Revert r131155 for now. It makes VMCore depend on Analysis and Transforms
[llvm/stm8.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
blobe652e082d16429b9cf76dcdd210d5fdf3566470c
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/TypeSymbolTable.h"
25 #include "llvm/ValueSymbolTable.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/Program.h"
30 #include <cctype>
31 using namespace llvm;
33 /// These are manifest constants used by the bitcode writer. They do not need to
34 /// be kept in sync with the reader, but need to be consistent within this file.
35 enum {
36 CurVersion = 0,
38 // VALUE_SYMTAB_BLOCK abbrev id's.
39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
40 VST_ENTRY_7_ABBREV,
41 VST_ENTRY_6_ABBREV,
42 VST_BBENTRY_6_ABBREV,
44 // CONSTANTS_BLOCK abbrev id's.
45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46 CONSTANTS_INTEGER_ABBREV,
47 CONSTANTS_CE_CAST_Abbrev,
48 CONSTANTS_NULL_Abbrev,
50 // FUNCTION_BLOCK abbrev id's.
51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52 FUNCTION_INST_BINOP_ABBREV,
53 FUNCTION_INST_BINOP_FLAGS_ABBREV,
54 FUNCTION_INST_CAST_ABBREV,
55 FUNCTION_INST_RET_VOID_ABBREV,
56 FUNCTION_INST_RET_VAL_ABBREV,
57 FUNCTION_INST_UNREACHABLE_ABBREV
61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
62 switch (Opcode) {
63 default: llvm_unreachable("Unknown cast instruction!");
64 case Instruction::Trunc : return bitc::CAST_TRUNC;
65 case Instruction::ZExt : return bitc::CAST_ZEXT;
66 case Instruction::SExt : return bitc::CAST_SEXT;
67 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
68 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
69 case Instruction::UIToFP : return bitc::CAST_UITOFP;
70 case Instruction::SIToFP : return bitc::CAST_SITOFP;
71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
72 case Instruction::FPExt : return bitc::CAST_FPEXT;
73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
75 case Instruction::BitCast : return bitc::CAST_BITCAST;
79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
80 switch (Opcode) {
81 default: llvm_unreachable("Unknown binary instruction!");
82 case Instruction::Add:
83 case Instruction::FAdd: return bitc::BINOP_ADD;
84 case Instruction::Sub:
85 case Instruction::FSub: return bitc::BINOP_SUB;
86 case Instruction::Mul:
87 case Instruction::FMul: return bitc::BINOP_MUL;
88 case Instruction::UDiv: return bitc::BINOP_UDIV;
89 case Instruction::FDiv:
90 case Instruction::SDiv: return bitc::BINOP_SDIV;
91 case Instruction::URem: return bitc::BINOP_UREM;
92 case Instruction::FRem:
93 case Instruction::SRem: return bitc::BINOP_SREM;
94 case Instruction::Shl: return bitc::BINOP_SHL;
95 case Instruction::LShr: return bitc::BINOP_LSHR;
96 case Instruction::AShr: return bitc::BINOP_ASHR;
97 case Instruction::And: return bitc::BINOP_AND;
98 case Instruction::Or: return bitc::BINOP_OR;
99 case Instruction::Xor: return bitc::BINOP_XOR;
105 static void WriteStringRecord(unsigned Code, const std::string &Str,
106 unsigned AbbrevToUse, BitstreamWriter &Stream) {
107 SmallVector<unsigned, 64> Vals;
109 // Code: [strchar x N]
110 for (unsigned i = 0, e = Str.size(); i != e; ++i)
111 Vals.push_back(Str[i]);
113 // Emit the finished record.
114 Stream.EmitRecord(Code, Vals, AbbrevToUse);
117 // Emit information about parameter attributes.
118 static void WriteAttributeTable(const ValueEnumerator &VE,
119 BitstreamWriter &Stream) {
120 const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
121 if (Attrs.empty()) return;
123 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
125 SmallVector<uint64_t, 64> Record;
126 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
127 const AttrListPtr &A = Attrs[i];
128 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
129 const AttributeWithIndex &PAWI = A.getSlot(i);
130 Record.push_back(PAWI.Index);
132 // FIXME: remove in LLVM 3.0
133 // Store the alignment in the bitcode as a 16-bit raw value instead of a
134 // 5-bit log2 encoded value. Shift the bits above the alignment up by
135 // 11 bits.
136 uint64_t FauxAttr = PAWI.Attrs & 0xffff;
137 if (PAWI.Attrs & Attribute::Alignment)
138 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
139 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
141 Record.push_back(FauxAttr);
144 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
145 Record.clear();
148 Stream.ExitBlock();
151 /// WriteTypeTable - Write out the type table for a module.
152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
153 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
155 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
156 SmallVector<uint64_t, 64> TypeVals;
158 // Abbrev for TYPE_CODE_POINTER.
159 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
160 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
162 Log2_32_Ceil(VE.getTypes().size()+1)));
163 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
164 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
166 // Abbrev for TYPE_CODE_FUNCTION.
167 Abbv = new BitCodeAbbrev();
168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
170 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
173 Log2_32_Ceil(VE.getTypes().size()+1)));
174 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
176 // Abbrev for TYPE_CODE_STRUCT.
177 Abbv = new BitCodeAbbrev();
178 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
182 Log2_32_Ceil(VE.getTypes().size()+1)));
183 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
185 // Abbrev for TYPE_CODE_ARRAY.
186 Abbv = new BitCodeAbbrev();
187 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
190 Log2_32_Ceil(VE.getTypes().size()+1)));
191 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
193 // Emit an entry count so the reader can reserve space.
194 TypeVals.push_back(TypeList.size());
195 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
196 TypeVals.clear();
198 // Loop over all of the types, emitting each in turn.
199 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
200 const Type *T = TypeList[i];
201 int AbbrevToUse = 0;
202 unsigned Code = 0;
204 switch (T->getTypeID()) {
205 default: llvm_unreachable("Unknown type!");
206 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
207 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
208 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
209 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
210 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
211 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
212 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
213 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
214 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
215 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
216 case Type::IntegerTyID:
217 // INTEGER: [width]
218 Code = bitc::TYPE_CODE_INTEGER;
219 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
220 break;
221 case Type::PointerTyID: {
222 const PointerType *PTy = cast<PointerType>(T);
223 // POINTER: [pointee type, address space]
224 Code = bitc::TYPE_CODE_POINTER;
225 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
226 unsigned AddressSpace = PTy->getAddressSpace();
227 TypeVals.push_back(AddressSpace);
228 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
229 break;
231 case Type::FunctionTyID: {
232 const FunctionType *FT = cast<FunctionType>(T);
233 // FUNCTION: [isvararg, attrid, retty, paramty x N]
234 Code = bitc::TYPE_CODE_FUNCTION;
235 TypeVals.push_back(FT->isVarArg());
236 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
237 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
238 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
239 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
240 AbbrevToUse = FunctionAbbrev;
241 break;
243 case Type::StructTyID: {
244 const StructType *ST = cast<StructType>(T);
245 // STRUCT: [ispacked, eltty x N]
246 Code = bitc::TYPE_CODE_STRUCT;
247 TypeVals.push_back(ST->isPacked());
248 // Output all of the element types.
249 for (StructType::element_iterator I = ST->element_begin(),
250 E = ST->element_end(); I != E; ++I)
251 TypeVals.push_back(VE.getTypeID(*I));
252 AbbrevToUse = StructAbbrev;
253 break;
255 case Type::ArrayTyID: {
256 const ArrayType *AT = cast<ArrayType>(T);
257 // ARRAY: [numelts, eltty]
258 Code = bitc::TYPE_CODE_ARRAY;
259 TypeVals.push_back(AT->getNumElements());
260 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
261 AbbrevToUse = ArrayAbbrev;
262 break;
264 case Type::VectorTyID: {
265 const VectorType *VT = cast<VectorType>(T);
266 // VECTOR [numelts, eltty]
267 Code = bitc::TYPE_CODE_VECTOR;
268 TypeVals.push_back(VT->getNumElements());
269 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
270 break;
274 // Emit the finished record.
275 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
276 TypeVals.clear();
279 Stream.ExitBlock();
282 static unsigned getEncodedLinkage(const GlobalValue *GV) {
283 switch (GV->getLinkage()) {
284 default: llvm_unreachable("Invalid linkage!");
285 case GlobalValue::ExternalLinkage: return 0;
286 case GlobalValue::WeakAnyLinkage: return 1;
287 case GlobalValue::AppendingLinkage: return 2;
288 case GlobalValue::InternalLinkage: return 3;
289 case GlobalValue::LinkOnceAnyLinkage: return 4;
290 case GlobalValue::DLLImportLinkage: return 5;
291 case GlobalValue::DLLExportLinkage: return 6;
292 case GlobalValue::ExternalWeakLinkage: return 7;
293 case GlobalValue::CommonLinkage: return 8;
294 case GlobalValue::PrivateLinkage: return 9;
295 case GlobalValue::WeakODRLinkage: return 10;
296 case GlobalValue::LinkOnceODRLinkage: return 11;
297 case GlobalValue::AvailableExternallyLinkage: return 12;
298 case GlobalValue::LinkerPrivateLinkage: return 13;
299 case GlobalValue::LinkerPrivateWeakLinkage: return 14;
300 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
304 static unsigned getEncodedVisibility(const GlobalValue *GV) {
305 switch (GV->getVisibility()) {
306 default: llvm_unreachable("Invalid visibility!");
307 case GlobalValue::DefaultVisibility: return 0;
308 case GlobalValue::HiddenVisibility: return 1;
309 case GlobalValue::ProtectedVisibility: return 2;
313 // Emit top-level description of module, including target triple, inline asm,
314 // descriptors for global variables, and function prototype info.
315 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
316 BitstreamWriter &Stream) {
317 // Emit the list of dependent libraries for the Module.
318 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
319 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
321 // Emit various pieces of data attached to a module.
322 if (!M->getTargetTriple().empty())
323 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
324 0/*TODO*/, Stream);
325 if (!M->getDataLayout().empty())
326 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
327 0/*TODO*/, Stream);
328 if (!M->getModuleInlineAsm().empty())
329 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
330 0/*TODO*/, Stream);
332 // Emit information about sections and GC, computing how many there are. Also
333 // compute the maximum alignment value.
334 std::map<std::string, unsigned> SectionMap;
335 std::map<std::string, unsigned> GCMap;
336 unsigned MaxAlignment = 0;
337 unsigned MaxGlobalType = 0;
338 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
339 GV != E; ++GV) {
340 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
341 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
343 if (!GV->hasSection()) continue;
344 // Give section names unique ID's.
345 unsigned &Entry = SectionMap[GV->getSection()];
346 if (Entry != 0) continue;
347 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
348 0/*TODO*/, Stream);
349 Entry = SectionMap.size();
351 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
352 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
353 if (F->hasSection()) {
354 // Give section names unique ID's.
355 unsigned &Entry = SectionMap[F->getSection()];
356 if (!Entry) {
357 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
358 0/*TODO*/, Stream);
359 Entry = SectionMap.size();
362 if (F->hasGC()) {
363 // Same for GC names.
364 unsigned &Entry = GCMap[F->getGC()];
365 if (!Entry) {
366 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
367 0/*TODO*/, Stream);
368 Entry = GCMap.size();
373 // Emit abbrev for globals, now that we know # sections and max alignment.
374 unsigned SimpleGVarAbbrev = 0;
375 if (!M->global_empty()) {
376 // Add an abbrev for common globals with no visibility or thread localness.
377 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
378 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
380 Log2_32_Ceil(MaxGlobalType+1)));
381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
384 if (MaxAlignment == 0) // Alignment.
385 Abbv->Add(BitCodeAbbrevOp(0));
386 else {
387 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
389 Log2_32_Ceil(MaxEncAlignment+1)));
391 if (SectionMap.empty()) // Section.
392 Abbv->Add(BitCodeAbbrevOp(0));
393 else
394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
395 Log2_32_Ceil(SectionMap.size()+1)));
396 // Don't bother emitting vis + thread local.
397 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
400 // Emit the global variable information.
401 SmallVector<unsigned, 64> Vals;
402 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
403 GV != E; ++GV) {
404 unsigned AbbrevToUse = 0;
406 // GLOBALVAR: [type, isconst, initid,
407 // linkage, alignment, section, visibility, threadlocal,
408 // unnamed_addr]
409 Vals.push_back(VE.getTypeID(GV->getType()));
410 Vals.push_back(GV->isConstant());
411 Vals.push_back(GV->isDeclaration() ? 0 :
412 (VE.getValueID(GV->getInitializer()) + 1));
413 Vals.push_back(getEncodedLinkage(GV));
414 Vals.push_back(Log2_32(GV->getAlignment())+1);
415 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
416 if (GV->isThreadLocal() ||
417 GV->getVisibility() != GlobalValue::DefaultVisibility ||
418 GV->hasUnnamedAddr()) {
419 Vals.push_back(getEncodedVisibility(GV));
420 Vals.push_back(GV->isThreadLocal());
421 Vals.push_back(GV->hasUnnamedAddr());
422 } else {
423 AbbrevToUse = SimpleGVarAbbrev;
426 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
427 Vals.clear();
430 // Emit the function proto information.
431 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
432 // FUNCTION: [type, callingconv, isproto, paramattr,
433 // linkage, alignment, section, visibility, gc, unnamed_addr]
434 Vals.push_back(VE.getTypeID(F->getType()));
435 Vals.push_back(F->getCallingConv());
436 Vals.push_back(F->isDeclaration());
437 Vals.push_back(getEncodedLinkage(F));
438 Vals.push_back(VE.getAttributeID(F->getAttributes()));
439 Vals.push_back(Log2_32(F->getAlignment())+1);
440 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
441 Vals.push_back(getEncodedVisibility(F));
442 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
443 Vals.push_back(F->hasUnnamedAddr());
445 unsigned AbbrevToUse = 0;
446 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
447 Vals.clear();
451 // Emit the alias information.
452 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
453 AI != E; ++AI) {
454 Vals.push_back(VE.getTypeID(AI->getType()));
455 Vals.push_back(VE.getValueID(AI->getAliasee()));
456 Vals.push_back(getEncodedLinkage(AI));
457 Vals.push_back(getEncodedVisibility(AI));
458 unsigned AbbrevToUse = 0;
459 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
460 Vals.clear();
464 static uint64_t GetOptimizationFlags(const Value *V) {
465 uint64_t Flags = 0;
467 if (const OverflowingBinaryOperator *OBO =
468 dyn_cast<OverflowingBinaryOperator>(V)) {
469 if (OBO->hasNoSignedWrap())
470 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
471 if (OBO->hasNoUnsignedWrap())
472 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
473 } else if (const PossiblyExactOperator *PEO =
474 dyn_cast<PossiblyExactOperator>(V)) {
475 if (PEO->isExact())
476 Flags |= 1 << bitc::PEO_EXACT;
479 return Flags;
482 static void WriteMDNode(const MDNode *N,
483 const ValueEnumerator &VE,
484 BitstreamWriter &Stream,
485 SmallVector<uint64_t, 64> &Record) {
486 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
487 if (N->getOperand(i)) {
488 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
489 Record.push_back(VE.getValueID(N->getOperand(i)));
490 } else {
491 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
492 Record.push_back(0);
495 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE2 :
496 bitc::METADATA_NODE2;
497 Stream.EmitRecord(MDCode, Record, 0);
498 Record.clear();
501 static void WriteModuleMetadata(const Module *M,
502 const ValueEnumerator &VE,
503 BitstreamWriter &Stream) {
504 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
505 bool StartedMetadataBlock = false;
506 unsigned MDSAbbrev = 0;
507 SmallVector<uint64_t, 64> Record;
508 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
510 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
511 if (!N->isFunctionLocal() || !N->getFunction()) {
512 if (!StartedMetadataBlock) {
513 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
514 StartedMetadataBlock = true;
516 WriteMDNode(N, VE, Stream, Record);
518 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
519 if (!StartedMetadataBlock) {
520 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
522 // Abbrev for METADATA_STRING.
523 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
524 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
527 MDSAbbrev = Stream.EmitAbbrev(Abbv);
528 StartedMetadataBlock = true;
531 // Code: [strchar x N]
532 Record.append(MDS->begin(), MDS->end());
534 // Emit the finished record.
535 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
536 Record.clear();
540 // Write named metadata.
541 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
542 E = M->named_metadata_end(); I != E; ++I) {
543 const NamedMDNode *NMD = I;
544 if (!StartedMetadataBlock) {
545 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
546 StartedMetadataBlock = true;
549 // Write name.
550 StringRef Str = NMD->getName();
551 for (unsigned i = 0, e = Str.size(); i != e; ++i)
552 Record.push_back(Str[i]);
553 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
554 Record.clear();
556 // Write named metadata operands.
557 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
558 Record.push_back(VE.getValueID(NMD->getOperand(i)));
559 Stream.EmitRecord(bitc::METADATA_NAMED_NODE2, Record, 0);
560 Record.clear();
563 if (StartedMetadataBlock)
564 Stream.ExitBlock();
567 static void WriteFunctionLocalMetadata(const Function &F,
568 const ValueEnumerator &VE,
569 BitstreamWriter &Stream) {
570 bool StartedMetadataBlock = false;
571 SmallVector<uint64_t, 64> Record;
572 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
573 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
574 if (const MDNode *N = Vals[i])
575 if (N->isFunctionLocal() && N->getFunction() == &F) {
576 if (!StartedMetadataBlock) {
577 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
578 StartedMetadataBlock = true;
580 WriteMDNode(N, VE, Stream, Record);
583 if (StartedMetadataBlock)
584 Stream.ExitBlock();
587 static void WriteMetadataAttachment(const Function &F,
588 const ValueEnumerator &VE,
589 BitstreamWriter &Stream) {
590 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
592 SmallVector<uint64_t, 64> Record;
594 // Write metadata attachments
595 // METADATA_ATTACHMENT2 - [m x [value, [n x [id, mdnode]]]
596 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
598 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
599 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
600 I != E; ++I) {
601 MDs.clear();
602 I->getAllMetadataOtherThanDebugLoc(MDs);
604 // If no metadata, ignore instruction.
605 if (MDs.empty()) continue;
607 Record.push_back(VE.getInstructionID(I));
609 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
610 Record.push_back(MDs[i].first);
611 Record.push_back(VE.getValueID(MDs[i].second));
613 Stream.EmitRecord(bitc::METADATA_ATTACHMENT2, Record, 0);
614 Record.clear();
617 Stream.ExitBlock();
620 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
621 SmallVector<uint64_t, 64> Record;
623 // Write metadata kinds
624 // METADATA_KIND - [n x [id, name]]
625 SmallVector<StringRef, 4> Names;
626 M->getMDKindNames(Names);
628 if (Names.empty()) return;
630 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
632 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
633 Record.push_back(MDKindID);
634 StringRef KName = Names[MDKindID];
635 Record.append(KName.begin(), KName.end());
637 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
638 Record.clear();
641 Stream.ExitBlock();
644 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
645 const ValueEnumerator &VE,
646 BitstreamWriter &Stream, bool isGlobal) {
647 if (FirstVal == LastVal) return;
649 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
651 unsigned AggregateAbbrev = 0;
652 unsigned String8Abbrev = 0;
653 unsigned CString7Abbrev = 0;
654 unsigned CString6Abbrev = 0;
655 // If this is a constant pool for the module, emit module-specific abbrevs.
656 if (isGlobal) {
657 // Abbrev for CST_CODE_AGGREGATE.
658 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
659 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
662 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
664 // Abbrev for CST_CODE_STRING.
665 Abbv = new BitCodeAbbrev();
666 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
669 String8Abbrev = Stream.EmitAbbrev(Abbv);
670 // Abbrev for CST_CODE_CSTRING.
671 Abbv = new BitCodeAbbrev();
672 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
675 CString7Abbrev = Stream.EmitAbbrev(Abbv);
676 // Abbrev for CST_CODE_CSTRING.
677 Abbv = new BitCodeAbbrev();
678 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
681 CString6Abbrev = Stream.EmitAbbrev(Abbv);
684 SmallVector<uint64_t, 64> Record;
686 const ValueEnumerator::ValueList &Vals = VE.getValues();
687 const Type *LastTy = 0;
688 for (unsigned i = FirstVal; i != LastVal; ++i) {
689 const Value *V = Vals[i].first;
690 // If we need to switch types, do so now.
691 if (V->getType() != LastTy) {
692 LastTy = V->getType();
693 Record.push_back(VE.getTypeID(LastTy));
694 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
695 CONSTANTS_SETTYPE_ABBREV);
696 Record.clear();
699 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
700 Record.push_back(unsigned(IA->hasSideEffects()) |
701 unsigned(IA->isAlignStack()) << 1);
703 // Add the asm string.
704 const std::string &AsmStr = IA->getAsmString();
705 Record.push_back(AsmStr.size());
706 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
707 Record.push_back(AsmStr[i]);
709 // Add the constraint string.
710 const std::string &ConstraintStr = IA->getConstraintString();
711 Record.push_back(ConstraintStr.size());
712 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
713 Record.push_back(ConstraintStr[i]);
714 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
715 Record.clear();
716 continue;
718 const Constant *C = cast<Constant>(V);
719 unsigned Code = -1U;
720 unsigned AbbrevToUse = 0;
721 if (C->isNullValue()) {
722 Code = bitc::CST_CODE_NULL;
723 } else if (isa<UndefValue>(C)) {
724 Code = bitc::CST_CODE_UNDEF;
725 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
726 if (IV->getBitWidth() <= 64) {
727 uint64_t V = IV->getSExtValue();
728 if ((int64_t)V >= 0)
729 Record.push_back(V << 1);
730 else
731 Record.push_back((-V << 1) | 1);
732 Code = bitc::CST_CODE_INTEGER;
733 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
734 } else { // Wide integers, > 64 bits in size.
735 // We have an arbitrary precision integer value to write whose
736 // bit width is > 64. However, in canonical unsigned integer
737 // format it is likely that the high bits are going to be zero.
738 // So, we only write the number of active words.
739 unsigned NWords = IV->getValue().getActiveWords();
740 const uint64_t *RawWords = IV->getValue().getRawData();
741 for (unsigned i = 0; i != NWords; ++i) {
742 int64_t V = RawWords[i];
743 if (V >= 0)
744 Record.push_back(V << 1);
745 else
746 Record.push_back((-V << 1) | 1);
748 Code = bitc::CST_CODE_WIDE_INTEGER;
750 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
751 Code = bitc::CST_CODE_FLOAT;
752 const Type *Ty = CFP->getType();
753 if (Ty->isFloatTy() || Ty->isDoubleTy()) {
754 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
755 } else if (Ty->isX86_FP80Ty()) {
756 // api needed to prevent premature destruction
757 // bits are not in the same order as a normal i80 APInt, compensate.
758 APInt api = CFP->getValueAPF().bitcastToAPInt();
759 const uint64_t *p = api.getRawData();
760 Record.push_back((p[1] << 48) | (p[0] >> 16));
761 Record.push_back(p[0] & 0xffffLL);
762 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
763 APInt api = CFP->getValueAPF().bitcastToAPInt();
764 const uint64_t *p = api.getRawData();
765 Record.push_back(p[0]);
766 Record.push_back(p[1]);
767 } else {
768 assert (0 && "Unknown FP type!");
770 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
771 const ConstantArray *CA = cast<ConstantArray>(C);
772 // Emit constant strings specially.
773 unsigned NumOps = CA->getNumOperands();
774 // If this is a null-terminated string, use the denser CSTRING encoding.
775 if (CA->getOperand(NumOps-1)->isNullValue()) {
776 Code = bitc::CST_CODE_CSTRING;
777 --NumOps; // Don't encode the null, which isn't allowed by char6.
778 } else {
779 Code = bitc::CST_CODE_STRING;
780 AbbrevToUse = String8Abbrev;
782 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
783 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
784 for (unsigned i = 0; i != NumOps; ++i) {
785 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
786 Record.push_back(V);
787 isCStr7 &= (V & 128) == 0;
788 if (isCStrChar6)
789 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
792 if (isCStrChar6)
793 AbbrevToUse = CString6Abbrev;
794 else if (isCStr7)
795 AbbrevToUse = CString7Abbrev;
796 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
797 isa<ConstantVector>(V)) {
798 Code = bitc::CST_CODE_AGGREGATE;
799 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
800 Record.push_back(VE.getValueID(C->getOperand(i)));
801 AbbrevToUse = AggregateAbbrev;
802 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
803 switch (CE->getOpcode()) {
804 default:
805 if (Instruction::isCast(CE->getOpcode())) {
806 Code = bitc::CST_CODE_CE_CAST;
807 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
808 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
809 Record.push_back(VE.getValueID(C->getOperand(0)));
810 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
811 } else {
812 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
813 Code = bitc::CST_CODE_CE_BINOP;
814 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
815 Record.push_back(VE.getValueID(C->getOperand(0)));
816 Record.push_back(VE.getValueID(C->getOperand(1)));
817 uint64_t Flags = GetOptimizationFlags(CE);
818 if (Flags != 0)
819 Record.push_back(Flags);
821 break;
822 case Instruction::GetElementPtr:
823 Code = bitc::CST_CODE_CE_GEP;
824 if (cast<GEPOperator>(C)->isInBounds())
825 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
826 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
827 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
828 Record.push_back(VE.getValueID(C->getOperand(i)));
830 break;
831 case Instruction::Select:
832 Code = bitc::CST_CODE_CE_SELECT;
833 Record.push_back(VE.getValueID(C->getOperand(0)));
834 Record.push_back(VE.getValueID(C->getOperand(1)));
835 Record.push_back(VE.getValueID(C->getOperand(2)));
836 break;
837 case Instruction::ExtractElement:
838 Code = bitc::CST_CODE_CE_EXTRACTELT;
839 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
840 Record.push_back(VE.getValueID(C->getOperand(0)));
841 Record.push_back(VE.getValueID(C->getOperand(1)));
842 break;
843 case Instruction::InsertElement:
844 Code = bitc::CST_CODE_CE_INSERTELT;
845 Record.push_back(VE.getValueID(C->getOperand(0)));
846 Record.push_back(VE.getValueID(C->getOperand(1)));
847 Record.push_back(VE.getValueID(C->getOperand(2)));
848 break;
849 case Instruction::ShuffleVector:
850 // If the return type and argument types are the same, this is a
851 // standard shufflevector instruction. If the types are different,
852 // then the shuffle is widening or truncating the input vectors, and
853 // the argument type must also be encoded.
854 if (C->getType() == C->getOperand(0)->getType()) {
855 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
856 } else {
857 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
858 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
860 Record.push_back(VE.getValueID(C->getOperand(0)));
861 Record.push_back(VE.getValueID(C->getOperand(1)));
862 Record.push_back(VE.getValueID(C->getOperand(2)));
863 break;
864 case Instruction::ICmp:
865 case Instruction::FCmp:
866 Code = bitc::CST_CODE_CE_CMP;
867 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
868 Record.push_back(VE.getValueID(C->getOperand(0)));
869 Record.push_back(VE.getValueID(C->getOperand(1)));
870 Record.push_back(CE->getPredicate());
871 break;
873 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
874 Code = bitc::CST_CODE_BLOCKADDRESS;
875 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
876 Record.push_back(VE.getValueID(BA->getFunction()));
877 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
878 } else {
879 #ifndef NDEBUG
880 C->dump();
881 #endif
882 llvm_unreachable("Unknown constant!");
884 Stream.EmitRecord(Code, Record, AbbrevToUse);
885 Record.clear();
888 Stream.ExitBlock();
891 static void WriteModuleConstants(const ValueEnumerator &VE,
892 BitstreamWriter &Stream) {
893 const ValueEnumerator::ValueList &Vals = VE.getValues();
895 // Find the first constant to emit, which is the first non-globalvalue value.
896 // We know globalvalues have been emitted by WriteModuleInfo.
897 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
898 if (!isa<GlobalValue>(Vals[i].first)) {
899 WriteConstants(i, Vals.size(), VE, Stream, true);
900 return;
905 /// PushValueAndType - The file has to encode both the value and type id for
906 /// many values, because we need to know what type to create for forward
907 /// references. However, most operands are not forward references, so this type
908 /// field is not needed.
910 /// This function adds V's value ID to Vals. If the value ID is higher than the
911 /// instruction ID, then it is a forward reference, and it also includes the
912 /// type ID.
913 static bool PushValueAndType(const Value *V, unsigned InstID,
914 SmallVector<unsigned, 64> &Vals,
915 ValueEnumerator &VE) {
916 unsigned ValID = VE.getValueID(V);
917 Vals.push_back(ValID);
918 if (ValID >= InstID) {
919 Vals.push_back(VE.getTypeID(V->getType()));
920 return true;
922 return false;
925 /// WriteInstruction - Emit an instruction to the specified stream.
926 static void WriteInstruction(const Instruction &I, unsigned InstID,
927 ValueEnumerator &VE, BitstreamWriter &Stream,
928 SmallVector<unsigned, 64> &Vals) {
929 unsigned Code = 0;
930 unsigned AbbrevToUse = 0;
931 VE.setInstructionID(&I);
932 switch (I.getOpcode()) {
933 default:
934 if (Instruction::isCast(I.getOpcode())) {
935 Code = bitc::FUNC_CODE_INST_CAST;
936 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
937 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
938 Vals.push_back(VE.getTypeID(I.getType()));
939 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
940 } else {
941 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
942 Code = bitc::FUNC_CODE_INST_BINOP;
943 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
944 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
945 Vals.push_back(VE.getValueID(I.getOperand(1)));
946 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
947 uint64_t Flags = GetOptimizationFlags(&I);
948 if (Flags != 0) {
949 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
950 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
951 Vals.push_back(Flags);
954 break;
956 case Instruction::GetElementPtr:
957 Code = bitc::FUNC_CODE_INST_GEP;
958 if (cast<GEPOperator>(&I)->isInBounds())
959 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
960 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
961 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
962 break;
963 case Instruction::ExtractValue: {
964 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
965 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
966 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
967 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
968 Vals.push_back(*i);
969 break;
971 case Instruction::InsertValue: {
972 Code = bitc::FUNC_CODE_INST_INSERTVAL;
973 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
974 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
975 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
976 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
977 Vals.push_back(*i);
978 break;
980 case Instruction::Select:
981 Code = bitc::FUNC_CODE_INST_VSELECT;
982 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
983 Vals.push_back(VE.getValueID(I.getOperand(2)));
984 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
985 break;
986 case Instruction::ExtractElement:
987 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
988 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
989 Vals.push_back(VE.getValueID(I.getOperand(1)));
990 break;
991 case Instruction::InsertElement:
992 Code = bitc::FUNC_CODE_INST_INSERTELT;
993 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
994 Vals.push_back(VE.getValueID(I.getOperand(1)));
995 Vals.push_back(VE.getValueID(I.getOperand(2)));
996 break;
997 case Instruction::ShuffleVector:
998 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
999 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1000 Vals.push_back(VE.getValueID(I.getOperand(1)));
1001 Vals.push_back(VE.getValueID(I.getOperand(2)));
1002 break;
1003 case Instruction::ICmp:
1004 case Instruction::FCmp:
1005 // compare returning Int1Ty or vector of Int1Ty
1006 Code = bitc::FUNC_CODE_INST_CMP2;
1007 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1008 Vals.push_back(VE.getValueID(I.getOperand(1)));
1009 Vals.push_back(cast<CmpInst>(I).getPredicate());
1010 break;
1012 case Instruction::Ret:
1014 Code = bitc::FUNC_CODE_INST_RET;
1015 unsigned NumOperands = I.getNumOperands();
1016 if (NumOperands == 0)
1017 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1018 else if (NumOperands == 1) {
1019 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1020 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1021 } else {
1022 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1023 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1026 break;
1027 case Instruction::Br:
1029 Code = bitc::FUNC_CODE_INST_BR;
1030 BranchInst &II = cast<BranchInst>(I);
1031 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1032 if (II.isConditional()) {
1033 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1034 Vals.push_back(VE.getValueID(II.getCondition()));
1037 break;
1038 case Instruction::Switch:
1039 Code = bitc::FUNC_CODE_INST_SWITCH;
1040 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1041 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1042 Vals.push_back(VE.getValueID(I.getOperand(i)));
1043 break;
1044 case Instruction::IndirectBr:
1045 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1046 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1047 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1048 Vals.push_back(VE.getValueID(I.getOperand(i)));
1049 break;
1051 case Instruction::Invoke: {
1052 const InvokeInst *II = cast<InvokeInst>(&I);
1053 const Value *Callee(II->getCalledValue());
1054 const PointerType *PTy = cast<PointerType>(Callee->getType());
1055 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1056 Code = bitc::FUNC_CODE_INST_INVOKE;
1058 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1059 Vals.push_back(II->getCallingConv());
1060 Vals.push_back(VE.getValueID(II->getNormalDest()));
1061 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1062 PushValueAndType(Callee, InstID, Vals, VE);
1064 // Emit value #'s for the fixed parameters.
1065 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1066 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param.
1068 // Emit type/value pairs for varargs params.
1069 if (FTy->isVarArg()) {
1070 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1071 i != e; ++i)
1072 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1074 break;
1076 case Instruction::Unwind:
1077 Code = bitc::FUNC_CODE_INST_UNWIND;
1078 break;
1079 case Instruction::Unreachable:
1080 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1081 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1082 break;
1084 case Instruction::PHI:
1085 Code = bitc::FUNC_CODE_INST_PHI;
1086 Vals.push_back(VE.getTypeID(I.getType()));
1087 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1088 Vals.push_back(VE.getValueID(I.getOperand(i)));
1089 break;
1091 case Instruction::Alloca:
1092 Code = bitc::FUNC_CODE_INST_ALLOCA;
1093 Vals.push_back(VE.getTypeID(I.getType()));
1094 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1095 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1096 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1097 break;
1099 case Instruction::Load:
1100 Code = bitc::FUNC_CODE_INST_LOAD;
1101 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1102 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1104 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1105 Vals.push_back(cast<LoadInst>(I).isVolatile());
1106 break;
1107 case Instruction::Store:
1108 Code = bitc::FUNC_CODE_INST_STORE2;
1109 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1110 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1111 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1112 Vals.push_back(cast<StoreInst>(I).isVolatile());
1113 break;
1114 case Instruction::Call: {
1115 const CallInst &CI = cast<CallInst>(I);
1116 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1117 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1119 Code = bitc::FUNC_CODE_INST_CALL2;
1121 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1122 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1123 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1125 // Emit value #'s for the fixed parameters.
1126 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1127 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param.
1129 // Emit type/value pairs for varargs params.
1130 if (FTy->isVarArg()) {
1131 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1132 i != e; ++i)
1133 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1135 break;
1137 case Instruction::VAArg:
1138 Code = bitc::FUNC_CODE_INST_VAARG;
1139 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1140 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1141 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1142 break;
1145 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1146 Vals.clear();
1149 // Emit names for globals/functions etc.
1150 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1151 const ValueEnumerator &VE,
1152 BitstreamWriter &Stream) {
1153 if (VST.empty()) return;
1154 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1156 // FIXME: Set up the abbrev, we know how many values there are!
1157 // FIXME: We know if the type names can use 7-bit ascii.
1158 SmallVector<unsigned, 64> NameVals;
1160 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1161 SI != SE; ++SI) {
1163 const ValueName &Name = *SI;
1165 // Figure out the encoding to use for the name.
1166 bool is7Bit = true;
1167 bool isChar6 = true;
1168 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1169 C != E; ++C) {
1170 if (isChar6)
1171 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1172 if ((unsigned char)*C & 128) {
1173 is7Bit = false;
1174 break; // don't bother scanning the rest.
1178 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1180 // VST_ENTRY: [valueid, namechar x N]
1181 // VST_BBENTRY: [bbid, namechar x N]
1182 unsigned Code;
1183 if (isa<BasicBlock>(SI->getValue())) {
1184 Code = bitc::VST_CODE_BBENTRY;
1185 if (isChar6)
1186 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1187 } else {
1188 Code = bitc::VST_CODE_ENTRY;
1189 if (isChar6)
1190 AbbrevToUse = VST_ENTRY_6_ABBREV;
1191 else if (is7Bit)
1192 AbbrevToUse = VST_ENTRY_7_ABBREV;
1195 NameVals.push_back(VE.getValueID(SI->getValue()));
1196 for (const char *P = Name.getKeyData(),
1197 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1198 NameVals.push_back((unsigned char)*P);
1200 // Emit the finished record.
1201 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1202 NameVals.clear();
1204 Stream.ExitBlock();
1207 /// WriteFunction - Emit a function body to the module stream.
1208 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1209 BitstreamWriter &Stream) {
1210 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1211 VE.incorporateFunction(F);
1213 SmallVector<unsigned, 64> Vals;
1215 // Emit the number of basic blocks, so the reader can create them ahead of
1216 // time.
1217 Vals.push_back(VE.getBasicBlocks().size());
1218 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1219 Vals.clear();
1221 // If there are function-local constants, emit them now.
1222 unsigned CstStart, CstEnd;
1223 VE.getFunctionConstantRange(CstStart, CstEnd);
1224 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1226 // If there is function-local metadata, emit it now.
1227 WriteFunctionLocalMetadata(F, VE, Stream);
1229 // Keep a running idea of what the instruction ID is.
1230 unsigned InstID = CstEnd;
1232 bool NeedsMetadataAttachment = false;
1234 DebugLoc LastDL;
1236 // Finally, emit all the instructions, in order.
1237 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1238 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1239 I != E; ++I) {
1240 WriteInstruction(*I, InstID, VE, Stream, Vals);
1242 if (!I->getType()->isVoidTy())
1243 ++InstID;
1245 // If the instruction has metadata, write a metadata attachment later.
1246 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1248 // If the instruction has a debug location, emit it.
1249 DebugLoc DL = I->getDebugLoc();
1250 if (DL.isUnknown()) {
1251 // nothing todo.
1252 } else if (DL == LastDL) {
1253 // Just repeat the same debug loc as last time.
1254 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1255 } else {
1256 MDNode *Scope, *IA;
1257 DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1259 Vals.push_back(DL.getLine());
1260 Vals.push_back(DL.getCol());
1261 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1262 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1263 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC2, Vals);
1264 Vals.clear();
1266 LastDL = DL;
1270 // Emit names for all the instructions etc.
1271 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1273 if (NeedsMetadataAttachment)
1274 WriteMetadataAttachment(F, VE, Stream);
1275 VE.purgeFunction();
1276 Stream.ExitBlock();
1279 /// WriteTypeSymbolTable - Emit a block for the specified type symtab.
1280 static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
1281 const ValueEnumerator &VE,
1282 BitstreamWriter &Stream) {
1283 if (TST.empty()) return;
1285 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
1287 // 7-bit fixed width VST_CODE_ENTRY strings.
1288 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1289 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1291 Log2_32_Ceil(VE.getTypes().size()+1)));
1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1294 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1296 SmallVector<unsigned, 64> NameVals;
1298 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1299 TI != TE; ++TI) {
1300 // TST_ENTRY: [typeid, namechar x N]
1301 NameVals.push_back(VE.getTypeID(TI->second));
1303 const std::string &Str = TI->first;
1304 bool is7Bit = true;
1305 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1306 NameVals.push_back((unsigned char)Str[i]);
1307 if (Str[i] & 128)
1308 is7Bit = false;
1311 // Emit the finished record.
1312 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1313 NameVals.clear();
1316 Stream.ExitBlock();
1319 // Emit blockinfo, which defines the standard abbreviations etc.
1320 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1321 // We only want to emit block info records for blocks that have multiple
1322 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1323 // blocks can defined their abbrevs inline.
1324 Stream.EnterBlockInfoBlock(2);
1326 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1327 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1332 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1333 Abbv) != VST_ENTRY_8_ABBREV)
1334 llvm_unreachable("Unexpected abbrev ordering!");
1337 { // 7-bit fixed width VST_ENTRY strings.
1338 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1339 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1343 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1344 Abbv) != VST_ENTRY_7_ABBREV)
1345 llvm_unreachable("Unexpected abbrev ordering!");
1347 { // 6-bit char6 VST_ENTRY strings.
1348 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1349 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1353 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1354 Abbv) != VST_ENTRY_6_ABBREV)
1355 llvm_unreachable("Unexpected abbrev ordering!");
1357 { // 6-bit char6 VST_BBENTRY strings.
1358 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1359 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1363 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1364 Abbv) != VST_BBENTRY_6_ABBREV)
1365 llvm_unreachable("Unexpected abbrev ordering!");
1370 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1371 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1372 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1374 Log2_32_Ceil(VE.getTypes().size()+1)));
1375 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1376 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1377 llvm_unreachable("Unexpected abbrev ordering!");
1380 { // INTEGER abbrev for CONSTANTS_BLOCK.
1381 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1382 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1384 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1385 Abbv) != CONSTANTS_INTEGER_ABBREV)
1386 llvm_unreachable("Unexpected abbrev ordering!");
1389 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1390 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1391 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1394 Log2_32_Ceil(VE.getTypes().size()+1)));
1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1397 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1398 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1399 llvm_unreachable("Unexpected abbrev ordering!");
1401 { // NULL abbrev for CONSTANTS_BLOCK.
1402 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1403 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1404 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1405 Abbv) != CONSTANTS_NULL_Abbrev)
1406 llvm_unreachable("Unexpected abbrev ordering!");
1409 // FIXME: This should only use space for first class types!
1411 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1412 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1417 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1418 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1419 llvm_unreachable("Unexpected abbrev ordering!");
1421 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1422 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1423 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1427 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1428 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1429 llvm_unreachable("Unexpected abbrev ordering!");
1431 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1432 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1433 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1438 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1439 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1440 llvm_unreachable("Unexpected abbrev ordering!");
1442 { // INST_CAST abbrev for FUNCTION_BLOCK.
1443 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1444 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1447 Log2_32_Ceil(VE.getTypes().size()+1)));
1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1449 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1450 Abbv) != FUNCTION_INST_CAST_ABBREV)
1451 llvm_unreachable("Unexpected abbrev ordering!");
1454 { // INST_RET abbrev for FUNCTION_BLOCK.
1455 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1456 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1457 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1458 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1459 llvm_unreachable("Unexpected abbrev ordering!");
1461 { // INST_RET abbrev for FUNCTION_BLOCK.
1462 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1463 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1465 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1466 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1467 llvm_unreachable("Unexpected abbrev ordering!");
1469 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1470 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1471 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1472 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1473 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1474 llvm_unreachable("Unexpected abbrev ordering!");
1477 Stream.ExitBlock();
1481 /// WriteModule - Emit the specified module to the bitstream.
1482 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1483 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1485 // Emit the version number if it is non-zero.
1486 if (CurVersion) {
1487 SmallVector<unsigned, 1> Vals;
1488 Vals.push_back(CurVersion);
1489 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1492 // Analyze the module, enumerating globals, functions, etc.
1493 ValueEnumerator VE(M);
1495 // Emit blockinfo, which defines the standard abbreviations etc.
1496 WriteBlockInfo(VE, Stream);
1498 // Emit information about parameter attributes.
1499 WriteAttributeTable(VE, Stream);
1501 // Emit information describing all of the types in the module.
1502 WriteTypeTable(VE, Stream);
1504 // Emit top-level description of module, including target triple, inline asm,
1505 // descriptors for global variables, and function prototype info.
1506 WriteModuleInfo(M, VE, Stream);
1508 // Emit constants.
1509 WriteModuleConstants(VE, Stream);
1511 // Emit metadata.
1512 WriteModuleMetadata(M, VE, Stream);
1514 // Emit function bodies.
1515 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1516 if (!I->isDeclaration())
1517 WriteFunction(*I, VE, Stream);
1519 // Emit metadata.
1520 WriteModuleMetadataStore(M, Stream);
1522 // Emit the type symbol table information.
1523 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1525 // Emit names for globals/functions etc.
1526 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1528 Stream.ExitBlock();
1531 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1532 /// header and trailer to make it compatible with the system archiver. To do
1533 /// this we emit the following header, and then emit a trailer that pads the
1534 /// file out to be a multiple of 16 bytes.
1536 /// struct bc_header {
1537 /// uint32_t Magic; // 0x0B17C0DE
1538 /// uint32_t Version; // Version, currently always 0.
1539 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1540 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1541 /// uint32_t CPUType; // CPU specifier.
1542 /// ... potentially more later ...
1543 /// };
1544 enum {
1545 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1546 DarwinBCHeaderSize = 5*4
1549 /// isARMTriplet - Return true if the triplet looks like:
1550 /// arm-*, thumb-*, armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*.
1551 static bool isARMTriplet(const std::string &TT) {
1552 size_t Pos = 0;
1553 size_t Size = TT.size();
1554 if (Size >= 6 &&
1555 TT[0] == 't' && TT[1] == 'h' && TT[2] == 'u' &&
1556 TT[3] == 'm' && TT[4] == 'b')
1557 Pos = 5;
1558 else if (Size >= 4 && TT[0] == 'a' && TT[1] == 'r' && TT[2] == 'm')
1559 Pos = 3;
1560 else
1561 return false;
1563 if (TT[Pos] == '-')
1564 return true;
1565 else if (TT[Pos] == 'v') {
1566 if (Size >= Pos+4 &&
1567 TT[Pos+1] == '6' && TT[Pos+2] == 't' && TT[Pos+3] == '2')
1568 return true;
1569 else if (Size >= Pos+4 &&
1570 TT[Pos+1] == '5' && TT[Pos+2] == 't' && TT[Pos+3] == 'e')
1571 return true;
1572 } else
1573 return false;
1574 while (++Pos < Size && TT[Pos] != '-') {
1575 if (!isdigit(TT[Pos]))
1576 return false;
1578 return true;
1581 static void EmitDarwinBCHeader(BitstreamWriter &Stream,
1582 const std::string &TT) {
1583 unsigned CPUType = ~0U;
1585 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1586 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1587 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1588 // specific constants here because they are implicitly part of the Darwin ABI.
1589 enum {
1590 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1591 DARWIN_CPU_TYPE_X86 = 7,
1592 DARWIN_CPU_TYPE_ARM = 12,
1593 DARWIN_CPU_TYPE_POWERPC = 18
1596 if (TT.find("x86_64-") == 0)
1597 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1598 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
1599 TT[4] == '-' && TT[1] - '3' < 6)
1600 CPUType = DARWIN_CPU_TYPE_X86;
1601 else if (TT.find("powerpc-") == 0)
1602 CPUType = DARWIN_CPU_TYPE_POWERPC;
1603 else if (TT.find("powerpc64-") == 0)
1604 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1605 else if (isARMTriplet(TT))
1606 CPUType = DARWIN_CPU_TYPE_ARM;
1608 // Traditional Bitcode starts after header.
1609 unsigned BCOffset = DarwinBCHeaderSize;
1611 Stream.Emit(0x0B17C0DE, 32);
1612 Stream.Emit(0 , 32); // Version.
1613 Stream.Emit(BCOffset , 32);
1614 Stream.Emit(0 , 32); // Filled in later.
1615 Stream.Emit(CPUType , 32);
1618 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1619 /// finalize the header.
1620 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1621 // Update the size field in the header.
1622 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1624 // If the file is not a multiple of 16 bytes, insert dummy padding.
1625 while (BufferSize & 15) {
1626 Stream.Emit(0, 8);
1627 ++BufferSize;
1632 /// WriteBitcodeToFile - Write the specified module to the specified output
1633 /// stream.
1634 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1635 std::vector<unsigned char> Buffer;
1636 BitstreamWriter Stream(Buffer);
1638 Buffer.reserve(256*1024);
1640 WriteBitcodeToStream( M, Stream );
1642 // Write the generated bitstream to "Out".
1643 Out.write((char*)&Buffer.front(), Buffer.size());
1646 /// WriteBitcodeToStream - Write the specified module to the specified output
1647 /// stream.
1648 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1649 // If this is darwin or another generic macho target, emit a file header and
1650 // trailer if needed.
1651 bool isMacho =
1652 M->getTargetTriple().find("-darwin") != std::string::npos ||
1653 M->getTargetTriple().find("-macho") != std::string::npos;
1654 if (isMacho)
1655 EmitDarwinBCHeader(Stream, M->getTargetTriple());
1657 // Emit the file header.
1658 Stream.Emit((unsigned)'B', 8);
1659 Stream.Emit((unsigned)'C', 8);
1660 Stream.Emit(0x0, 4);
1661 Stream.Emit(0xC, 4);
1662 Stream.Emit(0xE, 4);
1663 Stream.Emit(0xD, 4);
1665 // Emit the module.
1666 WriteModule(M, Stream);
1668 if (isMacho)
1669 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());