Use %ull here.
[llvm/stm8.git] / lib / Transforms / Utils / CodeExtractor.cpp
blob46601b4f5efc65db9f532ae4cf8ddeec240b5582
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interface to tear out a code region, such as an
11 // individual loop or a parallel section, into a new function, replacing it with
12 // a call to the new function.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Utils/FunctionUtils.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Intrinsics.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Analysis/Dominators.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/Verifier.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include <algorithm>
35 #include <set>
36 using namespace llvm;
38 // Provide a command-line option to aggregate function arguments into a struct
39 // for functions produced by the code extractor. This is useful when converting
40 // extracted functions to pthread-based code, as only one argument (void*) can
41 // be passed in to pthread_create().
42 static cl::opt<bool>
43 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
44 cl::desc("Aggregate arguments to code-extracted functions"));
46 namespace {
47 class CodeExtractor {
48 typedef SetVector<Value*> Values;
49 SetVector<BasicBlock*> BlocksToExtract;
50 DominatorTree* DT;
51 bool AggregateArgs;
52 unsigned NumExitBlocks;
53 const Type *RetTy;
54 public:
55 CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false)
56 : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {}
58 Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
60 bool isEligible(const std::vector<BasicBlock*> &code);
62 private:
63 /// definedInRegion - Return true if the specified value is defined in the
64 /// extracted region.
65 bool definedInRegion(Value *V) const {
66 if (Instruction *I = dyn_cast<Instruction>(V))
67 if (BlocksToExtract.count(I->getParent()))
68 return true;
69 return false;
72 /// definedInCaller - Return true if the specified value is defined in the
73 /// function being code extracted, but not in the region being extracted.
74 /// These values must be passed in as live-ins to the function.
75 bool definedInCaller(Value *V) const {
76 if (isa<Argument>(V)) return true;
77 if (Instruction *I = dyn_cast<Instruction>(V))
78 if (!BlocksToExtract.count(I->getParent()))
79 return true;
80 return false;
83 void severSplitPHINodes(BasicBlock *&Header);
84 void splitReturnBlocks();
85 void findInputsOutputs(Values &inputs, Values &outputs);
87 Function *constructFunction(const Values &inputs,
88 const Values &outputs,
89 BasicBlock *header,
90 BasicBlock *newRootNode, BasicBlock *newHeader,
91 Function *oldFunction, Module *M);
93 void moveCodeToFunction(Function *newFunction);
95 void emitCallAndSwitchStatement(Function *newFunction,
96 BasicBlock *newHeader,
97 Values &inputs,
98 Values &outputs);
103 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
104 /// region, we need to split the entry block of the region so that the PHI node
105 /// is easier to deal with.
106 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
107 unsigned NumPredsFromRegion = 0;
108 unsigned NumPredsOutsideRegion = 0;
110 if (Header != &Header->getParent()->getEntryBlock()) {
111 PHINode *PN = dyn_cast<PHINode>(Header->begin());
112 if (!PN) return; // No PHI nodes.
114 // If the header node contains any PHI nodes, check to see if there is more
115 // than one entry from outside the region. If so, we need to sever the
116 // header block into two.
117 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
118 if (BlocksToExtract.count(PN->getIncomingBlock(i)))
119 ++NumPredsFromRegion;
120 else
121 ++NumPredsOutsideRegion;
123 // If there is one (or fewer) predecessor from outside the region, we don't
124 // need to do anything special.
125 if (NumPredsOutsideRegion <= 1) return;
128 // Otherwise, we need to split the header block into two pieces: one
129 // containing PHI nodes merging values from outside of the region, and a
130 // second that contains all of the code for the block and merges back any
131 // incoming values from inside of the region.
132 BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
133 BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
134 Header->getName()+".ce");
136 // We only want to code extract the second block now, and it becomes the new
137 // header of the region.
138 BasicBlock *OldPred = Header;
139 BlocksToExtract.remove(OldPred);
140 BlocksToExtract.insert(NewBB);
141 Header = NewBB;
143 // Okay, update dominator sets. The blocks that dominate the new one are the
144 // blocks that dominate TIBB plus the new block itself.
145 if (DT)
146 DT->splitBlock(NewBB);
148 // Okay, now we need to adjust the PHI nodes and any branches from within the
149 // region to go to the new header block instead of the old header block.
150 if (NumPredsFromRegion) {
151 PHINode *PN = cast<PHINode>(OldPred->begin());
152 // Loop over all of the predecessors of OldPred that are in the region,
153 // changing them to branch to NewBB instead.
154 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
155 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
156 TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
157 TI->replaceUsesOfWith(OldPred, NewBB);
160 // Okay, everthing within the region is now branching to the right block, we
161 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
162 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
163 PHINode *PN = cast<PHINode>(AfterPHIs);
164 // Create a new PHI node in the new region, which has an incoming value
165 // from OldPred of PN.
166 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
167 PN->getName()+".ce", NewBB->begin());
168 NewPN->addIncoming(PN, OldPred);
170 // Loop over all of the incoming value in PN, moving them to NewPN if they
171 // are from the extracted region.
172 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
173 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
174 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
175 PN->removeIncomingValue(i);
176 --i;
183 void CodeExtractor::splitReturnBlocks() {
184 for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(),
185 E = BlocksToExtract.end(); I != E; ++I)
186 if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
187 BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
188 if (DT) {
189 // Old dominates New. New node dominates all other nodes dominated
190 // by Old.
191 DomTreeNode *OldNode = DT->getNode(*I);
192 SmallVector<DomTreeNode*, 8> Children;
193 for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
194 DI != DE; ++DI)
195 Children.push_back(*DI);
197 DomTreeNode *NewNode = DT->addNewBlock(New, *I);
199 for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(),
200 E = Children.end(); I != E; ++I)
201 DT->changeImmediateDominator(*I, NewNode);
206 // findInputsOutputs - Find inputs to, outputs from the code region.
208 void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) {
209 std::set<BasicBlock*> ExitBlocks;
210 for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(),
211 ce = BlocksToExtract.end(); ci != ce; ++ci) {
212 BasicBlock *BB = *ci;
214 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
215 // If a used value is defined outside the region, it's an input. If an
216 // instruction is used outside the region, it's an output.
217 for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O)
218 if (definedInCaller(*O))
219 inputs.insert(*O);
221 // Consider uses of this instruction (outputs).
222 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
223 UI != E; ++UI)
224 if (!definedInRegion(*UI)) {
225 outputs.insert(I);
226 break;
228 } // for: insts
230 // Keep track of the exit blocks from the region.
231 TerminatorInst *TI = BB->getTerminator();
232 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
233 if (!BlocksToExtract.count(TI->getSuccessor(i)))
234 ExitBlocks.insert(TI->getSuccessor(i));
235 } // for: basic blocks
237 NumExitBlocks = ExitBlocks.size();
240 /// constructFunction - make a function based on inputs and outputs, as follows:
241 /// f(in0, ..., inN, out0, ..., outN)
243 Function *CodeExtractor::constructFunction(const Values &inputs,
244 const Values &outputs,
245 BasicBlock *header,
246 BasicBlock *newRootNode,
247 BasicBlock *newHeader,
248 Function *oldFunction,
249 Module *M) {
250 DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
251 DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
253 // This function returns unsigned, outputs will go back by reference.
254 switch (NumExitBlocks) {
255 case 0:
256 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
257 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
258 default: RetTy = Type::getInt16Ty(header->getContext()); break;
261 std::vector<const Type*> paramTy;
263 // Add the types of the input values to the function's argument list
264 for (Values::const_iterator i = inputs.begin(),
265 e = inputs.end(); i != e; ++i) {
266 const Value *value = *i;
267 DEBUG(dbgs() << "value used in func: " << *value << "\n");
268 paramTy.push_back(value->getType());
271 // Add the types of the output values to the function's argument list.
272 for (Values::const_iterator I = outputs.begin(), E = outputs.end();
273 I != E; ++I) {
274 DEBUG(dbgs() << "instr used in func: " << **I << "\n");
275 if (AggregateArgs)
276 paramTy.push_back((*I)->getType());
277 else
278 paramTy.push_back(PointerType::getUnqual((*I)->getType()));
281 DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
282 for (std::vector<const Type*>::iterator i = paramTy.begin(),
283 e = paramTy.end(); i != e; ++i)
284 DEBUG(dbgs() << **i << ", ");
285 DEBUG(dbgs() << ")\n");
287 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
288 PointerType *StructPtr =
289 PointerType::getUnqual(StructType::get(M->getContext(), paramTy));
290 paramTy.clear();
291 paramTy.push_back(StructPtr);
293 const FunctionType *funcType =
294 FunctionType::get(RetTy, paramTy, false);
296 // Create the new function
297 Function *newFunction = Function::Create(funcType,
298 GlobalValue::InternalLinkage,
299 oldFunction->getName() + "_" +
300 header->getName(), M);
301 // If the old function is no-throw, so is the new one.
302 if (oldFunction->doesNotThrow())
303 newFunction->setDoesNotThrow(true);
305 newFunction->getBasicBlockList().push_back(newRootNode);
307 // Create an iterator to name all of the arguments we inserted.
308 Function::arg_iterator AI = newFunction->arg_begin();
310 // Rewrite all users of the inputs in the extracted region to use the
311 // arguments (or appropriate addressing into struct) instead.
312 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
313 Value *RewriteVal;
314 if (AggregateArgs) {
315 Value *Idx[2];
316 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
317 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
318 TerminatorInst *TI = newFunction->begin()->getTerminator();
319 GetElementPtrInst *GEP =
320 GetElementPtrInst::Create(AI, Idx, Idx+2,
321 "gep_" + inputs[i]->getName(), TI);
322 RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
323 } else
324 RewriteVal = AI++;
326 std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
327 for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
328 use != useE; ++use)
329 if (Instruction* inst = dyn_cast<Instruction>(*use))
330 if (BlocksToExtract.count(inst->getParent()))
331 inst->replaceUsesOfWith(inputs[i], RewriteVal);
334 // Set names for input and output arguments.
335 if (!AggregateArgs) {
336 AI = newFunction->arg_begin();
337 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
338 AI->setName(inputs[i]->getName());
339 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
340 AI->setName(outputs[i]->getName()+".out");
343 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
344 // within the new function. This must be done before we lose track of which
345 // blocks were originally in the code region.
346 std::vector<User*> Users(header->use_begin(), header->use_end());
347 for (unsigned i = 0, e = Users.size(); i != e; ++i)
348 // The BasicBlock which contains the branch is not in the region
349 // modify the branch target to a new block
350 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
351 if (!BlocksToExtract.count(TI->getParent()) &&
352 TI->getParent()->getParent() == oldFunction)
353 TI->replaceUsesOfWith(header, newHeader);
355 return newFunction;
358 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
359 /// that uses the value within the basic block, and return the predecessor
360 /// block associated with that use, or return 0 if none is found.
361 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
362 for (Value::use_iterator UI = Used->use_begin(),
363 UE = Used->use_end(); UI != UE; ++UI) {
364 PHINode *P = dyn_cast<PHINode>(*UI);
365 if (P && P->getParent() == BB)
366 return P->getIncomingBlock(UI);
369 return 0;
372 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
373 /// the call instruction, splitting any PHI nodes in the header block as
374 /// necessary.
375 void CodeExtractor::
376 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
377 Values &inputs, Values &outputs) {
378 // Emit a call to the new function, passing in: *pointer to struct (if
379 // aggregating parameters), or plan inputs and allocated memory for outputs
380 std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
382 LLVMContext &Context = newFunction->getContext();
384 // Add inputs as params, or to be filled into the struct
385 for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
386 if (AggregateArgs)
387 StructValues.push_back(*i);
388 else
389 params.push_back(*i);
391 // Create allocas for the outputs
392 for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
393 if (AggregateArgs) {
394 StructValues.push_back(*i);
395 } else {
396 AllocaInst *alloca =
397 new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc",
398 codeReplacer->getParent()->begin()->begin());
399 ReloadOutputs.push_back(alloca);
400 params.push_back(alloca);
404 AllocaInst *Struct = 0;
405 if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
406 std::vector<const Type*> ArgTypes;
407 for (Values::iterator v = StructValues.begin(),
408 ve = StructValues.end(); v != ve; ++v)
409 ArgTypes.push_back((*v)->getType());
411 // Allocate a struct at the beginning of this function
412 Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
413 Struct =
414 new AllocaInst(StructArgTy, 0, "structArg",
415 codeReplacer->getParent()->begin()->begin());
416 params.push_back(Struct);
418 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
419 Value *Idx[2];
420 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
421 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
422 GetElementPtrInst *GEP =
423 GetElementPtrInst::Create(Struct, Idx, Idx + 2,
424 "gep_" + StructValues[i]->getName());
425 codeReplacer->getInstList().push_back(GEP);
426 StoreInst *SI = new StoreInst(StructValues[i], GEP);
427 codeReplacer->getInstList().push_back(SI);
431 // Emit the call to the function
432 CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(),
433 NumExitBlocks > 1 ? "targetBlock" : "");
434 codeReplacer->getInstList().push_back(call);
436 Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
437 unsigned FirstOut = inputs.size();
438 if (!AggregateArgs)
439 std::advance(OutputArgBegin, inputs.size());
441 // Reload the outputs passed in by reference
442 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
443 Value *Output = 0;
444 if (AggregateArgs) {
445 Value *Idx[2];
446 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
447 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
448 GetElementPtrInst *GEP
449 = GetElementPtrInst::Create(Struct, Idx, Idx + 2,
450 "gep_reload_" + outputs[i]->getName());
451 codeReplacer->getInstList().push_back(GEP);
452 Output = GEP;
453 } else {
454 Output = ReloadOutputs[i];
456 LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
457 Reloads.push_back(load);
458 codeReplacer->getInstList().push_back(load);
459 std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end());
460 for (unsigned u = 0, e = Users.size(); u != e; ++u) {
461 Instruction *inst = cast<Instruction>(Users[u]);
462 if (!BlocksToExtract.count(inst->getParent()))
463 inst->replaceUsesOfWith(outputs[i], load);
467 // Now we can emit a switch statement using the call as a value.
468 SwitchInst *TheSwitch =
469 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
470 codeReplacer, 0, codeReplacer);
472 // Since there may be multiple exits from the original region, make the new
473 // function return an unsigned, switch on that number. This loop iterates
474 // over all of the blocks in the extracted region, updating any terminator
475 // instructions in the to-be-extracted region that branch to blocks that are
476 // not in the region to be extracted.
477 std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
479 unsigned switchVal = 0;
480 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
481 e = BlocksToExtract.end(); i != e; ++i) {
482 TerminatorInst *TI = (*i)->getTerminator();
483 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
484 if (!BlocksToExtract.count(TI->getSuccessor(i))) {
485 BasicBlock *OldTarget = TI->getSuccessor(i);
486 // add a new basic block which returns the appropriate value
487 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
488 if (!NewTarget) {
489 // If we don't already have an exit stub for this non-extracted
490 // destination, create one now!
491 NewTarget = BasicBlock::Create(Context,
492 OldTarget->getName() + ".exitStub",
493 newFunction);
494 unsigned SuccNum = switchVal++;
496 Value *brVal = 0;
497 switch (NumExitBlocks) {
498 case 0:
499 case 1: break; // No value needed.
500 case 2: // Conditional branch, return a bool
501 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
502 break;
503 default:
504 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
505 break;
508 ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
510 // Update the switch instruction.
511 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
512 SuccNum),
513 OldTarget);
515 // Restore values just before we exit
516 Function::arg_iterator OAI = OutputArgBegin;
517 for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
518 // For an invoke, the normal destination is the only one that is
519 // dominated by the result of the invocation
520 BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
522 bool DominatesDef = true;
524 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
525 DefBlock = Invoke->getNormalDest();
527 // Make sure we are looking at the original successor block, not
528 // at a newly inserted exit block, which won't be in the dominator
529 // info.
530 for (std::map<BasicBlock*, BasicBlock*>::iterator I =
531 ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
532 if (DefBlock == I->second) {
533 DefBlock = I->first;
534 break;
537 // In the extract block case, if the block we are extracting ends
538 // with an invoke instruction, make sure that we don't emit a
539 // store of the invoke value for the unwind block.
540 if (!DT && DefBlock != OldTarget)
541 DominatesDef = false;
544 if (DT) {
545 DominatesDef = DT->dominates(DefBlock, OldTarget);
547 // If the output value is used by a phi in the target block,
548 // then we need to test for dominance of the phi's predecessor
549 // instead. Unfortunately, this a little complicated since we
550 // have already rewritten uses of the value to uses of the reload.
551 BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
552 OldTarget);
553 if (pred && DT && DT->dominates(DefBlock, pred))
554 DominatesDef = true;
557 if (DominatesDef) {
558 if (AggregateArgs) {
559 Value *Idx[2];
560 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
561 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
562 FirstOut+out);
563 GetElementPtrInst *GEP =
564 GetElementPtrInst::Create(OAI, Idx, Idx + 2,
565 "gep_" + outputs[out]->getName(),
566 NTRet);
567 new StoreInst(outputs[out], GEP, NTRet);
568 } else {
569 new StoreInst(outputs[out], OAI, NTRet);
572 // Advance output iterator even if we don't emit a store
573 if (!AggregateArgs) ++OAI;
577 // rewrite the original branch instruction with this new target
578 TI->setSuccessor(i, NewTarget);
582 // Now that we've done the deed, simplify the switch instruction.
583 const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
584 switch (NumExitBlocks) {
585 case 0:
586 // There are no successors (the block containing the switch itself), which
587 // means that previously this was the last part of the function, and hence
588 // this should be rewritten as a `ret'
590 // Check if the function should return a value
591 if (OldFnRetTy->isVoidTy()) {
592 ReturnInst::Create(Context, 0, TheSwitch); // Return void
593 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
594 // return what we have
595 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
596 } else {
597 // Otherwise we must have code extracted an unwind or something, just
598 // return whatever we want.
599 ReturnInst::Create(Context,
600 Constant::getNullValue(OldFnRetTy), TheSwitch);
603 TheSwitch->eraseFromParent();
604 break;
605 case 1:
606 // Only a single destination, change the switch into an unconditional
607 // branch.
608 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
609 TheSwitch->eraseFromParent();
610 break;
611 case 2:
612 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
613 call, TheSwitch);
614 TheSwitch->eraseFromParent();
615 break;
616 default:
617 // Otherwise, make the default destination of the switch instruction be one
618 // of the other successors.
619 TheSwitch->setOperand(0, call);
620 TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks));
621 TheSwitch->removeCase(NumExitBlocks); // Remove redundant case
622 break;
626 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
627 Function *oldFunc = (*BlocksToExtract.begin())->getParent();
628 Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
629 Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
631 for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(),
632 e = BlocksToExtract.end(); i != e; ++i) {
633 // Delete the basic block from the old function, and the list of blocks
634 oldBlocks.remove(*i);
636 // Insert this basic block into the new function
637 newBlocks.push_back(*i);
641 /// ExtractRegion - Removes a loop from a function, replaces it with a call to
642 /// new function. Returns pointer to the new function.
644 /// algorithm:
646 /// find inputs and outputs for the region
648 /// for inputs: add to function as args, map input instr* to arg#
649 /// for outputs: add allocas for scalars,
650 /// add to func as args, map output instr* to arg#
652 /// rewrite func to use argument #s instead of instr*
654 /// for each scalar output in the function: at every exit, store intermediate
655 /// computed result back into memory.
657 Function *CodeExtractor::
658 ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
659 if (!isEligible(code))
660 return 0;
662 // 1) Find inputs, outputs
663 // 2) Construct new function
664 // * Add allocas for defs, pass as args by reference
665 // * Pass in uses as args
666 // 3) Move code region, add call instr to func
668 BlocksToExtract.insert(code.begin(), code.end());
670 Values inputs, outputs;
672 // Assumption: this is a single-entry code region, and the header is the first
673 // block in the region.
674 BasicBlock *header = code[0];
676 for (unsigned i = 1, e = code.size(); i != e; ++i)
677 for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]);
678 PI != E; ++PI)
679 assert(BlocksToExtract.count(*PI) &&
680 "No blocks in this region may have entries from outside the region"
681 " except for the first block!");
683 // If we have to split PHI nodes or the entry block, do so now.
684 severSplitPHINodes(header);
686 // If we have any return instructions in the region, split those blocks so
687 // that the return is not in the region.
688 splitReturnBlocks();
690 Function *oldFunction = header->getParent();
692 // This takes place of the original loop
693 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
694 "codeRepl", oldFunction,
695 header);
697 // The new function needs a root node because other nodes can branch to the
698 // head of the region, but the entry node of a function cannot have preds.
699 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
700 "newFuncRoot");
701 newFuncRoot->getInstList().push_back(BranchInst::Create(header));
703 // Find inputs to, outputs from the code region.
704 findInputsOutputs(inputs, outputs);
706 // Construct new function based on inputs/outputs & add allocas for all defs.
707 Function *newFunction = constructFunction(inputs, outputs, header,
708 newFuncRoot,
709 codeReplacer, oldFunction,
710 oldFunction->getParent());
712 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
714 moveCodeToFunction(newFunction);
716 // Loop over all of the PHI nodes in the header block, and change any
717 // references to the old incoming edge to be the new incoming edge.
718 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
719 PHINode *PN = cast<PHINode>(I);
720 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
721 if (!BlocksToExtract.count(PN->getIncomingBlock(i)))
722 PN->setIncomingBlock(i, newFuncRoot);
725 // Look at all successors of the codeReplacer block. If any of these blocks
726 // had PHI nodes in them, we need to update the "from" block to be the code
727 // replacer, not the original block in the extracted region.
728 std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
729 succ_end(codeReplacer));
730 for (unsigned i = 0, e = Succs.size(); i != e; ++i)
731 for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
732 PHINode *PN = cast<PHINode>(I);
733 std::set<BasicBlock*> ProcessedPreds;
734 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
735 if (BlocksToExtract.count(PN->getIncomingBlock(i))) {
736 if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
737 PN->setIncomingBlock(i, codeReplacer);
738 else {
739 // There were multiple entries in the PHI for this block, now there
740 // is only one, so remove the duplicated entries.
741 PN->removeIncomingValue(i, false);
742 --i; --e;
747 //cerr << "NEW FUNCTION: " << *newFunction;
748 // verifyFunction(*newFunction);
750 // cerr << "OLD FUNCTION: " << *oldFunction;
751 // verifyFunction(*oldFunction);
753 DEBUG(if (verifyFunction(*newFunction))
754 report_fatal_error("verifyFunction failed!"));
755 return newFunction;
758 bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) {
759 // Deny code region if it contains allocas or vastarts.
760 for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end();
761 BB != e; ++BB)
762 for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end();
763 I != Ie; ++I)
764 if (isa<AllocaInst>(*I))
765 return false;
766 else if (const CallInst *CI = dyn_cast<CallInst>(I))
767 if (const Function *F = CI->getCalledFunction())
768 if (F->getIntrinsicID() == Intrinsic::vastart)
769 return false;
770 return true;
774 /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
775 /// function
777 Function* llvm::ExtractCodeRegion(DominatorTree &DT,
778 const std::vector<BasicBlock*> &code,
779 bool AggregateArgs) {
780 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code);
783 /// ExtractBasicBlock - slurp a natural loop into a brand new function
785 Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) {
786 return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks());
789 /// ExtractBasicBlock - slurp a basic block into a brand new function
791 Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) {
792 std::vector<BasicBlock*> Blocks;
793 Blocks.push_back(BB);
794 return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks);