Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.h
bloba0884ebf5d56a62d7bcfa0c1e4270aba54f20c3e
1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #ifndef SELECTIONDAGBUILDER_H
15 #define SELECTIONDAGBUILDER_H
17 #include "llvm/Constants.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/CodeGen/ValueTypes.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <vector>
27 namespace llvm {
29 class AliasAnalysis;
30 class AllocaInst;
31 class BasicBlock;
32 class BitCastInst;
33 class BranchInst;
34 class CallInst;
35 class DbgValueInst;
36 class ExtractElementInst;
37 class ExtractValueInst;
38 class FCmpInst;
39 class FPExtInst;
40 class FPToSIInst;
41 class FPToUIInst;
42 class FPTruncInst;
43 class Function;
44 class FunctionLoweringInfo;
45 class GetElementPtrInst;
46 class GCFunctionInfo;
47 class ICmpInst;
48 class IntToPtrInst;
49 class IndirectBrInst;
50 class InvokeInst;
51 class InsertElementInst;
52 class InsertValueInst;
53 class Instruction;
54 class LoadInst;
55 class MachineBasicBlock;
56 class MachineInstr;
57 class MachineRegisterInfo;
58 class MDNode;
59 class PHINode;
60 class PtrToIntInst;
61 class ReturnInst;
62 class SDDbgValue;
63 class SExtInst;
64 class SelectInst;
65 class ShuffleVectorInst;
66 class SIToFPInst;
67 class StoreInst;
68 class SwitchInst;
69 class TargetData;
70 class TargetLowering;
71 class TruncInst;
72 class UIToFPInst;
73 class UnreachableInst;
74 class UnwindInst;
75 class VAArgInst;
76 class ZExtInst;
78 //===----------------------------------------------------------------------===//
79 /// SelectionDAGBuilder - This is the common target-independent lowering
80 /// implementation that is parameterized by a TargetLowering object.
81 ///
82 class SelectionDAGBuilder {
83 /// CurDebugLoc - current file + line number. Changes as we build the DAG.
84 DebugLoc CurDebugLoc;
86 DenseMap<const Value*, SDValue> NodeMap;
88 /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
89 /// to preserve debug information for incoming arguments.
90 DenseMap<const Value*, SDValue> UnusedArgNodeMap;
92 /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
93 class DanglingDebugInfo {
94 const DbgValueInst* DI;
95 DebugLoc dl;
96 unsigned SDNodeOrder;
97 public:
98 DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
99 DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
100 DI(di), dl(DL), SDNodeOrder(SDNO) { }
101 const DbgValueInst* getDI() { return DI; }
102 DebugLoc getdl() { return dl; }
103 unsigned getSDNodeOrder() { return SDNodeOrder; }
106 /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
107 /// yet seen the referent. We defer handling these until we do see it.
108 DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
110 public:
111 /// PendingLoads - Loads are not emitted to the program immediately. We bunch
112 /// them up and then emit token factor nodes when possible. This allows us to
113 /// get simple disambiguation between loads without worrying about alias
114 /// analysis.
115 SmallVector<SDValue, 8> PendingLoads;
116 private:
118 /// PendingExports - CopyToReg nodes that copy values to virtual registers
119 /// for export to other blocks need to be emitted before any terminator
120 /// instruction, but they have no other ordering requirements. We bunch them
121 /// up and the emit a single tokenfactor for them just before terminator
122 /// instructions.
123 SmallVector<SDValue, 8> PendingExports;
125 /// SDNodeOrder - A unique monotonically increasing number used to order the
126 /// SDNodes we create.
127 unsigned SDNodeOrder;
129 /// Case - A struct to record the Value for a switch case, and the
130 /// case's target basic block.
131 struct Case {
132 Constant* Low;
133 Constant* High;
134 MachineBasicBlock* BB;
136 Case() : Low(0), High(0), BB(0) { }
137 Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
138 Low(low), High(high), BB(bb) { }
139 APInt size() const {
140 const APInt &rHigh = cast<ConstantInt>(High)->getValue();
141 const APInt &rLow = cast<ConstantInt>(Low)->getValue();
142 return (rHigh - rLow + 1ULL);
146 struct CaseBits {
147 uint64_t Mask;
148 MachineBasicBlock* BB;
149 unsigned Bits;
151 CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
152 Mask(mask), BB(bb), Bits(bits) { }
155 typedef std::vector<Case> CaseVector;
156 typedef std::vector<CaseBits> CaseBitsVector;
157 typedef CaseVector::iterator CaseItr;
158 typedef std::pair<CaseItr, CaseItr> CaseRange;
160 /// CaseRec - A struct with ctor used in lowering switches to a binary tree
161 /// of conditional branches.
162 struct CaseRec {
163 CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
164 CaseRange r) :
165 CaseBB(bb), LT(lt), GE(ge), Range(r) {}
167 /// CaseBB - The MBB in which to emit the compare and branch
168 MachineBasicBlock *CaseBB;
169 /// LT, GE - If nonzero, we know the current case value must be less-than or
170 /// greater-than-or-equal-to these Constants.
171 const Constant *LT;
172 const Constant *GE;
173 /// Range - A pair of iterators representing the range of case values to be
174 /// processed at this point in the binary search tree.
175 CaseRange Range;
178 typedef std::vector<CaseRec> CaseRecVector;
180 /// The comparison function for sorting the switch case values in the vector.
181 /// WARNING: Case ranges should be disjoint!
182 struct CaseCmp {
183 bool operator()(const Case &C1, const Case &C2) {
184 assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
185 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
186 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
187 return CI1->getValue().slt(CI2->getValue());
191 struct CaseBitsCmp {
192 bool operator()(const CaseBits &C1, const CaseBits &C2) {
193 return C1.Bits > C2.Bits;
197 size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
199 /// CaseBlock - This structure is used to communicate between
200 /// SelectionDAGBuilder and SDISel for the code generation of additional basic
201 /// blocks needed by multi-case switch statements.
202 struct CaseBlock {
203 CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
204 const Value *cmpmiddle,
205 MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
206 MachineBasicBlock *me)
207 : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
208 TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
209 // CC - the condition code to use for the case block's setcc node
210 ISD::CondCode CC;
211 // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
212 // Emit by default LHS op RHS. MHS is used for range comparisons:
213 // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
214 const Value *CmpLHS, *CmpMHS, *CmpRHS;
215 // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
216 MachineBasicBlock *TrueBB, *FalseBB;
217 // ThisBB - the block into which to emit the code for the setcc and branches
218 MachineBasicBlock *ThisBB;
220 struct JumpTable {
221 JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
222 MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
224 /// Reg - the virtual register containing the index of the jump table entry
225 //. to jump to.
226 unsigned Reg;
227 /// JTI - the JumpTableIndex for this jump table in the function.
228 unsigned JTI;
229 /// MBB - the MBB into which to emit the code for the indirect jump.
230 MachineBasicBlock *MBB;
231 /// Default - the MBB of the default bb, which is a successor of the range
232 /// check MBB. This is when updating PHI nodes in successors.
233 MachineBasicBlock *Default;
235 struct JumpTableHeader {
236 JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
237 bool E = false):
238 First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
239 APInt First;
240 APInt Last;
241 const Value *SValue;
242 MachineBasicBlock *HeaderBB;
243 bool Emitted;
245 typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
247 struct BitTestCase {
248 BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
249 Mask(M), ThisBB(T), TargetBB(Tr) { }
250 uint64_t Mask;
251 MachineBasicBlock *ThisBB;
252 MachineBasicBlock *TargetBB;
255 typedef SmallVector<BitTestCase, 3> BitTestInfo;
257 struct BitTestBlock {
258 BitTestBlock(APInt F, APInt R, const Value* SV,
259 unsigned Rg, EVT RgVT, bool E,
260 MachineBasicBlock* P, MachineBasicBlock* D,
261 const BitTestInfo& C):
262 First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
263 Parent(P), Default(D), Cases(C) { }
264 APInt First;
265 APInt Range;
266 const Value *SValue;
267 unsigned Reg;
268 EVT RegVT;
269 bool Emitted;
270 MachineBasicBlock *Parent;
271 MachineBasicBlock *Default;
272 BitTestInfo Cases;
275 public:
276 // TLI - This is information that describes the available target features we
277 // need for lowering. This indicates when operations are unavailable,
278 // implemented with a libcall, etc.
279 const TargetMachine &TM;
280 const TargetLowering &TLI;
281 SelectionDAG &DAG;
282 const TargetData *TD;
283 AliasAnalysis *AA;
285 /// SwitchCases - Vector of CaseBlock structures used to communicate
286 /// SwitchInst code generation information.
287 std::vector<CaseBlock> SwitchCases;
288 /// JTCases - Vector of JumpTable structures used to communicate
289 /// SwitchInst code generation information.
290 std::vector<JumpTableBlock> JTCases;
291 /// BitTestCases - Vector of BitTestBlock structures used to communicate
292 /// SwitchInst code generation information.
293 std::vector<BitTestBlock> BitTestCases;
295 // Emit PHI-node-operand constants only once even if used by multiple
296 // PHI nodes.
297 DenseMap<const Constant *, unsigned> ConstantsOut;
299 /// FuncInfo - Information about the function as a whole.
301 FunctionLoweringInfo &FuncInfo;
303 /// OptLevel - What optimization level we're generating code for.
304 ///
305 CodeGenOpt::Level OptLevel;
307 /// GFI - Garbage collection metadata for the function.
308 GCFunctionInfo *GFI;
310 /// HasTailCall - This is set to true if a call in the current
311 /// block has been translated as a tail call. In this case,
312 /// no subsequent DAG nodes should be created.
314 bool HasTailCall;
316 LLVMContext *Context;
318 SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
319 CodeGenOpt::Level ol)
320 : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
321 DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
322 HasTailCall(false), Context(dag.getContext()) {
325 void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
327 /// clear - Clear out the current SelectionDAG and the associated
328 /// state and prepare this SelectionDAGBuilder object to be used
329 /// for a new block. This doesn't clear out information about
330 /// additional blocks that are needed to complete switch lowering
331 /// or PHI node updating; that information is cleared out as it is
332 /// consumed.
333 void clear();
335 /// clearDanglingDebugInfo - Clear the dangling debug information
336 /// map. This function is seperated from the clear so that debug
337 /// information that is dangling in a basic block can be properly
338 /// resolved in a different basic block. This allows the
339 /// SelectionDAG to resolve dangling debug information attached
340 /// to PHI nodes.
341 void clearDanglingDebugInfo();
343 /// getRoot - Return the current virtual root of the Selection DAG,
344 /// flushing any PendingLoad items. This must be done before emitting
345 /// a store or any other node that may need to be ordered after any
346 /// prior load instructions.
348 SDValue getRoot();
350 /// getControlRoot - Similar to getRoot, but instead of flushing all the
351 /// PendingLoad items, flush all the PendingExports items. It is necessary
352 /// to do this before emitting a terminator instruction.
354 SDValue getControlRoot();
356 DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
358 unsigned getSDNodeOrder() const { return SDNodeOrder; }
360 void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
362 /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
363 /// from how the code appeared in the source. The ordering is used by the
364 /// scheduler to effectively turn off scheduling.
365 void AssignOrderingToNode(const SDNode *Node);
367 void visit(const Instruction &I);
369 void visit(unsigned Opcode, const User &I);
371 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
372 // generate the debug data structures now that we've seen its definition.
373 void resolveDanglingDebugInfo(const Value *V, SDValue Val);
374 SDValue getValue(const Value *V);
375 SDValue getNonRegisterValue(const Value *V);
376 SDValue getValueImpl(const Value *V);
378 void setValue(const Value *V, SDValue NewN) {
379 SDValue &N = NodeMap[V];
380 assert(N.getNode() == 0 && "Already set a value for this node!");
381 N = NewN;
384 void setUnusedArgValue(const Value *V, SDValue NewN) {
385 SDValue &N = UnusedArgNodeMap[V];
386 assert(N.getNode() == 0 && "Already set a value for this node!");
387 N = NewN;
390 void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
391 MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
392 MachineBasicBlock *SwitchBB, unsigned Opc);
393 void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
394 MachineBasicBlock *FBB,
395 MachineBasicBlock *CurBB,
396 MachineBasicBlock *SwitchBB);
397 bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
398 bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
399 void CopyToExportRegsIfNeeded(const Value *V);
400 void ExportFromCurrentBlock(const Value *V);
401 void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
402 MachineBasicBlock *LandingPad = NULL);
404 /// UpdateSplitBlock - When an MBB was split during scheduling, update the
405 /// references that ned to refer to the last resulting block.
406 void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
408 private:
409 // Terminator instructions.
410 void visitRet(const ReturnInst &I);
411 void visitBr(const BranchInst &I);
412 void visitSwitch(const SwitchInst &I);
413 void visitIndirectBr(const IndirectBrInst &I);
414 void visitUnreachable(const UnreachableInst &I) { /* noop */ }
416 // Helpers for visitSwitch
417 bool handleSmallSwitchRange(CaseRec& CR,
418 CaseRecVector& WorkList,
419 const Value* SV,
420 MachineBasicBlock* Default,
421 MachineBasicBlock *SwitchBB);
422 bool handleJTSwitchCase(CaseRec& CR,
423 CaseRecVector& WorkList,
424 const Value* SV,
425 MachineBasicBlock* Default,
426 MachineBasicBlock *SwitchBB);
427 bool handleBTSplitSwitchCase(CaseRec& CR,
428 CaseRecVector& WorkList,
429 const Value* SV,
430 MachineBasicBlock* Default,
431 MachineBasicBlock *SwitchBB);
432 bool handleBitTestsSwitchCase(CaseRec& CR,
433 CaseRecVector& WorkList,
434 const Value* SV,
435 MachineBasicBlock* Default,
436 MachineBasicBlock *SwitchBB);
438 uint32_t getEdgeWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
439 void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst);
440 public:
441 void visitSwitchCase(CaseBlock &CB,
442 MachineBasicBlock *SwitchBB);
443 void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
444 void visitBitTestCase(BitTestBlock &BB,
445 MachineBasicBlock* NextMBB,
446 unsigned Reg,
447 BitTestCase &B,
448 MachineBasicBlock *SwitchBB);
449 void visitJumpTable(JumpTable &JT);
450 void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
451 MachineBasicBlock *SwitchBB);
453 private:
454 // These all get lowered before this pass.
455 void visitInvoke(const InvokeInst &I);
456 void visitUnwind(const UnwindInst &I);
458 void visitBinary(const User &I, unsigned OpCode);
459 void visitShift(const User &I, unsigned Opcode);
460 void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
461 void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
462 void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
463 void visitFSub(const User &I);
464 void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
465 void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
466 void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
467 void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
468 void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
469 void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
470 void visitSDiv(const User &I);
471 void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
472 void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
473 void visitOr (const User &I) { visitBinary(I, ISD::OR); }
474 void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
475 void visitShl (const User &I) { visitShift(I, ISD::SHL); }
476 void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
477 void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
478 void visitICmp(const User &I);
479 void visitFCmp(const User &I);
480 // Visit the conversion instructions
481 void visitTrunc(const User &I);
482 void visitZExt(const User &I);
483 void visitSExt(const User &I);
484 void visitFPTrunc(const User &I);
485 void visitFPExt(const User &I);
486 void visitFPToUI(const User &I);
487 void visitFPToSI(const User &I);
488 void visitUIToFP(const User &I);
489 void visitSIToFP(const User &I);
490 void visitPtrToInt(const User &I);
491 void visitIntToPtr(const User &I);
492 void visitBitCast(const User &I);
494 void visitExtractElement(const User &I);
495 void visitInsertElement(const User &I);
496 void visitShuffleVector(const User &I);
498 void visitExtractValue(const ExtractValueInst &I);
499 void visitInsertValue(const InsertValueInst &I);
501 void visitGetElementPtr(const User &I);
502 void visitSelect(const User &I);
504 void visitAlloca(const AllocaInst &I);
505 void visitLoad(const LoadInst &I);
506 void visitStore(const StoreInst &I);
507 void visitPHI(const PHINode &I);
508 void visitCall(const CallInst &I);
509 bool visitMemCmpCall(const CallInst &I);
511 void visitInlineAsm(ImmutableCallSite CS);
512 const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
513 void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
515 void visitPow(const CallInst &I);
516 void visitExp2(const CallInst &I);
517 void visitExp(const CallInst &I);
518 void visitLog(const CallInst &I);
519 void visitLog2(const CallInst &I);
520 void visitLog10(const CallInst &I);
522 void visitVAStart(const CallInst &I);
523 void visitVAArg(const VAArgInst &I);
524 void visitVAEnd(const CallInst &I);
525 void visitVACopy(const CallInst &I);
527 void visitUserOp1(const Instruction &I) {
528 llvm_unreachable("UserOp1 should not exist at instruction selection time!");
530 void visitUserOp2(const Instruction &I) {
531 llvm_unreachable("UserOp2 should not exist at instruction selection time!");
534 const char *implVisitBinaryAtomic(const CallInst& I, ISD::NodeType Op);
535 const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
537 void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
539 /// EmitFuncArgumentDbgValue - If V is an function argument then create
540 /// corresponding DBG_VALUE machine instruction for it now. At the end of
541 /// instruction selection, they will be inserted to the entry BB.
542 bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
543 int64_t Offset, const SDValue &N);
546 } // end namespace llvm
548 #endif