI
,
1040 LI
->getAlignment(), TD
))
1047 /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1048 /// subsequently loaded can be rewritten to load both input pointers in the pred
1049 /// blocks and then PHI the results, allowing the load of the alloca to be
1052 /// %P2 = phi [i32* %Alloca, i32* %Other]
1053 /// %V = load i32* %P2
1055 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1057 /// %V2 = load i32* %Other
1059 /// %V = phi [i32 %V1, i32 %V2]
1061 /// We can do this to a select if its only uses are loads and if the operand to
1062 /// the select can be loaded unconditionally.
1063 static bool isSafePHIToSpeculate(PHINode
*PN
, const TargetData
*TD
) {
1064 // For now, we can only do this promotion if the load is in the same block as
1065 // the PHI, and if there are no stores between the phi and load.
1066 // TODO: Allow recursive phi users.
1067 // TODO: Allow stores.
1068 BasicBlock
*BB
= PN
->getParent();
1069 unsigned MaxAlign
= 0;
1070 for (Value::use_iterator UI
= PN
->use_begin(), UE
= PN
->use_end();
1072 LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
);
1073 if (LI
== 0 || LI
->isVolatile()) return false;
1075 // For now we only allow loads in the same block as the PHI. This is a
1076 // common case that happens when instcombine merges two loads through a PHI.
1077 if (LI
->getParent() != BB
) return false;
1079 // Ensure that there are no instructions between the PHI and the load that
1081 for (BasicBlock::iterator BBI
= PN
; &*BBI
!= LI
; ++BBI
)
1082 if (BBI
->mayWriteToMemory())
1085 MaxAlign
= std::max(MaxAlign
, LI
->getAlignment());
1088 // Okay, we know that we have one or more loads in the same block as the PHI.
1089 // We can transform this if it is safe to push the loads into the predecessor
1090 // blocks. The only thing to watch out for is that we can't put a possibly
1091 // trapping load in the predecessor if it is a critical edge.
1092 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1093 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
1095 // If the predecessor has a single successor, then the edge isn't critical.
1096 if (Pred
->getTerminator()->getNumSuccessors() == 1)
1099 Value
*InVal
= PN
->getIncomingValue(i
);
1101 // If the InVal is an invoke in the pred, we can't put a load on the edge.
1102 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(InVal
))
1103 if (II
->getParent() == Pred
)
1106 // If this pointer is always safe to load, or if we can prove that there is
1107 // already a load in the block, then we can move the load to the pred block.
1108 if (InVal
->isDereferenceablePointer() ||
1109 isSafeToLoadUnconditionally(InVal
, Pred
->getTerminator(), MaxAlign
, TD
))
1119 /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1120 /// direct (non-volatile) loads and stores to it. If the alloca is close but
1121 /// not quite there, this will transform the code to allow promotion. As such,
1122 /// it is a non-pure predicate.
1123 static bool tryToMakeAllocaBePromotable(AllocaInst
*AI
, const TargetData
*TD
) {
1124 SetVector
<Instruction
*, SmallVector
<Instruction
*, 4>,
1125 SmallPtrSet
<Instruction
*, 4> > InstsToRewrite
;
1127 for (Value::use_iterator UI
= AI
->use_begin(), UE
= AI
->use_end();
1130 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1131 if (LI
->isVolatile())
1136 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1137 if (SI
->getOperand(0) == AI
|| SI
->isVolatile())
1138 return false; // Don't allow a store OF the AI, only INTO the AI.
1142 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(U
)) {
1143 // If the condition being selected on is a constant, fold the select, yes
1144 // this does (rarely) happen early on.
1145 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
->getCondition())) {
1146 Value
*Result
= SI
->getOperand(1+CI
->isZero());
1147 SI
->replaceAllUsesWith(Result
);
1148 SI
->eraseFromParent();
1150 // This is very rare and we just scrambled the use list of AI, start
1152 return tryToMakeAllocaBePromotable(AI
, TD
);
1155 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1156 // loads, then we can transform this by rewriting the select.
1157 if (!isSafeSelectToSpeculate(SI
, TD
))
1160 InstsToRewrite
.insert(SI
);
1164 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
1165 if (PN
->use_empty()) { // Dead PHIs can be stripped.
1166 InstsToRewrite
.insert(PN
);
1170 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1171 // in the pred blocks, then we can transform this by rewriting the PHI.
1172 if (!isSafePHIToSpeculate(PN
, TD
))
1175 InstsToRewrite
.insert(PN
);
1182 // If there are no instructions to rewrite, then all uses are load/stores and
1184 if (InstsToRewrite
.empty())
1187 // If we have instructions that need to be rewritten for this to be promotable
1188 // take care of it now.
1189 for (unsigned i
= 0, e
= InstsToRewrite
.size(); i
!= e
; ++i
) {
1190 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(InstsToRewrite
[i
])) {
1191 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1192 // loads with a new select.
1193 while (!SI
->use_empty()) {
1194 LoadInst
*LI
= cast
<LoadInst
>(SI
->use_back());
1196 IRBuilder
<> Builder(LI
);
1197 LoadInst
*TrueLoad
=
1198 Builder
.CreateLoad(SI
->getTrueValue(), LI
->getName()+".t");
1199 LoadInst
*FalseLoad
=
1200 Builder
.CreateLoad(SI
->getFalseValue(), LI
->getName()+".t");
1202 // Transfer alignment and TBAA info if present.
1203 TrueLoad
->setAlignment(LI
->getAlignment());
1204 FalseLoad
->setAlignment(LI
->getAlignment());
1205 if (MDNode
*Tag
= LI
->getMetadata(LLVMContext::MD_tbaa
)) {
1206 TrueLoad
->setMetadata(LLVMContext::MD_tbaa
, Tag
);
1207 FalseLoad
->setMetadata(LLVMContext::MD_tbaa
, Tag
);
1210 Value
*V
= Builder
.CreateSelect(SI
->getCondition(), TrueLoad
, FalseLoad
);
1212 LI
->replaceAllUsesWith(V
);
1213 LI
->eraseFromParent();
1216 // Now that all the loads are gone, the select is gone too.
1217 SI
->eraseFromParent();
1221 // Otherwise, we have a PHI node which allows us to push the loads into the
1223 PHINode
*PN
= cast
<PHINode
>(InstsToRewrite
[i
]);
1224 if (PN
->use_empty()) {
1225 PN
->eraseFromParent();
1229 const Type
*LoadTy
= cast
<PointerType
>(PN
->getType())->getElementType();
1230 PHINode
*NewPN
= PHINode::Create(LoadTy
, PN
->getNumIncomingValues(),
1231 PN
->getName()+".ld", PN
);
1233 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1234 // matter which one we get and if any differ, it doesn't matter.
1235 LoadInst
*SomeLoad
= cast
<LoadInst
>(PN
->use_back());
1236 MDNode
*TBAATag
= SomeLoad
->getMetadata(LLVMContext::MD_tbaa
);
1237 unsigned Align
= SomeLoad
->getAlignment();
1239 // Rewrite all loads of the PN to use the new PHI.
1240 while (!PN
->use_empty()) {
1241 LoadInst
*LI
= cast
<LoadInst
>(PN
->use_back());
1242 LI
->replaceAllUsesWith(NewPN
);
1243 LI
->eraseFromParent();
1246 // Inject loads into all of the pred blocks. Keep track of which blocks we
1247 // insert them into in case we have multiple edges from the same block.
1248 DenseMap
<BasicBlock
*, LoadInst
*> InsertedLoads
;
1250 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1251 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
1252 LoadInst
*&Load
= InsertedLoads
[Pred
];
1254 Load
= new LoadInst(PN
->getIncomingValue(i
),
1255 PN
->getName() + "." + Pred
->getName(),
1256 Pred
->getTerminator());
1257 Load
->setAlignment(Align
);
1258 if (TBAATag
) Load
->setMetadata(LLVMContext::MD_tbaa
, TBAATag
);
1261 NewPN
->addIncoming(Load
, Pred
);
1264 PN
->eraseFromParent();
1272 bool SROA::performPromotion(Function
&F
) {
1273 std::vector
<AllocaInst
*> Allocas
;
1274 DominatorTree
*DT
= 0;
1276 DT
= &getAnalysis
<DominatorTree
>();
1278 BasicBlock
&BB
= F
.getEntryBlock(); // Get the entry node for the function
1280 bool Changed
= false;
1281 SmallVector
<Instruction
*, 64> Insts
;
1285 // Find allocas that are safe to promote, by looking at all instructions in
1287 for (BasicBlock::iterator I
= BB
.begin(), E
= --BB
.end(); I
!= E
; ++I
)
1288 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) // Is it an alloca?
1289 if (tryToMakeAllocaBePromotable(AI
, TD
))
1290 Allocas
.push_back(AI
);
1292 if (Allocas
.empty()) break;
1295 PromoteMemToReg(Allocas
, *DT
);
1298 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
) {
1299 AllocaInst
*AI
= Allocas
[i
];
1301 // Build list of instructions to promote.
1302 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
1304 Insts
.push_back(cast
<Instruction
>(*UI
));
1306 AllocaPromoter(Insts
, SSA
).run(AI
, Insts
);
1310 NumPromoted
+= Allocas
.size();
1318 /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1319 /// SROA. It must be a struct or array type with a small number of elements.
1320 static bool ShouldAttemptScalarRepl(AllocaInst
*AI
) {
1321 const Type
*T
= AI
->getAllocatedType();
1322 // Do not promote any struct into more than 32 separate vars.
1323 if (const StructType
*ST
= dyn_cast
<StructType
>(T
))
1324 return ST
->getNumElements() <= 32;
1325 // Arrays are much less likely to be safe for SROA; only consider
1326 // them if they are very small.
1327 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
1328 return AT
->getNumElements() <= 8;
1333 // performScalarRepl - This algorithm is a simple worklist driven algorithm,
1334 // which runs on all of the malloc/alloca instructions in the function, removing
1335 // them if they are only used by getelementptr instructions.
1337 bool SROA::performScalarRepl(Function
&F
) {
1338 std::vector
<AllocaInst
*> WorkList
;
1340 // Scan the entry basic block, adding allocas to the worklist.
1341 BasicBlock
&BB
= F
.getEntryBlock();
1342 for (BasicBlock::iterator I
= BB
.begin(), E
= BB
.end(); I
!= E
; ++I
)
1343 if (AllocaInst
*A
= dyn_cast
<AllocaInst
>(I
))
1344 WorkList
.push_back(A
);
1346 // Process the worklist
1347 bool Changed
= false;
1348 while (!WorkList
.empty()) {
1349 AllocaInst
*AI
= WorkList
.back();
1350 WorkList
.pop_back();
1352 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1353 // with unused elements.
1354 if (AI
->use_empty()) {
1355 AI
->eraseFromParent();
1360 // If this alloca is impossible for us to promote, reject it early.
1361 if (AI
->isArrayAllocation() || !AI
->getAllocatedType()->isSized())
1364 // Check to see if this allocation is only modified by a memcpy/memmove from
1365 // a constant global. If this is the case, we can change all users to use
1366 // the constant global instead. This is commonly produced by the CFE by
1367 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1368 // is only subsequently read.
1369 if (MemTransferInst
*TheCopy
= isOnlyCopiedFromConstantGlobal(AI
)) {
1370 DEBUG(dbgs() << "Found alloca equal to global: " << *AI
<< '\n');
1371 DEBUG(dbgs() << " memcpy = " << *TheCopy
<< '\n');
1372 Constant
*TheSrc
= cast
<Constant
>(TheCopy
->getSource());
1373 AI
->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc
, AI
->getType()));
1374 TheCopy
->eraseFromParent(); // Don't mutate the global.
1375 AI
->eraseFromParent();
1381 // Check to see if we can perform the core SROA transformation. We cannot
1382 // transform the allocation instruction if it is an array allocation
1383 // (allocations OF arrays are ok though), and an allocation of a scalar
1384 // value cannot be decomposed at all.
1385 uint64_t AllocaSize
= TD
->getTypeAllocSize(AI
->getAllocatedType());
1387 // Do not promote [0 x %struct].
1388 if (AllocaSize
== 0) continue;
1390 // Do not promote any struct whose size is too big.
1391 if (AllocaSize
> SRThreshold
) continue;
1393 // If the alloca looks like a good candidate for scalar replacement, and if
1394 // all its users can be transformed, then split up the aggregate into its
1395 // separate elements.
1396 if (ShouldAttemptScalarRepl(AI
) && isSafeAllocaToScalarRepl(AI
)) {
1397 DoScalarReplacement(AI
, WorkList
);
1402 // If we can turn this aggregate value (potentially with casts) into a
1403 // simple scalar value that can be mem2reg'd into a register value.
1404 // IsNotTrivial tracks whether this is something that mem2reg could have
1405 // promoted itself. If so, we don't want to transform it needlessly. Note
1406 // that we can't just check based on the type: the alloca may be of an i32
1407 // but that has pointer arithmetic to set byte 3 of it or something.
1408 if (AllocaInst
*NewAI
=
1409 ConvertToScalarInfo((unsigned)AllocaSize
, *TD
).TryConvert(AI
)) {
1410 NewAI
->takeName(AI
);
1411 AI
->eraseFromParent();
1417 // Otherwise, couldn't process this alloca.
1423 /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1424 /// predicate, do SROA now.
1425 void SROA::DoScalarReplacement(AllocaInst
*AI
,
1426 std::vector
<AllocaInst
*> &WorkList
) {
1427 DEBUG(dbgs() << "Found inst to SROA: " << *AI
<< '\n');
1428 SmallVector
<AllocaInst
*, 32> ElementAllocas
;
1429 if (const StructType
*ST
= dyn_cast
<StructType
>(AI
->getAllocatedType())) {
1430 ElementAllocas
.reserve(ST
->getNumContainedTypes());
1431 for (unsigned i
= 0, e
= ST
->getNumContainedTypes(); i
!= e
; ++i
) {
1432 AllocaInst
*NA
= new AllocaInst(ST
->getContainedType(i
), 0,
1434 AI
->getName() + "." + Twine(i
), AI
);
1435 ElementAllocas
.push_back(NA
);
1436 WorkList
.push_back(NA
); // Add to worklist for recursive processing
1439 const ArrayType
*AT
= cast
<ArrayType
>(AI
->getAllocatedType());
1440 ElementAllocas
.reserve(AT
->getNumElements());
1441 const Type
*ElTy
= AT
->getElementType();
1442 for (unsigned i
= 0, e
= AT
->getNumElements(); i
!= e
; ++i
) {
1443 AllocaInst
*NA
= new AllocaInst(ElTy
, 0, AI
->getAlignment(),
1444 AI
->getName() + "." + Twine(i
), AI
);
1445 ElementAllocas
.push_back(NA
);
1446 WorkList
.push_back(NA
); // Add to worklist for recursive processing
1450 // Now that we have created the new alloca instructions, rewrite all the
1451 // uses of the old alloca.
1452 RewriteForScalarRepl(AI
, AI
, 0, ElementAllocas
);
1454 // Now erase any instructions that were made dead while rewriting the alloca.
1455 DeleteDeadInstructions();
1456 AI
->eraseFromParent();
1461 /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1462 /// recursively including all their operands that become trivially dead.
1463 void SROA::DeleteDeadInstructions() {
1464 while (!DeadInsts
.empty()) {
1465 Instruction
*I
= cast
<Instruction
>(DeadInsts
.pop_back_val());
1467 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
)
1468 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
1469 // Zero out the operand and see if it becomes trivially dead.
1470 // (But, don't add allocas to the dead instruction list -- they are
1471 // already on the worklist and will be deleted separately.)
1473 if (isInstructionTriviallyDead(U
) && !isa
<AllocaInst
>(U
))
1474 DeadInsts
.push_back(U
);
1477 I
->eraseFromParent();
1481 /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1482 /// performing scalar replacement of alloca AI. The results are flagged in
1483 /// the Info parameter. Offset indicates the position within AI that is
1484 /// referenced by this instruction.
1485 void SROA::isSafeForScalarRepl(Instruction
*I
, uint64_t Offset
,
1487 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
; ++UI
) {
1488 Instruction
*User
= cast
<Instruction
>(*UI
);
1490 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
1491 isSafeForScalarRepl(BC
, Offset
, Info
);
1492 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1493 uint64_t GEPOffset
= Offset
;
1494 isSafeGEP(GEPI
, GEPOffset
, Info
);
1496 isSafeForScalarRepl(GEPI
, GEPOffset
, Info
);
1497 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
1498 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(MI
->getLength());
1500 return MarkUnsafe(Info
, User
);
1501 isSafeMemAccess(Offset
, Length
->getZExtValue(), 0,
1502 UI
.getOperandNo() == 0, Info
, MI
,
1503 true /*AllowWholeAccess*/);
1504 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1505 if (LI
->isVolatile())
1506 return MarkUnsafe(Info
, User
);
1507 const Type
*LIType
= LI
->getType();
1508 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(LIType
),
1509 LIType
, false, Info
, LI
, true /*AllowWholeAccess*/);
1510 Info
.hasALoadOrStore
= true;
1512 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1513 // Store is ok if storing INTO the pointer, not storing the pointer
1514 if (SI
->isVolatile() || SI
->getOperand(0) == I
)
1515 return MarkUnsafe(Info
, User
);
1517 const Type
*SIType
= SI
->getOperand(0)->getType();
1518 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(SIType
),
1519 SIType
, true, Info
, SI
, true /*AllowWholeAccess*/);
1520 Info
.hasALoadOrStore
= true;
1521 } else if (isa
<PHINode
>(User
) || isa
<SelectInst
>(User
)) {
1522 isSafePHISelectUseForScalarRepl(User
, Offset
, Info
);
1524 return MarkUnsafe(Info
, User
);
1526 if (Info
.isUnsafe
) return;
1531 /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1532 /// derived from the alloca, we can often still split the alloca into elements.
1533 /// This is useful if we have a large alloca where one element is phi'd
1534 /// together somewhere: we can SRoA and promote all the other elements even if
1535 /// we end up not being able to promote this one.
1537 /// All we require is that the uses of the PHI do not index into other parts of
1538 /// the alloca. The most important use case for this is single load and stores
1539 /// that are PHI'd together, which can happen due to code sinking.
1540 void SROA::isSafePHISelectUseForScalarRepl(Instruction
*I
, uint64_t Offset
,
1542 // If we've already checked this PHI, don't do it again.
1543 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
1544 if (!Info
.CheckedPHIs
.insert(PN
))
1547 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
; ++UI
) {
1548 Instruction
*User
= cast
<Instruction
>(*UI
);
1550 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
1551 isSafePHISelectUseForScalarRepl(BC
, Offset
, Info
);
1552 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1553 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1554 // but would have to prove that we're staying inside of an element being
1556 if (!GEPI
->hasAllZeroIndices())
1557 return MarkUnsafe(Info
, User
);
1558 isSafePHISelectUseForScalarRepl(GEPI
, Offset
, Info
);
1559 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1560 if (LI
->isVolatile())
1561 return MarkUnsafe(Info
, User
);
1562 const Type
*LIType
= LI
->getType();
1563 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(LIType
),
1564 LIType
, false, Info
, LI
, false /*AllowWholeAccess*/);
1565 Info
.hasALoadOrStore
= true;
1567 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1568 // Store is ok if storing INTO the pointer, not storing the pointer
1569 if (SI
->isVolatile() || SI
->getOperand(0) == I
)
1570 return MarkUnsafe(Info
, User
);
1572 const Type
*SIType
= SI
->getOperand(0)->getType();
1573 isSafeMemAccess(Offset
, TD
->getTypeAllocSize(SIType
),
1574 SIType
, true, Info
, SI
, false /*AllowWholeAccess*/);
1575 Info
.hasALoadOrStore
= true;
1576 } else if (isa
<PHINode
>(User
) || isa
<SelectInst
>(User
)) {
1577 isSafePHISelectUseForScalarRepl(User
, Offset
, Info
);
1579 return MarkUnsafe(Info
, User
);
1581 if (Info
.isUnsafe
) return;
1585 /// isSafeGEP - Check if a GEP instruction can be handled for scalar
1586 /// replacement. It is safe when all the indices are constant, in-bounds
1587 /// references, and when the resulting offset corresponds to an element within
1588 /// the alloca type. The results are flagged in the Info parameter. Upon
1589 /// return, Offset is adjusted as specified by the GEP indices.
1590 void SROA::isSafeGEP(GetElementPtrInst
*GEPI
,
1591 uint64_t &Offset
, AllocaInfo
&Info
) {
1592 gep_type_iterator GEPIt
= gep_type_begin(GEPI
), E
= gep_type_end(GEPI
);
1596 // Walk through the GEP type indices, checking the types that this indexes
1598 for (; GEPIt
!= E
; ++GEPIt
) {
1599 // Ignore struct elements, no extra checking needed for these.
1600 if ((*GEPIt
)->isStructTy())
1603 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(GEPIt
.getOperand());
1605 return MarkUnsafe(Info
, GEPI
);
1608 // Compute the offset due to this GEP and check if the alloca has a
1609 // component element at that offset.
1610 SmallVector
<Value
*, 8> Indices(GEPI
->op_begin() + 1, GEPI
->op_end());
1611 Offset
+= TD
->getIndexedOffset(GEPI
->getPointerOperandType(),
1612 &Indices
[0], Indices
.size());
1613 if (!TypeHasComponent(Info
.AI
->getAllocatedType(), Offset
, 0))
1614 MarkUnsafe(Info
, GEPI
);
1617 /// isHomogeneousAggregate - Check if type T is a struct or array containing
1618 /// elements of the same type (which is always true for arrays). If so,
1619 /// return true with NumElts and EltTy set to the number of elements and the
1620 /// element type, respectively.
1621 static bool isHomogeneousAggregate(const Type
*T
, unsigned &NumElts
,
1622 const Type
*&EltTy
) {
1623 if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
)) {
1624 NumElts
= AT
->getNumElements();
1625 EltTy
= (NumElts
== 0 ? 0 : AT
->getElementType());
1628 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
1629 NumElts
= ST
->getNumContainedTypes();
1630 EltTy
= (NumElts
== 0 ? 0 : ST
->getContainedType(0));
1631 for (unsigned n
= 1; n
< NumElts
; ++n
) {
1632 if (ST
->getContainedType(n
) != EltTy
)
1640 /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1641 /// "homogeneous" aggregates with the same element type and number of elements.
1642 static bool isCompatibleAggregate(const Type
*T1
, const Type
*T2
) {
1646 unsigned NumElts1
, NumElts2
;
1647 const Type
*EltTy1
, *EltTy2
;
1648 if (isHomogeneousAggregate(T1
, NumElts1
, EltTy1
) &&
1649 isHomogeneousAggregate(T2
, NumElts2
, EltTy2
) &&
1650 NumElts1
== NumElts2
&&
1657 /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1658 /// alloca or has an offset and size that corresponds to a component element
1659 /// within it. The offset checked here may have been formed from a GEP with a
1660 /// pointer bitcasted to a different type.
1662 /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1663 /// unit. If false, it only allows accesses known to be in a single element.
1664 void SROA::isSafeMemAccess(uint64_t Offset
, uint64_t MemSize
,
1665 const Type
*MemOpType
, bool isStore
,
1666 AllocaInfo
&Info
, Instruction
*TheAccess
,
1667 bool AllowWholeAccess
) {
1668 // Check if this is a load/store of the entire alloca.
1669 if (Offset
== 0 && AllowWholeAccess
&&
1670 MemSize
== TD
->getTypeAllocSize(Info
.AI
->getAllocatedType())) {
1671 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1672 // loads/stores (which are essentially the same as the MemIntrinsics with
1673 // regard to copying padding between elements). But, if an alloca is
1674 // flagged as both a source and destination of such operations, we'll need
1675 // to check later for padding between elements.
1676 if (!MemOpType
|| MemOpType
->isIntegerTy()) {
1678 Info
.isMemCpyDst
= true;
1680 Info
.isMemCpySrc
= true;
1683 // This is also safe for references using a type that is compatible with
1684 // the type of the alloca, so that loads/stores can be rewritten using
1685 // insertvalue/extractvalue.
1686 if (isCompatibleAggregate(MemOpType
, Info
.AI
->getAllocatedType())) {
1687 Info
.hasSubelementAccess
= true;
1691 // Check if the offset/size correspond to a component within the alloca type.
1692 const Type
*T
= Info
.AI
->getAllocatedType();
1693 if (TypeHasComponent(T
, Offset
, MemSize
)) {
1694 Info
.hasSubelementAccess
= true;
1698 return MarkUnsafe(Info
, TheAccess
);
1701 /// TypeHasComponent - Return true if T has a component type with the
1702 /// specified offset and size. If Size is zero, do not check the size.
1703 bool SROA::TypeHasComponent(const Type
*T
, uint64_t Offset
, uint64_t Size
) {
1706 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
1707 const StructLayout
*Layout
= TD
->getStructLayout(ST
);
1708 unsigned EltIdx
= Layout
->getElementContainingOffset(Offset
);
1709 EltTy
= ST
->getContainedType(EltIdx
);
1710 EltSize
= TD
->getTypeAllocSize(EltTy
);
1711 Offset
-= Layout
->getElementOffset(EltIdx
);
1712 } else if (const ArrayType
*AT
= dyn_cast
<ArrayType
>(T
)) {
1713 EltTy
= AT
->getElementType();
1714 EltSize
= TD
->getTypeAllocSize(EltTy
);
1715 if (Offset
>= AT
->getNumElements() * EltSize
)
1721 if (Offset
== 0 && (Size
== 0 || EltSize
== Size
))
1723 // Check if the component spans multiple elements.
1724 if (Offset
+ Size
> EltSize
)
1726 return TypeHasComponent(EltTy
, Offset
, Size
);
1729 /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1730 /// the instruction I, which references it, to use the separate elements.
1731 /// Offset indicates the position within AI that is referenced by this
1733 void SROA::RewriteForScalarRepl(Instruction
*I
, AllocaInst
*AI
, uint64_t Offset
,
1734 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1735 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!=E
;) {
1736 Use
&TheUse
= UI
.getUse();
1737 Instruction
*User
= cast
<Instruction
>(*UI
++);
1739 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(User
)) {
1740 RewriteBitCast(BC
, AI
, Offset
, NewElts
);
1744 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(User
)) {
1745 RewriteGEP(GEPI
, AI
, Offset
, NewElts
);
1749 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(User
)) {
1750 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(MI
->getLength());
1751 uint64_t MemSize
= Length
->getZExtValue();
1753 MemSize
== TD
->getTypeAllocSize(AI
->getAllocatedType()))
1754 RewriteMemIntrinUserOfAlloca(MI
, I
, AI
, NewElts
);
1755 // Otherwise the intrinsic can only touch a single element and the
1756 // address operand will be updated, so nothing else needs to be done.
1760 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(User
)) {
1761 const Type
*LIType
= LI
->getType();
1763 if (isCompatibleAggregate(LIType
, AI
->getAllocatedType())) {
1765 // %res = load { i32, i32 }* %alloc
1767 // %load.0 = load i32* %alloc.0
1768 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1769 // %load.1 = load i32* %alloc.1
1770 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1771 // (Also works for arrays instead of structs)
1772 Value
*Insert
= UndefValue::get(LIType
);
1773 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1774 Value
*Load
= new LoadInst(NewElts
[i
], "load", LI
);
1775 Insert
= InsertValueInst::Create(Insert
, Load
, i
, "insert", LI
);
1777 LI
->replaceAllUsesWith(Insert
);
1778 DeadInsts
.push_back(LI
);
1779 } else if (LIType
->isIntegerTy() &&
1780 TD
->getTypeAllocSize(LIType
) ==
1781 TD
->getTypeAllocSize(AI
->getAllocatedType())) {
1782 // If this is a load of the entire alloca to an integer, rewrite it.
1783 RewriteLoadUserOfWholeAlloca(LI
, AI
, NewElts
);
1788 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
1789 Value
*Val
= SI
->getOperand(0);
1790 const Type
*SIType
= Val
->getType();
1791 if (isCompatibleAggregate(SIType
, AI
->getAllocatedType())) {
1793 // store { i32, i32 } %val, { i32, i32 }* %alloc
1795 // %val.0 = extractvalue { i32, i32 } %val, 0
1796 // store i32 %val.0, i32* %alloc.0
1797 // %val.1 = extractvalue { i32, i32 } %val, 1
1798 // store i32 %val.1, i32* %alloc.1
1799 // (Also works for arrays instead of structs)
1800 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1801 Value
*Extract
= ExtractValueInst::Create(Val
, i
, Val
->getName(), SI
);
1802 new StoreInst(Extract
, NewElts
[i
], SI
);
1804 DeadInsts
.push_back(SI
);
1805 } else if (SIType
->isIntegerTy() &&
1806 TD
->getTypeAllocSize(SIType
) ==
1807 TD
->getTypeAllocSize(AI
->getAllocatedType())) {
1808 // If this is a store of the entire alloca from an integer, rewrite it.
1809 RewriteStoreUserOfWholeAlloca(SI
, AI
, NewElts
);
1814 if (isa
<SelectInst
>(User
) || isa
<PHINode
>(User
)) {
1815 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1816 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1818 if (!isa
<AllocaInst
>(I
)) continue;
1820 assert(Offset
== 0 && NewElts
[0] &&
1821 "Direct alloca use should have a zero offset");
1823 // If we have a use of the alloca, we know the derived uses will be
1824 // utilizing just the first element of the scalarized result. Insert a
1825 // bitcast of the first alloca before the user as required.
1826 AllocaInst
*NewAI
= NewElts
[0];
1827 BitCastInst
*BCI
= new BitCastInst(NewAI
, AI
->getType(), "", NewAI
);
1828 NewAI
->moveBefore(BCI
);
1835 /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1836 /// and recursively continue updating all of its uses.
1837 void SROA::RewriteBitCast(BitCastInst
*BC
, AllocaInst
*AI
, uint64_t Offset
,
1838 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1839 RewriteForScalarRepl(BC
, AI
, Offset
, NewElts
);
1840 if (BC
->getOperand(0) != AI
)
1843 // The bitcast references the original alloca. Replace its uses with
1844 // references to the first new element alloca.
1845 Instruction
*Val
= NewElts
[0];
1846 if (Val
->getType() != BC
->getDestTy()) {
1847 Val
= new BitCastInst(Val
, BC
->getDestTy(), "", BC
);
1850 BC
->replaceAllUsesWith(Val
);
1851 DeadInsts
.push_back(BC
);
1854 /// FindElementAndOffset - Return the index of the element containing Offset
1855 /// within the specified type, which must be either a struct or an array.
1856 /// Sets T to the type of the element and Offset to the offset within that
1857 /// element. IdxTy is set to the type of the index result to be used in a
1858 /// GEP instruction.
1859 uint64_t SROA::FindElementAndOffset(const Type
*&T
, uint64_t &Offset
,
1860 const Type
*&IdxTy
) {
1862 if (const StructType
*ST
= dyn_cast
<StructType
>(T
)) {
1863 const StructLayout
*Layout
= TD
->getStructLayout(ST
);
1864 Idx
= Layout
->getElementContainingOffset(Offset
);
1865 T
= ST
->getContainedType(Idx
);
1866 Offset
-= Layout
->getElementOffset(Idx
);
1867 IdxTy
= Type::getInt32Ty(T
->getContext());
1870 const ArrayType
*AT
= cast
<ArrayType
>(T
);
1871 T
= AT
->getElementType();
1872 uint64_t EltSize
= TD
->getTypeAllocSize(T
);
1873 Idx
= Offset
/ EltSize
;
1874 Offset
-= Idx
* EltSize
;
1875 IdxTy
= Type::getInt64Ty(T
->getContext());
1879 /// RewriteGEP - Check if this GEP instruction moves the pointer across
1880 /// elements of the alloca that are being split apart, and if so, rewrite
1881 /// the GEP to be relative to the new element.
1882 void SROA::RewriteGEP(GetElementPtrInst
*GEPI
, AllocaInst
*AI
, uint64_t Offset
,
1883 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1884 uint64_t OldOffset
= Offset
;
1885 SmallVector
<Value
*, 8> Indices(GEPI
->op_begin() + 1, GEPI
->op_end());
1886 Offset
+= TD
->getIndexedOffset(GEPI
->getPointerOperandType(),
1887 &Indices
[0], Indices
.size());
1889 RewriteForScalarRepl(GEPI
, AI
, Offset
, NewElts
);
1891 const Type
*T
= AI
->getAllocatedType();
1893 uint64_t OldIdx
= FindElementAndOffset(T
, OldOffset
, IdxTy
);
1894 if (GEPI
->getOperand(0) == AI
)
1895 OldIdx
= ~0ULL; // Force the GEP to be rewritten.
1897 T
= AI
->getAllocatedType();
1898 uint64_t EltOffset
= Offset
;
1899 uint64_t Idx
= FindElementAndOffset(T
, EltOffset
, IdxTy
);
1901 // If this GEP does not move the pointer across elements of the alloca
1902 // being split, then it does not needs to be rewritten.
1906 const Type
*i32Ty
= Type::getInt32Ty(AI
->getContext());
1907 SmallVector
<Value
*, 8> NewArgs
;
1908 NewArgs
.push_back(Constant::getNullValue(i32Ty
));
1909 while (EltOffset
!= 0) {
1910 uint64_t EltIdx
= FindElementAndOffset(T
, EltOffset
, IdxTy
);
1911 NewArgs
.push_back(ConstantInt::get(IdxTy
, EltIdx
));
1913 Instruction
*Val
= NewElts
[Idx
];
1914 if (NewArgs
.size() > 1) {
1915 Val
= GetElementPtrInst::CreateInBounds(Val
, NewArgs
.begin(),
1916 NewArgs
.end(), "", GEPI
);
1917 Val
->takeName(GEPI
);
1919 if (Val
->getType() != GEPI
->getType())
1920 Val
= new BitCastInst(Val
, GEPI
->getType(), Val
->getName(), GEPI
);
1921 GEPI
->replaceAllUsesWith(Val
);
1922 DeadInsts
.push_back(GEPI
);
1925 /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1926 /// Rewrite it to copy or set the elements of the scalarized memory.
1927 void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic
*MI
, Instruction
*Inst
,
1929 SmallVector
<AllocaInst
*, 32> &NewElts
) {
1930 // If this is a memcpy/memmove, construct the other pointer as the
1931 // appropriate type. The "Other" pointer is the pointer that goes to memory
1932 // that doesn't have anything to do with the alloca that we are promoting. For
1933 // memset, this Value* stays null.
1934 Value
*OtherPtr
= 0;
1935 unsigned MemAlignment
= MI
->getAlignment();
1936 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) { // memmove/memcopy
1937 if (Inst
== MTI
->getRawDest())
1938 OtherPtr
= MTI
->getRawSource();
1940 assert(Inst
== MTI
->getRawSource());
1941 OtherPtr
= MTI
->getRawDest();
1945 // If there is an other pointer, we want to convert it to the same pointer
1946 // type as AI has, so we can GEP through it safely.
1948 unsigned AddrSpace
=
1949 cast
<PointerType
>(OtherPtr
->getType())->getAddressSpace();
1951 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
1952 // optimization, but it's also required to detect the corner case where
1953 // both pointer operands are referencing the same memory, and where
1954 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
1955 // function is only called for mem intrinsics that access the whole
1956 // aggregate, so non-zero GEPs are not an issue here.)
1957 OtherPtr
= OtherPtr
->stripPointerCasts();
1959 // Copying the alloca to itself is a no-op: just delete it.
1960 if (OtherPtr
== AI
|| OtherPtr
== NewElts
[0]) {
1961 // This code will run twice for a no-op memcpy -- once for each operand.
1962 // Put only one reference to MI on the DeadInsts list.
1963 for (SmallVector
<Value
*, 32>::const_iterator I
= DeadInsts
.begin(),
1964 E
= DeadInsts
.end(); I
!= E
; ++I
)
1965 if (*I
== MI
) return;
1966 DeadInsts
.push_back(MI
);
1970 // If the pointer is not the right type, insert a bitcast to the right
1973 PointerType::get(AI
->getType()->getElementType(), AddrSpace
);
1975 if (OtherPtr
->getType() != NewTy
)
1976 OtherPtr
= new BitCastInst(OtherPtr
, NewTy
, OtherPtr
->getName(), MI
);
1979 // Process each element of the aggregate.
1980 bool SROADest
= MI
->getRawDest() == Inst
;
1982 Constant
*Zero
= Constant::getNullValue(Type::getInt32Ty(MI
->getContext()));
1984 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
1985 // If this is a memcpy/memmove, emit a GEP of the other element address.
1986 Value
*OtherElt
= 0;
1987 unsigned OtherEltAlign
= MemAlignment
;
1990 Value
*Idx
[2] = { Zero
,
1991 ConstantInt::get(Type::getInt32Ty(MI
->getContext()), i
) };
1992 OtherElt
= GetElementPtrInst::CreateInBounds(OtherPtr
, Idx
, Idx
+ 2,
1993 OtherPtr
->getName()+"."+Twine(i
),
1996 const PointerType
*OtherPtrTy
= cast
<PointerType
>(OtherPtr
->getType());
1997 const Type
*OtherTy
= OtherPtrTy
->getElementType();
1998 if (const StructType
*ST
= dyn_cast
<StructType
>(OtherTy
)) {
1999 EltOffset
= TD
->getStructLayout(ST
)->getElementOffset(i
);
2001 const Type
*EltTy
= cast
<SequentialType
>(OtherTy
)->getElementType();
2002 EltOffset
= TD
->getTypeAllocSize(EltTy
)*i
;
2005 // The alignment of the other pointer is the guaranteed alignment of the
2006 // element, which is affected by both the known alignment of the whole
2007 // mem intrinsic and the alignment of the element. If the alignment of
2008 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2009 // known alignment is just 4 bytes.
2010 OtherEltAlign
= (unsigned)MinAlign(OtherEltAlign
, EltOffset
);
2013 Value
*EltPtr
= NewElts
[i
];
2014 const Type
*EltTy
= cast
<PointerType
>(EltPtr
->getType())->getElementType();
2016 // If we got down to a scalar, insert a load or store as appropriate.
2017 if (EltTy
->isSingleValueType()) {
2018 if (isa
<MemTransferInst
>(MI
)) {
2020 // From Other to Alloca.
2021 Value
*Elt
= new LoadInst(OtherElt
, "tmp", false, OtherEltAlign
, MI
);
2022 new StoreInst(Elt
, EltPtr
, MI
);
2024 // From Alloca to Other.
2025 Value
*Elt
= new LoadInst(EltPtr
, "tmp", MI
);
2026 new StoreInst(Elt
, OtherElt
, false, OtherEltAlign
, MI
);
2030 assert(isa
<MemSetInst
>(MI
));
2032 // If the stored element is zero (common case), just store a null
2035 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(MI
->getArgOperand(1))) {
2037 StoreVal
= Constant::getNullValue(EltTy
); // 0.0, null, 0, <0,0>
2039 // If EltTy is a vector type, get the element type.
2040 const Type
*ValTy
= EltTy
->getScalarType();
2042 // Construct an integer with the right value.
2043 unsigned EltSize
= TD
->getTypeSizeInBits(ValTy
);
2044 APInt
OneVal(EltSize
, CI
->getZExtValue());
2045 APInt
TotalVal(OneVal
);
2047 for (unsigned i
= 0; 8*i
< EltSize
; ++i
) {
2048 TotalVal
= TotalVal
.shl(8);
2052 // Convert the integer value to the appropriate type.
2053 StoreVal
= ConstantInt::get(CI
->getContext(), TotalVal
);
2054 if (ValTy
->isPointerTy())
2055 StoreVal
= ConstantExpr::getIntToPtr(StoreVal
, ValTy
);
2056 else if (ValTy
->isFloatingPointTy())
2057 StoreVal
= ConstantExpr::getBitCast(StoreVal
, ValTy
);
2058 assert(StoreVal
->getType() == ValTy
&& "Type mismatch!");
2060 // If the requested value was a vector constant, create it.
2061 if (EltTy
!= ValTy
) {
2062 unsigned NumElts
= cast
<VectorType
>(ValTy
)->getNumElements();
2063 SmallVector
<Constant
*, 16> Elts(NumElts
, StoreVal
);
2064 StoreVal
= ConstantVector::get(Elts
);
2067 new StoreInst(StoreVal
, EltPtr
, MI
);
2070 // Otherwise, if we're storing a byte variable, use a memset call for
2074 unsigned EltSize
= TD
->getTypeAllocSize(EltTy
);
2076 IRBuilder
<> Builder(MI
);
2078 // Finally, insert the meminst for this element.
2079 if (isa
<MemSetInst
>(MI
)) {
2080 Builder
.CreateMemSet(EltPtr
, MI
->getArgOperand(1), EltSize
,
2083 assert(isa
<MemTransferInst
>(MI
));
2084 Value
*Dst
= SROADest
? EltPtr
: OtherElt
; // Dest ptr
2085 Value
*Src
= SROADest
? OtherElt
: EltPtr
; // Src ptr
2087 if (isa
<MemCpyInst
>(MI
))
2088 Builder
.CreateMemCpy(Dst
, Src
, EltSize
, OtherEltAlign
,MI
->isVolatile());
2090 Builder
.CreateMemMove(Dst
, Src
, EltSize
,OtherEltAlign
,MI
->isVolatile());
2093 DeadInsts
.push_back(MI
);
2096 /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2097 /// overwrites the entire allocation. Extract out the pieces of the stored
2098 /// integer and store them individually.
2099 void SROA::RewriteStoreUserOfWholeAlloca(StoreInst
*SI
, AllocaInst
*AI
,
2100 SmallVector
<AllocaInst
*, 32> &NewElts
){
2101 // Extract each element out of the integer according to its structure offset
2102 // and store the element value to the individual alloca.
2103 Value
*SrcVal
= SI
->getOperand(0);
2104 const Type
*AllocaEltTy
= AI
->getAllocatedType();
2105 uint64_t AllocaSizeBits
= TD
->getTypeAllocSizeInBits(AllocaEltTy
);
2107 IRBuilder
<> Builder(SI
);
2109 // Handle tail padding by extending the operand
2110 if (TD
->getTypeSizeInBits(SrcVal
->getType()) != AllocaSizeBits
)
2111 SrcVal
= Builder
.CreateZExt(SrcVal
,
2112 IntegerType::get(SI
->getContext(), AllocaSizeBits
));
2114 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI
<< '\n' << *SI
2117 // There are two forms here: AI could be an array or struct. Both cases
2118 // have different ways to compute the element offset.
2119 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
2120 const StructLayout
*Layout
= TD
->getStructLayout(EltSTy
);
2122 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
2123 // Get the number of bits to shift SrcVal to get the value.
2124 const Type
*FieldTy
= EltSTy
->getElementType(i
);
2125 uint64_t Shift
= Layout
->getElementOffsetInBits(i
);
2127 if (TD
->isBigEndian())
2128 Shift
= AllocaSizeBits
-Shift
-TD
->getTypeAllocSizeInBits(FieldTy
);
2130 Value
*EltVal
= SrcVal
;
2132 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
2133 EltVal
= Builder
.CreateLShr(EltVal
, ShiftVal
, "sroa.store.elt");
2136 // Truncate down to an integer of the right size.
2137 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
2139 // Ignore zero sized fields like {}, they obviously contain no data.
2140 if (FieldSizeBits
== 0) continue;
2142 if (FieldSizeBits
!= AllocaSizeBits
)
2143 EltVal
= Builder
.CreateTrunc(EltVal
,
2144 IntegerType::get(SI
->getContext(), FieldSizeBits
));
2145 Value
*DestField
= NewElts
[i
];
2146 if (EltVal
->getType() == FieldTy
) {
2147 // Storing to an integer field of this size, just do it.
2148 } else if (FieldTy
->isFloatingPointTy() || FieldTy
->isVectorTy()) {
2149 // Bitcast to the right element type (for fp/vector values).
2150 EltVal
= Builder
.CreateBitCast(EltVal
, FieldTy
);
2152 // Otherwise, bitcast the dest pointer (for aggregates).
2153 DestField
= Builder
.CreateBitCast(DestField
,
2154 PointerType::getUnqual(EltVal
->getType()));
2156 new StoreInst(EltVal
, DestField
, SI
);
2160 const ArrayType
*ATy
= cast
<ArrayType
>(AllocaEltTy
);
2161 const Type
*ArrayEltTy
= ATy
->getElementType();
2162 uint64_t ElementOffset
= TD
->getTypeAllocSizeInBits(ArrayEltTy
);
2163 uint64_t ElementSizeBits
= TD
->getTypeSizeInBits(ArrayEltTy
);
2167 if (TD
->isBigEndian())
2168 Shift
= AllocaSizeBits
-ElementOffset
;
2172 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
2173 // Ignore zero sized fields like {}, they obviously contain no data.
2174 if (ElementSizeBits
== 0) continue;
2176 Value
*EltVal
= SrcVal
;
2178 Value
*ShiftVal
= ConstantInt::get(EltVal
->getType(), Shift
);
2179 EltVal
= Builder
.CreateLShr(EltVal
, ShiftVal
, "sroa.store.elt");
2182 // Truncate down to an integer of the right size.
2183 if (ElementSizeBits
!= AllocaSizeBits
)
2184 EltVal
= Builder
.CreateTrunc(EltVal
,
2185 IntegerType::get(SI
->getContext(),
2187 Value
*DestField
= NewElts
[i
];
2188 if (EltVal
->getType() == ArrayEltTy
) {
2189 // Storing to an integer field of this size, just do it.
2190 } else if (ArrayEltTy
->isFloatingPointTy() ||
2191 ArrayEltTy
->isVectorTy()) {
2192 // Bitcast to the right element type (for fp/vector values).
2193 EltVal
= Builder
.CreateBitCast(EltVal
, ArrayEltTy
);
2195 // Otherwise, bitcast the dest pointer (for aggregates).
2196 DestField
= Builder
.CreateBitCast(DestField
,
2197 PointerType::getUnqual(EltVal
->getType()));
2199 new StoreInst(EltVal
, DestField
, SI
);
2201 if (TD
->isBigEndian())
2202 Shift
-= ElementOffset
;
2204 Shift
+= ElementOffset
;
2208 DeadInsts
.push_back(SI
);
2211 /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2212 /// an integer. Load the individual pieces to form the aggregate value.
2213 void SROA::RewriteLoadUserOfWholeAlloca(LoadInst
*LI
, AllocaInst
*AI
,
2214 SmallVector
<AllocaInst
*, 32> &NewElts
) {
2215 // Extract each element out of the NewElts according to its structure offset
2216 // and form the result value.
2217 const Type
*AllocaEltTy
= AI
->getAllocatedType();
2218 uint64_t AllocaSizeBits
= TD
->getTypeAllocSizeInBits(AllocaEltTy
);
2220 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI
<< '\n' << *LI
2223 // There are two forms here: AI could be an array or struct. Both cases
2224 // have different ways to compute the element offset.
2225 const StructLayout
*Layout
= 0;
2226 uint64_t ArrayEltBitOffset
= 0;
2227 if (const StructType
*EltSTy
= dyn_cast
<StructType
>(AllocaEltTy
)) {
2228 Layout
= TD
->getStructLayout(EltSTy
);
2230 const Type
*ArrayEltTy
= cast
<ArrayType
>(AllocaEltTy
)->getElementType();
2231 ArrayEltBitOffset
= TD
->getTypeAllocSizeInBits(ArrayEltTy
);
2235 Constant::getNullValue(IntegerType::get(LI
->getContext(), AllocaSizeBits
));
2237 for (unsigned i
= 0, e
= NewElts
.size(); i
!= e
; ++i
) {
2238 // Load the value from the alloca. If the NewElt is an aggregate, cast
2239 // the pointer to an integer of the same size before doing the load.
2240 Value
*SrcField
= NewElts
[i
];
2241 const Type
*FieldTy
=
2242 cast
<PointerType
>(SrcField
->getType())->getElementType();
2243 uint64_t FieldSizeBits
= TD
->getTypeSizeInBits(FieldTy
);
2245 // Ignore zero sized fields like {}, they obviously contain no data.
2246 if (FieldSizeBits
== 0) continue;
2248 const IntegerType
*FieldIntTy
= IntegerType::get(LI
->getContext(),
2250 if (!FieldTy
->isIntegerTy() && !FieldTy
->isFloatingPointTy() &&
2251 !FieldTy
->isVectorTy())
2252 SrcField
= new BitCastInst(SrcField
,
2253 PointerType::getUnqual(FieldIntTy
),
2255 SrcField
= new LoadInst(SrcField
, "sroa.load.elt", LI
);
2257 // If SrcField is a fp or vector of the right size but that isn't an
2258 // integer type, bitcast to an integer so we can shift it.
2259 if (SrcField
->getType() != FieldIntTy
)
2260 SrcField
= new BitCastInst(SrcField
, FieldIntTy
, "", LI
);
2262 // Zero extend the field to be the same size as the final alloca so that
2263 // we can shift and insert it.
2264 if (SrcField
->getType() != ResultVal
->getType())
2265 SrcField
= new ZExtInst(SrcField
, ResultVal
->getType(), "", LI
);
2267 // Determine the number of bits to shift SrcField.
2269 if (Layout
) // Struct case.
2270 Shift
= Layout
->getElementOffsetInBits(i
);
2272 Shift
= i
*ArrayEltBitOffset
;
2274 if (TD
->isBigEndian())
2275 Shift
= AllocaSizeBits
-Shift
-FieldIntTy
->getBitWidth();
2278 Value
*ShiftVal
= ConstantInt::get(SrcField
->getType(), Shift
);
2279 SrcField
= BinaryOperator::CreateShl(SrcField
, ShiftVal
, "", LI
);
2282 // Don't create an 'or x, 0' on the first iteration.
2283 if (!isa
<Constant
>(ResultVal
) ||
2284 !cast
<Constant
>(ResultVal
)->isNullValue())
2285 ResultVal
= BinaryOperator::CreateOr(SrcField
, ResultVal
, "", LI
);
2287 ResultVal
= SrcField
;
2290 // Handle tail padding by truncating the result
2291 if (TD
->getTypeSizeInBits(LI
->getType()) != AllocaSizeBits
)
2292 ResultVal
= new TruncInst(ResultVal
, LI
->getType(), "", LI
);
2294 LI
->replaceAllUsesWith(ResultVal
);
2295 DeadInsts
.push_back(LI
);
2298 /// HasPadding - Return true if the specified type has any structure or
2299 /// alignment padding in between the elements that would be split apart
2300 /// by SROA; return false otherwise.
2301 static bool HasPadding(const Type
*Ty
, const TargetData
&TD
) {
2302 if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
2303 Ty
= ATy
->getElementType();
2304 return TD
.getTypeSizeInBits(Ty
) != TD
.getTypeAllocSizeInBits(Ty
);
2307 // SROA currently handles only Arrays and Structs.
2308 const StructType
*STy
= cast
<StructType
>(Ty
);
2309 const StructLayout
*SL
= TD
.getStructLayout(STy
);
2310 unsigned PrevFieldBitOffset
= 0;
2311 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
2312 unsigned FieldBitOffset
= SL
->getElementOffsetInBits(i
);
2314 // Check to see if there is any padding between this element and the
2317 unsigned PrevFieldEnd
=
2318 PrevFieldBitOffset
+TD
.getTypeSizeInBits(STy
->getElementType(i
-1));
2319 if (PrevFieldEnd
< FieldBitOffset
)
2322 PrevFieldBitOffset
= FieldBitOffset
;
2324 // Check for tail padding.
2325 if (unsigned EltCount
= STy
->getNumElements()) {
2326 unsigned PrevFieldEnd
= PrevFieldBitOffset
+
2327 TD
.getTypeSizeInBits(STy
->getElementType(EltCount
-1));
2328 if (PrevFieldEnd
< SL
->getSizeInBits())
2334 /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2335 /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2336 /// or 1 if safe after canonicalization has been performed.
2337 bool SROA::isSafeAllocaToScalarRepl(AllocaInst
*AI
) {
2338 // Loop over the use list of the alloca. We can only transform it if all of
2339 // the users are safe to transform.
2340 AllocaInfo
Info(AI
);
2342 isSafeForScalarRepl(AI
, 0, Info
);
2343 if (Info
.isUnsafe
) {
2344 DEBUG(dbgs() << "Cannot transform: " << *AI
<< '\n');
2348 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2349 // source and destination, we have to be careful. In particular, the memcpy
2350 // could be moving around elements that live in structure padding of the LLVM
2351 // types, but may actually be used. In these cases, we refuse to promote the
2353 if (Info
.isMemCpySrc
&& Info
.isMemCpyDst
&&
2354 HasPadding(AI
->getAllocatedType(), *TD
))
2357 // If the alloca never has an access to just *part* of it, but is accessed
2358 // via loads and stores, then we should use ConvertToScalarInfo to promote
2359 // the alloca instead of promoting each piece at a time and inserting fission
2361 if (!Info
.hasSubelementAccess
&& Info
.hasALoadOrStore
) {
2362 // If the struct/array just has one element, use basic SRoA.
2363 if (const StructType
*ST
= dyn_cast
<StructType
>(AI
->getAllocatedType())) {
2364 if (ST
->getNumElements() > 1) return false;
2366 if (cast
<ArrayType
>(AI
->getAllocatedType())->getNumElements() > 1)
2376 /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2377 /// some part of a constant global variable. This intentionally only accepts
2378 /// constant expressions because we don't can't rewrite arbitrary instructions.
2379 static bool PointsToConstantGlobal(Value
*V
) {
2380 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
2381 return GV
->isConstant();
2382 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
2383 if (CE
->getOpcode() == Instruction::BitCast
||
2384 CE
->getOpcode() == Instruction::GetElementPtr
)
2385 return PointsToConstantGlobal(CE
->getOperand(0));
2389 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2390 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
2391 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
2392 /// track of whether it moves the pointer (with isOffset) but otherwise traverse
2393 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
2394 /// the alloca, and if the source pointer is a pointer to a constant global, we
2395 /// can optimize this.
2396 static bool isOnlyCopiedFromConstantGlobal(Value
*V
, MemTransferInst
*&TheCopy
,
2398 for (Value::use_iterator UI
= V
->use_begin(), E
= V
->use_end(); UI
!=E
; ++UI
) {
2399 User
*U
= cast
<Instruction
>(*UI
);
2401 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
2402 // Ignore non-volatile loads, they are always ok.
2403 if (LI
->isVolatile()) return false;
2407 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
2408 // If uses of the bitcast are ok, we are ok.
2409 if (!isOnlyCopiedFromConstantGlobal(BCI
, TheCopy
, isOffset
))
2413 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
2414 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2415 // doesn't, it does.
2416 if (!isOnlyCopiedFromConstantGlobal(GEP
, TheCopy
,
2417 isOffset
|| !GEP
->hasAllZeroIndices()))
2422 if (CallSite CS
= U
) {
2423 // If this is a readonly/readnone call site, then we know it is just a
2424 // load and we can ignore it.
2425 if (CS
.onlyReadsMemory())
2428 // If this is the function being called then we treat it like a load and
2430 if (CS
.isCallee(UI
))
2433 // If this is being passed as a byval argument, the caller is making a
2434 // copy, so it is only a read of the alloca.
2435 unsigned ArgNo
= CS
.getArgumentNo(UI
);
2436 if (CS
.paramHasAttr(ArgNo
+1, Attribute::ByVal
))
2440 // If this is isn't our memcpy/memmove, reject it as something we can't
2442 MemTransferInst
*MI
= dyn_cast
<MemTransferInst
>(U
);
2446 // If the transfer is using the alloca as a source of the transfer, then
2447 // ignore it since it is a load (unless the transfer is volatile).
2448 if (UI
.getOperandNo() == 1) {
2449 if (MI
->isVolatile()) return false;
2453 // If we already have seen a copy, reject the second one.
2454 if (TheCopy
) return false;
2456 // If the pointer has been offset from the start of the alloca, we can't
2457 // safely handle this.
2458 if (isOffset
) return false;
2460 // If the memintrinsic isn't using the alloca as the dest, reject it.
2461 if (UI
.getOperandNo() != 0) return false;
2463 // If the source of the memcpy/move is not a constant global, reject it.
2464 if (!PointsToConstantGlobal(MI
->getSource()))
2467 // Otherwise, the transform is safe. Remember the copy instruction.
2473 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2474 /// modified by a copy from a constant global. If we can prove this, we can
2475 /// replace any uses of the alloca with uses of the global directly.
2476 MemTransferInst
*SROA::isOnlyCopiedFromConstantGlobal(AllocaInst
*AI
) {
2477 MemTransferInst
*TheCopy
= 0;
2478 if (::isOnlyCopiedFromConstantGlobal(AI
, TheCopy
, false))