Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Scalar / LoopStrengthReduce.cpp
blobc6ca99aa378f362f78302f3a6bf75e500cfdee83
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // ...
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
36 // TODO: More sophistication in the way Formulae are generated and filtered.
38 // TODO: Handle multiple loops at a time.
40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41 // instead of a GlobalValue?
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
52 // use kind.
54 //===----------------------------------------------------------------------===//
56 #define DEBUG_TYPE "loop-reduce"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Constants.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/IntrinsicInst.h"
61 #include "llvm/DerivedTypes.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/Dominators.h"
64 #include "llvm/Analysis/LoopPass.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Assembly/Writer.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/ADT/SmallBitVector.h"
70 #include "llvm/ADT/SetVector.h"
71 #include "llvm/ADT/DenseSet.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ValueHandle.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Target/TargetLowering.h"
76 #include <algorithm>
77 using namespace llvm;
79 namespace {
81 /// RegSortData - This class holds data which is used to order reuse candidates.
82 class RegSortData {
83 public:
84 /// UsedByIndices - This represents the set of LSRUse indices which reference
85 /// a particular register.
86 SmallBitVector UsedByIndices;
88 RegSortData() {}
90 void print(raw_ostream &OS) const;
91 void dump() const;
96 void RegSortData::print(raw_ostream &OS) const {
97 OS << "[NumUses=" << UsedByIndices.count() << ']';
100 void RegSortData::dump() const {
101 print(errs()); errs() << '\n';
104 namespace {
106 /// RegUseTracker - Map register candidates to information about how they are
107 /// used.
108 class RegUseTracker {
109 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
111 RegUsesTy RegUsesMap;
112 SmallVector<const SCEV *, 16> RegSequence;
114 public:
115 void CountRegister(const SCEV *Reg, size_t LUIdx);
116 void DropRegister(const SCEV *Reg, size_t LUIdx);
117 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
119 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
121 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
123 void clear();
125 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
126 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
127 iterator begin() { return RegSequence.begin(); }
128 iterator end() { return RegSequence.end(); }
129 const_iterator begin() const { return RegSequence.begin(); }
130 const_iterator end() const { return RegSequence.end(); }
135 void
136 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
137 std::pair<RegUsesTy::iterator, bool> Pair =
138 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
139 RegSortData &RSD = Pair.first->second;
140 if (Pair.second)
141 RegSequence.push_back(Reg);
142 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
143 RSD.UsedByIndices.set(LUIdx);
146 void
147 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
148 RegUsesTy::iterator It = RegUsesMap.find(Reg);
149 assert(It != RegUsesMap.end());
150 RegSortData &RSD = It->second;
151 assert(RSD.UsedByIndices.size() > LUIdx);
152 RSD.UsedByIndices.reset(LUIdx);
155 void
156 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
157 assert(LUIdx <= LastLUIdx);
159 // Update RegUses. The data structure is not optimized for this purpose;
160 // we must iterate through it and update each of the bit vectors.
161 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
162 I != E; ++I) {
163 SmallBitVector &UsedByIndices = I->second.UsedByIndices;
164 if (LUIdx < UsedByIndices.size())
165 UsedByIndices[LUIdx] =
166 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
167 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
171 bool
172 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
173 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
174 if (I == RegUsesMap.end())
175 return false;
176 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
177 int i = UsedByIndices.find_first();
178 if (i == -1) return false;
179 if ((size_t)i != LUIdx) return true;
180 return UsedByIndices.find_next(i) != -1;
183 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
184 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
185 assert(I != RegUsesMap.end() && "Unknown register!");
186 return I->second.UsedByIndices;
189 void RegUseTracker::clear() {
190 RegUsesMap.clear();
191 RegSequence.clear();
194 namespace {
196 /// Formula - This class holds information that describes a formula for
197 /// computing satisfying a use. It may include broken-out immediates and scaled
198 /// registers.
199 struct Formula {
200 /// AM - This is used to represent complex addressing, as well as other kinds
201 /// of interesting uses.
202 TargetLowering::AddrMode AM;
204 /// BaseRegs - The list of "base" registers for this use. When this is
205 /// non-empty, AM.HasBaseReg should be set to true.
206 SmallVector<const SCEV *, 2> BaseRegs;
208 /// ScaledReg - The 'scaled' register for this use. This should be non-null
209 /// when AM.Scale is not zero.
210 const SCEV *ScaledReg;
212 /// UnfoldedOffset - An additional constant offset which added near the
213 /// use. This requires a temporary register, but the offset itself can
214 /// live in an add immediate field rather than a register.
215 int64_t UnfoldedOffset;
217 Formula() : ScaledReg(0), UnfoldedOffset(0) {}
219 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
221 unsigned getNumRegs() const;
222 const Type *getType() const;
224 void DeleteBaseReg(const SCEV *&S);
226 bool referencesReg(const SCEV *S) const;
227 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
228 const RegUseTracker &RegUses) const;
230 void print(raw_ostream &OS) const;
231 void dump() const;
236 /// DoInitialMatch - Recursion helper for InitialMatch.
237 static void DoInitialMatch(const SCEV *S, Loop *L,
238 SmallVectorImpl<const SCEV *> &Good,
239 SmallVectorImpl<const SCEV *> &Bad,
240 ScalarEvolution &SE) {
241 // Collect expressions which properly dominate the loop header.
242 if (SE.properlyDominates(S, L->getHeader())) {
243 Good.push_back(S);
244 return;
247 // Look at add operands.
248 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
249 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
250 I != E; ++I)
251 DoInitialMatch(*I, L, Good, Bad, SE);
252 return;
255 // Look at addrec operands.
256 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
257 if (!AR->getStart()->isZero()) {
258 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
259 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
260 AR->getStepRecurrence(SE),
261 // FIXME: AR->getNoWrapFlags()
262 AR->getLoop(), SCEV::FlagAnyWrap),
263 L, Good, Bad, SE);
264 return;
267 // Handle a multiplication by -1 (negation) if it didn't fold.
268 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
269 if (Mul->getOperand(0)->isAllOnesValue()) {
270 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
271 const SCEV *NewMul = SE.getMulExpr(Ops);
273 SmallVector<const SCEV *, 4> MyGood;
274 SmallVector<const SCEV *, 4> MyBad;
275 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
276 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
277 SE.getEffectiveSCEVType(NewMul->getType())));
278 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
279 E = MyGood.end(); I != E; ++I)
280 Good.push_back(SE.getMulExpr(NegOne, *I));
281 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
282 E = MyBad.end(); I != E; ++I)
283 Bad.push_back(SE.getMulExpr(NegOne, *I));
284 return;
287 // Ok, we can't do anything interesting. Just stuff the whole thing into a
288 // register and hope for the best.
289 Bad.push_back(S);
292 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
293 /// attempting to keep all loop-invariant and loop-computable values in a
294 /// single base register.
295 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
296 SmallVector<const SCEV *, 4> Good;
297 SmallVector<const SCEV *, 4> Bad;
298 DoInitialMatch(S, L, Good, Bad, SE);
299 if (!Good.empty()) {
300 const SCEV *Sum = SE.getAddExpr(Good);
301 if (!Sum->isZero())
302 BaseRegs.push_back(Sum);
303 AM.HasBaseReg = true;
305 if (!Bad.empty()) {
306 const SCEV *Sum = SE.getAddExpr(Bad);
307 if (!Sum->isZero())
308 BaseRegs.push_back(Sum);
309 AM.HasBaseReg = true;
313 /// getNumRegs - Return the total number of register operands used by this
314 /// formula. This does not include register uses implied by non-constant
315 /// addrec strides.
316 unsigned Formula::getNumRegs() const {
317 return !!ScaledReg + BaseRegs.size();
320 /// getType - Return the type of this formula, if it has one, or null
321 /// otherwise. This type is meaningless except for the bit size.
322 const Type *Formula::getType() const {
323 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
324 ScaledReg ? ScaledReg->getType() :
325 AM.BaseGV ? AM.BaseGV->getType() :
329 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
330 void Formula::DeleteBaseReg(const SCEV *&S) {
331 if (&S != &BaseRegs.back())
332 std::swap(S, BaseRegs.back());
333 BaseRegs.pop_back();
336 /// referencesReg - Test if this formula references the given register.
337 bool Formula::referencesReg(const SCEV *S) const {
338 return S == ScaledReg ||
339 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
342 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
343 /// which are used by uses other than the use with the given index.
344 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
345 const RegUseTracker &RegUses) const {
346 if (ScaledReg)
347 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
348 return true;
349 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
350 E = BaseRegs.end(); I != E; ++I)
351 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
352 return true;
353 return false;
356 void Formula::print(raw_ostream &OS) const {
357 bool First = true;
358 if (AM.BaseGV) {
359 if (!First) OS << " + "; else First = false;
360 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
362 if (AM.BaseOffs != 0) {
363 if (!First) OS << " + "; else First = false;
364 OS << AM.BaseOffs;
366 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
367 E = BaseRegs.end(); I != E; ++I) {
368 if (!First) OS << " + "; else First = false;
369 OS << "reg(" << **I << ')';
371 if (AM.HasBaseReg && BaseRegs.empty()) {
372 if (!First) OS << " + "; else First = false;
373 OS << "**error: HasBaseReg**";
374 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
375 if (!First) OS << " + "; else First = false;
376 OS << "**error: !HasBaseReg**";
378 if (AM.Scale != 0) {
379 if (!First) OS << " + "; else First = false;
380 OS << AM.Scale << "*reg(";
381 if (ScaledReg)
382 OS << *ScaledReg;
383 else
384 OS << "<unknown>";
385 OS << ')';
387 if (UnfoldedOffset != 0) {
388 if (!First) OS << " + "; else First = false;
389 OS << "imm(" << UnfoldedOffset << ')';
393 void Formula::dump() const {
394 print(errs()); errs() << '\n';
397 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
398 /// without changing its value.
399 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
400 const Type *WideTy =
401 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
402 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
405 /// isAddSExtable - Return true if the given add can be sign-extended
406 /// without changing its value.
407 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
408 const Type *WideTy =
409 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
410 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
413 /// isMulSExtable - Return true if the given mul can be sign-extended
414 /// without changing its value.
415 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
416 const Type *WideTy =
417 IntegerType::get(SE.getContext(),
418 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
419 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
422 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
423 /// and if the remainder is known to be zero, or null otherwise. If
424 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
425 /// to Y, ignoring that the multiplication may overflow, which is useful when
426 /// the result will be used in a context where the most significant bits are
427 /// ignored.
428 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
429 ScalarEvolution &SE,
430 bool IgnoreSignificantBits = false) {
431 // Handle the trivial case, which works for any SCEV type.
432 if (LHS == RHS)
433 return SE.getConstant(LHS->getType(), 1);
435 // Handle a few RHS special cases.
436 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
437 if (RC) {
438 const APInt &RA = RC->getValue()->getValue();
439 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
440 // some folding.
441 if (RA.isAllOnesValue())
442 return SE.getMulExpr(LHS, RC);
443 // Handle x /s 1 as x.
444 if (RA == 1)
445 return LHS;
448 // Check for a division of a constant by a constant.
449 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
450 if (!RC)
451 return 0;
452 const APInt &LA = C->getValue()->getValue();
453 const APInt &RA = RC->getValue()->getValue();
454 if (LA.srem(RA) != 0)
455 return 0;
456 return SE.getConstant(LA.sdiv(RA));
459 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
460 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
461 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
462 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
463 IgnoreSignificantBits);
464 if (!Step) return 0;
465 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
466 IgnoreSignificantBits);
467 if (!Start) return 0;
468 // FlagNW is independent of the start value, step direction, and is
469 // preserved with smaller magnitude steps.
470 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
471 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
473 return 0;
476 // Distribute the sdiv over add operands, if the add doesn't overflow.
477 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
478 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
479 SmallVector<const SCEV *, 8> Ops;
480 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
481 I != E; ++I) {
482 const SCEV *Op = getExactSDiv(*I, RHS, SE,
483 IgnoreSignificantBits);
484 if (!Op) return 0;
485 Ops.push_back(Op);
487 return SE.getAddExpr(Ops);
489 return 0;
492 // Check for a multiply operand that we can pull RHS out of.
493 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
494 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
495 SmallVector<const SCEV *, 4> Ops;
496 bool Found = false;
497 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
498 I != E; ++I) {
499 const SCEV *S = *I;
500 if (!Found)
501 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
502 IgnoreSignificantBits)) {
503 S = Q;
504 Found = true;
506 Ops.push_back(S);
508 return Found ? SE.getMulExpr(Ops) : 0;
510 return 0;
513 // Otherwise we don't know.
514 return 0;
517 /// ExtractImmediate - If S involves the addition of a constant integer value,
518 /// return that integer value, and mutate S to point to a new SCEV with that
519 /// value excluded.
520 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
521 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
522 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
523 S = SE.getConstant(C->getType(), 0);
524 return C->getValue()->getSExtValue();
526 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
527 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
528 int64_t Result = ExtractImmediate(NewOps.front(), SE);
529 if (Result != 0)
530 S = SE.getAddExpr(NewOps);
531 return Result;
532 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
533 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
534 int64_t Result = ExtractImmediate(NewOps.front(), SE);
535 if (Result != 0)
536 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
537 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
538 SCEV::FlagAnyWrap);
539 return Result;
541 return 0;
544 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
545 /// return that symbol, and mutate S to point to a new SCEV with that
546 /// value excluded.
547 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
548 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
549 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
550 S = SE.getConstant(GV->getType(), 0);
551 return GV;
553 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
554 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
555 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
556 if (Result)
557 S = SE.getAddExpr(NewOps);
558 return Result;
559 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
560 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
561 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
562 if (Result)
563 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
564 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
565 SCEV::FlagAnyWrap);
566 return Result;
568 return 0;
571 /// isAddressUse - Returns true if the specified instruction is using the
572 /// specified value as an address.
573 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
574 bool isAddress = isa<LoadInst>(Inst);
575 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
576 if (SI->getOperand(1) == OperandVal)
577 isAddress = true;
578 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
579 // Addressing modes can also be folded into prefetches and a variety
580 // of intrinsics.
581 switch (II->getIntrinsicID()) {
582 default: break;
583 case Intrinsic::prefetch:
584 case Intrinsic::x86_sse_storeu_ps:
585 case Intrinsic::x86_sse2_storeu_pd:
586 case Intrinsic::x86_sse2_storeu_dq:
587 case Intrinsic::x86_sse2_storel_dq:
588 if (II->getArgOperand(0) == OperandVal)
589 isAddress = true;
590 break;
593 return isAddress;
596 /// getAccessType - Return the type of the memory being accessed.
597 static const Type *getAccessType(const Instruction *Inst) {
598 const Type *AccessTy = Inst->getType();
599 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
600 AccessTy = SI->getOperand(0)->getType();
601 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
602 // Addressing modes can also be folded into prefetches and a variety
603 // of intrinsics.
604 switch (II->getIntrinsicID()) {
605 default: break;
606 case Intrinsic::x86_sse_storeu_ps:
607 case Intrinsic::x86_sse2_storeu_pd:
608 case Intrinsic::x86_sse2_storeu_dq:
609 case Intrinsic::x86_sse2_storel_dq:
610 AccessTy = II->getArgOperand(0)->getType();
611 break;
615 // All pointers have the same requirements, so canonicalize them to an
616 // arbitrary pointer type to minimize variation.
617 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
618 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
619 PTy->getAddressSpace());
621 return AccessTy;
624 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
625 /// specified set are trivially dead, delete them and see if this makes any of
626 /// their operands subsequently dead.
627 static bool
628 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
629 bool Changed = false;
631 while (!DeadInsts.empty()) {
632 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val());
634 if (I == 0 || !isInstructionTriviallyDead(I))
635 continue;
637 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
638 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
639 *OI = 0;
640 if (U->use_empty())
641 DeadInsts.push_back(U);
644 I->eraseFromParent();
645 Changed = true;
648 return Changed;
651 namespace {
653 /// Cost - This class is used to measure and compare candidate formulae.
654 class Cost {
655 /// TODO: Some of these could be merged. Also, a lexical ordering
656 /// isn't always optimal.
657 unsigned NumRegs;
658 unsigned AddRecCost;
659 unsigned NumIVMuls;
660 unsigned NumBaseAdds;
661 unsigned ImmCost;
662 unsigned SetupCost;
664 public:
665 Cost()
666 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
667 SetupCost(0) {}
669 bool operator<(const Cost &Other) const;
671 void Loose();
673 void RateFormula(const Formula &F,
674 SmallPtrSet<const SCEV *, 16> &Regs,
675 const DenseSet<const SCEV *> &VisitedRegs,
676 const Loop *L,
677 const SmallVectorImpl<int64_t> &Offsets,
678 ScalarEvolution &SE, DominatorTree &DT);
680 void print(raw_ostream &OS) const;
681 void dump() const;
683 private:
684 void RateRegister(const SCEV *Reg,
685 SmallPtrSet<const SCEV *, 16> &Regs,
686 const Loop *L,
687 ScalarEvolution &SE, DominatorTree &DT);
688 void RatePrimaryRegister(const SCEV *Reg,
689 SmallPtrSet<const SCEV *, 16> &Regs,
690 const Loop *L,
691 ScalarEvolution &SE, DominatorTree &DT);
696 /// RateRegister - Tally up interesting quantities from the given register.
697 void Cost::RateRegister(const SCEV *Reg,
698 SmallPtrSet<const SCEV *, 16> &Regs,
699 const Loop *L,
700 ScalarEvolution &SE, DominatorTree &DT) {
701 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
702 if (AR->getLoop() == L)
703 AddRecCost += 1; /// TODO: This should be a function of the stride.
705 // If this is an addrec for a loop that's already been visited by LSR,
706 // don't second-guess its addrec phi nodes. LSR isn't currently smart
707 // enough to reason about more than one loop at a time. Consider these
708 // registers free and leave them alone.
709 else if (L->contains(AR->getLoop()) ||
710 (!AR->getLoop()->contains(L) &&
711 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
712 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
713 PHINode *PN = dyn_cast<PHINode>(I); ++I)
714 if (SE.isSCEVable(PN->getType()) &&
715 (SE.getEffectiveSCEVType(PN->getType()) ==
716 SE.getEffectiveSCEVType(AR->getType())) &&
717 SE.getSCEV(PN) == AR)
718 return;
720 // If this isn't one of the addrecs that the loop already has, it
721 // would require a costly new phi and add. TODO: This isn't
722 // precisely modeled right now.
723 ++NumBaseAdds;
724 if (!Regs.count(AR->getStart()))
725 RateRegister(AR->getStart(), Regs, L, SE, DT);
728 // Add the step value register, if it needs one.
729 // TODO: The non-affine case isn't precisely modeled here.
730 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
731 if (!Regs.count(AR->getStart()))
732 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
734 ++NumRegs;
736 // Rough heuristic; favor registers which don't require extra setup
737 // instructions in the preheader.
738 if (!isa<SCEVUnknown>(Reg) &&
739 !isa<SCEVConstant>(Reg) &&
740 !(isa<SCEVAddRecExpr>(Reg) &&
741 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
742 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
743 ++SetupCost;
745 NumIVMuls += isa<SCEVMulExpr>(Reg) &&
746 SE.hasComputableLoopEvolution(Reg, L);
749 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
750 /// before, rate it.
751 void Cost::RatePrimaryRegister(const SCEV *Reg,
752 SmallPtrSet<const SCEV *, 16> &Regs,
753 const Loop *L,
754 ScalarEvolution &SE, DominatorTree &DT) {
755 if (Regs.insert(Reg))
756 RateRegister(Reg, Regs, L, SE, DT);
759 void Cost::RateFormula(const Formula &F,
760 SmallPtrSet<const SCEV *, 16> &Regs,
761 const DenseSet<const SCEV *> &VisitedRegs,
762 const Loop *L,
763 const SmallVectorImpl<int64_t> &Offsets,
764 ScalarEvolution &SE, DominatorTree &DT) {
765 // Tally up the registers.
766 if (const SCEV *ScaledReg = F.ScaledReg) {
767 if (VisitedRegs.count(ScaledReg)) {
768 Loose();
769 return;
771 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
773 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
774 E = F.BaseRegs.end(); I != E; ++I) {
775 const SCEV *BaseReg = *I;
776 if (VisitedRegs.count(BaseReg)) {
777 Loose();
778 return;
780 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
783 // Determine how many (unfolded) adds we'll need inside the loop.
784 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
785 if (NumBaseParts > 1)
786 NumBaseAdds += NumBaseParts - 1;
788 // Tally up the non-zero immediates.
789 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
790 E = Offsets.end(); I != E; ++I) {
791 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
792 if (F.AM.BaseGV)
793 ImmCost += 64; // Handle symbolic values conservatively.
794 // TODO: This should probably be the pointer size.
795 else if (Offset != 0)
796 ImmCost += APInt(64, Offset, true).getMinSignedBits();
800 /// Loose - Set this cost to a losing value.
801 void Cost::Loose() {
802 NumRegs = ~0u;
803 AddRecCost = ~0u;
804 NumIVMuls = ~0u;
805 NumBaseAdds = ~0u;
806 ImmCost = ~0u;
807 SetupCost = ~0u;
810 /// operator< - Choose the lower cost.
811 bool Cost::operator<(const Cost &Other) const {
812 if (NumRegs != Other.NumRegs)
813 return NumRegs < Other.NumRegs;
814 if (AddRecCost != Other.AddRecCost)
815 return AddRecCost < Other.AddRecCost;
816 if (NumIVMuls != Other.NumIVMuls)
817 return NumIVMuls < Other.NumIVMuls;
818 if (NumBaseAdds != Other.NumBaseAdds)
819 return NumBaseAdds < Other.NumBaseAdds;
820 if (ImmCost != Other.ImmCost)
821 return ImmCost < Other.ImmCost;
822 if (SetupCost != Other.SetupCost)
823 return SetupCost < Other.SetupCost;
824 return false;
827 void Cost::print(raw_ostream &OS) const {
828 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
829 if (AddRecCost != 0)
830 OS << ", with addrec cost " << AddRecCost;
831 if (NumIVMuls != 0)
832 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
833 if (NumBaseAdds != 0)
834 OS << ", plus " << NumBaseAdds << " base add"
835 << (NumBaseAdds == 1 ? "" : "s");
836 if (ImmCost != 0)
837 OS << ", plus " << ImmCost << " imm cost";
838 if (SetupCost != 0)
839 OS << ", plus " << SetupCost << " setup cost";
842 void Cost::dump() const {
843 print(errs()); errs() << '\n';
846 namespace {
848 /// LSRFixup - An operand value in an instruction which is to be replaced
849 /// with some equivalent, possibly strength-reduced, replacement.
850 struct LSRFixup {
851 /// UserInst - The instruction which will be updated.
852 Instruction *UserInst;
854 /// OperandValToReplace - The operand of the instruction which will
855 /// be replaced. The operand may be used more than once; every instance
856 /// will be replaced.
857 Value *OperandValToReplace;
859 /// PostIncLoops - If this user is to use the post-incremented value of an
860 /// induction variable, this variable is non-null and holds the loop
861 /// associated with the induction variable.
862 PostIncLoopSet PostIncLoops;
864 /// LUIdx - The index of the LSRUse describing the expression which
865 /// this fixup needs, minus an offset (below).
866 size_t LUIdx;
868 /// Offset - A constant offset to be added to the LSRUse expression.
869 /// This allows multiple fixups to share the same LSRUse with different
870 /// offsets, for example in an unrolled loop.
871 int64_t Offset;
873 bool isUseFullyOutsideLoop(const Loop *L) const;
875 LSRFixup();
877 void print(raw_ostream &OS) const;
878 void dump() const;
883 LSRFixup::LSRFixup()
884 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
886 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
887 /// value outside of the given loop.
888 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
889 // PHI nodes use their value in their incoming blocks.
890 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
891 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
892 if (PN->getIncomingValue(i) == OperandValToReplace &&
893 L->contains(PN->getIncomingBlock(i)))
894 return false;
895 return true;
898 return !L->contains(UserInst);
901 void LSRFixup::print(raw_ostream &OS) const {
902 OS << "UserInst=";
903 // Store is common and interesting enough to be worth special-casing.
904 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
905 OS << "store ";
906 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
907 } else if (UserInst->getType()->isVoidTy())
908 OS << UserInst->getOpcodeName();
909 else
910 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
912 OS << ", OperandValToReplace=";
913 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
915 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
916 E = PostIncLoops.end(); I != E; ++I) {
917 OS << ", PostIncLoop=";
918 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
921 if (LUIdx != ~size_t(0))
922 OS << ", LUIdx=" << LUIdx;
924 if (Offset != 0)
925 OS << ", Offset=" << Offset;
928 void LSRFixup::dump() const {
929 print(errs()); errs() << '\n';
932 namespace {
934 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
935 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
936 struct UniquifierDenseMapInfo {
937 static SmallVector<const SCEV *, 2> getEmptyKey() {
938 SmallVector<const SCEV *, 2> V;
939 V.push_back(reinterpret_cast<const SCEV *>(-1));
940 return V;
943 static SmallVector<const SCEV *, 2> getTombstoneKey() {
944 SmallVector<const SCEV *, 2> V;
945 V.push_back(reinterpret_cast<const SCEV *>(-2));
946 return V;
949 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
950 unsigned Result = 0;
951 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
952 E = V.end(); I != E; ++I)
953 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
954 return Result;
957 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
958 const SmallVector<const SCEV *, 2> &RHS) {
959 return LHS == RHS;
963 /// LSRUse - This class holds the state that LSR keeps for each use in
964 /// IVUsers, as well as uses invented by LSR itself. It includes information
965 /// about what kinds of things can be folded into the user, information about
966 /// the user itself, and information about how the use may be satisfied.
967 /// TODO: Represent multiple users of the same expression in common?
968 class LSRUse {
969 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
971 public:
972 /// KindType - An enum for a kind of use, indicating what types of
973 /// scaled and immediate operands it might support.
974 enum KindType {
975 Basic, ///< A normal use, with no folding.
976 Special, ///< A special case of basic, allowing -1 scales.
977 Address, ///< An address use; folding according to TargetLowering
978 ICmpZero ///< An equality icmp with both operands folded into one.
979 // TODO: Add a generic icmp too?
982 KindType Kind;
983 const Type *AccessTy;
985 SmallVector<int64_t, 8> Offsets;
986 int64_t MinOffset;
987 int64_t MaxOffset;
989 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
990 /// LSRUse are outside of the loop, in which case some special-case heuristics
991 /// may be used.
992 bool AllFixupsOutsideLoop;
994 /// WidestFixupType - This records the widest use type for any fixup using
995 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
996 /// max fixup widths to be equivalent, because the narrower one may be relying
997 /// on the implicit truncation to truncate away bogus bits.
998 const Type *WidestFixupType;
1000 /// Formulae - A list of ways to build a value that can satisfy this user.
1001 /// After the list is populated, one of these is selected heuristically and
1002 /// used to formulate a replacement for OperandValToReplace in UserInst.
1003 SmallVector<Formula, 12> Formulae;
1005 /// Regs - The set of register candidates used by all formulae in this LSRUse.
1006 SmallPtrSet<const SCEV *, 4> Regs;
1008 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
1009 MinOffset(INT64_MAX),
1010 MaxOffset(INT64_MIN),
1011 AllFixupsOutsideLoop(true),
1012 WidestFixupType(0) {}
1014 bool HasFormulaWithSameRegs(const Formula &F) const;
1015 bool InsertFormula(const Formula &F);
1016 void DeleteFormula(Formula &F);
1017 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1019 void print(raw_ostream &OS) const;
1020 void dump() const;
1025 /// HasFormula - Test whether this use as a formula which has the same
1026 /// registers as the given formula.
1027 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1028 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1029 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1030 // Unstable sort by host order ok, because this is only used for uniquifying.
1031 std::sort(Key.begin(), Key.end());
1032 return Uniquifier.count(Key);
1035 /// InsertFormula - If the given formula has not yet been inserted, add it to
1036 /// the list, and return true. Return false otherwise.
1037 bool LSRUse::InsertFormula(const Formula &F) {
1038 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1039 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1040 // Unstable sort by host order ok, because this is only used for uniquifying.
1041 std::sort(Key.begin(), Key.end());
1043 if (!Uniquifier.insert(Key).second)
1044 return false;
1046 // Using a register to hold the value of 0 is not profitable.
1047 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1048 "Zero allocated in a scaled register!");
1049 #ifndef NDEBUG
1050 for (SmallVectorImpl<const SCEV *>::const_iterator I =
1051 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1052 assert(!(*I)->isZero() && "Zero allocated in a base register!");
1053 #endif
1055 // Add the formula to the list.
1056 Formulae.push_back(F);
1058 // Record registers now being used by this use.
1059 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1060 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1062 return true;
1065 /// DeleteFormula - Remove the given formula from this use's list.
1066 void LSRUse::DeleteFormula(Formula &F) {
1067 if (&F != &Formulae.back())
1068 std::swap(F, Formulae.back());
1069 Formulae.pop_back();
1070 assert(!Formulae.empty() && "LSRUse has no formulae left!");
1073 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
1074 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1075 // Now that we've filtered out some formulae, recompute the Regs set.
1076 SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1077 Regs.clear();
1078 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1079 E = Formulae.end(); I != E; ++I) {
1080 const Formula &F = *I;
1081 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1082 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1085 // Update the RegTracker.
1086 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1087 E = OldRegs.end(); I != E; ++I)
1088 if (!Regs.count(*I))
1089 RegUses.DropRegister(*I, LUIdx);
1092 void LSRUse::print(raw_ostream &OS) const {
1093 OS << "LSR Use: Kind=";
1094 switch (Kind) {
1095 case Basic: OS << "Basic"; break;
1096 case Special: OS << "Special"; break;
1097 case ICmpZero: OS << "ICmpZero"; break;
1098 case Address:
1099 OS << "Address of ";
1100 if (AccessTy->isPointerTy())
1101 OS << "pointer"; // the full pointer type could be really verbose
1102 else
1103 OS << *AccessTy;
1106 OS << ", Offsets={";
1107 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1108 E = Offsets.end(); I != E; ++I) {
1109 OS << *I;
1110 if (llvm::next(I) != E)
1111 OS << ',';
1113 OS << '}';
1115 if (AllFixupsOutsideLoop)
1116 OS << ", all-fixups-outside-loop";
1118 if (WidestFixupType)
1119 OS << ", widest fixup type: " << *WidestFixupType;
1122 void LSRUse::dump() const {
1123 print(errs()); errs() << '\n';
1126 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1127 /// be completely folded into the user instruction at isel time. This includes
1128 /// address-mode folding and special icmp tricks.
1129 static bool isLegalUse(const TargetLowering::AddrMode &AM,
1130 LSRUse::KindType Kind, const Type *AccessTy,
1131 const TargetLowering *TLI) {
1132 switch (Kind) {
1133 case LSRUse::Address:
1134 // If we have low-level target information, ask the target if it can
1135 // completely fold this address.
1136 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1138 // Otherwise, just guess that reg+reg addressing is legal.
1139 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1141 case LSRUse::ICmpZero:
1142 // There's not even a target hook for querying whether it would be legal to
1143 // fold a GV into an ICmp.
1144 if (AM.BaseGV)
1145 return false;
1147 // ICmp only has two operands; don't allow more than two non-trivial parts.
1148 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1149 return false;
1151 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1152 // putting the scaled register in the other operand of the icmp.
1153 if (AM.Scale != 0 && AM.Scale != -1)
1154 return false;
1156 // If we have low-level target information, ask the target if it can fold an
1157 // integer immediate on an icmp.
1158 if (AM.BaseOffs != 0) {
1159 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1160 return false;
1163 return true;
1165 case LSRUse::Basic:
1166 // Only handle single-register values.
1167 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1169 case LSRUse::Special:
1170 // Only handle -1 scales, or no scale.
1171 return AM.Scale == 0 || AM.Scale == -1;
1174 return false;
1177 static bool isLegalUse(TargetLowering::AddrMode AM,
1178 int64_t MinOffset, int64_t MaxOffset,
1179 LSRUse::KindType Kind, const Type *AccessTy,
1180 const TargetLowering *TLI) {
1181 // Check for overflow.
1182 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1183 (MinOffset > 0))
1184 return false;
1185 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1186 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1187 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1188 // Check for overflow.
1189 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1190 (MaxOffset > 0))
1191 return false;
1192 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1193 return isLegalUse(AM, Kind, AccessTy, TLI);
1195 return false;
1198 static bool isAlwaysFoldable(int64_t BaseOffs,
1199 GlobalValue *BaseGV,
1200 bool HasBaseReg,
1201 LSRUse::KindType Kind, const Type *AccessTy,
1202 const TargetLowering *TLI) {
1203 // Fast-path: zero is always foldable.
1204 if (BaseOffs == 0 && !BaseGV) return true;
1206 // Conservatively, create an address with an immediate and a
1207 // base and a scale.
1208 TargetLowering::AddrMode AM;
1209 AM.BaseOffs = BaseOffs;
1210 AM.BaseGV = BaseGV;
1211 AM.HasBaseReg = HasBaseReg;
1212 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1214 // Canonicalize a scale of 1 to a base register if the formula doesn't
1215 // already have a base register.
1216 if (!AM.HasBaseReg && AM.Scale == 1) {
1217 AM.Scale = 0;
1218 AM.HasBaseReg = true;
1221 return isLegalUse(AM, Kind, AccessTy, TLI);
1224 static bool isAlwaysFoldable(const SCEV *S,
1225 int64_t MinOffset, int64_t MaxOffset,
1226 bool HasBaseReg,
1227 LSRUse::KindType Kind, const Type *AccessTy,
1228 const TargetLowering *TLI,
1229 ScalarEvolution &SE) {
1230 // Fast-path: zero is always foldable.
1231 if (S->isZero()) return true;
1233 // Conservatively, create an address with an immediate and a
1234 // base and a scale.
1235 int64_t BaseOffs = ExtractImmediate(S, SE);
1236 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1238 // If there's anything else involved, it's not foldable.
1239 if (!S->isZero()) return false;
1241 // Fast-path: zero is always foldable.
1242 if (BaseOffs == 0 && !BaseGV) return true;
1244 // Conservatively, create an address with an immediate and a
1245 // base and a scale.
1246 TargetLowering::AddrMode AM;
1247 AM.BaseOffs = BaseOffs;
1248 AM.BaseGV = BaseGV;
1249 AM.HasBaseReg = HasBaseReg;
1250 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1252 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1255 namespace {
1257 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1258 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1259 struct UseMapDenseMapInfo {
1260 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1261 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1264 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1265 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1268 static unsigned
1269 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1270 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1271 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1272 return Result;
1275 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1276 const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1277 return LHS == RHS;
1281 /// LSRInstance - This class holds state for the main loop strength reduction
1282 /// logic.
1283 class LSRInstance {
1284 IVUsers &IU;
1285 ScalarEvolution &SE;
1286 DominatorTree &DT;
1287 LoopInfo &LI;
1288 const TargetLowering *const TLI;
1289 Loop *const L;
1290 bool Changed;
1292 /// IVIncInsertPos - This is the insert position that the current loop's
1293 /// induction variable increment should be placed. In simple loops, this is
1294 /// the latch block's terminator. But in more complicated cases, this is a
1295 /// position which will dominate all the in-loop post-increment users.
1296 Instruction *IVIncInsertPos;
1298 /// Factors - Interesting factors between use strides.
1299 SmallSetVector<int64_t, 8> Factors;
1301 /// Types - Interesting use types, to facilitate truncation reuse.
1302 SmallSetVector<const Type *, 4> Types;
1304 /// Fixups - The list of operands which are to be replaced.
1305 SmallVector<LSRFixup, 16> Fixups;
1307 /// Uses - The list of interesting uses.
1308 SmallVector<LSRUse, 16> Uses;
1310 /// RegUses - Track which uses use which register candidates.
1311 RegUseTracker RegUses;
1313 void OptimizeShadowIV();
1314 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1315 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1316 void OptimizeLoopTermCond();
1318 void CollectInterestingTypesAndFactors();
1319 void CollectFixupsAndInitialFormulae();
1321 LSRFixup &getNewFixup() {
1322 Fixups.push_back(LSRFixup());
1323 return Fixups.back();
1326 // Support for sharing of LSRUses between LSRFixups.
1327 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1328 size_t,
1329 UseMapDenseMapInfo> UseMapTy;
1330 UseMapTy UseMap;
1332 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1333 LSRUse::KindType Kind, const Type *AccessTy);
1335 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1336 LSRUse::KindType Kind,
1337 const Type *AccessTy);
1339 void DeleteUse(LSRUse &LU, size_t LUIdx);
1341 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1343 public:
1344 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1345 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1346 void CountRegisters(const Formula &F, size_t LUIdx);
1347 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1349 void CollectLoopInvariantFixupsAndFormulae();
1351 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1352 unsigned Depth = 0);
1353 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1354 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1355 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1356 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1357 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1358 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1359 void GenerateCrossUseConstantOffsets();
1360 void GenerateAllReuseFormulae();
1362 void FilterOutUndesirableDedicatedRegisters();
1364 size_t EstimateSearchSpaceComplexity() const;
1365 void NarrowSearchSpaceByDetectingSupersets();
1366 void NarrowSearchSpaceByCollapsingUnrolledCode();
1367 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1368 void NarrowSearchSpaceByPickingWinnerRegs();
1369 void NarrowSearchSpaceUsingHeuristics();
1371 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1372 Cost &SolutionCost,
1373 SmallVectorImpl<const Formula *> &Workspace,
1374 const Cost &CurCost,
1375 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1376 DenseSet<const SCEV *> &VisitedRegs) const;
1377 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1379 BasicBlock::iterator
1380 HoistInsertPosition(BasicBlock::iterator IP,
1381 const SmallVectorImpl<Instruction *> &Inputs) const;
1382 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1383 const LSRFixup &LF,
1384 const LSRUse &LU) const;
1386 Value *Expand(const LSRFixup &LF,
1387 const Formula &F,
1388 BasicBlock::iterator IP,
1389 SCEVExpander &Rewriter,
1390 SmallVectorImpl<WeakVH> &DeadInsts) const;
1391 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1392 const Formula &F,
1393 SCEVExpander &Rewriter,
1394 SmallVectorImpl<WeakVH> &DeadInsts,
1395 Pass *P) const;
1396 void Rewrite(const LSRFixup &LF,
1397 const Formula &F,
1398 SCEVExpander &Rewriter,
1399 SmallVectorImpl<WeakVH> &DeadInsts,
1400 Pass *P) const;
1401 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1402 Pass *P);
1404 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1406 bool getChanged() const { return Changed; }
1408 void print_factors_and_types(raw_ostream &OS) const;
1409 void print_fixups(raw_ostream &OS) const;
1410 void print_uses(raw_ostream &OS) const;
1411 void print(raw_ostream &OS) const;
1412 void dump() const;
1417 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1418 /// inside the loop then try to eliminate the cast operation.
1419 void LSRInstance::OptimizeShadowIV() {
1420 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1421 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1422 return;
1424 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1425 UI != E; /* empty */) {
1426 IVUsers::const_iterator CandidateUI = UI;
1427 ++UI;
1428 Instruction *ShadowUse = CandidateUI->getUser();
1429 const Type *DestTy = NULL;
1431 /* If shadow use is a int->float cast then insert a second IV
1432 to eliminate this cast.
1434 for (unsigned i = 0; i < n; ++i)
1435 foo((double)i);
1437 is transformed into
1439 double d = 0.0;
1440 for (unsigned i = 0; i < n; ++i, ++d)
1441 foo(d);
1443 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1444 DestTy = UCast->getDestTy();
1445 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1446 DestTy = SCast->getDestTy();
1447 if (!DestTy) continue;
1449 if (TLI) {
1450 // If target does not support DestTy natively then do not apply
1451 // this transformation.
1452 EVT DVT = TLI->getValueType(DestTy);
1453 if (!TLI->isTypeLegal(DVT)) continue;
1456 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1457 if (!PH) continue;
1458 if (PH->getNumIncomingValues() != 2) continue;
1460 const Type *SrcTy = PH->getType();
1461 int Mantissa = DestTy->getFPMantissaWidth();
1462 if (Mantissa == -1) continue;
1463 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1464 continue;
1466 unsigned Entry, Latch;
1467 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1468 Entry = 0;
1469 Latch = 1;
1470 } else {
1471 Entry = 1;
1472 Latch = 0;
1475 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1476 if (!Init) continue;
1477 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
1479 BinaryOperator *Incr =
1480 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1481 if (!Incr) continue;
1482 if (Incr->getOpcode() != Instruction::Add
1483 && Incr->getOpcode() != Instruction::Sub)
1484 continue;
1486 /* Initialize new IV, double d = 0.0 in above example. */
1487 ConstantInt *C = NULL;
1488 if (Incr->getOperand(0) == PH)
1489 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1490 else if (Incr->getOperand(1) == PH)
1491 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1492 else
1493 continue;
1495 if (!C) continue;
1497 // Ignore negative constants, as the code below doesn't handle them
1498 // correctly. TODO: Remove this restriction.
1499 if (!C->getValue().isStrictlyPositive()) continue;
1501 /* Add new PHINode. */
1502 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1504 /* create new increment. '++d' in above example. */
1505 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1506 BinaryOperator *NewIncr =
1507 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1508 Instruction::FAdd : Instruction::FSub,
1509 NewPH, CFP, "IV.S.next.", Incr);
1511 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1512 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1514 /* Remove cast operation */
1515 ShadowUse->replaceAllUsesWith(NewPH);
1516 ShadowUse->eraseFromParent();
1517 Changed = true;
1518 break;
1522 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1523 /// set the IV user and stride information and return true, otherwise return
1524 /// false.
1525 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1526 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1527 if (UI->getUser() == Cond) {
1528 // NOTE: we could handle setcc instructions with multiple uses here, but
1529 // InstCombine does it as well for simple uses, it's not clear that it
1530 // occurs enough in real life to handle.
1531 CondUse = UI;
1532 return true;
1534 return false;
1537 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1538 /// a max computation.
1540 /// This is a narrow solution to a specific, but acute, problem. For loops
1541 /// like this:
1543 /// i = 0;
1544 /// do {
1545 /// p[i] = 0.0;
1546 /// } while (++i < n);
1548 /// the trip count isn't just 'n', because 'n' might not be positive. And
1549 /// unfortunately this can come up even for loops where the user didn't use
1550 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1551 /// will commonly be lowered like this:
1553 /// if (n > 0) {
1554 /// i = 0;
1555 /// do {
1556 /// p[i] = 0.0;
1557 /// } while (++i < n);
1558 /// }
1560 /// and then it's possible for subsequent optimization to obscure the if
1561 /// test in such a way that indvars can't find it.
1563 /// When indvars can't find the if test in loops like this, it creates a
1564 /// max expression, which allows it to give the loop a canonical
1565 /// induction variable:
1567 /// i = 0;
1568 /// max = n < 1 ? 1 : n;
1569 /// do {
1570 /// p[i] = 0.0;
1571 /// } while (++i != max);
1573 /// Canonical induction variables are necessary because the loop passes
1574 /// are designed around them. The most obvious example of this is the
1575 /// LoopInfo analysis, which doesn't remember trip count values. It
1576 /// expects to be able to rediscover the trip count each time it is
1577 /// needed, and it does this using a simple analysis that only succeeds if
1578 /// the loop has a canonical induction variable.
1580 /// However, when it comes time to generate code, the maximum operation
1581 /// can be quite costly, especially if it's inside of an outer loop.
1583 /// This function solves this problem by detecting this type of loop and
1584 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1585 /// the instructions for the maximum computation.
1587 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1588 // Check that the loop matches the pattern we're looking for.
1589 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1590 Cond->getPredicate() != CmpInst::ICMP_NE)
1591 return Cond;
1593 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1594 if (!Sel || !Sel->hasOneUse()) return Cond;
1596 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1597 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1598 return Cond;
1599 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1601 // Add one to the backedge-taken count to get the trip count.
1602 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1603 if (IterationCount != SE.getSCEV(Sel)) return Cond;
1605 // Check for a max calculation that matches the pattern. There's no check
1606 // for ICMP_ULE here because the comparison would be with zero, which
1607 // isn't interesting.
1608 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1609 const SCEVNAryExpr *Max = 0;
1610 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1611 Pred = ICmpInst::ICMP_SLE;
1612 Max = S;
1613 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1614 Pred = ICmpInst::ICMP_SLT;
1615 Max = S;
1616 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1617 Pred = ICmpInst::ICMP_ULT;
1618 Max = U;
1619 } else {
1620 // No match; bail.
1621 return Cond;
1624 // To handle a max with more than two operands, this optimization would
1625 // require additional checking and setup.
1626 if (Max->getNumOperands() != 2)
1627 return Cond;
1629 const SCEV *MaxLHS = Max->getOperand(0);
1630 const SCEV *MaxRHS = Max->getOperand(1);
1632 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1633 // for a comparison with 1. For <= and >=, a comparison with zero.
1634 if (!MaxLHS ||
1635 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1636 return Cond;
1638 // Check the relevant induction variable for conformance to
1639 // the pattern.
1640 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1641 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1642 if (!AR || !AR->isAffine() ||
1643 AR->getStart() != One ||
1644 AR->getStepRecurrence(SE) != One)
1645 return Cond;
1647 assert(AR->getLoop() == L &&
1648 "Loop condition operand is an addrec in a different loop!");
1650 // Check the right operand of the select, and remember it, as it will
1651 // be used in the new comparison instruction.
1652 Value *NewRHS = 0;
1653 if (ICmpInst::isTrueWhenEqual(Pred)) {
1654 // Look for n+1, and grab n.
1655 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1656 if (isa<ConstantInt>(BO->getOperand(1)) &&
1657 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1658 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1659 NewRHS = BO->getOperand(0);
1660 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1661 if (isa<ConstantInt>(BO->getOperand(1)) &&
1662 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1663 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1664 NewRHS = BO->getOperand(0);
1665 if (!NewRHS)
1666 return Cond;
1667 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1668 NewRHS = Sel->getOperand(1);
1669 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1670 NewRHS = Sel->getOperand(2);
1671 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1672 NewRHS = SU->getValue();
1673 else
1674 // Max doesn't match expected pattern.
1675 return Cond;
1677 // Determine the new comparison opcode. It may be signed or unsigned,
1678 // and the original comparison may be either equality or inequality.
1679 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1680 Pred = CmpInst::getInversePredicate(Pred);
1682 // Ok, everything looks ok to change the condition into an SLT or SGE and
1683 // delete the max calculation.
1684 ICmpInst *NewCond =
1685 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1687 // Delete the max calculation instructions.
1688 Cond->replaceAllUsesWith(NewCond);
1689 CondUse->setUser(NewCond);
1690 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1691 Cond->eraseFromParent();
1692 Sel->eraseFromParent();
1693 if (Cmp->use_empty())
1694 Cmp->eraseFromParent();
1695 return NewCond;
1698 /// OptimizeLoopTermCond - Change loop terminating condition to use the
1699 /// postinc iv when possible.
1700 void
1701 LSRInstance::OptimizeLoopTermCond() {
1702 SmallPtrSet<Instruction *, 4> PostIncs;
1704 BasicBlock *LatchBlock = L->getLoopLatch();
1705 SmallVector<BasicBlock*, 8> ExitingBlocks;
1706 L->getExitingBlocks(ExitingBlocks);
1708 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1709 BasicBlock *ExitingBlock = ExitingBlocks[i];
1711 // Get the terminating condition for the loop if possible. If we
1712 // can, we want to change it to use a post-incremented version of its
1713 // induction variable, to allow coalescing the live ranges for the IV into
1714 // one register value.
1716 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1717 if (!TermBr)
1718 continue;
1719 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1720 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1721 continue;
1723 // Search IVUsesByStride to find Cond's IVUse if there is one.
1724 IVStrideUse *CondUse = 0;
1725 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1726 if (!FindIVUserForCond(Cond, CondUse))
1727 continue;
1729 // If the trip count is computed in terms of a max (due to ScalarEvolution
1730 // being unable to find a sufficient guard, for example), change the loop
1731 // comparison to use SLT or ULT instead of NE.
1732 // One consequence of doing this now is that it disrupts the count-down
1733 // optimization. That's not always a bad thing though, because in such
1734 // cases it may still be worthwhile to avoid a max.
1735 Cond = OptimizeMax(Cond, CondUse);
1737 // If this exiting block dominates the latch block, it may also use
1738 // the post-inc value if it won't be shared with other uses.
1739 // Check for dominance.
1740 if (!DT.dominates(ExitingBlock, LatchBlock))
1741 continue;
1743 // Conservatively avoid trying to use the post-inc value in non-latch
1744 // exits if there may be pre-inc users in intervening blocks.
1745 if (LatchBlock != ExitingBlock)
1746 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1747 // Test if the use is reachable from the exiting block. This dominator
1748 // query is a conservative approximation of reachability.
1749 if (&*UI != CondUse &&
1750 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1751 // Conservatively assume there may be reuse if the quotient of their
1752 // strides could be a legal scale.
1753 const SCEV *A = IU.getStride(*CondUse, L);
1754 const SCEV *B = IU.getStride(*UI, L);
1755 if (!A || !B) continue;
1756 if (SE.getTypeSizeInBits(A->getType()) !=
1757 SE.getTypeSizeInBits(B->getType())) {
1758 if (SE.getTypeSizeInBits(A->getType()) >
1759 SE.getTypeSizeInBits(B->getType()))
1760 B = SE.getSignExtendExpr(B, A->getType());
1761 else
1762 A = SE.getSignExtendExpr(A, B->getType());
1764 if (const SCEVConstant *D =
1765 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
1766 const ConstantInt *C = D->getValue();
1767 // Stride of one or negative one can have reuse with non-addresses.
1768 if (C->isOne() || C->isAllOnesValue())
1769 goto decline_post_inc;
1770 // Avoid weird situations.
1771 if (C->getValue().getMinSignedBits() >= 64 ||
1772 C->getValue().isMinSignedValue())
1773 goto decline_post_inc;
1774 // Without TLI, assume that any stride might be valid, and so any
1775 // use might be shared.
1776 if (!TLI)
1777 goto decline_post_inc;
1778 // Check for possible scaled-address reuse.
1779 const Type *AccessTy = getAccessType(UI->getUser());
1780 TargetLowering::AddrMode AM;
1781 AM.Scale = C->getSExtValue();
1782 if (TLI->isLegalAddressingMode(AM, AccessTy))
1783 goto decline_post_inc;
1784 AM.Scale = -AM.Scale;
1785 if (TLI->isLegalAddressingMode(AM, AccessTy))
1786 goto decline_post_inc;
1790 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
1791 << *Cond << '\n');
1793 // It's possible for the setcc instruction to be anywhere in the loop, and
1794 // possible for it to have multiple users. If it is not immediately before
1795 // the exiting block branch, move it.
1796 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1797 if (Cond->hasOneUse()) {
1798 Cond->moveBefore(TermBr);
1799 } else {
1800 // Clone the terminating condition and insert into the loopend.
1801 ICmpInst *OldCond = Cond;
1802 Cond = cast<ICmpInst>(Cond->clone());
1803 Cond->setName(L->getHeader()->getName() + ".termcond");
1804 ExitingBlock->getInstList().insert(TermBr, Cond);
1806 // Clone the IVUse, as the old use still exists!
1807 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
1808 TermBr->replaceUsesOfWith(OldCond, Cond);
1812 // If we get to here, we know that we can transform the setcc instruction to
1813 // use the post-incremented version of the IV, allowing us to coalesce the
1814 // live ranges for the IV correctly.
1815 CondUse->transformToPostInc(L);
1816 Changed = true;
1818 PostIncs.insert(Cond);
1819 decline_post_inc:;
1822 // Determine an insertion point for the loop induction variable increment. It
1823 // must dominate all the post-inc comparisons we just set up, and it must
1824 // dominate the loop latch edge.
1825 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1826 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1827 E = PostIncs.end(); I != E; ++I) {
1828 BasicBlock *BB =
1829 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1830 (*I)->getParent());
1831 if (BB == (*I)->getParent())
1832 IVIncInsertPos = *I;
1833 else if (BB != IVIncInsertPos->getParent())
1834 IVIncInsertPos = BB->getTerminator();
1838 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
1839 /// at the given offset and other details. If so, update the use and
1840 /// return true.
1841 bool
1842 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1843 LSRUse::KindType Kind, const Type *AccessTy) {
1844 int64_t NewMinOffset = LU.MinOffset;
1845 int64_t NewMaxOffset = LU.MaxOffset;
1846 const Type *NewAccessTy = AccessTy;
1848 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1849 // something conservative, however this can pessimize in the case that one of
1850 // the uses will have all its uses outside the loop, for example.
1851 if (LU.Kind != Kind)
1852 return false;
1853 // Conservatively assume HasBaseReg is true for now.
1854 if (NewOffset < LU.MinOffset) {
1855 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
1856 Kind, AccessTy, TLI))
1857 return false;
1858 NewMinOffset = NewOffset;
1859 } else if (NewOffset > LU.MaxOffset) {
1860 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
1861 Kind, AccessTy, TLI))
1862 return false;
1863 NewMaxOffset = NewOffset;
1865 // Check for a mismatched access type, and fall back conservatively as needed.
1866 // TODO: Be less conservative when the type is similar and can use the same
1867 // addressing modes.
1868 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1869 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
1871 // Update the use.
1872 LU.MinOffset = NewMinOffset;
1873 LU.MaxOffset = NewMaxOffset;
1874 LU.AccessTy = NewAccessTy;
1875 if (NewOffset != LU.Offsets.back())
1876 LU.Offsets.push_back(NewOffset);
1877 return true;
1880 /// getUse - Return an LSRUse index and an offset value for a fixup which
1881 /// needs the given expression, with the given kind and optional access type.
1882 /// Either reuse an existing use or create a new one, as needed.
1883 std::pair<size_t, int64_t>
1884 LSRInstance::getUse(const SCEV *&Expr,
1885 LSRUse::KindType Kind, const Type *AccessTy) {
1886 const SCEV *Copy = Expr;
1887 int64_t Offset = ExtractImmediate(Expr, SE);
1889 // Basic uses can't accept any offset, for example.
1890 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
1891 Expr = Copy;
1892 Offset = 0;
1895 std::pair<UseMapTy::iterator, bool> P =
1896 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
1897 if (!P.second) {
1898 // A use already existed with this base.
1899 size_t LUIdx = P.first->second;
1900 LSRUse &LU = Uses[LUIdx];
1901 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
1902 // Reuse this use.
1903 return std::make_pair(LUIdx, Offset);
1906 // Create a new use.
1907 size_t LUIdx = Uses.size();
1908 P.first->second = LUIdx;
1909 Uses.push_back(LSRUse(Kind, AccessTy));
1910 LSRUse &LU = Uses[LUIdx];
1912 // We don't need to track redundant offsets, but we don't need to go out
1913 // of our way here to avoid them.
1914 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1915 LU.Offsets.push_back(Offset);
1917 LU.MinOffset = Offset;
1918 LU.MaxOffset = Offset;
1919 return std::make_pair(LUIdx, Offset);
1922 /// DeleteUse - Delete the given use from the Uses list.
1923 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
1924 if (&LU != &Uses.back())
1925 std::swap(LU, Uses.back());
1926 Uses.pop_back();
1928 // Update RegUses.
1929 RegUses.SwapAndDropUse(LUIdx, Uses.size());
1932 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1933 /// a formula that has the same registers as the given formula.
1934 LSRUse *
1935 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
1936 const LSRUse &OrigLU) {
1937 // Search all uses for the formula. This could be more clever.
1938 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
1939 LSRUse &LU = Uses[LUIdx];
1940 // Check whether this use is close enough to OrigLU, to see whether it's
1941 // worthwhile looking through its formulae.
1942 // Ignore ICmpZero uses because they may contain formulae generated by
1943 // GenerateICmpZeroScales, in which case adding fixup offsets may
1944 // be invalid.
1945 if (&LU != &OrigLU &&
1946 LU.Kind != LSRUse::ICmpZero &&
1947 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
1948 LU.WidestFixupType == OrigLU.WidestFixupType &&
1949 LU.HasFormulaWithSameRegs(OrigF)) {
1950 // Scan through this use's formulae.
1951 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
1952 E = LU.Formulae.end(); I != E; ++I) {
1953 const Formula &F = *I;
1954 // Check to see if this formula has the same registers and symbols
1955 // as OrigF.
1956 if (F.BaseRegs == OrigF.BaseRegs &&
1957 F.ScaledReg == OrigF.ScaledReg &&
1958 F.AM.BaseGV == OrigF.AM.BaseGV &&
1959 F.AM.Scale == OrigF.AM.Scale &&
1960 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
1961 if (F.AM.BaseOffs == 0)
1962 return &LU;
1963 // This is the formula where all the registers and symbols matched;
1964 // there aren't going to be any others. Since we declined it, we
1965 // can skip the rest of the formulae and procede to the next LSRUse.
1966 break;
1972 // Nothing looked good.
1973 return 0;
1976 void LSRInstance::CollectInterestingTypesAndFactors() {
1977 SmallSetVector<const SCEV *, 4> Strides;
1979 // Collect interesting types and strides.
1980 SmallVector<const SCEV *, 4> Worklist;
1981 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1982 const SCEV *Expr = IU.getExpr(*UI);
1984 // Collect interesting types.
1985 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
1987 // Add strides for mentioned loops.
1988 Worklist.push_back(Expr);
1989 do {
1990 const SCEV *S = Worklist.pop_back_val();
1991 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1992 Strides.insert(AR->getStepRecurrence(SE));
1993 Worklist.push_back(AR->getStart());
1994 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1995 Worklist.append(Add->op_begin(), Add->op_end());
1997 } while (!Worklist.empty());
2000 // Compute interesting factors from the set of interesting strides.
2001 for (SmallSetVector<const SCEV *, 4>::const_iterator
2002 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2003 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2004 llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2005 const SCEV *OldStride = *I;
2006 const SCEV *NewStride = *NewStrideIter;
2008 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2009 SE.getTypeSizeInBits(NewStride->getType())) {
2010 if (SE.getTypeSizeInBits(OldStride->getType()) >
2011 SE.getTypeSizeInBits(NewStride->getType()))
2012 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2013 else
2014 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2016 if (const SCEVConstant *Factor =
2017 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2018 SE, true))) {
2019 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2020 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2021 } else if (const SCEVConstant *Factor =
2022 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2023 NewStride,
2024 SE, true))) {
2025 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2026 Factors.insert(Factor->getValue()->getValue().getSExtValue());
2030 // If all uses use the same type, don't bother looking for truncation-based
2031 // reuse.
2032 if (Types.size() == 1)
2033 Types.clear();
2035 DEBUG(print_factors_and_types(dbgs()));
2038 void LSRInstance::CollectFixupsAndInitialFormulae() {
2039 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2040 // Record the uses.
2041 LSRFixup &LF = getNewFixup();
2042 LF.UserInst = UI->getUser();
2043 LF.OperandValToReplace = UI->getOperandValToReplace();
2044 LF.PostIncLoops = UI->getPostIncLoops();
2046 LSRUse::KindType Kind = LSRUse::Basic;
2047 const Type *AccessTy = 0;
2048 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2049 Kind = LSRUse::Address;
2050 AccessTy = getAccessType(LF.UserInst);
2053 const SCEV *S = IU.getExpr(*UI);
2055 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2056 // (N - i == 0), and this allows (N - i) to be the expression that we work
2057 // with rather than just N or i, so we can consider the register
2058 // requirements for both N and i at the same time. Limiting this code to
2059 // equality icmps is not a problem because all interesting loops use
2060 // equality icmps, thanks to IndVarSimplify.
2061 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2062 if (CI->isEquality()) {
2063 // Swap the operands if needed to put the OperandValToReplace on the
2064 // left, for consistency.
2065 Value *NV = CI->getOperand(1);
2066 if (NV == LF.OperandValToReplace) {
2067 CI->setOperand(1, CI->getOperand(0));
2068 CI->setOperand(0, NV);
2069 NV = CI->getOperand(1);
2070 Changed = true;
2073 // x == y --> x - y == 0
2074 const SCEV *N = SE.getSCEV(NV);
2075 if (SE.isLoopInvariant(N, L)) {
2076 // S is normalized, so normalize N before folding it into S
2077 // to keep the result normalized.
2078 N = TransformForPostIncUse(Normalize, N, CI, 0,
2079 LF.PostIncLoops, SE, DT);
2080 Kind = LSRUse::ICmpZero;
2081 S = SE.getMinusSCEV(N, S);
2084 // -1 and the negations of all interesting strides (except the negation
2085 // of -1) are now also interesting.
2086 for (size_t i = 0, e = Factors.size(); i != e; ++i)
2087 if (Factors[i] != -1)
2088 Factors.insert(-(uint64_t)Factors[i]);
2089 Factors.insert(-1);
2092 // Set up the initial formula for this use.
2093 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2094 LF.LUIdx = P.first;
2095 LF.Offset = P.second;
2096 LSRUse &LU = Uses[LF.LUIdx];
2097 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2098 if (!LU.WidestFixupType ||
2099 SE.getTypeSizeInBits(LU.WidestFixupType) <
2100 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2101 LU.WidestFixupType = LF.OperandValToReplace->getType();
2103 // If this is the first use of this LSRUse, give it a formula.
2104 if (LU.Formulae.empty()) {
2105 InsertInitialFormula(S, LU, LF.LUIdx);
2106 CountRegisters(LU.Formulae.back(), LF.LUIdx);
2110 DEBUG(print_fixups(dbgs()));
2113 /// InsertInitialFormula - Insert a formula for the given expression into
2114 /// the given use, separating out loop-variant portions from loop-invariant
2115 /// and loop-computable portions.
2116 void
2117 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2118 Formula F;
2119 F.InitialMatch(S, L, SE);
2120 bool Inserted = InsertFormula(LU, LUIdx, F);
2121 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2124 /// InsertSupplementalFormula - Insert a simple single-register formula for
2125 /// the given expression into the given use.
2126 void
2127 LSRInstance::InsertSupplementalFormula(const SCEV *S,
2128 LSRUse &LU, size_t LUIdx) {
2129 Formula F;
2130 F.BaseRegs.push_back(S);
2131 F.AM.HasBaseReg = true;
2132 bool Inserted = InsertFormula(LU, LUIdx, F);
2133 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2136 /// CountRegisters - Note which registers are used by the given formula,
2137 /// updating RegUses.
2138 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2139 if (F.ScaledReg)
2140 RegUses.CountRegister(F.ScaledReg, LUIdx);
2141 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2142 E = F.BaseRegs.end(); I != E; ++I)
2143 RegUses.CountRegister(*I, LUIdx);
2146 /// InsertFormula - If the given formula has not yet been inserted, add it to
2147 /// the list, and return true. Return false otherwise.
2148 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2149 if (!LU.InsertFormula(F))
2150 return false;
2152 CountRegisters(F, LUIdx);
2153 return true;
2156 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2157 /// loop-invariant values which we're tracking. These other uses will pin these
2158 /// values in registers, making them less profitable for elimination.
2159 /// TODO: This currently misses non-constant addrec step registers.
2160 /// TODO: Should this give more weight to users inside the loop?
2161 void
2162 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2163 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2164 SmallPtrSet<const SCEV *, 8> Inserted;
2166 while (!Worklist.empty()) {
2167 const SCEV *S = Worklist.pop_back_val();
2169 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2170 Worklist.append(N->op_begin(), N->op_end());
2171 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2172 Worklist.push_back(C->getOperand());
2173 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2174 Worklist.push_back(D->getLHS());
2175 Worklist.push_back(D->getRHS());
2176 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2177 if (!Inserted.insert(U)) continue;
2178 const Value *V = U->getValue();
2179 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2180 // Look for instructions defined outside the loop.
2181 if (L->contains(Inst)) continue;
2182 } else if (isa<UndefValue>(V))
2183 // Undef doesn't have a live range, so it doesn't matter.
2184 continue;
2185 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2186 UI != UE; ++UI) {
2187 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2188 // Ignore non-instructions.
2189 if (!UserInst)
2190 continue;
2191 // Ignore instructions in other functions (as can happen with
2192 // Constants).
2193 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2194 continue;
2195 // Ignore instructions not dominated by the loop.
2196 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2197 UserInst->getParent() :
2198 cast<PHINode>(UserInst)->getIncomingBlock(
2199 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2200 if (!DT.dominates(L->getHeader(), UseBB))
2201 continue;
2202 // Ignore uses which are part of other SCEV expressions, to avoid
2203 // analyzing them multiple times.
2204 if (SE.isSCEVable(UserInst->getType())) {
2205 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2206 // If the user is a no-op, look through to its uses.
2207 if (!isa<SCEVUnknown>(UserS))
2208 continue;
2209 if (UserS == U) {
2210 Worklist.push_back(
2211 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2212 continue;
2215 // Ignore icmp instructions which are already being analyzed.
2216 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2217 unsigned OtherIdx = !UI.getOperandNo();
2218 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2219 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2220 continue;
2223 LSRFixup &LF = getNewFixup();
2224 LF.UserInst = const_cast<Instruction *>(UserInst);
2225 LF.OperandValToReplace = UI.getUse();
2226 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2227 LF.LUIdx = P.first;
2228 LF.Offset = P.second;
2229 LSRUse &LU = Uses[LF.LUIdx];
2230 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2231 if (!LU.WidestFixupType ||
2232 SE.getTypeSizeInBits(LU.WidestFixupType) <
2233 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2234 LU.WidestFixupType = LF.OperandValToReplace->getType();
2235 InsertSupplementalFormula(U, LU, LF.LUIdx);
2236 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2237 break;
2243 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
2244 /// separate registers. If C is non-null, multiply each subexpression by C.
2245 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2246 SmallVectorImpl<const SCEV *> &Ops,
2247 const Loop *L,
2248 ScalarEvolution &SE) {
2249 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2250 // Break out add operands.
2251 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2252 I != E; ++I)
2253 CollectSubexprs(*I, C, Ops, L, SE);
2254 return;
2255 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2256 // Split a non-zero base out of an addrec.
2257 if (!AR->getStart()->isZero()) {
2258 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
2259 AR->getStepRecurrence(SE),
2260 AR->getLoop(),
2261 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
2262 SCEV::FlagAnyWrap),
2263 C, Ops, L, SE);
2264 CollectSubexprs(AR->getStart(), C, Ops, L, SE);
2265 return;
2267 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2268 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2269 if (Mul->getNumOperands() == 2)
2270 if (const SCEVConstant *Op0 =
2271 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2272 CollectSubexprs(Mul->getOperand(1),
2273 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2274 Ops, L, SE);
2275 return;
2279 // Otherwise use the value itself, optionally with a scale applied.
2280 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2283 /// GenerateReassociations - Split out subexpressions from adds and the bases of
2284 /// addrecs.
2285 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2286 Formula Base,
2287 unsigned Depth) {
2288 // Arbitrarily cap recursion to protect compile time.
2289 if (Depth >= 3) return;
2291 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2292 const SCEV *BaseReg = Base.BaseRegs[i];
2294 SmallVector<const SCEV *, 8> AddOps;
2295 CollectSubexprs(BaseReg, 0, AddOps, L, SE);
2297 if (AddOps.size() == 1) continue;
2299 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2300 JE = AddOps.end(); J != JE; ++J) {
2302 // Loop-variant "unknown" values are uninteresting; we won't be able to
2303 // do anything meaningful with them.
2304 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
2305 continue;
2307 // Don't pull a constant into a register if the constant could be folded
2308 // into an immediate field.
2309 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2310 Base.getNumRegs() > 1,
2311 LU.Kind, LU.AccessTy, TLI, SE))
2312 continue;
2314 // Collect all operands except *J.
2315 SmallVector<const SCEV *, 8> InnerAddOps
2316 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
2317 InnerAddOps.append
2318 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
2320 // Don't leave just a constant behind in a register if the constant could
2321 // be folded into an immediate field.
2322 if (InnerAddOps.size() == 1 &&
2323 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2324 Base.getNumRegs() > 1,
2325 LU.Kind, LU.AccessTy, TLI, SE))
2326 continue;
2328 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2329 if (InnerSum->isZero())
2330 continue;
2331 Formula F = Base;
2333 // Add the remaining pieces of the add back into the new formula.
2334 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
2335 if (TLI && InnerSumSC &&
2336 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
2337 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
2338 InnerSumSC->getValue()->getZExtValue())) {
2339 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
2340 InnerSumSC->getValue()->getZExtValue();
2341 F.BaseRegs.erase(F.BaseRegs.begin() + i);
2342 } else
2343 F.BaseRegs[i] = InnerSum;
2345 // Add J as its own register, or an unfolded immediate.
2346 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
2347 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
2348 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
2349 SC->getValue()->getZExtValue()))
2350 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
2351 SC->getValue()->getZExtValue();
2352 else
2353 F.BaseRegs.push_back(*J);
2355 if (InsertFormula(LU, LUIdx, F))
2356 // If that formula hadn't been seen before, recurse to find more like
2357 // it.
2358 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2363 /// GenerateCombinations - Generate a formula consisting of all of the
2364 /// loop-dominating registers added into a single register.
2365 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
2366 Formula Base) {
2367 // This method is only interesting on a plurality of registers.
2368 if (Base.BaseRegs.size() <= 1) return;
2370 Formula F = Base;
2371 F.BaseRegs.clear();
2372 SmallVector<const SCEV *, 4> Ops;
2373 for (SmallVectorImpl<const SCEV *>::const_iterator
2374 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2375 const SCEV *BaseReg = *I;
2376 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
2377 !SE.hasComputableLoopEvolution(BaseReg, L))
2378 Ops.push_back(BaseReg);
2379 else
2380 F.BaseRegs.push_back(BaseReg);
2382 if (Ops.size() > 1) {
2383 const SCEV *Sum = SE.getAddExpr(Ops);
2384 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2385 // opportunity to fold something. For now, just ignore such cases
2386 // rather than proceed with zero in a register.
2387 if (!Sum->isZero()) {
2388 F.BaseRegs.push_back(Sum);
2389 (void)InsertFormula(LU, LUIdx, F);
2394 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2395 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2396 Formula Base) {
2397 // We can't add a symbolic offset if the address already contains one.
2398 if (Base.AM.BaseGV) return;
2400 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2401 const SCEV *G = Base.BaseRegs[i];
2402 GlobalValue *GV = ExtractSymbol(G, SE);
2403 if (G->isZero() || !GV)
2404 continue;
2405 Formula F = Base;
2406 F.AM.BaseGV = GV;
2407 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2408 LU.Kind, LU.AccessTy, TLI))
2409 continue;
2410 F.BaseRegs[i] = G;
2411 (void)InsertFormula(LU, LUIdx, F);
2415 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2416 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2417 Formula Base) {
2418 // TODO: For now, just add the min and max offset, because it usually isn't
2419 // worthwhile looking at everything inbetween.
2420 SmallVector<int64_t, 2> Worklist;
2421 Worklist.push_back(LU.MinOffset);
2422 if (LU.MaxOffset != LU.MinOffset)
2423 Worklist.push_back(LU.MaxOffset);
2425 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2426 const SCEV *G = Base.BaseRegs[i];
2428 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2429 E = Worklist.end(); I != E; ++I) {
2430 Formula F = Base;
2431 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2432 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2433 LU.Kind, LU.AccessTy, TLI)) {
2434 // Add the offset to the base register.
2435 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
2436 // If it cancelled out, drop the base register, otherwise update it.
2437 if (NewG->isZero()) {
2438 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2439 F.BaseRegs.pop_back();
2440 } else
2441 F.BaseRegs[i] = NewG;
2443 (void)InsertFormula(LU, LUIdx, F);
2447 int64_t Imm = ExtractImmediate(G, SE);
2448 if (G->isZero() || Imm == 0)
2449 continue;
2450 Formula F = Base;
2451 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2452 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2453 LU.Kind, LU.AccessTy, TLI))
2454 continue;
2455 F.BaseRegs[i] = G;
2456 (void)InsertFormula(LU, LUIdx, F);
2460 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2461 /// the comparison. For example, x == y -> x*c == y*c.
2462 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2463 Formula Base) {
2464 if (LU.Kind != LSRUse::ICmpZero) return;
2466 // Determine the integer type for the base formula.
2467 const Type *IntTy = Base.getType();
2468 if (!IntTy) return;
2469 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2471 // Don't do this if there is more than one offset.
2472 if (LU.MinOffset != LU.MaxOffset) return;
2474 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2476 // Check each interesting stride.
2477 for (SmallSetVector<int64_t, 8>::const_iterator
2478 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2479 int64_t Factor = *I;
2481 // Check that the multiplication doesn't overflow.
2482 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
2483 continue;
2484 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
2485 if (NewBaseOffs / Factor != Base.AM.BaseOffs)
2486 continue;
2488 // Check that multiplying with the use offset doesn't overflow.
2489 int64_t Offset = LU.MinOffset;
2490 if (Offset == INT64_MIN && Factor == -1)
2491 continue;
2492 Offset = (uint64_t)Offset * Factor;
2493 if (Offset / Factor != LU.MinOffset)
2494 continue;
2496 Formula F = Base;
2497 F.AM.BaseOffs = NewBaseOffs;
2499 // Check that this scale is legal.
2500 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2501 continue;
2503 // Compensate for the use having MinOffset built into it.
2504 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2506 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2508 // Check that multiplying with each base register doesn't overflow.
2509 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2510 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
2511 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
2512 goto next;
2515 // Check that multiplying with the scaled register doesn't overflow.
2516 if (F.ScaledReg) {
2517 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
2518 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
2519 continue;
2522 // Check that multiplying with the unfolded offset doesn't overflow.
2523 if (F.UnfoldedOffset != 0) {
2524 if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
2525 continue;
2526 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
2527 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
2528 continue;
2531 // If we make it here and it's legal, add it.
2532 (void)InsertFormula(LU, LUIdx, F);
2533 next:;
2537 /// GenerateScales - Generate stride factor reuse formulae by making use of
2538 /// scaled-offset address modes, for example.
2539 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
2540 // Determine the integer type for the base formula.
2541 const Type *IntTy = Base.getType();
2542 if (!IntTy) return;
2544 // If this Formula already has a scaled register, we can't add another one.
2545 if (Base.AM.Scale != 0) return;
2547 // Check each interesting stride.
2548 for (SmallSetVector<int64_t, 8>::const_iterator
2549 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2550 int64_t Factor = *I;
2552 Base.AM.Scale = Factor;
2553 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2554 // Check whether this scale is going to be legal.
2555 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2556 LU.Kind, LU.AccessTy, TLI)) {
2557 // As a special-case, handle special out-of-loop Basic users specially.
2558 // TODO: Reconsider this special case.
2559 if (LU.Kind == LSRUse::Basic &&
2560 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2561 LSRUse::Special, LU.AccessTy, TLI) &&
2562 LU.AllFixupsOutsideLoop)
2563 LU.Kind = LSRUse::Special;
2564 else
2565 continue;
2567 // For an ICmpZero, negating a solitary base register won't lead to
2568 // new solutions.
2569 if (LU.Kind == LSRUse::ICmpZero &&
2570 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2571 continue;
2572 // For each addrec base reg, apply the scale, if possible.
2573 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2574 if (const SCEVAddRecExpr *AR =
2575 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2576 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
2577 if (FactorS->isZero())
2578 continue;
2579 // Divide out the factor, ignoring high bits, since we'll be
2580 // scaling the value back up in the end.
2581 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
2582 // TODO: This could be optimized to avoid all the copying.
2583 Formula F = Base;
2584 F.ScaledReg = Quotient;
2585 F.DeleteBaseReg(F.BaseRegs[i]);
2586 (void)InsertFormula(LU, LUIdx, F);
2592 /// GenerateTruncates - Generate reuse formulae from different IV types.
2593 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
2594 // This requires TargetLowering to tell us which truncates are free.
2595 if (!TLI) return;
2597 // Don't bother truncating symbolic values.
2598 if (Base.AM.BaseGV) return;
2600 // Determine the integer type for the base formula.
2601 const Type *DstTy = Base.getType();
2602 if (!DstTy) return;
2603 DstTy = SE.getEffectiveSCEVType(DstTy);
2605 for (SmallSetVector<const Type *, 4>::const_iterator
2606 I = Types.begin(), E = Types.end(); I != E; ++I) {
2607 const Type *SrcTy = *I;
2608 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2609 Formula F = Base;
2611 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2612 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2613 JE = F.BaseRegs.end(); J != JE; ++J)
2614 *J = SE.getAnyExtendExpr(*J, SrcTy);
2616 // TODO: This assumes we've done basic processing on all uses and
2617 // have an idea what the register usage is.
2618 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2619 continue;
2621 (void)InsertFormula(LU, LUIdx, F);
2626 namespace {
2628 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2629 /// defer modifications so that the search phase doesn't have to worry about
2630 /// the data structures moving underneath it.
2631 struct WorkItem {
2632 size_t LUIdx;
2633 int64_t Imm;
2634 const SCEV *OrigReg;
2636 WorkItem(size_t LI, int64_t I, const SCEV *R)
2637 : LUIdx(LI), Imm(I), OrigReg(R) {}
2639 void print(raw_ostream &OS) const;
2640 void dump() const;
2645 void WorkItem::print(raw_ostream &OS) const {
2646 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2647 << " , add offset " << Imm;
2650 void WorkItem::dump() const {
2651 print(errs()); errs() << '\n';
2654 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2655 /// distance apart and try to form reuse opportunities between them.
2656 void LSRInstance::GenerateCrossUseConstantOffsets() {
2657 // Group the registers by their value without any added constant offset.
2658 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2659 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2660 RegMapTy Map;
2661 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2662 SmallVector<const SCEV *, 8> Sequence;
2663 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2664 I != E; ++I) {
2665 const SCEV *Reg = *I;
2666 int64_t Imm = ExtractImmediate(Reg, SE);
2667 std::pair<RegMapTy::iterator, bool> Pair =
2668 Map.insert(std::make_pair(Reg, ImmMapTy()));
2669 if (Pair.second)
2670 Sequence.push_back(Reg);
2671 Pair.first->second.insert(std::make_pair(Imm, *I));
2672 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2675 // Now examine each set of registers with the same base value. Build up
2676 // a list of work to do and do the work in a separate step so that we're
2677 // not adding formulae and register counts while we're searching.
2678 SmallVector<WorkItem, 32> WorkItems;
2679 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2680 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2681 E = Sequence.end(); I != E; ++I) {
2682 const SCEV *Reg = *I;
2683 const ImmMapTy &Imms = Map.find(Reg)->second;
2685 // It's not worthwhile looking for reuse if there's only one offset.
2686 if (Imms.size() == 1)
2687 continue;
2689 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2690 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2691 J != JE; ++J)
2692 dbgs() << ' ' << J->first;
2693 dbgs() << '\n');
2695 // Examine each offset.
2696 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2697 J != JE; ++J) {
2698 const SCEV *OrigReg = J->second;
2700 int64_t JImm = J->first;
2701 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2703 if (!isa<SCEVConstant>(OrigReg) &&
2704 UsedByIndicesMap[Reg].count() == 1) {
2705 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2706 continue;
2709 // Conservatively examine offsets between this orig reg a few selected
2710 // other orig regs.
2711 ImmMapTy::const_iterator OtherImms[] = {
2712 Imms.begin(), prior(Imms.end()),
2713 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2715 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2716 ImmMapTy::const_iterator M = OtherImms[i];
2717 if (M == J || M == JE) continue;
2719 // Compute the difference between the two.
2720 int64_t Imm = (uint64_t)JImm - M->first;
2721 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2722 LUIdx = UsedByIndices.find_next(LUIdx))
2723 // Make a memo of this use, offset, and register tuple.
2724 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2725 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
2730 Map.clear();
2731 Sequence.clear();
2732 UsedByIndicesMap.clear();
2733 UniqueItems.clear();
2735 // Now iterate through the worklist and add new formulae.
2736 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2737 E = WorkItems.end(); I != E; ++I) {
2738 const WorkItem &WI = *I;
2739 size_t LUIdx = WI.LUIdx;
2740 LSRUse &LU = Uses[LUIdx];
2741 int64_t Imm = WI.Imm;
2742 const SCEV *OrigReg = WI.OrigReg;
2744 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2745 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2746 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2748 // TODO: Use a more targeted data structure.
2749 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2750 const Formula &F = LU.Formulae[L];
2751 // Use the immediate in the scaled register.
2752 if (F.ScaledReg == OrigReg) {
2753 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2754 Imm * (uint64_t)F.AM.Scale;
2755 // Don't create 50 + reg(-50).
2756 if (F.referencesReg(SE.getSCEV(
2757 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2758 continue;
2759 Formula NewF = F;
2760 NewF.AM.BaseOffs = Offs;
2761 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2762 LU.Kind, LU.AccessTy, TLI))
2763 continue;
2764 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2766 // If the new scale is a constant in a register, and adding the constant
2767 // value to the immediate would produce a value closer to zero than the
2768 // immediate itself, then the formula isn't worthwhile.
2769 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2770 if (C->getValue()->getValue().isNegative() !=
2771 (NewF.AM.BaseOffs < 0) &&
2772 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
2773 .ule(abs64(NewF.AM.BaseOffs)))
2774 continue;
2776 // OK, looks good.
2777 (void)InsertFormula(LU, LUIdx, NewF);
2778 } else {
2779 // Use the immediate in a base register.
2780 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2781 const SCEV *BaseReg = F.BaseRegs[N];
2782 if (BaseReg != OrigReg)
2783 continue;
2784 Formula NewF = F;
2785 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2786 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2787 LU.Kind, LU.AccessTy, TLI)) {
2788 if (!TLI ||
2789 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
2790 continue;
2791 NewF = F;
2792 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
2794 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2796 // If the new formula has a constant in a register, and adding the
2797 // constant value to the immediate would produce a value closer to
2798 // zero than the immediate itself, then the formula isn't worthwhile.
2799 for (SmallVectorImpl<const SCEV *>::const_iterator
2800 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2801 J != JE; ++J)
2802 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2803 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
2804 abs64(NewF.AM.BaseOffs)) &&
2805 (C->getValue()->getValue() +
2806 NewF.AM.BaseOffs).countTrailingZeros() >=
2807 CountTrailingZeros_64(NewF.AM.BaseOffs))
2808 goto skip_formula;
2810 // Ok, looks good.
2811 (void)InsertFormula(LU, LUIdx, NewF);
2812 break;
2813 skip_formula:;
2820 /// GenerateAllReuseFormulae - Generate formulae for each use.
2821 void
2822 LSRInstance::GenerateAllReuseFormulae() {
2823 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2824 // queries are more precise.
2825 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2826 LSRUse &LU = Uses[LUIdx];
2827 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2828 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2829 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2830 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2832 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2833 LSRUse &LU = Uses[LUIdx];
2834 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2835 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2836 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2837 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2838 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2839 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2840 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2841 GenerateScales(LU, LUIdx, LU.Formulae[i]);
2843 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2844 LSRUse &LU = Uses[LUIdx];
2845 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2846 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2849 GenerateCrossUseConstantOffsets();
2851 DEBUG(dbgs() << "\n"
2852 "After generating reuse formulae:\n";
2853 print_uses(dbgs()));
2856 /// If there are multiple formulae with the same set of registers used
2857 /// by other uses, pick the best one and delete the others.
2858 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2859 DenseSet<const SCEV *> VisitedRegs;
2860 SmallPtrSet<const SCEV *, 16> Regs;
2861 #ifndef NDEBUG
2862 bool ChangedFormulae = false;
2863 #endif
2865 // Collect the best formula for each unique set of shared registers. This
2866 // is reset for each use.
2867 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2868 BestFormulaeTy;
2869 BestFormulaeTy BestFormulae;
2871 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2872 LSRUse &LU = Uses[LUIdx];
2873 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
2875 bool Any = false;
2876 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2877 FIdx != NumForms; ++FIdx) {
2878 Formula &F = LU.Formulae[FIdx];
2880 SmallVector<const SCEV *, 2> Key;
2881 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2882 JE = F.BaseRegs.end(); J != JE; ++J) {
2883 const SCEV *Reg = *J;
2884 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2885 Key.push_back(Reg);
2887 if (F.ScaledReg &&
2888 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2889 Key.push_back(F.ScaledReg);
2890 // Unstable sort by host order ok, because this is only used for
2891 // uniquifying.
2892 std::sort(Key.begin(), Key.end());
2894 std::pair<BestFormulaeTy::const_iterator, bool> P =
2895 BestFormulae.insert(std::make_pair(Key, FIdx));
2896 if (!P.second) {
2897 Formula &Best = LU.Formulae[P.first->second];
2899 Cost CostF;
2900 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2901 Regs.clear();
2902 Cost CostBest;
2903 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
2904 Regs.clear();
2905 if (CostF < CostBest)
2906 std::swap(F, Best);
2907 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
2908 dbgs() << "\n"
2909 " in favor of formula "; Best.print(dbgs());
2910 dbgs() << '\n');
2911 #ifndef NDEBUG
2912 ChangedFormulae = true;
2913 #endif
2914 LU.DeleteFormula(F);
2915 --FIdx;
2916 --NumForms;
2917 Any = true;
2918 continue;
2922 // Now that we've filtered out some formulae, recompute the Regs set.
2923 if (Any)
2924 LU.RecomputeRegs(LUIdx, RegUses);
2926 // Reset this to prepare for the next use.
2927 BestFormulae.clear();
2930 DEBUG(if (ChangedFormulae) {
2931 dbgs() << "\n"
2932 "After filtering out undesirable candidates:\n";
2933 print_uses(dbgs());
2937 // This is a rough guess that seems to work fairly well.
2938 static const size_t ComplexityLimit = UINT16_MAX;
2940 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2941 /// solutions the solver might have to consider. It almost never considers
2942 /// this many solutions because it prune the search space, but the pruning
2943 /// isn't always sufficient.
2944 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2945 size_t Power = 1;
2946 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2947 E = Uses.end(); I != E; ++I) {
2948 size_t FSize = I->Formulae.size();
2949 if (FSize >= ComplexityLimit) {
2950 Power = ComplexityLimit;
2951 break;
2953 Power *= FSize;
2954 if (Power >= ComplexityLimit)
2955 break;
2957 return Power;
2960 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
2961 /// of the registers of another formula, it won't help reduce register
2962 /// pressure (though it may not necessarily hurt register pressure); remove
2963 /// it to simplify the system.
2964 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
2965 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
2966 DEBUG(dbgs() << "The search space is too complex.\n");
2968 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2969 "which use a superset of registers used by other "
2970 "formulae.\n");
2972 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2973 LSRUse &LU = Uses[LUIdx];
2974 bool Any = false;
2975 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2976 Formula &F = LU.Formulae[i];
2977 // Look for a formula with a constant or GV in a register. If the use
2978 // also has a formula with that same value in an immediate field,
2979 // delete the one that uses a register.
2980 for (SmallVectorImpl<const SCEV *>::const_iterator
2981 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
2982 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
2983 Formula NewF = F;
2984 NewF.AM.BaseOffs += C->getValue()->getSExtValue();
2985 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
2986 (I - F.BaseRegs.begin()));
2987 if (LU.HasFormulaWithSameRegs(NewF)) {
2988 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2989 LU.DeleteFormula(F);
2990 --i;
2991 --e;
2992 Any = true;
2993 break;
2995 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
2996 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
2997 if (!F.AM.BaseGV) {
2998 Formula NewF = F;
2999 NewF.AM.BaseGV = GV;
3000 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3001 (I - F.BaseRegs.begin()));
3002 if (LU.HasFormulaWithSameRegs(NewF)) {
3003 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3004 dbgs() << '\n');
3005 LU.DeleteFormula(F);
3006 --i;
3007 --e;
3008 Any = true;
3009 break;
3015 if (Any)
3016 LU.RecomputeRegs(LUIdx, RegUses);
3019 DEBUG(dbgs() << "After pre-selection:\n";
3020 print_uses(dbgs()));
3024 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3025 /// for expressions like A, A+1, A+2, etc., allocate a single register for
3026 /// them.
3027 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3028 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3029 DEBUG(dbgs() << "The search space is too complex.\n");
3031 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3032 "separated by a constant offset will use the same "
3033 "registers.\n");
3035 // This is especially useful for unrolled loops.
3037 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3038 LSRUse &LU = Uses[LUIdx];
3039 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3040 E = LU.Formulae.end(); I != E; ++I) {
3041 const Formula &F = *I;
3042 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3043 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3044 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3045 /*HasBaseReg=*/false,
3046 LU.Kind, LU.AccessTy)) {
3047 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs());
3048 dbgs() << '\n');
3050 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3052 // Update the relocs to reference the new use.
3053 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3054 E = Fixups.end(); I != E; ++I) {
3055 LSRFixup &Fixup = *I;
3056 if (Fixup.LUIdx == LUIdx) {
3057 Fixup.LUIdx = LUThatHas - &Uses.front();
3058 Fixup.Offset += F.AM.BaseOffs;
3059 // Add the new offset to LUThatHas' offset list.
3060 if (LUThatHas->Offsets.back() != Fixup.Offset) {
3061 LUThatHas->Offsets.push_back(Fixup.Offset);
3062 if (Fixup.Offset > LUThatHas->MaxOffset)
3063 LUThatHas->MaxOffset = Fixup.Offset;
3064 if (Fixup.Offset < LUThatHas->MinOffset)
3065 LUThatHas->MinOffset = Fixup.Offset;
3067 DEBUG(dbgs() << "New fixup has offset "
3068 << Fixup.Offset << '\n');
3070 if (Fixup.LUIdx == NumUses-1)
3071 Fixup.LUIdx = LUIdx;
3074 // Delete formulae from the new use which are no longer legal.
3075 bool Any = false;
3076 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3077 Formula &F = LUThatHas->Formulae[i];
3078 if (!isLegalUse(F.AM,
3079 LUThatHas->MinOffset, LUThatHas->MaxOffset,
3080 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3081 DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3082 dbgs() << '\n');
3083 LUThatHas->DeleteFormula(F);
3084 --i;
3085 --e;
3086 Any = true;
3089 if (Any)
3090 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3092 // Delete the old use.
3093 DeleteUse(LU, LUIdx);
3094 --LUIdx;
3095 --NumUses;
3096 break;
3103 DEBUG(dbgs() << "After pre-selection:\n";
3104 print_uses(dbgs()));
3108 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3109 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3110 /// we've done more filtering, as it may be able to find more formulae to
3111 /// eliminate.
3112 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3113 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3114 DEBUG(dbgs() << "The search space is too complex.\n");
3116 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3117 "undesirable dedicated registers.\n");
3119 FilterOutUndesirableDedicatedRegisters();
3121 DEBUG(dbgs() << "After pre-selection:\n";
3122 print_uses(dbgs()));
3126 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3127 /// to be profitable, and then in any use which has any reference to that
3128 /// register, delete all formulae which do not reference that register.
3129 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3130 // With all other options exhausted, loop until the system is simple
3131 // enough to handle.
3132 SmallPtrSet<const SCEV *, 4> Taken;
3133 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3134 // Ok, we have too many of formulae on our hands to conveniently handle.
3135 // Use a rough heuristic to thin out the list.
3136 DEBUG(dbgs() << "The search space is too complex.\n");
3138 // Pick the register which is used by the most LSRUses, which is likely
3139 // to be a good reuse register candidate.
3140 const SCEV *Best = 0;
3141 unsigned BestNum = 0;
3142 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3143 I != E; ++I) {
3144 const SCEV *Reg = *I;
3145 if (Taken.count(Reg))
3146 continue;
3147 if (!Best)
3148 Best = Reg;
3149 else {
3150 unsigned Count = RegUses.getUsedByIndices(Reg).count();
3151 if (Count > BestNum) {
3152 Best = Reg;
3153 BestNum = Count;
3158 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3159 << " will yield profitable reuse.\n");
3160 Taken.insert(Best);
3162 // In any use with formulae which references this register, delete formulae
3163 // which don't reference it.
3164 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3165 LSRUse &LU = Uses[LUIdx];
3166 if (!LU.Regs.count(Best)) continue;
3168 bool Any = false;
3169 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3170 Formula &F = LU.Formulae[i];
3171 if (!F.referencesReg(Best)) {
3172 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
3173 LU.DeleteFormula(F);
3174 --e;
3175 --i;
3176 Any = true;
3177 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
3178 continue;
3182 if (Any)
3183 LU.RecomputeRegs(LUIdx, RegUses);
3186 DEBUG(dbgs() << "After pre-selection:\n";
3187 print_uses(dbgs()));
3191 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3192 /// formulae to choose from, use some rough heuristics to prune down the number
3193 /// of formulae. This keeps the main solver from taking an extraordinary amount
3194 /// of time in some worst-case scenarios.
3195 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3196 NarrowSearchSpaceByDetectingSupersets();
3197 NarrowSearchSpaceByCollapsingUnrolledCode();
3198 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3199 NarrowSearchSpaceByPickingWinnerRegs();
3202 /// SolveRecurse - This is the recursive solver.
3203 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
3204 Cost &SolutionCost,
3205 SmallVectorImpl<const Formula *> &Workspace,
3206 const Cost &CurCost,
3207 const SmallPtrSet<const SCEV *, 16> &CurRegs,
3208 DenseSet<const SCEV *> &VisitedRegs) const {
3209 // Some ideas:
3210 // - prune more:
3211 // - use more aggressive filtering
3212 // - sort the formula so that the most profitable solutions are found first
3213 // - sort the uses too
3214 // - search faster:
3215 // - don't compute a cost, and then compare. compare while computing a cost
3216 // and bail early.
3217 // - track register sets with SmallBitVector
3219 const LSRUse &LU = Uses[Workspace.size()];
3221 // If this use references any register that's already a part of the
3222 // in-progress solution, consider it a requirement that a formula must
3223 // reference that register in order to be considered. This prunes out
3224 // unprofitable searching.
3225 SmallSetVector<const SCEV *, 4> ReqRegs;
3226 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
3227 E = CurRegs.end(); I != E; ++I)
3228 if (LU.Regs.count(*I))
3229 ReqRegs.insert(*I);
3231 bool AnySatisfiedReqRegs = false;
3232 SmallPtrSet<const SCEV *, 16> NewRegs;
3233 Cost NewCost;
3234 retry:
3235 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3236 E = LU.Formulae.end(); I != E; ++I) {
3237 const Formula &F = *I;
3239 // Ignore formulae which do not use any of the required registers.
3240 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
3241 JE = ReqRegs.end(); J != JE; ++J) {
3242 const SCEV *Reg = *J;
3243 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
3244 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
3245 F.BaseRegs.end())
3246 goto skip;
3248 AnySatisfiedReqRegs = true;
3250 // Evaluate the cost of the current formula. If it's already worse than
3251 // the current best, prune the search at that point.
3252 NewCost = CurCost;
3253 NewRegs = CurRegs;
3254 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
3255 if (NewCost < SolutionCost) {
3256 Workspace.push_back(&F);
3257 if (Workspace.size() != Uses.size()) {
3258 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
3259 NewRegs, VisitedRegs);
3260 if (F.getNumRegs() == 1 && Workspace.size() == 1)
3261 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
3262 } else {
3263 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
3264 dbgs() << ". Regs:";
3265 for (SmallPtrSet<const SCEV *, 16>::const_iterator
3266 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
3267 dbgs() << ' ' << **I;
3268 dbgs() << '\n');
3270 SolutionCost = NewCost;
3271 Solution = Workspace;
3273 Workspace.pop_back();
3275 skip:;
3278 // If none of the formulae had all of the required registers, relax the
3279 // constraint so that we don't exclude all formulae.
3280 if (!AnySatisfiedReqRegs) {
3281 assert(!ReqRegs.empty() && "Solver failed even without required registers");
3282 ReqRegs.clear();
3283 goto retry;
3287 /// Solve - Choose one formula from each use. Return the results in the given
3288 /// Solution vector.
3289 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
3290 SmallVector<const Formula *, 8> Workspace;
3291 Cost SolutionCost;
3292 SolutionCost.Loose();
3293 Cost CurCost;
3294 SmallPtrSet<const SCEV *, 16> CurRegs;
3295 DenseSet<const SCEV *> VisitedRegs;
3296 Workspace.reserve(Uses.size());
3298 // SolveRecurse does all the work.
3299 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
3300 CurRegs, VisitedRegs);
3302 // Ok, we've now made all our decisions.
3303 DEBUG(dbgs() << "\n"
3304 "The chosen solution requires "; SolutionCost.print(dbgs());
3305 dbgs() << ":\n";
3306 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
3307 dbgs() << " ";
3308 Uses[i].print(dbgs());
3309 dbgs() << "\n"
3310 " ";
3311 Solution[i]->print(dbgs());
3312 dbgs() << '\n';
3315 assert(Solution.size() == Uses.size() && "Malformed solution!");
3318 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3319 /// the dominator tree far as we can go while still being dominated by the
3320 /// input positions. This helps canonicalize the insert position, which
3321 /// encourages sharing.
3322 BasicBlock::iterator
3323 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
3324 const SmallVectorImpl<Instruction *> &Inputs)
3325 const {
3326 for (;;) {
3327 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
3328 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
3330 BasicBlock *IDom;
3331 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
3332 if (!Rung) return IP;
3333 Rung = Rung->getIDom();
3334 if (!Rung) return IP;
3335 IDom = Rung->getBlock();
3337 // Don't climb into a loop though.
3338 const Loop *IDomLoop = LI.getLoopFor(IDom);
3339 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
3340 if (IDomDepth <= IPLoopDepth &&
3341 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
3342 break;
3345 bool AllDominate = true;
3346 Instruction *BetterPos = 0;
3347 Instruction *Tentative = IDom->getTerminator();
3348 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
3349 E = Inputs.end(); I != E; ++I) {
3350 Instruction *Inst = *I;
3351 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
3352 AllDominate = false;
3353 break;
3355 // Attempt to find an insert position in the middle of the block,
3356 // instead of at the end, so that it can be used for other expansions.
3357 if (IDom == Inst->getParent() &&
3358 (!BetterPos || DT.dominates(BetterPos, Inst)))
3359 BetterPos = llvm::next(BasicBlock::iterator(Inst));
3361 if (!AllDominate)
3362 break;
3363 if (BetterPos)
3364 IP = BetterPos;
3365 else
3366 IP = Tentative;
3369 return IP;
3372 /// AdjustInsertPositionForExpand - Determine an input position which will be
3373 /// dominated by the operands and which will dominate the result.
3374 BasicBlock::iterator
3375 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
3376 const LSRFixup &LF,
3377 const LSRUse &LU) const {
3378 // Collect some instructions which must be dominated by the
3379 // expanding replacement. These must be dominated by any operands that
3380 // will be required in the expansion.
3381 SmallVector<Instruction *, 4> Inputs;
3382 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
3383 Inputs.push_back(I);
3384 if (LU.Kind == LSRUse::ICmpZero)
3385 if (Instruction *I =
3386 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
3387 Inputs.push_back(I);
3388 if (LF.PostIncLoops.count(L)) {
3389 if (LF.isUseFullyOutsideLoop(L))
3390 Inputs.push_back(L->getLoopLatch()->getTerminator());
3391 else
3392 Inputs.push_back(IVIncInsertPos);
3394 // The expansion must also be dominated by the increment positions of any
3395 // loops it for which it is using post-inc mode.
3396 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
3397 E = LF.PostIncLoops.end(); I != E; ++I) {
3398 const Loop *PIL = *I;
3399 if (PIL == L) continue;
3401 // Be dominated by the loop exit.
3402 SmallVector<BasicBlock *, 4> ExitingBlocks;
3403 PIL->getExitingBlocks(ExitingBlocks);
3404 if (!ExitingBlocks.empty()) {
3405 BasicBlock *BB = ExitingBlocks[0];
3406 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
3407 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
3408 Inputs.push_back(BB->getTerminator());
3412 // Then, climb up the immediate dominator tree as far as we can go while
3413 // still being dominated by the input positions.
3414 IP = HoistInsertPosition(IP, Inputs);
3416 // Don't insert instructions before PHI nodes.
3417 while (isa<PHINode>(IP)) ++IP;
3419 // Ignore debug intrinsics.
3420 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
3422 return IP;
3425 /// Expand - Emit instructions for the leading candidate expression for this
3426 /// LSRUse (this is called "expanding").
3427 Value *LSRInstance::Expand(const LSRFixup &LF,
3428 const Formula &F,
3429 BasicBlock::iterator IP,
3430 SCEVExpander &Rewriter,
3431 SmallVectorImpl<WeakVH> &DeadInsts) const {
3432 const LSRUse &LU = Uses[LF.LUIdx];
3434 // Determine an input position which will be dominated by the operands and
3435 // which will dominate the result.
3436 IP = AdjustInsertPositionForExpand(IP, LF, LU);
3438 // Inform the Rewriter if we have a post-increment use, so that it can
3439 // perform an advantageous expansion.
3440 Rewriter.setPostInc(LF.PostIncLoops);
3442 // This is the type that the user actually needs.
3443 const Type *OpTy = LF.OperandValToReplace->getType();
3444 // This will be the type that we'll initially expand to.
3445 const Type *Ty = F.getType();
3446 if (!Ty)
3447 // No type known; just expand directly to the ultimate type.
3448 Ty = OpTy;
3449 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3450 // Expand directly to the ultimate type if it's the right size.
3451 Ty = OpTy;
3452 // This is the type to do integer arithmetic in.
3453 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3455 // Build up a list of operands to add together to form the full base.
3456 SmallVector<const SCEV *, 8> Ops;
3458 // Expand the BaseRegs portion.
3459 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3460 E = F.BaseRegs.end(); I != E; ++I) {
3461 const SCEV *Reg = *I;
3462 assert(!Reg->isZero() && "Zero allocated in a base register!");
3464 // If we're expanding for a post-inc user, make the post-inc adjustment.
3465 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3466 Reg = TransformForPostIncUse(Denormalize, Reg,
3467 LF.UserInst, LF.OperandValToReplace,
3468 Loops, SE, DT);
3470 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3473 // Flush the operand list to suppress SCEVExpander hoisting.
3474 if (!Ops.empty()) {
3475 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3476 Ops.clear();
3477 Ops.push_back(SE.getUnknown(FullV));
3480 // Expand the ScaledReg portion.
3481 Value *ICmpScaledV = 0;
3482 if (F.AM.Scale != 0) {
3483 const SCEV *ScaledS = F.ScaledReg;
3485 // If we're expanding for a post-inc user, make the post-inc adjustment.
3486 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3487 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3488 LF.UserInst, LF.OperandValToReplace,
3489 Loops, SE, DT);
3491 if (LU.Kind == LSRUse::ICmpZero) {
3492 // An interesting way of "folding" with an icmp is to use a negated
3493 // scale, which we'll implement by inserting it into the other operand
3494 // of the icmp.
3495 assert(F.AM.Scale == -1 &&
3496 "The only scale supported by ICmpZero uses is -1!");
3497 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3498 } else {
3499 // Otherwise just expand the scaled register and an explicit scale,
3500 // which is expected to be matched as part of the address.
3501 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3502 ScaledS = SE.getMulExpr(ScaledS,
3503 SE.getConstant(ScaledS->getType(), F.AM.Scale));
3504 Ops.push_back(ScaledS);
3506 // Flush the operand list to suppress SCEVExpander hoisting.
3507 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3508 Ops.clear();
3509 Ops.push_back(SE.getUnknown(FullV));
3513 // Expand the GV portion.
3514 if (F.AM.BaseGV) {
3515 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3517 // Flush the operand list to suppress SCEVExpander hoisting.
3518 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3519 Ops.clear();
3520 Ops.push_back(SE.getUnknown(FullV));
3523 // Expand the immediate portion.
3524 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3525 if (Offset != 0) {
3526 if (LU.Kind == LSRUse::ICmpZero) {
3527 // The other interesting way of "folding" with an ICmpZero is to use a
3528 // negated immediate.
3529 if (!ICmpScaledV)
3530 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3531 else {
3532 Ops.push_back(SE.getUnknown(ICmpScaledV));
3533 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3535 } else {
3536 // Just add the immediate values. These again are expected to be matched
3537 // as part of the address.
3538 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
3542 // Expand the unfolded offset portion.
3543 int64_t UnfoldedOffset = F.UnfoldedOffset;
3544 if (UnfoldedOffset != 0) {
3545 // Just add the immediate values.
3546 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
3547 UnfoldedOffset)));
3550 // Emit instructions summing all the operands.
3551 const SCEV *FullS = Ops.empty() ?
3552 SE.getConstant(IntTy, 0) :
3553 SE.getAddExpr(Ops);
3554 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3556 // We're done expanding now, so reset the rewriter.
3557 Rewriter.clearPostInc();
3559 // An ICmpZero Formula represents an ICmp which we're handling as a
3560 // comparison against zero. Now that we've expanded an expression for that
3561 // form, update the ICmp's other operand.
3562 if (LU.Kind == LSRUse::ICmpZero) {
3563 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3564 DeadInsts.push_back(CI->getOperand(1));
3565 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3566 "a scale at the same time!");
3567 if (F.AM.Scale == -1) {
3568 if (ICmpScaledV->getType() != OpTy) {
3569 Instruction *Cast =
3570 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3571 OpTy, false),
3572 ICmpScaledV, OpTy, "tmp", CI);
3573 ICmpScaledV = Cast;
3575 CI->setOperand(1, ICmpScaledV);
3576 } else {
3577 assert(F.AM.Scale == 0 &&
3578 "ICmp does not support folding a global value and "
3579 "a scale at the same time!");
3580 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3581 -(uint64_t)Offset);
3582 if (C->getType() != OpTy)
3583 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3584 OpTy, false),
3585 C, OpTy);
3587 CI->setOperand(1, C);
3591 return FullV;
3594 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3595 /// of their operands effectively happens in their predecessor blocks, so the
3596 /// expression may need to be expanded in multiple places.
3597 void LSRInstance::RewriteForPHI(PHINode *PN,
3598 const LSRFixup &LF,
3599 const Formula &F,
3600 SCEVExpander &Rewriter,
3601 SmallVectorImpl<WeakVH> &DeadInsts,
3602 Pass *P) const {
3603 DenseMap<BasicBlock *, Value *> Inserted;
3604 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3605 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3606 BasicBlock *BB = PN->getIncomingBlock(i);
3608 // If this is a critical edge, split the edge so that we do not insert
3609 // the code on all predecessor/successor paths. We do this unless this
3610 // is the canonical backedge for this loop, which complicates post-inc
3611 // users.
3612 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3613 !isa<IndirectBrInst>(BB->getTerminator())) {
3614 Loop *PNLoop = LI.getLoopFor(PN->getParent());
3615 if (!PNLoop || PN->getParent() != PNLoop->getHeader()) {
3616 // Split the critical edge.
3617 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3619 // If PN is outside of the loop and BB is in the loop, we want to
3620 // move the block to be immediately before the PHI block, not
3621 // immediately after BB.
3622 if (L->contains(BB) && !L->contains(PN))
3623 NewBB->moveBefore(PN->getParent());
3625 // Splitting the edge can reduce the number of PHI entries we have.
3626 e = PN->getNumIncomingValues();
3627 BB = NewBB;
3628 i = PN->getBasicBlockIndex(BB);
3632 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3633 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3634 if (!Pair.second)
3635 PN->setIncomingValue(i, Pair.first->second);
3636 else {
3637 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
3639 // If this is reuse-by-noop-cast, insert the noop cast.
3640 const Type *OpTy = LF.OperandValToReplace->getType();
3641 if (FullV->getType() != OpTy)
3642 FullV =
3643 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3644 OpTy, false),
3645 FullV, LF.OperandValToReplace->getType(),
3646 "tmp", BB->getTerminator());
3648 PN->setIncomingValue(i, FullV);
3649 Pair.first->second = FullV;
3654 /// Rewrite - Emit instructions for the leading candidate expression for this
3655 /// LSRUse (this is called "expanding"), and update the UserInst to reference
3656 /// the newly expanded value.
3657 void LSRInstance::Rewrite(const LSRFixup &LF,
3658 const Formula &F,
3659 SCEVExpander &Rewriter,
3660 SmallVectorImpl<WeakVH> &DeadInsts,
3661 Pass *P) const {
3662 // First, find an insertion point that dominates UserInst. For PHI nodes,
3663 // find the nearest block which dominates all the relevant uses.
3664 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
3665 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
3666 } else {
3667 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
3669 // If this is reuse-by-noop-cast, insert the noop cast.
3670 const Type *OpTy = LF.OperandValToReplace->getType();
3671 if (FullV->getType() != OpTy) {
3672 Instruction *Cast =
3673 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3674 FullV, OpTy, "tmp", LF.UserInst);
3675 FullV = Cast;
3678 // Update the user. ICmpZero is handled specially here (for now) because
3679 // Expand may have updated one of the operands of the icmp already, and
3680 // its new value may happen to be equal to LF.OperandValToReplace, in
3681 // which case doing replaceUsesOfWith leads to replacing both operands
3682 // with the same value. TODO: Reorganize this.
3683 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3684 LF.UserInst->setOperand(0, FullV);
3685 else
3686 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3689 DeadInsts.push_back(LF.OperandValToReplace);
3692 /// ImplementSolution - Rewrite all the fixup locations with new values,
3693 /// following the chosen solution.
3694 void
3695 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3696 Pass *P) {
3697 // Keep track of instructions we may have made dead, so that
3698 // we can remove them after we are done working.
3699 SmallVector<WeakVH, 16> DeadInsts;
3701 SCEVExpander Rewriter(SE, "lsr");
3702 Rewriter.disableCanonicalMode();
3703 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3705 // Expand the new value definitions and update the users.
3706 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3707 E = Fixups.end(); I != E; ++I) {
3708 const LSRFixup &Fixup = *I;
3710 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
3712 Changed = true;
3715 // Clean up after ourselves. This must be done before deleting any
3716 // instructions.
3717 Rewriter.clear();
3719 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3722 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3723 : IU(P->getAnalysis<IVUsers>()),
3724 SE(P->getAnalysis<ScalarEvolution>()),
3725 DT(P->getAnalysis<DominatorTree>()),
3726 LI(P->getAnalysis<LoopInfo>()),
3727 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
3729 // If LoopSimplify form is not available, stay out of trouble.
3730 if (!L->isLoopSimplifyForm()) return;
3732 // If there's no interesting work to be done, bail early.
3733 if (IU.empty()) return;
3735 DEBUG(dbgs() << "\nLSR on loop ";
3736 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3737 dbgs() << ":\n");
3739 // First, perform some low-level loop optimizations.
3740 OptimizeShadowIV();
3741 OptimizeLoopTermCond();
3743 // Start collecting data and preparing for the solver.
3744 CollectInterestingTypesAndFactors();
3745 CollectFixupsAndInitialFormulae();
3746 CollectLoopInvariantFixupsAndFormulae();
3748 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3749 print_uses(dbgs()));
3751 // Now use the reuse data to generate a bunch of interesting ways
3752 // to formulate the values needed for the uses.
3753 GenerateAllReuseFormulae();
3755 FilterOutUndesirableDedicatedRegisters();
3756 NarrowSearchSpaceUsingHeuristics();
3758 SmallVector<const Formula *, 8> Solution;
3759 Solve(Solution);
3761 // Release memory that is no longer needed.
3762 Factors.clear();
3763 Types.clear();
3764 RegUses.clear();
3766 #ifndef NDEBUG
3767 // Formulae should be legal.
3768 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3769 E = Uses.end(); I != E; ++I) {
3770 const LSRUse &LU = *I;
3771 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3772 JE = LU.Formulae.end(); J != JE; ++J)
3773 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3774 LU.Kind, LU.AccessTy, TLI) &&
3775 "Illegal formula generated!");
3777 #endif
3779 // Now that we've decided what we want, make it so.
3780 ImplementSolution(Solution, P);
3783 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3784 if (Factors.empty() && Types.empty()) return;
3786 OS << "LSR has identified the following interesting factors and types: ";
3787 bool First = true;
3789 for (SmallSetVector<int64_t, 8>::const_iterator
3790 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3791 if (!First) OS << ", ";
3792 First = false;
3793 OS << '*' << *I;
3796 for (SmallSetVector<const Type *, 4>::const_iterator
3797 I = Types.begin(), E = Types.end(); I != E; ++I) {
3798 if (!First) OS << ", ";
3799 First = false;
3800 OS << '(' << **I << ')';
3802 OS << '\n';
3805 void LSRInstance::print_fixups(raw_ostream &OS) const {
3806 OS << "LSR is examining the following fixup sites:\n";
3807 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3808 E = Fixups.end(); I != E; ++I) {
3809 dbgs() << " ";
3810 I->print(OS);
3811 OS << '\n';
3815 void LSRInstance::print_uses(raw_ostream &OS) const {
3816 OS << "LSR is examining the following uses:\n";
3817 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3818 E = Uses.end(); I != E; ++I) {
3819 const LSRUse &LU = *I;
3820 dbgs() << " ";
3821 LU.print(OS);
3822 OS << '\n';
3823 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3824 JE = LU.Formulae.end(); J != JE; ++J) {
3825 OS << " ";
3826 J->print(OS);
3827 OS << '\n';
3832 void LSRInstance::print(raw_ostream &OS) const {
3833 print_factors_and_types(OS);
3834 print_fixups(OS);
3835 print_uses(OS);
3838 void LSRInstance::dump() const {
3839 print(errs()); errs() << '\n';
3842 namespace {
3844 class LoopStrengthReduce : public LoopPass {
3845 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3846 /// transformation profitability.
3847 const TargetLowering *const TLI;
3849 public:
3850 static char ID; // Pass ID, replacement for typeid
3851 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3853 private:
3854 bool runOnLoop(Loop *L, LPPassManager &LPM);
3855 void getAnalysisUsage(AnalysisUsage &AU) const;
3860 char LoopStrengthReduce::ID = 0;
3861 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
3862 "Loop Strength Reduction", false, false)
3863 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3864 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3865 INITIALIZE_PASS_DEPENDENCY(IVUsers)
3866 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
3867 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3868 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
3869 "Loop Strength Reduction", false, false)
3872 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3873 return new LoopStrengthReduce(TLI);
3876 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3877 : LoopPass(ID), TLI(tli) {
3878 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3881 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3882 // We split critical edges, so we change the CFG. However, we do update
3883 // many analyses if they are around.
3884 AU.addPreservedID(LoopSimplifyID);
3886 AU.addRequired<LoopInfo>();
3887 AU.addPreserved<LoopInfo>();
3888 AU.addRequiredID(LoopSimplifyID);
3889 AU.addRequired<DominatorTree>();
3890 AU.addPreserved<DominatorTree>();
3891 AU.addRequired<ScalarEvolution>();
3892 AU.addPreserved<ScalarEvolution>();
3893 // Requiring LoopSimplify a second time here prevents IVUsers from running
3894 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
3895 AU.addRequiredID(LoopSimplifyID);
3896 AU.addRequired<IVUsers>();
3897 AU.addPreserved<IVUsers>();
3900 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3901 bool Changed = false;
3903 // Run the main LSR transformation.
3904 Changed |= LSRInstance(TLI, L, this).getChanged();
3906 // At this point, it is worth checking to see if any recurrence PHIs are also
3907 // dead, so that we can remove them as well.
3908 Changed |= DeleteDeadPHIs(L->getHeader());
3910 return Changed;