Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
blob85d67ce62b9f308ba8bc53612489eab6a39c55ef
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/Program.h"
30 #include <cctype>
31 #include <map>
32 using namespace llvm;
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
36 enum {
37 CurVersion = 0,
39 // VALUE_SYMTAB_BLOCK abbrev id's.
40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41 VST_ENTRY_7_ABBREV,
42 VST_ENTRY_6_ABBREV,
43 VST_BBENTRY_6_ABBREV,
45 // CONSTANTS_BLOCK abbrev id's.
46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47 CONSTANTS_INTEGER_ABBREV,
48 CONSTANTS_CE_CAST_Abbrev,
49 CONSTANTS_NULL_Abbrev,
51 // FUNCTION_BLOCK abbrev id's.
52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
53 FUNCTION_INST_BINOP_ABBREV,
54 FUNCTION_INST_BINOP_FLAGS_ABBREV,
55 FUNCTION_INST_CAST_ABBREV,
56 FUNCTION_INST_RET_VOID_ABBREV,
57 FUNCTION_INST_RET_VAL_ABBREV,
58 FUNCTION_INST_UNREACHABLE_ABBREV
62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
63 switch (Opcode) {
64 default: llvm_unreachable("Unknown cast instruction!");
65 case Instruction::Trunc : return bitc::CAST_TRUNC;
66 case Instruction::ZExt : return bitc::CAST_ZEXT;
67 case Instruction::SExt : return bitc::CAST_SEXT;
68 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
69 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
70 case Instruction::UIToFP : return bitc::CAST_UITOFP;
71 case Instruction::SIToFP : return bitc::CAST_SITOFP;
72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
73 case Instruction::FPExt : return bitc::CAST_FPEXT;
74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
76 case Instruction::BitCast : return bitc::CAST_BITCAST;
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
81 switch (Opcode) {
82 default: llvm_unreachable("Unknown binary instruction!");
83 case Instruction::Add:
84 case Instruction::FAdd: return bitc::BINOP_ADD;
85 case Instruction::Sub:
86 case Instruction::FSub: return bitc::BINOP_SUB;
87 case Instruction::Mul:
88 case Instruction::FMul: return bitc::BINOP_MUL;
89 case Instruction::UDiv: return bitc::BINOP_UDIV;
90 case Instruction::FDiv:
91 case Instruction::SDiv: return bitc::BINOP_SDIV;
92 case Instruction::URem: return bitc::BINOP_UREM;
93 case Instruction::FRem:
94 case Instruction::SRem: return bitc::BINOP_SREM;
95 case Instruction::Shl: return bitc::BINOP_SHL;
96 case Instruction::LShr: return bitc::BINOP_LSHR;
97 case Instruction::AShr: return bitc::BINOP_ASHR;
98 case Instruction::And: return bitc::BINOP_AND;
99 case Instruction::Or: return bitc::BINOP_OR;
100 case Instruction::Xor: return bitc::BINOP_XOR;
104 static void WriteStringRecord(unsigned Code, StringRef Str,
105 unsigned AbbrevToUse, BitstreamWriter &Stream) {
106 SmallVector<unsigned, 64> Vals;
108 // Code: [strchar x N]
109 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
110 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
111 AbbrevToUse = 0;
112 Vals.push_back(Str[i]);
115 // Emit the finished record.
116 Stream.EmitRecord(Code, Vals, AbbrevToUse);
119 // Emit information about parameter attributes.
120 static void WriteAttributeTable(const ValueEnumerator &VE,
121 BitstreamWriter &Stream) {
122 const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
123 if (Attrs.empty()) return;
125 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
127 SmallVector<uint64_t, 64> Record;
128 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
129 const AttrListPtr &A = Attrs[i];
130 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
131 const AttributeWithIndex &PAWI = A.getSlot(i);
132 Record.push_back(PAWI.Index);
134 // FIXME: remove in LLVM 3.0
135 // Store the alignment in the bitcode as a 16-bit raw value instead of a
136 // 5-bit log2 encoded value. Shift the bits above the alignment up by
137 // 11 bits.
138 uint64_t FauxAttr = PAWI.Attrs & 0xffff;
139 if (PAWI.Attrs & Attribute::Alignment)
140 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
141 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
143 Record.push_back(FauxAttr);
146 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
147 Record.clear();
150 Stream.ExitBlock();
153 /// WriteTypeTable - Write out the type table for a module.
154 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
155 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
157 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
158 SmallVector<uint64_t, 64> TypeVals;
160 // Abbrev for TYPE_CODE_POINTER.
161 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
162 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
164 Log2_32_Ceil(VE.getTypes().size()+1)));
165 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
166 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
168 // Abbrev for TYPE_CODE_FUNCTION.
169 Abbv = new BitCodeAbbrev();
170 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
172 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
175 Log2_32_Ceil(VE.getTypes().size()+1)));
176 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
178 // Abbrev for TYPE_CODE_STRUCT_ANON.
179 Abbv = new BitCodeAbbrev();
180 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
184 Log2_32_Ceil(VE.getTypes().size()+1)));
185 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
187 // Abbrev for TYPE_CODE_STRUCT_NAME.
188 Abbv = new BitCodeAbbrev();
189 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
192 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
194 // Abbrev for TYPE_CODE_STRUCT_NAMED.
195 Abbv = new BitCodeAbbrev();
196 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
200 Log2_32_Ceil(VE.getTypes().size()+1)));
201 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
204 // Abbrev for TYPE_CODE_ARRAY.
205 Abbv = new BitCodeAbbrev();
206 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
209 Log2_32_Ceil(VE.getTypes().size()+1)));
210 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
212 // Emit an entry count so the reader can reserve space.
213 TypeVals.push_back(TypeList.size());
214 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
215 TypeVals.clear();
217 // Loop over all of the types, emitting each in turn.
218 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
219 const Type *T = TypeList[i];
220 int AbbrevToUse = 0;
221 unsigned Code = 0;
223 switch (T->getTypeID()) {
224 default: llvm_unreachable("Unknown type!");
225 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
226 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
227 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
228 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
229 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
230 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
231 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
232 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
233 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
234 case Type::IntegerTyID:
235 // INTEGER: [width]
236 Code = bitc::TYPE_CODE_INTEGER;
237 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
238 break;
239 case Type::PointerTyID: {
240 const PointerType *PTy = cast<PointerType>(T);
241 // POINTER: [pointee type, address space]
242 Code = bitc::TYPE_CODE_POINTER;
243 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
244 unsigned AddressSpace = PTy->getAddressSpace();
245 TypeVals.push_back(AddressSpace);
246 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
247 break;
249 case Type::FunctionTyID: {
250 const FunctionType *FT = cast<FunctionType>(T);
251 // FUNCTION: [isvararg, attrid, retty, paramty x N]
252 Code = bitc::TYPE_CODE_FUNCTION;
253 TypeVals.push_back(FT->isVarArg());
254 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0
255 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
256 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
257 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
258 AbbrevToUse = FunctionAbbrev;
259 break;
261 case Type::StructTyID: {
262 const StructType *ST = cast<StructType>(T);
263 // STRUCT: [ispacked, eltty x N]
264 TypeVals.push_back(ST->isPacked());
265 // Output all of the element types.
266 for (StructType::element_iterator I = ST->element_begin(),
267 E = ST->element_end(); I != E; ++I)
268 TypeVals.push_back(VE.getTypeID(*I));
270 if (ST->isAnonymous()) {
271 Code = bitc::TYPE_CODE_STRUCT_ANON;
272 AbbrevToUse = StructAnonAbbrev;
273 } else {
274 if (ST->isOpaque()) {
275 Code = bitc::TYPE_CODE_OPAQUE;
276 } else {
277 Code = bitc::TYPE_CODE_STRUCT_NAMED;
278 AbbrevToUse = StructNamedAbbrev;
281 // Emit the name if it is present.
282 if (!ST->getName().empty())
283 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
284 StructNameAbbrev, Stream);
286 break;
288 case Type::ArrayTyID: {
289 const ArrayType *AT = cast<ArrayType>(T);
290 // ARRAY: [numelts, eltty]
291 Code = bitc::TYPE_CODE_ARRAY;
292 TypeVals.push_back(AT->getNumElements());
293 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
294 AbbrevToUse = ArrayAbbrev;
295 break;
297 case Type::VectorTyID: {
298 const VectorType *VT = cast<VectorType>(T);
299 // VECTOR [numelts, eltty]
300 Code = bitc::TYPE_CODE_VECTOR;
301 TypeVals.push_back(VT->getNumElements());
302 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
303 break;
307 // Emit the finished record.
308 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
309 TypeVals.clear();
312 Stream.ExitBlock();
315 static unsigned getEncodedLinkage(const GlobalValue *GV) {
316 switch (GV->getLinkage()) {
317 default: llvm_unreachable("Invalid linkage!");
318 case GlobalValue::ExternalLinkage: return 0;
319 case GlobalValue::WeakAnyLinkage: return 1;
320 case GlobalValue::AppendingLinkage: return 2;
321 case GlobalValue::InternalLinkage: return 3;
322 case GlobalValue::LinkOnceAnyLinkage: return 4;
323 case GlobalValue::DLLImportLinkage: return 5;
324 case GlobalValue::DLLExportLinkage: return 6;
325 case GlobalValue::ExternalWeakLinkage: return 7;
326 case GlobalValue::CommonLinkage: return 8;
327 case GlobalValue::PrivateLinkage: return 9;
328 case GlobalValue::WeakODRLinkage: return 10;
329 case GlobalValue::LinkOnceODRLinkage: return 11;
330 case GlobalValue::AvailableExternallyLinkage: return 12;
331 case GlobalValue::LinkerPrivateLinkage: return 13;
332 case GlobalValue::LinkerPrivateWeakLinkage: return 14;
333 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
337 static unsigned getEncodedVisibility(const GlobalValue *GV) {
338 switch (GV->getVisibility()) {
339 default: llvm_unreachable("Invalid visibility!");
340 case GlobalValue::DefaultVisibility: return 0;
341 case GlobalValue::HiddenVisibility: return 1;
342 case GlobalValue::ProtectedVisibility: return 2;
346 // Emit top-level description of module, including target triple, inline asm,
347 // descriptors for global variables, and function prototype info.
348 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
349 BitstreamWriter &Stream) {
350 // Emit the list of dependent libraries for the Module.
351 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
352 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
354 // Emit various pieces of data attached to a module.
355 if (!M->getTargetTriple().empty())
356 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
357 0/*TODO*/, Stream);
358 if (!M->getDataLayout().empty())
359 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
360 0/*TODO*/, Stream);
361 if (!M->getModuleInlineAsm().empty())
362 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
363 0/*TODO*/, Stream);
365 // Emit information about sections and GC, computing how many there are. Also
366 // compute the maximum alignment value.
367 std::map<std::string, unsigned> SectionMap;
368 std::map<std::string, unsigned> GCMap;
369 unsigned MaxAlignment = 0;
370 unsigned MaxGlobalType = 0;
371 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
372 GV != E; ++GV) {
373 MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
374 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
376 if (!GV->hasSection()) continue;
377 // Give section names unique ID's.
378 unsigned &Entry = SectionMap[GV->getSection()];
379 if (Entry != 0) continue;
380 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
381 0/*TODO*/, Stream);
382 Entry = SectionMap.size();
384 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
385 MaxAlignment = std::max(MaxAlignment, F->getAlignment());
386 if (F->hasSection()) {
387 // Give section names unique ID's.
388 unsigned &Entry = SectionMap[F->getSection()];
389 if (!Entry) {
390 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
391 0/*TODO*/, Stream);
392 Entry = SectionMap.size();
395 if (F->hasGC()) {
396 // Same for GC names.
397 unsigned &Entry = GCMap[F->getGC()];
398 if (!Entry) {
399 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
400 0/*TODO*/, Stream);
401 Entry = GCMap.size();
406 // Emit abbrev for globals, now that we know # sections and max alignment.
407 unsigned SimpleGVarAbbrev = 0;
408 if (!M->global_empty()) {
409 // Add an abbrev for common globals with no visibility or thread localness.
410 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
411 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
413 Log2_32_Ceil(MaxGlobalType+1)));
414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage.
417 if (MaxAlignment == 0) // Alignment.
418 Abbv->Add(BitCodeAbbrevOp(0));
419 else {
420 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
422 Log2_32_Ceil(MaxEncAlignment+1)));
424 if (SectionMap.empty()) // Section.
425 Abbv->Add(BitCodeAbbrevOp(0));
426 else
427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
428 Log2_32_Ceil(SectionMap.size()+1)));
429 // Don't bother emitting vis + thread local.
430 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
433 // Emit the global variable information.
434 SmallVector<unsigned, 64> Vals;
435 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
436 GV != E; ++GV) {
437 unsigned AbbrevToUse = 0;
439 // GLOBALVAR: [type, isconst, initid,
440 // linkage, alignment, section, visibility, threadlocal,
441 // unnamed_addr]
442 Vals.push_back(VE.getTypeID(GV->getType()));
443 Vals.push_back(GV->isConstant());
444 Vals.push_back(GV->isDeclaration() ? 0 :
445 (VE.getValueID(GV->getInitializer()) + 1));
446 Vals.push_back(getEncodedLinkage(GV));
447 Vals.push_back(Log2_32(GV->getAlignment())+1);
448 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
449 if (GV->isThreadLocal() ||
450 GV->getVisibility() != GlobalValue::DefaultVisibility ||
451 GV->hasUnnamedAddr()) {
452 Vals.push_back(getEncodedVisibility(GV));
453 Vals.push_back(GV->isThreadLocal());
454 Vals.push_back(GV->hasUnnamedAddr());
455 } else {
456 AbbrevToUse = SimpleGVarAbbrev;
459 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
460 Vals.clear();
463 // Emit the function proto information.
464 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
465 // FUNCTION: [type, callingconv, isproto, paramattr,
466 // linkage, alignment, section, visibility, gc, unnamed_addr]
467 Vals.push_back(VE.getTypeID(F->getType()));
468 Vals.push_back(F->getCallingConv());
469 Vals.push_back(F->isDeclaration());
470 Vals.push_back(getEncodedLinkage(F));
471 Vals.push_back(VE.getAttributeID(F->getAttributes()));
472 Vals.push_back(Log2_32(F->getAlignment())+1);
473 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
474 Vals.push_back(getEncodedVisibility(F));
475 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
476 Vals.push_back(F->hasUnnamedAddr());
478 unsigned AbbrevToUse = 0;
479 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
480 Vals.clear();
483 // Emit the alias information.
484 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
485 AI != E; ++AI) {
486 Vals.push_back(VE.getTypeID(AI->getType()));
487 Vals.push_back(VE.getValueID(AI->getAliasee()));
488 Vals.push_back(getEncodedLinkage(AI));
489 Vals.push_back(getEncodedVisibility(AI));
490 unsigned AbbrevToUse = 0;
491 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
492 Vals.clear();
496 static uint64_t GetOptimizationFlags(const Value *V) {
497 uint64_t Flags = 0;
499 if (const OverflowingBinaryOperator *OBO =
500 dyn_cast<OverflowingBinaryOperator>(V)) {
501 if (OBO->hasNoSignedWrap())
502 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
503 if (OBO->hasNoUnsignedWrap())
504 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
505 } else if (const PossiblyExactOperator *PEO =
506 dyn_cast<PossiblyExactOperator>(V)) {
507 if (PEO->isExact())
508 Flags |= 1 << bitc::PEO_EXACT;
511 return Flags;
514 static void WriteMDNode(const MDNode *N,
515 const ValueEnumerator &VE,
516 BitstreamWriter &Stream,
517 SmallVector<uint64_t, 64> &Record) {
518 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
519 if (N->getOperand(i)) {
520 Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
521 Record.push_back(VE.getValueID(N->getOperand(i)));
522 } else {
523 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
524 Record.push_back(0);
527 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
528 bitc::METADATA_NODE;
529 Stream.EmitRecord(MDCode, Record, 0);
530 Record.clear();
533 static void WriteModuleMetadata(const Module *M,
534 const ValueEnumerator &VE,
535 BitstreamWriter &Stream) {
536 const ValueEnumerator::ValueList &Vals = VE.getMDValues();
537 bool StartedMetadataBlock = false;
538 unsigned MDSAbbrev = 0;
539 SmallVector<uint64_t, 64> Record;
540 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
542 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
543 if (!N->isFunctionLocal() || !N->getFunction()) {
544 if (!StartedMetadataBlock) {
545 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
546 StartedMetadataBlock = true;
548 WriteMDNode(N, VE, Stream, Record);
550 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
551 if (!StartedMetadataBlock) {
552 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
554 // Abbrev for METADATA_STRING.
555 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
556 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
559 MDSAbbrev = Stream.EmitAbbrev(Abbv);
560 StartedMetadataBlock = true;
563 // Code: [strchar x N]
564 Record.append(MDS->begin(), MDS->end());
566 // Emit the finished record.
567 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
568 Record.clear();
572 // Write named metadata.
573 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
574 E = M->named_metadata_end(); I != E; ++I) {
575 const NamedMDNode *NMD = I;
576 if (!StartedMetadataBlock) {
577 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
578 StartedMetadataBlock = true;
581 // Write name.
582 StringRef Str = NMD->getName();
583 for (unsigned i = 0, e = Str.size(); i != e; ++i)
584 Record.push_back(Str[i]);
585 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
586 Record.clear();
588 // Write named metadata operands.
589 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
590 Record.push_back(VE.getValueID(NMD->getOperand(i)));
591 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
592 Record.clear();
595 if (StartedMetadataBlock)
596 Stream.ExitBlock();
599 static void WriteFunctionLocalMetadata(const Function &F,
600 const ValueEnumerator &VE,
601 BitstreamWriter &Stream) {
602 bool StartedMetadataBlock = false;
603 SmallVector<uint64_t, 64> Record;
604 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
605 for (unsigned i = 0, e = Vals.size(); i != e; ++i)
606 if (const MDNode *N = Vals[i])
607 if (N->isFunctionLocal() && N->getFunction() == &F) {
608 if (!StartedMetadataBlock) {
609 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
610 StartedMetadataBlock = true;
612 WriteMDNode(N, VE, Stream, Record);
615 if (StartedMetadataBlock)
616 Stream.ExitBlock();
619 static void WriteMetadataAttachment(const Function &F,
620 const ValueEnumerator &VE,
621 BitstreamWriter &Stream) {
622 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
624 SmallVector<uint64_t, 64> Record;
626 // Write metadata attachments
627 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
628 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
630 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
631 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
632 I != E; ++I) {
633 MDs.clear();
634 I->getAllMetadataOtherThanDebugLoc(MDs);
636 // If no metadata, ignore instruction.
637 if (MDs.empty()) continue;
639 Record.push_back(VE.getInstructionID(I));
641 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
642 Record.push_back(MDs[i].first);
643 Record.push_back(VE.getValueID(MDs[i].second));
645 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
646 Record.clear();
649 Stream.ExitBlock();
652 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
653 SmallVector<uint64_t, 64> Record;
655 // Write metadata kinds
656 // METADATA_KIND - [n x [id, name]]
657 SmallVector<StringRef, 4> Names;
658 M->getMDKindNames(Names);
660 if (Names.empty()) return;
662 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
664 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
665 Record.push_back(MDKindID);
666 StringRef KName = Names[MDKindID];
667 Record.append(KName.begin(), KName.end());
669 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
670 Record.clear();
673 Stream.ExitBlock();
676 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
677 const ValueEnumerator &VE,
678 BitstreamWriter &Stream, bool isGlobal) {
679 if (FirstVal == LastVal) return;
681 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
683 unsigned AggregateAbbrev = 0;
684 unsigned String8Abbrev = 0;
685 unsigned CString7Abbrev = 0;
686 unsigned CString6Abbrev = 0;
687 // If this is a constant pool for the module, emit module-specific abbrevs.
688 if (isGlobal) {
689 // Abbrev for CST_CODE_AGGREGATE.
690 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
691 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
694 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
696 // Abbrev for CST_CODE_STRING.
697 Abbv = new BitCodeAbbrev();
698 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
701 String8Abbrev = Stream.EmitAbbrev(Abbv);
702 // Abbrev for CST_CODE_CSTRING.
703 Abbv = new BitCodeAbbrev();
704 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
707 CString7Abbrev = Stream.EmitAbbrev(Abbv);
708 // Abbrev for CST_CODE_CSTRING.
709 Abbv = new BitCodeAbbrev();
710 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
713 CString6Abbrev = Stream.EmitAbbrev(Abbv);
716 SmallVector<uint64_t, 64> Record;
718 const ValueEnumerator::ValueList &Vals = VE.getValues();
719 const Type *LastTy = 0;
720 for (unsigned i = FirstVal; i != LastVal; ++i) {
721 const Value *V = Vals[i].first;
722 // If we need to switch types, do so now.
723 if (V->getType() != LastTy) {
724 LastTy = V->getType();
725 Record.push_back(VE.getTypeID(LastTy));
726 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
727 CONSTANTS_SETTYPE_ABBREV);
728 Record.clear();
731 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
732 Record.push_back(unsigned(IA->hasSideEffects()) |
733 unsigned(IA->isAlignStack()) << 1);
735 // Add the asm string.
736 const std::string &AsmStr = IA->getAsmString();
737 Record.push_back(AsmStr.size());
738 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
739 Record.push_back(AsmStr[i]);
741 // Add the constraint string.
742 const std::string &ConstraintStr = IA->getConstraintString();
743 Record.push_back(ConstraintStr.size());
744 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
745 Record.push_back(ConstraintStr[i]);
746 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
747 Record.clear();
748 continue;
750 const Constant *C = cast<Constant>(V);
751 unsigned Code = -1U;
752 unsigned AbbrevToUse = 0;
753 if (C->isNullValue()) {
754 Code = bitc::CST_CODE_NULL;
755 } else if (isa<UndefValue>(C)) {
756 Code = bitc::CST_CODE_UNDEF;
757 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
758 if (IV->getBitWidth() <= 64) {
759 uint64_t V = IV->getSExtValue();
760 if ((int64_t)V >= 0)
761 Record.push_back(V << 1);
762 else
763 Record.push_back((-V << 1) | 1);
764 Code = bitc::CST_CODE_INTEGER;
765 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
766 } else { // Wide integers, > 64 bits in size.
767 // We have an arbitrary precision integer value to write whose
768 // bit width is > 64. However, in canonical unsigned integer
769 // format it is likely that the high bits are going to be zero.
770 // So, we only write the number of active words.
771 unsigned NWords = IV->getValue().getActiveWords();
772 const uint64_t *RawWords = IV->getValue().getRawData();
773 for (unsigned i = 0; i != NWords; ++i) {
774 int64_t V = RawWords[i];
775 if (V >= 0)
776 Record.push_back(V << 1);
777 else
778 Record.push_back((-V << 1) | 1);
780 Code = bitc::CST_CODE_WIDE_INTEGER;
782 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
783 Code = bitc::CST_CODE_FLOAT;
784 const Type *Ty = CFP->getType();
785 if (Ty->isFloatTy() || Ty->isDoubleTy()) {
786 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
787 } else if (Ty->isX86_FP80Ty()) {
788 // api needed to prevent premature destruction
789 // bits are not in the same order as a normal i80 APInt, compensate.
790 APInt api = CFP->getValueAPF().bitcastToAPInt();
791 const uint64_t *p = api.getRawData();
792 Record.push_back((p[1] << 48) | (p[0] >> 16));
793 Record.push_back(p[0] & 0xffffLL);
794 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
795 APInt api = CFP->getValueAPF().bitcastToAPInt();
796 const uint64_t *p = api.getRawData();
797 Record.push_back(p[0]);
798 Record.push_back(p[1]);
799 } else {
800 assert (0 && "Unknown FP type!");
802 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
803 const ConstantArray *CA = cast<ConstantArray>(C);
804 // Emit constant strings specially.
805 unsigned NumOps = CA->getNumOperands();
806 // If this is a null-terminated string, use the denser CSTRING encoding.
807 if (CA->getOperand(NumOps-1)->isNullValue()) {
808 Code = bitc::CST_CODE_CSTRING;
809 --NumOps; // Don't encode the null, which isn't allowed by char6.
810 } else {
811 Code = bitc::CST_CODE_STRING;
812 AbbrevToUse = String8Abbrev;
814 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
815 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
816 for (unsigned i = 0; i != NumOps; ++i) {
817 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
818 Record.push_back(V);
819 isCStr7 &= (V & 128) == 0;
820 if (isCStrChar6)
821 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
824 if (isCStrChar6)
825 AbbrevToUse = CString6Abbrev;
826 else if (isCStr7)
827 AbbrevToUse = CString7Abbrev;
828 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
829 isa<ConstantVector>(V)) {
830 Code = bitc::CST_CODE_AGGREGATE;
831 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
832 Record.push_back(VE.getValueID(C->getOperand(i)));
833 AbbrevToUse = AggregateAbbrev;
834 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
835 switch (CE->getOpcode()) {
836 default:
837 if (Instruction::isCast(CE->getOpcode())) {
838 Code = bitc::CST_CODE_CE_CAST;
839 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
840 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
841 Record.push_back(VE.getValueID(C->getOperand(0)));
842 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
843 } else {
844 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
845 Code = bitc::CST_CODE_CE_BINOP;
846 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
847 Record.push_back(VE.getValueID(C->getOperand(0)));
848 Record.push_back(VE.getValueID(C->getOperand(1)));
849 uint64_t Flags = GetOptimizationFlags(CE);
850 if (Flags != 0)
851 Record.push_back(Flags);
853 break;
854 case Instruction::GetElementPtr:
855 Code = bitc::CST_CODE_CE_GEP;
856 if (cast<GEPOperator>(C)->isInBounds())
857 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
858 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
859 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
860 Record.push_back(VE.getValueID(C->getOperand(i)));
862 break;
863 case Instruction::Select:
864 Code = bitc::CST_CODE_CE_SELECT;
865 Record.push_back(VE.getValueID(C->getOperand(0)));
866 Record.push_back(VE.getValueID(C->getOperand(1)));
867 Record.push_back(VE.getValueID(C->getOperand(2)));
868 break;
869 case Instruction::ExtractElement:
870 Code = bitc::CST_CODE_CE_EXTRACTELT;
871 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
872 Record.push_back(VE.getValueID(C->getOperand(0)));
873 Record.push_back(VE.getValueID(C->getOperand(1)));
874 break;
875 case Instruction::InsertElement:
876 Code = bitc::CST_CODE_CE_INSERTELT;
877 Record.push_back(VE.getValueID(C->getOperand(0)));
878 Record.push_back(VE.getValueID(C->getOperand(1)));
879 Record.push_back(VE.getValueID(C->getOperand(2)));
880 break;
881 case Instruction::ShuffleVector:
882 // If the return type and argument types are the same, this is a
883 // standard shufflevector instruction. If the types are different,
884 // then the shuffle is widening or truncating the input vectors, and
885 // the argument type must also be encoded.
886 if (C->getType() == C->getOperand(0)->getType()) {
887 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
888 } else {
889 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
890 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
892 Record.push_back(VE.getValueID(C->getOperand(0)));
893 Record.push_back(VE.getValueID(C->getOperand(1)));
894 Record.push_back(VE.getValueID(C->getOperand(2)));
895 break;
896 case Instruction::ICmp:
897 case Instruction::FCmp:
898 Code = bitc::CST_CODE_CE_CMP;
899 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
900 Record.push_back(VE.getValueID(C->getOperand(0)));
901 Record.push_back(VE.getValueID(C->getOperand(1)));
902 Record.push_back(CE->getPredicate());
903 break;
905 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
906 Code = bitc::CST_CODE_BLOCKADDRESS;
907 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
908 Record.push_back(VE.getValueID(BA->getFunction()));
909 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
910 } else {
911 #ifndef NDEBUG
912 C->dump();
913 #endif
914 llvm_unreachable("Unknown constant!");
916 Stream.EmitRecord(Code, Record, AbbrevToUse);
917 Record.clear();
920 Stream.ExitBlock();
923 static void WriteModuleConstants(const ValueEnumerator &VE,
924 BitstreamWriter &Stream) {
925 const ValueEnumerator::ValueList &Vals = VE.getValues();
927 // Find the first constant to emit, which is the first non-globalvalue value.
928 // We know globalvalues have been emitted by WriteModuleInfo.
929 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
930 if (!isa<GlobalValue>(Vals[i].first)) {
931 WriteConstants(i, Vals.size(), VE, Stream, true);
932 return;
937 /// PushValueAndType - The file has to encode both the value and type id for
938 /// many values, because we need to know what type to create for forward
939 /// references. However, most operands are not forward references, so this type
940 /// field is not needed.
942 /// This function adds V's value ID to Vals. If the value ID is higher than the
943 /// instruction ID, then it is a forward reference, and it also includes the
944 /// type ID.
945 static bool PushValueAndType(const Value *V, unsigned InstID,
946 SmallVector<unsigned, 64> &Vals,
947 ValueEnumerator &VE) {
948 unsigned ValID = VE.getValueID(V);
949 Vals.push_back(ValID);
950 if (ValID >= InstID) {
951 Vals.push_back(VE.getTypeID(V->getType()));
952 return true;
954 return false;
957 /// WriteInstruction - Emit an instruction to the specified stream.
958 static void WriteInstruction(const Instruction &I, unsigned InstID,
959 ValueEnumerator &VE, BitstreamWriter &Stream,
960 SmallVector<unsigned, 64> &Vals) {
961 unsigned Code = 0;
962 unsigned AbbrevToUse = 0;
963 VE.setInstructionID(&I);
964 switch (I.getOpcode()) {
965 default:
966 if (Instruction::isCast(I.getOpcode())) {
967 Code = bitc::FUNC_CODE_INST_CAST;
968 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
969 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
970 Vals.push_back(VE.getTypeID(I.getType()));
971 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
972 } else {
973 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
974 Code = bitc::FUNC_CODE_INST_BINOP;
975 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
976 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
977 Vals.push_back(VE.getValueID(I.getOperand(1)));
978 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
979 uint64_t Flags = GetOptimizationFlags(&I);
980 if (Flags != 0) {
981 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
982 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
983 Vals.push_back(Flags);
986 break;
988 case Instruction::GetElementPtr:
989 Code = bitc::FUNC_CODE_INST_GEP;
990 if (cast<GEPOperator>(&I)->isInBounds())
991 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
992 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
993 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
994 break;
995 case Instruction::ExtractValue: {
996 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
997 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
998 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
999 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1000 Vals.push_back(*i);
1001 break;
1003 case Instruction::InsertValue: {
1004 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1005 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1006 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1007 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1008 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1009 Vals.push_back(*i);
1010 break;
1012 case Instruction::Select:
1013 Code = bitc::FUNC_CODE_INST_VSELECT;
1014 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1015 Vals.push_back(VE.getValueID(I.getOperand(2)));
1016 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1017 break;
1018 case Instruction::ExtractElement:
1019 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1020 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1021 Vals.push_back(VE.getValueID(I.getOperand(1)));
1022 break;
1023 case Instruction::InsertElement:
1024 Code = bitc::FUNC_CODE_INST_INSERTELT;
1025 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1026 Vals.push_back(VE.getValueID(I.getOperand(1)));
1027 Vals.push_back(VE.getValueID(I.getOperand(2)));
1028 break;
1029 case Instruction::ShuffleVector:
1030 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1031 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1032 Vals.push_back(VE.getValueID(I.getOperand(1)));
1033 Vals.push_back(VE.getValueID(I.getOperand(2)));
1034 break;
1035 case Instruction::ICmp:
1036 case Instruction::FCmp:
1037 // compare returning Int1Ty or vector of Int1Ty
1038 Code = bitc::FUNC_CODE_INST_CMP2;
1039 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1040 Vals.push_back(VE.getValueID(I.getOperand(1)));
1041 Vals.push_back(cast<CmpInst>(I).getPredicate());
1042 break;
1044 case Instruction::Ret:
1046 Code = bitc::FUNC_CODE_INST_RET;
1047 unsigned NumOperands = I.getNumOperands();
1048 if (NumOperands == 0)
1049 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1050 else if (NumOperands == 1) {
1051 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1052 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1053 } else {
1054 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1055 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1058 break;
1059 case Instruction::Br:
1061 Code = bitc::FUNC_CODE_INST_BR;
1062 BranchInst &II = cast<BranchInst>(I);
1063 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1064 if (II.isConditional()) {
1065 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1066 Vals.push_back(VE.getValueID(II.getCondition()));
1069 break;
1070 case Instruction::Switch:
1071 Code = bitc::FUNC_CODE_INST_SWITCH;
1072 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1073 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1074 Vals.push_back(VE.getValueID(I.getOperand(i)));
1075 break;
1076 case Instruction::IndirectBr:
1077 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1078 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1079 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1080 Vals.push_back(VE.getValueID(I.getOperand(i)));
1081 break;
1083 case Instruction::Invoke: {
1084 const InvokeInst *II = cast<InvokeInst>(&I);
1085 const Value *Callee(II->getCalledValue());
1086 const PointerType *PTy = cast<PointerType>(Callee->getType());
1087 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1088 Code = bitc::FUNC_CODE_INST_INVOKE;
1090 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1091 Vals.push_back(II->getCallingConv());
1092 Vals.push_back(VE.getValueID(II->getNormalDest()));
1093 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1094 PushValueAndType(Callee, InstID, Vals, VE);
1096 // Emit value #'s for the fixed parameters.
1097 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1098 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param.
1100 // Emit type/value pairs for varargs params.
1101 if (FTy->isVarArg()) {
1102 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1103 i != e; ++i)
1104 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1106 break;
1108 case Instruction::Unwind:
1109 Code = bitc::FUNC_CODE_INST_UNWIND;
1110 break;
1111 case Instruction::Unreachable:
1112 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1113 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1114 break;
1116 case Instruction::PHI: {
1117 const PHINode &PN = cast<PHINode>(I);
1118 Code = bitc::FUNC_CODE_INST_PHI;
1119 Vals.push_back(VE.getTypeID(PN.getType()));
1120 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1121 Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
1122 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1124 break;
1127 case Instruction::Alloca:
1128 Code = bitc::FUNC_CODE_INST_ALLOCA;
1129 Vals.push_back(VE.getTypeID(I.getType()));
1130 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1131 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1132 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
1133 break;
1135 case Instruction::Load:
1136 Code = bitc::FUNC_CODE_INST_LOAD;
1137 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1138 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1140 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1141 Vals.push_back(cast<LoadInst>(I).isVolatile());
1142 break;
1143 case Instruction::Store:
1144 Code = bitc::FUNC_CODE_INST_STORE;
1145 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1146 Vals.push_back(VE.getValueID(I.getOperand(0))); // val.
1147 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1148 Vals.push_back(cast<StoreInst>(I).isVolatile());
1149 break;
1150 case Instruction::Call: {
1151 const CallInst &CI = cast<CallInst>(I);
1152 const PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1153 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1155 Code = bitc::FUNC_CODE_INST_CALL;
1157 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1158 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
1159 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1161 // Emit value #'s for the fixed parameters.
1162 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1163 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param.
1165 // Emit type/value pairs for varargs params.
1166 if (FTy->isVarArg()) {
1167 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1168 i != e; ++i)
1169 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1171 break;
1173 case Instruction::VAArg:
1174 Code = bitc::FUNC_CODE_INST_VAARG;
1175 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1176 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
1177 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1178 break;
1181 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1182 Vals.clear();
1185 // Emit names for globals/functions etc.
1186 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1187 const ValueEnumerator &VE,
1188 BitstreamWriter &Stream) {
1189 if (VST.empty()) return;
1190 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1192 // FIXME: Set up the abbrev, we know how many values there are!
1193 // FIXME: We know if the type names can use 7-bit ascii.
1194 SmallVector<unsigned, 64> NameVals;
1196 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1197 SI != SE; ++SI) {
1199 const ValueName &Name = *SI;
1201 // Figure out the encoding to use for the name.
1202 bool is7Bit = true;
1203 bool isChar6 = true;
1204 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1205 C != E; ++C) {
1206 if (isChar6)
1207 isChar6 = BitCodeAbbrevOp::isChar6(*C);
1208 if ((unsigned char)*C & 128) {
1209 is7Bit = false;
1210 break; // don't bother scanning the rest.
1214 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
1216 // VST_ENTRY: [valueid, namechar x N]
1217 // VST_BBENTRY: [bbid, namechar x N]
1218 unsigned Code;
1219 if (isa<BasicBlock>(SI->getValue())) {
1220 Code = bitc::VST_CODE_BBENTRY;
1221 if (isChar6)
1222 AbbrevToUse = VST_BBENTRY_6_ABBREV;
1223 } else {
1224 Code = bitc::VST_CODE_ENTRY;
1225 if (isChar6)
1226 AbbrevToUse = VST_ENTRY_6_ABBREV;
1227 else if (is7Bit)
1228 AbbrevToUse = VST_ENTRY_7_ABBREV;
1231 NameVals.push_back(VE.getValueID(SI->getValue()));
1232 for (const char *P = Name.getKeyData(),
1233 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
1234 NameVals.push_back((unsigned char)*P);
1236 // Emit the finished record.
1237 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
1238 NameVals.clear();
1240 Stream.ExitBlock();
1243 /// WriteFunction - Emit a function body to the module stream.
1244 static void WriteFunction(const Function &F, ValueEnumerator &VE,
1245 BitstreamWriter &Stream) {
1246 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
1247 VE.incorporateFunction(F);
1249 SmallVector<unsigned, 64> Vals;
1251 // Emit the number of basic blocks, so the reader can create them ahead of
1252 // time.
1253 Vals.push_back(VE.getBasicBlocks().size());
1254 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
1255 Vals.clear();
1257 // If there are function-local constants, emit them now.
1258 unsigned CstStart, CstEnd;
1259 VE.getFunctionConstantRange(CstStart, CstEnd);
1260 WriteConstants(CstStart, CstEnd, VE, Stream, false);
1262 // If there is function-local metadata, emit it now.
1263 WriteFunctionLocalMetadata(F, VE, Stream);
1265 // Keep a running idea of what the instruction ID is.
1266 unsigned InstID = CstEnd;
1268 bool NeedsMetadataAttachment = false;
1270 DebugLoc LastDL;
1272 // Finally, emit all the instructions, in order.
1273 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1274 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1275 I != E; ++I) {
1276 WriteInstruction(*I, InstID, VE, Stream, Vals);
1278 if (!I->getType()->isVoidTy())
1279 ++InstID;
1281 // If the instruction has metadata, write a metadata attachment later.
1282 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
1284 // If the instruction has a debug location, emit it.
1285 DebugLoc DL = I->getDebugLoc();
1286 if (DL.isUnknown()) {
1287 // nothing todo.
1288 } else if (DL == LastDL) {
1289 // Just repeat the same debug loc as last time.
1290 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
1291 } else {
1292 MDNode *Scope, *IA;
1293 DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
1295 Vals.push_back(DL.getLine());
1296 Vals.push_back(DL.getCol());
1297 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
1298 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
1299 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
1300 Vals.clear();
1302 LastDL = DL;
1306 // Emit names for all the instructions etc.
1307 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
1309 if (NeedsMetadataAttachment)
1310 WriteMetadataAttachment(F, VE, Stream);
1311 VE.purgeFunction();
1312 Stream.ExitBlock();
1315 // Emit blockinfo, which defines the standard abbreviations etc.
1316 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1317 // We only want to emit block info records for blocks that have multiple
1318 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1319 // blocks can defined their abbrevs inline.
1320 Stream.EnterBlockInfoBlock(2);
1322 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1323 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1328 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1329 Abbv) != VST_ENTRY_8_ABBREV)
1330 llvm_unreachable("Unexpected abbrev ordering!");
1333 { // 7-bit fixed width VST_ENTRY strings.
1334 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1335 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1339 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1340 Abbv) != VST_ENTRY_7_ABBREV)
1341 llvm_unreachable("Unexpected abbrev ordering!");
1343 { // 6-bit char6 VST_ENTRY strings.
1344 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1345 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1349 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1350 Abbv) != VST_ENTRY_6_ABBREV)
1351 llvm_unreachable("Unexpected abbrev ordering!");
1353 { // 6-bit char6 VST_BBENTRY strings.
1354 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1355 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1359 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1360 Abbv) != VST_BBENTRY_6_ABBREV)
1361 llvm_unreachable("Unexpected abbrev ordering!");
1366 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1367 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1368 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1370 Log2_32_Ceil(VE.getTypes().size()+1)));
1371 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1372 Abbv) != CONSTANTS_SETTYPE_ABBREV)
1373 llvm_unreachable("Unexpected abbrev ordering!");
1376 { // INTEGER abbrev for CONSTANTS_BLOCK.
1377 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1378 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1380 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1381 Abbv) != CONSTANTS_INTEGER_ABBREV)
1382 llvm_unreachable("Unexpected abbrev ordering!");
1385 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1386 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1387 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
1390 Log2_32_Ceil(VE.getTypes().size()+1)));
1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
1393 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1394 Abbv) != CONSTANTS_CE_CAST_Abbrev)
1395 llvm_unreachable("Unexpected abbrev ordering!");
1397 { // NULL abbrev for CONSTANTS_BLOCK.
1398 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1399 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1400 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1401 Abbv) != CONSTANTS_NULL_Abbrev)
1402 llvm_unreachable("Unexpected abbrev ordering!");
1405 // FIXME: This should only use space for first class types!
1407 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1408 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1409 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1413 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1414 Abbv) != FUNCTION_INST_LOAD_ABBREV)
1415 llvm_unreachable("Unexpected abbrev ordering!");
1417 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1418 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1419 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1423 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1424 Abbv) != FUNCTION_INST_BINOP_ABBREV)
1425 llvm_unreachable("Unexpected abbrev ordering!");
1427 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1428 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1429 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
1434 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1435 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
1436 llvm_unreachable("Unexpected abbrev ordering!");
1438 { // INST_CAST abbrev for FUNCTION_BLOCK.
1439 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1440 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
1442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
1443 Log2_32_Ceil(VE.getTypes().size()+1)));
1444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1445 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1446 Abbv) != FUNCTION_INST_CAST_ABBREV)
1447 llvm_unreachable("Unexpected abbrev ordering!");
1450 { // INST_RET abbrev for FUNCTION_BLOCK.
1451 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1452 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1453 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1454 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1455 llvm_unreachable("Unexpected abbrev ordering!");
1457 { // INST_RET abbrev for FUNCTION_BLOCK.
1458 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1459 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1461 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1462 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1463 llvm_unreachable("Unexpected abbrev ordering!");
1465 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1466 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1467 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1468 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1469 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1470 llvm_unreachable("Unexpected abbrev ordering!");
1473 Stream.ExitBlock();
1477 /// WriteModule - Emit the specified module to the bitstream.
1478 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1479 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1481 // Emit the version number if it is non-zero.
1482 if (CurVersion) {
1483 SmallVector<unsigned, 1> Vals;
1484 Vals.push_back(CurVersion);
1485 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1488 // Analyze the module, enumerating globals, functions, etc.
1489 ValueEnumerator VE(M);
1491 // Emit blockinfo, which defines the standard abbreviations etc.
1492 WriteBlockInfo(VE, Stream);
1494 // Emit information about parameter attributes.
1495 WriteAttributeTable(VE, Stream);
1497 // Emit information describing all of the types in the module.
1498 WriteTypeTable(VE, Stream);
1500 // Emit top-level description of module, including target triple, inline asm,
1501 // descriptors for global variables, and function prototype info.
1502 WriteModuleInfo(M, VE, Stream);
1504 // Emit constants.
1505 WriteModuleConstants(VE, Stream);
1507 // Emit metadata.
1508 WriteModuleMetadata(M, VE, Stream);
1510 // Emit function bodies.
1511 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
1512 if (!F->isDeclaration())
1513 WriteFunction(*F, VE, Stream);
1515 // Emit metadata.
1516 WriteModuleMetadataStore(M, Stream);
1518 // Emit names for globals/functions etc.
1519 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1521 Stream.ExitBlock();
1524 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1525 /// header and trailer to make it compatible with the system archiver. To do
1526 /// this we emit the following header, and then emit a trailer that pads the
1527 /// file out to be a multiple of 16 bytes.
1529 /// struct bc_header {
1530 /// uint32_t Magic; // 0x0B17C0DE
1531 /// uint32_t Version; // Version, currently always 0.
1532 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1533 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1534 /// uint32_t CPUType; // CPU specifier.
1535 /// ... potentially more later ...
1536 /// };
1537 enum {
1538 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
1539 DarwinBCHeaderSize = 5*4
1542 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) {
1543 unsigned CPUType = ~0U;
1545 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1546 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1547 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1548 // specific constants here because they are implicitly part of the Darwin ABI.
1549 enum {
1550 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
1551 DARWIN_CPU_TYPE_X86 = 7,
1552 DARWIN_CPU_TYPE_ARM = 12,
1553 DARWIN_CPU_TYPE_POWERPC = 18
1556 Triple::ArchType Arch = TT.getArch();
1557 if (Arch == Triple::x86_64)
1558 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
1559 else if (Arch == Triple::x86)
1560 CPUType = DARWIN_CPU_TYPE_X86;
1561 else if (Arch == Triple::ppc)
1562 CPUType = DARWIN_CPU_TYPE_POWERPC;
1563 else if (Arch == Triple::ppc64)
1564 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
1565 else if (Arch == Triple::arm || Arch == Triple::thumb)
1566 CPUType = DARWIN_CPU_TYPE_ARM;
1568 // Traditional Bitcode starts after header.
1569 unsigned BCOffset = DarwinBCHeaderSize;
1571 Stream.Emit(0x0B17C0DE, 32);
1572 Stream.Emit(0 , 32); // Version.
1573 Stream.Emit(BCOffset , 32);
1574 Stream.Emit(0 , 32); // Filled in later.
1575 Stream.Emit(CPUType , 32);
1578 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1579 /// finalize the header.
1580 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
1581 // Update the size field in the header.
1582 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
1584 // If the file is not a multiple of 16 bytes, insert dummy padding.
1585 while (BufferSize & 15) {
1586 Stream.Emit(0, 8);
1587 ++BufferSize;
1592 /// WriteBitcodeToFile - Write the specified module to the specified output
1593 /// stream.
1594 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
1595 std::vector<unsigned char> Buffer;
1596 BitstreamWriter Stream(Buffer);
1598 Buffer.reserve(256*1024);
1600 WriteBitcodeToStream( M, Stream );
1602 // Write the generated bitstream to "Out".
1603 Out.write((char*)&Buffer.front(), Buffer.size());
1606 /// WriteBitcodeToStream - Write the specified module to the specified output
1607 /// stream.
1608 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
1609 // If this is darwin or another generic macho target, emit a file header and
1610 // trailer if needed.
1611 Triple TT(M->getTargetTriple());
1612 if (TT.isOSDarwin())
1613 EmitDarwinBCHeader(Stream, TT);
1615 // Emit the file header.
1616 Stream.Emit((unsigned)'B', 8);
1617 Stream.Emit((unsigned)'C', 8);
1618 Stream.Emit(0x0, 4);
1619 Stream.Emit(0xC, 4);
1620 Stream.Emit(0xE, 4);
1621 Stream.Emit(0xD, 4);
1623 // Emit the module.
1624 WriteModule(M, Stream);
1626 if (TT.isOSDarwin())
1627 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());