1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative and commutative expression to use an
20 // accumulator variable, thus compiling the typical naive factorial or
21 // 'fib' implementation into efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access their caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
32 // There are several improvements that could be made:
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately preceeds the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
51 //===----------------------------------------------------------------------===//
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Constants.h"
58 #include "llvm/DerivedTypes.h"
59 #include "llvm/Function.h"
60 #include "llvm/Instructions.h"
61 #include "llvm/IntrinsicInst.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Analysis/CaptureTracking.h"
64 #include "llvm/Analysis/InlineCost.h"
65 #include "llvm/Analysis/InstructionSimplify.h"
66 #include "llvm/Analysis/Loads.h"
67 #include "llvm/Support/CallSite.h"
68 #include "llvm/Support/CFG.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/ADT/Statistic.h"
72 #include "llvm/ADT/STLExtras.h"
75 STATISTIC(NumEliminated
, "Number of tail calls removed");
76 STATISTIC(NumRetDuped
, "Number of return duplicated");
77 STATISTIC(NumAccumAdded
, "Number of accumulators introduced");
80 struct TailCallElim
: public FunctionPass
{
81 static char ID
; // Pass identification, replacement for typeid
82 TailCallElim() : FunctionPass(ID
) {
83 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
86 virtual bool runOnFunction(Function
&F
);
89 CallInst
*FindTRECandidate(Instruction
*I
,
90 bool CannotTailCallElimCallsMarkedTail
);
91 bool EliminateRecursiveTailCall(CallInst
*CI
, ReturnInst
*Ret
,
92 BasicBlock
*&OldEntry
,
93 bool &TailCallsAreMarkedTail
,
94 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
95 bool CannotTailCallElimCallsMarkedTail
);
96 bool FoldReturnAndProcessPred(BasicBlock
*BB
,
97 ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
98 bool &TailCallsAreMarkedTail
,
99 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
100 bool CannotTailCallElimCallsMarkedTail
);
101 bool ProcessReturningBlock(ReturnInst
*RI
, BasicBlock
*&OldEntry
,
102 bool &TailCallsAreMarkedTail
,
103 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
104 bool CannotTailCallElimCallsMarkedTail
);
105 bool CanMoveAboveCall(Instruction
*I
, CallInst
*CI
);
106 Value
*CanTransformAccumulatorRecursion(Instruction
*I
, CallInst
*CI
);
110 char TailCallElim::ID
= 0;
111 INITIALIZE_PASS(TailCallElim
, "tailcallelim",
112 "Tail Call Elimination", false, false)
114 // Public interface to the TailCallElimination pass
115 FunctionPass
*llvm::createTailCallEliminationPass() {
116 return new TailCallElim();
119 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
120 /// callees of this function. We only do very simple analysis right now, this
121 /// could be expanded in the future to use mod/ref information for particular
122 /// call sites if desired.
123 static bool AllocaMightEscapeToCalls(AllocaInst
*AI
) {
124 // FIXME: do simple 'address taken' analysis.
128 /// CheckForEscapingAllocas - Scan the specified basic block for alloca
129 /// instructions. If it contains any that might be accessed by calls, return
131 static bool CheckForEscapingAllocas(BasicBlock
*BB
,
132 bool &CannotTCETailMarkedCall
) {
134 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
135 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
136 RetVal
|= AllocaMightEscapeToCalls(AI
);
138 // If this alloca is in the body of the function, or if it is a variable
139 // sized allocation, we cannot tail call eliminate calls marked 'tail'
140 // with this mechanism.
141 if (BB
!= &BB
->getParent()->getEntryBlock() ||
142 !isa
<ConstantInt
>(AI
->getArraySize()))
143 CannotTCETailMarkedCall
= true;
148 bool TailCallElim::runOnFunction(Function
&F
) {
149 // If this function is a varargs function, we won't be able to PHI the args
150 // right, so don't even try to convert it...
151 if (F
.getFunctionType()->isVarArg()) return false;
153 BasicBlock
*OldEntry
= 0;
154 bool TailCallsAreMarkedTail
= false;
155 SmallVector
<PHINode
*, 8> ArgumentPHIs
;
156 bool MadeChange
= false;
157 bool FunctionContainsEscapingAllocas
= false;
159 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
160 // marked with the 'tail' attribute, because doing so would cause the stack
161 // size to increase (real TCE would deallocate variable sized allocas, TCE
163 bool CannotTCETailMarkedCall
= false;
165 // Loop over the function, looking for any returning blocks, and keeping track
166 // of whether this function has any non-trivially used allocas.
167 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
168 if (FunctionContainsEscapingAllocas
&& CannotTCETailMarkedCall
)
171 FunctionContainsEscapingAllocas
|=
172 CheckForEscapingAllocas(BB
, CannotTCETailMarkedCall
);
175 /// FIXME: The code generator produces really bad code when an 'escaping
176 /// alloca' is changed from being a static alloca to being a dynamic alloca.
177 /// Until this is resolved, disable this transformation if that would ever
178 /// happen. This bug is PR962.
179 if (FunctionContainsEscapingAllocas
)
182 // Second pass, change any tail calls to loops.
183 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
184 if (ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
185 bool Change
= ProcessReturningBlock(Ret
, OldEntry
, TailCallsAreMarkedTail
,
186 ArgumentPHIs
,CannotTCETailMarkedCall
);
187 if (!Change
&& BB
->getFirstNonPHIOrDbg() == Ret
)
188 Change
= FoldReturnAndProcessPred(BB
, Ret
, OldEntry
,
189 TailCallsAreMarkedTail
, ArgumentPHIs
,
190 CannotTCETailMarkedCall
);
191 MadeChange
|= Change
;
195 // If we eliminated any tail recursions, it's possible that we inserted some
196 // silly PHI nodes which just merge an initial value (the incoming operand)
197 // with themselves. Check to see if we did and clean up our mess if so. This
198 // occurs when a function passes an argument straight through to its tail
200 if (!ArgumentPHIs
.empty()) {
201 for (unsigned i
= 0, e
= ArgumentPHIs
.size(); i
!= e
; ++i
) {
202 PHINode
*PN
= ArgumentPHIs
[i
];
204 // If the PHI Node is a dynamic constant, replace it with the value it is.
205 if (Value
*PNV
= SimplifyInstruction(PN
)) {
206 PN
->replaceAllUsesWith(PNV
);
207 PN
->eraseFromParent();
212 // Finally, if this function contains no non-escaping allocas, mark all calls
213 // in the function as eligible for tail calls (there is no stack memory for
215 if (!FunctionContainsEscapingAllocas
)
216 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
217 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
218 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
227 /// CanMoveAboveCall - Return true if it is safe to move the specified
228 /// instruction from after the call to before the call, assuming that all
229 /// instructions between the call and this instruction are movable.
231 bool TailCallElim::CanMoveAboveCall(Instruction
*I
, CallInst
*CI
) {
232 // FIXME: We can move load/store/call/free instructions above the call if the
233 // call does not mod/ref the memory location being processed.
234 if (I
->mayHaveSideEffects()) // This also handles volatile loads.
237 if (LoadInst
*L
= dyn_cast
<LoadInst
>(I
)) {
238 // Loads may always be moved above calls without side effects.
239 if (CI
->mayHaveSideEffects()) {
240 // Non-volatile loads may be moved above a call with side effects if it
241 // does not write to memory and the load provably won't trap.
242 // FIXME: Writes to memory only matter if they may alias the pointer
243 // being loaded from.
244 if (CI
->mayWriteToMemory() ||
245 !isSafeToLoadUnconditionally(L
->getPointerOperand(), L
,
251 // Otherwise, if this is a side-effect free instruction, check to make sure
252 // that it does not use the return value of the call. If it doesn't use the
253 // return value of the call, it must only use things that are defined before
254 // the call, or movable instructions between the call and the instruction
256 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
257 if (I
->getOperand(i
) == CI
)
262 // isDynamicConstant - Return true if the specified value is the same when the
263 // return would exit as it was when the initial iteration of the recursive
264 // function was executed.
266 // We currently handle static constants and arguments that are not modified as
267 // part of the recursion.
269 static bool isDynamicConstant(Value
*V
, CallInst
*CI
, ReturnInst
*RI
) {
270 if (isa
<Constant
>(V
)) return true; // Static constants are always dyn consts
272 // Check to see if this is an immutable argument, if so, the value
273 // will be available to initialize the accumulator.
274 if (Argument
*Arg
= dyn_cast
<Argument
>(V
)) {
275 // Figure out which argument number this is...
277 Function
*F
= CI
->getParent()->getParent();
278 for (Function::arg_iterator AI
= F
->arg_begin(); &*AI
!= Arg
; ++AI
)
281 // If we are passing this argument into call as the corresponding
282 // argument operand, then the argument is dynamically constant.
283 // Otherwise, we cannot transform this function safely.
284 if (CI
->getArgOperand(ArgNo
) == Arg
)
288 // Switch cases are always constant integers. If the value is being switched
289 // on and the return is only reachable from one of its cases, it's
290 // effectively constant.
291 if (BasicBlock
*UniquePred
= RI
->getParent()->getUniquePredecessor())
292 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(UniquePred
->getTerminator()))
293 if (SI
->getCondition() == V
)
294 return SI
->getDefaultDest() != RI
->getParent();
296 // Not a constant or immutable argument, we can't safely transform.
300 // getCommonReturnValue - Check to see if the function containing the specified
301 // tail call consistently returns the same runtime-constant value at all exit
302 // points except for IgnoreRI. If so, return the returned value.
304 static Value
*getCommonReturnValue(ReturnInst
*IgnoreRI
, CallInst
*CI
) {
305 Function
*F
= CI
->getParent()->getParent();
306 Value
*ReturnedValue
= 0;
308 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
) {
309 ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator());
310 if (RI
== 0 || RI
== IgnoreRI
) continue;
312 // We can only perform this transformation if the value returned is
313 // evaluatable at the start of the initial invocation of the function,
314 // instead of at the end of the evaluation.
316 Value
*RetOp
= RI
->getOperand(0);
317 if (!isDynamicConstant(RetOp
, CI
, RI
))
320 if (ReturnedValue
&& RetOp
!= ReturnedValue
)
321 return 0; // Cannot transform if differing values are returned.
322 ReturnedValue
= RetOp
;
324 return ReturnedValue
;
327 /// CanTransformAccumulatorRecursion - If the specified instruction can be
328 /// transformed using accumulator recursion elimination, return the constant
329 /// which is the start of the accumulator value. Otherwise return null.
331 Value
*TailCallElim::CanTransformAccumulatorRecursion(Instruction
*I
,
333 if (!I
->isAssociative() || !I
->isCommutative()) return 0;
334 assert(I
->getNumOperands() == 2 &&
335 "Associative/commutative operations should have 2 args!");
337 // Exactly one operand should be the result of the call instruction.
338 if ((I
->getOperand(0) == CI
&& I
->getOperand(1) == CI
) ||
339 (I
->getOperand(0) != CI
&& I
->getOperand(1) != CI
))
342 // The only user of this instruction we allow is a single return instruction.
343 if (!I
->hasOneUse() || !isa
<ReturnInst
>(I
->use_back()))
346 // Ok, now we have to check all of the other return instructions in this
347 // function. If they return non-constants or differing values, then we cannot
348 // transform the function safely.
349 return getCommonReturnValue(cast
<ReturnInst
>(I
->use_back()), CI
);
352 static Instruction
*FirstNonDbg(BasicBlock::iterator I
) {
353 while (isa
<DbgInfoIntrinsic
>(I
))
359 TailCallElim::FindTRECandidate(Instruction
*TI
,
360 bool CannotTailCallElimCallsMarkedTail
) {
361 BasicBlock
*BB
= TI
->getParent();
362 Function
*F
= BB
->getParent();
364 if (&BB
->front() == TI
) // Make sure there is something before the terminator.
367 // Scan backwards from the return, checking to see if there is a tail call in
368 // this block. If so, set CI to it.
370 BasicBlock::iterator BBI
= TI
;
372 CI
= dyn_cast
<CallInst
>(BBI
);
373 if (CI
&& CI
->getCalledFunction() == F
)
376 if (BBI
== BB
->begin())
377 return 0; // Didn't find a potential tail call.
381 // If this call is marked as a tail call, and if there are dynamic allocas in
382 // the function, we cannot perform this optimization.
383 if (CI
->isTailCall() && CannotTailCallElimCallsMarkedTail
)
386 // As a special case, detect code like this:
387 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
388 // and disable this xform in this case, because the code generator will
389 // lower the call to fabs into inline code.
390 if (BB
== &F
->getEntryBlock() &&
391 FirstNonDbg(BB
->front()) == CI
&&
392 FirstNonDbg(llvm::next(BB
->begin())) == TI
&&
394 // A single-block function with just a call and a return. Check that
395 // the arguments match.
396 CallSite::arg_iterator I
= CallSite(CI
).arg_begin(),
397 E
= CallSite(CI
).arg_end();
398 Function::arg_iterator FI
= F
->arg_begin(),
400 for (; I
!= E
&& FI
!= FE
; ++I
, ++FI
)
401 if (*I
!= &*FI
) break;
402 if (I
== E
&& FI
== FE
)
409 bool TailCallElim::EliminateRecursiveTailCall(CallInst
*CI
, ReturnInst
*Ret
,
410 BasicBlock
*&OldEntry
,
411 bool &TailCallsAreMarkedTail
,
412 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
413 bool CannotTailCallElimCallsMarkedTail
) {
414 // If we are introducing accumulator recursion to eliminate operations after
415 // the call instruction that are both associative and commutative, the initial
416 // value for the accumulator is placed in this variable. If this value is set
417 // then we actually perform accumulator recursion elimination instead of
418 // simple tail recursion elimination. If the operation is an LLVM instruction
419 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
420 // we are handling the case when the return instruction returns a constant C
421 // which is different to the constant returned by other return instructions
422 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
423 // special case of accumulator recursion, the operation being "return C".
424 Value
*AccumulatorRecursionEliminationInitVal
= 0;
425 Instruction
*AccumulatorRecursionInstr
= 0;
427 // Ok, we found a potential tail call. We can currently only transform the
428 // tail call if all of the instructions between the call and the return are
429 // movable to above the call itself, leaving the call next to the return.
430 // Check that this is the case now.
431 BasicBlock::iterator BBI
= CI
;
432 for (++BBI
; &*BBI
!= Ret
; ++BBI
) {
433 if (CanMoveAboveCall(BBI
, CI
)) continue;
435 // If we can't move the instruction above the call, it might be because it
436 // is an associative and commutative operation that could be tranformed
437 // using accumulator recursion elimination. Check to see if this is the
438 // case, and if so, remember the initial accumulator value for later.
439 if ((AccumulatorRecursionEliminationInitVal
=
440 CanTransformAccumulatorRecursion(BBI
, CI
))) {
441 // Yes, this is accumulator recursion. Remember which instruction
443 AccumulatorRecursionInstr
= BBI
;
445 return false; // Otherwise, we cannot eliminate the tail recursion!
449 // We can only transform call/return pairs that either ignore the return value
450 // of the call and return void, ignore the value of the call and return a
451 // constant, return the value returned by the tail call, or that are being
452 // accumulator recursion variable eliminated.
453 if (Ret
->getNumOperands() == 1 && Ret
->getReturnValue() != CI
&&
454 !isa
<UndefValue
>(Ret
->getReturnValue()) &&
455 AccumulatorRecursionEliminationInitVal
== 0 &&
456 !getCommonReturnValue(0, CI
)) {
457 // One case remains that we are able to handle: the current return
458 // instruction returns a constant, and all other return instructions
459 // return a different constant.
460 if (!isDynamicConstant(Ret
->getReturnValue(), CI
, Ret
))
461 return false; // Current return instruction does not return a constant.
462 // Check that all other return instructions return a common constant. If
463 // so, record it in AccumulatorRecursionEliminationInitVal.
464 AccumulatorRecursionEliminationInitVal
= getCommonReturnValue(Ret
, CI
);
465 if (!AccumulatorRecursionEliminationInitVal
)
469 BasicBlock
*BB
= Ret
->getParent();
470 Function
*F
= BB
->getParent();
472 // OK! We can transform this tail call. If this is the first one found,
473 // create the new entry block, allowing us to branch back to the old entry.
475 OldEntry
= &F
->getEntryBlock();
476 BasicBlock
*NewEntry
= BasicBlock::Create(F
->getContext(), "", F
, OldEntry
);
477 NewEntry
->takeName(OldEntry
);
478 OldEntry
->setName("tailrecurse");
479 BranchInst::Create(OldEntry
, NewEntry
);
481 // If this tail call is marked 'tail' and if there are any allocas in the
482 // entry block, move them up to the new entry block.
483 TailCallsAreMarkedTail
= CI
->isTailCall();
484 if (TailCallsAreMarkedTail
)
485 // Move all fixed sized allocas from OldEntry to NewEntry.
486 for (BasicBlock::iterator OEBI
= OldEntry
->begin(), E
= OldEntry
->end(),
487 NEBI
= NewEntry
->begin(); OEBI
!= E
; )
488 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(OEBI
++))
489 if (isa
<ConstantInt
>(AI
->getArraySize()))
490 AI
->moveBefore(NEBI
);
492 // Now that we have created a new block, which jumps to the entry
493 // block, insert a PHI node for each argument of the function.
494 // For now, we initialize each PHI to only have the real arguments
495 // which are passed in.
496 Instruction
*InsertPos
= OldEntry
->begin();
497 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
499 PHINode
*PN
= PHINode::Create(I
->getType(), 2,
500 I
->getName() + ".tr", InsertPos
);
501 I
->replaceAllUsesWith(PN
); // Everyone use the PHI node now!
502 PN
->addIncoming(I
, NewEntry
);
503 ArgumentPHIs
.push_back(PN
);
507 // If this function has self recursive calls in the tail position where some
508 // are marked tail and some are not, only transform one flavor or another. We
509 // have to choose whether we move allocas in the entry block to the new entry
510 // block or not, so we can't make a good choice for both. NOTE: We could do
511 // slightly better here in the case that the function has no entry block
513 if (TailCallsAreMarkedTail
&& !CI
->isTailCall())
516 // Ok, now that we know we have a pseudo-entry block WITH all of the
517 // required PHI nodes, add entries into the PHI node for the actual
518 // parameters passed into the tail-recursive call.
519 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
)
520 ArgumentPHIs
[i
]->addIncoming(CI
->getArgOperand(i
), BB
);
522 // If we are introducing an accumulator variable to eliminate the recursion,
523 // do so now. Note that we _know_ that no subsequent tail recursion
524 // eliminations will happen on this function because of the way the
525 // accumulator recursion predicate is set up.
527 if (AccumulatorRecursionEliminationInitVal
) {
528 Instruction
*AccRecInstr
= AccumulatorRecursionInstr
;
529 // Start by inserting a new PHI node for the accumulator.
530 pred_iterator PB
= pred_begin(OldEntry
), PE
= pred_end(OldEntry
);
532 PHINode::Create(AccumulatorRecursionEliminationInitVal
->getType(),
533 std::distance(PB
, PE
) + 1,
534 "accumulator.tr", OldEntry
->begin());
536 // Loop over all of the predecessors of the tail recursion block. For the
537 // real entry into the function we seed the PHI with the initial value,
538 // computed earlier. For any other existing branches to this block (due to
539 // other tail recursions eliminated) the accumulator is not modified.
540 // Because we haven't added the branch in the current block to OldEntry yet,
541 // it will not show up as a predecessor.
542 for (pred_iterator PI
= PB
; PI
!= PE
; ++PI
) {
544 if (P
== &F
->getEntryBlock())
545 AccPN
->addIncoming(AccumulatorRecursionEliminationInitVal
, P
);
547 AccPN
->addIncoming(AccPN
, P
);
551 // Add an incoming argument for the current block, which is computed by
552 // our associative and commutative accumulator instruction.
553 AccPN
->addIncoming(AccRecInstr
, BB
);
555 // Next, rewrite the accumulator recursion instruction so that it does not
556 // use the result of the call anymore, instead, use the PHI node we just
558 AccRecInstr
->setOperand(AccRecInstr
->getOperand(0) != CI
, AccPN
);
560 // Add an incoming argument for the current block, which is just the
561 // constant returned by the current return instruction.
562 AccPN
->addIncoming(Ret
->getReturnValue(), BB
);
565 // Finally, rewrite any return instructions in the program to return the PHI
566 // node instead of the "initval" that they do currently. This loop will
567 // actually rewrite the return value we are destroying, but that's ok.
568 for (Function::iterator BBI
= F
->begin(), E
= F
->end(); BBI
!= E
; ++BBI
)
569 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BBI
->getTerminator()))
570 RI
->setOperand(0, AccPN
);
574 // Now that all of the PHI nodes are in place, remove the call and
575 // ret instructions, replacing them with an unconditional branch.
576 BranchInst::Create(OldEntry
, Ret
);
577 BB
->getInstList().erase(Ret
); // Remove return.
578 BB
->getInstList().erase(CI
); // Remove call.
583 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock
*BB
,
584 ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
585 bool &TailCallsAreMarkedTail
,
586 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
587 bool CannotTailCallElimCallsMarkedTail
) {
590 // If the return block contains nothing but the return and PHI's,
591 // there might be an opportunity to duplicate the return in its
592 // predecessors and perform TRC there. Look for predecessors that end
593 // in unconditional branch and recursive call(s).
594 SmallVector
<BranchInst
*, 8> UncondBranchPreds
;
595 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
596 BasicBlock
*Pred
= *PI
;
597 TerminatorInst
*PTI
= Pred
->getTerminator();
598 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(PTI
))
599 if (BI
->isUnconditional())
600 UncondBranchPreds
.push_back(BI
);
603 while (!UncondBranchPreds
.empty()) {
604 BranchInst
*BI
= UncondBranchPreds
.pop_back_val();
605 BasicBlock
*Pred
= BI
->getParent();
606 if (CallInst
*CI
= FindTRECandidate(BI
, CannotTailCallElimCallsMarkedTail
)){
607 DEBUG(dbgs() << "FOLDING: " << *BB
608 << "INTO UNCOND BRANCH PRED: " << *Pred
);
609 EliminateRecursiveTailCall(CI
, FoldReturnIntoUncondBranch(Ret
, BB
, Pred
),
610 OldEntry
, TailCallsAreMarkedTail
, ArgumentPHIs
,
611 CannotTailCallElimCallsMarkedTail
);
620 bool TailCallElim::ProcessReturningBlock(ReturnInst
*Ret
, BasicBlock
*&OldEntry
,
621 bool &TailCallsAreMarkedTail
,
622 SmallVector
<PHINode
*, 8> &ArgumentPHIs
,
623 bool CannotTailCallElimCallsMarkedTail
) {
624 CallInst
*CI
= FindTRECandidate(Ret
, CannotTailCallElimCallsMarkedTail
);
628 return EliminateRecursiveTailCall(CI
, Ret
, OldEntry
, TailCallsAreMarkedTail
,
630 CannotTailCallElimCallsMarkedTail
);