1 //===- InstCombineSelect.cpp ----------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitSelect function.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/Support/PatternMatch.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
18 using namespace PatternMatch
;
20 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
21 /// returning the kind and providing the out parameter results if we
22 /// successfully match.
23 static SelectPatternFlavor
24 MatchSelectPattern(Value
*V
, Value
*&LHS
, Value
*&RHS
) {
25 SelectInst
*SI
= dyn_cast
<SelectInst
>(V
);
26 if (SI
== 0) return SPF_UNKNOWN
;
28 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(SI
->getCondition());
29 if (ICI
== 0) return SPF_UNKNOWN
;
31 LHS
= ICI
->getOperand(0);
32 RHS
= ICI
->getOperand(1);
34 // (icmp X, Y) ? X : Y
35 if (SI
->getTrueValue() == ICI
->getOperand(0) &&
36 SI
->getFalseValue() == ICI
->getOperand(1)) {
37 switch (ICI
->getPredicate()) {
38 default: return SPF_UNKNOWN
; // Equality.
39 case ICmpInst::ICMP_UGT
:
40 case ICmpInst::ICMP_UGE
: return SPF_UMAX
;
41 case ICmpInst::ICMP_SGT
:
42 case ICmpInst::ICMP_SGE
: return SPF_SMAX
;
43 case ICmpInst::ICMP_ULT
:
44 case ICmpInst::ICMP_ULE
: return SPF_UMIN
;
45 case ICmpInst::ICMP_SLT
:
46 case ICmpInst::ICMP_SLE
: return SPF_SMIN
;
50 // (icmp X, Y) ? Y : X
51 if (SI
->getTrueValue() == ICI
->getOperand(1) &&
52 SI
->getFalseValue() == ICI
->getOperand(0)) {
53 switch (ICI
->getPredicate()) {
54 default: return SPF_UNKNOWN
; // Equality.
55 case ICmpInst::ICMP_UGT
:
56 case ICmpInst::ICMP_UGE
: return SPF_UMIN
;
57 case ICmpInst::ICMP_SGT
:
58 case ICmpInst::ICMP_SGE
: return SPF_SMIN
;
59 case ICmpInst::ICMP_ULT
:
60 case ICmpInst::ICMP_ULE
: return SPF_UMAX
;
61 case ICmpInst::ICMP_SLT
:
62 case ICmpInst::ICMP_SLE
: return SPF_SMAX
;
66 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
72 /// GetSelectFoldableOperands - We want to turn code that looks like this:
74 /// %D = select %cond, %C, %A
76 /// %C = select %cond, %B, 0
79 /// Assuming that the specified instruction is an operand to the select, return
80 /// a bitmask indicating which operands of this instruction are foldable if they
81 /// equal the other incoming value of the select.
83 static unsigned GetSelectFoldableOperands(Instruction
*I
) {
84 switch (I
->getOpcode()) {
85 case Instruction::Add
:
86 case Instruction::Mul
:
87 case Instruction::And
:
89 case Instruction::Xor
:
90 return 3; // Can fold through either operand.
91 case Instruction::Sub
: // Can only fold on the amount subtracted.
92 case Instruction::Shl
: // Can only fold on the shift amount.
93 case Instruction::LShr
:
94 case Instruction::AShr
:
97 return 0; // Cannot fold
101 /// GetSelectFoldableConstant - For the same transformation as the previous
102 /// function, return the identity constant that goes into the select.
103 static Constant
*GetSelectFoldableConstant(Instruction
*I
) {
104 switch (I
->getOpcode()) {
105 default: llvm_unreachable("This cannot happen!");
106 case Instruction::Add
:
107 case Instruction::Sub
:
108 case Instruction::Or
:
109 case Instruction::Xor
:
110 case Instruction::Shl
:
111 case Instruction::LShr
:
112 case Instruction::AShr
:
113 return Constant::getNullValue(I
->getType());
114 case Instruction::And
:
115 return Constant::getAllOnesValue(I
->getType());
116 case Instruction::Mul
:
117 return ConstantInt::get(I
->getType(), 1);
121 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
122 /// have the same opcode and only one use each. Try to simplify this.
123 Instruction
*InstCombiner::FoldSelectOpOp(SelectInst
&SI
, Instruction
*TI
,
125 if (TI
->getNumOperands() == 1) {
126 // If this is a non-volatile load or a cast from the same type,
129 if (TI
->getOperand(0)->getType() != FI
->getOperand(0)->getType())
132 return 0; // unknown unary op.
135 // Fold this by inserting a select from the input values.
136 SelectInst
*NewSI
= SelectInst::Create(SI
.getCondition(), TI
->getOperand(0),
137 FI
->getOperand(0), SI
.getName()+".v");
138 InsertNewInstBefore(NewSI
, SI
);
139 return CastInst::Create(Instruction::CastOps(TI
->getOpcode()), NewSI
,
143 // Only handle binary operators here.
144 if (!isa
<BinaryOperator
>(TI
))
147 // Figure out if the operations have any operands in common.
148 Value
*MatchOp
, *OtherOpT
, *OtherOpF
;
150 if (TI
->getOperand(0) == FI
->getOperand(0)) {
151 MatchOp
= TI
->getOperand(0);
152 OtherOpT
= TI
->getOperand(1);
153 OtherOpF
= FI
->getOperand(1);
154 MatchIsOpZero
= true;
155 } else if (TI
->getOperand(1) == FI
->getOperand(1)) {
156 MatchOp
= TI
->getOperand(1);
157 OtherOpT
= TI
->getOperand(0);
158 OtherOpF
= FI
->getOperand(0);
159 MatchIsOpZero
= false;
160 } else if (!TI
->isCommutative()) {
162 } else if (TI
->getOperand(0) == FI
->getOperand(1)) {
163 MatchOp
= TI
->getOperand(0);
164 OtherOpT
= TI
->getOperand(1);
165 OtherOpF
= FI
->getOperand(0);
166 MatchIsOpZero
= true;
167 } else if (TI
->getOperand(1) == FI
->getOperand(0)) {
168 MatchOp
= TI
->getOperand(1);
169 OtherOpT
= TI
->getOperand(0);
170 OtherOpF
= FI
->getOperand(1);
171 MatchIsOpZero
= true;
176 // If we reach here, they do have operations in common.
177 SelectInst
*NewSI
= SelectInst::Create(SI
.getCondition(), OtherOpT
,
178 OtherOpF
, SI
.getName()+".v");
179 InsertNewInstBefore(NewSI
, SI
);
181 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TI
)) {
183 return BinaryOperator::Create(BO
->getOpcode(), MatchOp
, NewSI
);
185 return BinaryOperator::Create(BO
->getOpcode(), NewSI
, MatchOp
);
187 llvm_unreachable("Shouldn't get here");
191 static bool isSelect01(Constant
*C1
, Constant
*C2
) {
192 ConstantInt
*C1I
= dyn_cast
<ConstantInt
>(C1
);
195 ConstantInt
*C2I
= dyn_cast
<ConstantInt
>(C2
);
198 if (!C1I
->isZero() && !C2I
->isZero()) // One side must be zero.
200 return C1I
->isOne() || C1I
->isAllOnesValue() ||
201 C2I
->isOne() || C2I
->isAllOnesValue();
204 /// FoldSelectIntoOp - Try fold the select into one of the operands to
205 /// facilitate further optimization.
206 Instruction
*InstCombiner::FoldSelectIntoOp(SelectInst
&SI
, Value
*TrueVal
,
208 // See the comment above GetSelectFoldableOperands for a description of the
209 // transformation we are doing here.
210 if (Instruction
*TVI
= dyn_cast
<Instruction
>(TrueVal
)) {
211 if (TVI
->hasOneUse() && TVI
->getNumOperands() == 2 &&
212 !isa
<Constant
>(FalseVal
)) {
213 if (unsigned SFO
= GetSelectFoldableOperands(TVI
)) {
214 unsigned OpToFold
= 0;
215 if ((SFO
& 1) && FalseVal
== TVI
->getOperand(0)) {
217 } else if ((SFO
& 2) && FalseVal
== TVI
->getOperand(1)) {
222 Constant
*C
= GetSelectFoldableConstant(TVI
);
223 Value
*OOp
= TVI
->getOperand(2-OpToFold
);
224 // Avoid creating select between 2 constants unless it's selecting
225 // between 0, 1 and -1.
226 if (!isa
<Constant
>(OOp
) || isSelect01(C
, cast
<Constant
>(OOp
))) {
227 Instruction
*NewSel
= SelectInst::Create(SI
.getCondition(), OOp
, C
);
228 InsertNewInstBefore(NewSel
, SI
);
229 NewSel
->takeName(TVI
);
230 BinaryOperator
*TVI_BO
= cast
<BinaryOperator
>(TVI
);
231 BinaryOperator
*BO
= BinaryOperator::Create(TVI_BO
->getOpcode(),
233 if (isa
<PossiblyExactOperator
>(BO
))
234 BO
->setIsExact(TVI_BO
->isExact());
235 if (isa
<OverflowingBinaryOperator
>(BO
)) {
236 BO
->setHasNoUnsignedWrap(TVI_BO
->hasNoUnsignedWrap());
237 BO
->setHasNoSignedWrap(TVI_BO
->hasNoSignedWrap());
246 if (Instruction
*FVI
= dyn_cast
<Instruction
>(FalseVal
)) {
247 if (FVI
->hasOneUse() && FVI
->getNumOperands() == 2 &&
248 !isa
<Constant
>(TrueVal
)) {
249 if (unsigned SFO
= GetSelectFoldableOperands(FVI
)) {
250 unsigned OpToFold
= 0;
251 if ((SFO
& 1) && TrueVal
== FVI
->getOperand(0)) {
253 } else if ((SFO
& 2) && TrueVal
== FVI
->getOperand(1)) {
258 Constant
*C
= GetSelectFoldableConstant(FVI
);
259 Value
*OOp
= FVI
->getOperand(2-OpToFold
);
260 // Avoid creating select between 2 constants unless it's selecting
261 // between 0, 1 and -1.
262 if (!isa
<Constant
>(OOp
) || isSelect01(C
, cast
<Constant
>(OOp
))) {
263 Instruction
*NewSel
= SelectInst::Create(SI
.getCondition(), C
, OOp
);
264 InsertNewInstBefore(NewSel
, SI
);
265 NewSel
->takeName(FVI
);
266 BinaryOperator
*FVI_BO
= cast
<BinaryOperator
>(FVI
);
267 BinaryOperator
*BO
= BinaryOperator::Create(FVI_BO
->getOpcode(),
269 if (isa
<PossiblyExactOperator
>(BO
))
270 BO
->setIsExact(FVI_BO
->isExact());
271 if (isa
<OverflowingBinaryOperator
>(BO
)) {
272 BO
->setHasNoUnsignedWrap(FVI_BO
->hasNoUnsignedWrap());
273 BO
->setHasNoSignedWrap(FVI_BO
->hasNoSignedWrap());
285 /// visitSelectInstWithICmp - Visit a SelectInst that has an
286 /// ICmpInst as its first operand.
288 Instruction
*InstCombiner::visitSelectInstWithICmp(SelectInst
&SI
,
290 bool Changed
= false;
291 ICmpInst::Predicate Pred
= ICI
->getPredicate();
292 Value
*CmpLHS
= ICI
->getOperand(0);
293 Value
*CmpRHS
= ICI
->getOperand(1);
294 Value
*TrueVal
= SI
.getTrueValue();
295 Value
*FalseVal
= SI
.getFalseValue();
297 // Check cases where the comparison is with a constant that
298 // can be adjusted to fit the min/max idiom. We may move or edit ICI
299 // here, so make sure the select is the only user.
300 if (ICI
->hasOneUse())
301 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CmpRHS
)) {
302 // X < MIN ? T : F --> F
303 if ((Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_ULT
)
304 && CI
->isMinValue(Pred
== ICmpInst::ICMP_SLT
))
305 return ReplaceInstUsesWith(SI
, FalseVal
);
306 // X > MAX ? T : F --> F
307 else if ((Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_UGT
)
308 && CI
->isMaxValue(Pred
== ICmpInst::ICMP_SGT
))
309 return ReplaceInstUsesWith(SI
, FalseVal
);
312 case ICmpInst::ICMP_ULT
:
313 case ICmpInst::ICMP_SLT
:
314 case ICmpInst::ICMP_UGT
:
315 case ICmpInst::ICMP_SGT
: {
316 // These transformations only work for selects over integers.
317 const IntegerType
*SelectTy
= dyn_cast
<IntegerType
>(SI
.getType());
321 Constant
*AdjustedRHS
;
322 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_SGT
)
323 AdjustedRHS
= ConstantInt::get(CI
->getContext(), CI
->getValue() + 1);
324 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
325 AdjustedRHS
= ConstantInt::get(CI
->getContext(), CI
->getValue() - 1);
327 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
328 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
329 if ((CmpLHS
== TrueVal
&& AdjustedRHS
== FalseVal
) ||
330 (CmpLHS
== FalseVal
&& AdjustedRHS
== TrueVal
))
331 ; // Nothing to do here. Values match without any sign/zero extension.
333 // Types do not match. Instead of calculating this with mixed types
334 // promote all to the larger type. This enables scalar evolution to
335 // analyze this expression.
336 else if (CmpRHS
->getType()->getScalarSizeInBits()
337 < SelectTy
->getBitWidth()) {
338 Constant
*sextRHS
= ConstantExpr::getSExt(AdjustedRHS
, SelectTy
);
340 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
341 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
342 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
343 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
344 if (match(TrueVal
, m_SExt(m_Specific(CmpLHS
))) &&
345 sextRHS
== FalseVal
) {
347 AdjustedRHS
= sextRHS
;
348 } else if (match(FalseVal
, m_SExt(m_Specific(CmpLHS
))) &&
349 sextRHS
== TrueVal
) {
351 AdjustedRHS
= sextRHS
;
352 } else if (ICI
->isUnsigned()) {
353 Constant
*zextRHS
= ConstantExpr::getZExt(AdjustedRHS
, SelectTy
);
354 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
355 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
356 // zext + signed compare cannot be changed:
357 // 0xff <s 0x00, but 0x00ff >s 0x0000
358 if (match(TrueVal
, m_ZExt(m_Specific(CmpLHS
))) &&
359 zextRHS
== FalseVal
) {
361 AdjustedRHS
= zextRHS
;
362 } else if (match(FalseVal
, m_ZExt(m_Specific(CmpLHS
))) &&
363 zextRHS
== TrueVal
) {
365 AdjustedRHS
= zextRHS
;
373 Pred
= ICmpInst::getSwappedPredicate(Pred
);
374 CmpRHS
= AdjustedRHS
;
375 std::swap(FalseVal
, TrueVal
);
376 ICI
->setPredicate(Pred
);
377 ICI
->setOperand(0, CmpLHS
);
378 ICI
->setOperand(1, CmpRHS
);
379 SI
.setOperand(1, TrueVal
);
380 SI
.setOperand(2, FalseVal
);
382 // Move ICI instruction right before the select instruction. Otherwise
383 // the sext/zext value may be defined after the ICI instruction uses it.
384 ICI
->moveBefore(&SI
);
392 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
393 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
394 // FIXME: Type and constness constraints could be lifted, but we have to
395 // watch code size carefully. We should consider xor instead of
396 // sub/add when we decide to do that.
397 if (const IntegerType
*Ty
= dyn_cast
<IntegerType
>(CmpLHS
->getType())) {
398 if (TrueVal
->getType() == Ty
) {
399 if (ConstantInt
*Cmp
= dyn_cast
<ConstantInt
>(CmpRHS
)) {
400 ConstantInt
*C1
= NULL
, *C2
= NULL
;
401 if (Pred
== ICmpInst::ICMP_SGT
&& Cmp
->isAllOnesValue()) {
402 C1
= dyn_cast
<ConstantInt
>(TrueVal
);
403 C2
= dyn_cast
<ConstantInt
>(FalseVal
);
404 } else if (Pred
== ICmpInst::ICMP_SLT
&& Cmp
->isNullValue()) {
405 C1
= dyn_cast
<ConstantInt
>(FalseVal
);
406 C2
= dyn_cast
<ConstantInt
>(TrueVal
);
409 // This shift results in either -1 or 0.
410 Value
*AShr
= Builder
->CreateAShr(CmpLHS
, Ty
->getBitWidth()-1);
412 // Check if we can express the operation with a single or.
413 if (C2
->isAllOnesValue())
414 return ReplaceInstUsesWith(SI
, Builder
->CreateOr(AShr
, C1
));
416 Value
*And
= Builder
->CreateAnd(AShr
, C2
->getValue()-C1
->getValue());
417 return ReplaceInstUsesWith(SI
, Builder
->CreateAdd(And
, C1
));
423 if (CmpLHS
== TrueVal
&& CmpRHS
== FalseVal
) {
424 // Transform (X == Y) ? X : Y -> Y
425 if (Pred
== ICmpInst::ICMP_EQ
)
426 return ReplaceInstUsesWith(SI
, FalseVal
);
427 // Transform (X != Y) ? X : Y -> X
428 if (Pred
== ICmpInst::ICMP_NE
)
429 return ReplaceInstUsesWith(SI
, TrueVal
);
430 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
432 } else if (CmpLHS
== FalseVal
&& CmpRHS
== TrueVal
) {
433 // Transform (X == Y) ? Y : X -> X
434 if (Pred
== ICmpInst::ICMP_EQ
)
435 return ReplaceInstUsesWith(SI
, FalseVal
);
436 // Transform (X != Y) ? Y : X -> Y
437 if (Pred
== ICmpInst::ICMP_NE
)
438 return ReplaceInstUsesWith(SI
, TrueVal
);
439 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
442 if (isa
<Constant
>(CmpRHS
)) {
443 if (CmpLHS
== TrueVal
&& Pred
== ICmpInst::ICMP_EQ
) {
444 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
445 SI
.setOperand(1, CmpRHS
);
447 } else if (CmpLHS
== FalseVal
&& Pred
== ICmpInst::ICMP_NE
) {
448 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
449 SI
.setOperand(2, CmpRHS
);
454 return Changed
? &SI
: 0;
458 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
459 /// PHI node (but the two may be in different blocks). See if the true/false
460 /// values (V) are live in all of the predecessor blocks of the PHI. For
461 /// example, cases like this cannot be mapped:
463 /// X = phi [ C1, BB1], [C2, BB2]
465 /// Z = select X, Y, 0
467 /// because Y is not live in BB1/BB2.
469 static bool CanSelectOperandBeMappingIntoPredBlock(const Value
*V
,
470 const SelectInst
&SI
) {
471 // If the value is a non-instruction value like a constant or argument, it
472 // can always be mapped.
473 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
474 if (I
== 0) return true;
476 // If V is a PHI node defined in the same block as the condition PHI, we can
477 // map the arguments.
478 const PHINode
*CondPHI
= cast
<PHINode
>(SI
.getCondition());
480 if (const PHINode
*VP
= dyn_cast
<PHINode
>(I
))
481 if (VP
->getParent() == CondPHI
->getParent())
484 // Otherwise, if the PHI and select are defined in the same block and if V is
485 // defined in a different block, then we can transform it.
486 if (SI
.getParent() == CondPHI
->getParent() &&
487 I
->getParent() != CondPHI
->getParent())
490 // Otherwise we have a 'hard' case and we can't tell without doing more
491 // detailed dominator based analysis, punt.
495 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
496 /// SPF2(SPF1(A, B), C)
497 Instruction
*InstCombiner::FoldSPFofSPF(Instruction
*Inner
,
498 SelectPatternFlavor SPF1
,
501 SelectPatternFlavor SPF2
, Value
*C
) {
502 if (C
== A
|| C
== B
) {
503 // MAX(MAX(A, B), B) -> MAX(A, B)
504 // MIN(MIN(a, b), a) -> MIN(a, b)
506 return ReplaceInstUsesWith(Outer
, Inner
);
508 // MAX(MIN(a, b), a) -> a
509 // MIN(MAX(a, b), a) -> a
510 if ((SPF1
== SPF_SMIN
&& SPF2
== SPF_SMAX
) ||
511 (SPF1
== SPF_SMAX
&& SPF2
== SPF_SMIN
) ||
512 (SPF1
== SPF_UMIN
&& SPF2
== SPF_UMAX
) ||
513 (SPF1
== SPF_UMAX
&& SPF2
== SPF_UMIN
))
514 return ReplaceInstUsesWith(Outer
, C
);
517 // TODO: MIN(MIN(A, 23), 97)
522 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
523 /// both be) and we have an icmp instruction with zero, and we have an 'and'
524 /// with the non-constant value and a power of two we can turn the select
525 /// into a shift on the result of the 'and'.
526 static Value
*foldSelectICmpAnd(const SelectInst
&SI
, ConstantInt
*TrueVal
,
527 ConstantInt
*FalseVal
,
528 InstCombiner::BuilderTy
*Builder
) {
529 const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(SI
.getCondition());
530 if (!IC
|| !IC
->isEquality())
533 if (!match(IC
->getOperand(1), m_Zero()))
537 Value
*LHS
= IC
->getOperand(0);
538 if (LHS
->getType() != SI
.getType() ||
539 !match(LHS
, m_And(m_Value(), m_ConstantInt(AndRHS
))))
542 // If both select arms are non-zero see if we have a select of the form
543 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
544 // for 'x ? 2^n : 0' and fix the thing up at the end.
545 ConstantInt
*Offset
= 0;
546 if (!TrueVal
->isZero() && !FalseVal
->isZero()) {
547 if ((TrueVal
->getValue() - FalseVal
->getValue()).isPowerOf2())
549 else if ((FalseVal
->getValue() - TrueVal
->getValue()).isPowerOf2())
554 // Adjust TrueVal and FalseVal to the offset.
555 TrueVal
= ConstantInt::get(Builder
->getContext(),
556 TrueVal
->getValue() - Offset
->getValue());
557 FalseVal
= ConstantInt::get(Builder
->getContext(),
558 FalseVal
->getValue() - Offset
->getValue());
561 // Make sure the mask in the 'and' and one of the select arms is a power of 2.
562 if (!AndRHS
->getValue().isPowerOf2() ||
563 (!TrueVal
->getValue().isPowerOf2() &&
564 !FalseVal
->getValue().isPowerOf2()))
567 // Determine which shift is needed to transform result of the 'and' into the
569 ConstantInt
*ValC
= !TrueVal
->isZero() ? TrueVal
: FalseVal
;
570 unsigned ValZeros
= ValC
->getValue().logBase2();
571 unsigned AndZeros
= AndRHS
->getValue().logBase2();
574 if (ValZeros
> AndZeros
)
575 V
= Builder
->CreateShl(V
, ValZeros
- AndZeros
);
576 else if (ValZeros
< AndZeros
)
577 V
= Builder
->CreateLShr(V
, AndZeros
- ValZeros
);
579 // Okay, now we know that everything is set up, we just don't know whether we
580 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
581 bool ShouldNotVal
= !TrueVal
->isZero();
582 ShouldNotVal
^= IC
->getPredicate() == ICmpInst::ICMP_NE
;
584 V
= Builder
->CreateXor(V
, ValC
);
586 // Apply an offset if needed.
588 V
= Builder
->CreateAdd(V
, Offset
);
592 Instruction
*InstCombiner::visitSelectInst(SelectInst
&SI
) {
593 Value
*CondVal
= SI
.getCondition();
594 Value
*TrueVal
= SI
.getTrueValue();
595 Value
*FalseVal
= SI
.getFalseValue();
597 if (Value
*V
= SimplifySelectInst(CondVal
, TrueVal
, FalseVal
, TD
))
598 return ReplaceInstUsesWith(SI
, V
);
600 if (SI
.getType()->isIntegerTy(1)) {
601 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(TrueVal
)) {
602 if (C
->getZExtValue()) {
603 // Change: A = select B, true, C --> A = or B, C
604 return BinaryOperator::CreateOr(CondVal
, FalseVal
);
606 // Change: A = select B, false, C --> A = and !B, C
608 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal
,
609 "not."+CondVal
->getName()), SI
);
610 return BinaryOperator::CreateAnd(NotCond
, FalseVal
);
611 } else if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(FalseVal
)) {
612 if (C
->getZExtValue() == false) {
613 // Change: A = select B, C, false --> A = and B, C
614 return BinaryOperator::CreateAnd(CondVal
, TrueVal
);
616 // Change: A = select B, C, true --> A = or !B, C
618 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal
,
619 "not."+CondVal
->getName()), SI
);
620 return BinaryOperator::CreateOr(NotCond
, TrueVal
);
623 // select a, b, a -> a&b
624 // select a, a, b -> a|b
625 if (CondVal
== TrueVal
)
626 return BinaryOperator::CreateOr(CondVal
, FalseVal
);
627 else if (CondVal
== FalseVal
)
628 return BinaryOperator::CreateAnd(CondVal
, TrueVal
);
631 // Selecting between two integer constants?
632 if (ConstantInt
*TrueValC
= dyn_cast
<ConstantInt
>(TrueVal
))
633 if (ConstantInt
*FalseValC
= dyn_cast
<ConstantInt
>(FalseVal
)) {
634 // select C, 1, 0 -> zext C to int
635 if (FalseValC
->isZero() && TrueValC
->getValue() == 1)
636 return new ZExtInst(CondVal
, SI
.getType());
638 // select C, -1, 0 -> sext C to int
639 if (FalseValC
->isZero() && TrueValC
->isAllOnesValue())
640 return new SExtInst(CondVal
, SI
.getType());
642 // select C, 0, 1 -> zext !C to int
643 if (TrueValC
->isZero() && FalseValC
->getValue() == 1) {
644 Value
*NotCond
= Builder
->CreateNot(CondVal
, "not."+CondVal
->getName());
645 return new ZExtInst(NotCond
, SI
.getType());
648 // select C, 0, -1 -> sext !C to int
649 if (TrueValC
->isZero() && FalseValC
->isAllOnesValue()) {
650 Value
*NotCond
= Builder
->CreateNot(CondVal
, "not."+CondVal
->getName());
651 return new SExtInst(NotCond
, SI
.getType());
654 if (Value
*V
= foldSelectICmpAnd(SI
, TrueValC
, FalseValC
, Builder
))
655 return ReplaceInstUsesWith(SI
, V
);
658 // See if we are selecting two values based on a comparison of the two values.
659 if (FCmpInst
*FCI
= dyn_cast
<FCmpInst
>(CondVal
)) {
660 if (FCI
->getOperand(0) == TrueVal
&& FCI
->getOperand(1) == FalseVal
) {
661 // Transform (X == Y) ? X : Y -> Y
662 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
663 // This is not safe in general for floating point:
664 // consider X== -0, Y== +0.
665 // It becomes safe if either operand is a nonzero constant.
666 ConstantFP
*CFPt
, *CFPf
;
667 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
668 !CFPt
->getValueAPF().isZero()) ||
669 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
670 !CFPf
->getValueAPF().isZero()))
671 return ReplaceInstUsesWith(SI
, FalseVal
);
673 // Transform (X une Y) ? X : Y -> X
674 if (FCI
->getPredicate() == FCmpInst::FCMP_UNE
) {
675 // This is not safe in general for floating point:
676 // consider X== -0, Y== +0.
677 // It becomes safe if either operand is a nonzero constant.
678 ConstantFP
*CFPt
, *CFPf
;
679 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
680 !CFPt
->getValueAPF().isZero()) ||
681 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
682 !CFPf
->getValueAPF().isZero()))
683 return ReplaceInstUsesWith(SI
, TrueVal
);
685 // NOTE: if we wanted to, this is where to detect MIN/MAX
687 } else if (FCI
->getOperand(0) == FalseVal
&& FCI
->getOperand(1) == TrueVal
){
688 // Transform (X == Y) ? Y : X -> X
689 if (FCI
->getPredicate() == FCmpInst::FCMP_OEQ
) {
690 // This is not safe in general for floating point:
691 // consider X== -0, Y== +0.
692 // It becomes safe if either operand is a nonzero constant.
693 ConstantFP
*CFPt
, *CFPf
;
694 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
695 !CFPt
->getValueAPF().isZero()) ||
696 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
697 !CFPf
->getValueAPF().isZero()))
698 return ReplaceInstUsesWith(SI
, FalseVal
);
700 // Transform (X une Y) ? Y : X -> Y
701 if (FCI
->getPredicate() == FCmpInst::FCMP_UNE
) {
702 // This is not safe in general for floating point:
703 // consider X== -0, Y== +0.
704 // It becomes safe if either operand is a nonzero constant.
705 ConstantFP
*CFPt
, *CFPf
;
706 if (((CFPt
= dyn_cast
<ConstantFP
>(TrueVal
)) &&
707 !CFPt
->getValueAPF().isZero()) ||
708 ((CFPf
= dyn_cast
<ConstantFP
>(FalseVal
)) &&
709 !CFPf
->getValueAPF().isZero()))
710 return ReplaceInstUsesWith(SI
, TrueVal
);
712 // NOTE: if we wanted to, this is where to detect MIN/MAX
714 // NOTE: if we wanted to, this is where to detect ABS
717 // See if we are selecting two values based on a comparison of the two values.
718 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondVal
))
719 if (Instruction
*Result
= visitSelectInstWithICmp(SI
, ICI
))
722 if (Instruction
*TI
= dyn_cast
<Instruction
>(TrueVal
))
723 if (Instruction
*FI
= dyn_cast
<Instruction
>(FalseVal
))
724 if (TI
->hasOneUse() && FI
->hasOneUse()) {
725 Instruction
*AddOp
= 0, *SubOp
= 0;
727 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
728 if (TI
->getOpcode() == FI
->getOpcode())
729 if (Instruction
*IV
= FoldSelectOpOp(SI
, TI
, FI
))
732 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
733 // even legal for FP.
734 if ((TI
->getOpcode() == Instruction::Sub
&&
735 FI
->getOpcode() == Instruction::Add
) ||
736 (TI
->getOpcode() == Instruction::FSub
&&
737 FI
->getOpcode() == Instruction::FAdd
)) {
738 AddOp
= FI
; SubOp
= TI
;
739 } else if ((FI
->getOpcode() == Instruction::Sub
&&
740 TI
->getOpcode() == Instruction::Add
) ||
741 (FI
->getOpcode() == Instruction::FSub
&&
742 TI
->getOpcode() == Instruction::FAdd
)) {
743 AddOp
= TI
; SubOp
= FI
;
747 Value
*OtherAddOp
= 0;
748 if (SubOp
->getOperand(0) == AddOp
->getOperand(0)) {
749 OtherAddOp
= AddOp
->getOperand(1);
750 } else if (SubOp
->getOperand(0) == AddOp
->getOperand(1)) {
751 OtherAddOp
= AddOp
->getOperand(0);
755 // So at this point we know we have (Y -> OtherAddOp):
756 // select C, (add X, Y), (sub X, Z)
757 Value
*NegVal
; // Compute -Z
758 if (Constant
*C
= dyn_cast
<Constant
>(SubOp
->getOperand(1))) {
759 NegVal
= ConstantExpr::getNeg(C
);
760 } else if (SI
.getType()->isFloatingPointTy()) {
761 NegVal
= InsertNewInstBefore(
762 BinaryOperator::CreateFNeg(SubOp
->getOperand(1),
765 NegVal
= InsertNewInstBefore(
766 BinaryOperator::CreateNeg(SubOp
->getOperand(1),
770 Value
*NewTrueOp
= OtherAddOp
;
771 Value
*NewFalseOp
= NegVal
;
773 std::swap(NewTrueOp
, NewFalseOp
);
774 Instruction
*NewSel
=
775 SelectInst::Create(CondVal
, NewTrueOp
,
776 NewFalseOp
, SI
.getName() + ".p");
778 NewSel
= InsertNewInstBefore(NewSel
, SI
);
779 if (SI
.getType()->isFloatingPointTy())
780 return BinaryOperator::CreateFAdd(SubOp
->getOperand(0), NewSel
);
782 return BinaryOperator::CreateAdd(SubOp
->getOperand(0), NewSel
);
787 // See if we can fold the select into one of our operands.
788 if (SI
.getType()->isIntegerTy()) {
789 if (Instruction
*FoldI
= FoldSelectIntoOp(SI
, TrueVal
, FalseVal
))
792 // MAX(MAX(a, b), a) -> MAX(a, b)
793 // MIN(MIN(a, b), a) -> MIN(a, b)
794 // MAX(MIN(a, b), a) -> a
795 // MIN(MAX(a, b), a) -> a
796 Value
*LHS
, *RHS
, *LHS2
, *RHS2
;
797 if (SelectPatternFlavor SPF
= MatchSelectPattern(&SI
, LHS
, RHS
)) {
798 if (SelectPatternFlavor SPF2
= MatchSelectPattern(LHS
, LHS2
, RHS2
))
799 if (Instruction
*R
= FoldSPFofSPF(cast
<Instruction
>(LHS
),SPF2
,LHS2
,RHS2
,
802 if (SelectPatternFlavor SPF2
= MatchSelectPattern(RHS
, LHS2
, RHS2
))
803 if (Instruction
*R
= FoldSPFofSPF(cast
<Instruction
>(RHS
),SPF2
,LHS2
,RHS2
,
810 // ABS(ABS(X)) -> ABS(X)
813 // See if we can fold the select into a phi node if the condition is a select.
814 if (isa
<PHINode
>(SI
.getCondition()))
815 // The true/false values have to be live in the PHI predecessor's blocks.
816 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal
, SI
) &&
817 CanSelectOperandBeMappingIntoPredBlock(FalseVal
, SI
))
818 if (Instruction
*NV
= FoldOpIntoPhi(SI
))
821 if (SelectInst
*TrueSI
= dyn_cast
<SelectInst
>(TrueVal
)) {
822 if (TrueSI
->getCondition() == CondVal
) {
823 SI
.setOperand(1, TrueSI
->getTrueValue());
827 if (SelectInst
*FalseSI
= dyn_cast
<SelectInst
>(FalseVal
)) {
828 if (FalseSI
->getCondition() == CondVal
) {
829 SI
.setOperand(2, FalseSI
->getFalseValue());
834 if (BinaryOperator::isNot(CondVal
)) {
835 SI
.setOperand(0, BinaryOperator::getNotArgument(CondVal
));
836 SI
.setOperand(1, FalseVal
);
837 SI
.setOperand(2, TrueVal
);