Revert r131155 for now. It makes VMCore depend on Analysis and Transforms
[llvm/stm8.git] / lib / Transforms / InstCombine / InstCombineMulDivRem.cpp
blobc4dee6a6f004f2ec720684aa6b78b0864b931e1c
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11 // srem, urem, frem.
13 //===----------------------------------------------------------------------===//
15 #include "InstCombine.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
22 /// MultiplyOverflows - True if the multiply can not be expressed in an int
23 /// this size.
24 static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
25 uint32_t W = C1->getBitWidth();
26 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
27 if (sign) {
28 LHSExt = LHSExt.sext(W * 2);
29 RHSExt = RHSExt.sext(W * 2);
30 } else {
31 LHSExt = LHSExt.zext(W * 2);
32 RHSExt = RHSExt.zext(W * 2);
35 APInt MulExt = LHSExt * RHSExt;
37 if (!sign)
38 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
40 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
41 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
42 return MulExt.slt(Min) || MulExt.sgt(Max);
45 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
46 bool Changed = SimplifyAssociativeOrCommutative(I);
47 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
49 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
50 return ReplaceInstUsesWith(I, V);
52 if (Value *V = SimplifyUsingDistributiveLaws(I))
53 return ReplaceInstUsesWith(I, V);
55 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
56 return BinaryOperator::CreateNeg(Op0, I.getName());
58 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
60 // ((X << C1)*C2) == (X * (C2 << C1))
61 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
62 if (SI->getOpcode() == Instruction::Shl)
63 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
64 return BinaryOperator::CreateMul(SI->getOperand(0),
65 ConstantExpr::getShl(CI, ShOp));
67 const APInt &Val = CI->getValue();
68 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
69 Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
70 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
71 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
72 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
73 return Shl;
76 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
77 { Value *X; ConstantInt *C1;
78 if (Op0->hasOneUse() &&
79 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
80 Value *Add = Builder->CreateMul(X, CI, "tmp");
81 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
86 // Simplify mul instructions with a constant RHS.
87 if (isa<Constant>(Op1)) {
88 // Try to fold constant mul into select arguments.
89 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
90 if (Instruction *R = FoldOpIntoSelect(I, SI))
91 return R;
93 if (isa<PHINode>(Op0))
94 if (Instruction *NV = FoldOpIntoPhi(I))
95 return NV;
98 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
99 if (Value *Op1v = dyn_castNegVal(Op1))
100 return BinaryOperator::CreateMul(Op0v, Op1v);
102 // (X / Y) * Y = X - (X % Y)
103 // (X / Y) * -Y = (X % Y) - X
105 Value *Op1C = Op1;
106 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
107 if (!BO ||
108 (BO->getOpcode() != Instruction::UDiv &&
109 BO->getOpcode() != Instruction::SDiv)) {
110 Op1C = Op0;
111 BO = dyn_cast<BinaryOperator>(Op1);
113 Value *Neg = dyn_castNegVal(Op1C);
114 if (BO && BO->hasOneUse() &&
115 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
116 (BO->getOpcode() == Instruction::UDiv ||
117 BO->getOpcode() == Instruction::SDiv)) {
118 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
120 // If the division is exact, X % Y is zero, so we end up with X or -X.
121 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
122 if (SDiv->isExact()) {
123 if (Op1BO == Op1C)
124 return ReplaceInstUsesWith(I, Op0BO);
125 return BinaryOperator::CreateNeg(Op0BO);
128 Value *Rem;
129 if (BO->getOpcode() == Instruction::UDiv)
130 Rem = Builder->CreateURem(Op0BO, Op1BO);
131 else
132 Rem = Builder->CreateSRem(Op0BO, Op1BO);
133 Rem->takeName(BO);
135 if (Op1BO == Op1C)
136 return BinaryOperator::CreateSub(Op0BO, Rem);
137 return BinaryOperator::CreateSub(Rem, Op0BO);
141 /// i1 mul -> i1 and.
142 if (I.getType()->isIntegerTy(1))
143 return BinaryOperator::CreateAnd(Op0, Op1);
145 // X*(1 << Y) --> X << Y
146 // (1 << Y)*X --> X << Y
148 Value *Y;
149 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
150 return BinaryOperator::CreateShl(Op1, Y);
151 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
152 return BinaryOperator::CreateShl(Op0, Y);
155 // If one of the operands of the multiply is a cast from a boolean value, then
156 // we know the bool is either zero or one, so this is a 'masking' multiply.
157 // X * Y (where Y is 0 or 1) -> X & (0-Y)
158 if (!I.getType()->isVectorTy()) {
159 // -2 is "-1 << 1" so it is all bits set except the low one.
160 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
162 Value *BoolCast = 0, *OtherOp = 0;
163 if (MaskedValueIsZero(Op0, Negative2))
164 BoolCast = Op0, OtherOp = Op1;
165 else if (MaskedValueIsZero(Op1, Negative2))
166 BoolCast = Op1, OtherOp = Op0;
168 if (BoolCast) {
169 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
170 BoolCast, "tmp");
171 return BinaryOperator::CreateAnd(V, OtherOp);
175 return Changed ? &I : 0;
178 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
179 bool Changed = SimplifyAssociativeOrCommutative(I);
180 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
182 // Simplify mul instructions with a constant RHS...
183 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
184 if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
185 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
186 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
187 if (Op1F->isExactlyValue(1.0))
188 return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
189 } else if (Op1C->getType()->isVectorTy()) {
190 if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
191 // As above, vector X*splat(1.0) -> X in all defined cases.
192 if (Constant *Splat = Op1V->getSplatValue()) {
193 if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
194 if (F->isExactlyValue(1.0))
195 return ReplaceInstUsesWith(I, Op0);
200 // Try to fold constant mul into select arguments.
201 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
202 if (Instruction *R = FoldOpIntoSelect(I, SI))
203 return R;
205 if (isa<PHINode>(Op0))
206 if (Instruction *NV = FoldOpIntoPhi(I))
207 return NV;
210 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
211 if (Value *Op1v = dyn_castFNegVal(Op1))
212 return BinaryOperator::CreateFMul(Op0v, Op1v);
214 return Changed ? &I : 0;
217 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
218 /// instruction.
219 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
220 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
222 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
223 int NonNullOperand = -1;
224 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
225 if (ST->isNullValue())
226 NonNullOperand = 2;
227 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
228 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
229 if (ST->isNullValue())
230 NonNullOperand = 1;
232 if (NonNullOperand == -1)
233 return false;
235 Value *SelectCond = SI->getOperand(0);
237 // Change the div/rem to use 'Y' instead of the select.
238 I.setOperand(1, SI->getOperand(NonNullOperand));
240 // Okay, we know we replace the operand of the div/rem with 'Y' with no
241 // problem. However, the select, or the condition of the select may have
242 // multiple uses. Based on our knowledge that the operand must be non-zero,
243 // propagate the known value for the select into other uses of it, and
244 // propagate a known value of the condition into its other users.
246 // If the select and condition only have a single use, don't bother with this,
247 // early exit.
248 if (SI->use_empty() && SelectCond->hasOneUse())
249 return true;
251 // Scan the current block backward, looking for other uses of SI.
252 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
254 while (BBI != BBFront) {
255 --BBI;
256 // If we found a call to a function, we can't assume it will return, so
257 // information from below it cannot be propagated above it.
258 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
259 break;
261 // Replace uses of the select or its condition with the known values.
262 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
263 I != E; ++I) {
264 if (*I == SI) {
265 *I = SI->getOperand(NonNullOperand);
266 Worklist.Add(BBI);
267 } else if (*I == SelectCond) {
268 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
269 ConstantInt::getFalse(BBI->getContext());
270 Worklist.Add(BBI);
274 // If we past the instruction, quit looking for it.
275 if (&*BBI == SI)
276 SI = 0;
277 if (&*BBI == SelectCond)
278 SelectCond = 0;
280 // If we ran out of things to eliminate, break out of the loop.
281 if (SelectCond == 0 && SI == 0)
282 break;
285 return true;
289 /// This function implements the transforms common to both integer division
290 /// instructions (udiv and sdiv). It is called by the visitors to those integer
291 /// division instructions.
292 /// @brief Common integer divide transforms
293 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
294 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
296 // Handle cases involving: [su]div X, (select Cond, Y, Z)
297 // This does not apply for fdiv.
298 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
299 return &I;
301 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
302 // (X / C1) / C2 -> X / (C1*C2)
303 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
304 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
305 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
306 if (MultiplyOverflows(RHS, LHSRHS,
307 I.getOpcode()==Instruction::SDiv))
308 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
309 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
310 ConstantExpr::getMul(RHS, LHSRHS));
313 if (!RHS->isZero()) { // avoid X udiv 0
314 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
315 if (Instruction *R = FoldOpIntoSelect(I, SI))
316 return R;
317 if (isa<PHINode>(Op0))
318 if (Instruction *NV = FoldOpIntoPhi(I))
319 return NV;
323 // See if we can fold away this div instruction.
324 if (SimplifyDemandedInstructionBits(I))
325 return &I;
327 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
328 Value *X = 0, *Z = 0;
329 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
330 bool isSigned = I.getOpcode() == Instruction::SDiv;
331 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
332 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
333 return BinaryOperator::Create(I.getOpcode(), X, Op1);
336 return 0;
339 /// dyn_castZExtVal - Checks if V is a zext or constant that can
340 /// be truncated to Ty without losing bits.
341 static Value *dyn_castZExtVal(Value *V, const Type *Ty) {
342 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
343 if (Z->getSrcTy() == Ty)
344 return Z->getOperand(0);
345 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
346 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
347 return ConstantExpr::getTrunc(C, Ty);
349 return 0;
352 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
353 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
355 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
356 return ReplaceInstUsesWith(I, V);
358 // Handle the integer div common cases
359 if (Instruction *Common = commonIDivTransforms(I))
360 return Common;
362 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
363 // X udiv 2^C -> X >> C
364 // Check to see if this is an unsigned division with an exact power of 2,
365 // if so, convert to a right shift.
366 if (C->getValue().isPowerOf2()) { // 0 not included in isPowerOf2
367 BinaryOperator *LShr =
368 BinaryOperator::CreateLShr(Op0,
369 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
370 if (I.isExact()) LShr->setIsExact();
371 return LShr;
374 // X udiv C, where C >= signbit
375 if (C->getValue().isNegative()) {
376 Value *IC = Builder->CreateICmpULT(Op0, C);
377 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
378 ConstantInt::get(I.getType(), 1));
382 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
383 { const APInt *CI; Value *N;
384 if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) {
385 if (*CI != 1)
386 N = Builder->CreateAdd(N, ConstantInt::get(I.getType(), CI->logBase2()),
387 "tmp");
388 if (I.isExact())
389 return BinaryOperator::CreateExactLShr(Op0, N);
390 return BinaryOperator::CreateLShr(Op0, N);
394 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
395 // where C1&C2 are powers of two.
396 { Value *Cond; const APInt *C1, *C2;
397 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
398 // Construct the "on true" case of the select
399 Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
400 I.isExact());
402 // Construct the "on false" case of the select
403 Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
404 I.isExact());
406 // construct the select instruction and return it.
407 return SelectInst::Create(Cond, TSI, FSI);
411 // (zext A) udiv (zext B) --> zext (A udiv B)
412 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
413 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
414 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
415 I.isExact()),
416 I.getType());
418 return 0;
421 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
422 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
424 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
425 return ReplaceInstUsesWith(I, V);
427 // Handle the integer div common cases
428 if (Instruction *Common = commonIDivTransforms(I))
429 return Common;
431 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
432 // sdiv X, -1 == -X
433 if (RHS->isAllOnesValue())
434 return BinaryOperator::CreateNeg(Op0);
436 // sdiv X, C --> ashr exact X, log2(C)
437 if (I.isExact() && RHS->getValue().isNonNegative() &&
438 RHS->getValue().isPowerOf2()) {
439 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
440 RHS->getValue().exactLogBase2());
441 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
444 // -X/C --> X/-C provided the negation doesn't overflow.
445 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
446 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
447 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
448 ConstantExpr::getNeg(RHS));
451 // If the sign bits of both operands are zero (i.e. we can prove they are
452 // unsigned inputs), turn this into a udiv.
453 if (I.getType()->isIntegerTy()) {
454 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
455 if (MaskedValueIsZero(Op0, Mask)) {
456 if (MaskedValueIsZero(Op1, Mask)) {
457 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
458 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
461 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
462 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
463 // Safe because the only negative value (1 << Y) can take on is
464 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
465 // the sign bit set.
466 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
471 return 0;
474 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
475 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
477 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
478 return ReplaceInstUsesWith(I, V);
480 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
481 const APFloat &Op1F = Op1C->getValueAPF();
483 // If the divisor has an exact multiplicative inverse we can turn the fdiv
484 // into a cheaper fmul.
485 APFloat Reciprocal(Op1F.getSemantics());
486 if (Op1F.getExactInverse(&Reciprocal)) {
487 ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
488 return BinaryOperator::CreateFMul(Op0, RFP);
492 return 0;
495 /// This function implements the transforms common to both integer remainder
496 /// instructions (urem and srem). It is called by the visitors to those integer
497 /// remainder instructions.
498 /// @brief Common integer remainder transforms
499 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
500 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
502 // Handle cases involving: rem X, (select Cond, Y, Z)
503 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
504 return &I;
506 if (isa<ConstantInt>(Op1)) {
507 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
508 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
509 if (Instruction *R = FoldOpIntoSelect(I, SI))
510 return R;
511 } else if (isa<PHINode>(Op0I)) {
512 if (Instruction *NV = FoldOpIntoPhi(I))
513 return NV;
516 // See if we can fold away this rem instruction.
517 if (SimplifyDemandedInstructionBits(I))
518 return &I;
522 return 0;
525 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
526 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
528 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
529 return ReplaceInstUsesWith(I, V);
531 if (Instruction *common = commonIRemTransforms(I))
532 return common;
534 // X urem C^2 -> X and C-1
535 { const APInt *C;
536 if (match(Op1, m_Power2(C)))
537 return BinaryOperator::CreateAnd(Op0,
538 ConstantInt::get(I.getType(), *C-1));
541 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
542 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
543 Constant *N1 = Constant::getAllOnesValue(I.getType());
544 Value *Add = Builder->CreateAdd(Op1, N1, "tmp");
545 return BinaryOperator::CreateAnd(Op0, Add);
548 // urem X, (select Cond, 2^C1, 2^C2) -->
549 // select Cond, (and X, C1-1), (and X, C2-1)
550 // when C1&C2 are powers of two.
551 { Value *Cond; const APInt *C1, *C2;
552 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
553 Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
554 Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
555 return SelectInst::Create(Cond, TrueAnd, FalseAnd);
559 // (zext A) urem (zext B) --> zext (A urem B)
560 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
561 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
562 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
563 I.getType());
565 return 0;
568 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
569 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
571 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
572 return ReplaceInstUsesWith(I, V);
574 // Handle the integer rem common cases
575 if (Instruction *Common = commonIRemTransforms(I))
576 return Common;
578 if (Value *RHSNeg = dyn_castNegVal(Op1))
579 if (!isa<Constant>(RHSNeg) ||
580 (isa<ConstantInt>(RHSNeg) &&
581 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
582 // X % -Y -> X % Y
583 Worklist.AddValue(I.getOperand(1));
584 I.setOperand(1, RHSNeg);
585 return &I;
588 // If the sign bits of both operands are zero (i.e. we can prove they are
589 // unsigned inputs), turn this into a urem.
590 if (I.getType()->isIntegerTy()) {
591 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
592 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
593 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
594 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
598 // If it's a constant vector, flip any negative values positive.
599 if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
600 unsigned VWidth = RHSV->getNumOperands();
602 bool hasNegative = false;
603 for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
604 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
605 if (RHS->getValue().isNegative())
606 hasNegative = true;
608 if (hasNegative) {
609 std::vector<Constant *> Elts(VWidth);
610 for (unsigned i = 0; i != VWidth; ++i) {
611 if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
612 if (RHS->getValue().isNegative())
613 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
614 else
615 Elts[i] = RHS;
619 Constant *NewRHSV = ConstantVector::get(Elts);
620 if (NewRHSV != RHSV) {
621 Worklist.AddValue(I.getOperand(1));
622 I.setOperand(1, NewRHSV);
623 return &I;
628 return 0;
631 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
632 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
634 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
635 return ReplaceInstUsesWith(I, V);
637 // Handle cases involving: rem X, (select Cond, Y, Z)
638 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
639 return &I;
641 return 0;