1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
14 //===----------------------------------------------------------------------===//
17 #include "ARMAddressingModes.h"
18 #include "ARMBaseInstrInfo.h"
19 #include "ARMCallingConv.h"
20 #include "ARMRegisterInfo.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMSubtarget.h"
23 #include "ARMConstantPoolValue.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/Operator.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/GetElementPtrTypeIterator.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
53 DisableARMFastISel("disable-arm-fast-isel",
54 cl::desc("Turn off experimental ARM fast-isel support"),
55 cl::init(false), cl::Hidden
);
57 extern cl::opt
<bool> EnableARMLongCalls
;
61 // All possible address modes, plus some.
62 typedef struct Address
{
75 // Innocuous defaults for our address.
77 : BaseType(RegBase
), Offset(0) {
82 class ARMFastISel
: public FastISel
{
84 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85 /// make the right decision when generating code for different targets.
86 const ARMSubtarget
*Subtarget
;
87 const TargetMachine
&TM
;
88 const TargetInstrInfo
&TII
;
89 const TargetLowering
&TLI
;
92 // Convenience variables to avoid some queries.
97 explicit ARMFastISel(FunctionLoweringInfo
&funcInfo
)
99 TM(funcInfo
.MF
->getTarget()),
100 TII(*TM
.getInstrInfo()),
101 TLI(*TM
.getTargetLowering()) {
102 Subtarget
= &TM
.getSubtarget
<ARMSubtarget
>();
103 AFI
= funcInfo
.MF
->getInfo
<ARMFunctionInfo
>();
104 isThumb
= AFI
->isThumbFunction();
105 Context
= &funcInfo
.Fn
->getContext();
108 // Code from FastISel.cpp.
109 virtual unsigned FastEmitInst_(unsigned MachineInstOpcode
,
110 const TargetRegisterClass
*RC
);
111 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode
,
112 const TargetRegisterClass
*RC
,
113 unsigned Op0
, bool Op0IsKill
);
114 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode
,
115 const TargetRegisterClass
*RC
,
116 unsigned Op0
, bool Op0IsKill
,
117 unsigned Op1
, bool Op1IsKill
);
118 virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode
,
119 const TargetRegisterClass
*RC
,
120 unsigned Op0
, bool Op0IsKill
,
121 unsigned Op1
, bool Op1IsKill
,
122 unsigned Op2
, bool Op2IsKill
);
123 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode
,
124 const TargetRegisterClass
*RC
,
125 unsigned Op0
, bool Op0IsKill
,
127 virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode
,
128 const TargetRegisterClass
*RC
,
129 unsigned Op0
, bool Op0IsKill
,
130 const ConstantFP
*FPImm
);
131 virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode
,
132 const TargetRegisterClass
*RC
,
133 unsigned Op0
, bool Op0IsKill
,
134 unsigned Op1
, bool Op1IsKill
,
136 virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode
,
137 const TargetRegisterClass
*RC
,
139 virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode
,
140 const TargetRegisterClass
*RC
,
141 uint64_t Imm1
, uint64_t Imm2
);
143 virtual unsigned FastEmitInst_extractsubreg(MVT RetVT
,
144 unsigned Op0
, bool Op0IsKill
,
147 // Backend specific FastISel code.
148 virtual bool TargetSelectInstruction(const Instruction
*I
);
149 virtual unsigned TargetMaterializeConstant(const Constant
*C
);
150 virtual unsigned TargetMaterializeAlloca(const AllocaInst
*AI
);
152 #include "ARMGenFastISel.inc"
154 // Instruction selection routines.
156 bool SelectLoad(const Instruction
*I
);
157 bool SelectStore(const Instruction
*I
);
158 bool SelectBranch(const Instruction
*I
);
159 bool SelectCmp(const Instruction
*I
);
160 bool SelectFPExt(const Instruction
*I
);
161 bool SelectFPTrunc(const Instruction
*I
);
162 bool SelectBinaryOp(const Instruction
*I
, unsigned ISDOpcode
);
163 bool SelectSIToFP(const Instruction
*I
);
164 bool SelectFPToSI(const Instruction
*I
);
165 bool SelectSDiv(const Instruction
*I
);
166 bool SelectSRem(const Instruction
*I
);
167 bool SelectCall(const Instruction
*I
);
168 bool SelectSelect(const Instruction
*I
);
169 bool SelectRet(const Instruction
*I
);
170 bool SelectIntCast(const Instruction
*I
);
174 bool isTypeLegal(const Type
*Ty
, MVT
&VT
);
175 bool isLoadTypeLegal(const Type
*Ty
, MVT
&VT
);
176 bool ARMEmitLoad(EVT VT
, unsigned &ResultReg
, Address
&Addr
);
177 bool ARMEmitStore(EVT VT
, unsigned SrcReg
, Address
&Addr
);
178 bool ARMComputeAddress(const Value
*Obj
, Address
&Addr
);
179 void ARMSimplifyAddress(Address
&Addr
, EVT VT
);
180 unsigned ARMMaterializeFP(const ConstantFP
*CFP
, EVT VT
);
181 unsigned ARMMaterializeInt(const Constant
*C
, EVT VT
);
182 unsigned ARMMaterializeGV(const GlobalValue
*GV
, EVT VT
);
183 unsigned ARMMoveToFPReg(EVT VT
, unsigned SrcReg
);
184 unsigned ARMMoveToIntReg(EVT VT
, unsigned SrcReg
);
185 unsigned ARMSelectCallOp(const GlobalValue
*GV
);
187 // Call handling routines.
189 bool FastEmitExtend(ISD::NodeType Opc
, EVT DstVT
, unsigned Src
, EVT SrcVT
,
190 unsigned &ResultReg
);
191 CCAssignFn
*CCAssignFnForCall(CallingConv::ID CC
, bool Return
);
192 bool ProcessCallArgs(SmallVectorImpl
<Value
*> &Args
,
193 SmallVectorImpl
<unsigned> &ArgRegs
,
194 SmallVectorImpl
<MVT
> &ArgVTs
,
195 SmallVectorImpl
<ISD::ArgFlagsTy
> &ArgFlags
,
196 SmallVectorImpl
<unsigned> &RegArgs
,
199 bool FinishCall(MVT RetVT
, SmallVectorImpl
<unsigned> &UsedRegs
,
200 const Instruction
*I
, CallingConv::ID CC
,
202 bool ARMEmitLibcall(const Instruction
*I
, RTLIB::Libcall Call
);
204 // OptionalDef handling routines.
206 bool isARMNEONPred(const MachineInstr
*MI
);
207 bool DefinesOptionalPredicate(MachineInstr
*MI
, bool *CPSR
);
208 const MachineInstrBuilder
&AddOptionalDefs(const MachineInstrBuilder
&MIB
);
209 void AddLoadStoreOperands(EVT VT
, Address
&Addr
,
210 const MachineInstrBuilder
&MIB
,
214 } // end anonymous namespace
216 #include "ARMGenCallingConv.inc"
218 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
219 // we don't care about implicit defs here, just places we'll need to add a
220 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
221 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr
*MI
, bool *CPSR
) {
222 const MCInstrDesc
&MCID
= MI
->getDesc();
223 if (!MCID
.hasOptionalDef())
226 // Look to see if our OptionalDef is defining CPSR or CCR.
227 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
228 const MachineOperand
&MO
= MI
->getOperand(i
);
229 if (!MO
.isReg() || !MO
.isDef()) continue;
230 if (MO
.getReg() == ARM::CPSR
)
236 bool ARMFastISel::isARMNEONPred(const MachineInstr
*MI
) {
237 const MCInstrDesc
&MCID
= MI
->getDesc();
239 // If we're a thumb2 or not NEON function we were handled via isPredicable.
240 if ((MCID
.TSFlags
& ARMII::DomainMask
) != ARMII::DomainNEON
||
241 AFI
->isThumb2Function())
244 for (unsigned i
= 0, e
= MCID
.getNumOperands(); i
!= e
; ++i
)
245 if (MCID
.OpInfo
[i
].isPredicate())
251 // If the machine is predicable go ahead and add the predicate operands, if
252 // it needs default CC operands add those.
253 // TODO: If we want to support thumb1 then we'll need to deal with optional
254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
255 // for descriptions why.
256 const MachineInstrBuilder
&
257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder
&MIB
) {
258 MachineInstr
*MI
= &*MIB
;
260 // Do we use a predicate? or...
261 // Are we NEON in ARM mode and have a predicate operand? If so, I know
262 // we're not predicable but add it anyways.
263 if (TII
.isPredicable(MI
) || isARMNEONPred(MI
))
266 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
267 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
269 if (DefinesOptionalPredicate(MI
, &CPSR
)) {
278 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode
,
279 const TargetRegisterClass
* RC
) {
280 unsigned ResultReg
= createResultReg(RC
);
281 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
283 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
));
287 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode
,
288 const TargetRegisterClass
*RC
,
289 unsigned Op0
, bool Op0IsKill
) {
290 unsigned ResultReg
= createResultReg(RC
);
291 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
293 if (II
.getNumDefs() >= 1)
294 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
295 .addReg(Op0
, Op0IsKill
* RegState::Kill
));
297 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
298 .addReg(Op0
, Op0IsKill
* RegState::Kill
));
299 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
300 TII
.get(TargetOpcode::COPY
), ResultReg
)
301 .addReg(II
.ImplicitDefs
[0]));
306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode
,
307 const TargetRegisterClass
*RC
,
308 unsigned Op0
, bool Op0IsKill
,
309 unsigned Op1
, bool Op1IsKill
) {
310 unsigned ResultReg
= createResultReg(RC
);
311 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
313 if (II
.getNumDefs() >= 1)
314 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
315 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
316 .addReg(Op1
, Op1IsKill
* RegState::Kill
));
318 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
319 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
320 .addReg(Op1
, Op1IsKill
* RegState::Kill
));
321 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
322 TII
.get(TargetOpcode::COPY
), ResultReg
)
323 .addReg(II
.ImplicitDefs
[0]));
328 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode
,
329 const TargetRegisterClass
*RC
,
330 unsigned Op0
, bool Op0IsKill
,
331 unsigned Op1
, bool Op1IsKill
,
332 unsigned Op2
, bool Op2IsKill
) {
333 unsigned ResultReg
= createResultReg(RC
);
334 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
336 if (II
.getNumDefs() >= 1)
337 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
338 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
339 .addReg(Op1
, Op1IsKill
* RegState::Kill
)
340 .addReg(Op2
, Op2IsKill
* RegState::Kill
));
342 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
343 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
344 .addReg(Op1
, Op1IsKill
* RegState::Kill
)
345 .addReg(Op2
, Op2IsKill
* RegState::Kill
));
346 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
347 TII
.get(TargetOpcode::COPY
), ResultReg
)
348 .addReg(II
.ImplicitDefs
[0]));
353 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode
,
354 const TargetRegisterClass
*RC
,
355 unsigned Op0
, bool Op0IsKill
,
357 unsigned ResultReg
= createResultReg(RC
);
358 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
360 if (II
.getNumDefs() >= 1)
361 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
362 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
365 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
366 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
368 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
369 TII
.get(TargetOpcode::COPY
), ResultReg
)
370 .addReg(II
.ImplicitDefs
[0]));
375 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode
,
376 const TargetRegisterClass
*RC
,
377 unsigned Op0
, bool Op0IsKill
,
378 const ConstantFP
*FPImm
) {
379 unsigned ResultReg
= createResultReg(RC
);
380 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
382 if (II
.getNumDefs() >= 1)
383 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
384 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
387 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
388 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
390 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
391 TII
.get(TargetOpcode::COPY
), ResultReg
)
392 .addReg(II
.ImplicitDefs
[0]));
397 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode
,
398 const TargetRegisterClass
*RC
,
399 unsigned Op0
, bool Op0IsKill
,
400 unsigned Op1
, bool Op1IsKill
,
402 unsigned ResultReg
= createResultReg(RC
);
403 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
405 if (II
.getNumDefs() >= 1)
406 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
407 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
408 .addReg(Op1
, Op1IsKill
* RegState::Kill
)
411 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
412 .addReg(Op0
, Op0IsKill
* RegState::Kill
)
413 .addReg(Op1
, Op1IsKill
* RegState::Kill
)
415 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
416 TII
.get(TargetOpcode::COPY
), ResultReg
)
417 .addReg(II
.ImplicitDefs
[0]));
422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode
,
423 const TargetRegisterClass
*RC
,
425 unsigned ResultReg
= createResultReg(RC
);
426 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
428 if (II
.getNumDefs() >= 1)
429 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
432 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
434 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
435 TII
.get(TargetOpcode::COPY
), ResultReg
)
436 .addReg(II
.ImplicitDefs
[0]));
441 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode
,
442 const TargetRegisterClass
*RC
,
443 uint64_t Imm1
, uint64_t Imm2
) {
444 unsigned ResultReg
= createResultReg(RC
);
445 const MCInstrDesc
&II
= TII
.get(MachineInstOpcode
);
447 if (II
.getNumDefs() >= 1)
448 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
, ResultReg
)
449 .addImm(Imm1
).addImm(Imm2
));
451 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, II
)
452 .addImm(Imm1
).addImm(Imm2
));
453 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
454 TII
.get(TargetOpcode::COPY
),
456 .addReg(II
.ImplicitDefs
[0]));
461 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT
,
462 unsigned Op0
, bool Op0IsKill
,
464 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(RetVT
));
465 assert(TargetRegisterInfo::isVirtualRegister(Op0
) &&
466 "Cannot yet extract from physregs");
467 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
,
468 DL
, TII
.get(TargetOpcode::COPY
), ResultReg
)
469 .addReg(Op0
, getKillRegState(Op0IsKill
), Idx
));
473 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
474 // checks from the various callers.
475 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT
, unsigned SrcReg
) {
476 if (VT
== MVT::f64
) return 0;
478 unsigned MoveReg
= createResultReg(TLI
.getRegClassFor(VT
));
479 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
480 TII
.get(ARM::VMOVRS
), MoveReg
)
485 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT
, unsigned SrcReg
) {
486 if (VT
== MVT::i64
) return 0;
488 unsigned MoveReg
= createResultReg(TLI
.getRegClassFor(VT
));
489 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
490 TII
.get(ARM::VMOVSR
), MoveReg
)
495 // For double width floating point we need to materialize two constants
496 // (the high and the low) into integer registers then use a move to get
497 // the combined constant into an FP reg.
498 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP
*CFP
, EVT VT
) {
499 const APFloat Val
= CFP
->getValueAPF();
500 bool is64bit
= VT
== MVT::f64
;
502 // This checks to see if we can use VFP3 instructions to materialize
503 // a constant, otherwise we have to go through the constant pool.
504 if (TLI
.isFPImmLegal(Val
, VT
)) {
505 unsigned Opc
= is64bit
? ARM::FCONSTD
: ARM::FCONSTS
;
506 unsigned DestReg
= createResultReg(TLI
.getRegClassFor(VT
));
507 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(Opc
),
513 // Require VFP2 for loading fp constants.
514 if (!Subtarget
->hasVFP2()) return false;
516 // MachineConstantPool wants an explicit alignment.
517 unsigned Align
= TD
.getPrefTypeAlignment(CFP
->getType());
519 // TODO: Figure out if this is correct.
520 Align
= TD
.getTypeAllocSize(CFP
->getType());
522 unsigned Idx
= MCP
.getConstantPoolIndex(cast
<Constant
>(CFP
), Align
);
523 unsigned DestReg
= createResultReg(TLI
.getRegClassFor(VT
));
524 unsigned Opc
= is64bit
? ARM::VLDRD
: ARM::VLDRS
;
526 // The extra reg is for addrmode5.
527 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(Opc
),
529 .addConstantPoolIndex(Idx
)
534 unsigned ARMFastISel::ARMMaterializeInt(const Constant
*C
, EVT VT
) {
536 // For now 32-bit only.
537 if (VT
!= MVT::i32
) return false;
539 unsigned DestReg
= createResultReg(TLI
.getRegClassFor(VT
));
541 // If we can do this in a single instruction without a constant pool entry
543 const ConstantInt
*CI
= cast
<ConstantInt
>(C
);
544 if (Subtarget
->hasV6T2Ops() && isUInt
<16>(CI
->getSExtValue())) {
545 unsigned Opc
= isThumb
? ARM::t2MOVi16
: ARM::MOVi16
;
546 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
547 TII
.get(Opc
), DestReg
)
548 .addImm(CI
->getSExtValue()));
552 // MachineConstantPool wants an explicit alignment.
553 unsigned Align
= TD
.getPrefTypeAlignment(C
->getType());
555 // TODO: Figure out if this is correct.
556 Align
= TD
.getTypeAllocSize(C
->getType());
558 unsigned Idx
= MCP
.getConstantPoolIndex(C
, Align
);
561 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
562 TII
.get(ARM::t2LDRpci
), DestReg
)
563 .addConstantPoolIndex(Idx
));
565 // The extra immediate is for addrmode2.
566 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
567 TII
.get(ARM::LDRcp
), DestReg
)
568 .addConstantPoolIndex(Idx
)
574 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue
*GV
, EVT VT
) {
575 // For now 32-bit only.
576 if (VT
!= MVT::i32
) return 0;
578 Reloc::Model RelocM
= TM
.getRelocationModel();
580 // TODO: Need more magic for ARM PIC.
581 if (!isThumb
&& (RelocM
== Reloc::PIC_
)) return 0;
583 // MachineConstantPool wants an explicit alignment.
584 unsigned Align
= TD
.getPrefTypeAlignment(GV
->getType());
586 // TODO: Figure out if this is correct.
587 Align
= TD
.getTypeAllocSize(GV
->getType());
591 unsigned PCAdj
= (RelocM
!= Reloc::PIC_
) ? 0 : (Subtarget
->isThumb() ? 4 : 8);
592 unsigned Id
= AFI
->createPICLabelUId();
593 ARMConstantPoolValue
*CPV
= new ARMConstantPoolValue(GV
, Id
,
594 ARMCP::CPValue
, PCAdj
);
595 unsigned Idx
= MCP
.getConstantPoolIndex(CPV
, Align
);
598 MachineInstrBuilder MIB
;
599 unsigned DestReg
= createResultReg(TLI
.getRegClassFor(VT
));
601 unsigned Opc
= (RelocM
!= Reloc::PIC_
) ? ARM::t2LDRpci
: ARM::t2LDRpci_pic
;
602 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(Opc
), DestReg
)
603 .addConstantPoolIndex(Idx
);
604 if (RelocM
== Reloc::PIC_
)
607 // The extra immediate is for addrmode2.
608 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(ARM::LDRcp
),
610 .addConstantPoolIndex(Idx
)
613 AddOptionalDefs(MIB
);
615 if (Subtarget
->GVIsIndirectSymbol(GV
, RelocM
)) {
616 unsigned NewDestReg
= createResultReg(TLI
.getRegClassFor(VT
));
618 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(ARM::t2LDRi12
),
623 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(ARM::LDRi12
),
627 DestReg
= NewDestReg
;
628 AddOptionalDefs(MIB
);
634 unsigned ARMFastISel::TargetMaterializeConstant(const Constant
*C
) {
635 EVT VT
= TLI
.getValueType(C
->getType(), true);
637 // Only handle simple types.
638 if (!VT
.isSimple()) return 0;
640 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
641 return ARMMaterializeFP(CFP
, VT
);
642 else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
643 return ARMMaterializeGV(GV
, VT
);
644 else if (isa
<ConstantInt
>(C
))
645 return ARMMaterializeInt(C
, VT
);
650 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst
*AI
) {
651 // Don't handle dynamic allocas.
652 if (!FuncInfo
.StaticAllocaMap
.count(AI
)) return 0;
655 if (!isLoadTypeLegal(AI
->getType(), VT
)) return false;
657 DenseMap
<const AllocaInst
*, int>::iterator SI
=
658 FuncInfo
.StaticAllocaMap
.find(AI
);
660 // This will get lowered later into the correct offsets and registers
661 // via rewriteXFrameIndex.
662 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
663 TargetRegisterClass
* RC
= TLI
.getRegClassFor(VT
);
664 unsigned ResultReg
= createResultReg(RC
);
665 unsigned Opc
= isThumb
? ARM::t2ADDri
: ARM::ADDri
;
666 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, *FuncInfo
.InsertPt
, DL
,
667 TII
.get(Opc
), ResultReg
)
668 .addFrameIndex(SI
->second
)
676 bool ARMFastISel::isTypeLegal(const Type
*Ty
, MVT
&VT
) {
677 EVT evt
= TLI
.getValueType(Ty
, true);
679 // Only handle simple types.
680 if (evt
== MVT::Other
|| !evt
.isSimple()) return false;
681 VT
= evt
.getSimpleVT();
683 // Handle all legal types, i.e. a register that will directly hold this
685 return TLI
.isTypeLegal(VT
);
688 bool ARMFastISel::isLoadTypeLegal(const Type
*Ty
, MVT
&VT
) {
689 if (isTypeLegal(Ty
, VT
)) return true;
691 // If this is a type than can be sign or zero-extended to a basic operation
692 // go ahead and accept it now.
693 if (VT
== MVT::i8
|| VT
== MVT::i16
)
699 // Computes the address to get to an object.
700 bool ARMFastISel::ARMComputeAddress(const Value
*Obj
, Address
&Addr
) {
701 // Some boilerplate from the X86 FastISel.
702 const User
*U
= NULL
;
703 unsigned Opcode
= Instruction::UserOp1
;
704 if (const Instruction
*I
= dyn_cast
<Instruction
>(Obj
)) {
705 // Don't walk into other basic blocks unless the object is an alloca from
706 // another block, otherwise it may not have a virtual register assigned.
707 if (FuncInfo
.StaticAllocaMap
.count(static_cast<const AllocaInst
*>(Obj
)) ||
708 FuncInfo
.MBBMap
[I
->getParent()] == FuncInfo
.MBB
) {
709 Opcode
= I
->getOpcode();
712 } else if (const ConstantExpr
*C
= dyn_cast
<ConstantExpr
>(Obj
)) {
713 Opcode
= C
->getOpcode();
717 if (const PointerType
*Ty
= dyn_cast
<PointerType
>(Obj
->getType()))
718 if (Ty
->getAddressSpace() > 255)
719 // Fast instruction selection doesn't support the special
726 case Instruction::BitCast
: {
727 // Look through bitcasts.
728 return ARMComputeAddress(U
->getOperand(0), Addr
);
730 case Instruction::IntToPtr
: {
731 // Look past no-op inttoptrs.
732 if (TLI
.getValueType(U
->getOperand(0)->getType()) == TLI
.getPointerTy())
733 return ARMComputeAddress(U
->getOperand(0), Addr
);
736 case Instruction::PtrToInt
: {
737 // Look past no-op ptrtoints.
738 if (TLI
.getValueType(U
->getType()) == TLI
.getPointerTy())
739 return ARMComputeAddress(U
->getOperand(0), Addr
);
742 case Instruction::GetElementPtr
: {
743 Address SavedAddr
= Addr
;
744 int TmpOffset
= Addr
.Offset
;
746 // Iterate through the GEP folding the constants into offsets where
748 gep_type_iterator GTI
= gep_type_begin(U
);
749 for (User::const_op_iterator i
= U
->op_begin() + 1, e
= U
->op_end();
750 i
!= e
; ++i
, ++GTI
) {
751 const Value
*Op
= *i
;
752 if (const StructType
*STy
= dyn_cast
<StructType
>(*GTI
)) {
753 const StructLayout
*SL
= TD
.getStructLayout(STy
);
754 unsigned Idx
= cast
<ConstantInt
>(Op
)->getZExtValue();
755 TmpOffset
+= SL
->getElementOffset(Idx
);
757 uint64_t S
= TD
.getTypeAllocSize(GTI
.getIndexedType());
759 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Op
)) {
760 // Constant-offset addressing.
761 TmpOffset
+= CI
->getSExtValue() * S
;
764 if (isa
<AddOperator
>(Op
) &&
765 (!isa
<Instruction
>(Op
) ||
766 FuncInfo
.MBBMap
[cast
<Instruction
>(Op
)->getParent()]
768 isa
<ConstantInt
>(cast
<AddOperator
>(Op
)->getOperand(1))) {
769 // An add (in the same block) with a constant operand. Fold the
772 cast
<ConstantInt
>(cast
<AddOperator
>(Op
)->getOperand(1));
773 TmpOffset
+= CI
->getSExtValue() * S
;
774 // Iterate on the other operand.
775 Op
= cast
<AddOperator
>(Op
)->getOperand(0);
779 goto unsupported_gep
;
784 // Try to grab the base operand now.
785 Addr
.Offset
= TmpOffset
;
786 if (ARMComputeAddress(U
->getOperand(0), Addr
)) return true;
788 // We failed, restore everything and try the other options.
794 case Instruction::Alloca
: {
795 const AllocaInst
*AI
= cast
<AllocaInst
>(Obj
);
796 DenseMap
<const AllocaInst
*, int>::iterator SI
=
797 FuncInfo
.StaticAllocaMap
.find(AI
);
798 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
799 Addr
.BaseType
= Address::FrameIndexBase
;
800 Addr
.Base
.FI
= SI
->second
;
807 // Materialize the global variable's address into a reg which can
808 // then be used later to load the variable.
809 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Obj
)) {
810 unsigned Tmp
= ARMMaterializeGV(GV
, TLI
.getValueType(Obj
->getType()));
811 if (Tmp
== 0) return false;
817 // Try to get this in a register if nothing else has worked.
818 if (Addr
.Base
.Reg
== 0) Addr
.Base
.Reg
= getRegForValue(Obj
);
819 return Addr
.Base
.Reg
!= 0;
822 void ARMFastISel::ARMSimplifyAddress(Address
&Addr
, EVT VT
) {
824 assert(VT
.isSimple() && "Non-simple types are invalid here!");
826 bool needsLowering
= false;
827 switch (VT
.getSimpleVT().SimpleTy
) {
829 assert(false && "Unhandled load/store type!");
834 // Integer loads/stores handle 12-bit offsets.
835 needsLowering
= ((Addr
.Offset
& 0xfff) != Addr
.Offset
);
839 // Floating point operands handle 8-bit offsets.
840 needsLowering
= ((Addr
.Offset
& 0xff) != Addr
.Offset
);
844 // If this is a stack pointer and the offset needs to be simplified then
845 // put the alloca address into a register, set the base type back to
846 // register and continue. This should almost never happen.
847 if (needsLowering
&& Addr
.BaseType
== Address::FrameIndexBase
) {
848 TargetRegisterClass
*RC
= isThumb
? ARM::tGPRRegisterClass
:
849 ARM::GPRRegisterClass
;
850 unsigned ResultReg
= createResultReg(RC
);
851 unsigned Opc
= isThumb
? ARM::t2ADDri
: ARM::ADDri
;
852 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, *FuncInfo
.InsertPt
, DL
,
853 TII
.get(Opc
), ResultReg
)
854 .addFrameIndex(Addr
.Base
.FI
)
856 Addr
.Base
.Reg
= ResultReg
;
857 Addr
.BaseType
= Address::RegBase
;
860 // Since the offset is too large for the load/store instruction
861 // get the reg+offset into a register.
863 Addr
.Base
.Reg
= FastEmit_ri_(MVT::i32
, ISD::ADD
, Addr
.Base
.Reg
,
864 /*Op0IsKill*/false, Addr
.Offset
, MVT::i32
);
869 void ARMFastISel::AddLoadStoreOperands(EVT VT
, Address
&Addr
,
870 const MachineInstrBuilder
&MIB
,
872 // addrmode5 output depends on the selection dag addressing dividing the
873 // offset by 4 that it then later multiplies. Do this here as well.
874 if (VT
.getSimpleVT().SimpleTy
== MVT::f32
||
875 VT
.getSimpleVT().SimpleTy
== MVT::f64
)
878 // Frame base works a bit differently. Handle it separately.
879 if (Addr
.BaseType
== Address::FrameIndexBase
) {
880 int FI
= Addr
.Base
.FI
;
881 int Offset
= Addr
.Offset
;
882 MachineMemOperand
*MMO
=
883 FuncInfo
.MF
->getMachineMemOperand(
884 MachinePointerInfo::getFixedStack(FI
, Offset
),
886 MFI
.getObjectSize(FI
),
887 MFI
.getObjectAlignment(FI
));
888 // Now add the rest of the operands.
889 MIB
.addFrameIndex(FI
);
891 // ARM halfword load/stores need an additional operand.
892 if (!isThumb
&& VT
.getSimpleVT().SimpleTy
== MVT::i16
) MIB
.addReg(0);
894 MIB
.addImm(Addr
.Offset
);
895 MIB
.addMemOperand(MMO
);
897 // Now add the rest of the operands.
898 MIB
.addReg(Addr
.Base
.Reg
);
900 // ARM halfword load/stores need an additional operand.
901 if (!isThumb
&& VT
.getSimpleVT().SimpleTy
== MVT::i16
) MIB
.addReg(0);
903 MIB
.addImm(Addr
.Offset
);
905 AddOptionalDefs(MIB
);
908 bool ARMFastISel::ARMEmitLoad(EVT VT
, unsigned &ResultReg
, Address
&Addr
) {
910 assert(VT
.isSimple() && "Non-simple types are invalid here!");
912 TargetRegisterClass
*RC
;
913 switch (VT
.getSimpleVT().SimpleTy
) {
914 // This is mostly going to be Neon/vector support.
915 default: return false;
917 Opc
= isThumb
? ARM::t2LDRHi12
: ARM::LDRH
;
918 RC
= ARM::GPRRegisterClass
;
921 Opc
= isThumb
? ARM::t2LDRBi12
: ARM::LDRBi12
;
922 RC
= ARM::GPRRegisterClass
;
925 Opc
= isThumb
? ARM::t2LDRi12
: ARM::LDRi12
;
926 RC
= ARM::GPRRegisterClass
;
930 RC
= TLI
.getRegClassFor(VT
);
934 RC
= TLI
.getRegClassFor(VT
);
937 // Simplify this down to something we can handle.
938 ARMSimplifyAddress(Addr
, VT
);
940 // Create the base instruction, then add the operands.
941 ResultReg
= createResultReg(RC
);
942 MachineInstrBuilder MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
943 TII
.get(Opc
), ResultReg
);
944 AddLoadStoreOperands(VT
, Addr
, MIB
, MachineMemOperand::MOLoad
);
948 bool ARMFastISel::SelectLoad(const Instruction
*I
) {
949 // Verify we have a legal type before going any further.
951 if (!isLoadTypeLegal(I
->getType(), VT
))
954 // See if we can handle this address.
956 if (!ARMComputeAddress(I
->getOperand(0), Addr
)) return false;
959 if (!ARMEmitLoad(VT
, ResultReg
, Addr
)) return false;
960 UpdateValueMap(I
, ResultReg
);
964 bool ARMFastISel::ARMEmitStore(EVT VT
, unsigned SrcReg
, Address
&Addr
) {
966 switch (VT
.getSimpleVT().SimpleTy
) {
967 // This is mostly going to be Neon/vector support.
968 default: return false;
970 unsigned Res
= createResultReg(isThumb
? ARM::tGPRRegisterClass
:
971 ARM::GPRRegisterClass
);
972 unsigned Opc
= isThumb
? ARM::t2ANDri
: ARM::ANDri
;
973 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
975 .addReg(SrcReg
).addImm(1));
977 } // Fallthrough here.
979 StrOpc
= isThumb
? ARM::t2STRBi12
: ARM::STRBi12
;
982 StrOpc
= isThumb
? ARM::t2STRHi12
: ARM::STRH
;
985 StrOpc
= isThumb
? ARM::t2STRi12
: ARM::STRi12
;
988 if (!Subtarget
->hasVFP2()) return false;
992 if (!Subtarget
->hasVFP2()) return false;
996 // Simplify this down to something we can handle.
997 ARMSimplifyAddress(Addr
, VT
);
999 // Create the base instruction, then add the operands.
1000 MachineInstrBuilder MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1002 .addReg(SrcReg
, getKillRegState(true));
1003 AddLoadStoreOperands(VT
, Addr
, MIB
, MachineMemOperand::MOStore
);
1007 bool ARMFastISel::SelectStore(const Instruction
*I
) {
1008 Value
*Op0
= I
->getOperand(0);
1009 unsigned SrcReg
= 0;
1011 // Verify we have a legal type before going any further.
1013 if (!isLoadTypeLegal(I
->getOperand(0)->getType(), VT
))
1016 // Get the value to be stored into a register.
1017 SrcReg
= getRegForValue(Op0
);
1018 if (SrcReg
== 0) return false;
1020 // See if we can handle this address.
1022 if (!ARMComputeAddress(I
->getOperand(1), Addr
))
1025 if (!ARMEmitStore(VT
, SrcReg
, Addr
)) return false;
1029 static ARMCC::CondCodes
getComparePred(CmpInst::Predicate Pred
) {
1031 // Needs two compares...
1032 case CmpInst::FCMP_ONE
:
1033 case CmpInst::FCMP_UEQ
:
1035 // AL is our "false" for now. The other two need more compares.
1037 case CmpInst::ICMP_EQ
:
1038 case CmpInst::FCMP_OEQ
:
1040 case CmpInst::ICMP_SGT
:
1041 case CmpInst::FCMP_OGT
:
1043 case CmpInst::ICMP_SGE
:
1044 case CmpInst::FCMP_OGE
:
1046 case CmpInst::ICMP_UGT
:
1047 case CmpInst::FCMP_UGT
:
1049 case CmpInst::FCMP_OLT
:
1051 case CmpInst::ICMP_ULE
:
1052 case CmpInst::FCMP_OLE
:
1054 case CmpInst::FCMP_ORD
:
1056 case CmpInst::FCMP_UNO
:
1058 case CmpInst::FCMP_UGE
:
1060 case CmpInst::ICMP_SLT
:
1061 case CmpInst::FCMP_ULT
:
1063 case CmpInst::ICMP_SLE
:
1064 case CmpInst::FCMP_ULE
:
1066 case CmpInst::FCMP_UNE
:
1067 case CmpInst::ICMP_NE
:
1069 case CmpInst::ICMP_UGE
:
1071 case CmpInst::ICMP_ULT
:
1076 bool ARMFastISel::SelectBranch(const Instruction
*I
) {
1077 const BranchInst
*BI
= cast
<BranchInst
>(I
);
1078 MachineBasicBlock
*TBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(0)];
1079 MachineBasicBlock
*FBB
= FuncInfo
.MBBMap
[BI
->getSuccessor(1)];
1081 // Simple branch support.
1083 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1085 // TODO: Factor this out.
1086 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(BI
->getCondition())) {
1088 const Type
*Ty
= CI
->getOperand(0)->getType();
1089 if (CI
->hasOneUse() && (CI
->getParent() == I
->getParent())
1090 && isTypeLegal(Ty
, SourceVT
)) {
1091 bool isFloat
= (Ty
->isDoubleTy() || Ty
->isFloatTy());
1092 if (isFloat
&& !Subtarget
->hasVFP2())
1096 switch (SourceVT
.SimpleTy
) {
1097 default: return false;
1098 // TODO: Verify compares.
1100 CmpOpc
= ARM::VCMPES
;
1103 CmpOpc
= ARM::VCMPED
;
1106 CmpOpc
= isThumb
? ARM::t2CMPrr
: ARM::CMPrr
;
1110 // Get the compare predicate.
1111 // Try to take advantage of fallthrough opportunities.
1112 CmpInst::Predicate Predicate
= CI
->getPredicate();
1113 if (FuncInfo
.MBB
->isLayoutSuccessor(TBB
)) {
1114 std::swap(TBB
, FBB
);
1115 Predicate
= CmpInst::getInversePredicate(Predicate
);
1118 ARMCC::CondCodes ARMPred
= getComparePred(Predicate
);
1120 // We may not handle every CC for now.
1121 if (ARMPred
== ARMCC::AL
) return false;
1123 unsigned Arg1
= getRegForValue(CI
->getOperand(0));
1124 if (Arg1
== 0) return false;
1126 unsigned Arg2
= getRegForValue(CI
->getOperand(1));
1127 if (Arg2
== 0) return false;
1129 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1131 .addReg(Arg1
).addReg(Arg2
));
1133 // For floating point we need to move the result to a comparison register
1134 // that we can then use for branches.
1136 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1137 TII
.get(ARM::FMSTAT
)));
1139 unsigned BrOpc
= isThumb
? ARM::t2Bcc
: ARM::Bcc
;
1140 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(BrOpc
))
1141 .addMBB(TBB
).addImm(ARMPred
).addReg(ARM::CPSR
);
1142 FastEmitBranch(FBB
, DL
);
1143 FuncInfo
.MBB
->addSuccessor(TBB
);
1146 } else if (TruncInst
*TI
= dyn_cast
<TruncInst
>(BI
->getCondition())) {
1148 if (TI
->hasOneUse() && TI
->getParent() == I
->getParent() &&
1149 (isLoadTypeLegal(TI
->getOperand(0)->getType(), SourceVT
))) {
1150 unsigned TstOpc
= isThumb
? ARM::t2TSTri
: ARM::TSTri
;
1151 unsigned OpReg
= getRegForValue(TI
->getOperand(0));
1152 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1154 .addReg(OpReg
).addImm(1));
1156 unsigned CCMode
= ARMCC::NE
;
1157 if (FuncInfo
.MBB
->isLayoutSuccessor(TBB
)) {
1158 std::swap(TBB
, FBB
);
1162 unsigned BrOpc
= isThumb
? ARM::t2Bcc
: ARM::Bcc
;
1163 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(BrOpc
))
1164 .addMBB(TBB
).addImm(CCMode
).addReg(ARM::CPSR
);
1166 FastEmitBranch(FBB
, DL
);
1167 FuncInfo
.MBB
->addSuccessor(TBB
);
1172 unsigned CmpReg
= getRegForValue(BI
->getCondition());
1173 if (CmpReg
== 0) return false;
1175 // We've been divorced from our compare! Our block was split, and
1176 // now our compare lives in a predecessor block. We musn't
1177 // re-compare here, as the children of the compare aren't guaranteed
1178 // live across the block boundary (we *could* check for this).
1179 // Regardless, the compare has been done in the predecessor block,
1180 // and it left a value for us in a virtual register. Ergo, we test
1181 // the one-bit value left in the virtual register.
1182 unsigned TstOpc
= isThumb
? ARM::t2TSTri
: ARM::TSTri
;
1183 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(TstOpc
))
1184 .addReg(CmpReg
).addImm(1));
1186 unsigned CCMode
= ARMCC::NE
;
1187 if (FuncInfo
.MBB
->isLayoutSuccessor(TBB
)) {
1188 std::swap(TBB
, FBB
);
1192 unsigned BrOpc
= isThumb
? ARM::t2Bcc
: ARM::Bcc
;
1193 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(BrOpc
))
1194 .addMBB(TBB
).addImm(CCMode
).addReg(ARM::CPSR
);
1195 FastEmitBranch(FBB
, DL
);
1196 FuncInfo
.MBB
->addSuccessor(TBB
);
1200 bool ARMFastISel::SelectCmp(const Instruction
*I
) {
1201 const CmpInst
*CI
= cast
<CmpInst
>(I
);
1204 const Type
*Ty
= CI
->getOperand(0)->getType();
1205 if (!isTypeLegal(Ty
, VT
))
1208 bool isFloat
= (Ty
->isDoubleTy() || Ty
->isFloatTy());
1209 if (isFloat
&& !Subtarget
->hasVFP2())
1214 switch (VT
.SimpleTy
) {
1215 default: return false;
1216 // TODO: Verify compares.
1218 CmpOpc
= ARM::VCMPES
;
1219 CondReg
= ARM::FPSCR
;
1222 CmpOpc
= ARM::VCMPED
;
1223 CondReg
= ARM::FPSCR
;
1226 CmpOpc
= isThumb
? ARM::t2CMPrr
: ARM::CMPrr
;
1227 CondReg
= ARM::CPSR
;
1231 // Get the compare predicate.
1232 ARMCC::CondCodes ARMPred
= getComparePred(CI
->getPredicate());
1234 // We may not handle every CC for now.
1235 if (ARMPred
== ARMCC::AL
) return false;
1237 unsigned Arg1
= getRegForValue(CI
->getOperand(0));
1238 if (Arg1
== 0) return false;
1240 unsigned Arg2
= getRegForValue(CI
->getOperand(1));
1241 if (Arg2
== 0) return false;
1243 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(CmpOpc
))
1244 .addReg(Arg1
).addReg(Arg2
));
1246 // For floating point we need to move the result to a comparison register
1247 // that we can then use for branches.
1249 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1250 TII
.get(ARM::FMSTAT
)));
1252 // Now set a register based on the comparison. Explicitly set the predicates
1254 unsigned MovCCOpc
= isThumb
? ARM::t2MOVCCi
: ARM::MOVCCi
;
1255 TargetRegisterClass
*RC
= isThumb
? ARM::rGPRRegisterClass
1256 : ARM::GPRRegisterClass
;
1257 unsigned DestReg
= createResultReg(RC
);
1259 = ConstantInt::get(Type::getInt32Ty(*Context
), 0);
1260 unsigned ZeroReg
= TargetMaterializeConstant(Zero
);
1261 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(MovCCOpc
), DestReg
)
1262 .addReg(ZeroReg
).addImm(1)
1263 .addImm(ARMPred
).addReg(CondReg
);
1265 UpdateValueMap(I
, DestReg
);
1269 bool ARMFastISel::SelectFPExt(const Instruction
*I
) {
1270 // Make sure we have VFP and that we're extending float to double.
1271 if (!Subtarget
->hasVFP2()) return false;
1273 Value
*V
= I
->getOperand(0);
1274 if (!I
->getType()->isDoubleTy() ||
1275 !V
->getType()->isFloatTy()) return false;
1277 unsigned Op
= getRegForValue(V
);
1278 if (Op
== 0) return false;
1280 unsigned Result
= createResultReg(ARM::DPRRegisterClass
);
1281 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1282 TII
.get(ARM::VCVTDS
), Result
)
1284 UpdateValueMap(I
, Result
);
1288 bool ARMFastISel::SelectFPTrunc(const Instruction
*I
) {
1289 // Make sure we have VFP and that we're truncating double to float.
1290 if (!Subtarget
->hasVFP2()) return false;
1292 Value
*V
= I
->getOperand(0);
1293 if (!(I
->getType()->isFloatTy() &&
1294 V
->getType()->isDoubleTy())) return false;
1296 unsigned Op
= getRegForValue(V
);
1297 if (Op
== 0) return false;
1299 unsigned Result
= createResultReg(ARM::SPRRegisterClass
);
1300 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1301 TII
.get(ARM::VCVTSD
), Result
)
1303 UpdateValueMap(I
, Result
);
1307 bool ARMFastISel::SelectSIToFP(const Instruction
*I
) {
1308 // Make sure we have VFP.
1309 if (!Subtarget
->hasVFP2()) return false;
1312 const Type
*Ty
= I
->getType();
1313 if (!isTypeLegal(Ty
, DstVT
))
1316 // FIXME: Handle sign-extension where necessary.
1317 if (!I
->getOperand(0)->getType()->isIntegerTy(32))
1320 unsigned Op
= getRegForValue(I
->getOperand(0));
1321 if (Op
== 0) return false;
1323 // The conversion routine works on fp-reg to fp-reg and the operand above
1324 // was an integer, move it to the fp registers if possible.
1325 unsigned FP
= ARMMoveToFPReg(MVT::f32
, Op
);
1326 if (FP
== 0) return false;
1329 if (Ty
->isFloatTy()) Opc
= ARM::VSITOS
;
1330 else if (Ty
->isDoubleTy()) Opc
= ARM::VSITOD
;
1333 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(DstVT
));
1334 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(Opc
),
1337 UpdateValueMap(I
, ResultReg
);
1341 bool ARMFastISel::SelectFPToSI(const Instruction
*I
) {
1342 // Make sure we have VFP.
1343 if (!Subtarget
->hasVFP2()) return false;
1346 const Type
*RetTy
= I
->getType();
1347 if (!isTypeLegal(RetTy
, DstVT
))
1350 unsigned Op
= getRegForValue(I
->getOperand(0));
1351 if (Op
== 0) return false;
1354 const Type
*OpTy
= I
->getOperand(0)->getType();
1355 if (OpTy
->isFloatTy()) Opc
= ARM::VTOSIZS
;
1356 else if (OpTy
->isDoubleTy()) Opc
= ARM::VTOSIZD
;
1359 // f64->s32 or f32->s32 both need an intermediate f32 reg.
1360 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(MVT::f32
));
1361 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(Opc
),
1365 // This result needs to be in an integer register, but the conversion only
1366 // takes place in fp-regs.
1367 unsigned IntReg
= ARMMoveToIntReg(DstVT
, ResultReg
);
1368 if (IntReg
== 0) return false;
1370 UpdateValueMap(I
, IntReg
);
1374 bool ARMFastISel::SelectSelect(const Instruction
*I
) {
1376 if (!isTypeLegal(I
->getType(), VT
))
1379 // Things need to be register sized for register moves.
1380 if (VT
!= MVT::i32
) return false;
1381 const TargetRegisterClass
*RC
= TLI
.getRegClassFor(VT
);
1383 unsigned CondReg
= getRegForValue(I
->getOperand(0));
1384 if (CondReg
== 0) return false;
1385 unsigned Op1Reg
= getRegForValue(I
->getOperand(1));
1386 if (Op1Reg
== 0) return false;
1387 unsigned Op2Reg
= getRegForValue(I
->getOperand(2));
1388 if (Op2Reg
== 0) return false;
1390 unsigned CmpOpc
= isThumb
? ARM::t2TSTri
: ARM::TSTri
;
1391 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(CmpOpc
))
1392 .addReg(CondReg
).addImm(1));
1393 unsigned ResultReg
= createResultReg(RC
);
1394 unsigned MovCCOpc
= isThumb
? ARM::t2MOVCCr
: ARM::MOVCCr
;
1395 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(MovCCOpc
), ResultReg
)
1396 .addReg(Op1Reg
).addReg(Op2Reg
)
1397 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
1398 UpdateValueMap(I
, ResultReg
);
1402 bool ARMFastISel::SelectSDiv(const Instruction
*I
) {
1404 const Type
*Ty
= I
->getType();
1405 if (!isTypeLegal(Ty
, VT
))
1408 // If we have integer div support we should have selected this automagically.
1409 // In case we have a real miss go ahead and return false and we'll pick
1411 if (Subtarget
->hasDivide()) return false;
1413 // Otherwise emit a libcall.
1414 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1416 LC
= RTLIB::SDIV_I8
;
1417 else if (VT
== MVT::i16
)
1418 LC
= RTLIB::SDIV_I16
;
1419 else if (VT
== MVT::i32
)
1420 LC
= RTLIB::SDIV_I32
;
1421 else if (VT
== MVT::i64
)
1422 LC
= RTLIB::SDIV_I64
;
1423 else if (VT
== MVT::i128
)
1424 LC
= RTLIB::SDIV_I128
;
1425 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported SDIV!");
1427 return ARMEmitLibcall(I
, LC
);
1430 bool ARMFastISel::SelectSRem(const Instruction
*I
) {
1432 const Type
*Ty
= I
->getType();
1433 if (!isTypeLegal(Ty
, VT
))
1436 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
1438 LC
= RTLIB::SREM_I8
;
1439 else if (VT
== MVT::i16
)
1440 LC
= RTLIB::SREM_I16
;
1441 else if (VT
== MVT::i32
)
1442 LC
= RTLIB::SREM_I32
;
1443 else if (VT
== MVT::i64
)
1444 LC
= RTLIB::SREM_I64
;
1445 else if (VT
== MVT::i128
)
1446 LC
= RTLIB::SREM_I128
;
1447 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unsupported SREM!");
1449 return ARMEmitLibcall(I
, LC
);
1452 bool ARMFastISel::SelectBinaryOp(const Instruction
*I
, unsigned ISDOpcode
) {
1453 EVT VT
= TLI
.getValueType(I
->getType(), true);
1455 // We can get here in the case when we want to use NEON for our fp
1456 // operations, but can't figure out how to. Just use the vfp instructions
1458 // FIXME: It'd be nice to use NEON instructions.
1459 const Type
*Ty
= I
->getType();
1460 bool isFloat
= (Ty
->isDoubleTy() || Ty
->isFloatTy());
1461 if (isFloat
&& !Subtarget
->hasVFP2())
1464 unsigned Op1
= getRegForValue(I
->getOperand(0));
1465 if (Op1
== 0) return false;
1467 unsigned Op2
= getRegForValue(I
->getOperand(1));
1468 if (Op2
== 0) return false;
1471 bool is64bit
= VT
== MVT::f64
|| VT
== MVT::i64
;
1472 switch (ISDOpcode
) {
1473 default: return false;
1475 Opc
= is64bit
? ARM::VADDD
: ARM::VADDS
;
1478 Opc
= is64bit
? ARM::VSUBD
: ARM::VSUBS
;
1481 Opc
= is64bit
? ARM::VMULD
: ARM::VMULS
;
1484 unsigned ResultReg
= createResultReg(TLI
.getRegClassFor(VT
));
1485 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1486 TII
.get(Opc
), ResultReg
)
1487 .addReg(Op1
).addReg(Op2
));
1488 UpdateValueMap(I
, ResultReg
);
1492 // Call Handling Code
1494 bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc
, EVT DstVT
, unsigned Src
,
1495 EVT SrcVT
, unsigned &ResultReg
) {
1496 unsigned RR
= FastEmit_r(SrcVT
.getSimpleVT(), DstVT
.getSimpleVT(), Opc
,
1497 Src
, /*TODO: Kill=*/false);
1506 // This is largely taken directly from CCAssignFnForNode - we don't support
1507 // varargs in FastISel so that part has been removed.
1508 // TODO: We may not support all of this.
1509 CCAssignFn
*ARMFastISel::CCAssignFnForCall(CallingConv::ID CC
, bool Return
) {
1512 llvm_unreachable("Unsupported calling convention");
1513 case CallingConv::Fast
:
1514 // Ignore fastcc. Silence compiler warnings.
1515 (void)RetFastCC_ARM_APCS
;
1516 (void)FastCC_ARM_APCS
;
1518 case CallingConv::C
:
1519 // Use target triple & subtarget features to do actual dispatch.
1520 if (Subtarget
->isAAPCS_ABI()) {
1521 if (Subtarget
->hasVFP2() &&
1522 FloatABIType
== FloatABI::Hard
)
1523 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1525 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1527 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1528 case CallingConv::ARM_AAPCS_VFP
:
1529 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
1530 case CallingConv::ARM_AAPCS
:
1531 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
1532 case CallingConv::ARM_APCS
:
1533 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
1537 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl
<Value
*> &Args
,
1538 SmallVectorImpl
<unsigned> &ArgRegs
,
1539 SmallVectorImpl
<MVT
> &ArgVTs
,
1540 SmallVectorImpl
<ISD::ArgFlagsTy
> &ArgFlags
,
1541 SmallVectorImpl
<unsigned> &RegArgs
,
1543 unsigned &NumBytes
) {
1544 SmallVector
<CCValAssign
, 16> ArgLocs
;
1545 CCState
CCInfo(CC
, false, *FuncInfo
.MF
, TM
, ArgLocs
, *Context
);
1546 CCInfo
.AnalyzeCallOperands(ArgVTs
, ArgFlags
, CCAssignFnForCall(CC
, false));
1548 // Get a count of how many bytes are to be pushed on the stack.
1549 NumBytes
= CCInfo
.getNextStackOffset();
1551 // Issue CALLSEQ_START
1552 unsigned AdjStackDown
= TII
.getCallFrameSetupOpcode();
1553 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1554 TII
.get(AdjStackDown
))
1557 // Process the args.
1558 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1559 CCValAssign
&VA
= ArgLocs
[i
];
1560 unsigned Arg
= ArgRegs
[VA
.getValNo()];
1561 MVT ArgVT
= ArgVTs
[VA
.getValNo()];
1563 // We don't handle NEON/vector parameters yet.
1564 if (ArgVT
.isVector() || ArgVT
.getSizeInBits() > 64)
1567 // Handle arg promotion, etc.
1568 switch (VA
.getLocInfo()) {
1569 case CCValAssign::Full
: break;
1570 case CCValAssign::SExt
: {
1571 bool Emitted
= FastEmitExtend(ISD::SIGN_EXTEND
, VA
.getLocVT(),
1573 assert(Emitted
&& "Failed to emit a sext!"); (void)Emitted
;
1575 ArgVT
= VA
.getLocVT();
1578 case CCValAssign::ZExt
: {
1579 bool Emitted
= FastEmitExtend(ISD::ZERO_EXTEND
, VA
.getLocVT(),
1581 assert(Emitted
&& "Failed to emit a zext!"); (void)Emitted
;
1583 ArgVT
= VA
.getLocVT();
1586 case CCValAssign::AExt
: {
1587 bool Emitted
= FastEmitExtend(ISD::ANY_EXTEND
, VA
.getLocVT(),
1590 Emitted
= FastEmitExtend(ISD::ZERO_EXTEND
, VA
.getLocVT(),
1593 Emitted
= FastEmitExtend(ISD::SIGN_EXTEND
, VA
.getLocVT(),
1596 assert(Emitted
&& "Failed to emit a aext!"); (void)Emitted
;
1597 ArgVT
= VA
.getLocVT();
1600 case CCValAssign::BCvt
: {
1601 unsigned BC
= FastEmit_r(ArgVT
, VA
.getLocVT(), ISD::BITCAST
, Arg
,
1602 /*TODO: Kill=*/false);
1603 assert(BC
!= 0 && "Failed to emit a bitcast!");
1605 ArgVT
= VA
.getLocVT();
1608 default: llvm_unreachable("Unknown arg promotion!");
1611 // Now copy/store arg to correct locations.
1612 if (VA
.isRegLoc() && !VA
.needsCustom()) {
1613 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(TargetOpcode::COPY
),
1616 RegArgs
.push_back(VA
.getLocReg());
1617 } else if (VA
.needsCustom()) {
1618 // TODO: We need custom lowering for vector (v2f64) args.
1619 if (VA
.getLocVT() != MVT::f64
) return false;
1621 CCValAssign
&NextVA
= ArgLocs
[++i
];
1623 // TODO: Only handle register args for now.
1624 if(!(VA
.isRegLoc() && NextVA
.isRegLoc())) return false;
1626 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1627 TII
.get(ARM::VMOVRRD
), VA
.getLocReg())
1628 .addReg(NextVA
.getLocReg(), RegState::Define
)
1630 RegArgs
.push_back(VA
.getLocReg());
1631 RegArgs
.push_back(NextVA
.getLocReg());
1633 assert(VA
.isMemLoc());
1634 // Need to store on the stack.
1636 Addr
.BaseType
= Address::RegBase
;
1637 Addr
.Base
.Reg
= ARM::SP
;
1638 Addr
.Offset
= VA
.getLocMemOffset();
1640 if (!ARMEmitStore(ArgVT
, Arg
, Addr
)) return false;
1646 bool ARMFastISel::FinishCall(MVT RetVT
, SmallVectorImpl
<unsigned> &UsedRegs
,
1647 const Instruction
*I
, CallingConv::ID CC
,
1648 unsigned &NumBytes
) {
1649 // Issue CALLSEQ_END
1650 unsigned AdjStackUp
= TII
.getCallFrameDestroyOpcode();
1651 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1652 TII
.get(AdjStackUp
))
1653 .addImm(NumBytes
).addImm(0));
1655 // Now the return value.
1656 if (RetVT
!= MVT::isVoid
) {
1657 SmallVector
<CCValAssign
, 16> RVLocs
;
1658 CCState
CCInfo(CC
, false, *FuncInfo
.MF
, TM
, RVLocs
, *Context
);
1659 CCInfo
.AnalyzeCallResult(RetVT
, CCAssignFnForCall(CC
, true));
1661 // Copy all of the result registers out of their specified physreg.
1662 if (RVLocs
.size() == 2 && RetVT
== MVT::f64
) {
1663 // For this move we copy into two registers and then move into the
1664 // double fp reg we want.
1665 EVT DestVT
= RVLocs
[0].getValVT();
1666 TargetRegisterClass
* DstRC
= TLI
.getRegClassFor(DestVT
);
1667 unsigned ResultReg
= createResultReg(DstRC
);
1668 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1669 TII
.get(ARM::VMOVDRR
), ResultReg
)
1670 .addReg(RVLocs
[0].getLocReg())
1671 .addReg(RVLocs
[1].getLocReg()));
1673 UsedRegs
.push_back(RVLocs
[0].getLocReg());
1674 UsedRegs
.push_back(RVLocs
[1].getLocReg());
1676 // Finally update the result.
1677 UpdateValueMap(I
, ResultReg
);
1679 assert(RVLocs
.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1680 EVT CopyVT
= RVLocs
[0].getValVT();
1681 TargetRegisterClass
* DstRC
= TLI
.getRegClassFor(CopyVT
);
1683 unsigned ResultReg
= createResultReg(DstRC
);
1684 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(TargetOpcode::COPY
),
1685 ResultReg
).addReg(RVLocs
[0].getLocReg());
1686 UsedRegs
.push_back(RVLocs
[0].getLocReg());
1688 // Finally update the result.
1689 UpdateValueMap(I
, ResultReg
);
1696 bool ARMFastISel::SelectRet(const Instruction
*I
) {
1697 const ReturnInst
*Ret
= cast
<ReturnInst
>(I
);
1698 const Function
&F
= *I
->getParent()->getParent();
1700 if (!FuncInfo
.CanLowerReturn
)
1706 CallingConv::ID CC
= F
.getCallingConv();
1707 if (Ret
->getNumOperands() > 0) {
1708 SmallVector
<ISD::OutputArg
, 4> Outs
;
1709 GetReturnInfo(F
.getReturnType(), F
.getAttributes().getRetAttributes(),
1712 // Analyze operands of the call, assigning locations to each operand.
1713 SmallVector
<CCValAssign
, 16> ValLocs
;
1714 CCState
CCInfo(CC
, F
.isVarArg(), *FuncInfo
.MF
, TM
, ValLocs
, I
->getContext());
1715 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForCall(CC
, true /* is Ret */));
1717 const Value
*RV
= Ret
->getOperand(0);
1718 unsigned Reg
= getRegForValue(RV
);
1722 // Only handle a single return value for now.
1723 if (ValLocs
.size() != 1)
1726 CCValAssign
&VA
= ValLocs
[0];
1728 // Don't bother handling odd stuff for now.
1729 if (VA
.getLocInfo() != CCValAssign::Full
)
1731 // Only handle register returns for now.
1734 // TODO: For now, don't try to handle cases where getLocInfo()
1735 // says Full but the types don't match.
1736 if (TLI
.getValueType(RV
->getType()) != VA
.getValVT())
1740 unsigned SrcReg
= Reg
+ VA
.getValNo();
1741 unsigned DstReg
= VA
.getLocReg();
1742 const TargetRegisterClass
* SrcRC
= MRI
.getRegClass(SrcReg
);
1743 // Avoid a cross-class copy. This is very unlikely.
1744 if (!SrcRC
->contains(DstReg
))
1746 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(TargetOpcode::COPY
),
1747 DstReg
).addReg(SrcReg
);
1749 // Mark the register as live out of the function.
1750 MRI
.addLiveOut(VA
.getLocReg());
1753 unsigned RetOpc
= isThumb
? ARM::tBX_RET
: ARM::BX_RET
;
1754 AddOptionalDefs(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1759 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue
*GV
) {
1761 // Darwin needs the r9 versions of the opcodes.
1762 bool isDarwin
= Subtarget
->isTargetDarwin();
1764 return isDarwin
? ARM::tBLr9
: ARM::tBL
;
1766 return isDarwin
? ARM::BLr9
: ARM::BL
;
1770 // A quick function that will emit a call for a named libcall in F with the
1771 // vector of passed arguments for the Instruction in I. We can assume that we
1772 // can emit a call for any libcall we can produce. This is an abridged version
1773 // of the full call infrastructure since we won't need to worry about things
1774 // like computed function pointers or strange arguments at call sites.
1775 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
1777 bool ARMFastISel::ARMEmitLibcall(const Instruction
*I
, RTLIB::Libcall Call
) {
1778 CallingConv::ID CC
= TLI
.getLibcallCallingConv(Call
);
1780 // Handle *simple* calls for now.
1781 const Type
*RetTy
= I
->getType();
1783 if (RetTy
->isVoidTy())
1784 RetVT
= MVT::isVoid
;
1785 else if (!isTypeLegal(RetTy
, RetVT
))
1788 // TODO: For now if we have long calls specified we don't handle the call.
1789 if (EnableARMLongCalls
) return false;
1791 // Set up the argument vectors.
1792 SmallVector
<Value
*, 8> Args
;
1793 SmallVector
<unsigned, 8> ArgRegs
;
1794 SmallVector
<MVT
, 8> ArgVTs
;
1795 SmallVector
<ISD::ArgFlagsTy
, 8> ArgFlags
;
1796 Args
.reserve(I
->getNumOperands());
1797 ArgRegs
.reserve(I
->getNumOperands());
1798 ArgVTs
.reserve(I
->getNumOperands());
1799 ArgFlags
.reserve(I
->getNumOperands());
1800 for (unsigned i
= 0; i
< I
->getNumOperands(); ++i
) {
1801 Value
*Op
= I
->getOperand(i
);
1802 unsigned Arg
= getRegForValue(Op
);
1803 if (Arg
== 0) return false;
1805 const Type
*ArgTy
= Op
->getType();
1807 if (!isTypeLegal(ArgTy
, ArgVT
)) return false;
1809 ISD::ArgFlagsTy Flags
;
1810 unsigned OriginalAlignment
= TD
.getABITypeAlignment(ArgTy
);
1811 Flags
.setOrigAlign(OriginalAlignment
);
1814 ArgRegs
.push_back(Arg
);
1815 ArgVTs
.push_back(ArgVT
);
1816 ArgFlags
.push_back(Flags
);
1819 // Handle the arguments now that we've gotten them.
1820 SmallVector
<unsigned, 4> RegArgs
;
1822 if (!ProcessCallArgs(Args
, ArgRegs
, ArgVTs
, ArgFlags
, RegArgs
, CC
, NumBytes
))
1825 // Issue the call, BLr9 for darwin, BL otherwise.
1826 // TODO: Turn this into the table of arm call ops.
1827 MachineInstrBuilder MIB
;
1828 unsigned CallOpc
= ARMSelectCallOp(NULL
);
1830 // Explicitly adding the predicate here.
1831 MIB
= AddDefaultPred(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1833 .addExternalSymbol(TLI
.getLibcallName(Call
));
1835 // Explicitly adding the predicate here.
1836 MIB
= AddDefaultPred(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1838 .addExternalSymbol(TLI
.getLibcallName(Call
)));
1840 // Add implicit physical register uses to the call.
1841 for (unsigned i
= 0, e
= RegArgs
.size(); i
!= e
; ++i
)
1842 MIB
.addReg(RegArgs
[i
]);
1844 // Finish off the call including any return values.
1845 SmallVector
<unsigned, 4> UsedRegs
;
1846 if (!FinishCall(RetVT
, UsedRegs
, I
, CC
, NumBytes
)) return false;
1848 // Set all unused physreg defs as dead.
1849 static_cast<MachineInstr
*>(MIB
)->setPhysRegsDeadExcept(UsedRegs
, TRI
);
1854 bool ARMFastISel::SelectCall(const Instruction
*I
) {
1855 const CallInst
*CI
= cast
<CallInst
>(I
);
1856 const Value
*Callee
= CI
->getCalledValue();
1858 // Can't handle inline asm or worry about intrinsics yet.
1859 if (isa
<InlineAsm
>(Callee
) || isa
<IntrinsicInst
>(CI
)) return false;
1861 // Only handle global variable Callees.
1862 const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Callee
);
1866 // Check the calling convention.
1867 ImmutableCallSite
CS(CI
);
1868 CallingConv::ID CC
= CS
.getCallingConv();
1870 // TODO: Avoid some calling conventions?
1872 // Let SDISel handle vararg functions.
1873 const PointerType
*PT
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1874 const FunctionType
*FTy
= cast
<FunctionType
>(PT
->getElementType());
1875 if (FTy
->isVarArg())
1878 // Handle *simple* calls for now.
1879 const Type
*RetTy
= I
->getType();
1881 if (RetTy
->isVoidTy())
1882 RetVT
= MVT::isVoid
;
1883 else if (!isTypeLegal(RetTy
, RetVT
))
1886 // TODO: For now if we have long calls specified we don't handle the call.
1887 if (EnableARMLongCalls
) return false;
1889 // Set up the argument vectors.
1890 SmallVector
<Value
*, 8> Args
;
1891 SmallVector
<unsigned, 8> ArgRegs
;
1892 SmallVector
<MVT
, 8> ArgVTs
;
1893 SmallVector
<ISD::ArgFlagsTy
, 8> ArgFlags
;
1894 Args
.reserve(CS
.arg_size());
1895 ArgRegs
.reserve(CS
.arg_size());
1896 ArgVTs
.reserve(CS
.arg_size());
1897 ArgFlags
.reserve(CS
.arg_size());
1898 for (ImmutableCallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
1900 unsigned Arg
= getRegForValue(*i
);
1904 ISD::ArgFlagsTy Flags
;
1905 unsigned AttrInd
= i
- CS
.arg_begin() + 1;
1906 if (CS
.paramHasAttr(AttrInd
, Attribute::SExt
))
1908 if (CS
.paramHasAttr(AttrInd
, Attribute::ZExt
))
1911 // FIXME: Only handle *easy* calls for now.
1912 if (CS
.paramHasAttr(AttrInd
, Attribute::InReg
) ||
1913 CS
.paramHasAttr(AttrInd
, Attribute::StructRet
) ||
1914 CS
.paramHasAttr(AttrInd
, Attribute::Nest
) ||
1915 CS
.paramHasAttr(AttrInd
, Attribute::ByVal
))
1918 const Type
*ArgTy
= (*i
)->getType();
1920 if (!isTypeLegal(ArgTy
, ArgVT
))
1922 unsigned OriginalAlignment
= TD
.getABITypeAlignment(ArgTy
);
1923 Flags
.setOrigAlign(OriginalAlignment
);
1926 ArgRegs
.push_back(Arg
);
1927 ArgVTs
.push_back(ArgVT
);
1928 ArgFlags
.push_back(Flags
);
1931 // Handle the arguments now that we've gotten them.
1932 SmallVector
<unsigned, 4> RegArgs
;
1934 if (!ProcessCallArgs(Args
, ArgRegs
, ArgVTs
, ArgFlags
, RegArgs
, CC
, NumBytes
))
1937 // Issue the call, BLr9 for darwin, BL otherwise.
1938 // TODO: Turn this into the table of arm call ops.
1939 MachineInstrBuilder MIB
;
1940 unsigned CallOpc
= ARMSelectCallOp(GV
);
1941 // Explicitly adding the predicate here.
1943 // Explicitly adding the predicate here.
1944 MIB
= AddDefaultPred(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1946 .addGlobalAddress(GV
, 0, 0);
1948 // Explicitly adding the predicate here.
1949 MIB
= AddDefaultPred(BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
,
1951 .addGlobalAddress(GV
, 0, 0));
1953 // Add implicit physical register uses to the call.
1954 for (unsigned i
= 0, e
= RegArgs
.size(); i
!= e
; ++i
)
1955 MIB
.addReg(RegArgs
[i
]);
1957 // Finish off the call including any return values.
1958 SmallVector
<unsigned, 4> UsedRegs
;
1959 if (!FinishCall(RetVT
, UsedRegs
, I
, CC
, NumBytes
)) return false;
1961 // Set all unused physreg defs as dead.
1962 static_cast<MachineInstr
*>(MIB
)->setPhysRegsDeadExcept(UsedRegs
, TRI
);
1968 bool ARMFastISel::SelectIntCast(const Instruction
*I
) {
1969 // On ARM, in general, integer casts don't involve legal types; this code
1970 // handles promotable integers. The high bits for a type smaller than
1971 // the register size are assumed to be undefined.
1972 const Type
*DestTy
= I
->getType();
1973 Value
*Op
= I
->getOperand(0);
1974 const Type
*SrcTy
= Op
->getType();
1977 SrcVT
= TLI
.getValueType(SrcTy
, true);
1978 DestVT
= TLI
.getValueType(DestTy
, true);
1980 if (isa
<TruncInst
>(I
)) {
1981 if (SrcVT
!= MVT::i32
&& SrcVT
!= MVT::i16
&& SrcVT
!= MVT::i8
)
1983 if (DestVT
!= MVT::i16
&& DestVT
!= MVT::i8
&& DestVT
!= MVT::i1
)
1986 unsigned SrcReg
= getRegForValue(Op
);
1987 if (!SrcReg
) return false;
1989 // Because the high bits are undefined, a truncate doesn't generate
1991 UpdateValueMap(I
, SrcReg
);
1994 if (DestVT
!= MVT::i32
&& DestVT
!= MVT::i16
&& DestVT
!= MVT::i8
)
1998 bool isZext
= isa
<ZExtInst
>(I
);
1999 bool isBoolZext
= false;
2000 if (!SrcVT
.isSimple())
2002 switch (SrcVT
.getSimpleVT().SimpleTy
) {
2003 default: return false;
2006 Opc
= isThumb
? ARM::t2UXTHr
: ARM::UXTHr
;
2008 Opc
= isThumb
? ARM::t2SXTHr
: ARM::SXTHr
;
2012 Opc
= isThumb
? ARM::t2UXTBr
: ARM::UXTBr
;
2014 Opc
= isThumb
? ARM::t2SXTBr
: ARM::SXTBr
;
2018 Opc
= isThumb
? ARM::t2ANDri
: ARM::ANDri
;
2025 // FIXME: We could save an instruction in many cases by special-casing
2026 // load instructions.
2027 unsigned SrcReg
= getRegForValue(Op
);
2028 if (!SrcReg
) return false;
2030 unsigned DestReg
= createResultReg(TLI
.getRegClassFor(MVT::i32
));
2031 MachineInstrBuilder MIB
;
2032 MIB
= BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, DL
, TII
.get(Opc
), DestReg
)
2036 AddOptionalDefs(MIB
);
2037 UpdateValueMap(I
, DestReg
);
2041 // TODO: SoftFP support.
2042 bool ARMFastISel::TargetSelectInstruction(const Instruction
*I
) {
2044 switch (I
->getOpcode()) {
2045 case Instruction::Load
:
2046 return SelectLoad(I
);
2047 case Instruction::Store
:
2048 return SelectStore(I
);
2049 case Instruction::Br
:
2050 return SelectBranch(I
);
2051 case Instruction::ICmp
:
2052 case Instruction::FCmp
:
2053 return SelectCmp(I
);
2054 case Instruction::FPExt
:
2055 return SelectFPExt(I
);
2056 case Instruction::FPTrunc
:
2057 return SelectFPTrunc(I
);
2058 case Instruction::SIToFP
:
2059 return SelectSIToFP(I
);
2060 case Instruction::FPToSI
:
2061 return SelectFPToSI(I
);
2062 case Instruction::FAdd
:
2063 return SelectBinaryOp(I
, ISD::FADD
);
2064 case Instruction::FSub
:
2065 return SelectBinaryOp(I
, ISD::FSUB
);
2066 case Instruction::FMul
:
2067 return SelectBinaryOp(I
, ISD::FMUL
);
2068 case Instruction::SDiv
:
2069 return SelectSDiv(I
);
2070 case Instruction::SRem
:
2071 return SelectSRem(I
);
2072 case Instruction::Call
:
2073 return SelectCall(I
);
2074 case Instruction::Select
:
2075 return SelectSelect(I
);
2076 case Instruction::Ret
:
2077 return SelectRet(I
);
2078 case Instruction::Trunc
:
2079 case Instruction::ZExt
:
2080 case Instruction::SExt
:
2081 return SelectIntCast(I
);
2088 llvm::FastISel
*ARM::createFastISel(FunctionLoweringInfo
&funcInfo
) {
2089 // Completely untested on non-darwin.
2090 const TargetMachine
&TM
= funcInfo
.MF
->getTarget();
2092 // Darwin and thumb1 only for now.
2093 const ARMSubtarget
*Subtarget
= &TM
.getSubtarget
<ARMSubtarget
>();
2094 if (Subtarget
->isTargetDarwin() && !Subtarget
->isThumb1Only() &&
2095 !DisableARMFastISel
)
2096 return new ARMFastISel(funcInfo
);