Revert r131155 for now. It makes VMCore depend on Analysis and Transforms
[llvm/stm8.git] / lib / Transforms / Utils / Local.cpp
blob4bca2fc1fb9d6a3d68dde14f66e7f84c9fac9917
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/GlobalAlias.h"
18 #include "llvm/GlobalVariable.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/IntrinsicInst.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/Analysis/DebugInfo.h"
27 #include "llvm/Analysis/DIBuilder.h"
28 #include "llvm/Analysis/Dominators.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/ProfileInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Support/CFG.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/GetElementPtrTypeIterator.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/ValueHandle.h"
39 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
42 //===----------------------------------------------------------------------===//
43 // Local constant propagation.
46 // ConstantFoldTerminator - If a terminator instruction is predicated on a
47 // constant value, convert it into an unconditional branch to the constant
48 // destination.
50 bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
51 TerminatorInst *T = BB->getTerminator();
53 // Branch - See if we are conditional jumping on constant
54 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
55 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
56 BasicBlock *Dest1 = BI->getSuccessor(0);
57 BasicBlock *Dest2 = BI->getSuccessor(1);
59 if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
60 // Are we branching on constant?
61 // YES. Change to unconditional branch...
62 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
63 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
65 //cerr << "Function: " << T->getParent()->getParent()
66 // << "\nRemoving branch from " << T->getParent()
67 // << "\n\nTo: " << OldDest << endl;
69 // Let the basic block know that we are letting go of it. Based on this,
70 // it will adjust it's PHI nodes.
71 OldDest->removePredecessor(BB);
73 // Replace the conditional branch with an unconditional one.
74 BranchInst::Create(Destination, BI);
75 BI->eraseFromParent();
76 return true;
79 if (Dest2 == Dest1) { // Conditional branch to same location?
80 // This branch matches something like this:
81 // br bool %cond, label %Dest, label %Dest
82 // and changes it into: br label %Dest
84 // Let the basic block know that we are letting go of one copy of it.
85 assert(BI->getParent() && "Terminator not inserted in block!");
86 Dest1->removePredecessor(BI->getParent());
88 // Replace the conditional branch with an unconditional one.
89 BranchInst::Create(Dest1, BI);
90 BI->eraseFromParent();
91 return true;
93 return false;
96 if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
97 // If we are switching on a constant, we can convert the switch into a
98 // single branch instruction!
99 ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
100 BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
101 BasicBlock *DefaultDest = TheOnlyDest;
102 assert(TheOnlyDest == SI->getDefaultDest() &&
103 "Default destination is not successor #0?");
105 // Figure out which case it goes to.
106 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
107 // Found case matching a constant operand?
108 if (SI->getSuccessorValue(i) == CI) {
109 TheOnlyDest = SI->getSuccessor(i);
110 break;
113 // Check to see if this branch is going to the same place as the default
114 // dest. If so, eliminate it as an explicit compare.
115 if (SI->getSuccessor(i) == DefaultDest) {
116 // Remove this entry.
117 DefaultDest->removePredecessor(SI->getParent());
118 SI->removeCase(i);
119 --i; --e; // Don't skip an entry...
120 continue;
123 // Otherwise, check to see if the switch only branches to one destination.
124 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
125 // destinations.
126 if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
129 if (CI && !TheOnlyDest) {
130 // Branching on a constant, but not any of the cases, go to the default
131 // successor.
132 TheOnlyDest = SI->getDefaultDest();
135 // If we found a single destination that we can fold the switch into, do so
136 // now.
137 if (TheOnlyDest) {
138 // Insert the new branch.
139 BranchInst::Create(TheOnlyDest, SI);
140 BasicBlock *BB = SI->getParent();
142 // Remove entries from PHI nodes which we no longer branch to...
143 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
144 // Found case matching a constant operand?
145 BasicBlock *Succ = SI->getSuccessor(i);
146 if (Succ == TheOnlyDest)
147 TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
148 else
149 Succ->removePredecessor(BB);
152 // Delete the old switch.
153 BB->getInstList().erase(SI);
154 return true;
157 if (SI->getNumSuccessors() == 2) {
158 // Otherwise, we can fold this switch into a conditional branch
159 // instruction if it has only one non-default destination.
160 Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
161 SI->getSuccessorValue(1), "cond");
162 // Insert the new branch.
163 BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
165 // Delete the old switch.
166 SI->eraseFromParent();
167 return true;
169 return false;
172 if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
173 // indirectbr blockaddress(@F, @BB) -> br label @BB
174 if (BlockAddress *BA =
175 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
176 BasicBlock *TheOnlyDest = BA->getBasicBlock();
177 // Insert the new branch.
178 BranchInst::Create(TheOnlyDest, IBI);
180 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
181 if (IBI->getDestination(i) == TheOnlyDest)
182 TheOnlyDest = 0;
183 else
184 IBI->getDestination(i)->removePredecessor(IBI->getParent());
186 IBI->eraseFromParent();
188 // If we didn't find our destination in the IBI successor list, then we
189 // have undefined behavior. Replace the unconditional branch with an
190 // 'unreachable' instruction.
191 if (TheOnlyDest) {
192 BB->getTerminator()->eraseFromParent();
193 new UnreachableInst(BB->getContext(), BB);
196 return true;
200 return false;
204 //===----------------------------------------------------------------------===//
205 // Local dead code elimination.
208 /// isInstructionTriviallyDead - Return true if the result produced by the
209 /// instruction is not used, and the instruction has no side effects.
211 bool llvm::isInstructionTriviallyDead(Instruction *I) {
212 if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
214 // We don't want debug info removed by anything this general, unless
215 // debug info is empty.
216 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
217 if (DDI->getAddress())
218 return false;
219 return true;
221 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
222 if (DVI->getValue())
223 return false;
224 return true;
227 if (!I->mayHaveSideEffects()) return true;
229 // Special case intrinsics that "may have side effects" but can be deleted
230 // when dead.
231 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
232 // Safe to delete llvm.stacksave if dead.
233 if (II->getIntrinsicID() == Intrinsic::stacksave)
234 return true;
235 return false;
238 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
239 /// trivially dead instruction, delete it. If that makes any of its operands
240 /// trivially dead, delete them too, recursively. Return true if any
241 /// instructions were deleted.
242 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
243 Instruction *I = dyn_cast<Instruction>(V);
244 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
245 return false;
247 SmallVector<Instruction*, 16> DeadInsts;
248 DeadInsts.push_back(I);
250 do {
251 I = DeadInsts.pop_back_val();
253 // Null out all of the instruction's operands to see if any operand becomes
254 // dead as we go.
255 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
256 Value *OpV = I->getOperand(i);
257 I->setOperand(i, 0);
259 if (!OpV->use_empty()) continue;
261 // If the operand is an instruction that became dead as we nulled out the
262 // operand, and if it is 'trivially' dead, delete it in a future loop
263 // iteration.
264 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
265 if (isInstructionTriviallyDead(OpI))
266 DeadInsts.push_back(OpI);
269 I->eraseFromParent();
270 } while (!DeadInsts.empty());
272 return true;
275 /// areAllUsesEqual - Check whether the uses of a value are all the same.
276 /// This is similar to Instruction::hasOneUse() except this will also return
277 /// true when there are no uses or multiple uses that all refer to the same
278 /// value.
279 static bool areAllUsesEqual(Instruction *I) {
280 Value::use_iterator UI = I->use_begin();
281 Value::use_iterator UE = I->use_end();
282 if (UI == UE)
283 return true;
285 User *TheUse = *UI;
286 for (++UI; UI != UE; ++UI) {
287 if (*UI != TheUse)
288 return false;
290 return true;
293 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
294 /// dead PHI node, due to being a def-use chain of single-use nodes that
295 /// either forms a cycle or is terminated by a trivially dead instruction,
296 /// delete it. If that makes any of its operands trivially dead, delete them
297 /// too, recursively. Return true if a change was made.
298 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
299 SmallPtrSet<Instruction*, 4> Visited;
300 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
301 I = cast<Instruction>(*I->use_begin())) {
302 if (I->use_empty())
303 return RecursivelyDeleteTriviallyDeadInstructions(I);
305 // If we find an instruction more than once, we're on a cycle that
306 // won't prove fruitful.
307 if (!Visited.insert(I)) {
308 // Break the cycle and delete the instruction and its operands.
309 I->replaceAllUsesWith(UndefValue::get(I->getType()));
310 (void)RecursivelyDeleteTriviallyDeadInstructions(I);
311 return true;
314 return false;
317 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
318 /// simplify any instructions in it and recursively delete dead instructions.
320 /// This returns true if it changed the code, note that it can delete
321 /// instructions in other blocks as well in this block.
322 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
323 bool MadeChange = false;
324 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
325 Instruction *Inst = BI++;
327 if (Value *V = SimplifyInstruction(Inst, TD)) {
328 WeakVH BIHandle(BI);
329 ReplaceAndSimplifyAllUses(Inst, V, TD);
330 MadeChange = true;
331 if (BIHandle != BI)
332 BI = BB->begin();
333 continue;
336 if (Inst->isTerminator())
337 break;
339 WeakVH BIHandle(BI);
340 MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
341 if (BIHandle != BI)
342 BI = BB->begin();
344 return MadeChange;
347 //===----------------------------------------------------------------------===//
348 // Control Flow Graph Restructuring.
352 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
353 /// method is called when we're about to delete Pred as a predecessor of BB. If
354 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
356 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
357 /// nodes that collapse into identity values. For example, if we have:
358 /// x = phi(1, 0, 0, 0)
359 /// y = and x, z
361 /// .. and delete the predecessor corresponding to the '1', this will attempt to
362 /// recursively fold the and to 0.
363 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
364 TargetData *TD) {
365 // This only adjusts blocks with PHI nodes.
366 if (!isa<PHINode>(BB->begin()))
367 return;
369 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
370 // them down. This will leave us with single entry phi nodes and other phis
371 // that can be removed.
372 BB->removePredecessor(Pred, true);
374 WeakVH PhiIt = &BB->front();
375 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
376 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
378 Value *PNV = SimplifyInstruction(PN, TD);
379 if (PNV == 0) continue;
381 // If we're able to simplify the phi to a single value, substitute the new
382 // value into all of its uses.
383 assert(PNV != PN && "SimplifyInstruction broken!");
385 Value *OldPhiIt = PhiIt;
386 ReplaceAndSimplifyAllUses(PN, PNV, TD);
388 // If recursive simplification ended up deleting the next PHI node we would
389 // iterate to, then our iterator is invalid, restart scanning from the top
390 // of the block.
391 if (PhiIt != OldPhiIt) PhiIt = &BB->front();
396 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
397 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
398 /// between them, moving the instructions in the predecessor into DestBB and
399 /// deleting the predecessor block.
401 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
402 // If BB has single-entry PHI nodes, fold them.
403 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
404 Value *NewVal = PN->getIncomingValue(0);
405 // Replace self referencing PHI with undef, it must be dead.
406 if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
407 PN->replaceAllUsesWith(NewVal);
408 PN->eraseFromParent();
411 BasicBlock *PredBB = DestBB->getSinglePredecessor();
412 assert(PredBB && "Block doesn't have a single predecessor!");
414 // Splice all the instructions from PredBB to DestBB.
415 PredBB->getTerminator()->eraseFromParent();
416 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
418 // Zap anything that took the address of DestBB. Not doing this will give the
419 // address an invalid value.
420 if (DestBB->hasAddressTaken()) {
421 BlockAddress *BA = BlockAddress::get(DestBB);
422 Constant *Replacement =
423 ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
424 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
425 BA->getType()));
426 BA->destroyConstant();
429 // Anything that branched to PredBB now branches to DestBB.
430 PredBB->replaceAllUsesWith(DestBB);
432 if (P) {
433 DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
434 if (DT) {
435 BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
436 DT->changeImmediateDominator(DestBB, PredBBIDom);
437 DT->eraseNode(PredBB);
439 ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
440 if (PI) {
441 PI->replaceAllUses(PredBB, DestBB);
442 PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
445 // Nuke BB.
446 PredBB->eraseFromParent();
449 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
450 /// almost-empty BB ending in an unconditional branch to Succ, into succ.
452 /// Assumption: Succ is the single successor for BB.
454 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
455 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
457 DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
458 << Succ->getName() << "\n");
459 // Shortcut, if there is only a single predecessor it must be BB and merging
460 // is always safe
461 if (Succ->getSinglePredecessor()) return true;
463 // Make a list of the predecessors of BB
464 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
465 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
467 // Use that list to make another list of common predecessors of BB and Succ
468 BlockSet CommonPreds;
469 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
470 PI != PE; ++PI) {
471 BasicBlock *P = *PI;
472 if (BBPreds.count(P))
473 CommonPreds.insert(P);
476 // Shortcut, if there are no common predecessors, merging is always safe
477 if (CommonPreds.empty())
478 return true;
480 // Look at all the phi nodes in Succ, to see if they present a conflict when
481 // merging these blocks
482 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
483 PHINode *PN = cast<PHINode>(I);
485 // If the incoming value from BB is again a PHINode in
486 // BB which has the same incoming value for *PI as PN does, we can
487 // merge the phi nodes and then the blocks can still be merged
488 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
489 if (BBPN && BBPN->getParent() == BB) {
490 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
491 PI != PE; PI++) {
492 if (BBPN->getIncomingValueForBlock(*PI)
493 != PN->getIncomingValueForBlock(*PI)) {
494 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
495 << Succ->getName() << " is conflicting with "
496 << BBPN->getName() << " with regard to common predecessor "
497 << (*PI)->getName() << "\n");
498 return false;
501 } else {
502 Value* Val = PN->getIncomingValueForBlock(BB);
503 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
504 PI != PE; PI++) {
505 // See if the incoming value for the common predecessor is equal to the
506 // one for BB, in which case this phi node will not prevent the merging
507 // of the block.
508 if (Val != PN->getIncomingValueForBlock(*PI)) {
509 DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
510 << Succ->getName() << " is conflicting with regard to common "
511 << "predecessor " << (*PI)->getName() << "\n");
512 return false;
518 return true;
521 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
522 /// unconditional branch, and contains no instructions other than PHI nodes,
523 /// potential debug intrinsics and the branch. If possible, eliminate BB by
524 /// rewriting all the predecessors to branch to the successor block and return
525 /// true. If we can't transform, return false.
526 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
527 assert(BB != &BB->getParent()->getEntryBlock() &&
528 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
530 // We can't eliminate infinite loops.
531 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
532 if (BB == Succ) return false;
534 // Check to see if merging these blocks would cause conflicts for any of the
535 // phi nodes in BB or Succ. If not, we can safely merge.
536 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
538 // Check for cases where Succ has multiple predecessors and a PHI node in BB
539 // has uses which will not disappear when the PHI nodes are merged. It is
540 // possible to handle such cases, but difficult: it requires checking whether
541 // BB dominates Succ, which is non-trivial to calculate in the case where
542 // Succ has multiple predecessors. Also, it requires checking whether
543 // constructing the necessary self-referential PHI node doesn't intoduce any
544 // conflicts; this isn't too difficult, but the previous code for doing this
545 // was incorrect.
547 // Note that if this check finds a live use, BB dominates Succ, so BB is
548 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
549 // folding the branch isn't profitable in that case anyway.
550 if (!Succ->getSinglePredecessor()) {
551 BasicBlock::iterator BBI = BB->begin();
552 while (isa<PHINode>(*BBI)) {
553 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
554 UI != E; ++UI) {
555 if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
556 if (PN->getIncomingBlock(UI) != BB)
557 return false;
558 } else {
559 return false;
562 ++BBI;
566 DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
568 if (isa<PHINode>(Succ->begin())) {
569 // If there is more than one pred of succ, and there are PHI nodes in
570 // the successor, then we need to add incoming edges for the PHI nodes
572 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
574 // Loop over all of the PHI nodes in the successor of BB.
575 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
576 PHINode *PN = cast<PHINode>(I);
577 Value *OldVal = PN->removeIncomingValue(BB, false);
578 assert(OldVal && "No entry in PHI for Pred BB!");
580 // If this incoming value is one of the PHI nodes in BB, the new entries
581 // in the PHI node are the entries from the old PHI.
582 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
583 PHINode *OldValPN = cast<PHINode>(OldVal);
584 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
585 // Note that, since we are merging phi nodes and BB and Succ might
586 // have common predecessors, we could end up with a phi node with
587 // identical incoming branches. This will be cleaned up later (and
588 // will trigger asserts if we try to clean it up now, without also
589 // simplifying the corresponding conditional branch).
590 PN->addIncoming(OldValPN->getIncomingValue(i),
591 OldValPN->getIncomingBlock(i));
592 } else {
593 // Add an incoming value for each of the new incoming values.
594 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
595 PN->addIncoming(OldVal, BBPreds[i]);
600 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
601 if (Succ->getSinglePredecessor()) {
602 // BB is the only predecessor of Succ, so Succ will end up with exactly
603 // the same predecessors BB had.
604 Succ->getInstList().splice(Succ->begin(),
605 BB->getInstList(), BB->begin());
606 } else {
607 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
608 assert(PN->use_empty() && "There shouldn't be any uses here!");
609 PN->eraseFromParent();
613 // Everything that jumped to BB now goes to Succ.
614 BB->replaceAllUsesWith(Succ);
615 if (!Succ->hasName()) Succ->takeName(BB);
616 BB->eraseFromParent(); // Delete the old basic block.
617 return true;
620 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
621 /// nodes in this block. This doesn't try to be clever about PHI nodes
622 /// which differ only in the order of the incoming values, but instcombine
623 /// orders them so it usually won't matter.
625 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
626 bool Changed = false;
628 // This implementation doesn't currently consider undef operands
629 // specially. Theroetically, two phis which are identical except for
630 // one having an undef where the other doesn't could be collapsed.
632 // Map from PHI hash values to PHI nodes. If multiple PHIs have
633 // the same hash value, the element is the first PHI in the
634 // linked list in CollisionMap.
635 DenseMap<uintptr_t, PHINode *> HashMap;
637 // Maintain linked lists of PHI nodes with common hash values.
638 DenseMap<PHINode *, PHINode *> CollisionMap;
640 // Examine each PHI.
641 for (BasicBlock::iterator I = BB->begin();
642 PHINode *PN = dyn_cast<PHINode>(I++); ) {
643 // Compute a hash value on the operands. Instcombine will likely have sorted
644 // them, which helps expose duplicates, but we have to check all the
645 // operands to be safe in case instcombine hasn't run.
646 uintptr_t Hash = 0;
647 for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
648 // This hash algorithm is quite weak as hash functions go, but it seems
649 // to do a good enough job for this particular purpose, and is very quick.
650 Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
651 Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
653 // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
654 Hash >>= 1;
655 // If we've never seen this hash value before, it's a unique PHI.
656 std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
657 HashMap.insert(std::make_pair(Hash, PN));
658 if (Pair.second) continue;
659 // Otherwise it's either a duplicate or a hash collision.
660 for (PHINode *OtherPN = Pair.first->second; ; ) {
661 if (OtherPN->isIdenticalTo(PN)) {
662 // A duplicate. Replace this PHI with its duplicate.
663 PN->replaceAllUsesWith(OtherPN);
664 PN->eraseFromParent();
665 Changed = true;
666 break;
668 // A non-duplicate hash collision.
669 DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
670 if (I == CollisionMap.end()) {
671 // Set this PHI to be the head of the linked list of colliding PHIs.
672 PHINode *Old = Pair.first->second;
673 Pair.first->second = PN;
674 CollisionMap[PN] = Old;
675 break;
677 // Procede to the next PHI in the list.
678 OtherPN = I->second;
682 return Changed;
685 /// enforceKnownAlignment - If the specified pointer points to an object that
686 /// we control, modify the object's alignment to PrefAlign. This isn't
687 /// often possible though. If alignment is important, a more reliable approach
688 /// is to simply align all global variables and allocation instructions to
689 /// their preferred alignment from the beginning.
691 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
692 unsigned PrefAlign) {
694 User *U = dyn_cast<User>(V);
695 if (!U) return Align;
697 switch (Operator::getOpcode(U)) {
698 default: break;
699 case Instruction::BitCast:
700 return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
701 case Instruction::GetElementPtr: {
702 // If all indexes are zero, it is just the alignment of the base pointer.
703 bool AllZeroOperands = true;
704 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
705 if (!isa<Constant>(*i) ||
706 !cast<Constant>(*i)->isNullValue()) {
707 AllZeroOperands = false;
708 break;
711 if (AllZeroOperands) {
712 // Treat this like a bitcast.
713 return enforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
715 return Align;
717 case Instruction::Alloca: {
718 AllocaInst *AI = cast<AllocaInst>(V);
719 // If there is a requested alignment and if this is an alloca, round up.
720 if (AI->getAlignment() >= PrefAlign)
721 return AI->getAlignment();
722 AI->setAlignment(PrefAlign);
723 return PrefAlign;
727 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
728 // If there is a large requested alignment and we can, bump up the alignment
729 // of the global.
730 if (GV->isDeclaration()) return Align;
732 if (GV->getAlignment() >= PrefAlign)
733 return GV->getAlignment();
734 // We can only increase the alignment of the global if it has no alignment
735 // specified or if it is not assigned a section. If it is assigned a
736 // section, the global could be densely packed with other objects in the
737 // section, increasing the alignment could cause padding issues.
738 if (!GV->hasSection() || GV->getAlignment() == 0)
739 GV->setAlignment(PrefAlign);
740 return GV->getAlignment();
743 return Align;
746 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
747 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
748 /// and it is more than the alignment of the ultimate object, see if we can
749 /// increase the alignment of the ultimate object, making this check succeed.
750 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
751 const TargetData *TD) {
752 assert(V->getType()->isPointerTy() &&
753 "getOrEnforceKnownAlignment expects a pointer!");
754 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
755 APInt Mask = APInt::getAllOnesValue(BitWidth);
756 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
757 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD);
758 unsigned TrailZ = KnownZero.countTrailingOnes();
760 // Avoid trouble with rediculously large TrailZ values, such as
761 // those computed from a null pointer.
762 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
764 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
766 // LLVM doesn't support alignments larger than this currently.
767 Align = std::min(Align, +Value::MaximumAlignment);
769 if (PrefAlign > Align)
770 Align = enforceKnownAlignment(V, Align, PrefAlign);
772 // We don't need to make any adjustment.
773 return Align;
776 ///===---------------------------------------------------------------------===//
777 /// Dbg Intrinsic utilities
780 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
781 /// that has an associated llvm.dbg.decl intrinsic.
782 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
783 StoreInst *SI, DIBuilder &Builder) {
784 DIVariable DIVar(DDI->getVariable());
785 if (!DIVar.Verify())
786 return false;
788 Instruction *DbgVal =
789 Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0,
790 DIVar, SI);
792 // Propagate any debug metadata from the store onto the dbg.value.
793 DebugLoc SIDL = SI->getDebugLoc();
794 if (!SIDL.isUnknown())
795 DbgVal->setDebugLoc(SIDL);
796 // Otherwise propagate debug metadata from dbg.declare.
797 else
798 DbgVal->setDebugLoc(DDI->getDebugLoc());
799 return true;
802 /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value
803 /// that has an associated llvm.dbg.decl intrinsic.
804 bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
805 LoadInst *LI, DIBuilder &Builder) {
806 DIVariable DIVar(DDI->getVariable());
807 if (!DIVar.Verify())
808 return false;
810 Instruction *DbgVal =
811 Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
812 DIVar, LI);
814 // Propagate any debug metadata from the store onto the dbg.value.
815 DebugLoc LIDL = LI->getDebugLoc();
816 if (!LIDL.isUnknown())
817 DbgVal->setDebugLoc(LIDL);
818 // Otherwise propagate debug metadata from dbg.declare.
819 else
820 DbgVal->setDebugLoc(DDI->getDebugLoc());
821 return true;
824 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
825 /// of llvm.dbg.value intrinsics.
826 bool llvm::LowerDbgDeclare(Function &F) {
827 DIBuilder DIB(*F.getParent());
828 SmallVector<DbgDeclareInst *, 4> Dbgs;
829 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
830 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
831 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
832 Dbgs.push_back(DDI);
834 if (Dbgs.empty())
835 return false;
837 for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(),
838 E = Dbgs.end(); I != E; ++I) {
839 DbgDeclareInst *DDI = *I;
840 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) {
841 bool RemoveDDI = true;
842 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
843 UI != E; ++UI)
844 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
845 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
846 else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
847 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
848 else
849 RemoveDDI = false;
850 if (RemoveDDI)
851 DDI->eraseFromParent();
854 return true;