1 //===-- Local.cpp - Functions to perform local transformations ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This family of functions perform various local transformations to the
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/Analysis/DebugInfo.h"
27 #include "llvm/Analysis/DIBuilder.h"
28 #include "llvm/Analysis/Dominators.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/ProfileInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/GetElementPtrTypeIterator.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/ValueHandle.h"
39 #include "llvm/Support/raw_ostream.h"
42 //===----------------------------------------------------------------------===//
43 // Local constant propagation.
46 // ConstantFoldTerminator - If a terminator instruction is predicated on a
47 // constant value, convert it into an unconditional branch to the constant
50 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
) {
51 TerminatorInst
*T
= BB
->getTerminator();
53 // Branch - See if we are conditional jumping on constant
54 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(T
)) {
55 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
56 BasicBlock
*Dest1
= BI
->getSuccessor(0);
57 BasicBlock
*Dest2
= BI
->getSuccessor(1);
59 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
60 // Are we branching on constant?
61 // YES. Change to unconditional branch...
62 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
63 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
65 //cerr << "Function: " << T->getParent()->getParent()
66 // << "\nRemoving branch from " << T->getParent()
67 // << "\n\nTo: " << OldDest << endl;
69 // Let the basic block know that we are letting go of it. Based on this,
70 // it will adjust it's PHI nodes.
71 OldDest
->removePredecessor(BB
);
73 // Replace the conditional branch with an unconditional one.
74 BranchInst::Create(Destination
, BI
);
75 BI
->eraseFromParent();
79 if (Dest2
== Dest1
) { // Conditional branch to same location?
80 // This branch matches something like this:
81 // br bool %cond, label %Dest, label %Dest
82 // and changes it into: br label %Dest
84 // Let the basic block know that we are letting go of one copy of it.
85 assert(BI
->getParent() && "Terminator not inserted in block!");
86 Dest1
->removePredecessor(BI
->getParent());
88 // Replace the conditional branch with an unconditional one.
89 BranchInst::Create(Dest1
, BI
);
90 BI
->eraseFromParent();
96 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(T
)) {
97 // If we are switching on a constant, we can convert the switch into a
98 // single branch instruction!
99 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
100 BasicBlock
*TheOnlyDest
= SI
->getSuccessor(0); // The default dest
101 BasicBlock
*DefaultDest
= TheOnlyDest
;
102 assert(TheOnlyDest
== SI
->getDefaultDest() &&
103 "Default destination is not successor #0?");
105 // Figure out which case it goes to.
106 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
107 // Found case matching a constant operand?
108 if (SI
->getSuccessorValue(i
) == CI
) {
109 TheOnlyDest
= SI
->getSuccessor(i
);
113 // Check to see if this branch is going to the same place as the default
114 // dest. If so, eliminate it as an explicit compare.
115 if (SI
->getSuccessor(i
) == DefaultDest
) {
116 // Remove this entry.
117 DefaultDest
->removePredecessor(SI
->getParent());
119 --i
; --e
; // Don't skip an entry...
123 // Otherwise, check to see if the switch only branches to one destination.
124 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
126 if (SI
->getSuccessor(i
) != TheOnlyDest
) TheOnlyDest
= 0;
129 if (CI
&& !TheOnlyDest
) {
130 // Branching on a constant, but not any of the cases, go to the default
132 TheOnlyDest
= SI
->getDefaultDest();
135 // If we found a single destination that we can fold the switch into, do so
138 // Insert the new branch.
139 BranchInst::Create(TheOnlyDest
, SI
);
140 BasicBlock
*BB
= SI
->getParent();
142 // Remove entries from PHI nodes which we no longer branch to...
143 for (unsigned i
= 0, e
= SI
->getNumSuccessors(); i
!= e
; ++i
) {
144 // Found case matching a constant operand?
145 BasicBlock
*Succ
= SI
->getSuccessor(i
);
146 if (Succ
== TheOnlyDest
)
147 TheOnlyDest
= 0; // Don't modify the first branch to TheOnlyDest
149 Succ
->removePredecessor(BB
);
152 // Delete the old switch.
153 BB
->getInstList().erase(SI
);
157 if (SI
->getNumSuccessors() == 2) {
158 // Otherwise, we can fold this switch into a conditional branch
159 // instruction if it has only one non-default destination.
160 Value
*Cond
= new ICmpInst(SI
, ICmpInst::ICMP_EQ
, SI
->getCondition(),
161 SI
->getSuccessorValue(1), "cond");
162 // Insert the new branch.
163 BranchInst::Create(SI
->getSuccessor(1), SI
->getSuccessor(0), Cond
, SI
);
165 // Delete the old switch.
166 SI
->eraseFromParent();
172 if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(T
)) {
173 // indirectbr blockaddress(@F, @BB) -> br label @BB
174 if (BlockAddress
*BA
=
175 dyn_cast
<BlockAddress
>(IBI
->getAddress()->stripPointerCasts())) {
176 BasicBlock
*TheOnlyDest
= BA
->getBasicBlock();
177 // Insert the new branch.
178 BranchInst::Create(TheOnlyDest
, IBI
);
180 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
181 if (IBI
->getDestination(i
) == TheOnlyDest
)
184 IBI
->getDestination(i
)->removePredecessor(IBI
->getParent());
186 IBI
->eraseFromParent();
188 // If we didn't find our destination in the IBI successor list, then we
189 // have undefined behavior. Replace the unconditional branch with an
190 // 'unreachable' instruction.
192 BB
->getTerminator()->eraseFromParent();
193 new UnreachableInst(BB
->getContext(), BB
);
204 //===----------------------------------------------------------------------===//
205 // Local dead code elimination.
208 /// isInstructionTriviallyDead - Return true if the result produced by the
209 /// instruction is not used, and the instruction has no side effects.
211 bool llvm::isInstructionTriviallyDead(Instruction
*I
) {
212 if (!I
->use_empty() || isa
<TerminatorInst
>(I
)) return false;
214 // We don't want debug info removed by anything this general, unless
215 // debug info is empty.
216 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(I
)) {
217 if (DDI
->getAddress())
221 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(I
)) {
227 if (!I
->mayHaveSideEffects()) return true;
229 // Special case intrinsics that "may have side effects" but can be deleted
231 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
232 // Safe to delete llvm.stacksave if dead.
233 if (II
->getIntrinsicID() == Intrinsic::stacksave
)
238 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
239 /// trivially dead instruction, delete it. If that makes any of its operands
240 /// trivially dead, delete them too, recursively. Return true if any
241 /// instructions were deleted.
242 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value
*V
) {
243 Instruction
*I
= dyn_cast
<Instruction
>(V
);
244 if (!I
|| !I
->use_empty() || !isInstructionTriviallyDead(I
))
247 SmallVector
<Instruction
*, 16> DeadInsts
;
248 DeadInsts
.push_back(I
);
251 I
= DeadInsts
.pop_back_val();
253 // Null out all of the instruction's operands to see if any operand becomes
255 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
256 Value
*OpV
= I
->getOperand(i
);
259 if (!OpV
->use_empty()) continue;
261 // If the operand is an instruction that became dead as we nulled out the
262 // operand, and if it is 'trivially' dead, delete it in a future loop
264 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
265 if (isInstructionTriviallyDead(OpI
))
266 DeadInsts
.push_back(OpI
);
269 I
->eraseFromParent();
270 } while (!DeadInsts
.empty());
275 /// areAllUsesEqual - Check whether the uses of a value are all the same.
276 /// This is similar to Instruction::hasOneUse() except this will also return
277 /// true when there are no uses or multiple uses that all refer to the same
279 static bool areAllUsesEqual(Instruction
*I
) {
280 Value::use_iterator UI
= I
->use_begin();
281 Value::use_iterator UE
= I
->use_end();
286 for (++UI
; UI
!= UE
; ++UI
) {
293 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
294 /// dead PHI node, due to being a def-use chain of single-use nodes that
295 /// either forms a cycle or is terminated by a trivially dead instruction,
296 /// delete it. If that makes any of its operands trivially dead, delete them
297 /// too, recursively. Return true if a change was made.
298 bool llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
) {
299 SmallPtrSet
<Instruction
*, 4> Visited
;
300 for (Instruction
*I
= PN
; areAllUsesEqual(I
) && !I
->mayHaveSideEffects();
301 I
= cast
<Instruction
>(*I
->use_begin())) {
303 return RecursivelyDeleteTriviallyDeadInstructions(I
);
305 // If we find an instruction more than once, we're on a cycle that
306 // won't prove fruitful.
307 if (!Visited
.insert(I
)) {
308 // Break the cycle and delete the instruction and its operands.
309 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
310 (void)RecursivelyDeleteTriviallyDeadInstructions(I
);
317 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
318 /// simplify any instructions in it and recursively delete dead instructions.
320 /// This returns true if it changed the code, note that it can delete
321 /// instructions in other blocks as well in this block.
322 bool llvm::SimplifyInstructionsInBlock(BasicBlock
*BB
, const TargetData
*TD
) {
323 bool MadeChange
= false;
324 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
325 Instruction
*Inst
= BI
++;
327 if (Value
*V
= SimplifyInstruction(Inst
, TD
)) {
329 ReplaceAndSimplifyAllUses(Inst
, V
, TD
);
336 if (Inst
->isTerminator())
340 MadeChange
|= RecursivelyDeleteTriviallyDeadInstructions(Inst
);
347 //===----------------------------------------------------------------------===//
348 // Control Flow Graph Restructuring.
352 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
353 /// method is called when we're about to delete Pred as a predecessor of BB. If
354 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
356 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
357 /// nodes that collapse into identity values. For example, if we have:
358 /// x = phi(1, 0, 0, 0)
361 /// .. and delete the predecessor corresponding to the '1', this will attempt to
362 /// recursively fold the and to 0.
363 void llvm::RemovePredecessorAndSimplify(BasicBlock
*BB
, BasicBlock
*Pred
,
365 // This only adjusts blocks with PHI nodes.
366 if (!isa
<PHINode
>(BB
->begin()))
369 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
370 // them down. This will leave us with single entry phi nodes and other phis
371 // that can be removed.
372 BB
->removePredecessor(Pred
, true);
374 WeakVH PhiIt
= &BB
->front();
375 while (PHINode
*PN
= dyn_cast
<PHINode
>(PhiIt
)) {
376 PhiIt
= &*++BasicBlock::iterator(cast
<Instruction
>(PhiIt
));
378 Value
*PNV
= SimplifyInstruction(PN
, TD
);
379 if (PNV
== 0) continue;
381 // If we're able to simplify the phi to a single value, substitute the new
382 // value into all of its uses.
383 assert(PNV
!= PN
&& "SimplifyInstruction broken!");
385 Value
*OldPhiIt
= PhiIt
;
386 ReplaceAndSimplifyAllUses(PN
, PNV
, TD
);
388 // If recursive simplification ended up deleting the next PHI node we would
389 // iterate to, then our iterator is invalid, restart scanning from the top
391 if (PhiIt
!= OldPhiIt
) PhiIt
= &BB
->front();
396 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
397 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
398 /// between them, moving the instructions in the predecessor into DestBB and
399 /// deleting the predecessor block.
401 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
, Pass
*P
) {
402 // If BB has single-entry PHI nodes, fold them.
403 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
404 Value
*NewVal
= PN
->getIncomingValue(0);
405 // Replace self referencing PHI with undef, it must be dead.
406 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
407 PN
->replaceAllUsesWith(NewVal
);
408 PN
->eraseFromParent();
411 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
412 assert(PredBB
&& "Block doesn't have a single predecessor!");
414 // Splice all the instructions from PredBB to DestBB.
415 PredBB
->getTerminator()->eraseFromParent();
416 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
418 // Zap anything that took the address of DestBB. Not doing this will give the
419 // address an invalid value.
420 if (DestBB
->hasAddressTaken()) {
421 BlockAddress
*BA
= BlockAddress::get(DestBB
);
422 Constant
*Replacement
=
423 ConstantInt::get(llvm::Type::getInt32Ty(BA
->getContext()), 1);
424 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
426 BA
->destroyConstant();
429 // Anything that branched to PredBB now branches to DestBB.
430 PredBB
->replaceAllUsesWith(DestBB
);
433 DominatorTree
*DT
= P
->getAnalysisIfAvailable
<DominatorTree
>();
435 BasicBlock
*PredBBIDom
= DT
->getNode(PredBB
)->getIDom()->getBlock();
436 DT
->changeImmediateDominator(DestBB
, PredBBIDom
);
437 DT
->eraseNode(PredBB
);
439 ProfileInfo
*PI
= P
->getAnalysisIfAvailable
<ProfileInfo
>();
441 PI
->replaceAllUses(PredBB
, DestBB
);
442 PI
->removeEdge(ProfileInfo::getEdge(PredBB
, DestBB
));
446 PredBB
->eraseFromParent();
449 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
450 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
452 /// Assumption: Succ is the single successor for BB.
454 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
455 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
457 DEBUG(dbgs() << "Looking to fold " << BB
->getName() << " into "
458 << Succ
->getName() << "\n");
459 // Shortcut, if there is only a single predecessor it must be BB and merging
461 if (Succ
->getSinglePredecessor()) return true;
463 // Make a list of the predecessors of BB
464 typedef SmallPtrSet
<BasicBlock
*, 16> BlockSet
;
465 BlockSet
BBPreds(pred_begin(BB
), pred_end(BB
));
467 // Use that list to make another list of common predecessors of BB and Succ
468 BlockSet CommonPreds
;
469 for (pred_iterator PI
= pred_begin(Succ
), PE
= pred_end(Succ
);
472 if (BBPreds
.count(P
))
473 CommonPreds
.insert(P
);
476 // Shortcut, if there are no common predecessors, merging is always safe
477 if (CommonPreds
.empty())
480 // Look at all the phi nodes in Succ, to see if they present a conflict when
481 // merging these blocks
482 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
483 PHINode
*PN
= cast
<PHINode
>(I
);
485 // If the incoming value from BB is again a PHINode in
486 // BB which has the same incoming value for *PI as PN does, we can
487 // merge the phi nodes and then the blocks can still be merged
488 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
489 if (BBPN
&& BBPN
->getParent() == BB
) {
490 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
492 if (BBPN
->getIncomingValueForBlock(*PI
)
493 != PN
->getIncomingValueForBlock(*PI
)) {
494 DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName() << " in "
495 << Succ
->getName() << " is conflicting with "
496 << BBPN
->getName() << " with regard to common predecessor "
497 << (*PI
)->getName() << "\n");
502 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
503 for (BlockSet::iterator PI
= CommonPreds
.begin(), PE
= CommonPreds
.end();
505 // See if the incoming value for the common predecessor is equal to the
506 // one for BB, in which case this phi node will not prevent the merging
508 if (Val
!= PN
->getIncomingValueForBlock(*PI
)) {
509 DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName() << " in "
510 << Succ
->getName() << " is conflicting with regard to common "
511 << "predecessor " << (*PI
)->getName() << "\n");
521 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
522 /// unconditional branch, and contains no instructions other than PHI nodes,
523 /// potential debug intrinsics and the branch. If possible, eliminate BB by
524 /// rewriting all the predecessors to branch to the successor block and return
525 /// true. If we can't transform, return false.
526 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
) {
527 assert(BB
!= &BB
->getParent()->getEntryBlock() &&
528 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
530 // We can't eliminate infinite loops.
531 BasicBlock
*Succ
= cast
<BranchInst
>(BB
->getTerminator())->getSuccessor(0);
532 if (BB
== Succ
) return false;
534 // Check to see if merging these blocks would cause conflicts for any of the
535 // phi nodes in BB or Succ. If not, we can safely merge.
536 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
538 // Check for cases where Succ has multiple predecessors and a PHI node in BB
539 // has uses which will not disappear when the PHI nodes are merged. It is
540 // possible to handle such cases, but difficult: it requires checking whether
541 // BB dominates Succ, which is non-trivial to calculate in the case where
542 // Succ has multiple predecessors. Also, it requires checking whether
543 // constructing the necessary self-referential PHI node doesn't intoduce any
544 // conflicts; this isn't too difficult, but the previous code for doing this
547 // Note that if this check finds a live use, BB dominates Succ, so BB is
548 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
549 // folding the branch isn't profitable in that case anyway.
550 if (!Succ
->getSinglePredecessor()) {
551 BasicBlock::iterator BBI
= BB
->begin();
552 while (isa
<PHINode
>(*BBI
)) {
553 for (Value::use_iterator UI
= BBI
->use_begin(), E
= BBI
->use_end();
555 if (PHINode
* PN
= dyn_cast
<PHINode
>(*UI
)) {
556 if (PN
->getIncomingBlock(UI
) != BB
)
566 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB
);
568 if (isa
<PHINode
>(Succ
->begin())) {
569 // If there is more than one pred of succ, and there are PHI nodes in
570 // the successor, then we need to add incoming edges for the PHI nodes
572 const SmallVector
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
574 // Loop over all of the PHI nodes in the successor of BB.
575 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
576 PHINode
*PN
= cast
<PHINode
>(I
);
577 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
578 assert(OldVal
&& "No entry in PHI for Pred BB!");
580 // If this incoming value is one of the PHI nodes in BB, the new entries
581 // in the PHI node are the entries from the old PHI.
582 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
583 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
584 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
)
585 // Note that, since we are merging phi nodes and BB and Succ might
586 // have common predecessors, we could end up with a phi node with
587 // identical incoming branches. This will be cleaned up later (and
588 // will trigger asserts if we try to clean it up now, without also
589 // simplifying the corresponding conditional branch).
590 PN
->addIncoming(OldValPN
->getIncomingValue(i
),
591 OldValPN
->getIncomingBlock(i
));
593 // Add an incoming value for each of the new incoming values.
594 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
)
595 PN
->addIncoming(OldVal
, BBPreds
[i
]);
600 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
601 if (Succ
->getSinglePredecessor()) {
602 // BB is the only predecessor of Succ, so Succ will end up with exactly
603 // the same predecessors BB had.
604 Succ
->getInstList().splice(Succ
->begin(),
605 BB
->getInstList(), BB
->begin());
607 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
608 assert(PN
->use_empty() && "There shouldn't be any uses here!");
609 PN
->eraseFromParent();
613 // Everything that jumped to BB now goes to Succ.
614 BB
->replaceAllUsesWith(Succ
);
615 if (!Succ
->hasName()) Succ
->takeName(BB
);
616 BB
->eraseFromParent(); // Delete the old basic block.
620 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
621 /// nodes in this block. This doesn't try to be clever about PHI nodes
622 /// which differ only in the order of the incoming values, but instcombine
623 /// orders them so it usually won't matter.
625 bool llvm::EliminateDuplicatePHINodes(BasicBlock
*BB
) {
626 bool Changed
= false;
628 // This implementation doesn't currently consider undef operands
629 // specially. Theroetically, two phis which are identical except for
630 // one having an undef where the other doesn't could be collapsed.
632 // Map from PHI hash values to PHI nodes. If multiple PHIs have
633 // the same hash value, the element is the first PHI in the
634 // linked list in CollisionMap.
635 DenseMap
<uintptr_t, PHINode
*> HashMap
;
637 // Maintain linked lists of PHI nodes with common hash values.
638 DenseMap
<PHINode
*, PHINode
*> CollisionMap
;
641 for (BasicBlock::iterator I
= BB
->begin();
642 PHINode
*PN
= dyn_cast
<PHINode
>(I
++); ) {
643 // Compute a hash value on the operands. Instcombine will likely have sorted
644 // them, which helps expose duplicates, but we have to check all the
645 // operands to be safe in case instcombine hasn't run.
647 for (User::op_iterator I
= PN
->op_begin(), E
= PN
->op_end(); I
!= E
; ++I
) {
648 // This hash algorithm is quite weak as hash functions go, but it seems
649 // to do a good enough job for this particular purpose, and is very quick.
650 Hash
^= reinterpret_cast<uintptr_t>(static_cast<Value
*>(*I
));
651 Hash
= (Hash
<< 7) | (Hash
>> (sizeof(uintptr_t) * CHAR_BIT
- 7));
653 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
655 // If we've never seen this hash value before, it's a unique PHI.
656 std::pair
<DenseMap
<uintptr_t, PHINode
*>::iterator
, bool> Pair
=
657 HashMap
.insert(std::make_pair(Hash
, PN
));
658 if (Pair
.second
) continue;
659 // Otherwise it's either a duplicate or a hash collision.
660 for (PHINode
*OtherPN
= Pair
.first
->second
; ; ) {
661 if (OtherPN
->isIdenticalTo(PN
)) {
662 // A duplicate. Replace this PHI with its duplicate.
663 PN
->replaceAllUsesWith(OtherPN
);
664 PN
->eraseFromParent();
668 // A non-duplicate hash collision.
669 DenseMap
<PHINode
*, PHINode
*>::iterator I
= CollisionMap
.find(OtherPN
);
670 if (I
== CollisionMap
.end()) {
671 // Set this PHI to be the head of the linked list of colliding PHIs.
672 PHINode
*Old
= Pair
.first
->second
;
673 Pair
.first
->second
= PN
;
674 CollisionMap
[PN
] = Old
;
677 // Procede to the next PHI in the list.
685 /// enforceKnownAlignment - If the specified pointer points to an object that
686 /// we control, modify the object's alignment to PrefAlign. This isn't
687 /// often possible though. If alignment is important, a more reliable approach
688 /// is to simply align all global variables and allocation instructions to
689 /// their preferred alignment from the beginning.
691 static unsigned enforceKnownAlignment(Value
*V
, unsigned Align
,
692 unsigned PrefAlign
) {
694 User
*U
= dyn_cast
<User
>(V
);
695 if (!U
) return Align
;
697 switch (Operator::getOpcode(U
)) {
699 case Instruction::BitCast
:
700 return enforceKnownAlignment(U
->getOperand(0), Align
, PrefAlign
);
701 case Instruction::GetElementPtr
: {
702 // If all indexes are zero, it is just the alignment of the base pointer.
703 bool AllZeroOperands
= true;
704 for (User::op_iterator i
= U
->op_begin() + 1, e
= U
->op_end(); i
!= e
; ++i
)
705 if (!isa
<Constant
>(*i
) ||
706 !cast
<Constant
>(*i
)->isNullValue()) {
707 AllZeroOperands
= false;
711 if (AllZeroOperands
) {
712 // Treat this like a bitcast.
713 return enforceKnownAlignment(U
->getOperand(0), Align
, PrefAlign
);
717 case Instruction::Alloca
: {
718 AllocaInst
*AI
= cast
<AllocaInst
>(V
);
719 // If there is a requested alignment and if this is an alloca, round up.
720 if (AI
->getAlignment() >= PrefAlign
)
721 return AI
->getAlignment();
722 AI
->setAlignment(PrefAlign
);
727 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
728 // If there is a large requested alignment and we can, bump up the alignment
730 if (GV
->isDeclaration()) return Align
;
732 if (GV
->getAlignment() >= PrefAlign
)
733 return GV
->getAlignment();
734 // We can only increase the alignment of the global if it has no alignment
735 // specified or if it is not assigned a section. If it is assigned a
736 // section, the global could be densely packed with other objects in the
737 // section, increasing the alignment could cause padding issues.
738 if (!GV
->hasSection() || GV
->getAlignment() == 0)
739 GV
->setAlignment(PrefAlign
);
740 return GV
->getAlignment();
746 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
747 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
748 /// and it is more than the alignment of the ultimate object, see if we can
749 /// increase the alignment of the ultimate object, making this check succeed.
750 unsigned llvm::getOrEnforceKnownAlignment(Value
*V
, unsigned PrefAlign
,
751 const TargetData
*TD
) {
752 assert(V
->getType()->isPointerTy() &&
753 "getOrEnforceKnownAlignment expects a pointer!");
754 unsigned BitWidth
= TD
? TD
->getPointerSizeInBits() : 64;
755 APInt Mask
= APInt::getAllOnesValue(BitWidth
);
756 APInt
KnownZero(BitWidth
, 0), KnownOne(BitWidth
, 0);
757 ComputeMaskedBits(V
, Mask
, KnownZero
, KnownOne
, TD
);
758 unsigned TrailZ
= KnownZero
.countTrailingOnes();
760 // Avoid trouble with rediculously large TrailZ values, such as
761 // those computed from a null pointer.
762 TrailZ
= std::min(TrailZ
, unsigned(sizeof(unsigned) * CHAR_BIT
- 1));
764 unsigned Align
= 1u << std::min(BitWidth
- 1, TrailZ
);
766 // LLVM doesn't support alignments larger than this currently.
767 Align
= std::min(Align
, +Value::MaximumAlignment
);
769 if (PrefAlign
> Align
)
770 Align
= enforceKnownAlignment(V
, Align
, PrefAlign
);
772 // We don't need to make any adjustment.
776 ///===---------------------------------------------------------------------===//
777 /// Dbg Intrinsic utilities
780 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
781 /// that has an associated llvm.dbg.decl intrinsic.
782 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst
*DDI
,
783 StoreInst
*SI
, DIBuilder
&Builder
) {
784 DIVariable
DIVar(DDI
->getVariable());
788 Instruction
*DbgVal
=
789 Builder
.insertDbgValueIntrinsic(SI
->getOperand(0), 0,
792 // Propagate any debug metadata from the store onto the dbg.value.
793 DebugLoc SIDL
= SI
->getDebugLoc();
794 if (!SIDL
.isUnknown())
795 DbgVal
->setDebugLoc(SIDL
);
796 // Otherwise propagate debug metadata from dbg.declare.
798 DbgVal
->setDebugLoc(DDI
->getDebugLoc());
802 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
803 /// that has an associated llvm.dbg.decl intrinsic.
804 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst
*DDI
,
805 LoadInst
*LI
, DIBuilder
&Builder
) {
806 DIVariable
DIVar(DDI
->getVariable());
810 Instruction
*DbgVal
=
811 Builder
.insertDbgValueIntrinsic(LI
->getOperand(0), 0,
814 // Propagate any debug metadata from the store onto the dbg.value.
815 DebugLoc LIDL
= LI
->getDebugLoc();
816 if (!LIDL
.isUnknown())
817 DbgVal
->setDebugLoc(LIDL
);
818 // Otherwise propagate debug metadata from dbg.declare.
820 DbgVal
->setDebugLoc(DDI
->getDebugLoc());
824 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
825 /// of llvm.dbg.value intrinsics.
826 bool llvm::LowerDbgDeclare(Function
&F
) {
827 DIBuilder
DIB(*F
.getParent());
828 SmallVector
<DbgDeclareInst
*, 4> Dbgs
;
829 for (Function::iterator FI
= F
.begin(), FE
= F
.end(); FI
!= FE
; ++FI
)
830 for (BasicBlock::iterator BI
= FI
->begin(), BE
= FI
->end(); BI
!= BE
; ++BI
) {
831 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(BI
))
837 for (SmallVector
<DbgDeclareInst
*, 4>::iterator I
= Dbgs
.begin(),
838 E
= Dbgs
.end(); I
!= E
; ++I
) {
839 DbgDeclareInst
*DDI
= *I
;
840 if (AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(DDI
->getAddress())) {
841 bool RemoveDDI
= true;
842 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
844 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
))
845 ConvertDebugDeclareToDebugValue(DDI
, SI
, DIB
);
846 else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
))
847 ConvertDebugDeclareToDebugValue(DDI
, LI
, DIB
);
851 DDI
->eraseFromParent();