Use BranchProbability instead of floating points in IfConverter.
[llvm/stm8.git] / lib / VMCore / BasicBlock.cpp
blob70265c899d7e8714a95546109644673aa47fa839
1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BasicBlock class for the VMCore library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/BasicBlock.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Type.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/Support/CFG.h"
22 #include "llvm/Support/LeakDetector.h"
23 #include "SymbolTableListTraitsImpl.h"
24 #include <algorithm>
25 using namespace llvm;
27 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
28 if (Function *F = getParent())
29 return &F->getValueSymbolTable();
30 return 0;
33 LLVMContext &BasicBlock::getContext() const {
34 return getType()->getContext();
37 // Explicit instantiation of SymbolTableListTraits since some of the methods
38 // are not in the public header file...
39 template class llvm::SymbolTableListTraits<Instruction, BasicBlock>;
42 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
43 BasicBlock *InsertBefore)
44 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(0) {
46 // Make sure that we get added to a function
47 LeakDetector::addGarbageObject(this);
49 if (InsertBefore) {
50 assert(NewParent &&
51 "Cannot insert block before another block with no function!");
52 NewParent->getBasicBlockList().insert(InsertBefore, this);
53 } else if (NewParent) {
54 NewParent->getBasicBlockList().push_back(this);
57 setName(Name);
61 BasicBlock::~BasicBlock() {
62 // If the address of the block is taken and it is being deleted (e.g. because
63 // it is dead), this means that there is either a dangling constant expr
64 // hanging off the block, or an undefined use of the block (source code
65 // expecting the address of a label to keep the block alive even though there
66 // is no indirect branch). Handle these cases by zapping the BlockAddress
67 // nodes. There are no other possible uses at this point.
68 if (hasAddressTaken()) {
69 assert(!use_empty() && "There should be at least one blockaddress!");
70 Constant *Replacement =
71 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
72 while (!use_empty()) {
73 BlockAddress *BA = cast<BlockAddress>(use_back());
74 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
75 BA->getType()));
76 BA->destroyConstant();
80 assert(getParent() == 0 && "BasicBlock still linked into the program!");
81 dropAllReferences();
82 InstList.clear();
85 void BasicBlock::setParent(Function *parent) {
86 if (getParent())
87 LeakDetector::addGarbageObject(this);
89 // Set Parent=parent, updating instruction symtab entries as appropriate.
90 InstList.setSymTabObject(&Parent, parent);
92 if (getParent())
93 LeakDetector::removeGarbageObject(this);
96 void BasicBlock::removeFromParent() {
97 getParent()->getBasicBlockList().remove(this);
100 void BasicBlock::eraseFromParent() {
101 getParent()->getBasicBlockList().erase(this);
104 /// moveBefore - Unlink this basic block from its current function and
105 /// insert it into the function that MovePos lives in, right before MovePos.
106 void BasicBlock::moveBefore(BasicBlock *MovePos) {
107 MovePos->getParent()->getBasicBlockList().splice(MovePos,
108 getParent()->getBasicBlockList(), this);
111 /// moveAfter - Unlink this basic block from its current function and
112 /// insert it into the function that MovePos lives in, right after MovePos.
113 void BasicBlock::moveAfter(BasicBlock *MovePos) {
114 Function::iterator I = MovePos;
115 MovePos->getParent()->getBasicBlockList().splice(++I,
116 getParent()->getBasicBlockList(), this);
120 TerminatorInst *BasicBlock::getTerminator() {
121 if (InstList.empty()) return 0;
122 return dyn_cast<TerminatorInst>(&InstList.back());
125 const TerminatorInst *BasicBlock::getTerminator() const {
126 if (InstList.empty()) return 0;
127 return dyn_cast<TerminatorInst>(&InstList.back());
130 Instruction* BasicBlock::getFirstNonPHI() {
131 BasicBlock::iterator i = begin();
132 // All valid basic blocks should have a terminator,
133 // which is not a PHINode. If we have an invalid basic
134 // block we'll get an assertion failure when dereferencing
135 // a past-the-end iterator.
136 while (isa<PHINode>(i)) ++i;
137 return &*i;
140 Instruction* BasicBlock::getFirstNonPHIOrDbg() {
141 BasicBlock::iterator i = begin();
142 // All valid basic blocks should have a terminator,
143 // which is not a PHINode. If we have an invalid basic
144 // block we'll get an assertion failure when dereferencing
145 // a past-the-end iterator.
146 while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i;
147 return &*i;
150 Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() {
151 // All valid basic blocks should have a terminator,
152 // which is not a PHINode. If we have an invalid basic
153 // block we'll get an assertion failure when dereferencing
154 // a past-the-end iterator.
155 BasicBlock::iterator i = begin();
156 for (;; ++i) {
157 if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i))
158 continue;
160 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i);
161 if (!II)
162 break;
163 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
164 II->getIntrinsicID() != Intrinsic::lifetime_end)
165 break;
167 return &*i;
170 void BasicBlock::dropAllReferences() {
171 for(iterator I = begin(), E = end(); I != E; ++I)
172 I->dropAllReferences();
175 /// getSinglePredecessor - If this basic block has a single predecessor block,
176 /// return the block, otherwise return a null pointer.
177 BasicBlock *BasicBlock::getSinglePredecessor() {
178 pred_iterator PI = pred_begin(this), E = pred_end(this);
179 if (PI == E) return 0; // No preds.
180 BasicBlock *ThePred = *PI;
181 ++PI;
182 return (PI == E) ? ThePred : 0 /*multiple preds*/;
185 /// getUniquePredecessor - If this basic block has a unique predecessor block,
186 /// return the block, otherwise return a null pointer.
187 /// Note that unique predecessor doesn't mean single edge, there can be
188 /// multiple edges from the unique predecessor to this block (for example
189 /// a switch statement with multiple cases having the same destination).
190 BasicBlock *BasicBlock::getUniquePredecessor() {
191 pred_iterator PI = pred_begin(this), E = pred_end(this);
192 if (PI == E) return 0; // No preds.
193 BasicBlock *PredBB = *PI;
194 ++PI;
195 for (;PI != E; ++PI) {
196 if (*PI != PredBB)
197 return 0;
198 // The same predecessor appears multiple times in the predecessor list.
199 // This is OK.
201 return PredBB;
204 /// removePredecessor - This method is used to notify a BasicBlock that the
205 /// specified Predecessor of the block is no longer able to reach it. This is
206 /// actually not used to update the Predecessor list, but is actually used to
207 /// update the PHI nodes that reside in the block. Note that this should be
208 /// called while the predecessor still refers to this block.
210 void BasicBlock::removePredecessor(BasicBlock *Pred,
211 bool DontDeleteUselessPHIs) {
212 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
213 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
214 "removePredecessor: BB is not a predecessor!");
216 if (InstList.empty()) return;
217 PHINode *APN = dyn_cast<PHINode>(&front());
218 if (!APN) return; // Quick exit.
220 // If there are exactly two predecessors, then we want to nuke the PHI nodes
221 // altogether. However, we cannot do this, if this in this case:
223 // Loop:
224 // %x = phi [X, Loop]
225 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
226 // br Loop ;; %x2 does not dominate all uses
228 // This is because the PHI node input is actually taken from the predecessor
229 // basic block. The only case this can happen is with a self loop, so we
230 // check for this case explicitly now.
232 unsigned max_idx = APN->getNumIncomingValues();
233 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
234 if (max_idx == 2) {
235 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
237 // Disable PHI elimination!
238 if (this == Other) max_idx = 3;
241 // <= Two predecessors BEFORE I remove one?
242 if (max_idx <= 2 && !DontDeleteUselessPHIs) {
243 // Yup, loop through and nuke the PHI nodes
244 while (PHINode *PN = dyn_cast<PHINode>(&front())) {
245 // Remove the predecessor first.
246 PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs);
248 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
249 if (max_idx == 2) {
250 if (PN->getIncomingValue(0) != PN)
251 PN->replaceAllUsesWith(PN->getIncomingValue(0));
252 else
253 // We are left with an infinite loop with no entries: kill the PHI.
254 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
255 getInstList().pop_front(); // Remove the PHI node
258 // If the PHI node already only had one entry, it got deleted by
259 // removeIncomingValue.
261 } else {
262 // Okay, now we know that we need to remove predecessor #pred_idx from all
263 // PHI nodes. Iterate over each PHI node fixing them up
264 PHINode *PN;
265 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
266 ++II;
267 PN->removeIncomingValue(Pred, false);
268 // If all incoming values to the Phi are the same, we can replace the Phi
269 // with that value.
270 Value* PNV = 0;
271 if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue()))
272 if (PNV != PN) {
273 PN->replaceAllUsesWith(PNV);
274 PN->eraseFromParent();
281 /// splitBasicBlock - This splits a basic block into two at the specified
282 /// instruction. Note that all instructions BEFORE the specified iterator stay
283 /// as part of the original basic block, an unconditional branch is added to
284 /// the new BB, and the rest of the instructions in the BB are moved to the new
285 /// BB, including the old terminator. This invalidates the iterator.
287 /// Note that this only works on well formed basic blocks (must have a
288 /// terminator), and 'I' must not be the end of instruction list (which would
289 /// cause a degenerate basic block to be formed, having a terminator inside of
290 /// the basic block).
292 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
293 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
294 assert(I != InstList.end() &&
295 "Trying to get me to create degenerate basic block!");
297 BasicBlock *InsertBefore = llvm::next(Function::iterator(this))
298 .getNodePtrUnchecked();
299 BasicBlock *New = BasicBlock::Create(getContext(), BBName,
300 getParent(), InsertBefore);
302 // Move all of the specified instructions from the original basic block into
303 // the new basic block.
304 New->getInstList().splice(New->end(), this->getInstList(), I, end());
306 // Add a branch instruction to the newly formed basic block.
307 BranchInst::Create(New, this);
309 // Now we must loop through all of the successors of the New block (which
310 // _were_ the successors of the 'this' block), and update any PHI nodes in
311 // successors. If there were PHI nodes in the successors, then they need to
312 // know that incoming branches will be from New, not from Old.
314 for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) {
315 // Loop over any phi nodes in the basic block, updating the BB field of
316 // incoming values...
317 BasicBlock *Successor = *I;
318 PHINode *PN;
319 for (BasicBlock::iterator II = Successor->begin();
320 (PN = dyn_cast<PHINode>(II)); ++II) {
321 int IDX = PN->getBasicBlockIndex(this);
322 while (IDX != -1) {
323 PN->setIncomingBlock((unsigned)IDX, New);
324 IDX = PN->getBasicBlockIndex(this);
328 return New;
331 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
332 TerminatorInst *TI = getTerminator();
333 if (!TI)
334 // Cope with being called on a BasicBlock that doesn't have a terminator
335 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
336 return;
337 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
338 BasicBlock *Succ = TI->getSuccessor(i);
339 for (iterator II = Succ->begin(); PHINode *PN = dyn_cast<PHINode>(II);
340 ++II) {
341 int i;
342 while ((i = PN->getBasicBlockIndex(this)) >= 0)
343 PN->setIncomingBlock(i, New);