Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob349b4d5c680014036729636f094894e88c1ac4e0
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Analysis/DebugInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Target/TargetLowering.h"
35 #include "llvm/Target/TargetSelectionDAGInfo.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetIntrinsicInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/ManagedStatic.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Support/Mutex.h"
47 #include "llvm/ADT/SetVector.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include <algorithm>
53 #include <cmath>
54 using namespace llvm;
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
58 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59 SDVTList Res = {VTs, NumVTs};
60 return Res;
63 static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64 switch (VT.getSimpleVT().SimpleTy) {
65 default: llvm_unreachable("Unknown FP format");
66 case MVT::f32: return &APFloat::IEEEsingle;
67 case MVT::f64: return &APFloat::IEEEdouble;
68 case MVT::f80: return &APFloat::x87DoubleExtended;
69 case MVT::f128: return &APFloat::IEEEquad;
70 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
74 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76 //===----------------------------------------------------------------------===//
77 // ConstantFPSDNode Class
78 //===----------------------------------------------------------------------===//
80 /// isExactlyValue - We don't rely on operator== working on double values, as
81 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82 /// As such, this method can be used to do an exact bit-for-bit comparison of
83 /// two floating point values.
84 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85 return getValueAPF().bitwiseIsEqual(V);
88 bool ConstantFPSDNode::isValueValidForType(EVT VT,
89 const APFloat& Val) {
90 assert(VT.isFloatingPoint() && "Can only convert between FP types");
92 // PPC long double cannot be converted to any other type.
93 if (VT == MVT::ppcf128 ||
94 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95 return false;
97 // convert modifies in place, so make a copy.
98 APFloat Val2 = APFloat(Val);
99 bool losesInfo;
100 (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101 &losesInfo);
102 return !losesInfo;
105 //===----------------------------------------------------------------------===//
106 // ISD Namespace
107 //===----------------------------------------------------------------------===//
109 /// isBuildVectorAllOnes - Return true if the specified node is a
110 /// BUILD_VECTOR where all of the elements are ~0 or undef.
111 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112 // Look through a bit convert.
113 if (N->getOpcode() == ISD::BITCAST)
114 N = N->getOperand(0).getNode();
116 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118 unsigned i = 0, e = N->getNumOperands();
120 // Skip over all of the undef values.
121 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122 ++i;
124 // Do not accept an all-undef vector.
125 if (i == e) return false;
127 // Do not accept build_vectors that aren't all constants or which have non-~0
128 // elements.
129 SDValue NotZero = N->getOperand(i);
130 if (isa<ConstantSDNode>(NotZero)) {
131 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132 return false;
133 } else if (isa<ConstantFPSDNode>(NotZero)) {
134 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135 bitcastToAPInt().isAllOnesValue())
136 return false;
137 } else
138 return false;
140 // Okay, we have at least one ~0 value, check to see if the rest match or are
141 // undefs.
142 for (++i; i != e; ++i)
143 if (N->getOperand(i) != NotZero &&
144 N->getOperand(i).getOpcode() != ISD::UNDEF)
145 return false;
146 return true;
150 /// isBuildVectorAllZeros - Return true if the specified node is a
151 /// BUILD_VECTOR where all of the elements are 0 or undef.
152 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153 // Look through a bit convert.
154 if (N->getOpcode() == ISD::BITCAST)
155 N = N->getOperand(0).getNode();
157 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159 unsigned i = 0, e = N->getNumOperands();
161 // Skip over all of the undef values.
162 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163 ++i;
165 // Do not accept an all-undef vector.
166 if (i == e) return false;
168 // Do not accept build_vectors that aren't all constants or which have non-0
169 // elements.
170 SDValue Zero = N->getOperand(i);
171 if (isa<ConstantSDNode>(Zero)) {
172 if (!cast<ConstantSDNode>(Zero)->isNullValue())
173 return false;
174 } else if (isa<ConstantFPSDNode>(Zero)) {
175 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176 return false;
177 } else
178 return false;
180 // Okay, we have at least one 0 value, check to see if the rest match or are
181 // undefs.
182 for (++i; i != e; ++i)
183 if (N->getOperand(i) != Zero &&
184 N->getOperand(i).getOpcode() != ISD::UNDEF)
185 return false;
186 return true;
189 /// isScalarToVector - Return true if the specified node is a
190 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191 /// element is not an undef.
192 bool ISD::isScalarToVector(const SDNode *N) {
193 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194 return true;
196 if (N->getOpcode() != ISD::BUILD_VECTOR)
197 return false;
198 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199 return false;
200 unsigned NumElems = N->getNumOperands();
201 if (NumElems == 1)
202 return false;
203 for (unsigned i = 1; i < NumElems; ++i) {
204 SDValue V = N->getOperand(i);
205 if (V.getOpcode() != ISD::UNDEF)
206 return false;
208 return true;
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214 // To perform this operation, we just need to swap the L and G bits of the
215 // operation.
216 unsigned OldL = (Operation >> 2) & 1;
217 unsigned OldG = (Operation >> 1) & 1;
218 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
219 (OldL << 1) | // New G bit
220 (OldG << 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226 unsigned Operation = Op;
227 if (isInteger)
228 Operation ^= 7; // Flip L, G, E bits, but not U.
229 else
230 Operation ^= 15; // Flip all of the condition bits.
232 if (Operation > ISD::SETTRUE2)
233 Operation &= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode) {
243 switch (Opcode) {
244 default: llvm_unreachable("Illegal integer setcc operation!");
245 case ISD::SETEQ:
246 case ISD::SETNE: return 0;
247 case ISD::SETLT:
248 case ISD::SETLE:
249 case ISD::SETGT:
250 case ISD::SETGE: return 1;
251 case ISD::SETULT:
252 case ISD::SETULE:
253 case ISD::SETUGT:
254 case ISD::SETUGE: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
261 /// comparison.
262 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263 bool isInteger) {
264 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID;
268 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op > ISD::SETTRUE2)
273 Op &= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
277 Op = ISD::SETNE;
279 return ISD::CondCode(Op);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
285 /// comparison.
286 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287 bool isInteger) {
288 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID;
292 // Combine all of the condition bits.
293 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
295 // Canonicalize illegal integer setcc's.
296 if (isInteger) {
297 switch (Result) {
298 default: break;
299 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
300 case ISD::SETOEQ: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
302 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
303 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
307 return Result;
310 //===----------------------------------------------------------------------===//
311 // SDNode Profile Support
312 //===----------------------------------------------------------------------===//
314 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
317 ID.AddInteger(OpC);
320 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321 /// solely with their pointer.
322 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323 ID.AddPointer(VTList.VTs);
326 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328 static void AddNodeIDOperands(FoldingSetNodeID &ID,
329 const SDValue *Ops, unsigned NumOps) {
330 for (; NumOps; --NumOps, ++Ops) {
331 ID.AddPointer(Ops->getNode());
332 ID.AddInteger(Ops->getResNo());
336 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338 static void AddNodeIDOperands(FoldingSetNodeID &ID,
339 const SDUse *Ops, unsigned NumOps) {
340 for (; NumOps; --NumOps, ++Ops) {
341 ID.AddPointer(Ops->getNode());
342 ID.AddInteger(Ops->getResNo());
346 static void AddNodeIDNode(FoldingSetNodeID &ID,
347 unsigned short OpC, SDVTList VTList,
348 const SDValue *OpList, unsigned N) {
349 AddNodeIDOpcode(ID, OpC);
350 AddNodeIDValueTypes(ID, VTList);
351 AddNodeIDOperands(ID, OpList, N);
354 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355 /// the NodeID data.
356 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357 switch (N->getOpcode()) {
358 case ISD::TargetExternalSymbol:
359 case ISD::ExternalSymbol:
360 llvm_unreachable("Should only be used on nodes with operands");
361 default: break; // Normal nodes don't need extra info.
362 case ISD::TargetConstant:
363 case ISD::Constant:
364 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365 break;
366 case ISD::TargetConstantFP:
367 case ISD::ConstantFP: {
368 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369 break;
371 case ISD::TargetGlobalAddress:
372 case ISD::GlobalAddress:
373 case ISD::TargetGlobalTLSAddress:
374 case ISD::GlobalTLSAddress: {
375 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376 ID.AddPointer(GA->getGlobal());
377 ID.AddInteger(GA->getOffset());
378 ID.AddInteger(GA->getTargetFlags());
379 break;
381 case ISD::BasicBlock:
382 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383 break;
384 case ISD::Register:
385 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386 break;
388 case ISD::SRCVALUE:
389 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390 break;
391 case ISD::FrameIndex:
392 case ISD::TargetFrameIndex:
393 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394 break;
395 case ISD::JumpTable:
396 case ISD::TargetJumpTable:
397 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399 break;
400 case ISD::ConstantPool:
401 case ISD::TargetConstantPool: {
402 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403 ID.AddInteger(CP->getAlignment());
404 ID.AddInteger(CP->getOffset());
405 if (CP->isMachineConstantPoolEntry())
406 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407 else
408 ID.AddPointer(CP->getConstVal());
409 ID.AddInteger(CP->getTargetFlags());
410 break;
412 case ISD::LOAD: {
413 const LoadSDNode *LD = cast<LoadSDNode>(N);
414 ID.AddInteger(LD->getMemoryVT().getRawBits());
415 ID.AddInteger(LD->getRawSubclassData());
416 break;
418 case ISD::STORE: {
419 const StoreSDNode *ST = cast<StoreSDNode>(N);
420 ID.AddInteger(ST->getMemoryVT().getRawBits());
421 ID.AddInteger(ST->getRawSubclassData());
422 break;
424 case ISD::ATOMIC_CMP_SWAP:
425 case ISD::ATOMIC_SWAP:
426 case ISD::ATOMIC_LOAD_ADD:
427 case ISD::ATOMIC_LOAD_SUB:
428 case ISD::ATOMIC_LOAD_AND:
429 case ISD::ATOMIC_LOAD_OR:
430 case ISD::ATOMIC_LOAD_XOR:
431 case ISD::ATOMIC_LOAD_NAND:
432 case ISD::ATOMIC_LOAD_MIN:
433 case ISD::ATOMIC_LOAD_MAX:
434 case ISD::ATOMIC_LOAD_UMIN:
435 case ISD::ATOMIC_LOAD_UMAX: {
436 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437 ID.AddInteger(AT->getMemoryVT().getRawBits());
438 ID.AddInteger(AT->getRawSubclassData());
439 break;
441 case ISD::VECTOR_SHUFFLE: {
442 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444 i != e; ++i)
445 ID.AddInteger(SVN->getMaskElt(i));
446 break;
448 case ISD::TargetBlockAddress:
449 case ISD::BlockAddress: {
450 ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451 ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452 break;
454 } // end switch (N->getOpcode())
457 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458 /// data.
459 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460 AddNodeIDOpcode(ID, N->getOpcode());
461 // Add the return value info.
462 AddNodeIDValueTypes(ID, N->getVTList());
463 // Add the operand info.
464 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466 // Handle SDNode leafs with special info.
467 AddNodeIDCustom(ID, N);
470 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471 /// the CSE map that carries volatility, temporalness, indexing mode, and
472 /// extension/truncation information.
474 static inline unsigned
475 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476 bool isNonTemporal) {
477 assert((ConvType & 3) == ConvType &&
478 "ConvType may not require more than 2 bits!");
479 assert((AM & 7) == AM &&
480 "AM may not require more than 3 bits!");
481 return ConvType |
482 (AM << 2) |
483 (isVolatile << 5) |
484 (isNonTemporal << 6);
487 //===----------------------------------------------------------------------===//
488 // SelectionDAG Class
489 //===----------------------------------------------------------------------===//
491 /// doNotCSE - Return true if CSE should not be performed for this node.
492 static bool doNotCSE(SDNode *N) {
493 if (N->getValueType(0) == MVT::Glue)
494 return true; // Never CSE anything that produces a flag.
496 switch (N->getOpcode()) {
497 default: break;
498 case ISD::HANDLENODE:
499 case ISD::EH_LABEL:
500 return true; // Never CSE these nodes.
503 // Check that remaining values produced are not flags.
504 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505 if (N->getValueType(i) == MVT::Glue)
506 return true; // Never CSE anything that produces a flag.
508 return false;
511 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
512 /// SelectionDAG.
513 void SelectionDAG::RemoveDeadNodes() {
514 // Create a dummy node (which is not added to allnodes), that adds a reference
515 // to the root node, preventing it from being deleted.
516 HandleSDNode Dummy(getRoot());
518 SmallVector<SDNode*, 128> DeadNodes;
520 // Add all obviously-dead nodes to the DeadNodes worklist.
521 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522 if (I->use_empty())
523 DeadNodes.push_back(I);
525 RemoveDeadNodes(DeadNodes);
527 // If the root changed (e.g. it was a dead load, update the root).
528 setRoot(Dummy.getValue());
531 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
532 /// given list, and any nodes that become unreachable as a result.
533 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534 DAGUpdateListener *UpdateListener) {
536 // Process the worklist, deleting the nodes and adding their uses to the
537 // worklist.
538 while (!DeadNodes.empty()) {
539 SDNode *N = DeadNodes.pop_back_val();
541 if (UpdateListener)
542 UpdateListener->NodeDeleted(N, 0);
544 // Take the node out of the appropriate CSE map.
545 RemoveNodeFromCSEMaps(N);
547 // Next, brutally remove the operand list. This is safe to do, as there are
548 // no cycles in the graph.
549 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550 SDUse &Use = *I++;
551 SDNode *Operand = Use.getNode();
552 Use.set(SDValue());
554 // Now that we removed this operand, see if there are no uses of it left.
555 if (Operand->use_empty())
556 DeadNodes.push_back(Operand);
559 DeallocateNode(N);
563 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564 SmallVector<SDNode*, 16> DeadNodes(1, N);
565 RemoveDeadNodes(DeadNodes, UpdateListener);
568 void SelectionDAG::DeleteNode(SDNode *N) {
569 // First take this out of the appropriate CSE map.
570 RemoveNodeFromCSEMaps(N);
572 // Finally, remove uses due to operands of this node, remove from the
573 // AllNodes list, and delete the node.
574 DeleteNodeNotInCSEMaps(N);
577 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579 assert(N->use_empty() && "Cannot delete a node that is not dead!");
581 // Drop all of the operands and decrement used node's use counts.
582 N->DropOperands();
584 DeallocateNode(N);
587 void SelectionDAG::DeallocateNode(SDNode *N) {
588 if (N->OperandsNeedDelete)
589 delete[] N->OperandList;
591 // Set the opcode to DELETED_NODE to help catch bugs when node
592 // memory is reallocated.
593 N->NodeType = ISD::DELETED_NODE;
595 NodeAllocator.Deallocate(AllNodes.remove(N));
597 // Remove the ordering of this node.
598 Ordering->remove(N);
600 // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601 ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
602 for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
603 DbgVals[i]->setIsInvalidated();
606 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607 /// correspond to it. This is useful when we're about to delete or repurpose
608 /// the node. We don't want future request for structurally identical nodes
609 /// to return N anymore.
610 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611 bool Erased = false;
612 switch (N->getOpcode()) {
613 case ISD::HANDLENODE: return false; // noop.
614 case ISD::CONDCODE:
615 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
616 "Cond code doesn't exist!");
617 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
618 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
619 break;
620 case ISD::ExternalSymbol:
621 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
622 break;
623 case ISD::TargetExternalSymbol: {
624 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
625 Erased = TargetExternalSymbols.erase(
626 std::pair<std::string,unsigned char>(ESN->getSymbol(),
627 ESN->getTargetFlags()));
628 break;
630 case ISD::VALUETYPE: {
631 EVT VT = cast<VTSDNode>(N)->getVT();
632 if (VT.isExtended()) {
633 Erased = ExtendedValueTypeNodes.erase(VT);
634 } else {
635 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
636 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
638 break;
640 default:
641 // Remove it from the CSE Map.
642 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
643 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
644 Erased = CSEMap.RemoveNode(N);
645 break;
647 #ifndef NDEBUG
648 // Verify that the node was actually in one of the CSE maps, unless it has a
649 // flag result (which cannot be CSE'd) or is one of the special cases that are
650 // not subject to CSE.
651 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
652 !N->isMachineOpcode() && !doNotCSE(N)) {
653 N->dump(this);
654 dbgs() << "\n";
655 llvm_unreachable("Node is not in map!");
657 #endif
658 return Erased;
661 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662 /// maps and modified in place. Add it back to the CSE maps, unless an identical
663 /// node already exists, in which case transfer all its users to the existing
664 /// node. This transfer can potentially trigger recursive merging.
666 void
667 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668 DAGUpdateListener *UpdateListener) {
669 // For node types that aren't CSE'd, just act as if no identical node
670 // already exists.
671 if (!doNotCSE(N)) {
672 SDNode *Existing = CSEMap.GetOrInsertNode(N);
673 if (Existing != N) {
674 // If there was already an existing matching node, use ReplaceAllUsesWith
675 // to replace the dead one with the existing one. This can cause
676 // recursive merging of other unrelated nodes down the line.
677 ReplaceAllUsesWith(N, Existing, UpdateListener);
679 // N is now dead. Inform the listener if it exists and delete it.
680 if (UpdateListener)
681 UpdateListener->NodeDeleted(N, Existing);
682 DeleteNodeNotInCSEMaps(N);
683 return;
687 // If the node doesn't already exist, we updated it. Inform a listener if
688 // it exists.
689 if (UpdateListener)
690 UpdateListener->NodeUpdated(N);
693 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694 /// were replaced with those specified. If this node is never memoized,
695 /// return null, otherwise return a pointer to the slot it would take. If a
696 /// node already exists with these operands, the slot will be non-null.
697 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698 void *&InsertPos) {
699 if (doNotCSE(N))
700 return 0;
702 SDValue Ops[] = { Op };
703 FoldingSetNodeID ID;
704 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705 AddNodeIDCustom(ID, N);
706 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707 return Node;
710 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711 /// were replaced with those specified. If this node is never memoized,
712 /// return null, otherwise return a pointer to the slot it would take. If a
713 /// node already exists with these operands, the slot will be non-null.
714 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715 SDValue Op1, SDValue Op2,
716 void *&InsertPos) {
717 if (doNotCSE(N))
718 return 0;
720 SDValue Ops[] = { Op1, Op2 };
721 FoldingSetNodeID ID;
722 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723 AddNodeIDCustom(ID, N);
724 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725 return Node;
729 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730 /// were replaced with those specified. If this node is never memoized,
731 /// return null, otherwise return a pointer to the slot it would take. If a
732 /// node already exists with these operands, the slot will be non-null.
733 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734 const SDValue *Ops,unsigned NumOps,
735 void *&InsertPos) {
736 if (doNotCSE(N))
737 return 0;
739 FoldingSetNodeID ID;
740 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741 AddNodeIDCustom(ID, N);
742 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743 return Node;
746 #ifndef NDEBUG
747 /// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
748 static void VerifyNodeCommon(SDNode *N) {
749 switch (N->getOpcode()) {
750 default:
751 break;
752 case ISD::BUILD_PAIR: {
753 EVT VT = N->getValueType(0);
754 assert(N->getNumValues() == 1 && "Too many results!");
755 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
756 "Wrong return type!");
757 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
758 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
759 "Mismatched operand types!");
760 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
761 "Wrong operand type!");
762 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
763 "Wrong return type size");
764 break;
766 case ISD::BUILD_VECTOR: {
767 assert(N->getNumValues() == 1 && "Too many results!");
768 assert(N->getValueType(0).isVector() && "Wrong return type!");
769 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
770 "Wrong number of operands!");
771 EVT EltVT = N->getValueType(0).getVectorElementType();
772 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
773 assert((I->getValueType() == EltVT ||
774 (EltVT.isInteger() && I->getValueType().isInteger() &&
775 EltVT.bitsLE(I->getValueType()))) &&
776 "Wrong operand type!");
777 break;
782 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
783 static void VerifySDNode(SDNode *N) {
784 // The SDNode allocators cannot be used to allocate nodes with fields that are
785 // not present in an SDNode!
786 assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
787 assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
788 assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
789 assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
790 assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
791 assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
792 assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
793 assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
794 assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
795 assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
796 assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
797 assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
798 assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
799 assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
800 assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
801 assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
802 assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
803 assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
804 assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
806 VerifyNodeCommon(N);
809 /// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
810 /// invalid.
811 static void VerifyMachineNode(SDNode *N) {
812 // The MachineNode allocators cannot be used to allocate nodes with fields
813 // that are not present in a MachineNode!
814 // Currently there are no such nodes.
816 VerifyNodeCommon(N);
818 #endif // NDEBUG
820 /// getEVTAlignment - Compute the default alignment value for the
821 /// given type.
823 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
824 const Type *Ty = VT == MVT::iPTR ?
825 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826 VT.getTypeForEVT(*getContext());
828 return TLI.getTargetData()->getABITypeAlignment(Ty);
831 // EntryNode could meaningfully have debug info if we can find it...
832 SelectionDAG::SelectionDAG(const TargetMachine &tm)
833 : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
834 EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
835 Root(getEntryNode()), Ordering(0) {
836 AllNodes.push_back(&EntryNode);
837 Ordering = new SDNodeOrdering();
838 DbgInfo = new SDDbgInfo();
841 void SelectionDAG::init(MachineFunction &mf) {
842 MF = &mf;
843 Context = &mf.getFunction()->getContext();
846 SelectionDAG::~SelectionDAG() {
847 allnodes_clear();
848 delete Ordering;
849 delete DbgInfo;
852 void SelectionDAG::allnodes_clear() {
853 assert(&*AllNodes.begin() == &EntryNode);
854 AllNodes.remove(AllNodes.begin());
855 while (!AllNodes.empty())
856 DeallocateNode(AllNodes.begin());
859 void SelectionDAG::clear() {
860 allnodes_clear();
861 OperandAllocator.Reset();
862 CSEMap.clear();
864 ExtendedValueTypeNodes.clear();
865 ExternalSymbols.clear();
866 TargetExternalSymbols.clear();
867 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
868 static_cast<CondCodeSDNode*>(0));
869 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
870 static_cast<SDNode*>(0));
872 EntryNode.UseList = 0;
873 AllNodes.push_back(&EntryNode);
874 Root = getEntryNode();
875 Ordering->clear();
876 DbgInfo->clear();
879 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
880 return VT.bitsGT(Op.getValueType()) ?
881 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
882 getNode(ISD::TRUNCATE, DL, VT, Op);
885 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
886 return VT.bitsGT(Op.getValueType()) ?
887 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
888 getNode(ISD::TRUNCATE, DL, VT, Op);
891 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
892 assert(!VT.isVector() &&
893 "getZeroExtendInReg should use the vector element type instead of "
894 "the vector type!");
895 if (Op.getValueType() == VT) return Op;
896 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
897 APInt Imm = APInt::getLowBitsSet(BitWidth,
898 VT.getSizeInBits());
899 return getNode(ISD::AND, DL, Op.getValueType(), Op,
900 getConstant(Imm, Op.getValueType()));
903 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
905 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
906 EVT EltVT = VT.getScalarType();
907 SDValue NegOne =
908 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
909 return getNode(ISD::XOR, DL, VT, Val, NegOne);
912 SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
913 EVT EltVT = VT.getScalarType();
914 assert((EltVT.getSizeInBits() >= 64 ||
915 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
916 "getConstant with a uint64_t value that doesn't fit in the type!");
917 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
920 SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
921 return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
924 SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
925 assert(VT.isInteger() && "Cannot create FP integer constant!");
927 EVT EltVT = VT.getScalarType();
928 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
929 "APInt size does not match type size!");
931 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
932 FoldingSetNodeID ID;
933 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
934 ID.AddPointer(&Val);
935 void *IP = 0;
936 SDNode *N = NULL;
937 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
938 if (!VT.isVector())
939 return SDValue(N, 0);
941 if (!N) {
942 N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
943 CSEMap.InsertNode(N, IP);
944 AllNodes.push_back(N);
947 SDValue Result(N, 0);
948 if (VT.isVector()) {
949 SmallVector<SDValue, 8> Ops;
950 Ops.assign(VT.getVectorNumElements(), Result);
951 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
953 return Result;
956 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
957 return getConstant(Val, TLI.getPointerTy(), isTarget);
961 SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
962 return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
965 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
966 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
968 EVT EltVT = VT.getScalarType();
970 // Do the map lookup using the actual bit pattern for the floating point
971 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972 // we don't have issues with SNANs.
973 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
974 FoldingSetNodeID ID;
975 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
976 ID.AddPointer(&V);
977 void *IP = 0;
978 SDNode *N = NULL;
979 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
980 if (!VT.isVector())
981 return SDValue(N, 0);
983 if (!N) {
984 N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
985 CSEMap.InsertNode(N, IP);
986 AllNodes.push_back(N);
989 SDValue Result(N, 0);
990 if (VT.isVector()) {
991 SmallVector<SDValue, 8> Ops;
992 Ops.assign(VT.getVectorNumElements(), Result);
993 // FIXME DebugLoc info might be appropriate here
994 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
996 return Result;
999 SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1000 EVT EltVT = VT.getScalarType();
1001 if (EltVT==MVT::f32)
1002 return getConstantFP(APFloat((float)Val), VT, isTarget);
1003 else if (EltVT==MVT::f64)
1004 return getConstantFP(APFloat(Val), VT, isTarget);
1005 else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
1006 bool ignored;
1007 APFloat apf = APFloat(Val);
1008 apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1009 &ignored);
1010 return getConstantFP(apf, VT, isTarget);
1011 } else {
1012 assert(0 && "Unsupported type in getConstantFP");
1013 return SDValue();
1017 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1018 EVT VT, int64_t Offset,
1019 bool isTargetGA,
1020 unsigned char TargetFlags) {
1021 assert((TargetFlags == 0 || isTargetGA) &&
1022 "Cannot set target flags on target-independent globals");
1024 // Truncate (with sign-extension) the offset value to the pointer size.
1025 EVT PTy = TLI.getPointerTy();
1026 unsigned BitWidth = PTy.getSizeInBits();
1027 if (BitWidth < 64)
1028 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
1030 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1031 if (!GVar) {
1032 // If GV is an alias then use the aliasee for determining thread-localness.
1033 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1034 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1037 unsigned Opc;
1038 if (GVar && GVar->isThreadLocal())
1039 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1040 else
1041 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1043 FoldingSetNodeID ID;
1044 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1045 ID.AddPointer(GV);
1046 ID.AddInteger(Offset);
1047 ID.AddInteger(TargetFlags);
1048 void *IP = 0;
1049 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050 return SDValue(E, 0);
1052 SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1053 Offset, TargetFlags);
1054 CSEMap.InsertNode(N, IP);
1055 AllNodes.push_back(N);
1056 return SDValue(N, 0);
1059 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1060 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1061 FoldingSetNodeID ID;
1062 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1063 ID.AddInteger(FI);
1064 void *IP = 0;
1065 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1066 return SDValue(E, 0);
1068 SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1069 CSEMap.InsertNode(N, IP);
1070 AllNodes.push_back(N);
1071 return SDValue(N, 0);
1074 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1075 unsigned char TargetFlags) {
1076 assert((TargetFlags == 0 || isTarget) &&
1077 "Cannot set target flags on target-independent jump tables");
1078 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1079 FoldingSetNodeID ID;
1080 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1081 ID.AddInteger(JTI);
1082 ID.AddInteger(TargetFlags);
1083 void *IP = 0;
1084 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085 return SDValue(E, 0);
1087 SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1088 TargetFlags);
1089 CSEMap.InsertNode(N, IP);
1090 AllNodes.push_back(N);
1091 return SDValue(N, 0);
1094 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1095 unsigned Alignment, int Offset,
1096 bool isTarget,
1097 unsigned char TargetFlags) {
1098 assert((TargetFlags == 0 || isTarget) &&
1099 "Cannot set target flags on target-independent globals");
1100 if (Alignment == 0)
1101 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1102 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1103 FoldingSetNodeID ID;
1104 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1105 ID.AddInteger(Alignment);
1106 ID.AddInteger(Offset);
1107 ID.AddPointer(C);
1108 ID.AddInteger(TargetFlags);
1109 void *IP = 0;
1110 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1111 return SDValue(E, 0);
1113 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1114 Alignment, TargetFlags);
1115 CSEMap.InsertNode(N, IP);
1116 AllNodes.push_back(N);
1117 return SDValue(N, 0);
1121 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1122 unsigned Alignment, int Offset,
1123 bool isTarget,
1124 unsigned char TargetFlags) {
1125 assert((TargetFlags == 0 || isTarget) &&
1126 "Cannot set target flags on target-independent globals");
1127 if (Alignment == 0)
1128 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1129 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1130 FoldingSetNodeID ID;
1131 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1132 ID.AddInteger(Alignment);
1133 ID.AddInteger(Offset);
1134 C->AddSelectionDAGCSEId(ID);
1135 ID.AddInteger(TargetFlags);
1136 void *IP = 0;
1137 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1138 return SDValue(E, 0);
1140 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1141 Alignment, TargetFlags);
1142 CSEMap.InsertNode(N, IP);
1143 AllNodes.push_back(N);
1144 return SDValue(N, 0);
1147 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1148 FoldingSetNodeID ID;
1149 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1150 ID.AddPointer(MBB);
1151 void *IP = 0;
1152 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153 return SDValue(E, 0);
1155 SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1156 CSEMap.InsertNode(N, IP);
1157 AllNodes.push_back(N);
1158 return SDValue(N, 0);
1161 SDValue SelectionDAG::getValueType(EVT VT) {
1162 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1163 ValueTypeNodes.size())
1164 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1166 SDNode *&N = VT.isExtended() ?
1167 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1169 if (N) return SDValue(N, 0);
1170 N = new (NodeAllocator) VTSDNode(VT);
1171 AllNodes.push_back(N);
1172 return SDValue(N, 0);
1175 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1176 SDNode *&N = ExternalSymbols[Sym];
1177 if (N) return SDValue(N, 0);
1178 N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1179 AllNodes.push_back(N);
1180 return SDValue(N, 0);
1183 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1184 unsigned char TargetFlags) {
1185 SDNode *&N =
1186 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1187 TargetFlags)];
1188 if (N) return SDValue(N, 0);
1189 N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1190 AllNodes.push_back(N);
1191 return SDValue(N, 0);
1194 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1195 if ((unsigned)Cond >= CondCodeNodes.size())
1196 CondCodeNodes.resize(Cond+1);
1198 if (CondCodeNodes[Cond] == 0) {
1199 CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1200 CondCodeNodes[Cond] = N;
1201 AllNodes.push_back(N);
1204 return SDValue(CondCodeNodes[Cond], 0);
1207 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208 // the shuffle mask M that point at N1 to point at N2, and indices that point
1209 // N2 to point at N1.
1210 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1211 std::swap(N1, N2);
1212 int NElts = M.size();
1213 for (int i = 0; i != NElts; ++i) {
1214 if (M[i] >= NElts)
1215 M[i] -= NElts;
1216 else if (M[i] >= 0)
1217 M[i] += NElts;
1221 SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1222 SDValue N2, const int *Mask) {
1223 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1224 assert(VT.isVector() && N1.getValueType().isVector() &&
1225 "Vector Shuffle VTs must be a vectors");
1226 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1227 && "Vector Shuffle VTs must have same element type");
1229 // Canonicalize shuffle undef, undef -> undef
1230 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1231 return getUNDEF(VT);
1233 // Validate that all indices in Mask are within the range of the elements
1234 // input to the shuffle.
1235 unsigned NElts = VT.getVectorNumElements();
1236 SmallVector<int, 8> MaskVec;
1237 for (unsigned i = 0; i != NElts; ++i) {
1238 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1239 MaskVec.push_back(Mask[i]);
1242 // Canonicalize shuffle v, v -> v, undef
1243 if (N1 == N2) {
1244 N2 = getUNDEF(VT);
1245 for (unsigned i = 0; i != NElts; ++i)
1246 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1249 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1250 if (N1.getOpcode() == ISD::UNDEF)
1251 commuteShuffle(N1, N2, MaskVec);
1253 // Canonicalize all index into lhs, -> shuffle lhs, undef
1254 // Canonicalize all index into rhs, -> shuffle rhs, undef
1255 bool AllLHS = true, AllRHS = true;
1256 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1257 for (unsigned i = 0; i != NElts; ++i) {
1258 if (MaskVec[i] >= (int)NElts) {
1259 if (N2Undef)
1260 MaskVec[i] = -1;
1261 else
1262 AllLHS = false;
1263 } else if (MaskVec[i] >= 0) {
1264 AllRHS = false;
1267 if (AllLHS && AllRHS)
1268 return getUNDEF(VT);
1269 if (AllLHS && !N2Undef)
1270 N2 = getUNDEF(VT);
1271 if (AllRHS) {
1272 N1 = getUNDEF(VT);
1273 commuteShuffle(N1, N2, MaskVec);
1276 // If Identity shuffle, or all shuffle in to undef, return that node.
1277 bool AllUndef = true;
1278 bool Identity = true;
1279 for (unsigned i = 0; i != NElts; ++i) {
1280 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1281 if (MaskVec[i] >= 0) AllUndef = false;
1283 if (Identity && NElts == N1.getValueType().getVectorNumElements())
1284 return N1;
1285 if (AllUndef)
1286 return getUNDEF(VT);
1288 FoldingSetNodeID ID;
1289 SDValue Ops[2] = { N1, N2 };
1290 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1291 for (unsigned i = 0; i != NElts; ++i)
1292 ID.AddInteger(MaskVec[i]);
1294 void* IP = 0;
1295 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1296 return SDValue(E, 0);
1298 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299 // SDNode doesn't have access to it. This memory will be "leaked" when
1300 // the node is deallocated, but recovered when the NodeAllocator is released.
1301 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1302 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1304 ShuffleVectorSDNode *N =
1305 new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1306 CSEMap.InsertNode(N, IP);
1307 AllNodes.push_back(N);
1308 return SDValue(N, 0);
1311 SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1312 SDValue Val, SDValue DTy,
1313 SDValue STy, SDValue Rnd, SDValue Sat,
1314 ISD::CvtCode Code) {
1315 // If the src and dest types are the same and the conversion is between
1316 // integer types of the same sign or two floats, no conversion is necessary.
1317 if (DTy == STy &&
1318 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1319 return Val;
1321 FoldingSetNodeID ID;
1322 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1323 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1324 void* IP = 0;
1325 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1326 return SDValue(E, 0);
1328 CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1329 Code);
1330 CSEMap.InsertNode(N, IP);
1331 AllNodes.push_back(N);
1332 return SDValue(N, 0);
1335 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1336 FoldingSetNodeID ID;
1337 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1338 ID.AddInteger(RegNo);
1339 void *IP = 0;
1340 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1341 return SDValue(E, 0);
1343 SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1344 CSEMap.InsertNode(N, IP);
1345 AllNodes.push_back(N);
1346 return SDValue(N, 0);
1349 SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1350 FoldingSetNodeID ID;
1351 SDValue Ops[] = { Root };
1352 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1353 ID.AddPointer(Label);
1354 void *IP = 0;
1355 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356 return SDValue(E, 0);
1358 SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1359 CSEMap.InsertNode(N, IP);
1360 AllNodes.push_back(N);
1361 return SDValue(N, 0);
1365 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1366 bool isTarget,
1367 unsigned char TargetFlags) {
1368 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1370 FoldingSetNodeID ID;
1371 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1372 ID.AddPointer(BA);
1373 ID.AddInteger(TargetFlags);
1374 void *IP = 0;
1375 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376 return SDValue(E, 0);
1378 SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1379 CSEMap.InsertNode(N, IP);
1380 AllNodes.push_back(N);
1381 return SDValue(N, 0);
1384 SDValue SelectionDAG::getSrcValue(const Value *V) {
1385 assert((!V || V->getType()->isPointerTy()) &&
1386 "SrcValue is not a pointer?");
1388 FoldingSetNodeID ID;
1389 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1390 ID.AddPointer(V);
1392 void *IP = 0;
1393 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1394 return SDValue(E, 0);
1396 SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1397 CSEMap.InsertNode(N, IP);
1398 AllNodes.push_back(N);
1399 return SDValue(N, 0);
1402 /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1404 FoldingSetNodeID ID;
1405 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1406 ID.AddPointer(MD);
1408 void *IP = 0;
1409 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1410 return SDValue(E, 0);
1412 SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1413 CSEMap.InsertNode(N, IP);
1414 AllNodes.push_back(N);
1415 return SDValue(N, 0);
1419 /// getShiftAmountOperand - Return the specified value casted to
1420 /// the target's desired shift amount type.
1421 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1422 EVT OpTy = Op.getValueType();
1423 MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1424 if (OpTy == ShTy || OpTy.isVector()) return Op;
1426 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1427 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1430 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431 /// specified value type.
1432 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1433 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1434 unsigned ByteSize = VT.getStoreSize();
1435 const Type *Ty = VT.getTypeForEVT(*getContext());
1436 unsigned StackAlign =
1437 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1439 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1440 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1443 /// CreateStackTemporary - Create a stack temporary suitable for holding
1444 /// either of the specified value types.
1445 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1446 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1447 VT2.getStoreSizeInBits())/8;
1448 const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1449 const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1450 const TargetData *TD = TLI.getTargetData();
1451 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1452 TD->getPrefTypeAlignment(Ty2));
1454 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1455 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1456 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1459 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1460 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1461 // These setcc operations always fold.
1462 switch (Cond) {
1463 default: break;
1464 case ISD::SETFALSE:
1465 case ISD::SETFALSE2: return getConstant(0, VT);
1466 case ISD::SETTRUE:
1467 case ISD::SETTRUE2: return getConstant(1, VT);
1469 case ISD::SETOEQ:
1470 case ISD::SETOGT:
1471 case ISD::SETOGE:
1472 case ISD::SETOLT:
1473 case ISD::SETOLE:
1474 case ISD::SETONE:
1475 case ISD::SETO:
1476 case ISD::SETUO:
1477 case ISD::SETUEQ:
1478 case ISD::SETUNE:
1479 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1480 break;
1483 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1484 const APInt &C2 = N2C->getAPIntValue();
1485 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1486 const APInt &C1 = N1C->getAPIntValue();
1488 switch (Cond) {
1489 default: llvm_unreachable("Unknown integer setcc!");
1490 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1491 case ISD::SETNE: return getConstant(C1 != C2, VT);
1492 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1493 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1494 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1495 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1496 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1497 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1498 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1499 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1503 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1504 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1505 // No compile time operations on this type yet.
1506 if (N1C->getValueType(0) == MVT::ppcf128)
1507 return SDValue();
1509 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1510 switch (Cond) {
1511 default: break;
1512 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1513 return getUNDEF(VT);
1514 // fall through
1515 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1516 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1517 return getUNDEF(VT);
1518 // fall through
1519 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1520 R==APFloat::cmpLessThan, VT);
1521 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1522 return getUNDEF(VT);
1523 // fall through
1524 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1525 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1526 return getUNDEF(VT);
1527 // fall through
1528 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1529 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1530 return getUNDEF(VT);
1531 // fall through
1532 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1533 R==APFloat::cmpEqual, VT);
1534 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1535 return getUNDEF(VT);
1536 // fall through
1537 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1538 R==APFloat::cmpEqual, VT);
1539 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1540 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1541 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1542 R==APFloat::cmpEqual, VT);
1543 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1544 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1545 R==APFloat::cmpLessThan, VT);
1546 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1547 R==APFloat::cmpUnordered, VT);
1548 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1549 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1551 } else {
1552 // Ensure that the constant occurs on the RHS.
1553 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1557 // Could not fold it.
1558 return SDValue();
1561 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1562 /// use this predicate to simplify operations downstream.
1563 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1564 // This predicate is not safe for vector operations.
1565 if (Op.getValueType().isVector())
1566 return false;
1568 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1569 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1572 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1573 /// this predicate to simplify operations downstream. Mask is known to be zero
1574 /// for bits that V cannot have.
1575 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1576 unsigned Depth) const {
1577 APInt KnownZero, KnownOne;
1578 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1579 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580 return (KnownZero & Mask) == Mask;
1583 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584 /// known to be either zero or one and return them in the KnownZero/KnownOne
1585 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1586 /// processing.
1587 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1588 APInt &KnownZero, APInt &KnownOne,
1589 unsigned Depth) const {
1590 unsigned BitWidth = Mask.getBitWidth();
1591 assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1592 "Mask size mismatches value type size!");
1594 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1595 if (Depth == 6 || Mask == 0)
1596 return; // Limit search depth.
1598 APInt KnownZero2, KnownOne2;
1600 switch (Op.getOpcode()) {
1601 case ISD::Constant:
1602 // We know all of the bits for a constant!
1603 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1604 KnownZero = ~KnownOne & Mask;
1605 return;
1606 case ISD::AND:
1607 // If either the LHS or the RHS are Zero, the result is zero.
1608 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1609 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1610 KnownZero2, KnownOne2, Depth+1);
1611 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1612 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1614 // Output known-1 bits are only known if set in both the LHS & RHS.
1615 KnownOne &= KnownOne2;
1616 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617 KnownZero |= KnownZero2;
1618 return;
1619 case ISD::OR:
1620 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1622 KnownZero2, KnownOne2, Depth+1);
1623 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1626 // Output known-0 bits are only known if clear in both the LHS & RHS.
1627 KnownZero &= KnownZero2;
1628 // Output known-1 are known to be set if set in either the LHS | RHS.
1629 KnownOne |= KnownOne2;
1630 return;
1631 case ISD::XOR: {
1632 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1634 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1635 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1637 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1639 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1641 KnownZero = KnownZeroOut;
1642 return;
1644 case ISD::MUL: {
1645 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1646 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1647 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1648 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651 // If low bits are zero in either operand, output low known-0 bits.
1652 // Also compute a conserative estimate for high known-0 bits.
1653 // More trickiness is possible, but this is sufficient for the
1654 // interesting case of alignment computation.
1655 KnownOne.clearAllBits();
1656 unsigned TrailZ = KnownZero.countTrailingOnes() +
1657 KnownZero2.countTrailingOnes();
1658 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1659 KnownZero2.countLeadingOnes(),
1660 BitWidth) - BitWidth;
1662 TrailZ = std::min(TrailZ, BitWidth);
1663 LeadZ = std::min(LeadZ, BitWidth);
1664 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1665 APInt::getHighBitsSet(BitWidth, LeadZ);
1666 KnownZero &= Mask;
1667 return;
1669 case ISD::UDIV: {
1670 // For the purposes of computing leading zeros we can conservatively
1671 // treat a udiv as a logical right shift by the power of 2 known to
1672 // be less than the denominator.
1673 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1674 ComputeMaskedBits(Op.getOperand(0),
1675 AllOnes, KnownZero2, KnownOne2, Depth+1);
1676 unsigned LeadZ = KnownZero2.countLeadingOnes();
1678 KnownOne2.clearAllBits();
1679 KnownZero2.clearAllBits();
1680 ComputeMaskedBits(Op.getOperand(1),
1681 AllOnes, KnownZero2, KnownOne2, Depth+1);
1682 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1683 if (RHSUnknownLeadingOnes != BitWidth)
1684 LeadZ = std::min(BitWidth,
1685 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1687 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1688 return;
1690 case ISD::SELECT:
1691 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1692 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1693 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1696 // Only known if known in both the LHS and RHS.
1697 KnownOne &= KnownOne2;
1698 KnownZero &= KnownZero2;
1699 return;
1700 case ISD::SELECT_CC:
1701 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1702 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1703 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1704 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1706 // Only known if known in both the LHS and RHS.
1707 KnownOne &= KnownOne2;
1708 KnownZero &= KnownZero2;
1709 return;
1710 case ISD::SADDO:
1711 case ISD::UADDO:
1712 case ISD::SSUBO:
1713 case ISD::USUBO:
1714 case ISD::SMULO:
1715 case ISD::UMULO:
1716 if (Op.getResNo() != 1)
1717 return;
1718 // The boolean result conforms to getBooleanContents. Fall through.
1719 case ISD::SETCC:
1720 // If we know the result of a setcc has the top bits zero, use this info.
1721 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1722 BitWidth > 1)
1723 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1724 return;
1725 case ISD::SHL:
1726 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1727 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1728 unsigned ShAmt = SA->getZExtValue();
1730 // If the shift count is an invalid immediate, don't do anything.
1731 if (ShAmt >= BitWidth)
1732 return;
1734 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1735 KnownZero, KnownOne, Depth+1);
1736 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737 KnownZero <<= ShAmt;
1738 KnownOne <<= ShAmt;
1739 // low bits known zero.
1740 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1742 return;
1743 case ISD::SRL:
1744 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1745 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1746 unsigned ShAmt = SA->getZExtValue();
1748 // If the shift count is an invalid immediate, don't do anything.
1749 if (ShAmt >= BitWidth)
1750 return;
1752 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1753 KnownZero, KnownOne, Depth+1);
1754 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1755 KnownZero = KnownZero.lshr(ShAmt);
1756 KnownOne = KnownOne.lshr(ShAmt);
1758 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1759 KnownZero |= HighBits; // High bits known zero.
1761 return;
1762 case ISD::SRA:
1763 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1764 unsigned ShAmt = SA->getZExtValue();
1766 // If the shift count is an invalid immediate, don't do anything.
1767 if (ShAmt >= BitWidth)
1768 return;
1770 APInt InDemandedMask = (Mask << ShAmt);
1771 // If any of the demanded bits are produced by the sign extension, we also
1772 // demand the input sign bit.
1773 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1774 if (HighBits.getBoolValue())
1775 InDemandedMask |= APInt::getSignBit(BitWidth);
1777 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1778 Depth+1);
1779 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780 KnownZero = KnownZero.lshr(ShAmt);
1781 KnownOne = KnownOne.lshr(ShAmt);
1783 // Handle the sign bits.
1784 APInt SignBit = APInt::getSignBit(BitWidth);
1785 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1787 if (KnownZero.intersects(SignBit)) {
1788 KnownZero |= HighBits; // New bits are known zero.
1789 } else if (KnownOne.intersects(SignBit)) {
1790 KnownOne |= HighBits; // New bits are known one.
1793 return;
1794 case ISD::SIGN_EXTEND_INREG: {
1795 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1796 unsigned EBits = EVT.getScalarType().getSizeInBits();
1798 // Sign extension. Compute the demanded bits in the result that are not
1799 // present in the input.
1800 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1802 APInt InSignBit = APInt::getSignBit(EBits);
1803 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1805 // If the sign extended bits are demanded, we know that the sign
1806 // bit is demanded.
1807 InSignBit = InSignBit.zext(BitWidth);
1808 if (NewBits.getBoolValue())
1809 InputDemandedBits |= InSignBit;
1811 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1812 KnownZero, KnownOne, Depth+1);
1813 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1815 // If the sign bit of the input is known set or clear, then we know the
1816 // top bits of the result.
1817 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1818 KnownZero |= NewBits;
1819 KnownOne &= ~NewBits;
1820 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1821 KnownOne |= NewBits;
1822 KnownZero &= ~NewBits;
1823 } else { // Input sign bit unknown
1824 KnownZero &= ~NewBits;
1825 KnownOne &= ~NewBits;
1827 return;
1829 case ISD::CTTZ:
1830 case ISD::CTLZ:
1831 case ISD::CTPOP: {
1832 unsigned LowBits = Log2_32(BitWidth)+1;
1833 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1834 KnownOne.clearAllBits();
1835 return;
1837 case ISD::LOAD: {
1838 if (ISD::isZEXTLoad(Op.getNode())) {
1839 LoadSDNode *LD = cast<LoadSDNode>(Op);
1840 EVT VT = LD->getMemoryVT();
1841 unsigned MemBits = VT.getScalarType().getSizeInBits();
1842 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1844 return;
1846 case ISD::ZERO_EXTEND: {
1847 EVT InVT = Op.getOperand(0).getValueType();
1848 unsigned InBits = InVT.getScalarType().getSizeInBits();
1849 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1850 APInt InMask = Mask.trunc(InBits);
1851 KnownZero = KnownZero.trunc(InBits);
1852 KnownOne = KnownOne.trunc(InBits);
1853 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854 KnownZero = KnownZero.zext(BitWidth);
1855 KnownOne = KnownOne.zext(BitWidth);
1856 KnownZero |= NewBits;
1857 return;
1859 case ISD::SIGN_EXTEND: {
1860 EVT InVT = Op.getOperand(0).getValueType();
1861 unsigned InBits = InVT.getScalarType().getSizeInBits();
1862 APInt InSignBit = APInt::getSignBit(InBits);
1863 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1864 APInt InMask = Mask.trunc(InBits);
1866 // If any of the sign extended bits are demanded, we know that the sign
1867 // bit is demanded. Temporarily set this bit in the mask for our callee.
1868 if (NewBits.getBoolValue())
1869 InMask |= InSignBit;
1871 KnownZero = KnownZero.trunc(InBits);
1872 KnownOne = KnownOne.trunc(InBits);
1873 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1875 // Note if the sign bit is known to be zero or one.
1876 bool SignBitKnownZero = KnownZero.isNegative();
1877 bool SignBitKnownOne = KnownOne.isNegative();
1878 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1879 "Sign bit can't be known to be both zero and one!");
1881 // If the sign bit wasn't actually demanded by our caller, we don't
1882 // want it set in the KnownZero and KnownOne result values. Reset the
1883 // mask and reapply it to the result values.
1884 InMask = Mask.trunc(InBits);
1885 KnownZero &= InMask;
1886 KnownOne &= InMask;
1888 KnownZero = KnownZero.zext(BitWidth);
1889 KnownOne = KnownOne.zext(BitWidth);
1891 // If the sign bit is known zero or one, the top bits match.
1892 if (SignBitKnownZero)
1893 KnownZero |= NewBits;
1894 else if (SignBitKnownOne)
1895 KnownOne |= NewBits;
1896 return;
1898 case ISD::ANY_EXTEND: {
1899 EVT InVT = Op.getOperand(0).getValueType();
1900 unsigned InBits = InVT.getScalarType().getSizeInBits();
1901 APInt InMask = Mask.trunc(InBits);
1902 KnownZero = KnownZero.trunc(InBits);
1903 KnownOne = KnownOne.trunc(InBits);
1904 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1905 KnownZero = KnownZero.zext(BitWidth);
1906 KnownOne = KnownOne.zext(BitWidth);
1907 return;
1909 case ISD::TRUNCATE: {
1910 EVT InVT = Op.getOperand(0).getValueType();
1911 unsigned InBits = InVT.getScalarType().getSizeInBits();
1912 APInt InMask = Mask.zext(InBits);
1913 KnownZero = KnownZero.zext(InBits);
1914 KnownOne = KnownOne.zext(InBits);
1915 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1916 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1917 KnownZero = KnownZero.trunc(BitWidth);
1918 KnownOne = KnownOne.trunc(BitWidth);
1919 break;
1921 case ISD::AssertZext: {
1922 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1923 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1924 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1925 KnownOne, Depth+1);
1926 KnownZero |= (~InMask) & Mask;
1927 return;
1929 case ISD::FGETSIGN:
1930 // All bits are zero except the low bit.
1931 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1932 return;
1934 case ISD::SUB: {
1935 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1936 // We know that the top bits of C-X are clear if X contains less bits
1937 // than C (i.e. no wrap-around can happen). For example, 20-X is
1938 // positive if we can prove that X is >= 0 and < 16.
1939 if (CLHS->getAPIntValue().isNonNegative()) {
1940 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1941 // NLZ can't be BitWidth with no sign bit
1942 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1943 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1944 Depth+1);
1946 // If all of the MaskV bits are known to be zero, then we know the
1947 // output top bits are zero, because we now know that the output is
1948 // from [0-C].
1949 if ((KnownZero2 & MaskV) == MaskV) {
1950 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1951 // Top bits known zero.
1952 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1957 // fall through
1958 case ISD::ADD:
1959 case ISD::ADDE: {
1960 // Output known-0 bits are known if clear or set in both the low clear bits
1961 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1962 // low 3 bits clear.
1963 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1964 BitWidth - Mask.countLeadingZeros());
1965 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1966 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1967 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1969 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1970 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1971 KnownZeroOut = std::min(KnownZeroOut,
1972 KnownZero2.countTrailingOnes());
1974 if (Op.getOpcode() == ISD::ADD) {
1975 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1976 return;
1979 // With ADDE, a carry bit may be added in, so we can only use this
1980 // information if we know (at least) that the low two bits are clear. We
1981 // then return to the caller that the low bit is unknown but that other bits
1982 // are known zero.
1983 if (KnownZeroOut >= 2) // ADDE
1984 KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
1985 return;
1987 case ISD::SREM:
1988 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1989 const APInt &RA = Rem->getAPIntValue().abs();
1990 if (RA.isPowerOf2()) {
1991 APInt LowBits = RA - 1;
1992 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1993 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1995 // The low bits of the first operand are unchanged by the srem.
1996 KnownZero = KnownZero2 & LowBits;
1997 KnownOne = KnownOne2 & LowBits;
1999 // If the first operand is non-negative or has all low bits zero, then
2000 // the upper bits are all zero.
2001 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2002 KnownZero |= ~LowBits;
2004 // If the first operand is negative and not all low bits are zero, then
2005 // the upper bits are all one.
2006 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2007 KnownOne |= ~LowBits;
2009 KnownZero &= Mask;
2010 KnownOne &= Mask;
2012 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2015 return;
2016 case ISD::UREM: {
2017 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018 const APInt &RA = Rem->getAPIntValue();
2019 if (RA.isPowerOf2()) {
2020 APInt LowBits = (RA - 1);
2021 APInt Mask2 = LowBits & Mask;
2022 KnownZero |= ~LowBits & Mask;
2023 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
2024 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2025 break;
2029 // Since the result is less than or equal to either operand, any leading
2030 // zero bits in either operand must also exist in the result.
2031 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
2032 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
2033 Depth+1);
2034 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
2035 Depth+1);
2037 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2038 KnownZero2.countLeadingOnes());
2039 KnownOne.clearAllBits();
2040 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2041 return;
2043 case ISD::FrameIndex:
2044 case ISD::TargetFrameIndex:
2045 if (unsigned Align = InferPtrAlignment(Op)) {
2046 // The low bits are known zero if the pointer is aligned.
2047 KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2048 return;
2050 break;
2052 default:
2053 if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2054 break;
2055 // Fallthrough
2056 case ISD::INTRINSIC_WO_CHAIN:
2057 case ISD::INTRINSIC_W_CHAIN:
2058 case ISD::INTRINSIC_VOID:
2059 // Allow the target to implement this method for its nodes.
2060 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2061 Depth);
2062 return;
2066 /// ComputeNumSignBits - Return the number of times the sign bit of the
2067 /// register is replicated into the other bits. We know that at least 1 bit
2068 /// is always equal to the sign bit (itself), but other cases can give us
2069 /// information. For example, immediately after an "SRA X, 2", we know that
2070 /// the top 3 bits are all equal to each other, so we return 3.
2071 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2072 EVT VT = Op.getValueType();
2073 assert(VT.isInteger() && "Invalid VT!");
2074 unsigned VTBits = VT.getScalarType().getSizeInBits();
2075 unsigned Tmp, Tmp2;
2076 unsigned FirstAnswer = 1;
2078 if (Depth == 6)
2079 return 1; // Limit search depth.
2081 switch (Op.getOpcode()) {
2082 default: break;
2083 case ISD::AssertSext:
2084 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2085 return VTBits-Tmp+1;
2086 case ISD::AssertZext:
2087 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2088 return VTBits-Tmp;
2090 case ISD::Constant: {
2091 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2092 return Val.getNumSignBits();
2095 case ISD::SIGN_EXTEND:
2096 Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2097 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2099 case ISD::SIGN_EXTEND_INREG:
2100 // Max of the input and what this extends.
2101 Tmp =
2102 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2103 Tmp = VTBits-Tmp+1;
2105 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106 return std::max(Tmp, Tmp2);
2108 case ISD::SRA:
2109 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2110 // SRA X, C -> adds C sign bits.
2111 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2112 Tmp += C->getZExtValue();
2113 if (Tmp > VTBits) Tmp = VTBits;
2115 return Tmp;
2116 case ISD::SHL:
2117 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118 // shl destroys sign bits.
2119 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2120 if (C->getZExtValue() >= VTBits || // Bad shift.
2121 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2122 return Tmp - C->getZExtValue();
2124 break;
2125 case ISD::AND:
2126 case ISD::OR:
2127 case ISD::XOR: // NOT is handled here.
2128 // Logical binary ops preserve the number of sign bits at the worst.
2129 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2130 if (Tmp != 1) {
2131 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2132 FirstAnswer = std::min(Tmp, Tmp2);
2133 // We computed what we know about the sign bits as our first
2134 // answer. Now proceed to the generic code that uses
2135 // ComputeMaskedBits, and pick whichever answer is better.
2137 break;
2139 case ISD::SELECT:
2140 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141 if (Tmp == 1) return 1; // Early out.
2142 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2143 return std::min(Tmp, Tmp2);
2145 case ISD::SADDO:
2146 case ISD::UADDO:
2147 case ISD::SSUBO:
2148 case ISD::USUBO:
2149 case ISD::SMULO:
2150 case ISD::UMULO:
2151 if (Op.getResNo() != 1)
2152 break;
2153 // The boolean result conforms to getBooleanContents. Fall through.
2154 case ISD::SETCC:
2155 // If setcc returns 0/-1, all bits are sign bits.
2156 if (TLI.getBooleanContents() ==
2157 TargetLowering::ZeroOrNegativeOneBooleanContent)
2158 return VTBits;
2159 break;
2160 case ISD::ROTL:
2161 case ISD::ROTR:
2162 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2163 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2165 // Handle rotate right by N like a rotate left by 32-N.
2166 if (Op.getOpcode() == ISD::ROTR)
2167 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2169 // If we aren't rotating out all of the known-in sign bits, return the
2170 // number that are left. This handles rotl(sext(x), 1) for example.
2171 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2172 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2174 break;
2175 case ISD::ADD:
2176 // Add can have at most one carry bit. Thus we know that the output
2177 // is, at worst, one more bit than the inputs.
2178 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2179 if (Tmp == 1) return 1; // Early out.
2181 // Special case decrementing a value (ADD X, -1):
2182 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2183 if (CRHS->isAllOnesValue()) {
2184 APInt KnownZero, KnownOne;
2185 APInt Mask = APInt::getAllOnesValue(VTBits);
2186 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2188 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2189 // sign bits set.
2190 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2191 return VTBits;
2193 // If we are subtracting one from a positive number, there is no carry
2194 // out of the result.
2195 if (KnownZero.isNegative())
2196 return Tmp;
2199 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2200 if (Tmp2 == 1) return 1;
2201 return std::min(Tmp, Tmp2)-1;
2202 break;
2204 case ISD::SUB:
2205 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2206 if (Tmp2 == 1) return 1;
2208 // Handle NEG.
2209 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2210 if (CLHS->isNullValue()) {
2211 APInt KnownZero, KnownOne;
2212 APInt Mask = APInt::getAllOnesValue(VTBits);
2213 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2214 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2215 // sign bits set.
2216 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2217 return VTBits;
2219 // If the input is known to be positive (the sign bit is known clear),
2220 // the output of the NEG has the same number of sign bits as the input.
2221 if (KnownZero.isNegative())
2222 return Tmp2;
2224 // Otherwise, we treat this like a SUB.
2227 // Sub can have at most one carry bit. Thus we know that the output
2228 // is, at worst, one more bit than the inputs.
2229 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2230 if (Tmp == 1) return 1; // Early out.
2231 return std::min(Tmp, Tmp2)-1;
2232 break;
2233 case ISD::TRUNCATE:
2234 // FIXME: it's tricky to do anything useful for this, but it is an important
2235 // case for targets like X86.
2236 break;
2239 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2240 if (Op.getOpcode() == ISD::LOAD) {
2241 LoadSDNode *LD = cast<LoadSDNode>(Op);
2242 unsigned ExtType = LD->getExtensionType();
2243 switch (ExtType) {
2244 default: break;
2245 case ISD::SEXTLOAD: // '17' bits known
2246 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2247 return VTBits-Tmp+1;
2248 case ISD::ZEXTLOAD: // '16' bits known
2249 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2250 return VTBits-Tmp;
2254 // Allow the target to implement this method for its nodes.
2255 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2256 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2257 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2258 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2259 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2260 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2263 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2264 // use this information.
2265 APInt KnownZero, KnownOne;
2266 APInt Mask = APInt::getAllOnesValue(VTBits);
2267 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2269 if (KnownZero.isNegative()) { // sign bit is 0
2270 Mask = KnownZero;
2271 } else if (KnownOne.isNegative()) { // sign bit is 1;
2272 Mask = KnownOne;
2273 } else {
2274 // Nothing known.
2275 return FirstAnswer;
2278 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2279 // the number of identical bits in the top of the input value.
2280 Mask = ~Mask;
2281 Mask <<= Mask.getBitWidth()-VTBits;
2282 // Return # leading zeros. We use 'min' here in case Val was zero before
2283 // shifting. We don't want to return '64' as for an i32 "0".
2284 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2287 /// isBaseWithConstantOffset - Return true if the specified operand is an
2288 /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2289 /// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2290 /// semantics as an ADD. This handles the equivalence:
2291 /// X|Cst == X+Cst iff X&Cst = 0.
2292 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2293 if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2294 !isa<ConstantSDNode>(Op.getOperand(1)))
2295 return false;
2297 if (Op.getOpcode() == ISD::OR &&
2298 !MaskedValueIsZero(Op.getOperand(0),
2299 cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2300 return false;
2302 return true;
2306 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2307 // If we're told that NaNs won't happen, assume they won't.
2308 if (NoNaNsFPMath)
2309 return true;
2311 // If the value is a constant, we can obviously see if it is a NaN or not.
2312 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2313 return !C->getValueAPF().isNaN();
2315 // TODO: Recognize more cases here.
2317 return false;
2320 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2321 // If the value is a constant, we can obviously see if it is a zero or not.
2322 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2323 return !C->isZero();
2325 // TODO: Recognize more cases here.
2326 switch (Op.getOpcode()) {
2327 default: break;
2328 case ISD::OR:
2329 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2330 return !C->isNullValue();
2331 break;
2334 return false;
2337 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2338 // Check the obvious case.
2339 if (A == B) return true;
2341 // For for negative and positive zero.
2342 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2343 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2344 if (CA->isZero() && CB->isZero()) return true;
2346 // Otherwise they may not be equal.
2347 return false;
2350 /// getNode - Gets or creates the specified node.
2352 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2353 FoldingSetNodeID ID;
2354 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2355 void *IP = 0;
2356 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2357 return SDValue(E, 0);
2359 SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2360 CSEMap.InsertNode(N, IP);
2362 AllNodes.push_back(N);
2363 #ifndef NDEBUG
2364 VerifySDNode(N);
2365 #endif
2366 return SDValue(N, 0);
2369 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2370 EVT VT, SDValue Operand) {
2371 // Constant fold unary operations with an integer constant operand.
2372 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2373 const APInt &Val = C->getAPIntValue();
2374 switch (Opcode) {
2375 default: break;
2376 case ISD::SIGN_EXTEND:
2377 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2378 case ISD::ANY_EXTEND:
2379 case ISD::ZERO_EXTEND:
2380 case ISD::TRUNCATE:
2381 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2382 case ISD::UINT_TO_FP:
2383 case ISD::SINT_TO_FP: {
2384 // No compile time operations on ppcf128.
2385 if (VT == MVT::ppcf128) break;
2386 APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2387 (void)apf.convertFromAPInt(Val,
2388 Opcode==ISD::SINT_TO_FP,
2389 APFloat::rmNearestTiesToEven);
2390 return getConstantFP(apf, VT);
2392 case ISD::BITCAST:
2393 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2394 return getConstantFP(Val.bitsToFloat(), VT);
2395 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2396 return getConstantFP(Val.bitsToDouble(), VT);
2397 break;
2398 case ISD::BSWAP:
2399 return getConstant(Val.byteSwap(), VT);
2400 case ISD::CTPOP:
2401 return getConstant(Val.countPopulation(), VT);
2402 case ISD::CTLZ:
2403 return getConstant(Val.countLeadingZeros(), VT);
2404 case ISD::CTTZ:
2405 return getConstant(Val.countTrailingZeros(), VT);
2409 // Constant fold unary operations with a floating point constant operand.
2410 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2411 APFloat V = C->getValueAPF(); // make copy
2412 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2413 switch (Opcode) {
2414 case ISD::FNEG:
2415 V.changeSign();
2416 return getConstantFP(V, VT);
2417 case ISD::FABS:
2418 V.clearSign();
2419 return getConstantFP(V, VT);
2420 case ISD::FP_ROUND:
2421 case ISD::FP_EXTEND: {
2422 bool ignored;
2423 // This can return overflow, underflow, or inexact; we don't care.
2424 // FIXME need to be more flexible about rounding mode.
2425 (void)V.convert(*EVTToAPFloatSemantics(VT),
2426 APFloat::rmNearestTiesToEven, &ignored);
2427 return getConstantFP(V, VT);
2429 case ISD::FP_TO_SINT:
2430 case ISD::FP_TO_UINT: {
2431 integerPart x[2];
2432 bool ignored;
2433 assert(integerPartWidth >= 64);
2434 // FIXME need to be more flexible about rounding mode.
2435 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2436 Opcode==ISD::FP_TO_SINT,
2437 APFloat::rmTowardZero, &ignored);
2438 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2439 break;
2440 APInt api(VT.getSizeInBits(), 2, x);
2441 return getConstant(api, VT);
2443 case ISD::BITCAST:
2444 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2445 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2446 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2447 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2448 break;
2453 unsigned OpOpcode = Operand.getNode()->getOpcode();
2454 switch (Opcode) {
2455 case ISD::TokenFactor:
2456 case ISD::MERGE_VALUES:
2457 case ISD::CONCAT_VECTORS:
2458 return Operand; // Factor, merge or concat of one node? No need.
2459 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2460 case ISD::FP_EXTEND:
2461 assert(VT.isFloatingPoint() &&
2462 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2463 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2464 assert((!VT.isVector() ||
2465 VT.getVectorNumElements() ==
2466 Operand.getValueType().getVectorNumElements()) &&
2467 "Vector element count mismatch!");
2468 if (Operand.getOpcode() == ISD::UNDEF)
2469 return getUNDEF(VT);
2470 break;
2471 case ISD::SIGN_EXTEND:
2472 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2473 "Invalid SIGN_EXTEND!");
2474 if (Operand.getValueType() == VT) return Operand; // noop extension
2475 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2476 "Invalid sext node, dst < src!");
2477 assert((!VT.isVector() ||
2478 VT.getVectorNumElements() ==
2479 Operand.getValueType().getVectorNumElements()) &&
2480 "Vector element count mismatch!");
2481 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2482 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2483 else if (OpOpcode == ISD::UNDEF)
2484 // sext(undef) = 0, because the top bits will all be the same.
2485 return getConstant(0, VT);
2486 break;
2487 case ISD::ZERO_EXTEND:
2488 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2489 "Invalid ZERO_EXTEND!");
2490 if (Operand.getValueType() == VT) return Operand; // noop extension
2491 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2492 "Invalid zext node, dst < src!");
2493 assert((!VT.isVector() ||
2494 VT.getVectorNumElements() ==
2495 Operand.getValueType().getVectorNumElements()) &&
2496 "Vector element count mismatch!");
2497 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2498 return getNode(ISD::ZERO_EXTEND, DL, VT,
2499 Operand.getNode()->getOperand(0));
2500 else if (OpOpcode == ISD::UNDEF)
2501 // zext(undef) = 0, because the top bits will be zero.
2502 return getConstant(0, VT);
2503 break;
2504 case ISD::ANY_EXTEND:
2505 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2506 "Invalid ANY_EXTEND!");
2507 if (Operand.getValueType() == VT) return Operand; // noop extension
2508 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2509 "Invalid anyext node, dst < src!");
2510 assert((!VT.isVector() ||
2511 VT.getVectorNumElements() ==
2512 Operand.getValueType().getVectorNumElements()) &&
2513 "Vector element count mismatch!");
2515 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2516 OpOpcode == ISD::ANY_EXTEND)
2517 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2518 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2519 else if (OpOpcode == ISD::UNDEF)
2520 return getUNDEF(VT);
2522 // (ext (trunx x)) -> x
2523 if (OpOpcode == ISD::TRUNCATE) {
2524 SDValue OpOp = Operand.getNode()->getOperand(0);
2525 if (OpOp.getValueType() == VT)
2526 return OpOp;
2528 break;
2529 case ISD::TRUNCATE:
2530 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2531 "Invalid TRUNCATE!");
2532 if (Operand.getValueType() == VT) return Operand; // noop truncate
2533 assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2534 "Invalid truncate node, src < dst!");
2535 assert((!VT.isVector() ||
2536 VT.getVectorNumElements() ==
2537 Operand.getValueType().getVectorNumElements()) &&
2538 "Vector element count mismatch!");
2539 if (OpOpcode == ISD::TRUNCATE)
2540 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2541 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2542 OpOpcode == ISD::ANY_EXTEND) {
2543 // If the source is smaller than the dest, we still need an extend.
2544 if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2545 .bitsLT(VT.getScalarType()))
2546 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2547 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2548 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2549 else
2550 return Operand.getNode()->getOperand(0);
2552 break;
2553 case ISD::BITCAST:
2554 // Basic sanity checking.
2555 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2556 && "Cannot BITCAST between types of different sizes!");
2557 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2558 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
2559 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2560 if (OpOpcode == ISD::UNDEF)
2561 return getUNDEF(VT);
2562 break;
2563 case ISD::SCALAR_TO_VECTOR:
2564 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2565 (VT.getVectorElementType() == Operand.getValueType() ||
2566 (VT.getVectorElementType().isInteger() &&
2567 Operand.getValueType().isInteger() &&
2568 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2569 "Illegal SCALAR_TO_VECTOR node!");
2570 if (OpOpcode == ISD::UNDEF)
2571 return getUNDEF(VT);
2572 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2573 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2574 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2575 Operand.getConstantOperandVal(1) == 0 &&
2576 Operand.getOperand(0).getValueType() == VT)
2577 return Operand.getOperand(0);
2578 break;
2579 case ISD::FNEG:
2580 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2581 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2582 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2583 Operand.getNode()->getOperand(0));
2584 if (OpOpcode == ISD::FNEG) // --X -> X
2585 return Operand.getNode()->getOperand(0);
2586 break;
2587 case ISD::FABS:
2588 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2589 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2590 break;
2593 SDNode *N;
2594 SDVTList VTs = getVTList(VT);
2595 if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2596 FoldingSetNodeID ID;
2597 SDValue Ops[1] = { Operand };
2598 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2599 void *IP = 0;
2600 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2601 return SDValue(E, 0);
2603 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2604 CSEMap.InsertNode(N, IP);
2605 } else {
2606 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2609 AllNodes.push_back(N);
2610 #ifndef NDEBUG
2611 VerifySDNode(N);
2612 #endif
2613 return SDValue(N, 0);
2616 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2617 EVT VT,
2618 ConstantSDNode *Cst1,
2619 ConstantSDNode *Cst2) {
2620 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2622 switch (Opcode) {
2623 case ISD::ADD: return getConstant(C1 + C2, VT);
2624 case ISD::SUB: return getConstant(C1 - C2, VT);
2625 case ISD::MUL: return getConstant(C1 * C2, VT);
2626 case ISD::UDIV:
2627 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2628 break;
2629 case ISD::UREM:
2630 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2631 break;
2632 case ISD::SDIV:
2633 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2634 break;
2635 case ISD::SREM:
2636 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2637 break;
2638 case ISD::AND: return getConstant(C1 & C2, VT);
2639 case ISD::OR: return getConstant(C1 | C2, VT);
2640 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2641 case ISD::SHL: return getConstant(C1 << C2, VT);
2642 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2643 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2644 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2645 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2646 default: break;
2649 return SDValue();
2652 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2653 SDValue N1, SDValue N2) {
2654 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2655 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2656 switch (Opcode) {
2657 default: break;
2658 case ISD::TokenFactor:
2659 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2660 N2.getValueType() == MVT::Other && "Invalid token factor!");
2661 // Fold trivial token factors.
2662 if (N1.getOpcode() == ISD::EntryToken) return N2;
2663 if (N2.getOpcode() == ISD::EntryToken) return N1;
2664 if (N1 == N2) return N1;
2665 break;
2666 case ISD::CONCAT_VECTORS:
2667 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2668 // one big BUILD_VECTOR.
2669 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2670 N2.getOpcode() == ISD::BUILD_VECTOR) {
2671 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2672 N1.getNode()->op_end());
2673 Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2674 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2676 break;
2677 case ISD::AND:
2678 assert(VT.isInteger() && "This operator does not apply to FP types!");
2679 assert(N1.getValueType() == N2.getValueType() &&
2680 N1.getValueType() == VT && "Binary operator types must match!");
2681 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2682 // worth handling here.
2683 if (N2C && N2C->isNullValue())
2684 return N2;
2685 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2686 return N1;
2687 break;
2688 case ISD::OR:
2689 case ISD::XOR:
2690 case ISD::ADD:
2691 case ISD::SUB:
2692 assert(VT.isInteger() && "This operator does not apply to FP types!");
2693 assert(N1.getValueType() == N2.getValueType() &&
2694 N1.getValueType() == VT && "Binary operator types must match!");
2695 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2696 // it's worth handling here.
2697 if (N2C && N2C->isNullValue())
2698 return N1;
2699 break;
2700 case ISD::UDIV:
2701 case ISD::UREM:
2702 case ISD::MULHU:
2703 case ISD::MULHS:
2704 case ISD::MUL:
2705 case ISD::SDIV:
2706 case ISD::SREM:
2707 assert(VT.isInteger() && "This operator does not apply to FP types!");
2708 assert(N1.getValueType() == N2.getValueType() &&
2709 N1.getValueType() == VT && "Binary operator types must match!");
2710 break;
2711 case ISD::FADD:
2712 case ISD::FSUB:
2713 case ISD::FMUL:
2714 case ISD::FDIV:
2715 case ISD::FREM:
2716 if (UnsafeFPMath) {
2717 if (Opcode == ISD::FADD) {
2718 // 0+x --> x
2719 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2720 if (CFP->getValueAPF().isZero())
2721 return N2;
2722 // x+0 --> x
2723 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2724 if (CFP->getValueAPF().isZero())
2725 return N1;
2726 } else if (Opcode == ISD::FSUB) {
2727 // x-0 --> x
2728 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2729 if (CFP->getValueAPF().isZero())
2730 return N1;
2733 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2734 assert(N1.getValueType() == N2.getValueType() &&
2735 N1.getValueType() == VT && "Binary operator types must match!");
2736 break;
2737 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2738 assert(N1.getValueType() == VT &&
2739 N1.getValueType().isFloatingPoint() &&
2740 N2.getValueType().isFloatingPoint() &&
2741 "Invalid FCOPYSIGN!");
2742 break;
2743 case ISD::SHL:
2744 case ISD::SRA:
2745 case ISD::SRL:
2746 case ISD::ROTL:
2747 case ISD::ROTR:
2748 assert(VT == N1.getValueType() &&
2749 "Shift operators return type must be the same as their first arg");
2750 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2751 "Shifts only work on integers");
2752 // Verify that the shift amount VT is bit enough to hold valid shift
2753 // amounts. This catches things like trying to shift an i1024 value by an
2754 // i8, which is easy to fall into in generic code that uses
2755 // TLI.getShiftAmount().
2756 assert(N2.getValueType().getSizeInBits() >=
2757 Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2758 "Invalid use of small shift amount with oversized value!");
2760 // Always fold shifts of i1 values so the code generator doesn't need to
2761 // handle them. Since we know the size of the shift has to be less than the
2762 // size of the value, the shift/rotate count is guaranteed to be zero.
2763 if (VT == MVT::i1)
2764 return N1;
2765 if (N2C && N2C->isNullValue())
2766 return N1;
2767 break;
2768 case ISD::FP_ROUND_INREG: {
2769 EVT EVT = cast<VTSDNode>(N2)->getVT();
2770 assert(VT == N1.getValueType() && "Not an inreg round!");
2771 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2772 "Cannot FP_ROUND_INREG integer types");
2773 assert(EVT.isVector() == VT.isVector() &&
2774 "FP_ROUND_INREG type should be vector iff the operand "
2775 "type is vector!");
2776 assert((!EVT.isVector() ||
2777 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2778 "Vector element counts must match in FP_ROUND_INREG");
2779 assert(EVT.bitsLE(VT) && "Not rounding down!");
2780 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2781 break;
2783 case ISD::FP_ROUND:
2784 assert(VT.isFloatingPoint() &&
2785 N1.getValueType().isFloatingPoint() &&
2786 VT.bitsLE(N1.getValueType()) &&
2787 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2788 if (N1.getValueType() == VT) return N1; // noop conversion.
2789 break;
2790 case ISD::AssertSext:
2791 case ISD::AssertZext: {
2792 EVT EVT = cast<VTSDNode>(N2)->getVT();
2793 assert(VT == N1.getValueType() && "Not an inreg extend!");
2794 assert(VT.isInteger() && EVT.isInteger() &&
2795 "Cannot *_EXTEND_INREG FP types");
2796 assert(!EVT.isVector() &&
2797 "AssertSExt/AssertZExt type should be the vector element type "
2798 "rather than the vector type!");
2799 assert(EVT.bitsLE(VT) && "Not extending!");
2800 if (VT == EVT) return N1; // noop assertion.
2801 break;
2803 case ISD::SIGN_EXTEND_INREG: {
2804 EVT EVT = cast<VTSDNode>(N2)->getVT();
2805 assert(VT == N1.getValueType() && "Not an inreg extend!");
2806 assert(VT.isInteger() && EVT.isInteger() &&
2807 "Cannot *_EXTEND_INREG FP types");
2808 assert(EVT.isVector() == VT.isVector() &&
2809 "SIGN_EXTEND_INREG type should be vector iff the operand "
2810 "type is vector!");
2811 assert((!EVT.isVector() ||
2812 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2813 "Vector element counts must match in SIGN_EXTEND_INREG");
2814 assert(EVT.bitsLE(VT) && "Not extending!");
2815 if (EVT == VT) return N1; // Not actually extending
2817 if (N1C) {
2818 APInt Val = N1C->getAPIntValue();
2819 unsigned FromBits = EVT.getScalarType().getSizeInBits();
2820 Val <<= Val.getBitWidth()-FromBits;
2821 Val = Val.ashr(Val.getBitWidth()-FromBits);
2822 return getConstant(Val, VT);
2824 break;
2826 case ISD::EXTRACT_VECTOR_ELT:
2827 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2828 if (N1.getOpcode() == ISD::UNDEF)
2829 return getUNDEF(VT);
2831 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2832 // expanding copies of large vectors from registers.
2833 if (N2C &&
2834 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2835 N1.getNumOperands() > 0) {
2836 unsigned Factor =
2837 N1.getOperand(0).getValueType().getVectorNumElements();
2838 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2839 N1.getOperand(N2C->getZExtValue() / Factor),
2840 getConstant(N2C->getZExtValue() % Factor,
2841 N2.getValueType()));
2844 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2845 // expanding large vector constants.
2846 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2847 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2848 EVT VEltTy = N1.getValueType().getVectorElementType();
2849 if (Elt.getValueType() != VEltTy) {
2850 // If the vector element type is not legal, the BUILD_VECTOR operands
2851 // are promoted and implicitly truncated. Make that explicit here.
2852 Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2854 if (VT != VEltTy) {
2855 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2856 // result is implicitly extended.
2857 Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2859 return Elt;
2862 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2863 // operations are lowered to scalars.
2864 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2865 // If the indices are the same, return the inserted element else
2866 // if the indices are known different, extract the element from
2867 // the original vector.
2868 SDValue N1Op2 = N1.getOperand(2);
2869 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2871 if (N1Op2C && N2C) {
2872 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2873 if (VT == N1.getOperand(1).getValueType())
2874 return N1.getOperand(1);
2875 else
2876 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2879 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2882 break;
2883 case ISD::EXTRACT_ELEMENT:
2884 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2885 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2886 (N1.getValueType().isInteger() == VT.isInteger()) &&
2887 "Wrong types for EXTRACT_ELEMENT!");
2889 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2890 // 64-bit integers into 32-bit parts. Instead of building the extract of
2891 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2892 if (N1.getOpcode() == ISD::BUILD_PAIR)
2893 return N1.getOperand(N2C->getZExtValue());
2895 // EXTRACT_ELEMENT of a constant int is also very common.
2896 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2897 unsigned ElementSize = VT.getSizeInBits();
2898 unsigned Shift = ElementSize * N2C->getZExtValue();
2899 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2900 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2902 break;
2903 case ISD::EXTRACT_SUBVECTOR: {
2904 SDValue Index = N2;
2905 if (VT.isSimple() && N1.getValueType().isSimple()) {
2906 assert(VT.isVector() && N1.getValueType().isVector() &&
2907 "Extract subvector VTs must be a vectors!");
2908 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
2909 "Extract subvector VTs must have the same element type!");
2910 assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
2911 "Extract subvector must be from larger vector to smaller vector!");
2913 if (isa<ConstantSDNode>(Index.getNode())) {
2914 assert((VT.getVectorNumElements() +
2915 cast<ConstantSDNode>(Index.getNode())->getZExtValue()
2916 <= N1.getValueType().getVectorNumElements())
2917 && "Extract subvector overflow!");
2920 // Trivial extraction.
2921 if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
2922 return N1;
2924 break;
2928 if (N1C) {
2929 if (N2C) {
2930 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2931 if (SV.getNode()) return SV;
2932 } else { // Cannonicalize constant to RHS if commutative
2933 if (isCommutativeBinOp(Opcode)) {
2934 std::swap(N1C, N2C);
2935 std::swap(N1, N2);
2940 // Constant fold FP operations.
2941 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2942 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2943 if (N1CFP) {
2944 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2945 // Cannonicalize constant to RHS if commutative
2946 std::swap(N1CFP, N2CFP);
2947 std::swap(N1, N2);
2948 } else if (N2CFP && VT != MVT::ppcf128) {
2949 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2950 APFloat::opStatus s;
2951 switch (Opcode) {
2952 case ISD::FADD:
2953 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2954 if (s != APFloat::opInvalidOp)
2955 return getConstantFP(V1, VT);
2956 break;
2957 case ISD::FSUB:
2958 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2959 if (s!=APFloat::opInvalidOp)
2960 return getConstantFP(V1, VT);
2961 break;
2962 case ISD::FMUL:
2963 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2964 if (s!=APFloat::opInvalidOp)
2965 return getConstantFP(V1, VT);
2966 break;
2967 case ISD::FDIV:
2968 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2969 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2970 return getConstantFP(V1, VT);
2971 break;
2972 case ISD::FREM :
2973 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2974 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2975 return getConstantFP(V1, VT);
2976 break;
2977 case ISD::FCOPYSIGN:
2978 V1.copySign(V2);
2979 return getConstantFP(V1, VT);
2980 default: break;
2985 // Canonicalize an UNDEF to the RHS, even over a constant.
2986 if (N1.getOpcode() == ISD::UNDEF) {
2987 if (isCommutativeBinOp(Opcode)) {
2988 std::swap(N1, N2);
2989 } else {
2990 switch (Opcode) {
2991 case ISD::FP_ROUND_INREG:
2992 case ISD::SIGN_EXTEND_INREG:
2993 case ISD::SUB:
2994 case ISD::FSUB:
2995 case ISD::FDIV:
2996 case ISD::FREM:
2997 case ISD::SRA:
2998 return N1; // fold op(undef, arg2) -> undef
2999 case ISD::UDIV:
3000 case ISD::SDIV:
3001 case ISD::UREM:
3002 case ISD::SREM:
3003 case ISD::SRL:
3004 case ISD::SHL:
3005 if (!VT.isVector())
3006 return getConstant(0, VT); // fold op(undef, arg2) -> 0
3007 // For vectors, we can't easily build an all zero vector, just return
3008 // the LHS.
3009 return N2;
3014 // Fold a bunch of operators when the RHS is undef.
3015 if (N2.getOpcode() == ISD::UNDEF) {
3016 switch (Opcode) {
3017 case ISD::XOR:
3018 if (N1.getOpcode() == ISD::UNDEF)
3019 // Handle undef ^ undef -> 0 special case. This is a common
3020 // idiom (misuse).
3021 return getConstant(0, VT);
3022 // fallthrough
3023 case ISD::ADD:
3024 case ISD::ADDC:
3025 case ISD::ADDE:
3026 case ISD::SUB:
3027 case ISD::UDIV:
3028 case ISD::SDIV:
3029 case ISD::UREM:
3030 case ISD::SREM:
3031 return N2; // fold op(arg1, undef) -> undef
3032 case ISD::FADD:
3033 case ISD::FSUB:
3034 case ISD::FMUL:
3035 case ISD::FDIV:
3036 case ISD::FREM:
3037 if (UnsafeFPMath)
3038 return N2;
3039 break;
3040 case ISD::MUL:
3041 case ISD::AND:
3042 case ISD::SRL:
3043 case ISD::SHL:
3044 if (!VT.isVector())
3045 return getConstant(0, VT); // fold op(arg1, undef) -> 0
3046 // For vectors, we can't easily build an all zero vector, just return
3047 // the LHS.
3048 return N1;
3049 case ISD::OR:
3050 if (!VT.isVector())
3051 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3052 // For vectors, we can't easily build an all one vector, just return
3053 // the LHS.
3054 return N1;
3055 case ISD::SRA:
3056 return N1;
3060 // Memoize this node if possible.
3061 SDNode *N;
3062 SDVTList VTs = getVTList(VT);
3063 if (VT != MVT::Glue) {
3064 SDValue Ops[] = { N1, N2 };
3065 FoldingSetNodeID ID;
3066 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3067 void *IP = 0;
3068 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3069 return SDValue(E, 0);
3071 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3072 CSEMap.InsertNode(N, IP);
3073 } else {
3074 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3077 AllNodes.push_back(N);
3078 #ifndef NDEBUG
3079 VerifySDNode(N);
3080 #endif
3081 return SDValue(N, 0);
3084 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3085 SDValue N1, SDValue N2, SDValue N3) {
3086 // Perform various simplifications.
3087 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3088 switch (Opcode) {
3089 case ISD::CONCAT_VECTORS:
3090 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3091 // one big BUILD_VECTOR.
3092 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3093 N2.getOpcode() == ISD::BUILD_VECTOR &&
3094 N3.getOpcode() == ISD::BUILD_VECTOR) {
3095 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3096 N1.getNode()->op_end());
3097 Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3098 Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3099 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3101 break;
3102 case ISD::SETCC: {
3103 // Use FoldSetCC to simplify SETCC's.
3104 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3105 if (Simp.getNode()) return Simp;
3106 break;
3108 case ISD::SELECT:
3109 if (N1C) {
3110 if (N1C->getZExtValue())
3111 return N2; // select true, X, Y -> X
3112 else
3113 return N3; // select false, X, Y -> Y
3116 if (N2 == N3) return N2; // select C, X, X -> X
3117 break;
3118 case ISD::VECTOR_SHUFFLE:
3119 llvm_unreachable("should use getVectorShuffle constructor!");
3120 break;
3121 case ISD::INSERT_SUBVECTOR: {
3122 SDValue Index = N3;
3123 if (VT.isSimple() && N1.getValueType().isSimple()
3124 && N2.getValueType().isSimple()) {
3125 assert(VT.isVector() && N1.getValueType().isVector() &&
3126 N2.getValueType().isVector() &&
3127 "Insert subvector VTs must be a vectors");
3128 assert(VT == N1.getValueType() &&
3129 "Dest and insert subvector source types must match!");
3130 assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3131 "Insert subvector must be from smaller vector to larger vector!");
3132 if (isa<ConstantSDNode>(Index.getNode())) {
3133 assert((N2.getValueType().getVectorNumElements() +
3134 cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3135 <= VT.getVectorNumElements())
3136 && "Insert subvector overflow!");
3139 // Trivial insertion.
3140 if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3141 return N2;
3143 break;
3145 case ISD::BITCAST:
3146 // Fold bit_convert nodes from a type to themselves.
3147 if (N1.getValueType() == VT)
3148 return N1;
3149 break;
3152 // Memoize node if it doesn't produce a flag.
3153 SDNode *N;
3154 SDVTList VTs = getVTList(VT);
3155 if (VT != MVT::Glue) {
3156 SDValue Ops[] = { N1, N2, N3 };
3157 FoldingSetNodeID ID;
3158 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3159 void *IP = 0;
3160 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3161 return SDValue(E, 0);
3163 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3164 CSEMap.InsertNode(N, IP);
3165 } else {
3166 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3169 AllNodes.push_back(N);
3170 #ifndef NDEBUG
3171 VerifySDNode(N);
3172 #endif
3173 return SDValue(N, 0);
3176 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3177 SDValue N1, SDValue N2, SDValue N3,
3178 SDValue N4) {
3179 SDValue Ops[] = { N1, N2, N3, N4 };
3180 return getNode(Opcode, DL, VT, Ops, 4);
3183 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3184 SDValue N1, SDValue N2, SDValue N3,
3185 SDValue N4, SDValue N5) {
3186 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3187 return getNode(Opcode, DL, VT, Ops, 5);
3190 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3191 /// the incoming stack arguments to be loaded from the stack.
3192 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3193 SmallVector<SDValue, 8> ArgChains;
3195 // Include the original chain at the beginning of the list. When this is
3196 // used by target LowerCall hooks, this helps legalize find the
3197 // CALLSEQ_BEGIN node.
3198 ArgChains.push_back(Chain);
3200 // Add a chain value for each stack argument.
3201 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3202 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3203 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3204 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3205 if (FI->getIndex() < 0)
3206 ArgChains.push_back(SDValue(L, 1));
3208 // Build a tokenfactor for all the chains.
3209 return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3210 &ArgChains[0], ArgChains.size());
3213 /// SplatByte - Distribute ByteVal over NumBits bits.
3214 static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3215 APInt Val = APInt(NumBits, ByteVal);
3216 unsigned Shift = 8;
3217 for (unsigned i = NumBits; i > 8; i >>= 1) {
3218 Val = (Val << Shift) | Val;
3219 Shift <<= 1;
3221 return Val;
3224 /// getMemsetValue - Vectorized representation of the memset value
3225 /// operand.
3226 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3227 DebugLoc dl) {
3228 assert(Value.getOpcode() != ISD::UNDEF);
3230 unsigned NumBits = VT.getScalarType().getSizeInBits();
3231 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3232 APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3233 if (VT.isInteger())
3234 return DAG.getConstant(Val, VT);
3235 return DAG.getConstantFP(APFloat(Val), VT);
3238 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3239 if (NumBits > 8) {
3240 // Use a multiplication with 0x010101... to extend the input to the
3241 // required length.
3242 APInt Magic = SplatByte(NumBits, 0x01);
3243 Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3246 return Value;
3249 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3250 /// used when a memcpy is turned into a memset when the source is a constant
3251 /// string ptr.
3252 static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3253 const TargetLowering &TLI,
3254 std::string &Str, unsigned Offset) {
3255 // Handle vector with all elements zero.
3256 if (Str.empty()) {
3257 if (VT.isInteger())
3258 return DAG.getConstant(0, VT);
3259 else if (VT == MVT::f32 || VT == MVT::f64)
3260 return DAG.getConstantFP(0.0, VT);
3261 else if (VT.isVector()) {
3262 unsigned NumElts = VT.getVectorNumElements();
3263 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3264 return DAG.getNode(ISD::BITCAST, dl, VT,
3265 DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3266 EltVT, NumElts)));
3267 } else
3268 llvm_unreachable("Expected type!");
3271 assert(!VT.isVector() && "Can't handle vector type here!");
3272 unsigned NumBits = VT.getSizeInBits();
3273 unsigned MSB = NumBits / 8;
3274 uint64_t Val = 0;
3275 if (TLI.isLittleEndian())
3276 Offset = Offset + MSB - 1;
3277 for (unsigned i = 0; i != MSB; ++i) {
3278 Val = (Val << 8) | (unsigned char)Str[Offset];
3279 Offset += TLI.isLittleEndian() ? -1 : 1;
3281 return DAG.getConstant(Val, VT);
3284 /// getMemBasePlusOffset - Returns base and offset node for the
3286 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3287 SelectionDAG &DAG) {
3288 EVT VT = Base.getValueType();
3289 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3290 VT, Base, DAG.getConstant(Offset, VT));
3293 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3295 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3296 unsigned SrcDelta = 0;
3297 GlobalAddressSDNode *G = NULL;
3298 if (Src.getOpcode() == ISD::GlobalAddress)
3299 G = cast<GlobalAddressSDNode>(Src);
3300 else if (Src.getOpcode() == ISD::ADD &&
3301 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3302 Src.getOperand(1).getOpcode() == ISD::Constant) {
3303 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3304 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3306 if (!G)
3307 return false;
3309 const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3310 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3311 return true;
3313 return false;
3316 /// FindOptimalMemOpLowering - Determines the optimial series memory ops
3317 /// to replace the memset / memcpy. Return true if the number of memory ops
3318 /// is below the threshold. It returns the types of the sequence of
3319 /// memory ops to perform memset / memcpy by reference.
3320 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3321 unsigned Limit, uint64_t Size,
3322 unsigned DstAlign, unsigned SrcAlign,
3323 bool NonScalarIntSafe,
3324 bool MemcpyStrSrc,
3325 SelectionDAG &DAG,
3326 const TargetLowering &TLI) {
3327 assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3328 "Expecting memcpy / memset source to meet alignment requirement!");
3329 // If 'SrcAlign' is zero, that means the memory operation does not need to
3330 // load the value, i.e. memset or memcpy from constant string. Otherwise,
3331 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3332 // is the specified alignment of the memory operation. If it is zero, that
3333 // means it's possible to change the alignment of the destination.
3334 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3335 // not need to be loaded.
3336 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3337 NonScalarIntSafe, MemcpyStrSrc,
3338 DAG.getMachineFunction());
3340 if (VT == MVT::Other) {
3341 if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3342 TLI.allowsUnalignedMemoryAccesses(VT)) {
3343 VT = TLI.getPointerTy();
3344 } else {
3345 switch (DstAlign & 7) {
3346 case 0: VT = MVT::i64; break;
3347 case 4: VT = MVT::i32; break;
3348 case 2: VT = MVT::i16; break;
3349 default: VT = MVT::i8; break;
3353 MVT LVT = MVT::i64;
3354 while (!TLI.isTypeLegal(LVT))
3355 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3356 assert(LVT.isInteger());
3358 if (VT.bitsGT(LVT))
3359 VT = LVT;
3362 unsigned NumMemOps = 0;
3363 while (Size != 0) {
3364 unsigned VTSize = VT.getSizeInBits() / 8;
3365 while (VTSize > Size) {
3366 // For now, only use non-vector load / store's for the left-over pieces.
3367 if (VT.isVector() || VT.isFloatingPoint()) {
3368 VT = MVT::i64;
3369 while (!TLI.isTypeLegal(VT))
3370 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3371 VTSize = VT.getSizeInBits() / 8;
3372 } else {
3373 // This can result in a type that is not legal on the target, e.g.
3374 // 1 or 2 bytes on PPC.
3375 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3376 VTSize >>= 1;
3380 if (++NumMemOps > Limit)
3381 return false;
3382 MemOps.push_back(VT);
3383 Size -= VTSize;
3386 return true;
3389 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3390 SDValue Chain, SDValue Dst,
3391 SDValue Src, uint64_t Size,
3392 unsigned Align, bool isVol,
3393 bool AlwaysInline,
3394 MachinePointerInfo DstPtrInfo,
3395 MachinePointerInfo SrcPtrInfo) {
3396 // Turn a memcpy of undef to nop.
3397 if (Src.getOpcode() == ISD::UNDEF)
3398 return Chain;
3400 // Expand memcpy to a series of load and store ops if the size operand falls
3401 // below a certain threshold.
3402 // TODO: In the AlwaysInline case, if the size is big then generate a loop
3403 // rather than maybe a humongous number of loads and stores.
3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405 std::vector<EVT> MemOps;
3406 bool DstAlignCanChange = false;
3407 MachineFunction &MF = DAG.getMachineFunction();
3408 MachineFrameInfo *MFI = MF.getFrameInfo();
3409 bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3410 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3411 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3412 DstAlignCanChange = true;
3413 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3414 if (Align > SrcAlign)
3415 SrcAlign = Align;
3416 std::string Str;
3417 bool CopyFromStr = isMemSrcFromString(Src, Str);
3418 bool isZeroStr = CopyFromStr && Str.empty();
3419 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3421 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3422 (DstAlignCanChange ? 0 : Align),
3423 (isZeroStr ? 0 : SrcAlign),
3424 true, CopyFromStr, DAG, TLI))
3425 return SDValue();
3427 if (DstAlignCanChange) {
3428 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3429 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3430 if (NewAlign > Align) {
3431 // Give the stack frame object a larger alignment if needed.
3432 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3433 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3434 Align = NewAlign;
3438 SmallVector<SDValue, 8> OutChains;
3439 unsigned NumMemOps = MemOps.size();
3440 uint64_t SrcOff = 0, DstOff = 0;
3441 for (unsigned i = 0; i != NumMemOps; ++i) {
3442 EVT VT = MemOps[i];
3443 unsigned VTSize = VT.getSizeInBits() / 8;
3444 SDValue Value, Store;
3446 if (CopyFromStr &&
3447 (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3448 // It's unlikely a store of a vector immediate can be done in a single
3449 // instruction. It would require a load from a constantpool first.
3450 // We only handle zero vectors here.
3451 // FIXME: Handle other cases where store of vector immediate is done in
3452 // a single instruction.
3453 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3454 Store = DAG.getStore(Chain, dl, Value,
3455 getMemBasePlusOffset(Dst, DstOff, DAG),
3456 DstPtrInfo.getWithOffset(DstOff), isVol,
3457 false, Align);
3458 } else {
3459 // The type might not be legal for the target. This should only happen
3460 // if the type is smaller than a legal type, as on PPC, so the right
3461 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3462 // to Load/Store if NVT==VT.
3463 // FIXME does the case above also need this?
3464 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3465 assert(NVT.bitsGE(VT));
3466 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3467 getMemBasePlusOffset(Src, SrcOff, DAG),
3468 SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3469 MinAlign(SrcAlign, SrcOff));
3470 Store = DAG.getTruncStore(Chain, dl, Value,
3471 getMemBasePlusOffset(Dst, DstOff, DAG),
3472 DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3473 false, Align);
3475 OutChains.push_back(Store);
3476 SrcOff += VTSize;
3477 DstOff += VTSize;
3480 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3481 &OutChains[0], OutChains.size());
3484 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3485 SDValue Chain, SDValue Dst,
3486 SDValue Src, uint64_t Size,
3487 unsigned Align, bool isVol,
3488 bool AlwaysInline,
3489 MachinePointerInfo DstPtrInfo,
3490 MachinePointerInfo SrcPtrInfo) {
3491 // Turn a memmove of undef to nop.
3492 if (Src.getOpcode() == ISD::UNDEF)
3493 return Chain;
3495 // Expand memmove to a series of load and store ops if the size operand falls
3496 // below a certain threshold.
3497 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3498 std::vector<EVT> MemOps;
3499 bool DstAlignCanChange = false;
3500 MachineFunction &MF = DAG.getMachineFunction();
3501 MachineFrameInfo *MFI = MF.getFrameInfo();
3502 bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3503 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3504 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3505 DstAlignCanChange = true;
3506 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3507 if (Align > SrcAlign)
3508 SrcAlign = Align;
3509 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3511 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3512 (DstAlignCanChange ? 0 : Align),
3513 SrcAlign, true, false, DAG, TLI))
3514 return SDValue();
3516 if (DstAlignCanChange) {
3517 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3518 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3519 if (NewAlign > Align) {
3520 // Give the stack frame object a larger alignment if needed.
3521 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3522 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3523 Align = NewAlign;
3527 uint64_t SrcOff = 0, DstOff = 0;
3528 SmallVector<SDValue, 8> LoadValues;
3529 SmallVector<SDValue, 8> LoadChains;
3530 SmallVector<SDValue, 8> OutChains;
3531 unsigned NumMemOps = MemOps.size();
3532 for (unsigned i = 0; i < NumMemOps; i++) {
3533 EVT VT = MemOps[i];
3534 unsigned VTSize = VT.getSizeInBits() / 8;
3535 SDValue Value, Store;
3537 Value = DAG.getLoad(VT, dl, Chain,
3538 getMemBasePlusOffset(Src, SrcOff, DAG),
3539 SrcPtrInfo.getWithOffset(SrcOff), isVol,
3540 false, SrcAlign);
3541 LoadValues.push_back(Value);
3542 LoadChains.push_back(Value.getValue(1));
3543 SrcOff += VTSize;
3545 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3546 &LoadChains[0], LoadChains.size());
3547 OutChains.clear();
3548 for (unsigned i = 0; i < NumMemOps; i++) {
3549 EVT VT = MemOps[i];
3550 unsigned VTSize = VT.getSizeInBits() / 8;
3551 SDValue Value, Store;
3553 Store = DAG.getStore(Chain, dl, LoadValues[i],
3554 getMemBasePlusOffset(Dst, DstOff, DAG),
3555 DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3556 OutChains.push_back(Store);
3557 DstOff += VTSize;
3560 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3561 &OutChains[0], OutChains.size());
3564 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3565 SDValue Chain, SDValue Dst,
3566 SDValue Src, uint64_t Size,
3567 unsigned Align, bool isVol,
3568 MachinePointerInfo DstPtrInfo) {
3569 // Turn a memset of undef to nop.
3570 if (Src.getOpcode() == ISD::UNDEF)
3571 return Chain;
3573 // Expand memset to a series of load/store ops if the size operand
3574 // falls below a certain threshold.
3575 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3576 std::vector<EVT> MemOps;
3577 bool DstAlignCanChange = false;
3578 MachineFunction &MF = DAG.getMachineFunction();
3579 MachineFrameInfo *MFI = MF.getFrameInfo();
3580 bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
3581 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3582 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3583 DstAlignCanChange = true;
3584 bool NonScalarIntSafe =
3585 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3586 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3587 Size, (DstAlignCanChange ? 0 : Align), 0,
3588 NonScalarIntSafe, false, DAG, TLI))
3589 return SDValue();
3591 if (DstAlignCanChange) {
3592 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3593 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3594 if (NewAlign > Align) {
3595 // Give the stack frame object a larger alignment if needed.
3596 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3597 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3598 Align = NewAlign;
3602 SmallVector<SDValue, 8> OutChains;
3603 uint64_t DstOff = 0;
3604 unsigned NumMemOps = MemOps.size();
3606 // Find the largest store and generate the bit pattern for it.
3607 EVT LargestVT = MemOps[0];
3608 for (unsigned i = 1; i < NumMemOps; i++)
3609 if (MemOps[i].bitsGT(LargestVT))
3610 LargestVT = MemOps[i];
3611 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3613 for (unsigned i = 0; i < NumMemOps; i++) {
3614 EVT VT = MemOps[i];
3616 // If this store is smaller than the largest store see whether we can get
3617 // the smaller value for free with a truncate.
3618 SDValue Value = MemSetValue;
3619 if (VT.bitsLT(LargestVT)) {
3620 if (!LargestVT.isVector() && !VT.isVector() &&
3621 TLI.isTruncateFree(LargestVT, VT))
3622 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3623 else
3624 Value = getMemsetValue(Src, VT, DAG, dl);
3626 assert(Value.getValueType() == VT && "Value with wrong type.");
3627 SDValue Store = DAG.getStore(Chain, dl, Value,
3628 getMemBasePlusOffset(Dst, DstOff, DAG),
3629 DstPtrInfo.getWithOffset(DstOff),
3630 isVol, false, Align);
3631 OutChains.push_back(Store);
3632 DstOff += VT.getSizeInBits() / 8;
3635 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3636 &OutChains[0], OutChains.size());
3639 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3640 SDValue Src, SDValue Size,
3641 unsigned Align, bool isVol, bool AlwaysInline,
3642 MachinePointerInfo DstPtrInfo,
3643 MachinePointerInfo SrcPtrInfo) {
3645 // Check to see if we should lower the memcpy to loads and stores first.
3646 // For cases within the target-specified limits, this is the best choice.
3647 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3648 if (ConstantSize) {
3649 // Memcpy with size zero? Just return the original chain.
3650 if (ConstantSize->isNullValue())
3651 return Chain;
3653 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3654 ConstantSize->getZExtValue(),Align,
3655 isVol, false, DstPtrInfo, SrcPtrInfo);
3656 if (Result.getNode())
3657 return Result;
3660 // Then check to see if we should lower the memcpy with target-specific
3661 // code. If the target chooses to do this, this is the next best.
3662 SDValue Result =
3663 TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3664 isVol, AlwaysInline,
3665 DstPtrInfo, SrcPtrInfo);
3666 if (Result.getNode())
3667 return Result;
3669 // If we really need inline code and the target declined to provide it,
3670 // use a (potentially long) sequence of loads and stores.
3671 if (AlwaysInline) {
3672 assert(ConstantSize && "AlwaysInline requires a constant size!");
3673 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3674 ConstantSize->getZExtValue(), Align, isVol,
3675 true, DstPtrInfo, SrcPtrInfo);
3678 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3679 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3680 // respect volatile, so they may do things like read or write memory
3681 // beyond the given memory regions. But fixing this isn't easy, and most
3682 // people don't care.
3684 // Emit a library call.
3685 TargetLowering::ArgListTy Args;
3686 TargetLowering::ArgListEntry Entry;
3687 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3688 Entry.Node = Dst; Args.push_back(Entry);
3689 Entry.Node = Src; Args.push_back(Entry);
3690 Entry.Node = Size; Args.push_back(Entry);
3691 // FIXME: pass in DebugLoc
3692 std::pair<SDValue,SDValue> CallResult =
3693 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3694 false, false, false, false, 0,
3695 TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3696 /*isReturnValueUsed=*/false,
3697 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3698 TLI.getPointerTy()),
3699 Args, *this, dl);
3700 return CallResult.second;
3703 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3704 SDValue Src, SDValue Size,
3705 unsigned Align, bool isVol,
3706 MachinePointerInfo DstPtrInfo,
3707 MachinePointerInfo SrcPtrInfo) {
3709 // Check to see if we should lower the memmove to loads and stores first.
3710 // For cases within the target-specified limits, this is the best choice.
3711 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3712 if (ConstantSize) {
3713 // Memmove with size zero? Just return the original chain.
3714 if (ConstantSize->isNullValue())
3715 return Chain;
3717 SDValue Result =
3718 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3719 ConstantSize->getZExtValue(), Align, isVol,
3720 false, DstPtrInfo, SrcPtrInfo);
3721 if (Result.getNode())
3722 return Result;
3725 // Then check to see if we should lower the memmove with target-specific
3726 // code. If the target chooses to do this, this is the next best.
3727 SDValue Result =
3728 TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3729 DstPtrInfo, SrcPtrInfo);
3730 if (Result.getNode())
3731 return Result;
3733 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3734 // not be safe. See memcpy above for more details.
3736 // Emit a library call.
3737 TargetLowering::ArgListTy Args;
3738 TargetLowering::ArgListEntry Entry;
3739 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3740 Entry.Node = Dst; Args.push_back(Entry);
3741 Entry.Node = Src; Args.push_back(Entry);
3742 Entry.Node = Size; Args.push_back(Entry);
3743 // FIXME: pass in DebugLoc
3744 std::pair<SDValue,SDValue> CallResult =
3745 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3746 false, false, false, false, 0,
3747 TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3748 /*isReturnValueUsed=*/false,
3749 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3750 TLI.getPointerTy()),
3751 Args, *this, dl);
3752 return CallResult.second;
3755 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3756 SDValue Src, SDValue Size,
3757 unsigned Align, bool isVol,
3758 MachinePointerInfo DstPtrInfo) {
3760 // Check to see if we should lower the memset to stores first.
3761 // For cases within the target-specified limits, this is the best choice.
3762 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3763 if (ConstantSize) {
3764 // Memset with size zero? Just return the original chain.
3765 if (ConstantSize->isNullValue())
3766 return Chain;
3768 SDValue Result =
3769 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3770 Align, isVol, DstPtrInfo);
3772 if (Result.getNode())
3773 return Result;
3776 // Then check to see if we should lower the memset with target-specific
3777 // code. If the target chooses to do this, this is the next best.
3778 SDValue Result =
3779 TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3780 DstPtrInfo);
3781 if (Result.getNode())
3782 return Result;
3784 // Emit a library call.
3785 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3786 TargetLowering::ArgListTy Args;
3787 TargetLowering::ArgListEntry Entry;
3788 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3789 Args.push_back(Entry);
3790 // Extend or truncate the argument to be an i32 value for the call.
3791 if (Src.getValueType().bitsGT(MVT::i32))
3792 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3793 else
3794 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3795 Entry.Node = Src;
3796 Entry.Ty = Type::getInt32Ty(*getContext());
3797 Entry.isSExt = true;
3798 Args.push_back(Entry);
3799 Entry.Node = Size;
3800 Entry.Ty = IntPtrTy;
3801 Entry.isSExt = false;
3802 Args.push_back(Entry);
3803 // FIXME: pass in DebugLoc
3804 std::pair<SDValue,SDValue> CallResult =
3805 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3806 false, false, false, false, 0,
3807 TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3808 /*isReturnValueUsed=*/false,
3809 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3810 TLI.getPointerTy()),
3811 Args, *this, dl);
3812 return CallResult.second;
3815 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3816 SDValue Chain, SDValue Ptr, SDValue Cmp,
3817 SDValue Swp, MachinePointerInfo PtrInfo,
3818 unsigned Alignment) {
3819 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3820 Alignment = getEVTAlignment(MemVT);
3822 MachineFunction &MF = getMachineFunction();
3823 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3825 // For now, atomics are considered to be volatile always.
3826 Flags |= MachineMemOperand::MOVolatile;
3828 MachineMemOperand *MMO =
3829 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3831 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3834 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3835 SDValue Chain,
3836 SDValue Ptr, SDValue Cmp,
3837 SDValue Swp, MachineMemOperand *MMO) {
3838 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3839 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3841 EVT VT = Cmp.getValueType();
3843 SDVTList VTs = getVTList(VT, MVT::Other);
3844 FoldingSetNodeID ID;
3845 ID.AddInteger(MemVT.getRawBits());
3846 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3847 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3848 void* IP = 0;
3849 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3850 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3851 return SDValue(E, 0);
3853 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3854 Ptr, Cmp, Swp, MMO);
3855 CSEMap.InsertNode(N, IP);
3856 AllNodes.push_back(N);
3857 return SDValue(N, 0);
3860 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3861 SDValue Chain,
3862 SDValue Ptr, SDValue Val,
3863 const Value* PtrVal,
3864 unsigned Alignment) {
3865 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3866 Alignment = getEVTAlignment(MemVT);
3868 MachineFunction &MF = getMachineFunction();
3869 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3871 // For now, atomics are considered to be volatile always.
3872 Flags |= MachineMemOperand::MOVolatile;
3874 MachineMemOperand *MMO =
3875 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3876 MemVT.getStoreSize(), Alignment);
3878 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3881 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3882 SDValue Chain,
3883 SDValue Ptr, SDValue Val,
3884 MachineMemOperand *MMO) {
3885 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3886 Opcode == ISD::ATOMIC_LOAD_SUB ||
3887 Opcode == ISD::ATOMIC_LOAD_AND ||
3888 Opcode == ISD::ATOMIC_LOAD_OR ||
3889 Opcode == ISD::ATOMIC_LOAD_XOR ||
3890 Opcode == ISD::ATOMIC_LOAD_NAND ||
3891 Opcode == ISD::ATOMIC_LOAD_MIN ||
3892 Opcode == ISD::ATOMIC_LOAD_MAX ||
3893 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3894 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3895 Opcode == ISD::ATOMIC_SWAP) &&
3896 "Invalid Atomic Op");
3898 EVT VT = Val.getValueType();
3900 SDVTList VTs = getVTList(VT, MVT::Other);
3901 FoldingSetNodeID ID;
3902 ID.AddInteger(MemVT.getRawBits());
3903 SDValue Ops[] = {Chain, Ptr, Val};
3904 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3905 void* IP = 0;
3906 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3907 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3908 return SDValue(E, 0);
3910 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3911 Ptr, Val, MMO);
3912 CSEMap.InsertNode(N, IP);
3913 AllNodes.push_back(N);
3914 return SDValue(N, 0);
3917 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3918 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3919 DebugLoc dl) {
3920 if (NumOps == 1)
3921 return Ops[0];
3923 SmallVector<EVT, 4> VTs;
3924 VTs.reserve(NumOps);
3925 for (unsigned i = 0; i < NumOps; ++i)
3926 VTs.push_back(Ops[i].getValueType());
3927 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3928 Ops, NumOps);
3931 SDValue
3932 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3933 const EVT *VTs, unsigned NumVTs,
3934 const SDValue *Ops, unsigned NumOps,
3935 EVT MemVT, MachinePointerInfo PtrInfo,
3936 unsigned Align, bool Vol,
3937 bool ReadMem, bool WriteMem) {
3938 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3939 MemVT, PtrInfo, Align, Vol,
3940 ReadMem, WriteMem);
3943 SDValue
3944 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3945 const SDValue *Ops, unsigned NumOps,
3946 EVT MemVT, MachinePointerInfo PtrInfo,
3947 unsigned Align, bool Vol,
3948 bool ReadMem, bool WriteMem) {
3949 if (Align == 0) // Ensure that codegen never sees alignment 0
3950 Align = getEVTAlignment(MemVT);
3952 MachineFunction &MF = getMachineFunction();
3953 unsigned Flags = 0;
3954 if (WriteMem)
3955 Flags |= MachineMemOperand::MOStore;
3956 if (ReadMem)
3957 Flags |= MachineMemOperand::MOLoad;
3958 if (Vol)
3959 Flags |= MachineMemOperand::MOVolatile;
3960 MachineMemOperand *MMO =
3961 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3963 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3966 SDValue
3967 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3968 const SDValue *Ops, unsigned NumOps,
3969 EVT MemVT, MachineMemOperand *MMO) {
3970 assert((Opcode == ISD::INTRINSIC_VOID ||
3971 Opcode == ISD::INTRINSIC_W_CHAIN ||
3972 Opcode == ISD::PREFETCH ||
3973 (Opcode <= INT_MAX &&
3974 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3975 "Opcode is not a memory-accessing opcode!");
3977 // Memoize the node unless it returns a flag.
3978 MemIntrinsicSDNode *N;
3979 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
3980 FoldingSetNodeID ID;
3981 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3982 void *IP = 0;
3983 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3984 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3985 return SDValue(E, 0);
3988 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3989 MemVT, MMO);
3990 CSEMap.InsertNode(N, IP);
3991 } else {
3992 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3993 MemVT, MMO);
3995 AllNodes.push_back(N);
3996 return SDValue(N, 0);
3999 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4000 /// MachinePointerInfo record from it. This is particularly useful because the
4001 /// code generator has many cases where it doesn't bother passing in a
4002 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4003 static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4004 // If this is FI+Offset, we can model it.
4005 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4006 return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4008 // If this is (FI+Offset1)+Offset2, we can model it.
4009 if (Ptr.getOpcode() != ISD::ADD ||
4010 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4011 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4012 return MachinePointerInfo();
4014 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4015 return MachinePointerInfo::getFixedStack(FI, Offset+
4016 cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4019 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4020 /// MachinePointerInfo record from it. This is particularly useful because the
4021 /// code generator has many cases where it doesn't bother passing in a
4022 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4023 static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4024 // If the 'Offset' value isn't a constant, we can't handle this.
4025 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4026 return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4027 if (OffsetOp.getOpcode() == ISD::UNDEF)
4028 return InferPointerInfo(Ptr);
4029 return MachinePointerInfo();
4033 SDValue
4034 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4035 EVT VT, DebugLoc dl, SDValue Chain,
4036 SDValue Ptr, SDValue Offset,
4037 MachinePointerInfo PtrInfo, EVT MemVT,
4038 bool isVolatile, bool isNonTemporal,
4039 unsigned Alignment, const MDNode *TBAAInfo) {
4040 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4041 Alignment = getEVTAlignment(VT);
4043 unsigned Flags = MachineMemOperand::MOLoad;
4044 if (isVolatile)
4045 Flags |= MachineMemOperand::MOVolatile;
4046 if (isNonTemporal)
4047 Flags |= MachineMemOperand::MONonTemporal;
4049 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4050 // clients.
4051 if (PtrInfo.V == 0)
4052 PtrInfo = InferPointerInfo(Ptr, Offset);
4054 MachineFunction &MF = getMachineFunction();
4055 MachineMemOperand *MMO =
4056 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4057 TBAAInfo);
4058 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4061 SDValue
4062 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4063 EVT VT, DebugLoc dl, SDValue Chain,
4064 SDValue Ptr, SDValue Offset, EVT MemVT,
4065 MachineMemOperand *MMO) {
4066 if (VT == MemVT) {
4067 ExtType = ISD::NON_EXTLOAD;
4068 } else if (ExtType == ISD::NON_EXTLOAD) {
4069 assert(VT == MemVT && "Non-extending load from different memory type!");
4070 } else {
4071 // Extending load.
4072 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4073 "Should only be an extending load, not truncating!");
4074 assert(VT.isInteger() == MemVT.isInteger() &&
4075 "Cannot convert from FP to Int or Int -> FP!");
4076 assert(VT.isVector() == MemVT.isVector() &&
4077 "Cannot use trunc store to convert to or from a vector!");
4078 assert((!VT.isVector() ||
4079 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4080 "Cannot use trunc store to change the number of vector elements!");
4083 bool Indexed = AM != ISD::UNINDEXED;
4084 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4085 "Unindexed load with an offset!");
4087 SDVTList VTs = Indexed ?
4088 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4089 SDValue Ops[] = { Chain, Ptr, Offset };
4090 FoldingSetNodeID ID;
4091 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4092 ID.AddInteger(MemVT.getRawBits());
4093 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4094 MMO->isNonTemporal()));
4095 void *IP = 0;
4096 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4097 cast<LoadSDNode>(E)->refineAlignment(MMO);
4098 return SDValue(E, 0);
4100 SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4101 MemVT, MMO);
4102 CSEMap.InsertNode(N, IP);
4103 AllNodes.push_back(N);
4104 return SDValue(N, 0);
4107 SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4108 SDValue Chain, SDValue Ptr,
4109 MachinePointerInfo PtrInfo,
4110 bool isVolatile, bool isNonTemporal,
4111 unsigned Alignment, const MDNode *TBAAInfo) {
4112 SDValue Undef = getUNDEF(Ptr.getValueType());
4113 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4114 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
4117 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4118 SDValue Chain, SDValue Ptr,
4119 MachinePointerInfo PtrInfo, EVT MemVT,
4120 bool isVolatile, bool isNonTemporal,
4121 unsigned Alignment, const MDNode *TBAAInfo) {
4122 SDValue Undef = getUNDEF(Ptr.getValueType());
4123 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4124 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
4125 TBAAInfo);
4129 SDValue
4130 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4131 SDValue Offset, ISD::MemIndexedMode AM) {
4132 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4133 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4134 "Load is already a indexed load!");
4135 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4136 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4137 LD->getMemoryVT(),
4138 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4141 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4142 SDValue Ptr, MachinePointerInfo PtrInfo,
4143 bool isVolatile, bool isNonTemporal,
4144 unsigned Alignment, const MDNode *TBAAInfo) {
4145 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4146 Alignment = getEVTAlignment(Val.getValueType());
4148 unsigned Flags = MachineMemOperand::MOStore;
4149 if (isVolatile)
4150 Flags |= MachineMemOperand::MOVolatile;
4151 if (isNonTemporal)
4152 Flags |= MachineMemOperand::MONonTemporal;
4154 if (PtrInfo.V == 0)
4155 PtrInfo = InferPointerInfo(Ptr);
4157 MachineFunction &MF = getMachineFunction();
4158 MachineMemOperand *MMO =
4159 MF.getMachineMemOperand(PtrInfo, Flags,
4160 Val.getValueType().getStoreSize(), Alignment,
4161 TBAAInfo);
4163 return getStore(Chain, dl, Val, Ptr, MMO);
4166 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4167 SDValue Ptr, MachineMemOperand *MMO) {
4168 EVT VT = Val.getValueType();
4169 SDVTList VTs = getVTList(MVT::Other);
4170 SDValue Undef = getUNDEF(Ptr.getValueType());
4171 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4172 FoldingSetNodeID ID;
4173 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4174 ID.AddInteger(VT.getRawBits());
4175 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4176 MMO->isNonTemporal()));
4177 void *IP = 0;
4178 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4179 cast<StoreSDNode>(E)->refineAlignment(MMO);
4180 return SDValue(E, 0);
4182 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4183 false, VT, MMO);
4184 CSEMap.InsertNode(N, IP);
4185 AllNodes.push_back(N);
4186 return SDValue(N, 0);
4189 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4190 SDValue Ptr, MachinePointerInfo PtrInfo,
4191 EVT SVT,bool isVolatile, bool isNonTemporal,
4192 unsigned Alignment,
4193 const MDNode *TBAAInfo) {
4194 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4195 Alignment = getEVTAlignment(SVT);
4197 unsigned Flags = MachineMemOperand::MOStore;
4198 if (isVolatile)
4199 Flags |= MachineMemOperand::MOVolatile;
4200 if (isNonTemporal)
4201 Flags |= MachineMemOperand::MONonTemporal;
4203 if (PtrInfo.V == 0)
4204 PtrInfo = InferPointerInfo(Ptr);
4206 MachineFunction &MF = getMachineFunction();
4207 MachineMemOperand *MMO =
4208 MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4209 TBAAInfo);
4211 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4214 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4215 SDValue Ptr, EVT SVT,
4216 MachineMemOperand *MMO) {
4217 EVT VT = Val.getValueType();
4219 if (VT == SVT)
4220 return getStore(Chain, dl, Val, Ptr, MMO);
4222 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4223 "Should only be a truncating store, not extending!");
4224 assert(VT.isInteger() == SVT.isInteger() &&
4225 "Can't do FP-INT conversion!");
4226 assert(VT.isVector() == SVT.isVector() &&
4227 "Cannot use trunc store to convert to or from a vector!");
4228 assert((!VT.isVector() ||
4229 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4230 "Cannot use trunc store to change the number of vector elements!");
4232 SDVTList VTs = getVTList(MVT::Other);
4233 SDValue Undef = getUNDEF(Ptr.getValueType());
4234 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4235 FoldingSetNodeID ID;
4236 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4237 ID.AddInteger(SVT.getRawBits());
4238 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4239 MMO->isNonTemporal()));
4240 void *IP = 0;
4241 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4242 cast<StoreSDNode>(E)->refineAlignment(MMO);
4243 return SDValue(E, 0);
4245 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4246 true, SVT, MMO);
4247 CSEMap.InsertNode(N, IP);
4248 AllNodes.push_back(N);
4249 return SDValue(N, 0);
4252 SDValue
4253 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4254 SDValue Offset, ISD::MemIndexedMode AM) {
4255 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4256 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4257 "Store is already a indexed store!");
4258 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4259 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4260 FoldingSetNodeID ID;
4261 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4262 ID.AddInteger(ST->getMemoryVT().getRawBits());
4263 ID.AddInteger(ST->getRawSubclassData());
4264 void *IP = 0;
4265 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4266 return SDValue(E, 0);
4268 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4269 ST->isTruncatingStore(),
4270 ST->getMemoryVT(),
4271 ST->getMemOperand());
4272 CSEMap.InsertNode(N, IP);
4273 AllNodes.push_back(N);
4274 return SDValue(N, 0);
4277 SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4278 SDValue Chain, SDValue Ptr,
4279 SDValue SV,
4280 unsigned Align) {
4281 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4282 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4285 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4286 const SDUse *Ops, unsigned NumOps) {
4287 switch (NumOps) {
4288 case 0: return getNode(Opcode, DL, VT);
4289 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4290 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4291 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4292 default: break;
4295 // Copy from an SDUse array into an SDValue array for use with
4296 // the regular getNode logic.
4297 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4298 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4301 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4302 const SDValue *Ops, unsigned NumOps) {
4303 switch (NumOps) {
4304 case 0: return getNode(Opcode, DL, VT);
4305 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4306 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4307 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4308 default: break;
4311 switch (Opcode) {
4312 default: break;
4313 case ISD::SELECT_CC: {
4314 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4315 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4316 "LHS and RHS of condition must have same type!");
4317 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4318 "True and False arms of SelectCC must have same type!");
4319 assert(Ops[2].getValueType() == VT &&
4320 "select_cc node must be of same type as true and false value!");
4321 break;
4323 case ISD::BR_CC: {
4324 assert(NumOps == 5 && "BR_CC takes 5 operands!");
4325 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4326 "LHS/RHS of comparison should match types!");
4327 break;
4331 // Memoize nodes.
4332 SDNode *N;
4333 SDVTList VTs = getVTList(VT);
4335 if (VT != MVT::Glue) {
4336 FoldingSetNodeID ID;
4337 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4338 void *IP = 0;
4340 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4341 return SDValue(E, 0);
4343 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4344 CSEMap.InsertNode(N, IP);
4345 } else {
4346 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4349 AllNodes.push_back(N);
4350 #ifndef NDEBUG
4351 VerifySDNode(N);
4352 #endif
4353 return SDValue(N, 0);
4356 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4357 const std::vector<EVT> &ResultTys,
4358 const SDValue *Ops, unsigned NumOps) {
4359 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4360 Ops, NumOps);
4363 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4364 const EVT *VTs, unsigned NumVTs,
4365 const SDValue *Ops, unsigned NumOps) {
4366 if (NumVTs == 1)
4367 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4368 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4371 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4372 const SDValue *Ops, unsigned NumOps) {
4373 if (VTList.NumVTs == 1)
4374 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4376 #if 0
4377 switch (Opcode) {
4378 // FIXME: figure out how to safely handle things like
4379 // int foo(int x) { return 1 << (x & 255); }
4380 // int bar() { return foo(256); }
4381 case ISD::SRA_PARTS:
4382 case ISD::SRL_PARTS:
4383 case ISD::SHL_PARTS:
4384 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4385 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4386 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4387 else if (N3.getOpcode() == ISD::AND)
4388 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4389 // If the and is only masking out bits that cannot effect the shift,
4390 // eliminate the and.
4391 unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4392 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4393 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4395 break;
4397 #endif
4399 // Memoize the node unless it returns a flag.
4400 SDNode *N;
4401 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4402 FoldingSetNodeID ID;
4403 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4404 void *IP = 0;
4405 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4406 return SDValue(E, 0);
4408 if (NumOps == 1) {
4409 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4410 } else if (NumOps == 2) {
4411 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4412 } else if (NumOps == 3) {
4413 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4414 Ops[2]);
4415 } else {
4416 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4418 CSEMap.InsertNode(N, IP);
4419 } else {
4420 if (NumOps == 1) {
4421 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4422 } else if (NumOps == 2) {
4423 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4424 } else if (NumOps == 3) {
4425 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4426 Ops[2]);
4427 } else {
4428 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4431 AllNodes.push_back(N);
4432 #ifndef NDEBUG
4433 VerifySDNode(N);
4434 #endif
4435 return SDValue(N, 0);
4438 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4439 return getNode(Opcode, DL, VTList, 0, 0);
4442 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4443 SDValue N1) {
4444 SDValue Ops[] = { N1 };
4445 return getNode(Opcode, DL, VTList, Ops, 1);
4448 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4449 SDValue N1, SDValue N2) {
4450 SDValue Ops[] = { N1, N2 };
4451 return getNode(Opcode, DL, VTList, Ops, 2);
4454 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4455 SDValue N1, SDValue N2, SDValue N3) {
4456 SDValue Ops[] = { N1, N2, N3 };
4457 return getNode(Opcode, DL, VTList, Ops, 3);
4460 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4461 SDValue N1, SDValue N2, SDValue N3,
4462 SDValue N4) {
4463 SDValue Ops[] = { N1, N2, N3, N4 };
4464 return getNode(Opcode, DL, VTList, Ops, 4);
4467 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4468 SDValue N1, SDValue N2, SDValue N3,
4469 SDValue N4, SDValue N5) {
4470 SDValue Ops[] = { N1, N2, N3, N4, N5 };
4471 return getNode(Opcode, DL, VTList, Ops, 5);
4474 SDVTList SelectionDAG::getVTList(EVT VT) {
4475 return makeVTList(SDNode::getValueTypeList(VT), 1);
4478 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4479 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4480 E = VTList.rend(); I != E; ++I)
4481 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4482 return *I;
4484 EVT *Array = Allocator.Allocate<EVT>(2);
4485 Array[0] = VT1;
4486 Array[1] = VT2;
4487 SDVTList Result = makeVTList(Array, 2);
4488 VTList.push_back(Result);
4489 return Result;
4492 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4493 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4494 E = VTList.rend(); I != E; ++I)
4495 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4496 I->VTs[2] == VT3)
4497 return *I;
4499 EVT *Array = Allocator.Allocate<EVT>(3);
4500 Array[0] = VT1;
4501 Array[1] = VT2;
4502 Array[2] = VT3;
4503 SDVTList Result = makeVTList(Array, 3);
4504 VTList.push_back(Result);
4505 return Result;
4508 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4509 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4510 E = VTList.rend(); I != E; ++I)
4511 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4512 I->VTs[2] == VT3 && I->VTs[3] == VT4)
4513 return *I;
4515 EVT *Array = Allocator.Allocate<EVT>(4);
4516 Array[0] = VT1;
4517 Array[1] = VT2;
4518 Array[2] = VT3;
4519 Array[3] = VT4;
4520 SDVTList Result = makeVTList(Array, 4);
4521 VTList.push_back(Result);
4522 return Result;
4525 SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4526 switch (NumVTs) {
4527 case 0: llvm_unreachable("Cannot have nodes without results!");
4528 case 1: return getVTList(VTs[0]);
4529 case 2: return getVTList(VTs[0], VTs[1]);
4530 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4531 case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4532 default: break;
4535 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4536 E = VTList.rend(); I != E; ++I) {
4537 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4538 continue;
4540 bool NoMatch = false;
4541 for (unsigned i = 2; i != NumVTs; ++i)
4542 if (VTs[i] != I->VTs[i]) {
4543 NoMatch = true;
4544 break;
4546 if (!NoMatch)
4547 return *I;
4550 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4551 std::copy(VTs, VTs+NumVTs, Array);
4552 SDVTList Result = makeVTList(Array, NumVTs);
4553 VTList.push_back(Result);
4554 return Result;
4558 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4559 /// specified operands. If the resultant node already exists in the DAG,
4560 /// this does not modify the specified node, instead it returns the node that
4561 /// already exists. If the resultant node does not exist in the DAG, the
4562 /// input node is returned. As a degenerate case, if you specify the same
4563 /// input operands as the node already has, the input node is returned.
4564 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4565 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4567 // Check to see if there is no change.
4568 if (Op == N->getOperand(0)) return N;
4570 // See if the modified node already exists.
4571 void *InsertPos = 0;
4572 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4573 return Existing;
4575 // Nope it doesn't. Remove the node from its current place in the maps.
4576 if (InsertPos)
4577 if (!RemoveNodeFromCSEMaps(N))
4578 InsertPos = 0;
4580 // Now we update the operands.
4581 N->OperandList[0].set(Op);
4583 // If this gets put into a CSE map, add it.
4584 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4585 return N;
4588 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4589 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4591 // Check to see if there is no change.
4592 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4593 return N; // No operands changed, just return the input node.
4595 // See if the modified node already exists.
4596 void *InsertPos = 0;
4597 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4598 return Existing;
4600 // Nope it doesn't. Remove the node from its current place in the maps.
4601 if (InsertPos)
4602 if (!RemoveNodeFromCSEMaps(N))
4603 InsertPos = 0;
4605 // Now we update the operands.
4606 if (N->OperandList[0] != Op1)
4607 N->OperandList[0].set(Op1);
4608 if (N->OperandList[1] != Op2)
4609 N->OperandList[1].set(Op2);
4611 // If this gets put into a CSE map, add it.
4612 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4613 return N;
4616 SDNode *SelectionDAG::
4617 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4618 SDValue Ops[] = { Op1, Op2, Op3 };
4619 return UpdateNodeOperands(N, Ops, 3);
4622 SDNode *SelectionDAG::
4623 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4624 SDValue Op3, SDValue Op4) {
4625 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4626 return UpdateNodeOperands(N, Ops, 4);
4629 SDNode *SelectionDAG::
4630 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4631 SDValue Op3, SDValue Op4, SDValue Op5) {
4632 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4633 return UpdateNodeOperands(N, Ops, 5);
4636 SDNode *SelectionDAG::
4637 UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4638 assert(N->getNumOperands() == NumOps &&
4639 "Update with wrong number of operands");
4641 // Check to see if there is no change.
4642 bool AnyChange = false;
4643 for (unsigned i = 0; i != NumOps; ++i) {
4644 if (Ops[i] != N->getOperand(i)) {
4645 AnyChange = true;
4646 break;
4650 // No operands changed, just return the input node.
4651 if (!AnyChange) return N;
4653 // See if the modified node already exists.
4654 void *InsertPos = 0;
4655 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4656 return Existing;
4658 // Nope it doesn't. Remove the node from its current place in the maps.
4659 if (InsertPos)
4660 if (!RemoveNodeFromCSEMaps(N))
4661 InsertPos = 0;
4663 // Now we update the operands.
4664 for (unsigned i = 0; i != NumOps; ++i)
4665 if (N->OperandList[i] != Ops[i])
4666 N->OperandList[i].set(Ops[i]);
4668 // If this gets put into a CSE map, add it.
4669 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4670 return N;
4673 /// DropOperands - Release the operands and set this node to have
4674 /// zero operands.
4675 void SDNode::DropOperands() {
4676 // Unlike the code in MorphNodeTo that does this, we don't need to
4677 // watch for dead nodes here.
4678 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4679 SDUse &Use = *I++;
4680 Use.set(SDValue());
4684 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4685 /// machine opcode.
4687 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4688 EVT VT) {
4689 SDVTList VTs = getVTList(VT);
4690 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4693 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4694 EVT VT, SDValue Op1) {
4695 SDVTList VTs = getVTList(VT);
4696 SDValue Ops[] = { Op1 };
4697 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4700 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4701 EVT VT, SDValue Op1,
4702 SDValue Op2) {
4703 SDVTList VTs = getVTList(VT);
4704 SDValue Ops[] = { Op1, Op2 };
4705 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4708 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4709 EVT VT, SDValue Op1,
4710 SDValue Op2, SDValue Op3) {
4711 SDVTList VTs = getVTList(VT);
4712 SDValue Ops[] = { Op1, Op2, Op3 };
4713 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4716 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4717 EVT VT, const SDValue *Ops,
4718 unsigned NumOps) {
4719 SDVTList VTs = getVTList(VT);
4720 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4723 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4724 EVT VT1, EVT VT2, const SDValue *Ops,
4725 unsigned NumOps) {
4726 SDVTList VTs = getVTList(VT1, VT2);
4727 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4730 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4731 EVT VT1, EVT VT2) {
4732 SDVTList VTs = getVTList(VT1, VT2);
4733 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4736 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4737 EVT VT1, EVT VT2, EVT VT3,
4738 const SDValue *Ops, unsigned NumOps) {
4739 SDVTList VTs = getVTList(VT1, VT2, VT3);
4740 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4743 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4744 EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4745 const SDValue *Ops, unsigned NumOps) {
4746 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4747 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4750 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4751 EVT VT1, EVT VT2,
4752 SDValue Op1) {
4753 SDVTList VTs = getVTList(VT1, VT2);
4754 SDValue Ops[] = { Op1 };
4755 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4758 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4759 EVT VT1, EVT VT2,
4760 SDValue Op1, SDValue Op2) {
4761 SDVTList VTs = getVTList(VT1, VT2);
4762 SDValue Ops[] = { Op1, Op2 };
4763 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4766 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4767 EVT VT1, EVT VT2,
4768 SDValue Op1, SDValue Op2,
4769 SDValue Op3) {
4770 SDVTList VTs = getVTList(VT1, VT2);
4771 SDValue Ops[] = { Op1, Op2, Op3 };
4772 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4775 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4776 EVT VT1, EVT VT2, EVT VT3,
4777 SDValue Op1, SDValue Op2,
4778 SDValue Op3) {
4779 SDVTList VTs = getVTList(VT1, VT2, VT3);
4780 SDValue Ops[] = { Op1, Op2, Op3 };
4781 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4784 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4785 SDVTList VTs, const SDValue *Ops,
4786 unsigned NumOps) {
4787 N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4788 // Reset the NodeID to -1.
4789 N->setNodeId(-1);
4790 return N;
4793 /// MorphNodeTo - This *mutates* the specified node to have the specified
4794 /// return type, opcode, and operands.
4796 /// Note that MorphNodeTo returns the resultant node. If there is already a
4797 /// node of the specified opcode and operands, it returns that node instead of
4798 /// the current one. Note that the DebugLoc need not be the same.
4800 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4801 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4802 /// node, and because it doesn't require CSE recalculation for any of
4803 /// the node's users.
4805 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4806 SDVTList VTs, const SDValue *Ops,
4807 unsigned NumOps) {
4808 // If an identical node already exists, use it.
4809 void *IP = 0;
4810 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
4811 FoldingSetNodeID ID;
4812 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4813 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4814 return ON;
4817 if (!RemoveNodeFromCSEMaps(N))
4818 IP = 0;
4820 // Start the morphing.
4821 N->NodeType = Opc;
4822 N->ValueList = VTs.VTs;
4823 N->NumValues = VTs.NumVTs;
4825 // Clear the operands list, updating used nodes to remove this from their
4826 // use list. Keep track of any operands that become dead as a result.
4827 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4828 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4829 SDUse &Use = *I++;
4830 SDNode *Used = Use.getNode();
4831 Use.set(SDValue());
4832 if (Used->use_empty())
4833 DeadNodeSet.insert(Used);
4836 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4837 // Initialize the memory references information.
4838 MN->setMemRefs(0, 0);
4839 // If NumOps is larger than the # of operands we can have in a
4840 // MachineSDNode, reallocate the operand list.
4841 if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4842 if (MN->OperandsNeedDelete)
4843 delete[] MN->OperandList;
4844 if (NumOps > array_lengthof(MN->LocalOperands))
4845 // We're creating a final node that will live unmorphed for the
4846 // remainder of the current SelectionDAG iteration, so we can allocate
4847 // the operands directly out of a pool with no recycling metadata.
4848 MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4849 Ops, NumOps);
4850 else
4851 MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4852 MN->OperandsNeedDelete = false;
4853 } else
4854 MN->InitOperands(MN->OperandList, Ops, NumOps);
4855 } else {
4856 // If NumOps is larger than the # of operands we currently have, reallocate
4857 // the operand list.
4858 if (NumOps > N->NumOperands) {
4859 if (N->OperandsNeedDelete)
4860 delete[] N->OperandList;
4861 N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4862 N->OperandsNeedDelete = true;
4863 } else
4864 N->InitOperands(N->OperandList, Ops, NumOps);
4867 // Delete any nodes that are still dead after adding the uses for the
4868 // new operands.
4869 if (!DeadNodeSet.empty()) {
4870 SmallVector<SDNode *, 16> DeadNodes;
4871 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4872 E = DeadNodeSet.end(); I != E; ++I)
4873 if ((*I)->use_empty())
4874 DeadNodes.push_back(*I);
4875 RemoveDeadNodes(DeadNodes);
4878 if (IP)
4879 CSEMap.InsertNode(N, IP); // Memoize the new node.
4880 return N;
4884 /// getMachineNode - These are used for target selectors to create a new node
4885 /// with specified return type(s), MachineInstr opcode, and operands.
4887 /// Note that getMachineNode returns the resultant node. If there is already a
4888 /// node of the specified opcode and operands, it returns that node instead of
4889 /// the current one.
4890 MachineSDNode *
4891 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4892 SDVTList VTs = getVTList(VT);
4893 return getMachineNode(Opcode, dl, VTs, 0, 0);
4896 MachineSDNode *
4897 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4898 SDVTList VTs = getVTList(VT);
4899 SDValue Ops[] = { Op1 };
4900 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4903 MachineSDNode *
4904 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4905 SDValue Op1, SDValue Op2) {
4906 SDVTList VTs = getVTList(VT);
4907 SDValue Ops[] = { Op1, Op2 };
4908 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4911 MachineSDNode *
4912 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4913 SDValue Op1, SDValue Op2, SDValue Op3) {
4914 SDVTList VTs = getVTList(VT);
4915 SDValue Ops[] = { Op1, Op2, Op3 };
4916 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4919 MachineSDNode *
4920 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4921 const SDValue *Ops, unsigned NumOps) {
4922 SDVTList VTs = getVTList(VT);
4923 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4926 MachineSDNode *
4927 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4928 SDVTList VTs = getVTList(VT1, VT2);
4929 return getMachineNode(Opcode, dl, VTs, 0, 0);
4932 MachineSDNode *
4933 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4934 EVT VT1, EVT VT2, SDValue Op1) {
4935 SDVTList VTs = getVTList(VT1, VT2);
4936 SDValue Ops[] = { Op1 };
4937 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4940 MachineSDNode *
4941 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4942 EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4943 SDVTList VTs = getVTList(VT1, VT2);
4944 SDValue Ops[] = { Op1, Op2 };
4945 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4948 MachineSDNode *
4949 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4950 EVT VT1, EVT VT2, SDValue Op1,
4951 SDValue Op2, SDValue Op3) {
4952 SDVTList VTs = getVTList(VT1, VT2);
4953 SDValue Ops[] = { Op1, Op2, Op3 };
4954 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4957 MachineSDNode *
4958 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4959 EVT VT1, EVT VT2,
4960 const SDValue *Ops, unsigned NumOps) {
4961 SDVTList VTs = getVTList(VT1, VT2);
4962 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4965 MachineSDNode *
4966 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4967 EVT VT1, EVT VT2, EVT VT3,
4968 SDValue Op1, SDValue Op2) {
4969 SDVTList VTs = getVTList(VT1, VT2, VT3);
4970 SDValue Ops[] = { Op1, Op2 };
4971 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4974 MachineSDNode *
4975 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4976 EVT VT1, EVT VT2, EVT VT3,
4977 SDValue Op1, SDValue Op2, SDValue Op3) {
4978 SDVTList VTs = getVTList(VT1, VT2, VT3);
4979 SDValue Ops[] = { Op1, Op2, Op3 };
4980 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4983 MachineSDNode *
4984 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4985 EVT VT1, EVT VT2, EVT VT3,
4986 const SDValue *Ops, unsigned NumOps) {
4987 SDVTList VTs = getVTList(VT1, VT2, VT3);
4988 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4991 MachineSDNode *
4992 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4993 EVT VT2, EVT VT3, EVT VT4,
4994 const SDValue *Ops, unsigned NumOps) {
4995 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4996 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4999 MachineSDNode *
5000 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5001 const std::vector<EVT> &ResultTys,
5002 const SDValue *Ops, unsigned NumOps) {
5003 SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5004 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5007 MachineSDNode *
5008 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5009 const SDValue *Ops, unsigned NumOps) {
5010 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5011 MachineSDNode *N;
5012 void *IP = 0;
5014 if (DoCSE) {
5015 FoldingSetNodeID ID;
5016 AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5017 IP = 0;
5018 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5019 return cast<MachineSDNode>(E);
5022 // Allocate a new MachineSDNode.
5023 N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5025 // Initialize the operands list.
5026 if (NumOps > array_lengthof(N->LocalOperands))
5027 // We're creating a final node that will live unmorphed for the
5028 // remainder of the current SelectionDAG iteration, so we can allocate
5029 // the operands directly out of a pool with no recycling metadata.
5030 N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5031 Ops, NumOps);
5032 else
5033 N->InitOperands(N->LocalOperands, Ops, NumOps);
5034 N->OperandsNeedDelete = false;
5036 if (DoCSE)
5037 CSEMap.InsertNode(N, IP);
5039 AllNodes.push_back(N);
5040 #ifndef NDEBUG
5041 VerifyMachineNode(N);
5042 #endif
5043 return N;
5046 /// getTargetExtractSubreg - A convenience function for creating
5047 /// TargetOpcode::EXTRACT_SUBREG nodes.
5048 SDValue
5049 SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5050 SDValue Operand) {
5051 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5052 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5053 VT, Operand, SRIdxVal);
5054 return SDValue(Subreg, 0);
5057 /// getTargetInsertSubreg - A convenience function for creating
5058 /// TargetOpcode::INSERT_SUBREG nodes.
5059 SDValue
5060 SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5061 SDValue Operand, SDValue Subreg) {
5062 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5063 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5064 VT, Operand, Subreg, SRIdxVal);
5065 return SDValue(Result, 0);
5068 /// getNodeIfExists - Get the specified node if it's already available, or
5069 /// else return NULL.
5070 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5071 const SDValue *Ops, unsigned NumOps) {
5072 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5073 FoldingSetNodeID ID;
5074 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5075 void *IP = 0;
5076 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5077 return E;
5079 return NULL;
5082 /// getDbgValue - Creates a SDDbgValue node.
5084 SDDbgValue *
5085 SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5086 DebugLoc DL, unsigned O) {
5087 return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5090 SDDbgValue *
5091 SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5092 DebugLoc DL, unsigned O) {
5093 return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5096 SDDbgValue *
5097 SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5098 DebugLoc DL, unsigned O) {
5099 return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5102 namespace {
5104 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5105 /// pointed to by a use iterator is deleted, increment the use iterator
5106 /// so that it doesn't dangle.
5108 /// This class also manages a "downlink" DAGUpdateListener, to forward
5109 /// messages to ReplaceAllUsesWith's callers.
5111 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5112 SelectionDAG::DAGUpdateListener *DownLink;
5113 SDNode::use_iterator &UI;
5114 SDNode::use_iterator &UE;
5116 virtual void NodeDeleted(SDNode *N, SDNode *E) {
5117 // Increment the iterator as needed.
5118 while (UI != UE && N == *UI)
5119 ++UI;
5121 // Then forward the message.
5122 if (DownLink) DownLink->NodeDeleted(N, E);
5125 virtual void NodeUpdated(SDNode *N) {
5126 // Just forward the message.
5127 if (DownLink) DownLink->NodeUpdated(N);
5130 public:
5131 RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5132 SDNode::use_iterator &ui,
5133 SDNode::use_iterator &ue)
5134 : DownLink(dl), UI(ui), UE(ue) {}
5139 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5140 /// This can cause recursive merging of nodes in the DAG.
5142 /// This version assumes From has a single result value.
5144 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5145 DAGUpdateListener *UpdateListener) {
5146 SDNode *From = FromN.getNode();
5147 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5148 "Cannot replace with this method!");
5149 assert(From != To.getNode() && "Cannot replace uses of with self");
5151 // Iterate over all the existing uses of From. New uses will be added
5152 // to the beginning of the use list, which we avoid visiting.
5153 // This specifically avoids visiting uses of From that arise while the
5154 // replacement is happening, because any such uses would be the result
5155 // of CSE: If an existing node looks like From after one of its operands
5156 // is replaced by To, we don't want to replace of all its users with To
5157 // too. See PR3018 for more info.
5158 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5159 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5160 while (UI != UE) {
5161 SDNode *User = *UI;
5163 // This node is about to morph, remove its old self from the CSE maps.
5164 RemoveNodeFromCSEMaps(User);
5166 // A user can appear in a use list multiple times, and when this
5167 // happens the uses are usually next to each other in the list.
5168 // To help reduce the number of CSE recomputations, process all
5169 // the uses of this user that we can find this way.
5170 do {
5171 SDUse &Use = UI.getUse();
5172 ++UI;
5173 Use.set(To);
5174 } while (UI != UE && *UI == User);
5176 // Now that we have modified User, add it back to the CSE maps. If it
5177 // already exists there, recursively merge the results together.
5178 AddModifiedNodeToCSEMaps(User, &Listener);
5182 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5183 /// This can cause recursive merging of nodes in the DAG.
5185 /// This version assumes that for each value of From, there is a
5186 /// corresponding value in To in the same position with the same type.
5188 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5189 DAGUpdateListener *UpdateListener) {
5190 #ifndef NDEBUG
5191 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5192 assert((!From->hasAnyUseOfValue(i) ||
5193 From->getValueType(i) == To->getValueType(i)) &&
5194 "Cannot use this version of ReplaceAllUsesWith!");
5195 #endif
5197 // Handle the trivial case.
5198 if (From == To)
5199 return;
5201 // Iterate over just the existing users of From. See the comments in
5202 // the ReplaceAllUsesWith above.
5203 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5204 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5205 while (UI != UE) {
5206 SDNode *User = *UI;
5208 // This node is about to morph, remove its old self from the CSE maps.
5209 RemoveNodeFromCSEMaps(User);
5211 // A user can appear in a use list multiple times, and when this
5212 // happens the uses are usually next to each other in the list.
5213 // To help reduce the number of CSE recomputations, process all
5214 // the uses of this user that we can find this way.
5215 do {
5216 SDUse &Use = UI.getUse();
5217 ++UI;
5218 Use.setNode(To);
5219 } while (UI != UE && *UI == User);
5221 // Now that we have modified User, add it back to the CSE maps. If it
5222 // already exists there, recursively merge the results together.
5223 AddModifiedNodeToCSEMaps(User, &Listener);
5227 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5228 /// This can cause recursive merging of nodes in the DAG.
5230 /// This version can replace From with any result values. To must match the
5231 /// number and types of values returned by From.
5232 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5233 const SDValue *To,
5234 DAGUpdateListener *UpdateListener) {
5235 if (From->getNumValues() == 1) // Handle the simple case efficiently.
5236 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5238 // Iterate over just the existing users of From. See the comments in
5239 // the ReplaceAllUsesWith above.
5240 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5241 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5242 while (UI != UE) {
5243 SDNode *User = *UI;
5245 // This node is about to morph, remove its old self from the CSE maps.
5246 RemoveNodeFromCSEMaps(User);
5248 // A user can appear in a use list multiple times, and when this
5249 // happens the uses are usually next to each other in the list.
5250 // To help reduce the number of CSE recomputations, process all
5251 // the uses of this user that we can find this way.
5252 do {
5253 SDUse &Use = UI.getUse();
5254 const SDValue &ToOp = To[Use.getResNo()];
5255 ++UI;
5256 Use.set(ToOp);
5257 } while (UI != UE && *UI == User);
5259 // Now that we have modified User, add it back to the CSE maps. If it
5260 // already exists there, recursively merge the results together.
5261 AddModifiedNodeToCSEMaps(User, &Listener);
5265 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5266 /// uses of other values produced by From.getNode() alone. The Deleted
5267 /// vector is handled the same way as for ReplaceAllUsesWith.
5268 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5269 DAGUpdateListener *UpdateListener){
5270 // Handle the really simple, really trivial case efficiently.
5271 if (From == To) return;
5273 // Handle the simple, trivial, case efficiently.
5274 if (From.getNode()->getNumValues() == 1) {
5275 ReplaceAllUsesWith(From, To, UpdateListener);
5276 return;
5279 // Iterate over just the existing users of From. See the comments in
5280 // the ReplaceAllUsesWith above.
5281 SDNode::use_iterator UI = From.getNode()->use_begin(),
5282 UE = From.getNode()->use_end();
5283 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5284 while (UI != UE) {
5285 SDNode *User = *UI;
5286 bool UserRemovedFromCSEMaps = false;
5288 // A user can appear in a use list multiple times, and when this
5289 // happens the uses are usually next to each other in the list.
5290 // To help reduce the number of CSE recomputations, process all
5291 // the uses of this user that we can find this way.
5292 do {
5293 SDUse &Use = UI.getUse();
5295 // Skip uses of different values from the same node.
5296 if (Use.getResNo() != From.getResNo()) {
5297 ++UI;
5298 continue;
5301 // If this node hasn't been modified yet, it's still in the CSE maps,
5302 // so remove its old self from the CSE maps.
5303 if (!UserRemovedFromCSEMaps) {
5304 RemoveNodeFromCSEMaps(User);
5305 UserRemovedFromCSEMaps = true;
5308 ++UI;
5309 Use.set(To);
5310 } while (UI != UE && *UI == User);
5312 // We are iterating over all uses of the From node, so if a use
5313 // doesn't use the specific value, no changes are made.
5314 if (!UserRemovedFromCSEMaps)
5315 continue;
5317 // Now that we have modified User, add it back to the CSE maps. If it
5318 // already exists there, recursively merge the results together.
5319 AddModifiedNodeToCSEMaps(User, &Listener);
5323 namespace {
5324 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5325 /// to record information about a use.
5326 struct UseMemo {
5327 SDNode *User;
5328 unsigned Index;
5329 SDUse *Use;
5332 /// operator< - Sort Memos by User.
5333 bool operator<(const UseMemo &L, const UseMemo &R) {
5334 return (intptr_t)L.User < (intptr_t)R.User;
5338 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5339 /// uses of other values produced by From.getNode() alone. The same value
5340 /// may appear in both the From and To list. The Deleted vector is
5341 /// handled the same way as for ReplaceAllUsesWith.
5342 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5343 const SDValue *To,
5344 unsigned Num,
5345 DAGUpdateListener *UpdateListener){
5346 // Handle the simple, trivial case efficiently.
5347 if (Num == 1)
5348 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5350 // Read up all the uses and make records of them. This helps
5351 // processing new uses that are introduced during the
5352 // replacement process.
5353 SmallVector<UseMemo, 4> Uses;
5354 for (unsigned i = 0; i != Num; ++i) {
5355 unsigned FromResNo = From[i].getResNo();
5356 SDNode *FromNode = From[i].getNode();
5357 for (SDNode::use_iterator UI = FromNode->use_begin(),
5358 E = FromNode->use_end(); UI != E; ++UI) {
5359 SDUse &Use = UI.getUse();
5360 if (Use.getResNo() == FromResNo) {
5361 UseMemo Memo = { *UI, i, &Use };
5362 Uses.push_back(Memo);
5367 // Sort the uses, so that all the uses from a given User are together.
5368 std::sort(Uses.begin(), Uses.end());
5370 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5371 UseIndex != UseIndexEnd; ) {
5372 // We know that this user uses some value of From. If it is the right
5373 // value, update it.
5374 SDNode *User = Uses[UseIndex].User;
5376 // This node is about to morph, remove its old self from the CSE maps.
5377 RemoveNodeFromCSEMaps(User);
5379 // The Uses array is sorted, so all the uses for a given User
5380 // are next to each other in the list.
5381 // To help reduce the number of CSE recomputations, process all
5382 // the uses of this user that we can find this way.
5383 do {
5384 unsigned i = Uses[UseIndex].Index;
5385 SDUse &Use = *Uses[UseIndex].Use;
5386 ++UseIndex;
5388 Use.set(To[i]);
5389 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5391 // Now that we have modified User, add it back to the CSE maps. If it
5392 // already exists there, recursively merge the results together.
5393 AddModifiedNodeToCSEMaps(User, UpdateListener);
5397 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5398 /// based on their topological order. It returns the maximum id and a vector
5399 /// of the SDNodes* in assigned order by reference.
5400 unsigned SelectionDAG::AssignTopologicalOrder() {
5402 unsigned DAGSize = 0;
5404 // SortedPos tracks the progress of the algorithm. Nodes before it are
5405 // sorted, nodes after it are unsorted. When the algorithm completes
5406 // it is at the end of the list.
5407 allnodes_iterator SortedPos = allnodes_begin();
5409 // Visit all the nodes. Move nodes with no operands to the front of
5410 // the list immediately. Annotate nodes that do have operands with their
5411 // operand count. Before we do this, the Node Id fields of the nodes
5412 // may contain arbitrary values. After, the Node Id fields for nodes
5413 // before SortedPos will contain the topological sort index, and the
5414 // Node Id fields for nodes At SortedPos and after will contain the
5415 // count of outstanding operands.
5416 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5417 SDNode *N = I++;
5418 checkForCycles(N);
5419 unsigned Degree = N->getNumOperands();
5420 if (Degree == 0) {
5421 // A node with no uses, add it to the result array immediately.
5422 N->setNodeId(DAGSize++);
5423 allnodes_iterator Q = N;
5424 if (Q != SortedPos)
5425 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5426 assert(SortedPos != AllNodes.end() && "Overran node list");
5427 ++SortedPos;
5428 } else {
5429 // Temporarily use the Node Id as scratch space for the degree count.
5430 N->setNodeId(Degree);
5434 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5435 // such that by the time the end is reached all nodes will be sorted.
5436 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5437 SDNode *N = I;
5438 checkForCycles(N);
5439 // N is in sorted position, so all its uses have one less operand
5440 // that needs to be sorted.
5441 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5442 UI != UE; ++UI) {
5443 SDNode *P = *UI;
5444 unsigned Degree = P->getNodeId();
5445 assert(Degree != 0 && "Invalid node degree");
5446 --Degree;
5447 if (Degree == 0) {
5448 // All of P's operands are sorted, so P may sorted now.
5449 P->setNodeId(DAGSize++);
5450 if (P != SortedPos)
5451 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5452 assert(SortedPos != AllNodes.end() && "Overran node list");
5453 ++SortedPos;
5454 } else {
5455 // Update P's outstanding operand count.
5456 P->setNodeId(Degree);
5459 if (I == SortedPos) {
5460 #ifndef NDEBUG
5461 SDNode *S = ++I;
5462 dbgs() << "Overran sorted position:\n";
5463 S->dumprFull();
5464 #endif
5465 llvm_unreachable(0);
5469 assert(SortedPos == AllNodes.end() &&
5470 "Topological sort incomplete!");
5471 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5472 "First node in topological sort is not the entry token!");
5473 assert(AllNodes.front().getNodeId() == 0 &&
5474 "First node in topological sort has non-zero id!");
5475 assert(AllNodes.front().getNumOperands() == 0 &&
5476 "First node in topological sort has operands!");
5477 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5478 "Last node in topologic sort has unexpected id!");
5479 assert(AllNodes.back().use_empty() &&
5480 "Last node in topologic sort has users!");
5481 assert(DAGSize == allnodes_size() && "Node count mismatch!");
5482 return DAGSize;
5485 /// AssignOrdering - Assign an order to the SDNode.
5486 void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5487 assert(SD && "Trying to assign an order to a null node!");
5488 Ordering->add(SD, Order);
5491 /// GetOrdering - Get the order for the SDNode.
5492 unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5493 assert(SD && "Trying to get the order of a null node!");
5494 return Ordering->getOrder(SD);
5497 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5498 /// value is produced by SD.
5499 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5500 DbgInfo->add(DB, SD, isParameter);
5501 if (SD)
5502 SD->setHasDebugValue(true);
5505 /// TransferDbgValues - Transfer SDDbgValues.
5506 void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5507 if (From == To || !From.getNode()->getHasDebugValue())
5508 return;
5509 SDNode *FromNode = From.getNode();
5510 SDNode *ToNode = To.getNode();
5511 ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5512 SmallVector<SDDbgValue *, 2> ClonedDVs;
5513 for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5514 I != E; ++I) {
5515 SDDbgValue *Dbg = *I;
5516 if (Dbg->getKind() == SDDbgValue::SDNODE) {
5517 SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5518 Dbg->getOffset(), Dbg->getDebugLoc(),
5519 Dbg->getOrder());
5520 ClonedDVs.push_back(Clone);
5523 for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5524 E = ClonedDVs.end(); I != E; ++I)
5525 AddDbgValue(*I, ToNode, false);
5528 //===----------------------------------------------------------------------===//
5529 // SDNode Class
5530 //===----------------------------------------------------------------------===//
5532 HandleSDNode::~HandleSDNode() {
5533 DropOperands();
5536 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5537 const GlobalValue *GA,
5538 EVT VT, int64_t o, unsigned char TF)
5539 : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5540 TheGlobal = GA;
5543 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5544 MachineMemOperand *mmo)
5545 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5546 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5547 MMO->isNonTemporal());
5548 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5549 assert(isNonTemporal() == MMO->isNonTemporal() &&
5550 "Non-temporal encoding error!");
5551 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5554 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5555 const SDValue *Ops, unsigned NumOps, EVT memvt,
5556 MachineMemOperand *mmo)
5557 : SDNode(Opc, dl, VTs, Ops, NumOps),
5558 MemoryVT(memvt), MMO(mmo) {
5559 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5560 MMO->isNonTemporal());
5561 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5562 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5565 /// Profile - Gather unique data for the node.
5567 void SDNode::Profile(FoldingSetNodeID &ID) const {
5568 AddNodeIDNode(ID, this);
5571 namespace {
5572 struct EVTArray {
5573 std::vector<EVT> VTs;
5575 EVTArray() {
5576 VTs.reserve(MVT::LAST_VALUETYPE);
5577 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5578 VTs.push_back(MVT((MVT::SimpleValueType)i));
5583 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5584 static ManagedStatic<EVTArray> SimpleVTArray;
5585 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5587 /// getValueTypeList - Return a pointer to the specified value type.
5589 const EVT *SDNode::getValueTypeList(EVT VT) {
5590 if (VT.isExtended()) {
5591 sys::SmartScopedLock<true> Lock(*VTMutex);
5592 return &(*EVTs->insert(VT).first);
5593 } else {
5594 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5595 "Value type out of range!");
5596 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5600 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5601 /// indicated value. This method ignores uses of other values defined by this
5602 /// operation.
5603 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5604 assert(Value < getNumValues() && "Bad value!");
5606 // TODO: Only iterate over uses of a given value of the node
5607 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5608 if (UI.getUse().getResNo() == Value) {
5609 if (NUses == 0)
5610 return false;
5611 --NUses;
5615 // Found exactly the right number of uses?
5616 return NUses == 0;
5620 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5621 /// value. This method ignores uses of other values defined by this operation.
5622 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5623 assert(Value < getNumValues() && "Bad value!");
5625 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5626 if (UI.getUse().getResNo() == Value)
5627 return true;
5629 return false;
5633 /// isOnlyUserOf - Return true if this node is the only use of N.
5635 bool SDNode::isOnlyUserOf(SDNode *N) const {
5636 bool Seen = false;
5637 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5638 SDNode *User = *I;
5639 if (User == this)
5640 Seen = true;
5641 else
5642 return false;
5645 return Seen;
5648 /// isOperand - Return true if this node is an operand of N.
5650 bool SDValue::isOperandOf(SDNode *N) const {
5651 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5652 if (*this == N->getOperand(i))
5653 return true;
5654 return false;
5657 bool SDNode::isOperandOf(SDNode *N) const {
5658 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5659 if (this == N->OperandList[i].getNode())
5660 return true;
5661 return false;
5664 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5665 /// be a chain) reaches the specified operand without crossing any
5666 /// side-effecting instructions on any chain path. In practice, this looks
5667 /// through token factors and non-volatile loads. In order to remain efficient,
5668 /// this only looks a couple of nodes in, it does not do an exhaustive search.
5669 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5670 unsigned Depth) const {
5671 if (*this == Dest) return true;
5673 // Don't search too deeply, we just want to be able to see through
5674 // TokenFactor's etc.
5675 if (Depth == 0) return false;
5677 // If this is a token factor, all inputs to the TF happen in parallel. If any
5678 // of the operands of the TF does not reach dest, then we cannot do the xform.
5679 if (getOpcode() == ISD::TokenFactor) {
5680 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5681 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5682 return false;
5683 return true;
5686 // Loads don't have side effects, look through them.
5687 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5688 if (!Ld->isVolatile())
5689 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5691 return false;
5694 /// hasPredecessor - Return true if N is a predecessor of this node.
5695 /// N is either an operand of this node, or can be reached by recursively
5696 /// traversing up the operands.
5697 /// NOTE: This is an expensive method. Use it carefully.
5698 bool SDNode::hasPredecessor(const SDNode *N) const {
5699 SmallPtrSet<const SDNode *, 32> Visited;
5700 SmallVector<const SDNode *, 16> Worklist;
5701 return hasPredecessorHelper(N, Visited, Worklist);
5704 bool SDNode::hasPredecessorHelper(const SDNode *N,
5705 SmallPtrSet<const SDNode *, 32> &Visited,
5706 SmallVector<const SDNode *, 16> &Worklist) const {
5707 if (Visited.empty()) {
5708 Worklist.push_back(this);
5709 } else {
5710 // Take a look in the visited set. If we've already encountered this node
5711 // we needn't search further.
5712 if (Visited.count(N))
5713 return true;
5716 // Haven't visited N yet. Continue the search.
5717 while (!Worklist.empty()) {
5718 const SDNode *M = Worklist.pop_back_val();
5719 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5720 SDNode *Op = M->getOperand(i).getNode();
5721 if (Visited.insert(Op))
5722 Worklist.push_back(Op);
5723 if (Op == N)
5724 return true;
5728 return false;
5731 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5732 assert(Num < NumOperands && "Invalid child # of SDNode!");
5733 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5736 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5737 switch (getOpcode()) {
5738 default:
5739 if (getOpcode() < ISD::BUILTIN_OP_END)
5740 return "<<Unknown DAG Node>>";
5741 if (isMachineOpcode()) {
5742 if (G)
5743 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5744 if (getMachineOpcode() < TII->getNumOpcodes())
5745 return TII->get(getMachineOpcode()).getName();
5746 return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5748 if (G) {
5749 const TargetLowering &TLI = G->getTargetLoweringInfo();
5750 const char *Name = TLI.getTargetNodeName(getOpcode());
5751 if (Name) return Name;
5752 return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5754 return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5756 #ifndef NDEBUG
5757 case ISD::DELETED_NODE:
5758 return "<<Deleted Node!>>";
5759 #endif
5760 case ISD::PREFETCH: return "Prefetch";
5761 case ISD::MEMBARRIER: return "MemBarrier";
5762 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5763 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5764 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5765 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5766 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5767 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5768 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5769 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5770 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5771 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5772 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5773 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5774 case ISD::PCMARKER: return "PCMarker";
5775 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5776 case ISD::SRCVALUE: return "SrcValue";
5777 case ISD::MDNODE_SDNODE: return "MDNode";
5778 case ISD::EntryToken: return "EntryToken";
5779 case ISD::TokenFactor: return "TokenFactor";
5780 case ISD::AssertSext: return "AssertSext";
5781 case ISD::AssertZext: return "AssertZext";
5783 case ISD::BasicBlock: return "BasicBlock";
5784 case ISD::VALUETYPE: return "ValueType";
5785 case ISD::Register: return "Register";
5787 case ISD::Constant: return "Constant";
5788 case ISD::ConstantFP: return "ConstantFP";
5789 case ISD::GlobalAddress: return "GlobalAddress";
5790 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5791 case ISD::FrameIndex: return "FrameIndex";
5792 case ISD::JumpTable: return "JumpTable";
5793 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5794 case ISD::RETURNADDR: return "RETURNADDR";
5795 case ISD::FRAMEADDR: return "FRAMEADDR";
5796 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5797 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5798 case ISD::LSDAADDR: return "LSDAADDR";
5799 case ISD::EHSELECTION: return "EHSELECTION";
5800 case ISD::EH_RETURN: return "EH_RETURN";
5801 case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5802 case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5803 case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5804 case ISD::ConstantPool: return "ConstantPool";
5805 case ISD::ExternalSymbol: return "ExternalSymbol";
5806 case ISD::BlockAddress: return "BlockAddress";
5807 case ISD::INTRINSIC_WO_CHAIN:
5808 case ISD::INTRINSIC_VOID:
5809 case ISD::INTRINSIC_W_CHAIN: {
5810 unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5811 unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5812 if (IID < Intrinsic::num_intrinsics)
5813 return Intrinsic::getName((Intrinsic::ID)IID);
5814 else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5815 return TII->getName(IID);
5816 llvm_unreachable("Invalid intrinsic ID");
5819 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5820 case ISD::TargetConstant: return "TargetConstant";
5821 case ISD::TargetConstantFP:return "TargetConstantFP";
5822 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5823 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5824 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5825 case ISD::TargetJumpTable: return "TargetJumpTable";
5826 case ISD::TargetConstantPool: return "TargetConstantPool";
5827 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5828 case ISD::TargetBlockAddress: return "TargetBlockAddress";
5830 case ISD::CopyToReg: return "CopyToReg";
5831 case ISD::CopyFromReg: return "CopyFromReg";
5832 case ISD::UNDEF: return "undef";
5833 case ISD::MERGE_VALUES: return "merge_values";
5834 case ISD::INLINEASM: return "inlineasm";
5835 case ISD::EH_LABEL: return "eh_label";
5836 case ISD::HANDLENODE: return "handlenode";
5838 // Unary operators
5839 case ISD::FABS: return "fabs";
5840 case ISD::FNEG: return "fneg";
5841 case ISD::FSQRT: return "fsqrt";
5842 case ISD::FSIN: return "fsin";
5843 case ISD::FCOS: return "fcos";
5844 case ISD::FTRUNC: return "ftrunc";
5845 case ISD::FFLOOR: return "ffloor";
5846 case ISD::FCEIL: return "fceil";
5847 case ISD::FRINT: return "frint";
5848 case ISD::FNEARBYINT: return "fnearbyint";
5849 case ISD::FEXP: return "fexp";
5850 case ISD::FEXP2: return "fexp2";
5851 case ISD::FLOG: return "flog";
5852 case ISD::FLOG2: return "flog2";
5853 case ISD::FLOG10: return "flog10";
5855 // Binary operators
5856 case ISD::ADD: return "add";
5857 case ISD::SUB: return "sub";
5858 case ISD::MUL: return "mul";
5859 case ISD::MULHU: return "mulhu";
5860 case ISD::MULHS: return "mulhs";
5861 case ISD::SDIV: return "sdiv";
5862 case ISD::UDIV: return "udiv";
5863 case ISD::SREM: return "srem";
5864 case ISD::UREM: return "urem";
5865 case ISD::SMUL_LOHI: return "smul_lohi";
5866 case ISD::UMUL_LOHI: return "umul_lohi";
5867 case ISD::SDIVREM: return "sdivrem";
5868 case ISD::UDIVREM: return "udivrem";
5869 case ISD::AND: return "and";
5870 case ISD::OR: return "or";
5871 case ISD::XOR: return "xor";
5872 case ISD::SHL: return "shl";
5873 case ISD::SRA: return "sra";
5874 case ISD::SRL: return "srl";
5875 case ISD::ROTL: return "rotl";
5876 case ISD::ROTR: return "rotr";
5877 case ISD::FADD: return "fadd";
5878 case ISD::FSUB: return "fsub";
5879 case ISD::FMUL: return "fmul";
5880 case ISD::FDIV: return "fdiv";
5881 case ISD::FMA: return "fma";
5882 case ISD::FREM: return "frem";
5883 case ISD::FCOPYSIGN: return "fcopysign";
5884 case ISD::FGETSIGN: return "fgetsign";
5885 case ISD::FPOW: return "fpow";
5887 case ISD::FPOWI: return "fpowi";
5888 case ISD::SETCC: return "setcc";
5889 case ISD::VSETCC: return "vsetcc";
5890 case ISD::SELECT: return "select";
5891 case ISD::SELECT_CC: return "select_cc";
5892 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5893 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5894 case ISD::CONCAT_VECTORS: return "concat_vectors";
5895 case ISD::INSERT_SUBVECTOR: return "insert_subvector";
5896 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5897 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5898 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5899 case ISD::CARRY_FALSE: return "carry_false";
5900 case ISD::ADDC: return "addc";
5901 case ISD::ADDE: return "adde";
5902 case ISD::SADDO: return "saddo";
5903 case ISD::UADDO: return "uaddo";
5904 case ISD::SSUBO: return "ssubo";
5905 case ISD::USUBO: return "usubo";
5906 case ISD::SMULO: return "smulo";
5907 case ISD::UMULO: return "umulo";
5908 case ISD::SUBC: return "subc";
5909 case ISD::SUBE: return "sube";
5910 case ISD::SHL_PARTS: return "shl_parts";
5911 case ISD::SRA_PARTS: return "sra_parts";
5912 case ISD::SRL_PARTS: return "srl_parts";
5914 // Conversion operators.
5915 case ISD::SIGN_EXTEND: return "sign_extend";
5916 case ISD::ZERO_EXTEND: return "zero_extend";
5917 case ISD::ANY_EXTEND: return "any_extend";
5918 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5919 case ISD::TRUNCATE: return "truncate";
5920 case ISD::FP_ROUND: return "fp_round";
5921 case ISD::FLT_ROUNDS_: return "flt_rounds";
5922 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5923 case ISD::FP_EXTEND: return "fp_extend";
5925 case ISD::SINT_TO_FP: return "sint_to_fp";
5926 case ISD::UINT_TO_FP: return "uint_to_fp";
5927 case ISD::FP_TO_SINT: return "fp_to_sint";
5928 case ISD::FP_TO_UINT: return "fp_to_uint";
5929 case ISD::BITCAST: return "bitcast";
5930 case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5931 case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5933 case ISD::CONVERT_RNDSAT: {
5934 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5935 default: llvm_unreachable("Unknown cvt code!");
5936 case ISD::CVT_FF: return "cvt_ff";
5937 case ISD::CVT_FS: return "cvt_fs";
5938 case ISD::CVT_FU: return "cvt_fu";
5939 case ISD::CVT_SF: return "cvt_sf";
5940 case ISD::CVT_UF: return "cvt_uf";
5941 case ISD::CVT_SS: return "cvt_ss";
5942 case ISD::CVT_SU: return "cvt_su";
5943 case ISD::CVT_US: return "cvt_us";
5944 case ISD::CVT_UU: return "cvt_uu";
5948 // Control flow instructions
5949 case ISD::BR: return "br";
5950 case ISD::BRIND: return "brind";
5951 case ISD::BR_JT: return "br_jt";
5952 case ISD::BRCOND: return "brcond";
5953 case ISD::BR_CC: return "br_cc";
5954 case ISD::CALLSEQ_START: return "callseq_start";
5955 case ISD::CALLSEQ_END: return "callseq_end";
5957 // Other operators
5958 case ISD::LOAD: return "load";
5959 case ISD::STORE: return "store";
5960 case ISD::VAARG: return "vaarg";
5961 case ISD::VACOPY: return "vacopy";
5962 case ISD::VAEND: return "vaend";
5963 case ISD::VASTART: return "vastart";
5964 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5965 case ISD::EXTRACT_ELEMENT: return "extract_element";
5966 case ISD::BUILD_PAIR: return "build_pair";
5967 case ISD::STACKSAVE: return "stacksave";
5968 case ISD::STACKRESTORE: return "stackrestore";
5969 case ISD::TRAP: return "trap";
5971 // Bit manipulation
5972 case ISD::BSWAP: return "bswap";
5973 case ISD::CTPOP: return "ctpop";
5974 case ISD::CTTZ: return "cttz";
5975 case ISD::CTLZ: return "ctlz";
5977 // Trampolines
5978 case ISD::TRAMPOLINE: return "trampoline";
5980 case ISD::CONDCODE:
5981 switch (cast<CondCodeSDNode>(this)->get()) {
5982 default: llvm_unreachable("Unknown setcc condition!");
5983 case ISD::SETOEQ: return "setoeq";
5984 case ISD::SETOGT: return "setogt";
5985 case ISD::SETOGE: return "setoge";
5986 case ISD::SETOLT: return "setolt";
5987 case ISD::SETOLE: return "setole";
5988 case ISD::SETONE: return "setone";
5990 case ISD::SETO: return "seto";
5991 case ISD::SETUO: return "setuo";
5992 case ISD::SETUEQ: return "setue";
5993 case ISD::SETUGT: return "setugt";
5994 case ISD::SETUGE: return "setuge";
5995 case ISD::SETULT: return "setult";
5996 case ISD::SETULE: return "setule";
5997 case ISD::SETUNE: return "setune";
5999 case ISD::SETEQ: return "seteq";
6000 case ISD::SETGT: return "setgt";
6001 case ISD::SETGE: return "setge";
6002 case ISD::SETLT: return "setlt";
6003 case ISD::SETLE: return "setle";
6004 case ISD::SETNE: return "setne";
6009 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
6010 switch (AM) {
6011 default:
6012 return "";
6013 case ISD::PRE_INC:
6014 return "<pre-inc>";
6015 case ISD::PRE_DEC:
6016 return "<pre-dec>";
6017 case ISD::POST_INC:
6018 return "<post-inc>";
6019 case ISD::POST_DEC:
6020 return "<post-dec>";
6024 std::string ISD::ArgFlagsTy::getArgFlagsString() {
6025 std::string S = "< ";
6027 if (isZExt())
6028 S += "zext ";
6029 if (isSExt())
6030 S += "sext ";
6031 if (isInReg())
6032 S += "inreg ";
6033 if (isSRet())
6034 S += "sret ";
6035 if (isByVal())
6036 S += "byval ";
6037 if (isNest())
6038 S += "nest ";
6039 if (getByValAlign())
6040 S += "byval-align:" + utostr(getByValAlign()) + " ";
6041 if (getOrigAlign())
6042 S += "orig-align:" + utostr(getOrigAlign()) + " ";
6043 if (getByValSize())
6044 S += "byval-size:" + utostr(getByValSize()) + " ";
6045 return S + ">";
6048 void SDNode::dump() const { dump(0); }
6049 void SDNode::dump(const SelectionDAG *G) const {
6050 print(dbgs(), G);
6051 dbgs() << '\n';
6054 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
6055 OS << (void*)this << ": ";
6057 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
6058 if (i) OS << ",";
6059 if (getValueType(i) == MVT::Other)
6060 OS << "ch";
6061 else
6062 OS << getValueType(i).getEVTString();
6064 OS << " = " << getOperationName(G);
6067 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
6068 if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
6069 if (!MN->memoperands_empty()) {
6070 OS << "<";
6071 OS << "Mem:";
6072 for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
6073 e = MN->memoperands_end(); i != e; ++i) {
6074 OS << **i;
6075 if (llvm::next(i) != e)
6076 OS << " ";
6078 OS << ">";
6080 } else if (const ShuffleVectorSDNode *SVN =
6081 dyn_cast<ShuffleVectorSDNode>(this)) {
6082 OS << "<";
6083 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
6084 int Idx = SVN->getMaskElt(i);
6085 if (i) OS << ",";
6086 if (Idx < 0)
6087 OS << "u";
6088 else
6089 OS << Idx;
6091 OS << ">";
6092 } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
6093 OS << '<' << CSDN->getAPIntValue() << '>';
6094 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
6095 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
6096 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
6097 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
6098 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
6099 else {
6100 OS << "<APFloat(";
6101 CSDN->getValueAPF().bitcastToAPInt().dump();
6102 OS << ")>";
6104 } else if (const GlobalAddressSDNode *GADN =
6105 dyn_cast<GlobalAddressSDNode>(this)) {
6106 int64_t offset = GADN->getOffset();
6107 OS << '<';
6108 WriteAsOperand(OS, GADN->getGlobal());
6109 OS << '>';
6110 if (offset > 0)
6111 OS << " + " << offset;
6112 else
6113 OS << " " << offset;
6114 if (unsigned int TF = GADN->getTargetFlags())
6115 OS << " [TF=" << TF << ']';
6116 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
6117 OS << "<" << FIDN->getIndex() << ">";
6118 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
6119 OS << "<" << JTDN->getIndex() << ">";
6120 if (unsigned int TF = JTDN->getTargetFlags())
6121 OS << " [TF=" << TF << ']';
6122 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
6123 int offset = CP->getOffset();
6124 if (CP->isMachineConstantPoolEntry())
6125 OS << "<" << *CP->getMachineCPVal() << ">";
6126 else
6127 OS << "<" << *CP->getConstVal() << ">";
6128 if (offset > 0)
6129 OS << " + " << offset;
6130 else
6131 OS << " " << offset;
6132 if (unsigned int TF = CP->getTargetFlags())
6133 OS << " [TF=" << TF << ']';
6134 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
6135 OS << "<";
6136 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
6137 if (LBB)
6138 OS << LBB->getName() << " ";
6139 OS << (const void*)BBDN->getBasicBlock() << ">";
6140 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
6141 OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
6142 } else if (const ExternalSymbolSDNode *ES =
6143 dyn_cast<ExternalSymbolSDNode>(this)) {
6144 OS << "'" << ES->getSymbol() << "'";
6145 if (unsigned int TF = ES->getTargetFlags())
6146 OS << " [TF=" << TF << ']';
6147 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
6148 if (M->getValue())
6149 OS << "<" << M->getValue() << ">";
6150 else
6151 OS << "<null>";
6152 } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
6153 if (MD->getMD())
6154 OS << "<" << MD->getMD() << ">";
6155 else
6156 OS << "<null>";
6157 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
6158 OS << ":" << N->getVT().getEVTString();
6160 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
6161 OS << "<" << *LD->getMemOperand();
6163 bool doExt = true;
6164 switch (LD->getExtensionType()) {
6165 default: doExt = false; break;
6166 case ISD::EXTLOAD: OS << ", anyext"; break;
6167 case ISD::SEXTLOAD: OS << ", sext"; break;
6168 case ISD::ZEXTLOAD: OS << ", zext"; break;
6170 if (doExt)
6171 OS << " from " << LD->getMemoryVT().getEVTString();
6173 const char *AM = getIndexedModeName(LD->getAddressingMode());
6174 if (*AM)
6175 OS << ", " << AM;
6177 OS << ">";
6178 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6179 OS << "<" << *ST->getMemOperand();
6181 if (ST->isTruncatingStore())
6182 OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6184 const char *AM = getIndexedModeName(ST->getAddressingMode());
6185 if (*AM)
6186 OS << ", " << AM;
6188 OS << ">";
6189 } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6190 OS << "<" << *M->getMemOperand() << ">";
6191 } else if (const BlockAddressSDNode *BA =
6192 dyn_cast<BlockAddressSDNode>(this)) {
6193 OS << "<";
6194 WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6195 OS << ", ";
6196 WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6197 OS << ">";
6198 if (unsigned int TF = BA->getTargetFlags())
6199 OS << " [TF=" << TF << ']';
6202 if (G)
6203 if (unsigned Order = G->GetOrdering(this))
6204 OS << " [ORD=" << Order << ']';
6206 if (getNodeId() != -1)
6207 OS << " [ID=" << getNodeId() << ']';
6209 DebugLoc dl = getDebugLoc();
6210 if (G && !dl.isUnknown()) {
6211 DIScope
6212 Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6213 OS << " dbg:";
6214 // Omit the directory, since it's usually long and uninteresting.
6215 if (Scope.Verify())
6216 OS << Scope.getFilename();
6217 else
6218 OS << "<unknown>";
6219 OS << ':' << dl.getLine();
6220 if (dl.getCol() != 0)
6221 OS << ':' << dl.getCol();
6225 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6226 print_types(OS, G);
6227 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6228 if (i) OS << ", "; else OS << " ";
6229 OS << (void*)getOperand(i).getNode();
6230 if (unsigned RN = getOperand(i).getResNo())
6231 OS << ":" << RN;
6233 print_details(OS, G);
6236 static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6237 const SelectionDAG *G, unsigned depth,
6238 unsigned indent)
6240 if (depth == 0)
6241 return;
6243 OS.indent(indent);
6245 N->print(OS, G);
6247 if (depth < 1)
6248 return;
6250 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6251 // Don't follow chain operands.
6252 if (N->getOperand(i).getValueType() == MVT::Other)
6253 continue;
6254 OS << '\n';
6255 printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6259 void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6260 unsigned depth) const {
6261 printrWithDepthHelper(OS, this, G, depth, 0);
6264 void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6265 // Don't print impossibly deep things.
6266 printrWithDepth(OS, G, 10);
6269 void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6270 printrWithDepth(dbgs(), G, depth);
6273 void SDNode::dumprFull(const SelectionDAG *G) const {
6274 // Don't print impossibly deep things.
6275 dumprWithDepth(G, 10);
6278 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6279 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6280 if (N->getOperand(i).getNode()->hasOneUse())
6281 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6282 else
6283 dbgs() << "\n" << std::string(indent+2, ' ')
6284 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6287 dbgs() << "\n";
6288 dbgs().indent(indent);
6289 N->dump(G);
6292 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6293 assert(N->getNumValues() == 1 &&
6294 "Can't unroll a vector with multiple results!");
6296 EVT VT = N->getValueType(0);
6297 unsigned NE = VT.getVectorNumElements();
6298 EVT EltVT = VT.getVectorElementType();
6299 DebugLoc dl = N->getDebugLoc();
6301 SmallVector<SDValue, 8> Scalars;
6302 SmallVector<SDValue, 4> Operands(N->getNumOperands());
6304 // If ResNE is 0, fully unroll the vector op.
6305 if (ResNE == 0)
6306 ResNE = NE;
6307 else if (NE > ResNE)
6308 NE = ResNE;
6310 unsigned i;
6311 for (i= 0; i != NE; ++i) {
6312 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6313 SDValue Operand = N->getOperand(j);
6314 EVT OperandVT = Operand.getValueType();
6315 if (OperandVT.isVector()) {
6316 // A vector operand; extract a single element.
6317 EVT OperandEltVT = OperandVT.getVectorElementType();
6318 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6319 OperandEltVT,
6320 Operand,
6321 getConstant(i, TLI.getPointerTy()));
6322 } else {
6323 // A scalar operand; just use it as is.
6324 Operands[j] = Operand;
6328 switch (N->getOpcode()) {
6329 default:
6330 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6331 &Operands[0], Operands.size()));
6332 break;
6333 case ISD::SHL:
6334 case ISD::SRA:
6335 case ISD::SRL:
6336 case ISD::ROTL:
6337 case ISD::ROTR:
6338 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6339 getShiftAmountOperand(Operands[0].getValueType(),
6340 Operands[1])));
6341 break;
6342 case ISD::SIGN_EXTEND_INREG:
6343 case ISD::FP_ROUND_INREG: {
6344 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6345 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6346 Operands[0],
6347 getValueType(ExtVT)));
6352 for (; i < ResNE; ++i)
6353 Scalars.push_back(getUNDEF(EltVT));
6355 return getNode(ISD::BUILD_VECTOR, dl,
6356 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6357 &Scalars[0], Scalars.size());
6361 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6362 /// location that is 'Dist' units away from the location that the 'Base' load
6363 /// is loading from.
6364 bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6365 unsigned Bytes, int Dist) const {
6366 if (LD->getChain() != Base->getChain())
6367 return false;
6368 EVT VT = LD->getValueType(0);
6369 if (VT.getSizeInBits() / 8 != Bytes)
6370 return false;
6372 SDValue Loc = LD->getOperand(1);
6373 SDValue BaseLoc = Base->getOperand(1);
6374 if (Loc.getOpcode() == ISD::FrameIndex) {
6375 if (BaseLoc.getOpcode() != ISD::FrameIndex)
6376 return false;
6377 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6378 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
6379 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6380 int FS = MFI->getObjectSize(FI);
6381 int BFS = MFI->getObjectSize(BFI);
6382 if (FS != BFS || FS != (int)Bytes) return false;
6383 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6386 // Handle X+C
6387 if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6388 cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6389 return true;
6391 const GlobalValue *GV1 = NULL;
6392 const GlobalValue *GV2 = NULL;
6393 int64_t Offset1 = 0;
6394 int64_t Offset2 = 0;
6395 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6396 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6397 if (isGA1 && isGA2 && GV1 == GV2)
6398 return Offset1 == (Offset2 + Dist*Bytes);
6399 return false;
6403 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6404 /// it cannot be inferred.
6405 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6406 // If this is a GlobalAddress + cst, return the alignment.
6407 const GlobalValue *GV;
6408 int64_t GVOffset = 0;
6409 if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6410 // If GV has specified alignment, then use it. Otherwise, use the preferred
6411 // alignment.
6412 unsigned Align = GV->getAlignment();
6413 if (!Align) {
6414 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6415 if (GVar->hasInitializer()) {
6416 const TargetData *TD = TLI.getTargetData();
6417 Align = TD->getPreferredAlignment(GVar);
6421 return MinAlign(Align, GVOffset);
6424 // If this is a direct reference to a stack slot, use information about the
6425 // stack slot's alignment.
6426 int FrameIdx = 1 << 31;
6427 int64_t FrameOffset = 0;
6428 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6429 FrameIdx = FI->getIndex();
6430 } else if (isBaseWithConstantOffset(Ptr) &&
6431 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6432 // Handle FI+Cst
6433 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6434 FrameOffset = Ptr.getConstantOperandVal(1);
6437 if (FrameIdx != (1 << 31)) {
6438 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6439 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6440 FrameOffset);
6441 return FIInfoAlign;
6444 return 0;
6447 void SelectionDAG::dump() const {
6448 dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6450 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6451 I != E; ++I) {
6452 const SDNode *N = I;
6453 if (!N->hasOneUse() && N != getRoot().getNode())
6454 DumpNodes(N, 2, this);
6457 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6459 dbgs() << "\n\n";
6462 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6463 print_types(OS, G);
6464 print_details(OS, G);
6467 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6468 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6469 const SelectionDAG *G, VisitedSDNodeSet &once) {
6470 if (!once.insert(N)) // If we've been here before, return now.
6471 return;
6473 // Dump the current SDNode, but don't end the line yet.
6474 OS << std::string(indent, ' ');
6475 N->printr(OS, G);
6477 // Having printed this SDNode, walk the children:
6478 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6479 const SDNode *child = N->getOperand(i).getNode();
6481 if (i) OS << ",";
6482 OS << " ";
6484 if (child->getNumOperands() == 0) {
6485 // This child has no grandchildren; print it inline right here.
6486 child->printr(OS, G);
6487 once.insert(child);
6488 } else { // Just the address. FIXME: also print the child's opcode.
6489 OS << (void*)child;
6490 if (unsigned RN = N->getOperand(i).getResNo())
6491 OS << ":" << RN;
6495 OS << "\n";
6497 // Dump children that have grandchildren on their own line(s).
6498 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6499 const SDNode *child = N->getOperand(i).getNode();
6500 DumpNodesr(OS, child, indent+2, G, once);
6504 void SDNode::dumpr() const {
6505 VisitedSDNodeSet once;
6506 DumpNodesr(dbgs(), this, 0, 0, once);
6509 void SDNode::dumpr(const SelectionDAG *G) const {
6510 VisitedSDNodeSet once;
6511 DumpNodesr(dbgs(), this, 0, G, once);
6515 // getAddressSpace - Return the address space this GlobalAddress belongs to.
6516 unsigned GlobalAddressSDNode::getAddressSpace() const {
6517 return getGlobal()->getType()->getAddressSpace();
6521 const Type *ConstantPoolSDNode::getType() const {
6522 if (isMachineConstantPoolEntry())
6523 return Val.MachineCPVal->getType();
6524 return Val.ConstVal->getType();
6527 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6528 APInt &SplatUndef,
6529 unsigned &SplatBitSize,
6530 bool &HasAnyUndefs,
6531 unsigned MinSplatBits,
6532 bool isBigEndian) {
6533 EVT VT = getValueType(0);
6534 assert(VT.isVector() && "Expected a vector type");
6535 unsigned sz = VT.getSizeInBits();
6536 if (MinSplatBits > sz)
6537 return false;
6539 SplatValue = APInt(sz, 0);
6540 SplatUndef = APInt(sz, 0);
6542 // Get the bits. Bits with undefined values (when the corresponding element
6543 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6544 // in SplatValue. If any of the values are not constant, give up and return
6545 // false.
6546 unsigned int nOps = getNumOperands();
6547 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6548 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6550 for (unsigned j = 0; j < nOps; ++j) {
6551 unsigned i = isBigEndian ? nOps-1-j : j;
6552 SDValue OpVal = getOperand(i);
6553 unsigned BitPos = j * EltBitSize;
6555 if (OpVal.getOpcode() == ISD::UNDEF)
6556 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6557 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6558 SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6559 zextOrTrunc(sz) << BitPos;
6560 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6561 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6562 else
6563 return false;
6566 // The build_vector is all constants or undefs. Find the smallest element
6567 // size that splats the vector.
6569 HasAnyUndefs = (SplatUndef != 0);
6570 while (sz > 8) {
6572 unsigned HalfSize = sz / 2;
6573 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6574 APInt LowValue = SplatValue.trunc(HalfSize);
6575 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6576 APInt LowUndef = SplatUndef.trunc(HalfSize);
6578 // If the two halves do not match (ignoring undef bits), stop here.
6579 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6580 MinSplatBits > HalfSize)
6581 break;
6583 SplatValue = HighValue | LowValue;
6584 SplatUndef = HighUndef & LowUndef;
6586 sz = HalfSize;
6589 SplatBitSize = sz;
6590 return true;
6593 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6594 // Find the first non-undef value in the shuffle mask.
6595 unsigned i, e;
6596 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6597 /* search */;
6599 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6601 // Make sure all remaining elements are either undef or the same as the first
6602 // non-undef value.
6603 for (int Idx = Mask[i]; i != e; ++i)
6604 if (Mask[i] >= 0 && Mask[i] != Idx)
6605 return false;
6606 return true;
6609 #ifdef XDEBUG
6610 static void checkForCyclesHelper(const SDNode *N,
6611 SmallPtrSet<const SDNode*, 32> &Visited,
6612 SmallPtrSet<const SDNode*, 32> &Checked) {
6613 // If this node has already been checked, don't check it again.
6614 if (Checked.count(N))
6615 return;
6617 // If a node has already been visited on this depth-first walk, reject it as
6618 // a cycle.
6619 if (!Visited.insert(N)) {
6620 dbgs() << "Offending node:\n";
6621 N->dumprFull();
6622 errs() << "Detected cycle in SelectionDAG\n";
6623 abort();
6626 for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6627 checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6629 Checked.insert(N);
6630 Visited.erase(N);
6632 #endif
6634 void llvm::checkForCycles(const llvm::SDNode *N) {
6635 #ifdef XDEBUG
6636 assert(N && "Checking nonexistant SDNode");
6637 SmallPtrSet<const SDNode*, 32> visited;
6638 SmallPtrSet<const SDNode*, 32> checked;
6639 checkForCyclesHelper(N, visited, checked);
6640 #endif
6643 void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6644 checkForCycles(DAG->getRoot().getNode());