Support using DebugLoc's in a DenseMap.
[llvm/stm8.git] / utils / TableGen / FixedLenDecoderEmitter.cpp
blobbbcecabf761e133e20119ba90eb5ef8a5f65e27b
1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // It contains the tablegen backend that emits the decoder functions for
11 // targets with fixed length instruction set.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "decoder-emitter"
17 #include "FixedLenDecoderEmitter.h"
18 #include "CodeGenTarget.h"
19 #include "Record.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
24 #include <vector>
25 #include <map>
26 #include <string>
28 using namespace llvm;
30 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
31 // for a bit value.
33 // BIT_UNFILTERED is used as the init value for a filter position. It is used
34 // only for filter processings.
35 typedef enum {
36 BIT_TRUE, // '1'
37 BIT_FALSE, // '0'
38 BIT_UNSET, // '?'
39 BIT_UNFILTERED // unfiltered
40 } bit_value_t;
42 static bool ValueSet(bit_value_t V) {
43 return (V == BIT_TRUE || V == BIT_FALSE);
45 static bool ValueNotSet(bit_value_t V) {
46 return (V == BIT_UNSET);
48 static int Value(bit_value_t V) {
49 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
51 static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
52 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
53 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
55 // The bit is uninitialized.
56 return BIT_UNSET;
58 // Prints the bit value for each position.
59 static void dumpBits(raw_ostream &o, BitsInit &bits) {
60 unsigned index;
62 for (index = bits.getNumBits(); index > 0; index--) {
63 switch (bitFromBits(bits, index - 1)) {
64 case BIT_TRUE:
65 o << "1";
66 break;
67 case BIT_FALSE:
68 o << "0";
69 break;
70 case BIT_UNSET:
71 o << "_";
72 break;
73 default:
74 assert(0 && "unexpected return value from bitFromBits");
79 static BitsInit &getBitsField(const Record &def, const char *str) {
80 BitsInit *bits = def.getValueAsBitsInit(str);
81 return *bits;
84 // Forward declaration.
85 class FilterChooser;
87 // FIXME: Possibly auto-detected?
88 #define BIT_WIDTH 32
90 // Representation of the instruction to work on.
91 typedef bit_value_t insn_t[BIT_WIDTH];
93 /// Filter - Filter works with FilterChooser to produce the decoding tree for
94 /// the ISA.
95 ///
96 /// It is useful to think of a Filter as governing the switch stmts of the
97 /// decoding tree in a certain level. Each case stmt delegates to an inferior
98 /// FilterChooser to decide what further decoding logic to employ, or in another
99 /// words, what other remaining bits to look at. The FilterChooser eventually
100 /// chooses a best Filter to do its job.
102 /// This recursive scheme ends when the number of Opcodes assigned to the
103 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
104 /// the Filter/FilterChooser combo does not know how to distinguish among the
105 /// Opcodes assigned.
107 /// An example of a conflict is
109 /// Conflict:
110 /// 111101000.00........00010000....
111 /// 111101000.00........0001........
112 /// 1111010...00........0001........
113 /// 1111010...00....................
114 /// 1111010.........................
115 /// 1111............................
116 /// ................................
117 /// VST4q8a 111101000_00________00010000____
118 /// VST4q8b 111101000_00________00010000____
120 /// The Debug output shows the path that the decoding tree follows to reach the
121 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
122 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
124 /// The encoding info in the .td files does not specify this meta information,
125 /// which could have been used by the decoder to resolve the conflict. The
126 /// decoder could try to decode the even/odd register numbering and assign to
127 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
128 /// version and return the Opcode since the two have the same Asm format string.
129 class Filter {
130 protected:
131 FilterChooser *Owner; // points to the FilterChooser who owns this filter
132 unsigned StartBit; // the starting bit position
133 unsigned NumBits; // number of bits to filter
134 bool Mixed; // a mixed region contains both set and unset bits
136 // Map of well-known segment value to the set of uid's with that value.
137 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
139 // Set of uid's with non-constant segment values.
140 std::vector<unsigned> VariableInstructions;
142 // Map of well-known segment value to its delegate.
143 std::map<unsigned, FilterChooser*> FilterChooserMap;
145 // Number of instructions which fall under FilteredInstructions category.
146 unsigned NumFiltered;
148 // Keeps track of the last opcode in the filtered bucket.
149 unsigned LastOpcFiltered;
151 // Number of instructions which fall under VariableInstructions category.
152 unsigned NumVariable;
154 public:
155 unsigned getNumFiltered() { return NumFiltered; }
156 unsigned getNumVariable() { return NumVariable; }
157 unsigned getSingletonOpc() {
158 assert(NumFiltered == 1);
159 return LastOpcFiltered;
161 // Return the filter chooser for the group of instructions without constant
162 // segment values.
163 FilterChooser &getVariableFC() {
164 assert(NumFiltered == 1);
165 assert(FilterChooserMap.size() == 1);
166 return *(FilterChooserMap.find((unsigned)-1)->second);
169 Filter(const Filter &f);
170 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
172 ~Filter();
174 // Divides the decoding task into sub tasks and delegates them to the
175 // inferior FilterChooser's.
177 // A special case arises when there's only one entry in the filtered
178 // instructions. In order to unambiguously decode the singleton, we need to
179 // match the remaining undecoded encoding bits against the singleton.
180 void recurse();
182 // Emit code to decode instructions given a segment or segments of bits.
183 void emit(raw_ostream &o, unsigned &Indentation);
185 // Returns the number of fanout produced by the filter. More fanout implies
186 // the filter distinguishes more categories of instructions.
187 unsigned usefulness() const;
188 }; // End of class Filter
190 // These are states of our finite state machines used in FilterChooser's
191 // filterProcessor() which produces the filter candidates to use.
192 typedef enum {
193 ATTR_NONE,
194 ATTR_FILTERED,
195 ATTR_ALL_SET,
196 ATTR_ALL_UNSET,
197 ATTR_MIXED
198 } bitAttr_t;
200 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
201 /// in order to perform the decoding of instructions at the current level.
203 /// Decoding proceeds from the top down. Based on the well-known encoding bits
204 /// of instructions available, FilterChooser builds up the possible Filters that
205 /// can further the task of decoding by distinguishing among the remaining
206 /// candidate instructions.
208 /// Once a filter has been chosen, it is called upon to divide the decoding task
209 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
210 /// processings.
212 /// It is useful to think of a Filter as governing the switch stmts of the
213 /// decoding tree. And each case is delegated to an inferior FilterChooser to
214 /// decide what further remaining bits to look at.
215 class FilterChooser {
216 protected:
217 friend class Filter;
219 // Vector of codegen instructions to choose our filter.
220 const std::vector<const CodeGenInstruction*> &AllInstructions;
222 // Vector of uid's for this filter chooser to work on.
223 const std::vector<unsigned> Opcodes;
225 // Lookup table for the operand decoding of instructions.
226 std::map<unsigned, std::vector<OperandInfo> > &Operands;
228 // Vector of candidate filters.
229 std::vector<Filter> Filters;
231 // Array of bit values passed down from our parent.
232 // Set to all BIT_UNFILTERED's for Parent == NULL.
233 bit_value_t FilterBitValues[BIT_WIDTH];
235 // Links to the FilterChooser above us in the decoding tree.
236 FilterChooser *Parent;
238 // Index of the best filter from Filters.
239 int BestIndex;
241 public:
242 FilterChooser(const FilterChooser &FC) :
243 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
244 Operands(FC.Operands), Filters(FC.Filters), Parent(FC.Parent),
245 BestIndex(FC.BestIndex) {
246 memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
249 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
250 const std::vector<unsigned> &IDs,
251 std::map<unsigned, std::vector<OperandInfo> > &Ops) :
252 AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
253 Parent(NULL), BestIndex(-1) {
254 for (unsigned i = 0; i < BIT_WIDTH; ++i)
255 FilterBitValues[i] = BIT_UNFILTERED;
257 doFilter();
260 FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
261 const std::vector<unsigned> &IDs,
262 std::map<unsigned, std::vector<OperandInfo> > &Ops,
263 bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
264 FilterChooser &parent) :
265 AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
266 Filters(), Parent(&parent), BestIndex(-1) {
267 for (unsigned i = 0; i < BIT_WIDTH; ++i)
268 FilterBitValues[i] = ParentFilterBitValues[i];
270 doFilter();
273 // The top level filter chooser has NULL as its parent.
274 bool isTopLevel() { return Parent == NULL; }
276 // Emit the top level typedef and decodeInstruction() function.
277 void emitTop(raw_ostream &o, unsigned Indentation);
279 protected:
280 // Populates the insn given the uid.
281 void insnWithID(insn_t &Insn, unsigned Opcode) const {
282 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
284 for (unsigned i = 0; i < BIT_WIDTH; ++i)
285 Insn[i] = bitFromBits(Bits, i);
288 // Returns the record name.
289 const std::string &nameWithID(unsigned Opcode) const {
290 return AllInstructions[Opcode]->TheDef->getName();
293 // Populates the field of the insn given the start position and the number of
294 // consecutive bits to scan for.
296 // Returns false if there exists any uninitialized bit value in the range.
297 // Returns true, otherwise.
298 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
299 unsigned NumBits) const;
301 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
302 /// filter array as a series of chars.
303 void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
305 /// dumpStack - dumpStack traverses the filter chooser chain and calls
306 /// dumpFilterArray on each filter chooser up to the top level one.
307 void dumpStack(raw_ostream &o, const char *prefix);
309 Filter &bestFilter() {
310 assert(BestIndex != -1 && "BestIndex not set");
311 return Filters[BestIndex];
314 // Called from Filter::recurse() when singleton exists. For debug purpose.
315 void SingletonExists(unsigned Opc);
317 bool PositionFiltered(unsigned i) {
318 return ValueSet(FilterBitValues[i]);
321 // Calculates the island(s) needed to decode the instruction.
322 // This returns a lit of undecoded bits of an instructions, for example,
323 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
324 // decoded bits in order to verify that the instruction matches the Opcode.
325 unsigned getIslands(std::vector<unsigned> &StartBits,
326 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
327 insn_t &Insn);
329 // Emits code to decode the singleton. Return true if we have matched all the
330 // well-known bits.
331 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
333 // Emits code to decode the singleton, and then to decode the rest.
334 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
336 // Assign a single filter and run with it.
337 void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
338 bool mixed);
340 // reportRegion is a helper function for filterProcessor to mark a region as
341 // eligible for use as a filter region.
342 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
343 bool AllowMixed);
345 // FilterProcessor scans the well-known encoding bits of the instructions and
346 // builds up a list of candidate filters. It chooses the best filter and
347 // recursively descends down the decoding tree.
348 bool filterProcessor(bool AllowMixed, bool Greedy = true);
350 // Decides on the best configuration of filter(s) to use in order to decode
351 // the instructions. A conflict of instructions may occur, in which case we
352 // dump the conflict set to the standard error.
353 void doFilter();
355 // Emits code to decode our share of instructions. Returns true if the
356 // emitted code causes a return, which occurs if we know how to decode
357 // the instruction at this level or the instruction is not decodeable.
358 bool emit(raw_ostream &o, unsigned &Indentation);
361 ///////////////////////////
362 // //
363 // Filter Implmenetation //
364 // //
365 ///////////////////////////
367 Filter::Filter(const Filter &f) :
368 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
369 FilteredInstructions(f.FilteredInstructions),
370 VariableInstructions(f.VariableInstructions),
371 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
372 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
375 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
376 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
377 Mixed(mixed) {
378 assert(StartBit + NumBits - 1 < BIT_WIDTH);
380 NumFiltered = 0;
381 LastOpcFiltered = 0;
382 NumVariable = 0;
384 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
385 insn_t Insn;
387 // Populates the insn given the uid.
388 Owner->insnWithID(Insn, Owner->Opcodes[i]);
390 uint64_t Field;
391 // Scans the segment for possibly well-specified encoding bits.
392 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
394 if (ok) {
395 // The encoding bits are well-known. Lets add the uid of the
396 // instruction into the bucket keyed off the constant field value.
397 LastOpcFiltered = Owner->Opcodes[i];
398 FilteredInstructions[Field].push_back(LastOpcFiltered);
399 ++NumFiltered;
400 } else {
401 // Some of the encoding bit(s) are unspecfied. This contributes to
402 // one additional member of "Variable" instructions.
403 VariableInstructions.push_back(Owner->Opcodes[i]);
404 ++NumVariable;
408 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
409 && "Filter returns no instruction categories");
412 Filter::~Filter() {
413 std::map<unsigned, FilterChooser*>::iterator filterIterator;
414 for (filterIterator = FilterChooserMap.begin();
415 filterIterator != FilterChooserMap.end();
416 filterIterator++) {
417 delete filterIterator->second;
421 // Divides the decoding task into sub tasks and delegates them to the
422 // inferior FilterChooser's.
424 // A special case arises when there's only one entry in the filtered
425 // instructions. In order to unambiguously decode the singleton, we need to
426 // match the remaining undecoded encoding bits against the singleton.
427 void Filter::recurse() {
428 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
430 bit_value_t BitValueArray[BIT_WIDTH];
431 // Starts by inheriting our parent filter chooser's filter bit values.
432 memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
434 unsigned bitIndex;
436 if (VariableInstructions.size()) {
437 // Conservatively marks each segment position as BIT_UNSET.
438 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
439 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
441 // Delegates to an inferior filter chooser for futher processing on this
442 // group of instructions whose segment values are variable.
443 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
444 (unsigned)-1,
445 new FilterChooser(Owner->AllInstructions,
446 VariableInstructions,
447 Owner->Operands,
448 BitValueArray,
449 *Owner)
453 // No need to recurse for a singleton filtered instruction.
454 // See also Filter::emit().
455 if (getNumFiltered() == 1) {
456 //Owner->SingletonExists(LastOpcFiltered);
457 assert(FilterChooserMap.size() == 1);
458 return;
461 // Otherwise, create sub choosers.
462 for (mapIterator = FilteredInstructions.begin();
463 mapIterator != FilteredInstructions.end();
464 mapIterator++) {
466 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
467 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
468 if (mapIterator->first & (1ULL << bitIndex))
469 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
470 else
471 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
474 // Delegates to an inferior filter chooser for futher processing on this
475 // category of instructions.
476 FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
477 mapIterator->first,
478 new FilterChooser(Owner->AllInstructions,
479 mapIterator->second,
480 Owner->Operands,
481 BitValueArray,
482 *Owner)
487 // Emit code to decode instructions given a segment or segments of bits.
488 void Filter::emit(raw_ostream &o, unsigned &Indentation) {
489 o.indent(Indentation) << "// Check Inst{";
491 if (NumBits > 1)
492 o << (StartBit + NumBits - 1) << '-';
494 o << StartBit << "} ...\n";
496 o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
497 << StartBit << ", " << NumBits << ")) {\n";
499 std::map<unsigned, FilterChooser*>::iterator filterIterator;
501 bool DefaultCase = false;
502 for (filterIterator = FilterChooserMap.begin();
503 filterIterator != FilterChooserMap.end();
504 filterIterator++) {
506 // Field value -1 implies a non-empty set of variable instructions.
507 // See also recurse().
508 if (filterIterator->first == (unsigned)-1) {
509 DefaultCase = true;
511 o.indent(Indentation) << "default:\n";
512 o.indent(Indentation) << " break; // fallthrough\n";
514 // Closing curly brace for the switch statement.
515 // This is unconventional because we want the default processing to be
516 // performed for the fallthrough cases as well, i.e., when the "cases"
517 // did not prove a decoded instruction.
518 o.indent(Indentation) << "}\n";
520 } else
521 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
523 // We arrive at a category of instructions with the same segment value.
524 // Now delegate to the sub filter chooser for further decodings.
525 // The case may fallthrough, which happens if the remaining well-known
526 // encoding bits do not match exactly.
527 if (!DefaultCase) { ++Indentation; ++Indentation; }
529 bool finished = filterIterator->second->emit(o, Indentation);
530 // For top level default case, there's no need for a break statement.
531 if (Owner->isTopLevel() && DefaultCase)
532 break;
533 if (!finished)
534 o.indent(Indentation) << "break;\n";
536 if (!DefaultCase) { --Indentation; --Indentation; }
539 // If there is no default case, we still need to supply a closing brace.
540 if (!DefaultCase) {
541 // Closing curly brace for the switch statement.
542 o.indent(Indentation) << "}\n";
546 // Returns the number of fanout produced by the filter. More fanout implies
547 // the filter distinguishes more categories of instructions.
548 unsigned Filter::usefulness() const {
549 if (VariableInstructions.size())
550 return FilteredInstructions.size();
551 else
552 return FilteredInstructions.size() + 1;
555 //////////////////////////////////
556 // //
557 // Filterchooser Implementation //
558 // //
559 //////////////////////////////////
561 // Emit the top level typedef and decodeInstruction() function.
562 void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation) {
563 switch (BIT_WIDTH) {
564 case 8:
565 o.indent(Indentation) << "typedef uint8_t field_t;\n";
566 break;
567 case 16:
568 o.indent(Indentation) << "typedef uint16_t field_t;\n";
569 break;
570 case 32:
571 o.indent(Indentation) << "typedef uint32_t field_t;\n";
572 break;
573 case 64:
574 o.indent(Indentation) << "typedef uint64_t field_t;\n";
575 break;
576 default:
577 assert(0 && "Unexpected instruction size!");
580 o << '\n';
582 o.indent(Indentation) << "static field_t " <<
583 "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
585 o.indent(Indentation) << "{\n";
587 ++Indentation; ++Indentation;
588 o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
589 << " && \"Instruction field out of bounds!\");\n";
590 o << '\n';
591 o.indent(Indentation) << "field_t fieldMask;\n";
592 o << '\n';
593 o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
595 ++Indentation; ++Indentation;
596 o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
597 --Indentation; --Indentation;
599 o.indent(Indentation) << "else\n";
601 ++Indentation; ++Indentation;
602 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
603 --Indentation; --Indentation;
605 o << '\n';
606 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
607 --Indentation; --Indentation;
609 o.indent(Indentation) << "}\n";
611 o << '\n';
613 o.indent(Indentation) <<
614 "static bool decodeInstruction(MCInst &MI, field_t insn) {\n";
615 o.indent(Indentation) << " unsigned tmp = 0;\n";
617 ++Indentation; ++Indentation;
618 // Emits code to decode the instructions.
619 emit(o, Indentation);
621 o << '\n';
622 o.indent(Indentation) << "return false;\n";
623 --Indentation; --Indentation;
625 o.indent(Indentation) << "}\n";
627 o << '\n';
630 // Populates the field of the insn given the start position and the number of
631 // consecutive bits to scan for.
633 // Returns false if and on the first uninitialized bit value encountered.
634 // Returns true, otherwise.
635 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
636 unsigned StartBit, unsigned NumBits) const {
637 Field = 0;
639 for (unsigned i = 0; i < NumBits; ++i) {
640 if (Insn[StartBit + i] == BIT_UNSET)
641 return false;
643 if (Insn[StartBit + i] == BIT_TRUE)
644 Field = Field | (1ULL << i);
647 return true;
650 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
651 /// filter array as a series of chars.
652 void FilterChooser::dumpFilterArray(raw_ostream &o,
653 bit_value_t (&filter)[BIT_WIDTH]) {
654 unsigned bitIndex;
656 for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
657 switch (filter[bitIndex - 1]) {
658 case BIT_UNFILTERED:
659 o << ".";
660 break;
661 case BIT_UNSET:
662 o << "_";
663 break;
664 case BIT_TRUE:
665 o << "1";
666 break;
667 case BIT_FALSE:
668 o << "0";
669 break;
674 /// dumpStack - dumpStack traverses the filter chooser chain and calls
675 /// dumpFilterArray on each filter chooser up to the top level one.
676 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
677 FilterChooser *current = this;
679 while (current) {
680 o << prefix;
681 dumpFilterArray(o, current->FilterBitValues);
682 o << '\n';
683 current = current->Parent;
687 // Called from Filter::recurse() when singleton exists. For debug purpose.
688 void FilterChooser::SingletonExists(unsigned Opc) {
689 insn_t Insn0;
690 insnWithID(Insn0, Opc);
692 errs() << "Singleton exists: " << nameWithID(Opc)
693 << " with its decoding dominating ";
694 for (unsigned i = 0; i < Opcodes.size(); ++i) {
695 if (Opcodes[i] == Opc) continue;
696 errs() << nameWithID(Opcodes[i]) << ' ';
698 errs() << '\n';
700 dumpStack(errs(), "\t\t");
701 for (unsigned i = 0; i < Opcodes.size(); i++) {
702 const std::string &Name = nameWithID(Opcodes[i]);
704 errs() << '\t' << Name << " ";
705 dumpBits(errs(),
706 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
707 errs() << '\n';
711 // Calculates the island(s) needed to decode the instruction.
712 // This returns a list of undecoded bits of an instructions, for example,
713 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
714 // decoded bits in order to verify that the instruction matches the Opcode.
715 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
716 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
717 insn_t &Insn) {
718 unsigned Num, BitNo;
719 Num = BitNo = 0;
721 uint64_t FieldVal = 0;
723 // 0: Init
724 // 1: Water (the bit value does not affect decoding)
725 // 2: Island (well-known bit value needed for decoding)
726 int State = 0;
727 int Val = -1;
729 for (unsigned i = 0; i < BIT_WIDTH; ++i) {
730 Val = Value(Insn[i]);
731 bool Filtered = PositionFiltered(i);
732 switch (State) {
733 default:
734 assert(0 && "Unreachable code!");
735 break;
736 case 0:
737 case 1:
738 if (Filtered || Val == -1)
739 State = 1; // Still in Water
740 else {
741 State = 2; // Into the Island
742 BitNo = 0;
743 StartBits.push_back(i);
744 FieldVal = Val;
746 break;
747 case 2:
748 if (Filtered || Val == -1) {
749 State = 1; // Into the Water
750 EndBits.push_back(i - 1);
751 FieldVals.push_back(FieldVal);
752 ++Num;
753 } else {
754 State = 2; // Still in Island
755 ++BitNo;
756 FieldVal = FieldVal | Val << BitNo;
758 break;
761 // If we are still in Island after the loop, do some housekeeping.
762 if (State == 2) {
763 EndBits.push_back(BIT_WIDTH - 1);
764 FieldVals.push_back(FieldVal);
765 ++Num;
768 assert(StartBits.size() == Num && EndBits.size() == Num &&
769 FieldVals.size() == Num);
770 return Num;
773 // Emits code to decode the singleton. Return true if we have matched all the
774 // well-known bits.
775 bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
776 unsigned Opc) {
777 std::vector<unsigned> StartBits;
778 std::vector<unsigned> EndBits;
779 std::vector<uint64_t> FieldVals;
780 insn_t Insn;
781 insnWithID(Insn, Opc);
783 // Look for islands of undecoded bits of the singleton.
784 getIslands(StartBits, EndBits, FieldVals, Insn);
786 unsigned Size = StartBits.size();
787 unsigned I, NumBits;
789 // If we have matched all the well-known bits, just issue a return.
790 if (Size == 0) {
791 o.indent(Indentation) << "{\n";
792 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
793 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
794 for (std::vector<OperandInfo>::iterator
795 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
796 // If a custom instruction decoder was specified, use that.
797 if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
798 o.indent(Indentation) << " " << I->Decoder << "(MI, insn);\n";
799 break;
802 o.indent(Indentation)
803 << " tmp = fieldFromInstruction(insn, " << I->FieldBase
804 << ", " << I->FieldLength << ");\n";
805 if (I->Decoder != "") {
806 o.indent(Indentation) << " " << I->Decoder << "(MI, tmp);\n";
807 } else {
808 o.indent(Indentation)
809 << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
813 o.indent(Indentation) << " return true; // " << nameWithID(Opc)
814 << '\n';
815 o.indent(Indentation) << "}\n";
816 return true;
819 // Otherwise, there are more decodings to be done!
821 // Emit code to match the island(s) for the singleton.
822 o.indent(Indentation) << "// Check ";
824 for (I = Size; I != 0; --I) {
825 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
826 if (I > 1)
827 o << "&& ";
828 else
829 o << "for singleton decoding...\n";
832 o.indent(Indentation) << "if (";
834 for (I = Size; I != 0; --I) {
835 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
836 o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
837 << ") == " << FieldVals[I-1];
838 if (I > 1)
839 o << " && ";
840 else
841 o << ") {\n";
843 o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
844 std::vector<OperandInfo>& InsnOperands = Operands[Opc];
845 for (std::vector<OperandInfo>::iterator
846 I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
847 // If a custom instruction decoder was specified, use that.
848 if (I->FieldBase == ~0U && I->FieldLength == ~0U) {
849 o.indent(Indentation) << " " << I->Decoder << "(MI, insn);\n";
850 break;
853 o.indent(Indentation)
854 << " tmp = fieldFromInstruction(insn, " << I->FieldBase
855 << ", " << I->FieldLength << ");\n";
856 if (I->Decoder != "") {
857 o.indent(Indentation) << " " << I->Decoder << "(MI, tmp);\n";
858 } else {
859 o.indent(Indentation)
860 << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
863 o.indent(Indentation) << " return true; // " << nameWithID(Opc)
864 << '\n';
865 o.indent(Indentation) << "}\n";
867 return false;
870 // Emits code to decode the singleton, and then to decode the rest.
871 void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
872 Filter &Best) {
874 unsigned Opc = Best.getSingletonOpc();
876 emitSingletonDecoder(o, Indentation, Opc);
878 // Emit code for the rest.
879 o.indent(Indentation) << "else\n";
881 Indentation += 2;
882 Best.getVariableFC().emit(o, Indentation);
883 Indentation -= 2;
886 // Assign a single filter and run with it. Top level API client can initialize
887 // with a single filter to start the filtering process.
888 void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
889 unsigned numBit, bool mixed) {
890 Filters.clear();
891 Filter F(*this, startBit, numBit, true);
892 Filters.push_back(F);
893 BestIndex = 0; // Sole Filter instance to choose from.
894 bestFilter().recurse();
897 // reportRegion is a helper function for filterProcessor to mark a region as
898 // eligible for use as a filter region.
899 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
900 unsigned BitIndex, bool AllowMixed) {
901 if (RA == ATTR_MIXED && AllowMixed)
902 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
903 else if (RA == ATTR_ALL_SET && !AllowMixed)
904 Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
907 // FilterProcessor scans the well-known encoding bits of the instructions and
908 // builds up a list of candidate filters. It chooses the best filter and
909 // recursively descends down the decoding tree.
910 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
911 Filters.clear();
912 BestIndex = -1;
913 unsigned numInstructions = Opcodes.size();
915 assert(numInstructions && "Filter created with no instructions");
917 // No further filtering is necessary.
918 if (numInstructions == 1)
919 return true;
921 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
922 // instructions is 3.
923 if (AllowMixed && !Greedy) {
924 assert(numInstructions == 3);
926 for (unsigned i = 0; i < Opcodes.size(); ++i) {
927 std::vector<unsigned> StartBits;
928 std::vector<unsigned> EndBits;
929 std::vector<uint64_t> FieldVals;
930 insn_t Insn;
932 insnWithID(Insn, Opcodes[i]);
934 // Look for islands of undecoded bits of any instruction.
935 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
936 // Found an instruction with island(s). Now just assign a filter.
937 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
938 true);
939 return true;
944 unsigned BitIndex, InsnIndex;
946 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
947 // The automaton consumes the corresponding bit from each
948 // instruction.
950 // Input symbols: 0, 1, and _ (unset).
951 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
952 // Initial state: NONE.
954 // (NONE) ------- [01] -> (ALL_SET)
955 // (NONE) ------- _ ----> (ALL_UNSET)
956 // (ALL_SET) ---- [01] -> (ALL_SET)
957 // (ALL_SET) ---- _ ----> (MIXED)
958 // (ALL_UNSET) -- [01] -> (MIXED)
959 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
960 // (MIXED) ------ . ----> (MIXED)
961 // (FILTERED)---- . ----> (FILTERED)
963 bitAttr_t bitAttrs[BIT_WIDTH];
965 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
966 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
967 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
968 if (FilterBitValues[BitIndex] == BIT_TRUE ||
969 FilterBitValues[BitIndex] == BIT_FALSE)
970 bitAttrs[BitIndex] = ATTR_FILTERED;
971 else
972 bitAttrs[BitIndex] = ATTR_NONE;
974 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
975 insn_t insn;
977 insnWithID(insn, Opcodes[InsnIndex]);
979 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
980 switch (bitAttrs[BitIndex]) {
981 case ATTR_NONE:
982 if (insn[BitIndex] == BIT_UNSET)
983 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
984 else
985 bitAttrs[BitIndex] = ATTR_ALL_SET;
986 break;
987 case ATTR_ALL_SET:
988 if (insn[BitIndex] == BIT_UNSET)
989 bitAttrs[BitIndex] = ATTR_MIXED;
990 break;
991 case ATTR_ALL_UNSET:
992 if (insn[BitIndex] != BIT_UNSET)
993 bitAttrs[BitIndex] = ATTR_MIXED;
994 break;
995 case ATTR_MIXED:
996 case ATTR_FILTERED:
997 break;
1002 // The regionAttr automaton consumes the bitAttrs automatons' state,
1003 // lowest-to-highest.
1005 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1006 // States: NONE, ALL_SET, MIXED
1007 // Initial state: NONE
1009 // (NONE) ----- F --> (NONE)
1010 // (NONE) ----- S --> (ALL_SET) ; and set region start
1011 // (NONE) ----- U --> (NONE)
1012 // (NONE) ----- M --> (MIXED) ; and set region start
1013 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1014 // (ALL_SET) -- S --> (ALL_SET)
1015 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1016 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1017 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1018 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1019 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1020 // (MIXED) ---- M --> (MIXED)
1022 bitAttr_t RA = ATTR_NONE;
1023 unsigned StartBit = 0;
1025 for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
1026 bitAttr_t bitAttr = bitAttrs[BitIndex];
1028 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1030 switch (RA) {
1031 case ATTR_NONE:
1032 switch (bitAttr) {
1033 case ATTR_FILTERED:
1034 break;
1035 case ATTR_ALL_SET:
1036 StartBit = BitIndex;
1037 RA = ATTR_ALL_SET;
1038 break;
1039 case ATTR_ALL_UNSET:
1040 break;
1041 case ATTR_MIXED:
1042 StartBit = BitIndex;
1043 RA = ATTR_MIXED;
1044 break;
1045 default:
1046 assert(0 && "Unexpected bitAttr!");
1048 break;
1049 case ATTR_ALL_SET:
1050 switch (bitAttr) {
1051 case ATTR_FILTERED:
1052 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1053 RA = ATTR_NONE;
1054 break;
1055 case ATTR_ALL_SET:
1056 break;
1057 case ATTR_ALL_UNSET:
1058 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1059 RA = ATTR_NONE;
1060 break;
1061 case ATTR_MIXED:
1062 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1063 StartBit = BitIndex;
1064 RA = ATTR_MIXED;
1065 break;
1066 default:
1067 assert(0 && "Unexpected bitAttr!");
1069 break;
1070 case ATTR_MIXED:
1071 switch (bitAttr) {
1072 case ATTR_FILTERED:
1073 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1074 StartBit = BitIndex;
1075 RA = ATTR_NONE;
1076 break;
1077 case ATTR_ALL_SET:
1078 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1079 StartBit = BitIndex;
1080 RA = ATTR_ALL_SET;
1081 break;
1082 case ATTR_ALL_UNSET:
1083 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1084 RA = ATTR_NONE;
1085 break;
1086 case ATTR_MIXED:
1087 break;
1088 default:
1089 assert(0 && "Unexpected bitAttr!");
1091 break;
1092 case ATTR_ALL_UNSET:
1093 assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1094 case ATTR_FILTERED:
1095 assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1099 // At the end, if we're still in ALL_SET or MIXED states, report a region
1100 switch (RA) {
1101 case ATTR_NONE:
1102 break;
1103 case ATTR_FILTERED:
1104 break;
1105 case ATTR_ALL_SET:
1106 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1107 break;
1108 case ATTR_ALL_UNSET:
1109 break;
1110 case ATTR_MIXED:
1111 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1112 break;
1115 // We have finished with the filter processings. Now it's time to choose
1116 // the best performing filter.
1117 BestIndex = 0;
1118 bool AllUseless = true;
1119 unsigned BestScore = 0;
1121 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1122 unsigned Usefulness = Filters[i].usefulness();
1124 if (Usefulness)
1125 AllUseless = false;
1127 if (Usefulness > BestScore) {
1128 BestIndex = i;
1129 BestScore = Usefulness;
1133 if (!AllUseless)
1134 bestFilter().recurse();
1136 return !AllUseless;
1137 } // end of FilterChooser::filterProcessor(bool)
1139 // Decides on the best configuration of filter(s) to use in order to decode
1140 // the instructions. A conflict of instructions may occur, in which case we
1141 // dump the conflict set to the standard error.
1142 void FilterChooser::doFilter() {
1143 unsigned Num = Opcodes.size();
1144 assert(Num && "FilterChooser created with no instructions");
1146 // Try regions of consecutive known bit values first.
1147 if (filterProcessor(false))
1148 return;
1150 // Then regions of mixed bits (both known and unitialized bit values allowed).
1151 if (filterProcessor(true))
1152 return;
1154 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1155 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1156 // well-known encoding pattern. In such case, we backtrack and scan for the
1157 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1158 if (Num == 3 && filterProcessor(true, false))
1159 return;
1161 // If we come to here, the instruction decoding has failed.
1162 // Set the BestIndex to -1 to indicate so.
1163 BestIndex = -1;
1166 // Emits code to decode our share of instructions. Returns true if the
1167 // emitted code causes a return, which occurs if we know how to decode
1168 // the instruction at this level or the instruction is not decodeable.
1169 bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1170 if (Opcodes.size() == 1)
1171 // There is only one instruction in the set, which is great!
1172 // Call emitSingletonDecoder() to see whether there are any remaining
1173 // encodings bits.
1174 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1176 // Choose the best filter to do the decodings!
1177 if (BestIndex != -1) {
1178 Filter &Best = bestFilter();
1179 if (Best.getNumFiltered() == 1)
1180 emitSingletonDecoder(o, Indentation, Best);
1181 else
1182 bestFilter().emit(o, Indentation);
1183 return false;
1186 // We don't know how to decode these instructions! Return 0 and dump the
1187 // conflict set!
1188 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1189 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1190 o << nameWithID(Opcodes[i]);
1191 if (i < (N - 1))
1192 o << ", ";
1193 else
1194 o << '\n';
1197 // Print out useful conflict information for postmortem analysis.
1198 errs() << "Decoding Conflict:\n";
1200 dumpStack(errs(), "\t\t");
1202 for (unsigned i = 0; i < Opcodes.size(); i++) {
1203 const std::string &Name = nameWithID(Opcodes[i]);
1205 errs() << '\t' << Name << " ";
1206 dumpBits(errs(),
1207 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1208 errs() << '\n';
1211 return true;
1214 bool FixedLenDecoderEmitter::populateInstruction(const CodeGenInstruction &CGI,
1215 unsigned Opc){
1216 const Record &Def = *CGI.TheDef;
1217 // If all the bit positions are not specified; do not decode this instruction.
1218 // We are bound to fail! For proper disassembly, the well-known encoding bits
1219 // of the instruction must be fully specified.
1221 // This also removes pseudo instructions from considerations of disassembly,
1222 // which is a better design and less fragile than the name matchings.
1223 BitsInit &Bits = getBitsField(Def, "Inst");
1224 if (Bits.allInComplete()) return false;
1226 // Ignore "asm parser only" instructions.
1227 if (Def.getValueAsBit("isAsmParserOnly") ||
1228 Def.getValueAsBit("isCodeGenOnly"))
1229 return false;
1231 std::vector<OperandInfo> InsnOperands;
1233 // If the instruction has specified a custom decoding hook, use that instead
1234 // of trying to auto-generate the decoder.
1235 std::string InstDecoder = Def.getValueAsString("DecoderMethod");
1236 if (InstDecoder != "") {
1237 InsnOperands.push_back(OperandInfo(~0U, ~0U, InstDecoder));
1238 Operands[Opc] = InsnOperands;
1239 return true;
1242 // Generate a description of the operand of the instruction that we know
1243 // how to decode automatically.
1244 // FIXME: We'll need to have a way to manually override this as needed.
1246 // Gather the outputs/inputs of the instruction, so we can find their
1247 // positions in the encoding. This assumes for now that they appear in the
1248 // MCInst in the order that they're listed.
1249 std::vector<std::pair<Init*, std::string> > InOutOperands;
1250 DagInit *Out = Def.getValueAsDag("OutOperandList");
1251 DagInit *In = Def.getValueAsDag("InOperandList");
1252 for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1253 InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
1254 for (unsigned i = 0; i < In->getNumArgs(); ++i)
1255 InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
1257 // For each operand, see if we can figure out where it is encoded.
1258 for (std::vector<std::pair<Init*, std::string> >::iterator
1259 NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
1260 unsigned PrevBit = ~0;
1261 unsigned Base = ~0;
1262 unsigned PrevPos = ~0;
1263 std::string Decoder = "";
1265 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
1266 VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
1267 if (!BI) continue;
1269 VarInit *Var = dynamic_cast<VarInit*>(BI->getVariable());
1270 assert(Var);
1271 unsigned CurrBit = BI->getBitNum();
1272 if (Var->getName() != NI->second) continue;
1274 // Figure out the lowest bit of the value, and the width of the field.
1275 // Deliberately don't try to handle cases where the field is scattered,
1276 // or where not all bits of the the field are explicit.
1277 if (Base == ~0U && PrevBit == ~0U && PrevPos == ~0U) {
1278 if (CurrBit == 0)
1279 Base = bi;
1280 else
1281 continue;
1284 if ((PrevPos != ~0U && bi-1 != PrevPos) ||
1285 (CurrBit != ~0U && CurrBit-1 != PrevBit)) {
1286 PrevBit = ~0;
1287 Base = ~0;
1288 PrevPos = ~0;
1291 PrevPos = bi;
1292 PrevBit = CurrBit;
1294 // At this point, we can locate the field, but we need to know how to
1295 // interpret it. As a first step, require the target to provide callbacks
1296 // for decoding register classes.
1297 // FIXME: This need to be extended to handle instructions with custom
1298 // decoder methods, and operands with (simple) MIOperandInfo's.
1299 TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
1300 RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
1301 Record *TypeRecord = Type->getRecord();
1302 bool isReg = false;
1303 if (TypeRecord->isSubClassOf("RegisterClass")) {
1304 Decoder = "Decode" + Type->getRecord()->getName() + "RegisterClass";
1305 isReg = true;
1308 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1309 StringInit *String = DecoderString ?
1310 dynamic_cast<StringInit*>(DecoderString->getValue()) :
1312 if (!isReg && String && String->getValue() != "")
1313 Decoder = String->getValue();
1316 if (Base != ~0U) {
1317 InsnOperands.push_back(OperandInfo(Base, PrevBit+1, Decoder));
1318 DEBUG(errs() << "ENCODED OPERAND: $" << NI->second << " @ ("
1319 << utostr(Base+PrevBit) << ", " << utostr(Base) << ")\n");
1323 Operands[Opc] = InsnOperands;
1326 #if 0
1327 DEBUG({
1328 // Dumps the instruction encoding bits.
1329 dumpBits(errs(), Bits);
1331 errs() << '\n';
1333 // Dumps the list of operand info.
1334 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1335 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1336 const std::string &OperandName = Info.Name;
1337 const Record &OperandDef = *Info.Rec;
1339 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1342 #endif
1344 return true;
1347 void FixedLenDecoderEmitter::populateInstructions() {
1348 for (unsigned i = 0, e = NumberedInstructions.size(); i < e; ++i) {
1349 Record *R = NumberedInstructions[i]->TheDef;
1350 if (R->getValueAsString("Namespace") == "TargetOpcode")
1351 continue;
1353 if (populateInstruction(*NumberedInstructions[i], i))
1354 Opcodes.push_back(i);
1358 // Emits disassembler code for instruction decoding.
1359 void FixedLenDecoderEmitter::run(raw_ostream &o)
1361 o << "#include \"llvm/MC/MCInst.h\"\n";
1362 o << "#include \"llvm/Support/DataTypes.h\"\n";
1363 o << "#include <assert.h>\n";
1364 o << '\n';
1365 o << "namespace llvm {\n\n";
1367 NumberedInstructions = Target.getInstructionsByEnumValue();
1368 populateInstructions();
1369 FilterChooser FC(NumberedInstructions, Opcodes, Operands);
1370 FC.emitTop(o, 0);
1372 o << "\n} // End llvm namespace \n";