Add a function for profiling to run at shutdown. Unlike the existing API, this
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blob4b0822d023e705a50c72c92e17f28897d44da51d
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include <cctype>
32 using namespace llvm;
34 namespace llvm {
35 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
36 bool isLocal = GV->hasLocalLinkage();
37 bool isDeclaration = GV->isDeclaration();
38 // FIXME: what should we do for protected and internal visibility?
39 // For variables, is internal different from hidden?
40 bool isHidden = GV->hasHiddenVisibility();
42 if (reloc == Reloc::PIC_) {
43 if (isLocal || isHidden)
44 return TLSModel::LocalDynamic;
45 else
46 return TLSModel::GeneralDynamic;
47 } else {
48 if (!isDeclaration || isHidden)
49 return TLSModel::LocalExec;
50 else
51 return TLSModel::InitialExec;
56 /// InitLibcallNames - Set default libcall names.
57 ///
58 static void InitLibcallNames(const char **Names) {
59 Names[RTLIB::SHL_I16] = "__ashlhi3";
60 Names[RTLIB::SHL_I32] = "__ashlsi3";
61 Names[RTLIB::SHL_I64] = "__ashldi3";
62 Names[RTLIB::SHL_I128] = "__ashlti3";
63 Names[RTLIB::SRL_I16] = "__lshrhi3";
64 Names[RTLIB::SRL_I32] = "__lshrsi3";
65 Names[RTLIB::SRL_I64] = "__lshrdi3";
66 Names[RTLIB::SRL_I128] = "__lshrti3";
67 Names[RTLIB::SRA_I16] = "__ashrhi3";
68 Names[RTLIB::SRA_I32] = "__ashrsi3";
69 Names[RTLIB::SRA_I64] = "__ashrdi3";
70 Names[RTLIB::SRA_I128] = "__ashrti3";
71 Names[RTLIB::MUL_I8] = "__mulqi3";
72 Names[RTLIB::MUL_I16] = "__mulhi3";
73 Names[RTLIB::MUL_I32] = "__mulsi3";
74 Names[RTLIB::MUL_I64] = "__muldi3";
75 Names[RTLIB::MUL_I128] = "__multi3";
76 Names[RTLIB::SDIV_I8] = "__divqi3";
77 Names[RTLIB::SDIV_I16] = "__divhi3";
78 Names[RTLIB::SDIV_I32] = "__divsi3";
79 Names[RTLIB::SDIV_I64] = "__divdi3";
80 Names[RTLIB::SDIV_I128] = "__divti3";
81 Names[RTLIB::UDIV_I8] = "__udivqi3";
82 Names[RTLIB::UDIV_I16] = "__udivhi3";
83 Names[RTLIB::UDIV_I32] = "__udivsi3";
84 Names[RTLIB::UDIV_I64] = "__udivdi3";
85 Names[RTLIB::UDIV_I128] = "__udivti3";
86 Names[RTLIB::SREM_I8] = "__modqi3";
87 Names[RTLIB::SREM_I16] = "__modhi3";
88 Names[RTLIB::SREM_I32] = "__modsi3";
89 Names[RTLIB::SREM_I64] = "__moddi3";
90 Names[RTLIB::SREM_I128] = "__modti3";
91 Names[RTLIB::UREM_I8] = "__umodqi3";
92 Names[RTLIB::UREM_I16] = "__umodhi3";
93 Names[RTLIB::UREM_I32] = "__umodsi3";
94 Names[RTLIB::UREM_I64] = "__umoddi3";
95 Names[RTLIB::UREM_I128] = "__umodti3";
97 // These are generally not available.
98 Names[RTLIB::SDIVREM_I8] = 0;
99 Names[RTLIB::SDIVREM_I16] = 0;
100 Names[RTLIB::SDIVREM_I32] = 0;
101 Names[RTLIB::SDIVREM_I64] = 0;
102 Names[RTLIB::SDIVREM_I128] = 0;
103 Names[RTLIB::UDIVREM_I8] = 0;
104 Names[RTLIB::UDIVREM_I16] = 0;
105 Names[RTLIB::UDIVREM_I32] = 0;
106 Names[RTLIB::UDIVREM_I64] = 0;
107 Names[RTLIB::UDIVREM_I128] = 0;
109 Names[RTLIB::NEG_I32] = "__negsi2";
110 Names[RTLIB::NEG_I64] = "__negdi2";
111 Names[RTLIB::ADD_F32] = "__addsf3";
112 Names[RTLIB::ADD_F64] = "__adddf3";
113 Names[RTLIB::ADD_F80] = "__addxf3";
114 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
115 Names[RTLIB::SUB_F32] = "__subsf3";
116 Names[RTLIB::SUB_F64] = "__subdf3";
117 Names[RTLIB::SUB_F80] = "__subxf3";
118 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
119 Names[RTLIB::MUL_F32] = "__mulsf3";
120 Names[RTLIB::MUL_F64] = "__muldf3";
121 Names[RTLIB::MUL_F80] = "__mulxf3";
122 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
123 Names[RTLIB::DIV_F32] = "__divsf3";
124 Names[RTLIB::DIV_F64] = "__divdf3";
125 Names[RTLIB::DIV_F80] = "__divxf3";
126 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
127 Names[RTLIB::REM_F32] = "fmodf";
128 Names[RTLIB::REM_F64] = "fmod";
129 Names[RTLIB::REM_F80] = "fmodl";
130 Names[RTLIB::REM_PPCF128] = "fmodl";
131 Names[RTLIB::POWI_F32] = "__powisf2";
132 Names[RTLIB::POWI_F64] = "__powidf2";
133 Names[RTLIB::POWI_F80] = "__powixf2";
134 Names[RTLIB::POWI_PPCF128] = "__powitf2";
135 Names[RTLIB::SQRT_F32] = "sqrtf";
136 Names[RTLIB::SQRT_F64] = "sqrt";
137 Names[RTLIB::SQRT_F80] = "sqrtl";
138 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
139 Names[RTLIB::LOG_F32] = "logf";
140 Names[RTLIB::LOG_F64] = "log";
141 Names[RTLIB::LOG_F80] = "logl";
142 Names[RTLIB::LOG_PPCF128] = "logl";
143 Names[RTLIB::LOG2_F32] = "log2f";
144 Names[RTLIB::LOG2_F64] = "log2";
145 Names[RTLIB::LOG2_F80] = "log2l";
146 Names[RTLIB::LOG2_PPCF128] = "log2l";
147 Names[RTLIB::LOG10_F32] = "log10f";
148 Names[RTLIB::LOG10_F64] = "log10";
149 Names[RTLIB::LOG10_F80] = "log10l";
150 Names[RTLIB::LOG10_PPCF128] = "log10l";
151 Names[RTLIB::EXP_F32] = "expf";
152 Names[RTLIB::EXP_F64] = "exp";
153 Names[RTLIB::EXP_F80] = "expl";
154 Names[RTLIB::EXP_PPCF128] = "expl";
155 Names[RTLIB::EXP2_F32] = "exp2f";
156 Names[RTLIB::EXP2_F64] = "exp2";
157 Names[RTLIB::EXP2_F80] = "exp2l";
158 Names[RTLIB::EXP2_PPCF128] = "exp2l";
159 Names[RTLIB::SIN_F32] = "sinf";
160 Names[RTLIB::SIN_F64] = "sin";
161 Names[RTLIB::SIN_F80] = "sinl";
162 Names[RTLIB::SIN_PPCF128] = "sinl";
163 Names[RTLIB::COS_F32] = "cosf";
164 Names[RTLIB::COS_F64] = "cos";
165 Names[RTLIB::COS_F80] = "cosl";
166 Names[RTLIB::COS_PPCF128] = "cosl";
167 Names[RTLIB::POW_F32] = "powf";
168 Names[RTLIB::POW_F64] = "pow";
169 Names[RTLIB::POW_F80] = "powl";
170 Names[RTLIB::POW_PPCF128] = "powl";
171 Names[RTLIB::CEIL_F32] = "ceilf";
172 Names[RTLIB::CEIL_F64] = "ceil";
173 Names[RTLIB::CEIL_F80] = "ceill";
174 Names[RTLIB::CEIL_PPCF128] = "ceill";
175 Names[RTLIB::TRUNC_F32] = "truncf";
176 Names[RTLIB::TRUNC_F64] = "trunc";
177 Names[RTLIB::TRUNC_F80] = "truncl";
178 Names[RTLIB::TRUNC_PPCF128] = "truncl";
179 Names[RTLIB::RINT_F32] = "rintf";
180 Names[RTLIB::RINT_F64] = "rint";
181 Names[RTLIB::RINT_F80] = "rintl";
182 Names[RTLIB::RINT_PPCF128] = "rintl";
183 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
184 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
185 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
186 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
187 Names[RTLIB::FLOOR_F32] = "floorf";
188 Names[RTLIB::FLOOR_F64] = "floor";
189 Names[RTLIB::FLOOR_F80] = "floorl";
190 Names[RTLIB::FLOOR_PPCF128] = "floorl";
191 Names[RTLIB::COPYSIGN_F32] = "copysignf";
192 Names[RTLIB::COPYSIGN_F64] = "copysign";
193 Names[RTLIB::COPYSIGN_F80] = "copysignl";
194 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
195 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
196 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
197 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
198 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
199 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
200 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
201 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
202 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
203 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
204 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
205 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
206 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
207 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
208 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
209 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
210 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
211 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
212 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
213 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
214 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
215 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
216 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
217 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
218 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
219 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
220 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
221 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
222 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
223 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
224 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
225 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
226 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
227 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
228 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
229 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
230 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
231 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
232 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
233 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
234 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
235 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
236 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
237 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
238 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
239 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
240 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
241 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
242 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
243 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
244 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
245 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
246 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
247 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
248 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
249 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
250 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
251 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
252 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
253 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
254 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
255 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
256 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
257 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
258 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
259 Names[RTLIB::OEQ_F32] = "__eqsf2";
260 Names[RTLIB::OEQ_F64] = "__eqdf2";
261 Names[RTLIB::UNE_F32] = "__nesf2";
262 Names[RTLIB::UNE_F64] = "__nedf2";
263 Names[RTLIB::OGE_F32] = "__gesf2";
264 Names[RTLIB::OGE_F64] = "__gedf2";
265 Names[RTLIB::OLT_F32] = "__ltsf2";
266 Names[RTLIB::OLT_F64] = "__ltdf2";
267 Names[RTLIB::OLE_F32] = "__lesf2";
268 Names[RTLIB::OLE_F64] = "__ledf2";
269 Names[RTLIB::OGT_F32] = "__gtsf2";
270 Names[RTLIB::OGT_F64] = "__gtdf2";
271 Names[RTLIB::UO_F32] = "__unordsf2";
272 Names[RTLIB::UO_F64] = "__unorddf2";
273 Names[RTLIB::O_F32] = "__unordsf2";
274 Names[RTLIB::O_F64] = "__unorddf2";
275 Names[RTLIB::MEMCPY] = "memcpy";
276 Names[RTLIB::MEMMOVE] = "memmove";
277 Names[RTLIB::MEMSET] = "memset";
278 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
279 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
280 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
281 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
282 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
283 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
284 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
285 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
286 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
287 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
288 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
289 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
290 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
291 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
292 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
293 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
294 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
295 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
296 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
297 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
298 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
299 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
300 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
301 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
302 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
303 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
304 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
305 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
306 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
307 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
308 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
309 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
310 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
313 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
315 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
316 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
317 CCs[i] = CallingConv::C;
321 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
322 /// UNKNOWN_LIBCALL if there is none.
323 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
324 if (OpVT == MVT::f32) {
325 if (RetVT == MVT::f64)
326 return FPEXT_F32_F64;
329 return UNKNOWN_LIBCALL;
332 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
333 /// UNKNOWN_LIBCALL if there is none.
334 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
335 if (RetVT == MVT::f32) {
336 if (OpVT == MVT::f64)
337 return FPROUND_F64_F32;
338 if (OpVT == MVT::f80)
339 return FPROUND_F80_F32;
340 if (OpVT == MVT::ppcf128)
341 return FPROUND_PPCF128_F32;
342 } else if (RetVT == MVT::f64) {
343 if (OpVT == MVT::f80)
344 return FPROUND_F80_F64;
345 if (OpVT == MVT::ppcf128)
346 return FPROUND_PPCF128_F64;
349 return UNKNOWN_LIBCALL;
352 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
353 /// UNKNOWN_LIBCALL if there is none.
354 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
355 if (OpVT == MVT::f32) {
356 if (RetVT == MVT::i8)
357 return FPTOSINT_F32_I8;
358 if (RetVT == MVT::i16)
359 return FPTOSINT_F32_I16;
360 if (RetVT == MVT::i32)
361 return FPTOSINT_F32_I32;
362 if (RetVT == MVT::i64)
363 return FPTOSINT_F32_I64;
364 if (RetVT == MVT::i128)
365 return FPTOSINT_F32_I128;
366 } else if (OpVT == MVT::f64) {
367 if (RetVT == MVT::i8)
368 return FPTOSINT_F64_I8;
369 if (RetVT == MVT::i16)
370 return FPTOSINT_F64_I16;
371 if (RetVT == MVT::i32)
372 return FPTOSINT_F64_I32;
373 if (RetVT == MVT::i64)
374 return FPTOSINT_F64_I64;
375 if (RetVT == MVT::i128)
376 return FPTOSINT_F64_I128;
377 } else if (OpVT == MVT::f80) {
378 if (RetVT == MVT::i32)
379 return FPTOSINT_F80_I32;
380 if (RetVT == MVT::i64)
381 return FPTOSINT_F80_I64;
382 if (RetVT == MVT::i128)
383 return FPTOSINT_F80_I128;
384 } else if (OpVT == MVT::ppcf128) {
385 if (RetVT == MVT::i32)
386 return FPTOSINT_PPCF128_I32;
387 if (RetVT == MVT::i64)
388 return FPTOSINT_PPCF128_I64;
389 if (RetVT == MVT::i128)
390 return FPTOSINT_PPCF128_I128;
392 return UNKNOWN_LIBCALL;
395 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
396 /// UNKNOWN_LIBCALL if there is none.
397 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
398 if (OpVT == MVT::f32) {
399 if (RetVT == MVT::i8)
400 return FPTOUINT_F32_I8;
401 if (RetVT == MVT::i16)
402 return FPTOUINT_F32_I16;
403 if (RetVT == MVT::i32)
404 return FPTOUINT_F32_I32;
405 if (RetVT == MVT::i64)
406 return FPTOUINT_F32_I64;
407 if (RetVT == MVT::i128)
408 return FPTOUINT_F32_I128;
409 } else if (OpVT == MVT::f64) {
410 if (RetVT == MVT::i8)
411 return FPTOUINT_F64_I8;
412 if (RetVT == MVT::i16)
413 return FPTOUINT_F64_I16;
414 if (RetVT == MVT::i32)
415 return FPTOUINT_F64_I32;
416 if (RetVT == MVT::i64)
417 return FPTOUINT_F64_I64;
418 if (RetVT == MVT::i128)
419 return FPTOUINT_F64_I128;
420 } else if (OpVT == MVT::f80) {
421 if (RetVT == MVT::i32)
422 return FPTOUINT_F80_I32;
423 if (RetVT == MVT::i64)
424 return FPTOUINT_F80_I64;
425 if (RetVT == MVT::i128)
426 return FPTOUINT_F80_I128;
427 } else if (OpVT == MVT::ppcf128) {
428 if (RetVT == MVT::i32)
429 return FPTOUINT_PPCF128_I32;
430 if (RetVT == MVT::i64)
431 return FPTOUINT_PPCF128_I64;
432 if (RetVT == MVT::i128)
433 return FPTOUINT_PPCF128_I128;
435 return UNKNOWN_LIBCALL;
438 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
439 /// UNKNOWN_LIBCALL if there is none.
440 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
441 if (OpVT == MVT::i32) {
442 if (RetVT == MVT::f32)
443 return SINTTOFP_I32_F32;
444 else if (RetVT == MVT::f64)
445 return SINTTOFP_I32_F64;
446 else if (RetVT == MVT::f80)
447 return SINTTOFP_I32_F80;
448 else if (RetVT == MVT::ppcf128)
449 return SINTTOFP_I32_PPCF128;
450 } else if (OpVT == MVT::i64) {
451 if (RetVT == MVT::f32)
452 return SINTTOFP_I64_F32;
453 else if (RetVT == MVT::f64)
454 return SINTTOFP_I64_F64;
455 else if (RetVT == MVT::f80)
456 return SINTTOFP_I64_F80;
457 else if (RetVT == MVT::ppcf128)
458 return SINTTOFP_I64_PPCF128;
459 } else if (OpVT == MVT::i128) {
460 if (RetVT == MVT::f32)
461 return SINTTOFP_I128_F32;
462 else if (RetVT == MVT::f64)
463 return SINTTOFP_I128_F64;
464 else if (RetVT == MVT::f80)
465 return SINTTOFP_I128_F80;
466 else if (RetVT == MVT::ppcf128)
467 return SINTTOFP_I128_PPCF128;
469 return UNKNOWN_LIBCALL;
472 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
473 /// UNKNOWN_LIBCALL if there is none.
474 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
475 if (OpVT == MVT::i32) {
476 if (RetVT == MVT::f32)
477 return UINTTOFP_I32_F32;
478 else if (RetVT == MVT::f64)
479 return UINTTOFP_I32_F64;
480 else if (RetVT == MVT::f80)
481 return UINTTOFP_I32_F80;
482 else if (RetVT == MVT::ppcf128)
483 return UINTTOFP_I32_PPCF128;
484 } else if (OpVT == MVT::i64) {
485 if (RetVT == MVT::f32)
486 return UINTTOFP_I64_F32;
487 else if (RetVT == MVT::f64)
488 return UINTTOFP_I64_F64;
489 else if (RetVT == MVT::f80)
490 return UINTTOFP_I64_F80;
491 else if (RetVT == MVT::ppcf128)
492 return UINTTOFP_I64_PPCF128;
493 } else if (OpVT == MVT::i128) {
494 if (RetVT == MVT::f32)
495 return UINTTOFP_I128_F32;
496 else if (RetVT == MVT::f64)
497 return UINTTOFP_I128_F64;
498 else if (RetVT == MVT::f80)
499 return UINTTOFP_I128_F80;
500 else if (RetVT == MVT::ppcf128)
501 return UINTTOFP_I128_PPCF128;
503 return UNKNOWN_LIBCALL;
506 /// InitCmpLibcallCCs - Set default comparison libcall CC.
508 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
509 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
510 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
511 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
512 CCs[RTLIB::UNE_F32] = ISD::SETNE;
513 CCs[RTLIB::UNE_F64] = ISD::SETNE;
514 CCs[RTLIB::OGE_F32] = ISD::SETGE;
515 CCs[RTLIB::OGE_F64] = ISD::SETGE;
516 CCs[RTLIB::OLT_F32] = ISD::SETLT;
517 CCs[RTLIB::OLT_F64] = ISD::SETLT;
518 CCs[RTLIB::OLE_F32] = ISD::SETLE;
519 CCs[RTLIB::OLE_F64] = ISD::SETLE;
520 CCs[RTLIB::OGT_F32] = ISD::SETGT;
521 CCs[RTLIB::OGT_F64] = ISD::SETGT;
522 CCs[RTLIB::UO_F32] = ISD::SETNE;
523 CCs[RTLIB::UO_F64] = ISD::SETNE;
524 CCs[RTLIB::O_F32] = ISD::SETEQ;
525 CCs[RTLIB::O_F64] = ISD::SETEQ;
528 /// NOTE: The constructor takes ownership of TLOF.
529 TargetLowering::TargetLowering(const TargetMachine &tm,
530 const TargetLoweringObjectFile *tlof)
531 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
532 // All operations default to being supported.
533 memset(OpActions, 0, sizeof(OpActions));
534 memset(LoadExtActions, 0, sizeof(LoadExtActions));
535 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
536 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
537 memset(CondCodeActions, 0, sizeof(CondCodeActions));
539 // Set default actions for various operations.
540 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
541 // Default all indexed load / store to expand.
542 for (unsigned IM = (unsigned)ISD::PRE_INC;
543 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
544 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
545 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
548 // These operations default to expand.
549 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
550 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
553 // Most targets ignore the @llvm.prefetch intrinsic.
554 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
556 // ConstantFP nodes default to expand. Targets can either change this to
557 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
558 // to optimize expansions for certain constants.
559 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
560 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
561 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
563 // These library functions default to expand.
564 setOperationAction(ISD::FLOG , MVT::f64, Expand);
565 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
566 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
567 setOperationAction(ISD::FEXP , MVT::f64, Expand);
568 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
569 setOperationAction(ISD::FLOG , MVT::f32, Expand);
570 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
571 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
572 setOperationAction(ISD::FEXP , MVT::f32, Expand);
573 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
575 // Default ISD::TRAP to expand (which turns it into abort).
576 setOperationAction(ISD::TRAP, MVT::Other, Expand);
578 IsLittleEndian = TD->isLittleEndian();
579 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
580 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
581 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
582 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
583 maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
584 = maxStoresPerMemmoveOptSize = 4;
585 benefitFromCodePlacementOpt = false;
586 UseUnderscoreSetJmp = false;
587 UseUnderscoreLongJmp = false;
588 SelectIsExpensive = false;
589 IntDivIsCheap = false;
590 Pow2DivIsCheap = false;
591 JumpIsExpensive = false;
592 StackPointerRegisterToSaveRestore = 0;
593 ExceptionPointerRegister = 0;
594 ExceptionSelectorRegister = 0;
595 BooleanContents = UndefinedBooleanContent;
596 SchedPreferenceInfo = Sched::Latency;
597 JumpBufSize = 0;
598 JumpBufAlignment = 0;
599 PrefLoopAlignment = 0;
600 MinStackArgumentAlignment = 1;
601 ShouldFoldAtomicFences = false;
603 InitLibcallNames(LibcallRoutineNames);
604 InitCmpLibcallCCs(CmpLibcallCCs);
605 InitLibcallCallingConvs(LibcallCallingConvs);
608 TargetLowering::~TargetLowering() {
609 delete &TLOF;
612 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
613 return MVT::getIntegerVT(8*TD->getPointerSize());
616 /// canOpTrap - Returns true if the operation can trap for the value type.
617 /// VT must be a legal type.
618 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
619 assert(isTypeLegal(VT));
620 switch (Op) {
621 default:
622 return false;
623 case ISD::FDIV:
624 case ISD::FREM:
625 case ISD::SDIV:
626 case ISD::UDIV:
627 case ISD::SREM:
628 case ISD::UREM:
629 return true;
634 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
635 unsigned &NumIntermediates,
636 EVT &RegisterVT,
637 TargetLowering *TLI) {
638 // Figure out the right, legal destination reg to copy into.
639 unsigned NumElts = VT.getVectorNumElements();
640 MVT EltTy = VT.getVectorElementType();
642 unsigned NumVectorRegs = 1;
644 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
645 // could break down into LHS/RHS like LegalizeDAG does.
646 if (!isPowerOf2_32(NumElts)) {
647 NumVectorRegs = NumElts;
648 NumElts = 1;
651 // Divide the input until we get to a supported size. This will always
652 // end with a scalar if the target doesn't support vectors.
653 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
654 NumElts >>= 1;
655 NumVectorRegs <<= 1;
658 NumIntermediates = NumVectorRegs;
660 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
661 if (!TLI->isTypeLegal(NewVT))
662 NewVT = EltTy;
663 IntermediateVT = NewVT;
665 EVT DestVT = TLI->getRegisterType(NewVT);
666 RegisterVT = DestVT;
667 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
668 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
670 // Otherwise, promotion or legal types use the same number of registers as
671 // the vector decimated to the appropriate level.
672 return NumVectorRegs;
675 /// isLegalRC - Return true if the value types that can be represented by the
676 /// specified register class are all legal.
677 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
678 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
679 I != E; ++I) {
680 if (isTypeLegal(*I))
681 return true;
683 return false;
686 /// hasLegalSuperRegRegClasses - Return true if the specified register class
687 /// has one or more super-reg register classes that are legal.
688 bool
689 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
690 if (*RC->superregclasses_begin() == 0)
691 return false;
692 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
693 E = RC->superregclasses_end(); I != E; ++I) {
694 const TargetRegisterClass *RRC = *I;
695 if (isLegalRC(RRC))
696 return true;
698 return false;
701 /// findRepresentativeClass - Return the largest legal super-reg register class
702 /// of the register class for the specified type and its associated "cost".
703 std::pair<const TargetRegisterClass*, uint8_t>
704 TargetLowering::findRepresentativeClass(EVT VT) const {
705 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
706 if (!RC)
707 return std::make_pair(RC, 0);
708 const TargetRegisterClass *BestRC = RC;
709 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
710 E = RC->superregclasses_end(); I != E; ++I) {
711 const TargetRegisterClass *RRC = *I;
712 if (RRC->isASubClass() || !isLegalRC(RRC))
713 continue;
714 if (!hasLegalSuperRegRegClasses(RRC))
715 return std::make_pair(RRC, 1);
716 BestRC = RRC;
718 return std::make_pair(BestRC, 1);
722 /// computeRegisterProperties - Once all of the register classes are added,
723 /// this allows us to compute derived properties we expose.
724 void TargetLowering::computeRegisterProperties() {
725 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
726 "Too many value types for ValueTypeActions to hold!");
728 // Everything defaults to needing one register.
729 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
730 NumRegistersForVT[i] = 1;
731 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
733 // ...except isVoid, which doesn't need any registers.
734 NumRegistersForVT[MVT::isVoid] = 0;
736 // Find the largest integer register class.
737 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
738 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
739 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
741 // Every integer value type larger than this largest register takes twice as
742 // many registers to represent as the previous ValueType.
743 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
744 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
745 if (!ExpandedVT.isInteger())
746 break;
747 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
748 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
749 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
750 ValueTypeActions.setTypeAction(ExpandedVT, Expand);
753 // Inspect all of the ValueType's smaller than the largest integer
754 // register to see which ones need promotion.
755 unsigned LegalIntReg = LargestIntReg;
756 for (unsigned IntReg = LargestIntReg - 1;
757 IntReg >= (unsigned)MVT::i1; --IntReg) {
758 EVT IVT = (MVT::SimpleValueType)IntReg;
759 if (isTypeLegal(IVT)) {
760 LegalIntReg = IntReg;
761 } else {
762 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
763 (MVT::SimpleValueType)LegalIntReg;
764 ValueTypeActions.setTypeAction(IVT, Promote);
768 // ppcf128 type is really two f64's.
769 if (!isTypeLegal(MVT::ppcf128)) {
770 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
771 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
772 TransformToType[MVT::ppcf128] = MVT::f64;
773 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
776 // Decide how to handle f64. If the target does not have native f64 support,
777 // expand it to i64 and we will be generating soft float library calls.
778 if (!isTypeLegal(MVT::f64)) {
779 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
780 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
781 TransformToType[MVT::f64] = MVT::i64;
782 ValueTypeActions.setTypeAction(MVT::f64, Expand);
785 // Decide how to handle f32. If the target does not have native support for
786 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
787 if (!isTypeLegal(MVT::f32)) {
788 if (isTypeLegal(MVT::f64)) {
789 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
790 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
791 TransformToType[MVT::f32] = MVT::f64;
792 ValueTypeActions.setTypeAction(MVT::f32, Promote);
793 } else {
794 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
795 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
796 TransformToType[MVT::f32] = MVT::i32;
797 ValueTypeActions.setTypeAction(MVT::f32, Expand);
801 // Loop over all of the vector value types to see which need transformations.
802 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
803 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
804 MVT VT = (MVT::SimpleValueType)i;
805 if (isTypeLegal(VT)) continue;
807 // Determine if there is a legal wider type. If so, we should promote to
808 // that wider vector type.
809 EVT EltVT = VT.getVectorElementType();
810 unsigned NElts = VT.getVectorNumElements();
811 if (NElts != 1) {
812 bool IsLegalWiderType = false;
813 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
814 EVT SVT = (MVT::SimpleValueType)nVT;
815 if (SVT.getVectorElementType() == EltVT &&
816 SVT.getVectorNumElements() > NElts &&
817 isTypeLegal(SVT)) {
818 TransformToType[i] = SVT;
819 RegisterTypeForVT[i] = SVT;
820 NumRegistersForVT[i] = 1;
821 ValueTypeActions.setTypeAction(VT, Promote);
822 IsLegalWiderType = true;
823 break;
826 if (IsLegalWiderType) continue;
829 MVT IntermediateVT;
830 EVT RegisterVT;
831 unsigned NumIntermediates;
832 NumRegistersForVT[i] =
833 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
834 RegisterVT, this);
835 RegisterTypeForVT[i] = RegisterVT;
837 EVT NVT = VT.getPow2VectorType();
838 if (NVT == VT) {
839 // Type is already a power of 2. The default action is to split.
840 TransformToType[i] = MVT::Other;
841 ValueTypeActions.setTypeAction(VT, Expand);
842 } else {
843 TransformToType[i] = NVT;
844 ValueTypeActions.setTypeAction(VT, Promote);
848 // Determine the 'representative' register class for each value type.
849 // An representative register class is the largest (meaning one which is
850 // not a sub-register class / subreg register class) legal register class for
851 // a group of value types. For example, on i386, i8, i16, and i32
852 // representative would be GR32; while on x86_64 it's GR64.
853 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
854 const TargetRegisterClass* RRC;
855 uint8_t Cost;
856 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
857 RepRegClassForVT[i] = RRC;
858 RepRegClassCostForVT[i] = Cost;
862 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
863 return NULL;
867 MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
868 return PointerTy.SimpleTy;
871 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
872 return MVT::i32; // return the default value
875 /// getVectorTypeBreakdown - Vector types are broken down into some number of
876 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
877 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
878 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
880 /// This method returns the number of registers needed, and the VT for each
881 /// register. It also returns the VT and quantity of the intermediate values
882 /// before they are promoted/expanded.
884 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
885 EVT &IntermediateVT,
886 unsigned &NumIntermediates,
887 EVT &RegisterVT) const {
888 unsigned NumElts = VT.getVectorNumElements();
890 // If there is a wider vector type with the same element type as this one,
891 // we should widen to that legal vector type. This handles things like
892 // <2 x float> -> <4 x float>.
893 if (NumElts != 1 && getTypeAction(VT) == Promote) {
894 RegisterVT = getTypeToTransformTo(Context, VT);
895 if (isTypeLegal(RegisterVT)) {
896 IntermediateVT = RegisterVT;
897 NumIntermediates = 1;
898 return 1;
902 // Figure out the right, legal destination reg to copy into.
903 EVT EltTy = VT.getVectorElementType();
905 unsigned NumVectorRegs = 1;
907 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
908 // could break down into LHS/RHS like LegalizeDAG does.
909 if (!isPowerOf2_32(NumElts)) {
910 NumVectorRegs = NumElts;
911 NumElts = 1;
914 // Divide the input until we get to a supported size. This will always
915 // end with a scalar if the target doesn't support vectors.
916 while (NumElts > 1 && !isTypeLegal(
917 EVT::getVectorVT(Context, EltTy, NumElts))) {
918 NumElts >>= 1;
919 NumVectorRegs <<= 1;
922 NumIntermediates = NumVectorRegs;
924 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
925 if (!isTypeLegal(NewVT))
926 NewVT = EltTy;
927 IntermediateVT = NewVT;
929 EVT DestVT = getRegisterType(Context, NewVT);
930 RegisterVT = DestVT;
931 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
932 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
934 // Otherwise, promotion or legal types use the same number of registers as
935 // the vector decimated to the appropriate level.
936 return NumVectorRegs;
939 /// Get the EVTs and ArgFlags collections that represent the legalized return
940 /// type of the given function. This does not require a DAG or a return value,
941 /// and is suitable for use before any DAGs for the function are constructed.
942 /// TODO: Move this out of TargetLowering.cpp.
943 void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
944 SmallVectorImpl<ISD::OutputArg> &Outs,
945 const TargetLowering &TLI,
946 SmallVectorImpl<uint64_t> *Offsets) {
947 SmallVector<EVT, 4> ValueVTs;
948 ComputeValueVTs(TLI, ReturnType, ValueVTs);
949 unsigned NumValues = ValueVTs.size();
950 if (NumValues == 0) return;
951 unsigned Offset = 0;
953 for (unsigned j = 0, f = NumValues; j != f; ++j) {
954 EVT VT = ValueVTs[j];
955 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
957 if (attr & Attribute::SExt)
958 ExtendKind = ISD::SIGN_EXTEND;
959 else if (attr & Attribute::ZExt)
960 ExtendKind = ISD::ZERO_EXTEND;
962 // FIXME: C calling convention requires the return type to be promoted to
963 // at least 32-bit. But this is not necessary for non-C calling
964 // conventions. The frontend should mark functions whose return values
965 // require promoting with signext or zeroext attributes.
966 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
967 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
968 if (VT.bitsLT(MinVT))
969 VT = MinVT;
972 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
973 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
974 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
975 PartVT.getTypeForEVT(ReturnType->getContext()));
977 // 'inreg' on function refers to return value
978 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
979 if (attr & Attribute::InReg)
980 Flags.setInReg();
982 // Propagate extension type if any
983 if (attr & Attribute::SExt)
984 Flags.setSExt();
985 else if (attr & Attribute::ZExt)
986 Flags.setZExt();
988 for (unsigned i = 0; i < NumParts; ++i) {
989 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
990 if (Offsets) {
991 Offsets->push_back(Offset);
992 Offset += PartSize;
998 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
999 /// function arguments in the caller parameter area. This is the actual
1000 /// alignment, not its logarithm.
1001 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1002 return TD->getCallFrameTypeAlignment(Ty);
1005 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1006 /// current function. The returned value is a member of the
1007 /// MachineJumpTableInfo::JTEntryKind enum.
1008 unsigned TargetLowering::getJumpTableEncoding() const {
1009 // In non-pic modes, just use the address of a block.
1010 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1011 return MachineJumpTableInfo::EK_BlockAddress;
1013 // In PIC mode, if the target supports a GPRel32 directive, use it.
1014 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1015 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1017 // Otherwise, use a label difference.
1018 return MachineJumpTableInfo::EK_LabelDifference32;
1021 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1022 SelectionDAG &DAG) const {
1023 // If our PIC model is GP relative, use the global offset table as the base.
1024 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1025 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1026 return Table;
1029 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1030 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1031 /// MCExpr.
1032 const MCExpr *
1033 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1034 unsigned JTI,MCContext &Ctx) const{
1035 // The normal PIC reloc base is the label at the start of the jump table.
1036 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1039 bool
1040 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1041 // Assume that everything is safe in static mode.
1042 if (getTargetMachine().getRelocationModel() == Reloc::Static)
1043 return true;
1045 // In dynamic-no-pic mode, assume that known defined values are safe.
1046 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1047 GA &&
1048 !GA->getGlobal()->isDeclaration() &&
1049 !GA->getGlobal()->isWeakForLinker())
1050 return true;
1052 // Otherwise assume nothing is safe.
1053 return false;
1056 //===----------------------------------------------------------------------===//
1057 // Optimization Methods
1058 //===----------------------------------------------------------------------===//
1060 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1061 /// specified instruction is a constant integer. If so, check to see if there
1062 /// are any bits set in the constant that are not demanded. If so, shrink the
1063 /// constant and return true.
1064 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1065 const APInt &Demanded) {
1066 DebugLoc dl = Op.getDebugLoc();
1068 // FIXME: ISD::SELECT, ISD::SELECT_CC
1069 switch (Op.getOpcode()) {
1070 default: break;
1071 case ISD::XOR:
1072 case ISD::AND:
1073 case ISD::OR: {
1074 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1075 if (!C) return false;
1077 if (Op.getOpcode() == ISD::XOR &&
1078 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1079 return false;
1081 // if we can expand it to have all bits set, do it
1082 if (C->getAPIntValue().intersects(~Demanded)) {
1083 EVT VT = Op.getValueType();
1084 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1085 DAG.getConstant(Demanded &
1086 C->getAPIntValue(),
1087 VT));
1088 return CombineTo(Op, New);
1091 break;
1095 return false;
1098 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1099 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1100 /// cast, but it could be generalized for targets with other types of
1101 /// implicit widening casts.
1102 bool
1103 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1104 unsigned BitWidth,
1105 const APInt &Demanded,
1106 DebugLoc dl) {
1107 assert(Op.getNumOperands() == 2 &&
1108 "ShrinkDemandedOp only supports binary operators!");
1109 assert(Op.getNode()->getNumValues() == 1 &&
1110 "ShrinkDemandedOp only supports nodes with one result!");
1112 // Don't do this if the node has another user, which may require the
1113 // full value.
1114 if (!Op.getNode()->hasOneUse())
1115 return false;
1117 // Search for the smallest integer type with free casts to and from
1118 // Op's type. For expedience, just check power-of-2 integer types.
1119 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1120 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1121 if (!isPowerOf2_32(SmallVTBits))
1122 SmallVTBits = NextPowerOf2(SmallVTBits);
1123 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1124 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1125 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1126 TLI.isZExtFree(SmallVT, Op.getValueType())) {
1127 // We found a type with free casts.
1128 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1129 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1130 Op.getNode()->getOperand(0)),
1131 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1132 Op.getNode()->getOperand(1)));
1133 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1134 return CombineTo(Op, Z);
1137 return false;
1140 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1141 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1142 /// use this information to simplify Op, create a new simplified DAG node and
1143 /// return true, returning the original and new nodes in Old and New. Otherwise,
1144 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1145 /// the expression (used to simplify the caller). The KnownZero/One bits may
1146 /// only be accurate for those bits in the DemandedMask.
1147 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1148 const APInt &DemandedMask,
1149 APInt &KnownZero,
1150 APInt &KnownOne,
1151 TargetLoweringOpt &TLO,
1152 unsigned Depth) const {
1153 unsigned BitWidth = DemandedMask.getBitWidth();
1154 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1155 "Mask size mismatches value type size!");
1156 APInt NewMask = DemandedMask;
1157 DebugLoc dl = Op.getDebugLoc();
1159 // Don't know anything.
1160 KnownZero = KnownOne = APInt(BitWidth, 0);
1162 // Other users may use these bits.
1163 if (!Op.getNode()->hasOneUse()) {
1164 if (Depth != 0) {
1165 // If not at the root, Just compute the KnownZero/KnownOne bits to
1166 // simplify things downstream.
1167 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1168 return false;
1170 // If this is the root being simplified, allow it to have multiple uses,
1171 // just set the NewMask to all bits.
1172 NewMask = APInt::getAllOnesValue(BitWidth);
1173 } else if (DemandedMask == 0) {
1174 // Not demanding any bits from Op.
1175 if (Op.getOpcode() != ISD::UNDEF)
1176 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1177 return false;
1178 } else if (Depth == 6) { // Limit search depth.
1179 return false;
1182 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1183 switch (Op.getOpcode()) {
1184 case ISD::Constant:
1185 // We know all of the bits for a constant!
1186 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1187 KnownZero = ~KnownOne & NewMask;
1188 return false; // Don't fall through, will infinitely loop.
1189 case ISD::AND:
1190 // If the RHS is a constant, check to see if the LHS would be zero without
1191 // using the bits from the RHS. Below, we use knowledge about the RHS to
1192 // simplify the LHS, here we're using information from the LHS to simplify
1193 // the RHS.
1194 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1195 APInt LHSZero, LHSOne;
1196 // Do not increment Depth here; that can cause an infinite loop.
1197 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1198 LHSZero, LHSOne, Depth);
1199 // If the LHS already has zeros where RHSC does, this and is dead.
1200 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1201 return TLO.CombineTo(Op, Op.getOperand(0));
1202 // If any of the set bits in the RHS are known zero on the LHS, shrink
1203 // the constant.
1204 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1205 return true;
1208 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1209 KnownOne, TLO, Depth+1))
1210 return true;
1211 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1212 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1213 KnownZero2, KnownOne2, TLO, Depth+1))
1214 return true;
1215 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1217 // If all of the demanded bits are known one on one side, return the other.
1218 // These bits cannot contribute to the result of the 'and'.
1219 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1220 return TLO.CombineTo(Op, Op.getOperand(0));
1221 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1222 return TLO.CombineTo(Op, Op.getOperand(1));
1223 // If all of the demanded bits in the inputs are known zeros, return zero.
1224 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1225 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1226 // If the RHS is a constant, see if we can simplify it.
1227 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1228 return true;
1229 // If the operation can be done in a smaller type, do so.
1230 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1231 return true;
1233 // Output known-1 bits are only known if set in both the LHS & RHS.
1234 KnownOne &= KnownOne2;
1235 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1236 KnownZero |= KnownZero2;
1237 break;
1238 case ISD::OR:
1239 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1240 KnownOne, TLO, Depth+1))
1241 return true;
1242 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1244 KnownZero2, KnownOne2, TLO, Depth+1))
1245 return true;
1246 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1248 // If all of the demanded bits are known zero on one side, return the other.
1249 // These bits cannot contribute to the result of the 'or'.
1250 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1251 return TLO.CombineTo(Op, Op.getOperand(0));
1252 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1253 return TLO.CombineTo(Op, Op.getOperand(1));
1254 // If all of the potentially set bits on one side are known to be set on
1255 // the other side, just use the 'other' side.
1256 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1257 return TLO.CombineTo(Op, Op.getOperand(0));
1258 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1259 return TLO.CombineTo(Op, Op.getOperand(1));
1260 // If the RHS is a constant, see if we can simplify it.
1261 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1262 return true;
1263 // If the operation can be done in a smaller type, do so.
1264 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1265 return true;
1267 // Output known-0 bits are only known if clear in both the LHS & RHS.
1268 KnownZero &= KnownZero2;
1269 // Output known-1 are known to be set if set in either the LHS | RHS.
1270 KnownOne |= KnownOne2;
1271 break;
1272 case ISD::XOR:
1273 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1274 KnownOne, TLO, Depth+1))
1275 return true;
1276 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1277 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1278 KnownOne2, TLO, Depth+1))
1279 return true;
1280 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1282 // If all of the demanded bits are known zero on one side, return the other.
1283 // These bits cannot contribute to the result of the 'xor'.
1284 if ((KnownZero & NewMask) == NewMask)
1285 return TLO.CombineTo(Op, Op.getOperand(0));
1286 if ((KnownZero2 & NewMask) == NewMask)
1287 return TLO.CombineTo(Op, Op.getOperand(1));
1288 // If the operation can be done in a smaller type, do so.
1289 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1290 return true;
1292 // If all of the unknown bits are known to be zero on one side or the other
1293 // (but not both) turn this into an *inclusive* or.
1294 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1295 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1296 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1297 Op.getOperand(0),
1298 Op.getOperand(1)));
1300 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1301 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1302 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1303 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1305 // If all of the demanded bits on one side are known, and all of the set
1306 // bits on that side are also known to be set on the other side, turn this
1307 // into an AND, as we know the bits will be cleared.
1308 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1309 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1310 if ((KnownOne & KnownOne2) == KnownOne) {
1311 EVT VT = Op.getValueType();
1312 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1313 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1314 Op.getOperand(0), ANDC));
1318 // If the RHS is a constant, see if we can simplify it.
1319 // for XOR, we prefer to force bits to 1 if they will make a -1.
1320 // if we can't force bits, try to shrink constant
1321 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1322 APInt Expanded = C->getAPIntValue() | (~NewMask);
1323 // if we can expand it to have all bits set, do it
1324 if (Expanded.isAllOnesValue()) {
1325 if (Expanded != C->getAPIntValue()) {
1326 EVT VT = Op.getValueType();
1327 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1328 TLO.DAG.getConstant(Expanded, VT));
1329 return TLO.CombineTo(Op, New);
1331 // if it already has all the bits set, nothing to change
1332 // but don't shrink either!
1333 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1334 return true;
1338 KnownZero = KnownZeroOut;
1339 KnownOne = KnownOneOut;
1340 break;
1341 case ISD::SELECT:
1342 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1343 KnownOne, TLO, Depth+1))
1344 return true;
1345 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1346 KnownOne2, TLO, Depth+1))
1347 return true;
1348 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1349 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1351 // If the operands are constants, see if we can simplify them.
1352 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1353 return true;
1355 // Only known if known in both the LHS and RHS.
1356 KnownOne &= KnownOne2;
1357 KnownZero &= KnownZero2;
1358 break;
1359 case ISD::SELECT_CC:
1360 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1361 KnownOne, TLO, Depth+1))
1362 return true;
1363 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1364 KnownOne2, TLO, Depth+1))
1365 return true;
1366 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1367 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1369 // If the operands are constants, see if we can simplify them.
1370 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1371 return true;
1373 // Only known if known in both the LHS and RHS.
1374 KnownOne &= KnownOne2;
1375 KnownZero &= KnownZero2;
1376 break;
1377 case ISD::SHL:
1378 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1379 unsigned ShAmt = SA->getZExtValue();
1380 SDValue InOp = Op.getOperand(0);
1382 // If the shift count is an invalid immediate, don't do anything.
1383 if (ShAmt >= BitWidth)
1384 break;
1386 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1387 // single shift. We can do this if the bottom bits (which are shifted
1388 // out) are never demanded.
1389 if (InOp.getOpcode() == ISD::SRL &&
1390 isa<ConstantSDNode>(InOp.getOperand(1))) {
1391 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1392 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1393 unsigned Opc = ISD::SHL;
1394 int Diff = ShAmt-C1;
1395 if (Diff < 0) {
1396 Diff = -Diff;
1397 Opc = ISD::SRL;
1400 SDValue NewSA =
1401 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1402 EVT VT = Op.getValueType();
1403 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1404 InOp.getOperand(0), NewSA));
1408 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1409 KnownZero, KnownOne, TLO, Depth+1))
1410 return true;
1412 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1413 // are not demanded. This will likely allow the anyext to be folded away.
1414 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1415 SDValue InnerOp = InOp.getNode()->getOperand(0);
1416 EVT InnerVT = InnerOp.getValueType();
1417 if ((APInt::getHighBitsSet(BitWidth,
1418 BitWidth - InnerVT.getSizeInBits()) &
1419 DemandedMask) == 0 &&
1420 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1421 EVT ShTy = getShiftAmountTy(InnerVT);
1422 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1423 ShTy = InnerVT;
1424 SDValue NarrowShl =
1425 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1426 TLO.DAG.getConstant(ShAmt, ShTy));
1427 return
1428 TLO.CombineTo(Op,
1429 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1430 NarrowShl));
1434 KnownZero <<= SA->getZExtValue();
1435 KnownOne <<= SA->getZExtValue();
1436 // low bits known zero.
1437 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1439 break;
1440 case ISD::SRL:
1441 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1442 EVT VT = Op.getValueType();
1443 unsigned ShAmt = SA->getZExtValue();
1444 unsigned VTSize = VT.getSizeInBits();
1445 SDValue InOp = Op.getOperand(0);
1447 // If the shift count is an invalid immediate, don't do anything.
1448 if (ShAmt >= BitWidth)
1449 break;
1451 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1452 // single shift. We can do this if the top bits (which are shifted out)
1453 // are never demanded.
1454 if (InOp.getOpcode() == ISD::SHL &&
1455 isa<ConstantSDNode>(InOp.getOperand(1))) {
1456 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1457 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1458 unsigned Opc = ISD::SRL;
1459 int Diff = ShAmt-C1;
1460 if (Diff < 0) {
1461 Diff = -Diff;
1462 Opc = ISD::SHL;
1465 SDValue NewSA =
1466 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1467 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1468 InOp.getOperand(0), NewSA));
1472 // Compute the new bits that are at the top now.
1473 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1474 KnownZero, KnownOne, TLO, Depth+1))
1475 return true;
1476 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1477 KnownZero = KnownZero.lshr(ShAmt);
1478 KnownOne = KnownOne.lshr(ShAmt);
1480 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1481 KnownZero |= HighBits; // High bits known zero.
1483 break;
1484 case ISD::SRA:
1485 // If this is an arithmetic shift right and only the low-bit is set, we can
1486 // always convert this into a logical shr, even if the shift amount is
1487 // variable. The low bit of the shift cannot be an input sign bit unless
1488 // the shift amount is >= the size of the datatype, which is undefined.
1489 if (DemandedMask == 1)
1490 return TLO.CombineTo(Op,
1491 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1492 Op.getOperand(0), Op.getOperand(1)));
1494 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1495 EVT VT = Op.getValueType();
1496 unsigned ShAmt = SA->getZExtValue();
1498 // If the shift count is an invalid immediate, don't do anything.
1499 if (ShAmt >= BitWidth)
1500 break;
1502 APInt InDemandedMask = (NewMask << ShAmt);
1504 // If any of the demanded bits are produced by the sign extension, we also
1505 // demand the input sign bit.
1506 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1507 if (HighBits.intersects(NewMask))
1508 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1510 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1511 KnownZero, KnownOne, TLO, Depth+1))
1512 return true;
1513 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514 KnownZero = KnownZero.lshr(ShAmt);
1515 KnownOne = KnownOne.lshr(ShAmt);
1517 // Handle the sign bit, adjusted to where it is now in the mask.
1518 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1520 // If the input sign bit is known to be zero, or if none of the top bits
1521 // are demanded, turn this into an unsigned shift right.
1522 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1523 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1524 Op.getOperand(0),
1525 Op.getOperand(1)));
1526 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1527 KnownOne |= HighBits;
1530 break;
1531 case ISD::SIGN_EXTEND_INREG: {
1532 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1534 // Sign extension. Compute the demanded bits in the result that are not
1535 // present in the input.
1536 APInt NewBits =
1537 APInt::getHighBitsSet(BitWidth,
1538 BitWidth - EVT.getScalarType().getSizeInBits());
1540 // If none of the extended bits are demanded, eliminate the sextinreg.
1541 if ((NewBits & NewMask) == 0)
1542 return TLO.CombineTo(Op, Op.getOperand(0));
1544 APInt InSignBit =
1545 APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1546 APInt InputDemandedBits =
1547 APInt::getLowBitsSet(BitWidth,
1548 EVT.getScalarType().getSizeInBits()) &
1549 NewMask;
1551 // Since the sign extended bits are demanded, we know that the sign
1552 // bit is demanded.
1553 InputDemandedBits |= InSignBit;
1555 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1556 KnownZero, KnownOne, TLO, Depth+1))
1557 return true;
1558 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1560 // If the sign bit of the input is known set or clear, then we know the
1561 // top bits of the result.
1563 // If the input sign bit is known zero, convert this into a zero extension.
1564 if (KnownZero.intersects(InSignBit))
1565 return TLO.CombineTo(Op,
1566 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1568 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1569 KnownOne |= NewBits;
1570 KnownZero &= ~NewBits;
1571 } else { // Input sign bit unknown
1572 KnownZero &= ~NewBits;
1573 KnownOne &= ~NewBits;
1575 break;
1577 case ISD::ZERO_EXTEND: {
1578 unsigned OperandBitWidth =
1579 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1580 APInt InMask = NewMask.trunc(OperandBitWidth);
1582 // If none of the top bits are demanded, convert this into an any_extend.
1583 APInt NewBits =
1584 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1585 if (!NewBits.intersects(NewMask))
1586 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1587 Op.getValueType(),
1588 Op.getOperand(0)));
1590 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1591 KnownZero, KnownOne, TLO, Depth+1))
1592 return true;
1593 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594 KnownZero = KnownZero.zext(BitWidth);
1595 KnownOne = KnownOne.zext(BitWidth);
1596 KnownZero |= NewBits;
1597 break;
1599 case ISD::SIGN_EXTEND: {
1600 EVT InVT = Op.getOperand(0).getValueType();
1601 unsigned InBits = InVT.getScalarType().getSizeInBits();
1602 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1603 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1604 APInt NewBits = ~InMask & NewMask;
1606 // If none of the top bits are demanded, convert this into an any_extend.
1607 if (NewBits == 0)
1608 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1609 Op.getValueType(),
1610 Op.getOperand(0)));
1612 // Since some of the sign extended bits are demanded, we know that the sign
1613 // bit is demanded.
1614 APInt InDemandedBits = InMask & NewMask;
1615 InDemandedBits |= InSignBit;
1616 InDemandedBits = InDemandedBits.trunc(InBits);
1618 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1619 KnownOne, TLO, Depth+1))
1620 return true;
1621 KnownZero = KnownZero.zext(BitWidth);
1622 KnownOne = KnownOne.zext(BitWidth);
1624 // If the sign bit is known zero, convert this to a zero extend.
1625 if (KnownZero.intersects(InSignBit))
1626 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1627 Op.getValueType(),
1628 Op.getOperand(0)));
1630 // If the sign bit is known one, the top bits match.
1631 if (KnownOne.intersects(InSignBit)) {
1632 KnownOne |= NewBits;
1633 KnownZero &= ~NewBits;
1634 } else { // Otherwise, top bits aren't known.
1635 KnownOne &= ~NewBits;
1636 KnownZero &= ~NewBits;
1638 break;
1640 case ISD::ANY_EXTEND: {
1641 unsigned OperandBitWidth =
1642 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1643 APInt InMask = NewMask.trunc(OperandBitWidth);
1644 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1645 KnownZero, KnownOne, TLO, Depth+1))
1646 return true;
1647 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1648 KnownZero = KnownZero.zext(BitWidth);
1649 KnownOne = KnownOne.zext(BitWidth);
1650 break;
1652 case ISD::TRUNCATE: {
1653 // Simplify the input, using demanded bit information, and compute the known
1654 // zero/one bits live out.
1655 unsigned OperandBitWidth =
1656 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1657 APInt TruncMask = NewMask.zext(OperandBitWidth);
1658 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1659 KnownZero, KnownOne, TLO, Depth+1))
1660 return true;
1661 KnownZero = KnownZero.trunc(BitWidth);
1662 KnownOne = KnownOne.trunc(BitWidth);
1664 // If the input is only used by this truncate, see if we can shrink it based
1665 // on the known demanded bits.
1666 if (Op.getOperand(0).getNode()->hasOneUse()) {
1667 SDValue In = Op.getOperand(0);
1668 switch (In.getOpcode()) {
1669 default: break;
1670 case ISD::SRL:
1671 // Shrink SRL by a constant if none of the high bits shifted in are
1672 // demanded.
1673 if (TLO.LegalTypes() &&
1674 !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1675 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1676 // undesirable.
1677 break;
1678 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1679 if (!ShAmt)
1680 break;
1681 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1682 OperandBitWidth - BitWidth);
1683 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1685 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1686 // None of the shifted in bits are needed. Add a truncate of the
1687 // shift input, then shift it.
1688 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1689 Op.getValueType(),
1690 In.getOperand(0));
1691 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1692 Op.getValueType(),
1693 NewTrunc,
1694 In.getOperand(1)));
1696 break;
1700 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701 break;
1703 case ISD::AssertZext: {
1704 // Demand all the bits of the input that are demanded in the output.
1705 // The low bits are obvious; the high bits are demanded because we're
1706 // asserting that they're zero here.
1707 if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1708 KnownZero, KnownOne, TLO, Depth+1))
1709 return true;
1710 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1712 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1713 APInt InMask = APInt::getLowBitsSet(BitWidth,
1714 VT.getSizeInBits());
1715 KnownZero |= ~InMask & NewMask;
1716 break;
1718 case ISD::BITCAST:
1719 #if 0
1720 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1721 // is demanded, turn this into a FGETSIGN.
1722 if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1723 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1724 !MVT::isVector(Op.getOperand(0).getValueType())) {
1725 // Only do this xform if FGETSIGN is valid or if before legalize.
1726 if (!TLO.AfterLegalize ||
1727 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1728 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1729 // place. We expect the SHL to be eliminated by other optimizations.
1730 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1731 Op.getOperand(0));
1732 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1733 SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1734 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1735 Sign, ShAmt));
1738 #endif
1739 break;
1740 case ISD::ADD:
1741 case ISD::MUL:
1742 case ISD::SUB: {
1743 // Add, Sub, and Mul don't demand any bits in positions beyond that
1744 // of the highest bit demanded of them.
1745 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1746 BitWidth - NewMask.countLeadingZeros());
1747 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1748 KnownOne2, TLO, Depth+1))
1749 return true;
1750 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1751 KnownOne2, TLO, Depth+1))
1752 return true;
1753 // See if the operation should be performed at a smaller bit width.
1754 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1755 return true;
1757 // FALL THROUGH
1758 default:
1759 // Just use ComputeMaskedBits to compute output bits.
1760 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1761 break;
1764 // If we know the value of all of the demanded bits, return this as a
1765 // constant.
1766 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1767 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1769 return false;
1772 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1773 /// in Mask are known to be either zero or one and return them in the
1774 /// KnownZero/KnownOne bitsets.
1775 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1776 const APInt &Mask,
1777 APInt &KnownZero,
1778 APInt &KnownOne,
1779 const SelectionDAG &DAG,
1780 unsigned Depth) const {
1781 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1782 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1783 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1784 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1785 "Should use MaskedValueIsZero if you don't know whether Op"
1786 " is a target node!");
1787 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1790 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1791 /// targets that want to expose additional information about sign bits to the
1792 /// DAG Combiner.
1793 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1794 unsigned Depth) const {
1795 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1796 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1797 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1798 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1799 "Should use ComputeNumSignBits if you don't know whether Op"
1800 " is a target node!");
1801 return 1;
1804 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1805 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1806 /// determine which bit is set.
1808 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1809 // A left-shift of a constant one will have exactly one bit set, because
1810 // shifting the bit off the end is undefined.
1811 if (Val.getOpcode() == ISD::SHL)
1812 if (ConstantSDNode *C =
1813 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1814 if (C->getAPIntValue() == 1)
1815 return true;
1817 // Similarly, a right-shift of a constant sign-bit will have exactly
1818 // one bit set.
1819 if (Val.getOpcode() == ISD::SRL)
1820 if (ConstantSDNode *C =
1821 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1822 if (C->getAPIntValue().isSignBit())
1823 return true;
1825 // More could be done here, though the above checks are enough
1826 // to handle some common cases.
1828 // Fall back to ComputeMaskedBits to catch other known cases.
1829 EVT OpVT = Val.getValueType();
1830 unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1831 APInt Mask = APInt::getAllOnesValue(BitWidth);
1832 APInt KnownZero, KnownOne;
1833 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1834 return (KnownZero.countPopulation() == BitWidth - 1) &&
1835 (KnownOne.countPopulation() == 1);
1838 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1839 /// and cc. If it is unable to simplify it, return a null SDValue.
1840 SDValue
1841 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1842 ISD::CondCode Cond, bool foldBooleans,
1843 DAGCombinerInfo &DCI, DebugLoc dl) const {
1844 SelectionDAG &DAG = DCI.DAG;
1845 LLVMContext &Context = *DAG.getContext();
1847 // These setcc operations always fold.
1848 switch (Cond) {
1849 default: break;
1850 case ISD::SETFALSE:
1851 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1852 case ISD::SETTRUE:
1853 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1856 if (isa<ConstantSDNode>(N0.getNode())) {
1857 // Ensure that the constant occurs on the RHS, and fold constant
1858 // comparisons.
1859 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1862 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1863 const APInt &C1 = N1C->getAPIntValue();
1865 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1866 // equality comparison, then we're just comparing whether X itself is
1867 // zero.
1868 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1869 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1870 N0.getOperand(1).getOpcode() == ISD::Constant) {
1871 const APInt &ShAmt
1872 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1873 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1874 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1875 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1876 // (srl (ctlz x), 5) == 0 -> X != 0
1877 // (srl (ctlz x), 5) != 1 -> X != 0
1878 Cond = ISD::SETNE;
1879 } else {
1880 // (srl (ctlz x), 5) != 0 -> X == 0
1881 // (srl (ctlz x), 5) == 1 -> X == 0
1882 Cond = ISD::SETEQ;
1884 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1885 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1886 Zero, Cond);
1890 SDValue CTPOP = N0;
1891 // Look through truncs that don't change the value of a ctpop.
1892 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1893 CTPOP = N0.getOperand(0);
1895 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1896 (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1897 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1898 EVT CTVT = CTPOP.getValueType();
1899 SDValue CTOp = CTPOP.getOperand(0);
1901 // (ctpop x) u< 2 -> (x & x-1) == 0
1902 // (ctpop x) u> 1 -> (x & x-1) != 0
1903 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1904 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1905 DAG.getConstant(1, CTVT));
1906 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1907 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1908 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1911 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1914 // If the LHS is '(and load, const)', the RHS is 0,
1915 // the test is for equality or unsigned, and all 1 bits of the const are
1916 // in the same partial word, see if we can shorten the load.
1917 if (DCI.isBeforeLegalize() &&
1918 N0.getOpcode() == ISD::AND && C1 == 0 &&
1919 N0.getNode()->hasOneUse() &&
1920 isa<LoadSDNode>(N0.getOperand(0)) &&
1921 N0.getOperand(0).getNode()->hasOneUse() &&
1922 isa<ConstantSDNode>(N0.getOperand(1))) {
1923 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1924 APInt bestMask;
1925 unsigned bestWidth = 0, bestOffset = 0;
1926 if (!Lod->isVolatile() && Lod->isUnindexed()) {
1927 unsigned origWidth = N0.getValueType().getSizeInBits();
1928 unsigned maskWidth = origWidth;
1929 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1930 // 8 bits, but have to be careful...
1931 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1932 origWidth = Lod->getMemoryVT().getSizeInBits();
1933 const APInt &Mask =
1934 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1935 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1936 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1937 for (unsigned offset=0; offset<origWidth/width; offset++) {
1938 if ((newMask & Mask) == Mask) {
1939 if (!TD->isLittleEndian())
1940 bestOffset = (origWidth/width - offset - 1) * (width/8);
1941 else
1942 bestOffset = (uint64_t)offset * (width/8);
1943 bestMask = Mask.lshr(offset * (width/8) * 8);
1944 bestWidth = width;
1945 break;
1947 newMask = newMask << width;
1951 if (bestWidth) {
1952 EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1953 if (newVT.isRound()) {
1954 EVT PtrType = Lod->getOperand(1).getValueType();
1955 SDValue Ptr = Lod->getBasePtr();
1956 if (bestOffset != 0)
1957 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1958 DAG.getConstant(bestOffset, PtrType));
1959 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1960 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1961 Lod->getPointerInfo().getWithOffset(bestOffset),
1962 false, false, NewAlign);
1963 return DAG.getSetCC(dl, VT,
1964 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1965 DAG.getConstant(bestMask.trunc(bestWidth),
1966 newVT)),
1967 DAG.getConstant(0LL, newVT), Cond);
1972 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1973 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1974 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1976 // If the comparison constant has bits in the upper part, the
1977 // zero-extended value could never match.
1978 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1979 C1.getBitWidth() - InSize))) {
1980 switch (Cond) {
1981 case ISD::SETUGT:
1982 case ISD::SETUGE:
1983 case ISD::SETEQ: return DAG.getConstant(0, VT);
1984 case ISD::SETULT:
1985 case ISD::SETULE:
1986 case ISD::SETNE: return DAG.getConstant(1, VT);
1987 case ISD::SETGT:
1988 case ISD::SETGE:
1989 // True if the sign bit of C1 is set.
1990 return DAG.getConstant(C1.isNegative(), VT);
1991 case ISD::SETLT:
1992 case ISD::SETLE:
1993 // True if the sign bit of C1 isn't set.
1994 return DAG.getConstant(C1.isNonNegative(), VT);
1995 default:
1996 break;
2000 // Otherwise, we can perform the comparison with the low bits.
2001 switch (Cond) {
2002 case ISD::SETEQ:
2003 case ISD::SETNE:
2004 case ISD::SETUGT:
2005 case ISD::SETUGE:
2006 case ISD::SETULT:
2007 case ISD::SETULE: {
2008 EVT newVT = N0.getOperand(0).getValueType();
2009 if (DCI.isBeforeLegalizeOps() ||
2010 (isOperationLegal(ISD::SETCC, newVT) &&
2011 getCondCodeAction(Cond, newVT)==Legal))
2012 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2013 DAG.getConstant(C1.trunc(InSize), newVT),
2014 Cond);
2015 break;
2017 default:
2018 break; // todo, be more careful with signed comparisons
2020 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2021 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2022 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2023 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2024 EVT ExtDstTy = N0.getValueType();
2025 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2027 // If the constant doesn't fit into the number of bits for the source of
2028 // the sign extension, it is impossible for both sides to be equal.
2029 if (C1.getMinSignedBits() > ExtSrcTyBits)
2030 return DAG.getConstant(Cond == ISD::SETNE, VT);
2032 SDValue ZextOp;
2033 EVT Op0Ty = N0.getOperand(0).getValueType();
2034 if (Op0Ty == ExtSrcTy) {
2035 ZextOp = N0.getOperand(0);
2036 } else {
2037 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2038 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2039 DAG.getConstant(Imm, Op0Ty));
2041 if (!DCI.isCalledByLegalizer())
2042 DCI.AddToWorklist(ZextOp.getNode());
2043 // Otherwise, make this a use of a zext.
2044 return DAG.getSetCC(dl, VT, ZextOp,
2045 DAG.getConstant(C1 & APInt::getLowBitsSet(
2046 ExtDstTyBits,
2047 ExtSrcTyBits),
2048 ExtDstTy),
2049 Cond);
2050 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2051 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2052 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2053 if (N0.getOpcode() == ISD::SETCC &&
2054 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2055 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2056 if (TrueWhenTrue)
2057 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2058 // Invert the condition.
2059 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2060 CC = ISD::getSetCCInverse(CC,
2061 N0.getOperand(0).getValueType().isInteger());
2062 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2065 if ((N0.getOpcode() == ISD::XOR ||
2066 (N0.getOpcode() == ISD::AND &&
2067 N0.getOperand(0).getOpcode() == ISD::XOR &&
2068 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2069 isa<ConstantSDNode>(N0.getOperand(1)) &&
2070 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2071 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2072 // can only do this if the top bits are known zero.
2073 unsigned BitWidth = N0.getValueSizeInBits();
2074 if (DAG.MaskedValueIsZero(N0,
2075 APInt::getHighBitsSet(BitWidth,
2076 BitWidth-1))) {
2077 // Okay, get the un-inverted input value.
2078 SDValue Val;
2079 if (N0.getOpcode() == ISD::XOR)
2080 Val = N0.getOperand(0);
2081 else {
2082 assert(N0.getOpcode() == ISD::AND &&
2083 N0.getOperand(0).getOpcode() == ISD::XOR);
2084 // ((X^1)&1)^1 -> X & 1
2085 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2086 N0.getOperand(0).getOperand(0),
2087 N0.getOperand(1));
2090 return DAG.getSetCC(dl, VT, Val, N1,
2091 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2093 } else if (N1C->getAPIntValue() == 1 &&
2094 (VT == MVT::i1 ||
2095 getBooleanContents() == ZeroOrOneBooleanContent)) {
2096 SDValue Op0 = N0;
2097 if (Op0.getOpcode() == ISD::TRUNCATE)
2098 Op0 = Op0.getOperand(0);
2100 if ((Op0.getOpcode() == ISD::XOR) &&
2101 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2102 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2103 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2104 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2105 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2106 Cond);
2107 } else if (Op0.getOpcode() == ISD::AND &&
2108 isa<ConstantSDNode>(Op0.getOperand(1)) &&
2109 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2110 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2111 if (Op0.getValueType().bitsGT(VT))
2112 Op0 = DAG.getNode(ISD::AND, dl, VT,
2113 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2114 DAG.getConstant(1, VT));
2115 else if (Op0.getValueType().bitsLT(VT))
2116 Op0 = DAG.getNode(ISD::AND, dl, VT,
2117 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2118 DAG.getConstant(1, VT));
2120 return DAG.getSetCC(dl, VT, Op0,
2121 DAG.getConstant(0, Op0.getValueType()),
2122 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2127 APInt MinVal, MaxVal;
2128 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2129 if (ISD::isSignedIntSetCC(Cond)) {
2130 MinVal = APInt::getSignedMinValue(OperandBitSize);
2131 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2132 } else {
2133 MinVal = APInt::getMinValue(OperandBitSize);
2134 MaxVal = APInt::getMaxValue(OperandBitSize);
2137 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2138 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2139 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
2140 // X >= C0 --> X > (C0-1)
2141 return DAG.getSetCC(dl, VT, N0,
2142 DAG.getConstant(C1-1, N1.getValueType()),
2143 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2146 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2147 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
2148 // X <= C0 --> X < (C0+1)
2149 return DAG.getSetCC(dl, VT, N0,
2150 DAG.getConstant(C1+1, N1.getValueType()),
2151 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2154 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2155 return DAG.getConstant(0, VT); // X < MIN --> false
2156 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2157 return DAG.getConstant(1, VT); // X >= MIN --> true
2158 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2159 return DAG.getConstant(0, VT); // X > MAX --> false
2160 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2161 return DAG.getConstant(1, VT); // X <= MAX --> true
2163 // Canonicalize setgt X, Min --> setne X, Min
2164 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2165 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2166 // Canonicalize setlt X, Max --> setne X, Max
2167 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2168 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2170 // If we have setult X, 1, turn it into seteq X, 0
2171 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2172 return DAG.getSetCC(dl, VT, N0,
2173 DAG.getConstant(MinVal, N0.getValueType()),
2174 ISD::SETEQ);
2175 // If we have setugt X, Max-1, turn it into seteq X, Max
2176 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2177 return DAG.getSetCC(dl, VT, N0,
2178 DAG.getConstant(MaxVal, N0.getValueType()),
2179 ISD::SETEQ);
2181 // If we have "setcc X, C0", check to see if we can shrink the immediate
2182 // by changing cc.
2184 // SETUGT X, SINTMAX -> SETLT X, 0
2185 if (Cond == ISD::SETUGT &&
2186 C1 == APInt::getSignedMaxValue(OperandBitSize))
2187 return DAG.getSetCC(dl, VT, N0,
2188 DAG.getConstant(0, N1.getValueType()),
2189 ISD::SETLT);
2191 // SETULT X, SINTMIN -> SETGT X, -1
2192 if (Cond == ISD::SETULT &&
2193 C1 == APInt::getSignedMinValue(OperandBitSize)) {
2194 SDValue ConstMinusOne =
2195 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2196 N1.getValueType());
2197 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2200 // Fold bit comparisons when we can.
2201 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2202 (VT == N0.getValueType() ||
2203 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2204 N0.getOpcode() == ISD::AND)
2205 if (ConstantSDNode *AndRHS =
2206 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2207 EVT ShiftTy = DCI.isBeforeLegalize() ?
2208 getPointerTy() : getShiftAmountTy(N0.getValueType());
2209 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
2210 // Perform the xform if the AND RHS is a single bit.
2211 if (AndRHS->getAPIntValue().isPowerOf2()) {
2212 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2213 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2214 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2216 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2217 // (X & 8) == 8 --> (X & 8) >> 3
2218 // Perform the xform if C1 is a single bit.
2219 if (C1.isPowerOf2()) {
2220 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2221 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2222 DAG.getConstant(C1.logBase2(), ShiftTy)));
2228 if (isa<ConstantFPSDNode>(N0.getNode())) {
2229 // Constant fold or commute setcc.
2230 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2231 if (O.getNode()) return O;
2232 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2233 // If the RHS of an FP comparison is a constant, simplify it away in
2234 // some cases.
2235 if (CFP->getValueAPF().isNaN()) {
2236 // If an operand is known to be a nan, we can fold it.
2237 switch (ISD::getUnorderedFlavor(Cond)) {
2238 default: llvm_unreachable("Unknown flavor!");
2239 case 0: // Known false.
2240 return DAG.getConstant(0, VT);
2241 case 1: // Known true.
2242 return DAG.getConstant(1, VT);
2243 case 2: // Undefined.
2244 return DAG.getUNDEF(VT);
2248 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2249 // constant if knowing that the operand is non-nan is enough. We prefer to
2250 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2251 // materialize 0.0.
2252 if (Cond == ISD::SETO || Cond == ISD::SETUO)
2253 return DAG.getSetCC(dl, VT, N0, N0, Cond);
2255 // If the condition is not legal, see if we can find an equivalent one
2256 // which is legal.
2257 if (!isCondCodeLegal(Cond, N0.getValueType())) {
2258 // If the comparison was an awkward floating-point == or != and one of
2259 // the comparison operands is infinity or negative infinity, convert the
2260 // condition to a less-awkward <= or >=.
2261 if (CFP->getValueAPF().isInfinity()) {
2262 if (CFP->getValueAPF().isNegative()) {
2263 if (Cond == ISD::SETOEQ &&
2264 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2265 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2266 if (Cond == ISD::SETUEQ &&
2267 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2268 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2269 if (Cond == ISD::SETUNE &&
2270 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2271 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2272 if (Cond == ISD::SETONE &&
2273 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2274 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2275 } else {
2276 if (Cond == ISD::SETOEQ &&
2277 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2278 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2279 if (Cond == ISD::SETUEQ &&
2280 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2281 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2282 if (Cond == ISD::SETUNE &&
2283 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2284 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2285 if (Cond == ISD::SETONE &&
2286 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2287 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2293 if (N0 == N1) {
2294 // We can always fold X == X for integer setcc's.
2295 if (N0.getValueType().isInteger())
2296 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2297 unsigned UOF = ISD::getUnorderedFlavor(Cond);
2298 if (UOF == 2) // FP operators that are undefined on NaNs.
2299 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2300 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2301 return DAG.getConstant(UOF, VT);
2302 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2303 // if it is not already.
2304 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2305 if (NewCond != Cond)
2306 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2309 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2310 N0.getValueType().isInteger()) {
2311 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2312 N0.getOpcode() == ISD::XOR) {
2313 // Simplify (X+Y) == (X+Z) --> Y == Z
2314 if (N0.getOpcode() == N1.getOpcode()) {
2315 if (N0.getOperand(0) == N1.getOperand(0))
2316 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2317 if (N0.getOperand(1) == N1.getOperand(1))
2318 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2319 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2320 // If X op Y == Y op X, try other combinations.
2321 if (N0.getOperand(0) == N1.getOperand(1))
2322 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2323 Cond);
2324 if (N0.getOperand(1) == N1.getOperand(0))
2325 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2326 Cond);
2330 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2331 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2332 // Turn (X+C1) == C2 --> X == C2-C1
2333 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2334 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2335 DAG.getConstant(RHSC->getAPIntValue()-
2336 LHSR->getAPIntValue(),
2337 N0.getValueType()), Cond);
2340 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2341 if (N0.getOpcode() == ISD::XOR)
2342 // If we know that all of the inverted bits are zero, don't bother
2343 // performing the inversion.
2344 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2345 return
2346 DAG.getSetCC(dl, VT, N0.getOperand(0),
2347 DAG.getConstant(LHSR->getAPIntValue() ^
2348 RHSC->getAPIntValue(),
2349 N0.getValueType()),
2350 Cond);
2353 // Turn (C1-X) == C2 --> X == C1-C2
2354 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2355 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2356 return
2357 DAG.getSetCC(dl, VT, N0.getOperand(1),
2358 DAG.getConstant(SUBC->getAPIntValue() -
2359 RHSC->getAPIntValue(),
2360 N0.getValueType()),
2361 Cond);
2366 // Simplify (X+Z) == X --> Z == 0
2367 if (N0.getOperand(0) == N1)
2368 return DAG.getSetCC(dl, VT, N0.getOperand(1),
2369 DAG.getConstant(0, N0.getValueType()), Cond);
2370 if (N0.getOperand(1) == N1) {
2371 if (DAG.isCommutativeBinOp(N0.getOpcode()))
2372 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2373 DAG.getConstant(0, N0.getValueType()), Cond);
2374 else if (N0.getNode()->hasOneUse()) {
2375 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2376 // (Z-X) == X --> Z == X<<1
2377 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2379 DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2380 if (!DCI.isCalledByLegalizer())
2381 DCI.AddToWorklist(SH.getNode());
2382 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2387 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2388 N1.getOpcode() == ISD::XOR) {
2389 // Simplify X == (X+Z) --> Z == 0
2390 if (N1.getOperand(0) == N0) {
2391 return DAG.getSetCC(dl, VT, N1.getOperand(1),
2392 DAG.getConstant(0, N1.getValueType()), Cond);
2393 } else if (N1.getOperand(1) == N0) {
2394 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2395 return DAG.getSetCC(dl, VT, N1.getOperand(0),
2396 DAG.getConstant(0, N1.getValueType()), Cond);
2397 } else if (N1.getNode()->hasOneUse()) {
2398 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2399 // X == (Z-X) --> X<<1 == Z
2400 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2401 DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2402 if (!DCI.isCalledByLegalizer())
2403 DCI.AddToWorklist(SH.getNode());
2404 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2409 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2410 // Note that where y is variable and is known to have at most
2411 // one bit set (for example, if it is z&1) we cannot do this;
2412 // the expressions are not equivalent when y==0.
2413 if (N0.getOpcode() == ISD::AND)
2414 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2415 if (ValueHasExactlyOneBitSet(N1, DAG)) {
2416 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2417 SDValue Zero = DAG.getConstant(0, N1.getValueType());
2418 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2421 if (N1.getOpcode() == ISD::AND)
2422 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2423 if (ValueHasExactlyOneBitSet(N0, DAG)) {
2424 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2425 SDValue Zero = DAG.getConstant(0, N0.getValueType());
2426 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2431 // Fold away ALL boolean setcc's.
2432 SDValue Temp;
2433 if (N0.getValueType() == MVT::i1 && foldBooleans) {
2434 switch (Cond) {
2435 default: llvm_unreachable("Unknown integer setcc!");
2436 case ISD::SETEQ: // X == Y -> ~(X^Y)
2437 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2438 N0 = DAG.getNOT(dl, Temp, MVT::i1);
2439 if (!DCI.isCalledByLegalizer())
2440 DCI.AddToWorklist(Temp.getNode());
2441 break;
2442 case ISD::SETNE: // X != Y --> (X^Y)
2443 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2444 break;
2445 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2446 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2447 Temp = DAG.getNOT(dl, N0, MVT::i1);
2448 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2449 if (!DCI.isCalledByLegalizer())
2450 DCI.AddToWorklist(Temp.getNode());
2451 break;
2452 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2453 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2454 Temp = DAG.getNOT(dl, N1, MVT::i1);
2455 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2456 if (!DCI.isCalledByLegalizer())
2457 DCI.AddToWorklist(Temp.getNode());
2458 break;
2459 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2460 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2461 Temp = DAG.getNOT(dl, N0, MVT::i1);
2462 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2463 if (!DCI.isCalledByLegalizer())
2464 DCI.AddToWorklist(Temp.getNode());
2465 break;
2466 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2467 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2468 Temp = DAG.getNOT(dl, N1, MVT::i1);
2469 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2470 break;
2472 if (VT != MVT::i1) {
2473 if (!DCI.isCalledByLegalizer())
2474 DCI.AddToWorklist(N0.getNode());
2475 // FIXME: If running after legalize, we probably can't do this.
2476 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2478 return N0;
2481 // Could not fold it.
2482 return SDValue();
2485 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2486 /// node is a GlobalAddress + offset.
2487 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2488 int64_t &Offset) const {
2489 if (isa<GlobalAddressSDNode>(N)) {
2490 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2491 GA = GASD->getGlobal();
2492 Offset += GASD->getOffset();
2493 return true;
2496 if (N->getOpcode() == ISD::ADD) {
2497 SDValue N1 = N->getOperand(0);
2498 SDValue N2 = N->getOperand(1);
2499 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2500 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2501 if (V) {
2502 Offset += V->getSExtValue();
2503 return true;
2505 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2506 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2507 if (V) {
2508 Offset += V->getSExtValue();
2509 return true;
2514 return false;
2518 SDValue TargetLowering::
2519 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2520 // Default implementation: no optimization.
2521 return SDValue();
2524 //===----------------------------------------------------------------------===//
2525 // Inline Assembler Implementation Methods
2526 //===----------------------------------------------------------------------===//
2529 TargetLowering::ConstraintType
2530 TargetLowering::getConstraintType(const std::string &Constraint) const {
2531 // FIXME: lots more standard ones to handle.
2532 if (Constraint.size() == 1) {
2533 switch (Constraint[0]) {
2534 default: break;
2535 case 'r': return C_RegisterClass;
2536 case 'm': // memory
2537 case 'o': // offsetable
2538 case 'V': // not offsetable
2539 return C_Memory;
2540 case 'i': // Simple Integer or Relocatable Constant
2541 case 'n': // Simple Integer
2542 case 'E': // Floating Point Constant
2543 case 'F': // Floating Point Constant
2544 case 's': // Relocatable Constant
2545 case 'p': // Address.
2546 case 'X': // Allow ANY value.
2547 case 'I': // Target registers.
2548 case 'J':
2549 case 'K':
2550 case 'L':
2551 case 'M':
2552 case 'N':
2553 case 'O':
2554 case 'P':
2555 case '<':
2556 case '>':
2557 return C_Other;
2561 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2562 Constraint[Constraint.size()-1] == '}')
2563 return C_Register;
2564 return C_Unknown;
2567 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2568 /// with another that has more specific requirements based on the type of the
2569 /// corresponding operand.
2570 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2571 if (ConstraintVT.isInteger())
2572 return "r";
2573 if (ConstraintVT.isFloatingPoint())
2574 return "f"; // works for many targets
2575 return 0;
2578 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2579 /// vector. If it is invalid, don't add anything to Ops.
2580 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2581 char ConstraintLetter,
2582 std::vector<SDValue> &Ops,
2583 SelectionDAG &DAG) const {
2584 switch (ConstraintLetter) {
2585 default: break;
2586 case 'X': // Allows any operand; labels (basic block) use this.
2587 if (Op.getOpcode() == ISD::BasicBlock) {
2588 Ops.push_back(Op);
2589 return;
2591 // fall through
2592 case 'i': // Simple Integer or Relocatable Constant
2593 case 'n': // Simple Integer
2594 case 's': { // Relocatable Constant
2595 // These operands are interested in values of the form (GV+C), where C may
2596 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2597 // is possible and fine if either GV or C are missing.
2598 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2599 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2601 // If we have "(add GV, C)", pull out GV/C
2602 if (Op.getOpcode() == ISD::ADD) {
2603 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2604 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2605 if (C == 0 || GA == 0) {
2606 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2607 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2609 if (C == 0 || GA == 0)
2610 C = 0, GA = 0;
2613 // If we find a valid operand, map to the TargetXXX version so that the
2614 // value itself doesn't get selected.
2615 if (GA) { // Either &GV or &GV+C
2616 if (ConstraintLetter != 'n') {
2617 int64_t Offs = GA->getOffset();
2618 if (C) Offs += C->getZExtValue();
2619 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2620 C ? C->getDebugLoc() : DebugLoc(),
2621 Op.getValueType(), Offs));
2622 return;
2625 if (C) { // just C, no GV.
2626 // Simple constants are not allowed for 's'.
2627 if (ConstraintLetter != 's') {
2628 // gcc prints these as sign extended. Sign extend value to 64 bits
2629 // now; without this it would get ZExt'd later in
2630 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2631 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2632 MVT::i64));
2633 return;
2636 break;
2641 std::vector<unsigned> TargetLowering::
2642 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2643 EVT VT) const {
2644 return std::vector<unsigned>();
2648 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2649 getRegForInlineAsmConstraint(const std::string &Constraint,
2650 EVT VT) const {
2651 if (Constraint[0] != '{')
2652 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2653 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2655 // Remove the braces from around the name.
2656 StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2658 // Figure out which register class contains this reg.
2659 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2660 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2661 E = RI->regclass_end(); RCI != E; ++RCI) {
2662 const TargetRegisterClass *RC = *RCI;
2664 // If none of the value types for this register class are valid, we
2665 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2666 bool isLegal = false;
2667 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2668 I != E; ++I) {
2669 if (isTypeLegal(*I)) {
2670 isLegal = true;
2671 break;
2675 if (!isLegal) continue;
2677 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2678 I != E; ++I) {
2679 if (RegName.equals_lower(RI->getName(*I)))
2680 return std::make_pair(*I, RC);
2684 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2687 //===----------------------------------------------------------------------===//
2688 // Constraint Selection.
2690 /// isMatchingInputConstraint - Return true of this is an input operand that is
2691 /// a matching constraint like "4".
2692 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2693 assert(!ConstraintCode.empty() && "No known constraint!");
2694 return isdigit(ConstraintCode[0]);
2697 /// getMatchedOperand - If this is an input matching constraint, this method
2698 /// returns the output operand it matches.
2699 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2700 assert(!ConstraintCode.empty() && "No known constraint!");
2701 return atoi(ConstraintCode.c_str());
2705 /// ParseConstraints - Split up the constraint string from the inline
2706 /// assembly value into the specific constraints and their prefixes,
2707 /// and also tie in the associated operand values.
2708 /// If this returns an empty vector, and if the constraint string itself
2709 /// isn't empty, there was an error parsing.
2710 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2711 ImmutableCallSite CS) const {
2712 /// ConstraintOperands - Information about all of the constraints.
2713 AsmOperandInfoVector ConstraintOperands;
2714 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2715 unsigned maCount = 0; // Largest number of multiple alternative constraints.
2717 // Do a prepass over the constraints, canonicalizing them, and building up the
2718 // ConstraintOperands list.
2719 InlineAsm::ConstraintInfoVector
2720 ConstraintInfos = IA->ParseConstraints();
2722 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2723 unsigned ResNo = 0; // ResNo - The result number of the next output.
2725 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2726 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2727 AsmOperandInfo &OpInfo = ConstraintOperands.back();
2729 // Update multiple alternative constraint count.
2730 if (OpInfo.multipleAlternatives.size() > maCount)
2731 maCount = OpInfo.multipleAlternatives.size();
2733 OpInfo.ConstraintVT = MVT::Other;
2735 // Compute the value type for each operand.
2736 switch (OpInfo.Type) {
2737 case InlineAsm::isOutput:
2738 // Indirect outputs just consume an argument.
2739 if (OpInfo.isIndirect) {
2740 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2741 break;
2744 // The return value of the call is this value. As such, there is no
2745 // corresponding argument.
2746 assert(!CS.getType()->isVoidTy() &&
2747 "Bad inline asm!");
2748 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2749 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2750 } else {
2751 assert(ResNo == 0 && "Asm only has one result!");
2752 OpInfo.ConstraintVT = getValueType(CS.getType());
2754 ++ResNo;
2755 break;
2756 case InlineAsm::isInput:
2757 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2758 break;
2759 case InlineAsm::isClobber:
2760 // Nothing to do.
2761 break;
2764 if (OpInfo.CallOperandVal) {
2765 const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2766 if (OpInfo.isIndirect) {
2767 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2768 if (!PtrTy)
2769 report_fatal_error("Indirect operand for inline asm not a pointer!");
2770 OpTy = PtrTy->getElementType();
2772 // If OpTy is not a single value, it may be a struct/union that we
2773 // can tile with integers.
2774 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2775 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2776 switch (BitSize) {
2777 default: break;
2778 case 1:
2779 case 8:
2780 case 16:
2781 case 32:
2782 case 64:
2783 case 128:
2784 OpInfo.ConstraintVT =
2785 EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2786 break;
2788 } else if (dyn_cast<PointerType>(OpTy)) {
2789 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2790 } else {
2791 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2796 // If we have multiple alternative constraints, select the best alternative.
2797 if (ConstraintInfos.size()) {
2798 if (maCount) {
2799 unsigned bestMAIndex = 0;
2800 int bestWeight = -1;
2801 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2802 int weight = -1;
2803 unsigned maIndex;
2804 // Compute the sums of the weights for each alternative, keeping track
2805 // of the best (highest weight) one so far.
2806 for (maIndex = 0; maIndex < maCount; ++maIndex) {
2807 int weightSum = 0;
2808 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2809 cIndex != eIndex; ++cIndex) {
2810 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2811 if (OpInfo.Type == InlineAsm::isClobber)
2812 continue;
2814 // If this is an output operand with a matching input operand,
2815 // look up the matching input. If their types mismatch, e.g. one
2816 // is an integer, the other is floating point, or their sizes are
2817 // different, flag it as an maCantMatch.
2818 if (OpInfo.hasMatchingInput()) {
2819 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2820 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2821 if ((OpInfo.ConstraintVT.isInteger() !=
2822 Input.ConstraintVT.isInteger()) ||
2823 (OpInfo.ConstraintVT.getSizeInBits() !=
2824 Input.ConstraintVT.getSizeInBits())) {
2825 weightSum = -1; // Can't match.
2826 break;
2830 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2831 if (weight == -1) {
2832 weightSum = -1;
2833 break;
2835 weightSum += weight;
2837 // Update best.
2838 if (weightSum > bestWeight) {
2839 bestWeight = weightSum;
2840 bestMAIndex = maIndex;
2844 // Now select chosen alternative in each constraint.
2845 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2846 cIndex != eIndex; ++cIndex) {
2847 AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2848 if (cInfo.Type == InlineAsm::isClobber)
2849 continue;
2850 cInfo.selectAlternative(bestMAIndex);
2855 // Check and hook up tied operands, choose constraint code to use.
2856 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2857 cIndex != eIndex; ++cIndex) {
2858 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2860 // If this is an output operand with a matching input operand, look up the
2861 // matching input. If their types mismatch, e.g. one is an integer, the
2862 // other is floating point, or their sizes are different, flag it as an
2863 // error.
2864 if (OpInfo.hasMatchingInput()) {
2865 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2867 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2868 if ((OpInfo.ConstraintVT.isInteger() !=
2869 Input.ConstraintVT.isInteger()) ||
2870 (OpInfo.ConstraintVT.getSizeInBits() !=
2871 Input.ConstraintVT.getSizeInBits())) {
2872 report_fatal_error("Unsupported asm: input constraint"
2873 " with a matching output constraint of"
2874 " incompatible type!");
2881 return ConstraintOperands;
2885 /// getConstraintGenerality - Return an integer indicating how general CT
2886 /// is.
2887 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2888 switch (CT) {
2889 default: llvm_unreachable("Unknown constraint type!");
2890 case TargetLowering::C_Other:
2891 case TargetLowering::C_Unknown:
2892 return 0;
2893 case TargetLowering::C_Register:
2894 return 1;
2895 case TargetLowering::C_RegisterClass:
2896 return 2;
2897 case TargetLowering::C_Memory:
2898 return 3;
2902 /// Examine constraint type and operand type and determine a weight value.
2903 /// This object must already have been set up with the operand type
2904 /// and the current alternative constraint selected.
2905 TargetLowering::ConstraintWeight
2906 TargetLowering::getMultipleConstraintMatchWeight(
2907 AsmOperandInfo &info, int maIndex) const {
2908 InlineAsm::ConstraintCodeVector *rCodes;
2909 if (maIndex >= (int)info.multipleAlternatives.size())
2910 rCodes = &info.Codes;
2911 else
2912 rCodes = &info.multipleAlternatives[maIndex].Codes;
2913 ConstraintWeight BestWeight = CW_Invalid;
2915 // Loop over the options, keeping track of the most general one.
2916 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2917 ConstraintWeight weight =
2918 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2919 if (weight > BestWeight)
2920 BestWeight = weight;
2923 return BestWeight;
2926 /// Examine constraint type and operand type and determine a weight value.
2927 /// This object must already have been set up with the operand type
2928 /// and the current alternative constraint selected.
2929 TargetLowering::ConstraintWeight
2930 TargetLowering::getSingleConstraintMatchWeight(
2931 AsmOperandInfo &info, const char *constraint) const {
2932 ConstraintWeight weight = CW_Invalid;
2933 Value *CallOperandVal = info.CallOperandVal;
2934 // If we don't have a value, we can't do a match,
2935 // but allow it at the lowest weight.
2936 if (CallOperandVal == NULL)
2937 return CW_Default;
2938 // Look at the constraint type.
2939 switch (*constraint) {
2940 case 'i': // immediate integer.
2941 case 'n': // immediate integer with a known value.
2942 if (isa<ConstantInt>(CallOperandVal))
2943 weight = CW_Constant;
2944 break;
2945 case 's': // non-explicit intregal immediate.
2946 if (isa<GlobalValue>(CallOperandVal))
2947 weight = CW_Constant;
2948 break;
2949 case 'E': // immediate float if host format.
2950 case 'F': // immediate float.
2951 if (isa<ConstantFP>(CallOperandVal))
2952 weight = CW_Constant;
2953 break;
2954 case '<': // memory operand with autodecrement.
2955 case '>': // memory operand with autoincrement.
2956 case 'm': // memory operand.
2957 case 'o': // offsettable memory operand
2958 case 'V': // non-offsettable memory operand
2959 weight = CW_Memory;
2960 break;
2961 case 'r': // general register.
2962 case 'g': // general register, memory operand or immediate integer.
2963 // note: Clang converts "g" to "imr".
2964 if (CallOperandVal->getType()->isIntegerTy())
2965 weight = CW_Register;
2966 break;
2967 case 'X': // any operand.
2968 default:
2969 weight = CW_Default;
2970 break;
2972 return weight;
2975 /// ChooseConstraint - If there are multiple different constraints that we
2976 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2977 /// This is somewhat tricky: constraints fall into four classes:
2978 /// Other -> immediates and magic values
2979 /// Register -> one specific register
2980 /// RegisterClass -> a group of regs
2981 /// Memory -> memory
2982 /// Ideally, we would pick the most specific constraint possible: if we have
2983 /// something that fits into a register, we would pick it. The problem here
2984 /// is that if we have something that could either be in a register or in
2985 /// memory that use of the register could cause selection of *other*
2986 /// operands to fail: they might only succeed if we pick memory. Because of
2987 /// this the heuristic we use is:
2989 /// 1) If there is an 'other' constraint, and if the operand is valid for
2990 /// that constraint, use it. This makes us take advantage of 'i'
2991 /// constraints when available.
2992 /// 2) Otherwise, pick the most general constraint present. This prefers
2993 /// 'm' over 'r', for example.
2995 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2996 const TargetLowering &TLI,
2997 SDValue Op, SelectionDAG *DAG) {
2998 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2999 unsigned BestIdx = 0;
3000 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3001 int BestGenerality = -1;
3003 // Loop over the options, keeping track of the most general one.
3004 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3005 TargetLowering::ConstraintType CType =
3006 TLI.getConstraintType(OpInfo.Codes[i]);
3008 // If this is an 'other' constraint, see if the operand is valid for it.
3009 // For example, on X86 we might have an 'rI' constraint. If the operand
3010 // is an integer in the range [0..31] we want to use I (saving a load
3011 // of a register), otherwise we must use 'r'.
3012 if (CType == TargetLowering::C_Other && Op.getNode()) {
3013 assert(OpInfo.Codes[i].size() == 1 &&
3014 "Unhandled multi-letter 'other' constraint");
3015 std::vector<SDValue> ResultOps;
3016 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
3017 ResultOps, *DAG);
3018 if (!ResultOps.empty()) {
3019 BestType = CType;
3020 BestIdx = i;
3021 break;
3025 // Things with matching constraints can only be registers, per gcc
3026 // documentation. This mainly affects "g" constraints.
3027 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3028 continue;
3030 // This constraint letter is more general than the previous one, use it.
3031 int Generality = getConstraintGenerality(CType);
3032 if (Generality > BestGenerality) {
3033 BestType = CType;
3034 BestIdx = i;
3035 BestGenerality = Generality;
3039 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3040 OpInfo.ConstraintType = BestType;
3043 /// ComputeConstraintToUse - Determines the constraint code and constraint
3044 /// type to use for the specific AsmOperandInfo, setting
3045 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3046 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3047 SDValue Op,
3048 SelectionDAG *DAG) const {
3049 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3051 // Single-letter constraints ('r') are very common.
3052 if (OpInfo.Codes.size() == 1) {
3053 OpInfo.ConstraintCode = OpInfo.Codes[0];
3054 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3055 } else {
3056 ChooseConstraint(OpInfo, *this, Op, DAG);
3059 // 'X' matches anything.
3060 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3061 // Labels and constants are handled elsewhere ('X' is the only thing
3062 // that matches labels). For Functions, the type here is the type of
3063 // the result, which is not what we want to look at; leave them alone.
3064 Value *v = OpInfo.CallOperandVal;
3065 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3066 OpInfo.CallOperandVal = v;
3067 return;
3070 // Otherwise, try to resolve it to something we know about by looking at
3071 // the actual operand type.
3072 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3073 OpInfo.ConstraintCode = Repl;
3074 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3079 //===----------------------------------------------------------------------===//
3080 // Loop Strength Reduction hooks
3081 //===----------------------------------------------------------------------===//
3083 /// isLegalAddressingMode - Return true if the addressing mode represented
3084 /// by AM is legal for this target, for a load/store of the specified type.
3085 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3086 const Type *Ty) const {
3087 // The default implementation of this implements a conservative RISCy, r+r and
3088 // r+i addr mode.
3090 // Allows a sign-extended 16-bit immediate field.
3091 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3092 return false;
3094 // No global is ever allowed as a base.
3095 if (AM.BaseGV)
3096 return false;
3098 // Only support r+r,
3099 switch (AM.Scale) {
3100 case 0: // "r+i" or just "i", depending on HasBaseReg.
3101 break;
3102 case 1:
3103 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3104 return false;
3105 // Otherwise we have r+r or r+i.
3106 break;
3107 case 2:
3108 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3109 return false;
3110 // Allow 2*r as r+r.
3111 break;
3114 return true;
3117 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3118 /// return a DAG expression to select that will generate the same value by
3119 /// multiplying by a magic number. See:
3120 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3121 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3122 std::vector<SDNode*>* Created) const {
3123 EVT VT = N->getValueType(0);
3124 DebugLoc dl= N->getDebugLoc();
3126 // Check to see if we can do this.
3127 // FIXME: We should be more aggressive here.
3128 if (!isTypeLegal(VT))
3129 return SDValue();
3131 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3132 APInt::ms magics = d.magic();
3134 // Multiply the numerator (operand 0) by the magic value
3135 // FIXME: We should support doing a MUL in a wider type
3136 SDValue Q;
3137 if (isOperationLegalOrCustom(ISD::MULHS, VT))
3138 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3139 DAG.getConstant(magics.m, VT));
3140 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3141 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3142 N->getOperand(0),
3143 DAG.getConstant(magics.m, VT)).getNode(), 1);
3144 else
3145 return SDValue(); // No mulhs or equvialent
3146 // If d > 0 and m < 0, add the numerator
3147 if (d.isStrictlyPositive() && magics.m.isNegative()) {
3148 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3149 if (Created)
3150 Created->push_back(Q.getNode());
3152 // If d < 0 and m > 0, subtract the numerator.
3153 if (d.isNegative() && magics.m.isStrictlyPositive()) {
3154 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3155 if (Created)
3156 Created->push_back(Q.getNode());
3158 // Shift right algebraic if shift value is nonzero
3159 if (magics.s > 0) {
3160 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3161 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3162 if (Created)
3163 Created->push_back(Q.getNode());
3165 // Extract the sign bit and add it to the quotient
3166 SDValue T =
3167 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3168 getShiftAmountTy(Q.getValueType())));
3169 if (Created)
3170 Created->push_back(T.getNode());
3171 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3174 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3175 /// return a DAG expression to select that will generate the same value by
3176 /// multiplying by a magic number. See:
3177 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3178 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3179 std::vector<SDNode*>* Created) const {
3180 EVT VT = N->getValueType(0);
3181 DebugLoc dl = N->getDebugLoc();
3183 // Check to see if we can do this.
3184 // FIXME: We should be more aggressive here.
3185 if (!isTypeLegal(VT))
3186 return SDValue();
3188 // FIXME: We should use a narrower constant when the upper
3189 // bits are known to be zero.
3190 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3191 APInt::mu magics = N1C.magicu();
3193 SDValue Q = N->getOperand(0);
3195 // If the divisor is even, we can avoid using the expensive fixup by shifting
3196 // the divided value upfront.
3197 if (magics.a != 0 && !N1C[0]) {
3198 unsigned Shift = N1C.countTrailingZeros();
3199 Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3200 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3201 if (Created)
3202 Created->push_back(Q.getNode());
3204 // Get magic number for the shifted divisor.
3205 magics = N1C.lshr(Shift).magicu(Shift);
3206 assert(magics.a == 0 && "Should use cheap fixup now");
3209 // Multiply the numerator (operand 0) by the magic value
3210 // FIXME: We should support doing a MUL in a wider type
3211 if (isOperationLegalOrCustom(ISD::MULHU, VT))
3212 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3213 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3214 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3215 DAG.getConstant(magics.m, VT)).getNode(), 1);
3216 else
3217 return SDValue(); // No mulhu or equvialent
3218 if (Created)
3219 Created->push_back(Q.getNode());
3221 if (magics.a == 0) {
3222 assert(magics.s < N1C.getBitWidth() &&
3223 "We shouldn't generate an undefined shift!");
3224 return DAG.getNode(ISD::SRL, dl, VT, Q,
3225 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3226 } else {
3227 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3228 if (Created)
3229 Created->push_back(NPQ.getNode());
3230 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3231 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3232 if (Created)
3233 Created->push_back(NPQ.getNode());
3234 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3235 if (Created)
3236 Created->push_back(NPQ.getNode());
3237 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3238 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));