Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / Transforms / Scalar / Reassociate.cpp
blobc1dfe154ae3fd876dfb9d633ae203ba0ab5711df
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
13 // For example: 4 + (x + 5) -> x + (4 + 5)
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
21 //===----------------------------------------------------------------------===//
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include "llvm/Constants.h"
27 #include "llvm/DerivedTypes.h"
28 #include "llvm/Function.h"
29 #include "llvm/Instructions.h"
30 #include "llvm/IntrinsicInst.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Assembly/Writer.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ValueHandle.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/ADT/PostOrderIterator.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/DenseMap.h"
40 #include <algorithm>
41 using namespace llvm;
43 STATISTIC(NumLinear , "Number of insts linearized");
44 STATISTIC(NumChanged, "Number of insts reassociated");
45 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46 STATISTIC(NumFactor , "Number of multiplies factored");
48 namespace {
49 struct ValueEntry {
50 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
59 #ifndef NDEBUG
60 /// PrintOps - Print out the expression identified in the Ops list.
61 ///
62 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
63 Module *M = I->getParent()->getParent()->getParent();
64 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
65 << *Ops[0].Op->getType() << '\t';
66 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67 dbgs() << "[ ";
68 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
69 dbgs() << ", #" << Ops[i].Rank << "] ";
72 #endif
74 namespace {
75 class Reassociate : public FunctionPass {
76 DenseMap<BasicBlock*, unsigned> RankMap;
77 DenseMap<AssertingVH<>, unsigned> ValueRankMap;
78 SmallVector<WeakVH, 8> RedoInsts;
79 SmallVector<WeakVH, 8> DeadInsts;
80 bool MadeChange;
81 public:
82 static char ID; // Pass identification, replacement for typeid
83 Reassociate() : FunctionPass(ID) {
84 initializeReassociatePass(*PassRegistry::getPassRegistry());
87 bool runOnFunction(Function &F);
89 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
90 AU.setPreservesCFG();
92 private:
93 void BuildRankMap(Function &F);
94 unsigned getRank(Value *V);
95 Value *ReassociateExpression(BinaryOperator *I);
96 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
97 unsigned Idx = 0);
98 Value *OptimizeExpression(BinaryOperator *I,
99 SmallVectorImpl<ValueEntry> &Ops);
100 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
101 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
102 void LinearizeExpr(BinaryOperator *I);
103 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
104 void ReassociateInst(BasicBlock::iterator &BBI);
106 void RemoveDeadBinaryOp(Value *V);
110 char Reassociate::ID = 0;
111 INITIALIZE_PASS(Reassociate, "reassociate",
112 "Reassociate expressions", false, false)
114 // Public interface to the Reassociate pass
115 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
117 void Reassociate::RemoveDeadBinaryOp(Value *V) {
118 Instruction *Op = dyn_cast<Instruction>(V);
119 if (!Op || !isa<BinaryOperator>(Op))
120 return;
122 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
124 ValueRankMap.erase(Op);
125 DeadInsts.push_back(Op);
126 RemoveDeadBinaryOp(LHS);
127 RemoveDeadBinaryOp(RHS);
131 static bool isUnmovableInstruction(Instruction *I) {
132 if (I->getOpcode() == Instruction::PHI ||
133 I->getOpcode() == Instruction::Alloca ||
134 I->getOpcode() == Instruction::Load ||
135 I->getOpcode() == Instruction::Invoke ||
136 (I->getOpcode() == Instruction::Call &&
137 !isa<DbgInfoIntrinsic>(I)) ||
138 I->getOpcode() == Instruction::UDiv ||
139 I->getOpcode() == Instruction::SDiv ||
140 I->getOpcode() == Instruction::FDiv ||
141 I->getOpcode() == Instruction::URem ||
142 I->getOpcode() == Instruction::SRem ||
143 I->getOpcode() == Instruction::FRem)
144 return true;
145 return false;
148 void Reassociate::BuildRankMap(Function &F) {
149 unsigned i = 2;
151 // Assign distinct ranks to function arguments
152 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
153 ValueRankMap[&*I] = ++i;
155 ReversePostOrderTraversal<Function*> RPOT(&F);
156 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
157 E = RPOT.end(); I != E; ++I) {
158 BasicBlock *BB = *I;
159 unsigned BBRank = RankMap[BB] = ++i << 16;
161 // Walk the basic block, adding precomputed ranks for any instructions that
162 // we cannot move. This ensures that the ranks for these instructions are
163 // all different in the block.
164 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
165 if (isUnmovableInstruction(I))
166 ValueRankMap[&*I] = ++BBRank;
170 unsigned Reassociate::getRank(Value *V) {
171 Instruction *I = dyn_cast<Instruction>(V);
172 if (I == 0) {
173 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
174 return 0; // Otherwise it's a global or constant, rank 0.
177 if (unsigned Rank = ValueRankMap[I])
178 return Rank; // Rank already known?
180 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
181 // we can reassociate expressions for code motion! Since we do not recurse
182 // for PHI nodes, we cannot have infinite recursion here, because there
183 // cannot be loops in the value graph that do not go through PHI nodes.
184 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
185 for (unsigned i = 0, e = I->getNumOperands();
186 i != e && Rank != MaxRank; ++i)
187 Rank = std::max(Rank, getRank(I->getOperand(i)));
189 // If this is a not or neg instruction, do not count it for rank. This
190 // assures us that X and ~X will have the same rank.
191 if (!I->getType()->isIntegerTy() ||
192 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
193 ++Rank;
195 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
196 // << Rank << "\n");
198 return ValueRankMap[I] = Rank;
201 /// isReassociableOp - Return true if V is an instruction of the specified
202 /// opcode and if it only has one use.
203 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
204 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
205 cast<Instruction>(V)->getOpcode() == Opcode)
206 return cast<BinaryOperator>(V);
207 return 0;
210 /// LowerNegateToMultiply - Replace 0-X with X*-1.
212 static Instruction *LowerNegateToMultiply(Instruction *Neg,
213 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
214 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
216 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
217 ValueRankMap.erase(Neg);
218 Res->takeName(Neg);
219 Neg->replaceAllUsesWith(Res);
220 Res->setDebugLoc(Neg->getDebugLoc());
221 Neg->eraseFromParent();
222 return Res;
225 // Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
226 // Note that if D is also part of the expression tree that we recurse to
227 // linearize it as well. Besides that case, this does not recurse into A,B, or
228 // C.
229 void Reassociate::LinearizeExpr(BinaryOperator *I) {
230 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
231 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
232 assert(isReassociableOp(LHS, I->getOpcode()) &&
233 isReassociableOp(RHS, I->getOpcode()) &&
234 "Not an expression that needs linearization?");
236 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
238 // Move the RHS instruction to live immediately before I, avoiding breaking
239 // dominator properties.
240 RHS->moveBefore(I);
242 // Move operands around to do the linearization.
243 I->setOperand(1, RHS->getOperand(0));
244 RHS->setOperand(0, LHS);
245 I->setOperand(0, RHS);
247 // Conservatively clear all the optional flags, which may not hold
248 // after the reassociation.
249 I->clearSubclassOptionalData();
250 LHS->clearSubclassOptionalData();
251 RHS->clearSubclassOptionalData();
253 ++NumLinear;
254 MadeChange = true;
255 DEBUG(dbgs() << "Linearized: " << *I << '\n');
257 // If D is part of this expression tree, tail recurse.
258 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
259 LinearizeExpr(I);
263 /// LinearizeExprTree - Given an associative binary expression tree, traverse
264 /// all of the uses putting it into canonical form. This forces a left-linear
265 /// form of the expression (((a+b)+c)+d), and collects information about the
266 /// rank of the non-tree operands.
268 /// NOTE: These intentionally destroys the expression tree operands (turning
269 /// them into undef values) to reduce #uses of the values. This means that the
270 /// caller MUST use something like RewriteExprTree to put the values back in.
272 void Reassociate::LinearizeExprTree(BinaryOperator *I,
273 SmallVectorImpl<ValueEntry> &Ops) {
274 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
275 unsigned Opcode = I->getOpcode();
277 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
278 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
279 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
281 // If this is a multiply expression tree and it contains internal negations,
282 // transform them into multiplies by -1 so they can be reassociated.
283 if (I->getOpcode() == Instruction::Mul) {
284 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
285 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
286 LHSBO = isReassociableOp(LHS, Opcode);
288 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
289 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
290 RHSBO = isReassociableOp(RHS, Opcode);
294 if (!LHSBO) {
295 if (!RHSBO) {
296 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
297 // such, just remember these operands and their rank.
298 Ops.push_back(ValueEntry(getRank(LHS), LHS));
299 Ops.push_back(ValueEntry(getRank(RHS), RHS));
301 // Clear the leaves out.
302 I->setOperand(0, UndefValue::get(I->getType()));
303 I->setOperand(1, UndefValue::get(I->getType()));
304 return;
307 // Turn X+(Y+Z) -> (Y+Z)+X
308 std::swap(LHSBO, RHSBO);
309 std::swap(LHS, RHS);
310 bool Success = !I->swapOperands();
311 assert(Success && "swapOperands failed");
312 Success = false;
313 MadeChange = true;
314 } else if (RHSBO) {
315 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
316 // part of the expression tree.
317 LinearizeExpr(I);
318 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
319 RHS = I->getOperand(1);
320 RHSBO = 0;
323 // Okay, now we know that the LHS is a nested expression and that the RHS is
324 // not. Perform reassociation.
325 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
327 // Move LHS right before I to make sure that the tree expression dominates all
328 // values.
329 LHSBO->moveBefore(I);
331 // Linearize the expression tree on the LHS.
332 LinearizeExprTree(LHSBO, Ops);
334 // Remember the RHS operand and its rank.
335 Ops.push_back(ValueEntry(getRank(RHS), RHS));
337 // Clear the RHS leaf out.
338 I->setOperand(1, UndefValue::get(I->getType()));
341 // RewriteExprTree - Now that the operands for this expression tree are
342 // linearized and optimized, emit them in-order. This function is written to be
343 // tail recursive.
344 void Reassociate::RewriteExprTree(BinaryOperator *I,
345 SmallVectorImpl<ValueEntry> &Ops,
346 unsigned i) {
347 if (i+2 == Ops.size()) {
348 if (I->getOperand(0) != Ops[i].Op ||
349 I->getOperand(1) != Ops[i+1].Op) {
350 Value *OldLHS = I->getOperand(0);
351 DEBUG(dbgs() << "RA: " << *I << '\n');
352 I->setOperand(0, Ops[i].Op);
353 I->setOperand(1, Ops[i+1].Op);
355 // Clear all the optional flags, which may not hold after the
356 // reassociation if the expression involved more than just this operation.
357 if (Ops.size() != 2)
358 I->clearSubclassOptionalData();
360 DEBUG(dbgs() << "TO: " << *I << '\n');
361 MadeChange = true;
362 ++NumChanged;
364 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
365 // delete the extra, now dead, nodes.
366 RemoveDeadBinaryOp(OldLHS);
368 return;
370 assert(i+2 < Ops.size() && "Ops index out of range!");
372 if (I->getOperand(1) != Ops[i].Op) {
373 DEBUG(dbgs() << "RA: " << *I << '\n');
374 I->setOperand(1, Ops[i].Op);
376 // Conservatively clear all the optional flags, which may not hold
377 // after the reassociation.
378 I->clearSubclassOptionalData();
380 DEBUG(dbgs() << "TO: " << *I << '\n');
381 MadeChange = true;
382 ++NumChanged;
385 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
386 assert(LHS->getOpcode() == I->getOpcode() &&
387 "Improper expression tree!");
389 // Compactify the tree instructions together with each other to guarantee
390 // that the expression tree is dominated by all of Ops.
391 LHS->moveBefore(I);
392 RewriteExprTree(LHS, Ops, i+1);
397 // NegateValue - Insert instructions before the instruction pointed to by BI,
398 // that computes the negative version of the value specified. The negative
399 // version of the value is returned, and BI is left pointing at the instruction
400 // that should be processed next by the reassociation pass.
402 static Value *NegateValue(Value *V, Instruction *BI) {
403 if (Constant *C = dyn_cast<Constant>(V))
404 return ConstantExpr::getNeg(C);
406 // We are trying to expose opportunity for reassociation. One of the things
407 // that we want to do to achieve this is to push a negation as deep into an
408 // expression chain as possible, to expose the add instructions. In practice,
409 // this means that we turn this:
410 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
411 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
412 // the constants. We assume that instcombine will clean up the mess later if
413 // we introduce tons of unnecessary negation instructions.
415 if (Instruction *I = dyn_cast<Instruction>(V))
416 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
417 // Push the negates through the add.
418 I->setOperand(0, NegateValue(I->getOperand(0), BI));
419 I->setOperand(1, NegateValue(I->getOperand(1), BI));
421 // We must move the add instruction here, because the neg instructions do
422 // not dominate the old add instruction in general. By moving it, we are
423 // assured that the neg instructions we just inserted dominate the
424 // instruction we are about to insert after them.
426 I->moveBefore(BI);
427 I->setName(I->getName()+".neg");
428 return I;
431 // Okay, we need to materialize a negated version of V with an instruction.
432 // Scan the use lists of V to see if we have one already.
433 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
434 User *U = *UI;
435 if (!BinaryOperator::isNeg(U)) continue;
437 // We found one! Now we have to make sure that the definition dominates
438 // this use. We do this by moving it to the entry block (if it is a
439 // non-instruction value) or right after the definition. These negates will
440 // be zapped by reassociate later, so we don't need much finesse here.
441 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
443 // Verify that the negate is in this function, V might be a constant expr.
444 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
445 continue;
447 BasicBlock::iterator InsertPt;
448 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
449 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
450 InsertPt = II->getNormalDest()->begin();
451 } else {
452 InsertPt = InstInput;
453 ++InsertPt;
455 while (isa<PHINode>(InsertPt)) ++InsertPt;
456 } else {
457 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
459 TheNeg->moveBefore(InsertPt);
460 return TheNeg;
463 // Insert a 'neg' instruction that subtracts the value from zero to get the
464 // negation.
465 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
468 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
469 /// X-Y into (X + -Y).
470 static bool ShouldBreakUpSubtract(Instruction *Sub) {
471 // If this is a negation, we can't split it up!
472 if (BinaryOperator::isNeg(Sub))
473 return false;
475 // Don't bother to break this up unless either the LHS is an associable add or
476 // subtract or if this is only used by one.
477 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
478 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
479 return true;
480 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
481 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
482 return true;
483 if (Sub->hasOneUse() &&
484 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
485 isReassociableOp(Sub->use_back(), Instruction::Sub)))
486 return true;
488 return false;
491 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
492 /// only used by an add, transform this into (X+(0-Y)) to promote better
493 /// reassociation.
494 static Instruction *BreakUpSubtract(Instruction *Sub,
495 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
496 // Convert a subtract into an add and a neg instruction. This allows sub
497 // instructions to be commuted with other add instructions.
499 // Calculate the negative value of Operand 1 of the sub instruction,
500 // and set it as the RHS of the add instruction we just made.
502 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
503 Instruction *New =
504 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
505 New->takeName(Sub);
507 // Everyone now refers to the add instruction.
508 ValueRankMap.erase(Sub);
509 Sub->replaceAllUsesWith(New);
510 New->setDebugLoc(Sub->getDebugLoc());
511 Sub->eraseFromParent();
513 DEBUG(dbgs() << "Negated: " << *New << '\n');
514 return New;
517 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
518 /// by one, change this into a multiply by a constant to assist with further
519 /// reassociation.
520 static Instruction *ConvertShiftToMul(Instruction *Shl,
521 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
522 // If an operand of this shift is a reassociable multiply, or if the shift
523 // is used by a reassociable multiply or add, turn into a multiply.
524 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
525 (Shl->hasOneUse() &&
526 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
527 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
528 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
529 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
531 Instruction *Mul =
532 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
533 ValueRankMap.erase(Shl);
534 Mul->takeName(Shl);
535 Shl->replaceAllUsesWith(Mul);
536 Mul->setDebugLoc(Shl->getDebugLoc());
537 Shl->eraseFromParent();
538 return Mul;
540 return 0;
543 // Scan backwards and forwards among values with the same rank as element i to
544 // see if X exists. If X does not exist, return i. This is useful when
545 // scanning for 'x' when we see '-x' because they both get the same rank.
546 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
547 Value *X) {
548 unsigned XRank = Ops[i].Rank;
549 unsigned e = Ops.size();
550 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
551 if (Ops[j].Op == X)
552 return j;
553 // Scan backwards.
554 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
555 if (Ops[j].Op == X)
556 return j;
557 return i;
560 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
561 /// and returning the result. Insert the tree before I.
562 static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
563 if (Ops.size() == 1) return Ops.back();
565 Value *V1 = Ops.back();
566 Ops.pop_back();
567 Value *V2 = EmitAddTreeOfValues(I, Ops);
568 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
571 /// RemoveFactorFromExpression - If V is an expression tree that is a
572 /// multiplication sequence, and if this sequence contains a multiply by Factor,
573 /// remove Factor from the tree and return the new tree.
574 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
575 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
576 if (!BO) return 0;
578 SmallVector<ValueEntry, 8> Factors;
579 LinearizeExprTree(BO, Factors);
581 bool FoundFactor = false;
582 bool NeedsNegate = false;
583 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
584 if (Factors[i].Op == Factor) {
585 FoundFactor = true;
586 Factors.erase(Factors.begin()+i);
587 break;
590 // If this is a negative version of this factor, remove it.
591 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
592 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
593 if (FC1->getValue() == -FC2->getValue()) {
594 FoundFactor = NeedsNegate = true;
595 Factors.erase(Factors.begin()+i);
596 break;
600 if (!FoundFactor) {
601 // Make sure to restore the operands to the expression tree.
602 RewriteExprTree(BO, Factors);
603 return 0;
606 BasicBlock::iterator InsertPt = BO; ++InsertPt;
608 // If this was just a single multiply, remove the multiply and return the only
609 // remaining operand.
610 if (Factors.size() == 1) {
611 ValueRankMap.erase(BO);
612 DeadInsts.push_back(BO);
613 V = Factors[0].Op;
614 } else {
615 RewriteExprTree(BO, Factors);
616 V = BO;
619 if (NeedsNegate)
620 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
622 return V;
625 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
626 /// add its operands as factors, otherwise add V to the list of factors.
628 /// Ops is the top-level list of add operands we're trying to factor.
629 static void FindSingleUseMultiplyFactors(Value *V,
630 SmallVectorImpl<Value*> &Factors,
631 const SmallVectorImpl<ValueEntry> &Ops,
632 bool IsRoot) {
633 BinaryOperator *BO;
634 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
635 !(BO = dyn_cast<BinaryOperator>(V)) ||
636 BO->getOpcode() != Instruction::Mul) {
637 Factors.push_back(V);
638 return;
641 // If this value has a single use because it is another input to the add
642 // tree we're reassociating and we dropped its use, it actually has two
643 // uses and we can't factor it.
644 if (!IsRoot) {
645 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
646 if (Ops[i].Op == V) {
647 Factors.push_back(V);
648 return;
653 // Otherwise, add the LHS and RHS to the list of factors.
654 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
655 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
658 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
659 /// instruction. This optimizes based on identities. If it can be reduced to
660 /// a single Value, it is returned, otherwise the Ops list is mutated as
661 /// necessary.
662 static Value *OptimizeAndOrXor(unsigned Opcode,
663 SmallVectorImpl<ValueEntry> &Ops) {
664 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
665 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
666 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
667 // First, check for X and ~X in the operand list.
668 assert(i < Ops.size());
669 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
670 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
671 unsigned FoundX = FindInOperandList(Ops, i, X);
672 if (FoundX != i) {
673 if (Opcode == Instruction::And) // ...&X&~X = 0
674 return Constant::getNullValue(X->getType());
676 if (Opcode == Instruction::Or) // ...|X|~X = -1
677 return Constant::getAllOnesValue(X->getType());
681 // Next, check for duplicate pairs of values, which we assume are next to
682 // each other, due to our sorting criteria.
683 assert(i < Ops.size());
684 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
685 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
686 // Drop duplicate values for And and Or.
687 Ops.erase(Ops.begin()+i);
688 --i; --e;
689 ++NumAnnihil;
690 continue;
693 // Drop pairs of values for Xor.
694 assert(Opcode == Instruction::Xor);
695 if (e == 2)
696 return Constant::getNullValue(Ops[0].Op->getType());
698 // Y ^ X^X -> Y
699 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
700 i -= 1; e -= 2;
701 ++NumAnnihil;
704 return 0;
707 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
708 /// optimizes based on identities. If it can be reduced to a single Value, it
709 /// is returned, otherwise the Ops list is mutated as necessary.
710 Value *Reassociate::OptimizeAdd(Instruction *I,
711 SmallVectorImpl<ValueEntry> &Ops) {
712 // Scan the operand lists looking for X and -X pairs. If we find any, we
713 // can simplify the expression. X+-X == 0. While we're at it, scan for any
714 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
716 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
718 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
719 Value *TheOp = Ops[i].Op;
720 // Check to see if we've seen this operand before. If so, we factor all
721 // instances of the operand together. Due to our sorting criteria, we know
722 // that these need to be next to each other in the vector.
723 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
724 // Rescan the list, remove all instances of this operand from the expr.
725 unsigned NumFound = 0;
726 do {
727 Ops.erase(Ops.begin()+i);
728 ++NumFound;
729 } while (i != Ops.size() && Ops[i].Op == TheOp);
731 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
732 ++NumFactor;
734 // Insert a new multiply.
735 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
736 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
738 // Now that we have inserted a multiply, optimize it. This allows us to
739 // handle cases that require multiple factoring steps, such as this:
740 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
741 RedoInsts.push_back(Mul);
743 // If every add operand was a duplicate, return the multiply.
744 if (Ops.empty())
745 return Mul;
747 // Otherwise, we had some input that didn't have the dupe, such as
748 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
749 // things being added by this operation.
750 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
752 --i;
753 e = Ops.size();
754 continue;
757 // Check for X and -X in the operand list.
758 if (!BinaryOperator::isNeg(TheOp))
759 continue;
761 Value *X = BinaryOperator::getNegArgument(TheOp);
762 unsigned FoundX = FindInOperandList(Ops, i, X);
763 if (FoundX == i)
764 continue;
766 // Remove X and -X from the operand list.
767 if (Ops.size() == 2)
768 return Constant::getNullValue(X->getType());
770 Ops.erase(Ops.begin()+i);
771 if (i < FoundX)
772 --FoundX;
773 else
774 --i; // Need to back up an extra one.
775 Ops.erase(Ops.begin()+FoundX);
776 ++NumAnnihil;
777 --i; // Revisit element.
778 e -= 2; // Removed two elements.
781 // Scan the operand list, checking to see if there are any common factors
782 // between operands. Consider something like A*A+A*B*C+D. We would like to
783 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
784 // To efficiently find this, we count the number of times a factor occurs
785 // for any ADD operands that are MULs.
786 DenseMap<Value*, unsigned> FactorOccurrences;
788 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
789 // where they are actually the same multiply.
790 unsigned MaxOcc = 0;
791 Value *MaxOccVal = 0;
792 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
793 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
794 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
795 continue;
797 // Compute all of the factors of this added value.
798 SmallVector<Value*, 8> Factors;
799 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
800 assert(Factors.size() > 1 && "Bad linearize!");
802 // Add one to FactorOccurrences for each unique factor in this op.
803 SmallPtrSet<Value*, 8> Duplicates;
804 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
805 Value *Factor = Factors[i];
806 if (!Duplicates.insert(Factor)) continue;
808 unsigned Occ = ++FactorOccurrences[Factor];
809 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
811 // If Factor is a negative constant, add the negated value as a factor
812 // because we can percolate the negate out. Watch for minint, which
813 // cannot be positivified.
814 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
815 if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
816 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
817 assert(!Duplicates.count(Factor) &&
818 "Shouldn't have two constant factors, missed a canonicalize");
820 unsigned Occ = ++FactorOccurrences[Factor];
821 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
826 // If any factor occurred more than one time, we can pull it out.
827 if (MaxOcc > 1) {
828 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
829 ++NumFactor;
831 // Create a new instruction that uses the MaxOccVal twice. If we don't do
832 // this, we could otherwise run into situations where removing a factor
833 // from an expression will drop a use of maxocc, and this can cause
834 // RemoveFactorFromExpression on successive values to behave differently.
835 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
836 SmallVector<Value*, 4> NewMulOps;
837 for (unsigned i = 0; i != Ops.size(); ++i) {
838 // Only try to remove factors from expressions we're allowed to.
839 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
840 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
841 continue;
843 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
844 // The factorized operand may occur several times. Convert them all in
845 // one fell swoop.
846 for (unsigned j = Ops.size(); j != i;) {
847 --j;
848 if (Ops[j].Op == Ops[i].Op) {
849 NewMulOps.push_back(V);
850 Ops.erase(Ops.begin()+j);
853 --i;
857 // No need for extra uses anymore.
858 delete DummyInst;
860 unsigned NumAddedValues = NewMulOps.size();
861 Value *V = EmitAddTreeOfValues(I, NewMulOps);
863 // Now that we have inserted the add tree, optimize it. This allows us to
864 // handle cases that require multiple factoring steps, such as this:
865 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
866 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
867 (void)NumAddedValues;
868 V = ReassociateExpression(cast<BinaryOperator>(V));
870 // Create the multiply.
871 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
873 // Rerun associate on the multiply in case the inner expression turned into
874 // a multiply. We want to make sure that we keep things in canonical form.
875 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
877 // If every add operand included the factor (e.g. "A*B + A*C"), then the
878 // entire result expression is just the multiply "A*(B+C)".
879 if (Ops.empty())
880 return V2;
882 // Otherwise, we had some input that didn't have the factor, such as
883 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
884 // things being added by this operation.
885 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
888 return 0;
891 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
892 SmallVectorImpl<ValueEntry> &Ops) {
893 // Now that we have the linearized expression tree, try to optimize it.
894 // Start by folding any constants that we found.
895 bool IterateOptimization = false;
896 if (Ops.size() == 1) return Ops[0].Op;
898 unsigned Opcode = I->getOpcode();
900 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
901 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
902 Ops.pop_back();
903 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
904 return OptimizeExpression(I, Ops);
907 // Check for destructive annihilation due to a constant being used.
908 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
909 switch (Opcode) {
910 default: break;
911 case Instruction::And:
912 if (CstVal->isZero()) // X & 0 -> 0
913 return CstVal;
914 if (CstVal->isAllOnesValue()) // X & -1 -> X
915 Ops.pop_back();
916 break;
917 case Instruction::Mul:
918 if (CstVal->isZero()) { // X * 0 -> 0
919 ++NumAnnihil;
920 return CstVal;
923 if (cast<ConstantInt>(CstVal)->isOne())
924 Ops.pop_back(); // X * 1 -> X
925 break;
926 case Instruction::Or:
927 if (CstVal->isAllOnesValue()) // X | -1 -> -1
928 return CstVal;
929 // FALLTHROUGH!
930 case Instruction::Add:
931 case Instruction::Xor:
932 if (CstVal->isZero()) // X [|^+] 0 -> X
933 Ops.pop_back();
934 break;
936 if (Ops.size() == 1) return Ops[0].Op;
938 // Handle destructive annihilation due to identities between elements in the
939 // argument list here.
940 switch (Opcode) {
941 default: break;
942 case Instruction::And:
943 case Instruction::Or:
944 case Instruction::Xor: {
945 unsigned NumOps = Ops.size();
946 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
947 return Result;
948 IterateOptimization |= Ops.size() != NumOps;
949 break;
952 case Instruction::Add: {
953 unsigned NumOps = Ops.size();
954 if (Value *Result = OptimizeAdd(I, Ops))
955 return Result;
956 IterateOptimization |= Ops.size() != NumOps;
959 break;
960 //case Instruction::Mul:
963 if (IterateOptimization)
964 return OptimizeExpression(I, Ops);
965 return 0;
969 /// ReassociateInst - Inspect and reassociate the instruction at the
970 /// given position, post-incrementing the position.
971 void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
972 Instruction *BI = BBI++;
973 if (BI->getOpcode() == Instruction::Shl &&
974 isa<ConstantInt>(BI->getOperand(1)))
975 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
976 MadeChange = true;
977 BI = NI;
980 // Reject cases where it is pointless to do this.
981 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
982 BI->getType()->isVectorTy())
983 return; // Floating point ops are not associative.
985 // Do not reassociate boolean (i1) expressions. We want to preserve the
986 // original order of evaluation for short-circuited comparisons that
987 // SimplifyCFG has folded to AND/OR expressions. If the expression
988 // is not further optimized, it is likely to be transformed back to a
989 // short-circuited form for code gen, and the source order may have been
990 // optimized for the most likely conditions.
991 if (BI->getType()->isIntegerTy(1))
992 return;
994 // If this is a subtract instruction which is not already in negate form,
995 // see if we can convert it to X+-Y.
996 if (BI->getOpcode() == Instruction::Sub) {
997 if (ShouldBreakUpSubtract(BI)) {
998 BI = BreakUpSubtract(BI, ValueRankMap);
999 // Reset the BBI iterator in case BreakUpSubtract changed the
1000 // instruction it points to.
1001 BBI = BI;
1002 ++BBI;
1003 MadeChange = true;
1004 } else if (BinaryOperator::isNeg(BI)) {
1005 // Otherwise, this is a negation. See if the operand is a multiply tree
1006 // and if this is not an inner node of a multiply tree.
1007 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1008 (!BI->hasOneUse() ||
1009 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1010 BI = LowerNegateToMultiply(BI, ValueRankMap);
1011 MadeChange = true;
1016 // If this instruction is a commutative binary operator, process it.
1017 if (!BI->isAssociative()) return;
1018 BinaryOperator *I = cast<BinaryOperator>(BI);
1020 // If this is an interior node of a reassociable tree, ignore it until we
1021 // get to the root of the tree, to avoid N^2 analysis.
1022 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1023 return;
1025 // If this is an add tree that is used by a sub instruction, ignore it
1026 // until we process the subtract.
1027 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1028 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1029 return;
1031 ReassociateExpression(I);
1034 Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1036 // First, walk the expression tree, linearizing the tree, collecting the
1037 // operand information.
1038 SmallVector<ValueEntry, 8> Ops;
1039 LinearizeExprTree(I, Ops);
1041 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1043 // Now that we have linearized the tree to a list and have gathered all of
1044 // the operands and their ranks, sort the operands by their rank. Use a
1045 // stable_sort so that values with equal ranks will have their relative
1046 // positions maintained (and so the compiler is deterministic). Note that
1047 // this sorts so that the highest ranking values end up at the beginning of
1048 // the vector.
1049 std::stable_sort(Ops.begin(), Ops.end());
1051 // OptimizeExpression - Now that we have the expression tree in a convenient
1052 // sorted form, optimize it globally if possible.
1053 if (Value *V = OptimizeExpression(I, Ops)) {
1054 // This expression tree simplified to something that isn't a tree,
1055 // eliminate it.
1056 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1057 I->replaceAllUsesWith(V);
1058 if (Instruction *VI = dyn_cast<Instruction>(V))
1059 VI->setDebugLoc(I->getDebugLoc());
1060 RemoveDeadBinaryOp(I);
1061 ++NumAnnihil;
1062 return V;
1065 // We want to sink immediates as deeply as possible except in the case where
1066 // this is a multiply tree used only by an add, and the immediate is a -1.
1067 // In this case we reassociate to put the negation on the outside so that we
1068 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1069 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1070 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1071 isa<ConstantInt>(Ops.back().Op) &&
1072 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1073 ValueEntry Tmp = Ops.pop_back_val();
1074 Ops.insert(Ops.begin(), Tmp);
1077 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1079 if (Ops.size() == 1) {
1080 // This expression tree simplified to something that isn't a tree,
1081 // eliminate it.
1082 I->replaceAllUsesWith(Ops[0].Op);
1083 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1084 OI->setDebugLoc(I->getDebugLoc());
1085 RemoveDeadBinaryOp(I);
1086 return Ops[0].Op;
1089 // Now that we ordered and optimized the expressions, splat them back into
1090 // the expression tree, removing any unneeded nodes.
1091 RewriteExprTree(I, Ops);
1092 return I;
1096 bool Reassociate::runOnFunction(Function &F) {
1097 // Recalculate the rank map for F
1098 BuildRankMap(F);
1100 MadeChange = false;
1101 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1102 for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1103 ReassociateInst(BBI);
1105 // Now that we're done, revisit any instructions which are likely to
1106 // have secondary reassociation opportunities.
1107 while (!RedoInsts.empty())
1108 if (Value *V = RedoInsts.pop_back_val()) {
1109 BasicBlock::iterator BBI = cast<Instruction>(V);
1110 ReassociateInst(BBI);
1113 // Now that we're done, delete any instructions which are no longer used.
1114 while (!DeadInsts.empty())
1115 if (Value *V = DeadInsts.pop_back_val())
1116 RecursivelyDeleteTriviallyDeadInstructions(V);
1118 // We are done with the rank map.
1119 RankMap.clear();
1120 ValueRankMap.clear();
1121 return MadeChange;