the various ConstantExpr::get*Ty methods existed to work with issues around
[llvm/stm8.git] / lib / Target / Alpha / AlphaISelDAGToDAG.cpp
blob7b91fea54af4d8adda57663928a6c33f2a0119e3
1 //===-- AlphaISelDAGToDAG.cpp - Alpha pattern matching inst selector ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for Alpha,
11 // converting from a legalized dag to a Alpha dag.
13 //===----------------------------------------------------------------------===//
15 #include "Alpha.h"
16 #include "AlphaTargetMachine.h"
17 #include "llvm/CodeGen/MachineInstrBuilder.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGISel.h"
23 #include "llvm/Target/TargetOptions.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/GlobalValue.h"
27 #include "llvm/Intrinsics.h"
28 #include "llvm/LLVMContext.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 using namespace llvm;
37 namespace {
39 //===--------------------------------------------------------------------===//
40 /// AlphaDAGToDAGISel - Alpha specific code to select Alpha machine
41 /// instructions for SelectionDAG operations.
42 class AlphaDAGToDAGISel : public SelectionDAGISel {
43 static const int64_t IMM_LOW = -32768;
44 static const int64_t IMM_HIGH = 32767;
45 static const int64_t IMM_MULT = 65536;
46 static const int64_t IMM_FULLHIGH = IMM_HIGH + IMM_HIGH * IMM_MULT;
47 static const int64_t IMM_FULLLOW = IMM_LOW + IMM_LOW * IMM_MULT;
49 static int64_t get_ldah16(int64_t x) {
50 int64_t y = x / IMM_MULT;
51 if (x % IMM_MULT > IMM_HIGH)
52 ++y;
53 return y;
56 static int64_t get_lda16(int64_t x) {
57 return x - get_ldah16(x) * IMM_MULT;
60 /// get_zapImm - Return a zap mask if X is a valid immediate for a zapnot
61 /// instruction (if not, return 0). Note that this code accepts partial
62 /// zap masks. For example (and LHS, 1) is a valid zap, as long we know
63 /// that the bits 1-7 of LHS are already zero. If LHS is non-null, we are
64 /// in checking mode. If LHS is null, we assume that the mask has already
65 /// been validated before.
66 uint64_t get_zapImm(SDValue LHS, uint64_t Constant) const {
67 uint64_t BitsToCheck = 0;
68 unsigned Result = 0;
69 for (unsigned i = 0; i != 8; ++i) {
70 if (((Constant >> 8*i) & 0xFF) == 0) {
71 // nothing to do.
72 } else {
73 Result |= 1 << i;
74 if (((Constant >> 8*i) & 0xFF) == 0xFF) {
75 // If the entire byte is set, zapnot the byte.
76 } else if (LHS.getNode() == 0) {
77 // Otherwise, if the mask was previously validated, we know its okay
78 // to zapnot this entire byte even though all the bits aren't set.
79 } else {
80 // Otherwise we don't know that the it's okay to zapnot this entire
81 // byte. Only do this iff we can prove that the missing bits are
82 // already null, so the bytezap doesn't need to really null them.
83 BitsToCheck |= ~Constant & (0xFF << 8*i);
88 // If there are missing bits in a byte (for example, X & 0xEF00), check to
89 // see if the missing bits (0x1000) are already known zero if not, the zap
90 // isn't okay to do, as it won't clear all the required bits.
91 if (BitsToCheck &&
92 !CurDAG->MaskedValueIsZero(LHS,
93 APInt(LHS.getValueSizeInBits(),
94 BitsToCheck)))
95 return 0;
97 return Result;
100 static uint64_t get_zapImm(uint64_t x) {
101 unsigned build = 0;
102 for(int i = 0; i != 8; ++i) {
103 if ((x & 0x00FF) == 0x00FF)
104 build |= 1 << i;
105 else if ((x & 0x00FF) != 0)
106 return 0;
107 x >>= 8;
109 return build;
113 static uint64_t getNearPower2(uint64_t x) {
114 if (!x) return 0;
115 unsigned at = CountLeadingZeros_64(x);
116 uint64_t complow = 1ULL << (63 - at);
117 uint64_t comphigh = 1ULL << (64 - at);
118 //cerr << x << ":" << complow << ":" << comphigh << "\n";
119 if (abs64(complow - x) <= abs64(comphigh - x))
120 return complow;
121 else
122 return comphigh;
125 static bool chkRemNearPower2(uint64_t x, uint64_t r, bool swap) {
126 uint64_t y = getNearPower2(x);
127 if (swap)
128 return (y - x) == r;
129 else
130 return (x - y) == r;
133 public:
134 explicit AlphaDAGToDAGISel(AlphaTargetMachine &TM)
135 : SelectionDAGISel(TM)
138 /// getI64Imm - Return a target constant with the specified value, of type
139 /// i64.
140 inline SDValue getI64Imm(int64_t Imm) {
141 return CurDAG->getTargetConstant(Imm, MVT::i64);
144 // Select - Convert the specified operand from a target-independent to a
145 // target-specific node if it hasn't already been changed.
146 SDNode *Select(SDNode *N);
148 virtual const char *getPassName() const {
149 return "Alpha DAG->DAG Pattern Instruction Selection";
152 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
153 /// inline asm expressions.
154 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
155 char ConstraintCode,
156 std::vector<SDValue> &OutOps) {
157 SDValue Op0;
158 switch (ConstraintCode) {
159 default: return true;
160 case 'm': // memory
161 Op0 = Op;
162 break;
165 OutOps.push_back(Op0);
166 return false;
169 // Include the pieces autogenerated from the target description.
170 #include "AlphaGenDAGISel.inc"
172 private:
173 /// getTargetMachine - Return a reference to the TargetMachine, casted
174 /// to the target-specific type.
175 const AlphaTargetMachine &getTargetMachine() {
176 return static_cast<const AlphaTargetMachine &>(TM);
179 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
180 /// to the target-specific type.
181 const AlphaInstrInfo *getInstrInfo() {
182 return getTargetMachine().getInstrInfo();
185 SDNode *getGlobalBaseReg();
186 SDNode *getGlobalRetAddr();
187 void SelectCALL(SDNode *Op);
192 /// getGlobalBaseReg - Output the instructions required to put the
193 /// GOT address into a register.
195 SDNode *AlphaDAGToDAGISel::getGlobalBaseReg() {
196 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
197 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
200 /// getGlobalRetAddr - Grab the return address.
202 SDNode *AlphaDAGToDAGISel::getGlobalRetAddr() {
203 unsigned GlobalRetAddr = getInstrInfo()->getGlobalRetAddr(MF);
204 return CurDAG->getRegister(GlobalRetAddr, TLI.getPointerTy()).getNode();
207 // Select - Convert the specified operand from a target-independent to a
208 // target-specific node if it hasn't already been changed.
209 SDNode *AlphaDAGToDAGISel::Select(SDNode *N) {
210 if (N->isMachineOpcode())
211 return NULL; // Already selected.
212 DebugLoc dl = N->getDebugLoc();
214 switch (N->getOpcode()) {
215 default: break;
216 case AlphaISD::CALL:
217 SelectCALL(N);
218 return NULL;
220 case ISD::FrameIndex: {
221 int FI = cast<FrameIndexSDNode>(N)->getIndex();
222 return CurDAG->SelectNodeTo(N, Alpha::LDA, MVT::i64,
223 CurDAG->getTargetFrameIndex(FI, MVT::i32),
224 getI64Imm(0));
226 case ISD::GLOBAL_OFFSET_TABLE:
227 return getGlobalBaseReg();
228 case AlphaISD::GlobalRetAddr:
229 return getGlobalRetAddr();
231 case AlphaISD::DivCall: {
232 SDValue Chain = CurDAG->getEntryNode();
233 SDValue N0 = N->getOperand(0);
234 SDValue N1 = N->getOperand(1);
235 SDValue N2 = N->getOperand(2);
236 Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R24, N1,
237 SDValue(0,0));
238 Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R25, N2,
239 Chain.getValue(1));
240 Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R27, N0,
241 Chain.getValue(1));
242 SDNode *CNode =
243 CurDAG->getMachineNode(Alpha::JSRs, dl, MVT::Other, MVT::Glue,
244 Chain, Chain.getValue(1));
245 Chain = CurDAG->getCopyFromReg(Chain, dl, Alpha::R27, MVT::i64,
246 SDValue(CNode, 1));
247 return CurDAG->SelectNodeTo(N, Alpha::BISr, MVT::i64, Chain, Chain);
250 case ISD::READCYCLECOUNTER: {
251 SDValue Chain = N->getOperand(0);
252 return CurDAG->getMachineNode(Alpha::RPCC, dl, MVT::i64, MVT::Other,
253 Chain);
256 case ISD::Constant: {
257 uint64_t uval = cast<ConstantSDNode>(N)->getZExtValue();
259 if (uval == 0) {
260 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
261 Alpha::R31, MVT::i64);
262 ReplaceUses(SDValue(N, 0), Result);
263 return NULL;
266 int64_t val = (int64_t)uval;
267 int32_t val32 = (int32_t)val;
268 if (val <= IMM_HIGH + IMM_HIGH * IMM_MULT &&
269 val >= IMM_LOW + IMM_LOW * IMM_MULT)
270 break; //(LDAH (LDA))
271 if ((uval >> 32) == 0 && //empty upper bits
272 val32 <= IMM_HIGH + IMM_HIGH * IMM_MULT)
273 // val32 >= IMM_LOW + IMM_LOW * IMM_MULT) //always true
274 break; //(zext (LDAH (LDA)))
275 //Else use the constant pool
276 ConstantInt *C = ConstantInt::get(
277 Type::getInt64Ty(*CurDAG->getContext()), uval);
278 SDValue CPI = CurDAG->getTargetConstantPool(C, MVT::i64);
279 SDNode *Tmp = CurDAG->getMachineNode(Alpha::LDAHr, dl, MVT::i64, CPI,
280 SDValue(getGlobalBaseReg(), 0));
281 return CurDAG->SelectNodeTo(N, Alpha::LDQr, MVT::i64, MVT::Other,
282 CPI, SDValue(Tmp, 0), CurDAG->getEntryNode());
284 case ISD::TargetConstantFP:
285 case ISD::ConstantFP: {
286 ConstantFPSDNode *CN = cast<ConstantFPSDNode>(N);
287 bool isDouble = N->getValueType(0) == MVT::f64;
288 EVT T = isDouble ? MVT::f64 : MVT::f32;
289 if (CN->getValueAPF().isPosZero()) {
290 return CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYST : Alpha::CPYSS,
291 T, CurDAG->getRegister(Alpha::F31, T),
292 CurDAG->getRegister(Alpha::F31, T));
293 } else if (CN->getValueAPF().isNegZero()) {
294 return CurDAG->SelectNodeTo(N, isDouble ? Alpha::CPYSNT : Alpha::CPYSNS,
295 T, CurDAG->getRegister(Alpha::F31, T),
296 CurDAG->getRegister(Alpha::F31, T));
297 } else {
298 report_fatal_error("Unhandled FP constant type");
300 break;
303 case ISD::SETCC:
304 if (N->getOperand(0).getNode()->getValueType(0).isFloatingPoint()) {
305 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
307 unsigned Opc = Alpha::WTF;
308 bool rev = false;
309 bool inv = false;
310 switch(CC) {
311 default: DEBUG(N->dump(CurDAG)); llvm_unreachable("Unknown FP comparison!");
312 case ISD::SETEQ: case ISD::SETOEQ: case ISD::SETUEQ:
313 Opc = Alpha::CMPTEQ; break;
314 case ISD::SETLT: case ISD::SETOLT: case ISD::SETULT:
315 Opc = Alpha::CMPTLT; break;
316 case ISD::SETLE: case ISD::SETOLE: case ISD::SETULE:
317 Opc = Alpha::CMPTLE; break;
318 case ISD::SETGT: case ISD::SETOGT: case ISD::SETUGT:
319 Opc = Alpha::CMPTLT; rev = true; break;
320 case ISD::SETGE: case ISD::SETOGE: case ISD::SETUGE:
321 Opc = Alpha::CMPTLE; rev = true; break;
322 case ISD::SETNE: case ISD::SETONE: case ISD::SETUNE:
323 Opc = Alpha::CMPTEQ; inv = true; break;
324 case ISD::SETO:
325 Opc = Alpha::CMPTUN; inv = true; break;
326 case ISD::SETUO:
327 Opc = Alpha::CMPTUN; break;
329 SDValue tmp1 = N->getOperand(rev?1:0);
330 SDValue tmp2 = N->getOperand(rev?0:1);
331 SDNode *cmp = CurDAG->getMachineNode(Opc, dl, MVT::f64, tmp1, tmp2);
332 if (inv)
333 cmp = CurDAG->getMachineNode(Alpha::CMPTEQ, dl,
334 MVT::f64, SDValue(cmp, 0),
335 CurDAG->getRegister(Alpha::F31, MVT::f64));
336 switch(CC) {
337 case ISD::SETUEQ: case ISD::SETULT: case ISD::SETULE:
338 case ISD::SETUNE: case ISD::SETUGT: case ISD::SETUGE:
340 SDNode* cmp2 = CurDAG->getMachineNode(Alpha::CMPTUN, dl, MVT::f64,
341 tmp1, tmp2);
342 cmp = CurDAG->getMachineNode(Alpha::ADDT, dl, MVT::f64,
343 SDValue(cmp2, 0), SDValue(cmp, 0));
344 break;
346 default: break;
349 SDNode* LD = CurDAG->getMachineNode(Alpha::FTOIT, dl,
350 MVT::i64, SDValue(cmp, 0));
351 return CurDAG->getMachineNode(Alpha::CMPULT, dl, MVT::i64,
352 CurDAG->getRegister(Alpha::R31, MVT::i64),
353 SDValue(LD,0));
355 break;
357 case ISD::AND: {
358 ConstantSDNode* SC = NULL;
359 ConstantSDNode* MC = NULL;
360 if (N->getOperand(0).getOpcode() == ISD::SRL &&
361 (MC = dyn_cast<ConstantSDNode>(N->getOperand(1))) &&
362 (SC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1)))) {
363 uint64_t sval = SC->getZExtValue();
364 uint64_t mval = MC->getZExtValue();
365 // If the result is a zap, let the autogened stuff handle it.
366 if (get_zapImm(N->getOperand(0), mval))
367 break;
368 // given mask X, and shift S, we want to see if there is any zap in the
369 // mask if we play around with the botton S bits
370 uint64_t dontcare = (~0ULL) >> (64 - sval);
371 uint64_t mask = mval << sval;
373 if (get_zapImm(mask | dontcare))
374 mask = mask | dontcare;
376 if (get_zapImm(mask)) {
377 SDValue Z =
378 SDValue(CurDAG->getMachineNode(Alpha::ZAPNOTi, dl, MVT::i64,
379 N->getOperand(0).getOperand(0),
380 getI64Imm(get_zapImm(mask))), 0);
381 return CurDAG->getMachineNode(Alpha::SRLr, dl, MVT::i64, Z,
382 getI64Imm(sval));
385 break;
390 return SelectCode(N);
393 void AlphaDAGToDAGISel::SelectCALL(SDNode *N) {
394 //TODO: add flag stuff to prevent nondeturministic breakage!
396 SDValue Chain = N->getOperand(0);
397 SDValue Addr = N->getOperand(1);
398 SDValue InFlag = N->getOperand(N->getNumOperands() - 1);
399 DebugLoc dl = N->getDebugLoc();
401 if (Addr.getOpcode() == AlphaISD::GPRelLo) {
402 SDValue GOT = SDValue(getGlobalBaseReg(), 0);
403 Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R29, GOT, InFlag);
404 InFlag = Chain.getValue(1);
405 Chain = SDValue(CurDAG->getMachineNode(Alpha::BSR, dl, MVT::Other,
406 MVT::Glue, Addr.getOperand(0),
407 Chain, InFlag), 0);
408 } else {
409 Chain = CurDAG->getCopyToReg(Chain, dl, Alpha::R27, Addr, InFlag);
410 InFlag = Chain.getValue(1);
411 Chain = SDValue(CurDAG->getMachineNode(Alpha::JSR, dl, MVT::Other,
412 MVT::Glue, Chain, InFlag), 0);
414 InFlag = Chain.getValue(1);
416 ReplaceUses(SDValue(N, 0), Chain);
417 ReplaceUses(SDValue(N, 1), InFlag);
421 /// createAlphaISelDag - This pass converts a legalized DAG into a
422 /// Alpha-specific DAG, ready for instruction scheduling.
424 FunctionPass *llvm::createAlphaISelDag(AlphaTargetMachine &TM) {
425 return new AlphaDAGToDAGISel(TM);