Unbreak
[llvm/systemz.git] / lib / Target / X86 / X86ISelLowering.cpp
bloba2fedaf924a075574d55711e196b4b251a878cd4
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "X86.h"
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/VectorExtras.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
44 static cl::opt<bool>
45 DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
47 // Forward declarations.
48 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
49 SDValue V2);
51 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
52 : TargetLowering(TM) {
53 Subtarget = &TM.getSubtarget<X86Subtarget>();
54 X86ScalarSSEf64 = Subtarget->hasSSE2();
55 X86ScalarSSEf32 = Subtarget->hasSSE1();
56 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
58 RegInfo = TM.getRegisterInfo();
59 TD = getTargetData();
61 // Set up the TargetLowering object.
63 // X86 is weird, it always uses i8 for shift amounts and setcc results.
64 setShiftAmountType(MVT::i8);
65 setBooleanContents(ZeroOrOneBooleanContent);
66 setSchedulingPreference(SchedulingForRegPressure);
67 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
68 setStackPointerRegisterToSaveRestore(X86StackPtr);
70 if (Subtarget->isTargetDarwin()) {
71 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
72 setUseUnderscoreSetJmp(false);
73 setUseUnderscoreLongJmp(false);
74 } else if (Subtarget->isTargetMingw()) {
75 // MS runtime is weird: it exports _setjmp, but longjmp!
76 setUseUnderscoreSetJmp(true);
77 setUseUnderscoreLongJmp(false);
78 } else {
79 setUseUnderscoreSetJmp(true);
80 setUseUnderscoreLongJmp(true);
83 // Set up the register classes.
84 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
85 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
86 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
87 if (Subtarget->is64Bit())
88 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92 // We don't accept any truncstore of integer registers.
93 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
94 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
95 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
96 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
97 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
98 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
100 // SETOEQ and SETUNE require checking two conditions.
101 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
102 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
103 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
104 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
105 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
106 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
109 // operation.
110 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
111 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
112 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
114 if (Subtarget->is64Bit()) {
115 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
116 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
117 } else if (!UseSoftFloat) {
118 if (X86ScalarSSEf64) {
119 // We have an impenetrably clever algorithm for ui64->double only.
120 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
122 // We have an algorithm for SSE2, and we turn this into a 64-bit
123 // FILD for other targets.
124 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
127 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
128 // this operation.
129 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
130 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
132 if (!UseSoftFloat) {
133 // SSE has no i16 to fp conversion, only i32
134 if (X86ScalarSSEf32) {
135 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
136 // f32 and f64 cases are Legal, f80 case is not
137 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
138 } else {
139 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
140 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
142 } else {
143 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
144 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
147 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
148 // are Legal, f80 is custom lowered.
149 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
150 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
152 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
153 // this operation.
154 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
155 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
157 if (X86ScalarSSEf32) {
158 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
159 // f32 and f64 cases are Legal, f80 case is not
160 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
161 } else {
162 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
163 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
166 // Handle FP_TO_UINT by promoting the destination to a larger signed
167 // conversion.
168 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
169 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
170 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
172 if (Subtarget->is64Bit()) {
173 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
174 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
175 } else if (!UseSoftFloat) {
176 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
177 // Expand FP_TO_UINT into a select.
178 // FIXME: We would like to use a Custom expander here eventually to do
179 // the optimal thing for SSE vs. the default expansion in the legalizer.
180 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
181 else
182 // With SSE3 we can use fisttpll to convert to a signed i64; without
183 // SSE, we're stuck with a fistpll.
184 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
187 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
188 if (!X86ScalarSSEf64) {
189 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
190 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
193 // Scalar integer divide and remainder are lowered to use operations that
194 // produce two results, to match the available instructions. This exposes
195 // the two-result form to trivial CSE, which is able to combine x/y and x%y
196 // into a single instruction.
198 // Scalar integer multiply-high is also lowered to use two-result
199 // operations, to match the available instructions. However, plain multiply
200 // (low) operations are left as Legal, as there are single-result
201 // instructions for this in x86. Using the two-result multiply instructions
202 // when both high and low results are needed must be arranged by dagcombine.
203 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
204 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
205 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
206 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
207 setOperationAction(ISD::SREM , MVT::i8 , Expand);
208 setOperationAction(ISD::UREM , MVT::i8 , Expand);
209 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
210 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
211 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
212 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
213 setOperationAction(ISD::SREM , MVT::i16 , Expand);
214 setOperationAction(ISD::UREM , MVT::i16 , Expand);
215 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
216 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
217 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
218 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
219 setOperationAction(ISD::SREM , MVT::i32 , Expand);
220 setOperationAction(ISD::UREM , MVT::i32 , Expand);
221 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
222 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
223 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
224 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
225 setOperationAction(ISD::SREM , MVT::i64 , Expand);
226 setOperationAction(ISD::UREM , MVT::i64 , Expand);
228 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
229 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
230 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
231 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
232 if (Subtarget->is64Bit())
233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
234 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
235 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
236 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
237 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
238 setOperationAction(ISD::FREM , MVT::f32 , Expand);
239 setOperationAction(ISD::FREM , MVT::f64 , Expand);
240 setOperationAction(ISD::FREM , MVT::f80 , Expand);
241 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
243 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
244 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
245 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
246 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
247 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
248 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
249 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
250 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
251 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
252 if (Subtarget->is64Bit()) {
253 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
254 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
255 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
258 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
259 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
261 // These should be promoted to a larger select which is supported.
262 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
263 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
264 // X86 wants to expand cmov itself.
265 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
266 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
267 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
268 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
269 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
270 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
271 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
272 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
273 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
274 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
275 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
276 if (Subtarget->is64Bit()) {
277 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
278 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
280 // X86 ret instruction may pop stack.
281 setOperationAction(ISD::RET , MVT::Other, Custom);
282 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
284 // Darwin ABI issue.
285 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
286 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
287 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
288 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
289 if (Subtarget->is64Bit())
290 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
291 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
292 if (Subtarget->is64Bit()) {
293 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
294 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
295 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
296 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
298 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
299 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
300 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
301 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
302 if (Subtarget->is64Bit()) {
303 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
304 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
305 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
308 if (Subtarget->hasSSE1())
309 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
311 if (!Subtarget->hasSSE2())
312 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
314 // Expand certain atomics
315 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
316 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
317 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
318 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
320 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
321 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
322 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
323 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
325 if (!Subtarget->is64Bit()) {
326 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
327 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
328 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
329 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
330 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
331 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
332 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
335 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
336 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
337 // FIXME - use subtarget debug flags
338 if (!Subtarget->isTargetDarwin() &&
339 !Subtarget->isTargetELF() &&
340 !Subtarget->isTargetCygMing()) {
341 setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
342 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
345 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
346 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
347 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
348 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
349 if (Subtarget->is64Bit()) {
350 setExceptionPointerRegister(X86::RAX);
351 setExceptionSelectorRegister(X86::RDX);
352 } else {
353 setExceptionPointerRegister(X86::EAX);
354 setExceptionSelectorRegister(X86::EDX);
356 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
357 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
359 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
361 setOperationAction(ISD::TRAP, MVT::Other, Legal);
363 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
364 setOperationAction(ISD::VASTART , MVT::Other, Custom);
365 setOperationAction(ISD::VAEND , MVT::Other, Expand);
366 if (Subtarget->is64Bit()) {
367 setOperationAction(ISD::VAARG , MVT::Other, Custom);
368 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
369 } else {
370 setOperationAction(ISD::VAARG , MVT::Other, Expand);
371 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
374 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
375 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
376 if (Subtarget->is64Bit())
377 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
378 if (Subtarget->isTargetCygMing())
379 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
380 else
381 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
383 if (!UseSoftFloat && X86ScalarSSEf64) {
384 // f32 and f64 use SSE.
385 // Set up the FP register classes.
386 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
387 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
389 // Use ANDPD to simulate FABS.
390 setOperationAction(ISD::FABS , MVT::f64, Custom);
391 setOperationAction(ISD::FABS , MVT::f32, Custom);
393 // Use XORP to simulate FNEG.
394 setOperationAction(ISD::FNEG , MVT::f64, Custom);
395 setOperationAction(ISD::FNEG , MVT::f32, Custom);
397 // Use ANDPD and ORPD to simulate FCOPYSIGN.
398 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
399 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
401 // We don't support sin/cos/fmod
402 setOperationAction(ISD::FSIN , MVT::f64, Expand);
403 setOperationAction(ISD::FCOS , MVT::f64, Expand);
404 setOperationAction(ISD::FSIN , MVT::f32, Expand);
405 setOperationAction(ISD::FCOS , MVT::f32, Expand);
407 // Expand FP immediates into loads from the stack, except for the special
408 // cases we handle.
409 addLegalFPImmediate(APFloat(+0.0)); // xorpd
410 addLegalFPImmediate(APFloat(+0.0f)); // xorps
411 } else if (!UseSoftFloat && X86ScalarSSEf32) {
412 // Use SSE for f32, x87 for f64.
413 // Set up the FP register classes.
414 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
415 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
417 // Use ANDPS to simulate FABS.
418 setOperationAction(ISD::FABS , MVT::f32, Custom);
420 // Use XORP to simulate FNEG.
421 setOperationAction(ISD::FNEG , MVT::f32, Custom);
423 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
425 // Use ANDPS and ORPS to simulate FCOPYSIGN.
426 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
427 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
429 // We don't support sin/cos/fmod
430 setOperationAction(ISD::FSIN , MVT::f32, Expand);
431 setOperationAction(ISD::FCOS , MVT::f32, Expand);
433 // Special cases we handle for FP constants.
434 addLegalFPImmediate(APFloat(+0.0f)); // xorps
435 addLegalFPImmediate(APFloat(+0.0)); // FLD0
436 addLegalFPImmediate(APFloat(+1.0)); // FLD1
437 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
438 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
440 if (!UnsafeFPMath) {
441 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
442 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
444 } else if (!UseSoftFloat) {
445 // f32 and f64 in x87.
446 // Set up the FP register classes.
447 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
448 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
450 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
451 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
452 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
453 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
455 if (!UnsafeFPMath) {
456 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
457 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
459 addLegalFPImmediate(APFloat(+0.0)); // FLD0
460 addLegalFPImmediate(APFloat(+1.0)); // FLD1
461 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
462 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
463 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
464 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
465 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
466 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
469 // Long double always uses X87.
470 if (!UseSoftFloat) {
471 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
472 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
473 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
475 bool ignored;
476 APFloat TmpFlt(+0.0);
477 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
478 &ignored);
479 addLegalFPImmediate(TmpFlt); // FLD0
480 TmpFlt.changeSign();
481 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
482 APFloat TmpFlt2(+1.0);
483 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
484 &ignored);
485 addLegalFPImmediate(TmpFlt2); // FLD1
486 TmpFlt2.changeSign();
487 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
490 if (!UnsafeFPMath) {
491 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
492 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
496 // Always use a library call for pow.
497 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
498 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
499 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
501 setOperationAction(ISD::FLOG, MVT::f80, Expand);
502 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
503 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
504 setOperationAction(ISD::FEXP, MVT::f80, Expand);
505 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
507 // First set operation action for all vector types to either promote
508 // (for widening) or expand (for scalarization). Then we will selectively
509 // turn on ones that can be effectively codegen'd.
510 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
511 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
512 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
513 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
514 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
515 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
516 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
517 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
518 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
519 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
520 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
521 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
522 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
523 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
524 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
525 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
526 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
527 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
528 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
529 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
530 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
531 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
532 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
533 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
534 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
535 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
536 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
537 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
538 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
539 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
540 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
541 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
542 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
543 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
544 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
545 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
546 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
547 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
548 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
549 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
550 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
551 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
552 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
553 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
554 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
555 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
556 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
557 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
558 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
559 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
562 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
563 // with -msoft-float, disable use of MMX as well.
564 if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
565 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
566 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
567 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
568 addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
569 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
571 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
572 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
573 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
574 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
576 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
577 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
578 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
579 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
581 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
582 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
584 setOperationAction(ISD::AND, MVT::v8i8, Promote);
585 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
586 setOperationAction(ISD::AND, MVT::v4i16, Promote);
587 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
588 setOperationAction(ISD::AND, MVT::v2i32, Promote);
589 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
590 setOperationAction(ISD::AND, MVT::v1i64, Legal);
592 setOperationAction(ISD::OR, MVT::v8i8, Promote);
593 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
594 setOperationAction(ISD::OR, MVT::v4i16, Promote);
595 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
596 setOperationAction(ISD::OR, MVT::v2i32, Promote);
597 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
598 setOperationAction(ISD::OR, MVT::v1i64, Legal);
600 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
601 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
602 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
603 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
604 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
605 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
606 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
608 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
609 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
610 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
611 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
612 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
613 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
614 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
615 AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64);
616 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
618 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
619 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
620 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
621 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
622 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
624 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
625 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
626 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
627 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
629 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom);
630 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
631 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
632 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
634 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
636 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
637 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Expand);
638 setOperationAction(ISD::SELECT, MVT::v8i8, Promote);
639 setOperationAction(ISD::SELECT, MVT::v4i16, Promote);
640 setOperationAction(ISD::SELECT, MVT::v2i32, Promote);
641 setOperationAction(ISD::SELECT, MVT::v1i64, Custom);
644 if (!UseSoftFloat && Subtarget->hasSSE1()) {
645 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
647 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
648 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
649 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
650 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
651 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
652 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
653 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
654 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
655 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
656 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
657 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
658 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
661 if (!UseSoftFloat && Subtarget->hasSSE2()) {
662 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
664 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
665 // registers cannot be used even for integer operations.
666 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
667 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
668 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
669 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
671 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
672 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
673 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
674 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
675 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
676 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
677 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
678 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
679 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
680 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
681 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
682 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
683 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
684 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
685 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
686 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
688 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
689 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
690 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
691 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
693 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
694 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
695 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
696 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
697 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
699 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
700 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
701 MVT VT = (MVT::SimpleValueType)i;
702 // Do not attempt to custom lower non-power-of-2 vectors
703 if (!isPowerOf2_32(VT.getVectorNumElements()))
704 continue;
705 // Do not attempt to custom lower non-128-bit vectors
706 if (!VT.is128BitVector())
707 continue;
708 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
709 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
710 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
713 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
714 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
715 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
716 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
717 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
718 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
720 if (Subtarget->is64Bit()) {
721 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
722 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
725 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
726 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
727 MVT VT = (MVT::SimpleValueType)i;
729 // Do not attempt to promote non-128-bit vectors
730 if (!VT.is128BitVector()) {
731 continue;
733 setOperationAction(ISD::AND, VT, Promote);
734 AddPromotedToType (ISD::AND, VT, MVT::v2i64);
735 setOperationAction(ISD::OR, VT, Promote);
736 AddPromotedToType (ISD::OR, VT, MVT::v2i64);
737 setOperationAction(ISD::XOR, VT, Promote);
738 AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
739 setOperationAction(ISD::LOAD, VT, Promote);
740 AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
741 setOperationAction(ISD::SELECT, VT, Promote);
742 AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
745 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
747 // Custom lower v2i64 and v2f64 selects.
748 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
749 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
750 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
751 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
753 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
754 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
755 if (!DisableMMX && Subtarget->hasMMX()) {
756 setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
757 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
761 if (Subtarget->hasSSE41()) {
762 // FIXME: Do we need to handle scalar-to-vector here?
763 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
765 // i8 and i16 vectors are custom , because the source register and source
766 // source memory operand types are not the same width. f32 vectors are
767 // custom since the immediate controlling the insert encodes additional
768 // information.
769 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
770 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
771 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
772 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
774 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
775 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
776 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
777 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
779 if (Subtarget->is64Bit()) {
780 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
781 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
785 if (Subtarget->hasSSE42()) {
786 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
789 if (!UseSoftFloat && Subtarget->hasAVX()) {
790 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
791 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
792 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
793 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
795 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
796 setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
797 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
798 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
799 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
800 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
801 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
802 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
803 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
804 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
805 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
806 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
807 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
808 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
809 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
811 // Operations to consider commented out -v16i16 v32i8
812 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
813 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
814 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
815 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
816 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
817 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
818 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
819 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
820 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
821 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
822 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
823 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
824 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
825 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
827 setOperationAction(ISD::VSETCC, MVT::v4f64, Custom);
828 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
829 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
830 setOperationAction(ISD::VSETCC, MVT::v8i32, Custom);
832 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
833 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
834 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
835 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom);
836 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom);
838 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
839 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom);
840 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom);
841 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom);
842 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom);
843 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
845 #if 0
846 // Not sure we want to do this since there are no 256-bit integer
847 // operations in AVX
849 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
850 // This includes 256-bit vectors
851 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
852 MVT VT = (MVT::SimpleValueType)i;
854 // Do not attempt to custom lower non-power-of-2 vectors
855 if (!isPowerOf2_32(VT.getVectorNumElements()))
856 continue;
858 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
859 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
860 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
863 if (Subtarget->is64Bit()) {
864 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
865 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
867 #endif
869 #if 0
870 // Not sure we want to do this since there are no 256-bit integer
871 // operations in AVX
873 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
874 // Including 256-bit vectors
875 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
876 MVT VT = (MVT::SimpleValueType)i;
878 if (!VT.is256BitVector()) {
879 continue;
881 setOperationAction(ISD::AND, VT, Promote);
882 AddPromotedToType (ISD::AND, VT, MVT::v4i64);
883 setOperationAction(ISD::OR, VT, Promote);
884 AddPromotedToType (ISD::OR, VT, MVT::v4i64);
885 setOperationAction(ISD::XOR, VT, Promote);
886 AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
887 setOperationAction(ISD::LOAD, VT, Promote);
888 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
889 setOperationAction(ISD::SELECT, VT, Promote);
890 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
893 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
894 #endif
897 // We want to custom lower some of our intrinsics.
898 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
900 // Add/Sub/Mul with overflow operations are custom lowered.
901 setOperationAction(ISD::SADDO, MVT::i32, Custom);
902 setOperationAction(ISD::SADDO, MVT::i64, Custom);
903 setOperationAction(ISD::UADDO, MVT::i32, Custom);
904 setOperationAction(ISD::UADDO, MVT::i64, Custom);
905 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
906 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
907 setOperationAction(ISD::USUBO, MVT::i32, Custom);
908 setOperationAction(ISD::USUBO, MVT::i64, Custom);
909 setOperationAction(ISD::SMULO, MVT::i32, Custom);
910 setOperationAction(ISD::SMULO, MVT::i64, Custom);
912 if (!Subtarget->is64Bit()) {
913 // These libcalls are not available in 32-bit.
914 setLibcallName(RTLIB::SHL_I128, 0);
915 setLibcallName(RTLIB::SRL_I128, 0);
916 setLibcallName(RTLIB::SRA_I128, 0);
919 // We have target-specific dag combine patterns for the following nodes:
920 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
921 setTargetDAGCombine(ISD::BUILD_VECTOR);
922 setTargetDAGCombine(ISD::SELECT);
923 setTargetDAGCombine(ISD::SHL);
924 setTargetDAGCombine(ISD::SRA);
925 setTargetDAGCombine(ISD::SRL);
926 setTargetDAGCombine(ISD::STORE);
927 setTargetDAGCombine(ISD::MEMBARRIER);
928 if (Subtarget->is64Bit())
929 setTargetDAGCombine(ISD::MUL);
931 computeRegisterProperties();
933 // FIXME: These should be based on subtarget info. Plus, the values should
934 // be smaller when we are in optimizing for size mode.
935 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
936 maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
937 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
938 allowUnalignedMemoryAccesses = true; // x86 supports it!
939 setPrefLoopAlignment(16);
940 benefitFromCodePlacementOpt = true;
944 MVT X86TargetLowering::getSetCCResultType(MVT VT) const {
945 return MVT::i8;
949 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
950 /// the desired ByVal argument alignment.
951 static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
952 if (MaxAlign == 16)
953 return;
954 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
955 if (VTy->getBitWidth() == 128)
956 MaxAlign = 16;
957 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
958 unsigned EltAlign = 0;
959 getMaxByValAlign(ATy->getElementType(), EltAlign);
960 if (EltAlign > MaxAlign)
961 MaxAlign = EltAlign;
962 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
963 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
964 unsigned EltAlign = 0;
965 getMaxByValAlign(STy->getElementType(i), EltAlign);
966 if (EltAlign > MaxAlign)
967 MaxAlign = EltAlign;
968 if (MaxAlign == 16)
969 break;
972 return;
975 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
976 /// function arguments in the caller parameter area. For X86, aggregates
977 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
978 /// are at 4-byte boundaries.
979 unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
980 if (Subtarget->is64Bit()) {
981 // Max of 8 and alignment of type.
982 unsigned TyAlign = TD->getABITypeAlignment(Ty);
983 if (TyAlign > 8)
984 return TyAlign;
985 return 8;
988 unsigned Align = 4;
989 if (Subtarget->hasSSE1())
990 getMaxByValAlign(Ty, Align);
991 return Align;
994 /// getOptimalMemOpType - Returns the target specific optimal type for load
995 /// and store operations as a result of memset, memcpy, and memmove
996 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
997 /// determining it.
999 X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1000 bool isSrcConst, bool isSrcStr,
1001 SelectionDAG &DAG) const {
1002 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1003 // linux. This is because the stack realignment code can't handle certain
1004 // cases like PR2962. This should be removed when PR2962 is fixed.
1005 const Function *F = DAG.getMachineFunction().getFunction();
1006 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1007 if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1008 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1009 return MVT::v4i32;
1010 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1011 return MVT::v4f32;
1013 if (Subtarget->is64Bit() && Size >= 8)
1014 return MVT::i64;
1015 return MVT::i32;
1018 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1019 /// jumptable.
1020 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1021 SelectionDAG &DAG) const {
1022 if (usesGlobalOffsetTable())
1023 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1024 if (!Subtarget->is64Bit())
1025 // This doesn't have DebugLoc associated with it, but is not really the
1026 // same as a Register.
1027 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1028 getPointerTy());
1029 return Table;
1032 /// getFunctionAlignment - Return the Log2 alignment of this function.
1033 unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1034 return F->hasFnAttr(Attribute::OptimizeForSize) ? 1 : 4;
1037 //===----------------------------------------------------------------------===//
1038 // Return Value Calling Convention Implementation
1039 //===----------------------------------------------------------------------===//
1041 #include "X86GenCallingConv.inc"
1043 /// LowerRET - Lower an ISD::RET node.
1044 SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
1045 DebugLoc dl = Op.getDebugLoc();
1046 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
1048 SmallVector<CCValAssign, 16> RVLocs;
1049 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1050 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1051 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, DAG.getContext());
1052 CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
1054 // If this is the first return lowered for this function, add the regs to the
1055 // liveout set for the function.
1056 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1057 for (unsigned i = 0; i != RVLocs.size(); ++i)
1058 if (RVLocs[i].isRegLoc())
1059 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1061 SDValue Chain = Op.getOperand(0);
1063 // Handle tail call return.
1064 Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
1065 if (Chain.getOpcode() == X86ISD::TAILCALL) {
1066 SDValue TailCall = Chain;
1067 SDValue TargetAddress = TailCall.getOperand(1);
1068 SDValue StackAdjustment = TailCall.getOperand(2);
1069 assert(((TargetAddress.getOpcode() == ISD::Register &&
1070 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
1071 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R11)) ||
1072 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
1073 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
1074 "Expecting an global address, external symbol, or register");
1075 assert(StackAdjustment.getOpcode() == ISD::Constant &&
1076 "Expecting a const value");
1078 SmallVector<SDValue,8> Operands;
1079 Operands.push_back(Chain.getOperand(0));
1080 Operands.push_back(TargetAddress);
1081 Operands.push_back(StackAdjustment);
1082 // Copy registers used by the call. Last operand is a flag so it is not
1083 // copied.
1084 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
1085 Operands.push_back(Chain.getOperand(i));
1087 return DAG.getNode(X86ISD::TC_RETURN, dl, MVT::Other, &Operands[0],
1088 Operands.size());
1091 // Regular return.
1092 SDValue Flag;
1094 SmallVector<SDValue, 6> RetOps;
1095 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1096 // Operand #1 = Bytes To Pop
1097 RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
1099 // Copy the result values into the output registers.
1100 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1101 CCValAssign &VA = RVLocs[i];
1102 assert(VA.isRegLoc() && "Can only return in registers!");
1103 SDValue ValToCopy = Op.getOperand(i*2+1);
1105 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1106 // the RET instruction and handled by the FP Stackifier.
1107 if (VA.getLocReg() == X86::ST0 ||
1108 VA.getLocReg() == X86::ST1) {
1109 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1110 // change the value to the FP stack register class.
1111 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1112 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1113 RetOps.push_back(ValToCopy);
1114 // Don't emit a copytoreg.
1115 continue;
1118 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1119 // which is returned in RAX / RDX.
1120 if (Subtarget->is64Bit()) {
1121 MVT ValVT = ValToCopy.getValueType();
1122 if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1123 ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1124 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1125 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1129 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1130 Flag = Chain.getValue(1);
1133 // The x86-64 ABI for returning structs by value requires that we copy
1134 // the sret argument into %rax for the return. We saved the argument into
1135 // a virtual register in the entry block, so now we copy the value out
1136 // and into %rax.
1137 if (Subtarget->is64Bit() &&
1138 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1139 MachineFunction &MF = DAG.getMachineFunction();
1140 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1141 unsigned Reg = FuncInfo->getSRetReturnReg();
1142 if (!Reg) {
1143 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1144 FuncInfo->setSRetReturnReg(Reg);
1146 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1148 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1149 Flag = Chain.getValue(1);
1152 RetOps[0] = Chain; // Update chain.
1154 // Add the flag if we have it.
1155 if (Flag.getNode())
1156 RetOps.push_back(Flag);
1158 return DAG.getNode(X86ISD::RET_FLAG, dl,
1159 MVT::Other, &RetOps[0], RetOps.size());
1163 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1164 /// appropriate copies out of appropriate physical registers. This assumes that
1165 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1166 /// being lowered. The returns a SDNode with the same number of values as the
1167 /// ISD::CALL.
1168 SDNode *X86TargetLowering::
1169 LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1170 unsigned CallingConv, SelectionDAG &DAG) {
1172 DebugLoc dl = TheCall->getDebugLoc();
1173 // Assign locations to each value returned by this call.
1174 SmallVector<CCValAssign, 16> RVLocs;
1175 bool isVarArg = TheCall->isVarArg();
1176 bool Is64Bit = Subtarget->is64Bit();
1177 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
1178 RVLocs, DAG.getContext());
1179 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1181 SmallVector<SDValue, 8> ResultVals;
1183 // Copy all of the result registers out of their specified physreg.
1184 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1185 CCValAssign &VA = RVLocs[i];
1186 MVT CopyVT = VA.getValVT();
1188 // If this is x86-64, and we disabled SSE, we can't return FP values
1189 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1190 ((Is64Bit || TheCall->isInreg()) && !Subtarget->hasSSE1())) {
1191 llvm_report_error("SSE register return with SSE disabled");
1194 // If this is a call to a function that returns an fp value on the floating
1195 // point stack, but where we prefer to use the value in xmm registers, copy
1196 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1197 if ((VA.getLocReg() == X86::ST0 ||
1198 VA.getLocReg() == X86::ST1) &&
1199 isScalarFPTypeInSSEReg(VA.getValVT())) {
1200 CopyVT = MVT::f80;
1203 SDValue Val;
1204 if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1205 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1206 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1207 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1208 MVT::v2i64, InFlag).getValue(1);
1209 Val = Chain.getValue(0);
1210 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1211 Val, DAG.getConstant(0, MVT::i64));
1212 } else {
1213 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1214 MVT::i64, InFlag).getValue(1);
1215 Val = Chain.getValue(0);
1217 Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1218 } else {
1219 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1220 CopyVT, InFlag).getValue(1);
1221 Val = Chain.getValue(0);
1223 InFlag = Chain.getValue(2);
1225 if (CopyVT != VA.getValVT()) {
1226 // Round the F80 the right size, which also moves to the appropriate xmm
1227 // register.
1228 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1229 // This truncation won't change the value.
1230 DAG.getIntPtrConstant(1));
1233 ResultVals.push_back(Val);
1236 // Merge everything together with a MERGE_VALUES node.
1237 ResultVals.push_back(Chain);
1238 return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
1239 &ResultVals[0], ResultVals.size()).getNode();
1243 //===----------------------------------------------------------------------===//
1244 // C & StdCall & Fast Calling Convention implementation
1245 //===----------------------------------------------------------------------===//
1246 // StdCall calling convention seems to be standard for many Windows' API
1247 // routines and around. It differs from C calling convention just a little:
1248 // callee should clean up the stack, not caller. Symbols should be also
1249 // decorated in some fancy way :) It doesn't support any vector arguments.
1250 // For info on fast calling convention see Fast Calling Convention (tail call)
1251 // implementation LowerX86_32FastCCCallTo.
1253 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1254 /// semantics.
1255 static bool CallIsStructReturn(CallSDNode *TheCall) {
1256 unsigned NumOps = TheCall->getNumArgs();
1257 if (!NumOps)
1258 return false;
1260 return TheCall->getArgFlags(0).isSRet();
1263 /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1264 /// return semantics.
1265 static bool ArgsAreStructReturn(SDValue Op) {
1266 unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1267 if (!NumArgs)
1268 return false;
1270 return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1273 /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1274 /// the callee to pop its own arguments. Callee pop is necessary to support tail
1275 /// calls.
1276 bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1277 if (IsVarArg)
1278 return false;
1280 switch (CallingConv) {
1281 default:
1282 return false;
1283 case CallingConv::X86_StdCall:
1284 return !Subtarget->is64Bit();
1285 case CallingConv::X86_FastCall:
1286 return !Subtarget->is64Bit();
1287 case CallingConv::Fast:
1288 return PerformTailCallOpt;
1292 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1293 /// given CallingConvention value.
1294 CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1295 if (Subtarget->is64Bit()) {
1296 if (Subtarget->isTargetWin64())
1297 return CC_X86_Win64_C;
1298 else
1299 return CC_X86_64_C;
1302 if (CC == CallingConv::X86_FastCall)
1303 return CC_X86_32_FastCall;
1304 else if (CC == CallingConv::Fast)
1305 return CC_X86_32_FastCC;
1306 else
1307 return CC_X86_32_C;
1310 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1311 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1312 NameDecorationStyle
1313 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1314 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1315 if (CC == CallingConv::X86_FastCall)
1316 return FastCall;
1317 else if (CC == CallingConv::X86_StdCall)
1318 return StdCall;
1319 return None;
1323 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1324 /// by "Src" to address "Dst" with size and alignment information specified by
1325 /// the specific parameter attribute. The copy will be passed as a byval
1326 /// function parameter.
1327 static SDValue
1328 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1329 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1330 DebugLoc dl) {
1331 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1332 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1333 /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1336 SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1337 const CCValAssign &VA,
1338 MachineFrameInfo *MFI,
1339 unsigned CC,
1340 SDValue Root, unsigned i) {
1341 // Create the nodes corresponding to a load from this parameter slot.
1342 ISD::ArgFlagsTy Flags =
1343 cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1344 bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1345 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1347 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1348 // changed with more analysis.
1349 // In case of tail call optimization mark all arguments mutable. Since they
1350 // could be overwritten by lowering of arguments in case of a tail call.
1351 int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1352 VA.getLocMemOffset(), isImmutable);
1353 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1354 if (Flags.isByVal())
1355 return FIN;
1356 return DAG.getLoad(VA.getValVT(), Op.getDebugLoc(), Root, FIN,
1357 PseudoSourceValue::getFixedStack(FI), 0);
1360 SDValue
1361 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1362 MachineFunction &MF = DAG.getMachineFunction();
1363 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1364 DebugLoc dl = Op.getDebugLoc();
1366 const Function* Fn = MF.getFunction();
1367 if (Fn->hasExternalLinkage() &&
1368 Subtarget->isTargetCygMing() &&
1369 Fn->getName() == "main")
1370 FuncInfo->setForceFramePointer(true);
1372 // Decorate the function name.
1373 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1375 MachineFrameInfo *MFI = MF.getFrameInfo();
1376 SDValue Root = Op.getOperand(0);
1377 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1378 unsigned CC = MF.getFunction()->getCallingConv();
1379 bool Is64Bit = Subtarget->is64Bit();
1380 bool IsWin64 = Subtarget->isTargetWin64();
1382 assert(!(isVarArg && CC == CallingConv::Fast) &&
1383 "Var args not supported with calling convention fastcc");
1385 // Assign locations to all of the incoming arguments.
1386 SmallVector<CCValAssign, 16> ArgLocs;
1387 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
1388 CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1390 SmallVector<SDValue, 8> ArgValues;
1391 unsigned LastVal = ~0U;
1392 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1393 CCValAssign &VA = ArgLocs[i];
1394 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1395 // places.
1396 assert(VA.getValNo() != LastVal &&
1397 "Don't support value assigned to multiple locs yet");
1398 LastVal = VA.getValNo();
1400 if (VA.isRegLoc()) {
1401 MVT RegVT = VA.getLocVT();
1402 TargetRegisterClass *RC = NULL;
1403 if (RegVT == MVT::i32)
1404 RC = X86::GR32RegisterClass;
1405 else if (Is64Bit && RegVT == MVT::i64)
1406 RC = X86::GR64RegisterClass;
1407 else if (RegVT == MVT::f32)
1408 RC = X86::FR32RegisterClass;
1409 else if (RegVT == MVT::f64)
1410 RC = X86::FR64RegisterClass;
1411 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1412 RC = X86::VR128RegisterClass;
1413 else if (RegVT.isVector()) {
1414 assert(RegVT.getSizeInBits() == 64);
1415 if (!Is64Bit)
1416 RC = X86::VR64RegisterClass; // MMX values are passed in MMXs.
1417 else {
1418 // Darwin calling convention passes MMX values in either GPRs or
1419 // XMMs in x86-64. Other targets pass them in memory.
1420 if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1421 RC = X86::VR128RegisterClass; // MMX values are passed in XMMs.
1422 RegVT = MVT::v2i64;
1423 } else {
1424 RC = X86::GR64RegisterClass; // v1i64 values are passed in GPRs.
1425 RegVT = MVT::i64;
1428 } else {
1429 llvm_unreachable("Unknown argument type!");
1432 unsigned Reg = DAG.getMachineFunction().addLiveIn(VA.getLocReg(), RC);
1433 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1435 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1436 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1437 // right size.
1438 if (VA.getLocInfo() == CCValAssign::SExt)
1439 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1440 DAG.getValueType(VA.getValVT()));
1441 else if (VA.getLocInfo() == CCValAssign::ZExt)
1442 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1443 DAG.getValueType(VA.getValVT()));
1445 if (VA.getLocInfo() != CCValAssign::Full)
1446 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1448 // Handle MMX values passed in GPRs.
1449 if (Is64Bit && RegVT != VA.getLocVT()) {
1450 if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1451 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1452 else if (RC == X86::VR128RegisterClass) {
1453 ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1454 ArgValue, DAG.getConstant(0, MVT::i64));
1455 ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), ArgValue);
1459 ArgValues.push_back(ArgValue);
1460 } else {
1461 assert(VA.isMemLoc());
1462 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1466 // The x86-64 ABI for returning structs by value requires that we copy
1467 // the sret argument into %rax for the return. Save the argument into
1468 // a virtual register so that we can access it from the return points.
1469 if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1470 MachineFunction &MF = DAG.getMachineFunction();
1471 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1472 unsigned Reg = FuncInfo->getSRetReturnReg();
1473 if (!Reg) {
1474 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1475 FuncInfo->setSRetReturnReg(Reg);
1477 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, ArgValues[0]);
1478 Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Root);
1481 unsigned StackSize = CCInfo.getNextStackOffset();
1482 // align stack specially for tail calls
1483 if (PerformTailCallOpt && CC == CallingConv::Fast)
1484 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1486 // If the function takes variable number of arguments, make a frame index for
1487 // the start of the first vararg value... for expansion of llvm.va_start.
1488 if (isVarArg) {
1489 if (Is64Bit || CC != CallingConv::X86_FastCall) {
1490 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1492 if (Is64Bit) {
1493 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1495 // FIXME: We should really autogenerate these arrays
1496 static const unsigned GPR64ArgRegsWin64[] = {
1497 X86::RCX, X86::RDX, X86::R8, X86::R9
1499 static const unsigned XMMArgRegsWin64[] = {
1500 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1502 static const unsigned GPR64ArgRegs64Bit[] = {
1503 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1505 static const unsigned XMMArgRegs64Bit[] = {
1506 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1507 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1509 const unsigned *GPR64ArgRegs, *XMMArgRegs;
1511 if (IsWin64) {
1512 TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1513 GPR64ArgRegs = GPR64ArgRegsWin64;
1514 XMMArgRegs = XMMArgRegsWin64;
1515 } else {
1516 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1517 GPR64ArgRegs = GPR64ArgRegs64Bit;
1518 XMMArgRegs = XMMArgRegs64Bit;
1520 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1521 TotalNumIntRegs);
1522 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1523 TotalNumXMMRegs);
1525 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1526 assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1527 "SSE register cannot be used when SSE is disabled!");
1528 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1529 "SSE register cannot be used when SSE is disabled!");
1530 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1531 // Kernel mode asks for SSE to be disabled, so don't push them
1532 // on the stack.
1533 TotalNumXMMRegs = 0;
1535 // For X86-64, if there are vararg parameters that are passed via
1536 // registers, then we must store them to their spots on the stack so they
1537 // may be loaded by deferencing the result of va_next.
1538 VarArgsGPOffset = NumIntRegs * 8;
1539 VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1540 RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1541 TotalNumXMMRegs * 16, 16);
1543 // Store the integer parameter registers.
1544 SmallVector<SDValue, 8> MemOps;
1545 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1546 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1547 DAG.getIntPtrConstant(VarArgsGPOffset));
1548 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1549 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1550 X86::GR64RegisterClass);
1551 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i64);
1552 SDValue Store =
1553 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1554 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1555 MemOps.push_back(Store);
1556 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1557 DAG.getIntPtrConstant(8));
1560 // Now store the XMM (fp + vector) parameter registers.
1561 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1562 DAG.getIntPtrConstant(VarArgsFPOffset));
1563 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1564 unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1565 X86::VR128RegisterClass);
1566 SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::v4f32);
1567 SDValue Store =
1568 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1569 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1570 MemOps.push_back(Store);
1571 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1572 DAG.getIntPtrConstant(16));
1574 if (!MemOps.empty())
1575 Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1576 &MemOps[0], MemOps.size());
1580 ArgValues.push_back(Root);
1582 // Some CCs need callee pop.
1583 if (IsCalleePop(isVarArg, CC)) {
1584 BytesToPopOnReturn = StackSize; // Callee pops everything.
1585 BytesCallerReserves = 0;
1586 } else {
1587 BytesToPopOnReturn = 0; // Callee pops nothing.
1588 // If this is an sret function, the return should pop the hidden pointer.
1589 if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1590 BytesToPopOnReturn = 4;
1591 BytesCallerReserves = StackSize;
1594 if (!Is64Bit) {
1595 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1596 if (CC == CallingConv::X86_FastCall)
1597 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1600 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1602 // Return the new list of results.
1603 return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1604 &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1607 SDValue
1608 X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1609 const SDValue &StackPtr,
1610 const CCValAssign &VA,
1611 SDValue Chain,
1612 SDValue Arg, ISD::ArgFlagsTy Flags) {
1613 DebugLoc dl = TheCall->getDebugLoc();
1614 unsigned LocMemOffset = VA.getLocMemOffset();
1615 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1616 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1617 if (Flags.isByVal()) {
1618 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1620 return DAG.getStore(Chain, dl, Arg, PtrOff,
1621 PseudoSourceValue::getStack(), LocMemOffset);
1624 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1625 /// optimization is performed and it is required.
1626 SDValue
1627 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1628 SDValue &OutRetAddr,
1629 SDValue Chain,
1630 bool IsTailCall,
1631 bool Is64Bit,
1632 int FPDiff,
1633 DebugLoc dl) {
1634 if (!IsTailCall || FPDiff==0) return Chain;
1636 // Adjust the Return address stack slot.
1637 MVT VT = getPointerTy();
1638 OutRetAddr = getReturnAddressFrameIndex(DAG);
1640 // Load the "old" Return address.
1641 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1642 return SDValue(OutRetAddr.getNode(), 1);
1645 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1646 /// optimization is performed and it is required (FPDiff!=0).
1647 static SDValue
1648 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1649 SDValue Chain, SDValue RetAddrFrIdx,
1650 bool Is64Bit, int FPDiff, DebugLoc dl) {
1651 // Store the return address to the appropriate stack slot.
1652 if (!FPDiff) return Chain;
1653 // Calculate the new stack slot for the return address.
1654 int SlotSize = Is64Bit ? 8 : 4;
1655 int NewReturnAddrFI =
1656 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1657 MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1658 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1659 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1660 PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1661 return Chain;
1664 SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1665 MachineFunction &MF = DAG.getMachineFunction();
1666 CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1667 SDValue Chain = TheCall->getChain();
1668 unsigned CC = TheCall->getCallingConv();
1669 bool isVarArg = TheCall->isVarArg();
1670 bool IsTailCall = TheCall->isTailCall() &&
1671 CC == CallingConv::Fast && PerformTailCallOpt;
1672 SDValue Callee = TheCall->getCallee();
1673 bool Is64Bit = Subtarget->is64Bit();
1674 bool IsStructRet = CallIsStructReturn(TheCall);
1675 DebugLoc dl = TheCall->getDebugLoc();
1677 assert(!(isVarArg && CC == CallingConv::Fast) &&
1678 "Var args not supported with calling convention fastcc");
1680 // Analyze operands of the call, assigning locations to each operand.
1681 SmallVector<CCValAssign, 16> ArgLocs;
1682 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, DAG.getContext());
1683 CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1685 // Get a count of how many bytes are to be pushed on the stack.
1686 unsigned NumBytes = CCInfo.getNextStackOffset();
1687 if (PerformTailCallOpt && CC == CallingConv::Fast)
1688 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1690 int FPDiff = 0;
1691 if (IsTailCall) {
1692 // Lower arguments at fp - stackoffset + fpdiff.
1693 unsigned NumBytesCallerPushed =
1694 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1695 FPDiff = NumBytesCallerPushed - NumBytes;
1697 // Set the delta of movement of the returnaddr stackslot.
1698 // But only set if delta is greater than previous delta.
1699 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1700 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1703 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1705 SDValue RetAddrFrIdx;
1706 // Load return adress for tail calls.
1707 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1708 FPDiff, dl);
1710 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1711 SmallVector<SDValue, 8> MemOpChains;
1712 SDValue StackPtr;
1714 // Walk the register/memloc assignments, inserting copies/loads. In the case
1715 // of tail call optimization arguments are handle later.
1716 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1717 CCValAssign &VA = ArgLocs[i];
1718 SDValue Arg = TheCall->getArg(i);
1719 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1720 bool isByVal = Flags.isByVal();
1722 // Promote the value if needed.
1723 switch (VA.getLocInfo()) {
1724 default: llvm_unreachable("Unknown loc info!");
1725 case CCValAssign::Full: break;
1726 case CCValAssign::SExt:
1727 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1728 break;
1729 case CCValAssign::ZExt:
1730 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1731 break;
1732 case CCValAssign::AExt:
1733 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1734 break;
1737 if (VA.isRegLoc()) {
1738 if (Is64Bit) {
1739 MVT RegVT = VA.getLocVT();
1740 if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1741 switch (VA.getLocReg()) {
1742 default:
1743 break;
1744 case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1745 case X86::R8: {
1746 // Special case: passing MMX values in GPR registers.
1747 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1748 break;
1750 case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1751 case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1752 // Special case: passing MMX values in XMM registers.
1753 Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1754 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1755 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1756 break;
1760 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1761 } else {
1762 if (!IsTailCall || (IsTailCall && isByVal)) {
1763 assert(VA.isMemLoc());
1764 if (StackPtr.getNode() == 0)
1765 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1767 MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1768 Chain, Arg, Flags));
1773 if (!MemOpChains.empty())
1774 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1775 &MemOpChains[0], MemOpChains.size());
1777 // Build a sequence of copy-to-reg nodes chained together with token chain
1778 // and flag operands which copy the outgoing args into registers.
1779 SDValue InFlag;
1780 // Tail call byval lowering might overwrite argument registers so in case of
1781 // tail call optimization the copies to registers are lowered later.
1782 if (!IsTailCall)
1783 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1784 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1785 RegsToPass[i].second, InFlag);
1786 InFlag = Chain.getValue(1);
1790 if (Subtarget->isPICStyleGOT()) {
1791 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1792 // GOT pointer.
1793 if (!IsTailCall) {
1794 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1795 DAG.getNode(X86ISD::GlobalBaseReg,
1796 DebugLoc::getUnknownLoc(),
1797 getPointerTy()),
1798 InFlag);
1799 InFlag = Chain.getValue(1);
1800 } else {
1801 // If we are tail calling and generating PIC/GOT style code load the
1802 // address of the callee into ECX. The value in ecx is used as target of
1803 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1804 // for tail calls on PIC/GOT architectures. Normally we would just put the
1805 // address of GOT into ebx and then call target@PLT. But for tail calls
1806 // ebx would be restored (since ebx is callee saved) before jumping to the
1807 // target@PLT.
1809 // Note: The actual moving to ECX is done further down.
1810 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1811 if (G && !G->getGlobal()->hasHiddenVisibility() &&
1812 !G->getGlobal()->hasProtectedVisibility())
1813 Callee = LowerGlobalAddress(Callee, DAG);
1814 else if (isa<ExternalSymbolSDNode>(Callee))
1815 Callee = LowerExternalSymbol(Callee, DAG);
1819 if (Is64Bit && isVarArg) {
1820 // From AMD64 ABI document:
1821 // For calls that may call functions that use varargs or stdargs
1822 // (prototype-less calls or calls to functions containing ellipsis (...) in
1823 // the declaration) %al is used as hidden argument to specify the number
1824 // of SSE registers used. The contents of %al do not need to match exactly
1825 // the number of registers, but must be an ubound on the number of SSE
1826 // registers used and is in the range 0 - 8 inclusive.
1828 // FIXME: Verify this on Win64
1829 // Count the number of XMM registers allocated.
1830 static const unsigned XMMArgRegs[] = {
1831 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1832 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1834 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1835 assert((Subtarget->hasSSE1() || !NumXMMRegs)
1836 && "SSE registers cannot be used when SSE is disabled");
1838 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1839 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1840 InFlag = Chain.getValue(1);
1844 // For tail calls lower the arguments to the 'real' stack slot.
1845 if (IsTailCall) {
1846 SmallVector<SDValue, 8> MemOpChains2;
1847 SDValue FIN;
1848 int FI = 0;
1849 // Do not flag preceeding copytoreg stuff together with the following stuff.
1850 InFlag = SDValue();
1851 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1852 CCValAssign &VA = ArgLocs[i];
1853 if (!VA.isRegLoc()) {
1854 assert(VA.isMemLoc());
1855 SDValue Arg = TheCall->getArg(i);
1856 ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1857 // Create frame index.
1858 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1859 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1860 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1861 FIN = DAG.getFrameIndex(FI, getPointerTy());
1863 if (Flags.isByVal()) {
1864 // Copy relative to framepointer.
1865 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1866 if (StackPtr.getNode() == 0)
1867 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1868 getPointerTy());
1869 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1871 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1872 Flags, DAG, dl));
1873 } else {
1874 // Store relative to framepointer.
1875 MemOpChains2.push_back(
1876 DAG.getStore(Chain, dl, Arg, FIN,
1877 PseudoSourceValue::getFixedStack(FI), 0));
1882 if (!MemOpChains2.empty())
1883 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1884 &MemOpChains2[0], MemOpChains2.size());
1886 // Copy arguments to their registers.
1887 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1888 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1889 RegsToPass[i].second, InFlag);
1890 InFlag = Chain.getValue(1);
1892 InFlag =SDValue();
1894 // Store the return address to the appropriate stack slot.
1895 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1896 FPDiff, dl);
1899 // If the callee is a GlobalAddress node (quite common, every direct call is)
1900 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1901 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1902 // We should use extra load for direct calls to dllimported functions in
1903 // non-JIT mode.
1904 GlobalValue *GV = G->getGlobal();
1905 if (!GV->hasDLLImportLinkage()) {
1906 unsigned char OpFlags = 0;
1908 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1909 // external symbols most go through the PLT in PIC mode. If the symbol
1910 // has hidden or protected visibility, or if it is static or local, then
1911 // we don't need to use the PLT - we can directly call it.
1912 if (Subtarget->isTargetELF() &&
1913 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1914 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1915 OpFlags = X86II::MO_PLT;
1916 } else if (Subtarget->isPICStyleStubAny() &&
1917 (GV->isDeclaration() || GV->isWeakForLinker()) &&
1918 Subtarget->getDarwinVers() < 9) {
1919 // PC-relative references to external symbols should go through $stub,
1920 // unless we're building with the leopard linker or later, which
1921 // automatically synthesizes these stubs.
1922 OpFlags = X86II::MO_DARWIN_STUB;
1925 Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
1926 G->getOffset(), OpFlags);
1928 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1929 unsigned char OpFlags = 0;
1931 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1932 // symbols should go through the PLT.
1933 if (Subtarget->isTargetELF() &&
1934 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1935 OpFlags = X86II::MO_PLT;
1936 } else if (Subtarget->isPICStyleStubAny() &&
1937 Subtarget->getDarwinVers() < 9) {
1938 // PC-relative references to external symbols should go through $stub,
1939 // unless we're building with the leopard linker or later, which
1940 // automatically synthesizes these stubs.
1941 OpFlags = X86II::MO_DARWIN_STUB;
1944 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
1945 OpFlags);
1946 } else if (IsTailCall) {
1947 unsigned Opc = Is64Bit ? X86::R11 : X86::EAX;
1949 Chain = DAG.getCopyToReg(Chain, dl,
1950 DAG.getRegister(Opc, getPointerTy()),
1951 Callee,InFlag);
1952 Callee = DAG.getRegister(Opc, getPointerTy());
1953 // Add register as live out.
1954 DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1957 // Returns a chain & a flag for retval copy to use.
1958 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1959 SmallVector<SDValue, 8> Ops;
1961 if (IsTailCall) {
1962 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1963 DAG.getIntPtrConstant(0, true), InFlag);
1964 InFlag = Chain.getValue(1);
1966 // Returns a chain & a flag for retval copy to use.
1967 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1968 Ops.clear();
1971 Ops.push_back(Chain);
1972 Ops.push_back(Callee);
1974 if (IsTailCall)
1975 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1977 // Add argument registers to the end of the list so that they are known live
1978 // into the call.
1979 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1980 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1981 RegsToPass[i].second.getValueType()));
1983 // Add an implicit use GOT pointer in EBX.
1984 if (!IsTailCall && Subtarget->isPICStyleGOT())
1985 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1987 // Add an implicit use of AL for x86 vararg functions.
1988 if (Is64Bit && isVarArg)
1989 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1991 if (InFlag.getNode())
1992 Ops.push_back(InFlag);
1994 if (IsTailCall) {
1995 assert(InFlag.getNode() &&
1996 "Flag must be set. Depend on flag being set in LowerRET");
1997 Chain = DAG.getNode(X86ISD::TAILCALL, dl,
1998 TheCall->getVTList(), &Ops[0], Ops.size());
2000 return SDValue(Chain.getNode(), Op.getResNo());
2003 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2004 InFlag = Chain.getValue(1);
2006 // Create the CALLSEQ_END node.
2007 unsigned NumBytesForCalleeToPush;
2008 if (IsCalleePop(isVarArg, CC))
2009 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2010 else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
2011 // If this is is a call to a struct-return function, the callee
2012 // pops the hidden struct pointer, so we have to push it back.
2013 // This is common for Darwin/X86, Linux & Mingw32 targets.
2014 NumBytesForCalleeToPush = 4;
2015 else
2016 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2018 // Returns a flag for retval copy to use.
2019 Chain = DAG.getCALLSEQ_END(Chain,
2020 DAG.getIntPtrConstant(NumBytes, true),
2021 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2022 true),
2023 InFlag);
2024 InFlag = Chain.getValue(1);
2026 // Handle result values, copying them out of physregs into vregs that we
2027 // return.
2028 return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
2029 Op.getResNo());
2033 //===----------------------------------------------------------------------===//
2034 // Fast Calling Convention (tail call) implementation
2035 //===----------------------------------------------------------------------===//
2037 // Like std call, callee cleans arguments, convention except that ECX is
2038 // reserved for storing the tail called function address. Only 2 registers are
2039 // free for argument passing (inreg). Tail call optimization is performed
2040 // provided:
2041 // * tailcallopt is enabled
2042 // * caller/callee are fastcc
2043 // On X86_64 architecture with GOT-style position independent code only local
2044 // (within module) calls are supported at the moment.
2045 // To keep the stack aligned according to platform abi the function
2046 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2047 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2048 // If a tail called function callee has more arguments than the caller the
2049 // caller needs to make sure that there is room to move the RETADDR to. This is
2050 // achieved by reserving an area the size of the argument delta right after the
2051 // original REtADDR, but before the saved framepointer or the spilled registers
2052 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2053 // stack layout:
2054 // arg1
2055 // arg2
2056 // RETADDR
2057 // [ new RETADDR
2058 // move area ]
2059 // (possible EBP)
2060 // ESI
2061 // EDI
2062 // local1 ..
2064 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2065 /// for a 16 byte align requirement.
2066 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2067 SelectionDAG& DAG) {
2068 MachineFunction &MF = DAG.getMachineFunction();
2069 const TargetMachine &TM = MF.getTarget();
2070 const TargetFrameInfo &TFI = *TM.getFrameInfo();
2071 unsigned StackAlignment = TFI.getStackAlignment();
2072 uint64_t AlignMask = StackAlignment - 1;
2073 int64_t Offset = StackSize;
2074 uint64_t SlotSize = TD->getPointerSize();
2075 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2076 // Number smaller than 12 so just add the difference.
2077 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2078 } else {
2079 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2080 Offset = ((~AlignMask) & Offset) + StackAlignment +
2081 (StackAlignment-SlotSize);
2083 return Offset;
2086 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
2087 /// following the call is a return. A function is eligible if caller/callee
2088 /// calling conventions match, currently only fastcc supports tail calls, and
2089 /// the function CALL is immediatly followed by a RET.
2090 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
2091 SDValue Ret,
2092 SelectionDAG& DAG) const {
2093 if (!PerformTailCallOpt)
2094 return false;
2096 if (CheckTailCallReturnConstraints(TheCall, Ret)) {
2097 unsigned CallerCC =
2098 DAG.getMachineFunction().getFunction()->getCallingConv();
2099 unsigned CalleeCC = TheCall->getCallingConv();
2100 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC)
2101 return true;
2104 return false;
2107 FastISel *
2108 X86TargetLowering::createFastISel(MachineFunction &mf,
2109 MachineModuleInfo *mmo,
2110 DwarfWriter *dw,
2111 DenseMap<const Value *, unsigned> &vm,
2112 DenseMap<const BasicBlock *,
2113 MachineBasicBlock *> &bm,
2114 DenseMap<const AllocaInst *, int> &am
2115 #ifndef NDEBUG
2116 , SmallSet<Instruction*, 8> &cil
2117 #endif
2119 return X86::createFastISel(mf, mmo, dw, vm, bm, am
2120 #ifndef NDEBUG
2121 , cil
2122 #endif
2127 //===----------------------------------------------------------------------===//
2128 // Other Lowering Hooks
2129 //===----------------------------------------------------------------------===//
2132 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2133 MachineFunction &MF = DAG.getMachineFunction();
2134 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2135 int ReturnAddrIndex = FuncInfo->getRAIndex();
2137 if (ReturnAddrIndex == 0) {
2138 // Set up a frame object for the return address.
2139 uint64_t SlotSize = TD->getPointerSize();
2140 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
2141 FuncInfo->setRAIndex(ReturnAddrIndex);
2144 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2148 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2149 /// specific condition code, returning the condition code and the LHS/RHS of the
2150 /// comparison to make.
2151 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2152 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2153 if (!isFP) {
2154 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2155 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2156 // X > -1 -> X == 0, jump !sign.
2157 RHS = DAG.getConstant(0, RHS.getValueType());
2158 return X86::COND_NS;
2159 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2160 // X < 0 -> X == 0, jump on sign.
2161 return X86::COND_S;
2162 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2163 // X < 1 -> X <= 0
2164 RHS = DAG.getConstant(0, RHS.getValueType());
2165 return X86::COND_LE;
2169 switch (SetCCOpcode) {
2170 default: llvm_unreachable("Invalid integer condition!");
2171 case ISD::SETEQ: return X86::COND_E;
2172 case ISD::SETGT: return X86::COND_G;
2173 case ISD::SETGE: return X86::COND_GE;
2174 case ISD::SETLT: return X86::COND_L;
2175 case ISD::SETLE: return X86::COND_LE;
2176 case ISD::SETNE: return X86::COND_NE;
2177 case ISD::SETULT: return X86::COND_B;
2178 case ISD::SETUGT: return X86::COND_A;
2179 case ISD::SETULE: return X86::COND_BE;
2180 case ISD::SETUGE: return X86::COND_AE;
2184 // First determine if it is required or is profitable to flip the operands.
2186 // If LHS is a foldable load, but RHS is not, flip the condition.
2187 if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2188 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2189 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2190 std::swap(LHS, RHS);
2193 switch (SetCCOpcode) {
2194 default: break;
2195 case ISD::SETOLT:
2196 case ISD::SETOLE:
2197 case ISD::SETUGT:
2198 case ISD::SETUGE:
2199 std::swap(LHS, RHS);
2200 break;
2203 // On a floating point condition, the flags are set as follows:
2204 // ZF PF CF op
2205 // 0 | 0 | 0 | X > Y
2206 // 0 | 0 | 1 | X < Y
2207 // 1 | 0 | 0 | X == Y
2208 // 1 | 1 | 1 | unordered
2209 switch (SetCCOpcode) {
2210 default: llvm_unreachable("Condcode should be pre-legalized away");
2211 case ISD::SETUEQ:
2212 case ISD::SETEQ: return X86::COND_E;
2213 case ISD::SETOLT: // flipped
2214 case ISD::SETOGT:
2215 case ISD::SETGT: return X86::COND_A;
2216 case ISD::SETOLE: // flipped
2217 case ISD::SETOGE:
2218 case ISD::SETGE: return X86::COND_AE;
2219 case ISD::SETUGT: // flipped
2220 case ISD::SETULT:
2221 case ISD::SETLT: return X86::COND_B;
2222 case ISD::SETUGE: // flipped
2223 case ISD::SETULE:
2224 case ISD::SETLE: return X86::COND_BE;
2225 case ISD::SETONE:
2226 case ISD::SETNE: return X86::COND_NE;
2227 case ISD::SETUO: return X86::COND_P;
2228 case ISD::SETO: return X86::COND_NP;
2232 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2233 /// code. Current x86 isa includes the following FP cmov instructions:
2234 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2235 static bool hasFPCMov(unsigned X86CC) {
2236 switch (X86CC) {
2237 default:
2238 return false;
2239 case X86::COND_B:
2240 case X86::COND_BE:
2241 case X86::COND_E:
2242 case X86::COND_P:
2243 case X86::COND_A:
2244 case X86::COND_AE:
2245 case X86::COND_NE:
2246 case X86::COND_NP:
2247 return true;
2251 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2252 /// the specified range (L, H].
2253 static bool isUndefOrInRange(int Val, int Low, int Hi) {
2254 return (Val < 0) || (Val >= Low && Val < Hi);
2257 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2258 /// specified value.
2259 static bool isUndefOrEqual(int Val, int CmpVal) {
2260 if (Val < 0 || Val == CmpVal)
2261 return true;
2262 return false;
2265 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2266 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2267 /// the second operand.
2268 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2269 if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2270 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2271 if (VT == MVT::v2f64 || VT == MVT::v2i64)
2272 return (Mask[0] < 2 && Mask[1] < 2);
2273 return false;
2276 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2277 SmallVector<int, 8> M;
2278 N->getMask(M);
2279 return ::isPSHUFDMask(M, N->getValueType(0));
2282 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2283 /// is suitable for input to PSHUFHW.
2284 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2285 if (VT != MVT::v8i16)
2286 return false;
2288 // Lower quadword copied in order or undef.
2289 for (int i = 0; i != 4; ++i)
2290 if (Mask[i] >= 0 && Mask[i] != i)
2291 return false;
2293 // Upper quadword shuffled.
2294 for (int i = 4; i != 8; ++i)
2295 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2296 return false;
2298 return true;
2301 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2302 SmallVector<int, 8> M;
2303 N->getMask(M);
2304 return ::isPSHUFHWMask(M, N->getValueType(0));
2307 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2308 /// is suitable for input to PSHUFLW.
2309 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2310 if (VT != MVT::v8i16)
2311 return false;
2313 // Upper quadword copied in order.
2314 for (int i = 4; i != 8; ++i)
2315 if (Mask[i] >= 0 && Mask[i] != i)
2316 return false;
2318 // Lower quadword shuffled.
2319 for (int i = 0; i != 4; ++i)
2320 if (Mask[i] >= 4)
2321 return false;
2323 return true;
2326 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2327 SmallVector<int, 8> M;
2328 N->getMask(M);
2329 return ::isPSHUFLWMask(M, N->getValueType(0));
2332 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2333 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2334 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2335 int NumElems = VT.getVectorNumElements();
2336 if (NumElems != 2 && NumElems != 4)
2337 return false;
2339 int Half = NumElems / 2;
2340 for (int i = 0; i < Half; ++i)
2341 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2342 return false;
2343 for (int i = Half; i < NumElems; ++i)
2344 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2345 return false;
2347 return true;
2350 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2351 SmallVector<int, 8> M;
2352 N->getMask(M);
2353 return ::isSHUFPMask(M, N->getValueType(0));
2356 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2357 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2358 /// half elements to come from vector 1 (which would equal the dest.) and
2359 /// the upper half to come from vector 2.
2360 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2361 int NumElems = VT.getVectorNumElements();
2363 if (NumElems != 2 && NumElems != 4)
2364 return false;
2366 int Half = NumElems / 2;
2367 for (int i = 0; i < Half; ++i)
2368 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2369 return false;
2370 for (int i = Half; i < NumElems; ++i)
2371 if (!isUndefOrInRange(Mask[i], 0, NumElems))
2372 return false;
2373 return true;
2376 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2377 SmallVector<int, 8> M;
2378 N->getMask(M);
2379 return isCommutedSHUFPMask(M, N->getValueType(0));
2382 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2383 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2384 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2385 if (N->getValueType(0).getVectorNumElements() != 4)
2386 return false;
2388 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2389 return isUndefOrEqual(N->getMaskElt(0), 6) &&
2390 isUndefOrEqual(N->getMaskElt(1), 7) &&
2391 isUndefOrEqual(N->getMaskElt(2), 2) &&
2392 isUndefOrEqual(N->getMaskElt(3), 3);
2395 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2396 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2397 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2398 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2400 if (NumElems != 2 && NumElems != 4)
2401 return false;
2403 for (unsigned i = 0; i < NumElems/2; ++i)
2404 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2405 return false;
2407 for (unsigned i = NumElems/2; i < NumElems; ++i)
2408 if (!isUndefOrEqual(N->getMaskElt(i), i))
2409 return false;
2411 return true;
2414 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2415 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2416 /// and MOVLHPS.
2417 bool X86::isMOVHPMask(ShuffleVectorSDNode *N) {
2418 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2420 if (NumElems != 2 && NumElems != 4)
2421 return false;
2423 for (unsigned i = 0; i < NumElems/2; ++i)
2424 if (!isUndefOrEqual(N->getMaskElt(i), i))
2425 return false;
2427 for (unsigned i = 0; i < NumElems/2; ++i)
2428 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2429 return false;
2431 return true;
2434 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2435 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2436 /// <2, 3, 2, 3>
2437 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2438 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2440 if (NumElems != 4)
2441 return false;
2443 return isUndefOrEqual(N->getMaskElt(0), 2) &&
2444 isUndefOrEqual(N->getMaskElt(1), 3) &&
2445 isUndefOrEqual(N->getMaskElt(2), 2) &&
2446 isUndefOrEqual(N->getMaskElt(3), 3);
2449 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2450 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2451 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2452 bool V2IsSplat = false) {
2453 int NumElts = VT.getVectorNumElements();
2454 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2455 return false;
2457 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2458 int BitI = Mask[i];
2459 int BitI1 = Mask[i+1];
2460 if (!isUndefOrEqual(BitI, j))
2461 return false;
2462 if (V2IsSplat) {
2463 if (!isUndefOrEqual(BitI1, NumElts))
2464 return false;
2465 } else {
2466 if (!isUndefOrEqual(BitI1, j + NumElts))
2467 return false;
2470 return true;
2473 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2474 SmallVector<int, 8> M;
2475 N->getMask(M);
2476 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2479 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2480 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2481 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, MVT VT,
2482 bool V2IsSplat = false) {
2483 int NumElts = VT.getVectorNumElements();
2484 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2485 return false;
2487 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2488 int BitI = Mask[i];
2489 int BitI1 = Mask[i+1];
2490 if (!isUndefOrEqual(BitI, j + NumElts/2))
2491 return false;
2492 if (V2IsSplat) {
2493 if (isUndefOrEqual(BitI1, NumElts))
2494 return false;
2495 } else {
2496 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2497 return false;
2500 return true;
2503 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2504 SmallVector<int, 8> M;
2505 N->getMask(M);
2506 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2509 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2510 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2511 /// <0, 0, 1, 1>
2512 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2513 int NumElems = VT.getVectorNumElements();
2514 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2515 return false;
2517 for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2518 int BitI = Mask[i];
2519 int BitI1 = Mask[i+1];
2520 if (!isUndefOrEqual(BitI, j))
2521 return false;
2522 if (!isUndefOrEqual(BitI1, j))
2523 return false;
2525 return true;
2528 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2529 SmallVector<int, 8> M;
2530 N->getMask(M);
2531 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2534 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2535 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2536 /// <2, 2, 3, 3>
2537 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, MVT VT) {
2538 int NumElems = VT.getVectorNumElements();
2539 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2540 return false;
2542 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2543 int BitI = Mask[i];
2544 int BitI1 = Mask[i+1];
2545 if (!isUndefOrEqual(BitI, j))
2546 return false;
2547 if (!isUndefOrEqual(BitI1, j))
2548 return false;
2550 return true;
2553 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2554 SmallVector<int, 8> M;
2555 N->getMask(M);
2556 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2559 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2560 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2561 /// MOVSD, and MOVD, i.e. setting the lowest element.
2562 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT) {
2563 if (VT.getVectorElementType().getSizeInBits() < 32)
2564 return false;
2566 int NumElts = VT.getVectorNumElements();
2568 if (!isUndefOrEqual(Mask[0], NumElts))
2569 return false;
2571 for (int i = 1; i < NumElts; ++i)
2572 if (!isUndefOrEqual(Mask[i], i))
2573 return false;
2575 return true;
2578 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2579 SmallVector<int, 8> M;
2580 N->getMask(M);
2581 return ::isMOVLMask(M, N->getValueType(0));
2584 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2585 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2586 /// element of vector 2 and the other elements to come from vector 1 in order.
2587 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, MVT VT,
2588 bool V2IsSplat = false, bool V2IsUndef = false) {
2589 int NumOps = VT.getVectorNumElements();
2590 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2591 return false;
2593 if (!isUndefOrEqual(Mask[0], 0))
2594 return false;
2596 for (int i = 1; i < NumOps; ++i)
2597 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2598 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2599 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2600 return false;
2602 return true;
2605 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2606 bool V2IsUndef = false) {
2607 SmallVector<int, 8> M;
2608 N->getMask(M);
2609 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2612 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2613 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2614 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2615 if (N->getValueType(0).getVectorNumElements() != 4)
2616 return false;
2618 // Expect 1, 1, 3, 3
2619 for (unsigned i = 0; i < 2; ++i) {
2620 int Elt = N->getMaskElt(i);
2621 if (Elt >= 0 && Elt != 1)
2622 return false;
2625 bool HasHi = false;
2626 for (unsigned i = 2; i < 4; ++i) {
2627 int Elt = N->getMaskElt(i);
2628 if (Elt >= 0 && Elt != 3)
2629 return false;
2630 if (Elt == 3)
2631 HasHi = true;
2633 // Don't use movshdup if it can be done with a shufps.
2634 // FIXME: verify that matching u, u, 3, 3 is what we want.
2635 return HasHi;
2638 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2639 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2640 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2641 if (N->getValueType(0).getVectorNumElements() != 4)
2642 return false;
2644 // Expect 0, 0, 2, 2
2645 for (unsigned i = 0; i < 2; ++i)
2646 if (N->getMaskElt(i) > 0)
2647 return false;
2649 bool HasHi = false;
2650 for (unsigned i = 2; i < 4; ++i) {
2651 int Elt = N->getMaskElt(i);
2652 if (Elt >= 0 && Elt != 2)
2653 return false;
2654 if (Elt == 2)
2655 HasHi = true;
2657 // Don't use movsldup if it can be done with a shufps.
2658 return HasHi;
2661 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2662 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2663 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
2664 int e = N->getValueType(0).getVectorNumElements() / 2;
2666 for (int i = 0; i < e; ++i)
2667 if (!isUndefOrEqual(N->getMaskElt(i), i))
2668 return false;
2669 for (int i = 0; i < e; ++i)
2670 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
2671 return false;
2672 return true;
2675 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2676 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2677 /// instructions.
2678 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2679 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2680 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
2682 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2683 unsigned Mask = 0;
2684 for (int i = 0; i < NumOperands; ++i) {
2685 int Val = SVOp->getMaskElt(NumOperands-i-1);
2686 if (Val < 0) Val = 0;
2687 if (Val >= NumOperands) Val -= NumOperands;
2688 Mask |= Val;
2689 if (i != NumOperands - 1)
2690 Mask <<= Shift;
2692 return Mask;
2695 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2696 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2697 /// instructions.
2698 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2699 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2700 unsigned Mask = 0;
2701 // 8 nodes, but we only care about the last 4.
2702 for (unsigned i = 7; i >= 4; --i) {
2703 int Val = SVOp->getMaskElt(i);
2704 if (Val >= 0)
2705 Mask |= (Val - 4);
2706 if (i != 4)
2707 Mask <<= 2;
2709 return Mask;
2712 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2713 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2714 /// instructions.
2715 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2716 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2717 unsigned Mask = 0;
2718 // 8 nodes, but we only care about the first 4.
2719 for (int i = 3; i >= 0; --i) {
2720 int Val = SVOp->getMaskElt(i);
2721 if (Val >= 0)
2722 Mask |= Val;
2723 if (i != 0)
2724 Mask <<= 2;
2726 return Mask;
2729 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2730 /// their permute mask.
2731 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
2732 SelectionDAG &DAG) {
2733 MVT VT = SVOp->getValueType(0);
2734 unsigned NumElems = VT.getVectorNumElements();
2735 SmallVector<int, 8> MaskVec;
2737 for (unsigned i = 0; i != NumElems; ++i) {
2738 int idx = SVOp->getMaskElt(i);
2739 if (idx < 0)
2740 MaskVec.push_back(idx);
2741 else if (idx < (int)NumElems)
2742 MaskVec.push_back(idx + NumElems);
2743 else
2744 MaskVec.push_back(idx - NumElems);
2746 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
2747 SVOp->getOperand(0), &MaskVec[0]);
2750 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2751 /// the two vector operands have swapped position.
2752 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, MVT VT) {
2753 unsigned NumElems = VT.getVectorNumElements();
2754 for (unsigned i = 0; i != NumElems; ++i) {
2755 int idx = Mask[i];
2756 if (idx < 0)
2757 continue;
2758 else if (idx < (int)NumElems)
2759 Mask[i] = idx + NumElems;
2760 else
2761 Mask[i] = idx - NumElems;
2765 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2766 /// match movhlps. The lower half elements should come from upper half of
2767 /// V1 (and in order), and the upper half elements should come from the upper
2768 /// half of V2 (and in order).
2769 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
2770 if (Op->getValueType(0).getVectorNumElements() != 4)
2771 return false;
2772 for (unsigned i = 0, e = 2; i != e; ++i)
2773 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
2774 return false;
2775 for (unsigned i = 2; i != 4; ++i)
2776 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
2777 return false;
2778 return true;
2781 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2782 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2783 /// required.
2784 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2785 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2786 return false;
2787 N = N->getOperand(0).getNode();
2788 if (!ISD::isNON_EXTLoad(N))
2789 return false;
2790 if (LD)
2791 *LD = cast<LoadSDNode>(N);
2792 return true;
2795 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2796 /// match movlp{s|d}. The lower half elements should come from lower half of
2797 /// V1 (and in order), and the upper half elements should come from the upper
2798 /// half of V2 (and in order). And since V1 will become the source of the
2799 /// MOVLP, it must be either a vector load or a scalar load to vector.
2800 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
2801 ShuffleVectorSDNode *Op) {
2802 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2803 return false;
2804 // Is V2 is a vector load, don't do this transformation. We will try to use
2805 // load folding shufps op.
2806 if (ISD::isNON_EXTLoad(V2))
2807 return false;
2809 unsigned NumElems = Op->getValueType(0).getVectorNumElements();
2811 if (NumElems != 2 && NumElems != 4)
2812 return false;
2813 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2814 if (!isUndefOrEqual(Op->getMaskElt(i), i))
2815 return false;
2816 for (unsigned i = NumElems/2; i != NumElems; ++i)
2817 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
2818 return false;
2819 return true;
2822 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2823 /// all the same.
2824 static bool isSplatVector(SDNode *N) {
2825 if (N->getOpcode() != ISD::BUILD_VECTOR)
2826 return false;
2828 SDValue SplatValue = N->getOperand(0);
2829 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2830 if (N->getOperand(i) != SplatValue)
2831 return false;
2832 return true;
2835 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2836 /// constant +0.0.
2837 static inline bool isZeroNode(SDValue Elt) {
2838 return ((isa<ConstantSDNode>(Elt) &&
2839 cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2840 (isa<ConstantFPSDNode>(Elt) &&
2841 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2844 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2845 /// to an zero vector.
2846 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2847 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
2848 SDValue V1 = N->getOperand(0);
2849 SDValue V2 = N->getOperand(1);
2850 unsigned NumElems = N->getValueType(0).getVectorNumElements();
2851 for (unsigned i = 0; i != NumElems; ++i) {
2852 int Idx = N->getMaskElt(i);
2853 if (Idx >= (int)NumElems) {
2854 unsigned Opc = V2.getOpcode();
2855 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2856 continue;
2857 if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V2.getOperand(Idx-NumElems)))
2858 return false;
2859 } else if (Idx >= 0) {
2860 unsigned Opc = V1.getOpcode();
2861 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2862 continue;
2863 if (Opc != ISD::BUILD_VECTOR || !isZeroNode(V1.getOperand(Idx)))
2864 return false;
2867 return true;
2870 /// getZeroVector - Returns a vector of specified type with all zero elements.
2872 static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG,
2873 DebugLoc dl) {
2874 assert(VT.isVector() && "Expected a vector type");
2876 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2877 // type. This ensures they get CSE'd.
2878 SDValue Vec;
2879 if (VT.getSizeInBits() == 64) { // MMX
2880 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2881 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2882 } else if (HasSSE2) { // SSE2
2883 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2884 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2885 } else { // SSE1
2886 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2887 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
2889 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2892 /// getOnesVector - Returns a vector of specified type with all bits set.
2894 static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2895 assert(VT.isVector() && "Expected a vector type");
2897 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2898 // type. This ensures they get CSE'd.
2899 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2900 SDValue Vec;
2901 if (VT.getSizeInBits() == 64) // MMX
2902 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
2903 else // SSE
2904 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
2905 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2909 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2910 /// that point to V2 points to its first element.
2911 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
2912 MVT VT = SVOp->getValueType(0);
2913 unsigned NumElems = VT.getVectorNumElements();
2915 bool Changed = false;
2916 SmallVector<int, 8> MaskVec;
2917 SVOp->getMask(MaskVec);
2919 for (unsigned i = 0; i != NumElems; ++i) {
2920 if (MaskVec[i] > (int)NumElems) {
2921 MaskVec[i] = NumElems;
2922 Changed = true;
2925 if (Changed)
2926 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
2927 SVOp->getOperand(1), &MaskVec[0]);
2928 return SDValue(SVOp, 0);
2931 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2932 /// operation of specified width.
2933 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2934 SDValue V2) {
2935 unsigned NumElems = VT.getVectorNumElements();
2936 SmallVector<int, 8> Mask;
2937 Mask.push_back(NumElems);
2938 for (unsigned i = 1; i != NumElems; ++i)
2939 Mask.push_back(i);
2940 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2943 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2944 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2945 SDValue V2) {
2946 unsigned NumElems = VT.getVectorNumElements();
2947 SmallVector<int, 8> Mask;
2948 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2949 Mask.push_back(i);
2950 Mask.push_back(i + NumElems);
2952 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2955 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2956 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, MVT VT, SDValue V1,
2957 SDValue V2) {
2958 unsigned NumElems = VT.getVectorNumElements();
2959 unsigned Half = NumElems/2;
2960 SmallVector<int, 8> Mask;
2961 for (unsigned i = 0; i != Half; ++i) {
2962 Mask.push_back(i + Half);
2963 Mask.push_back(i + NumElems + Half);
2965 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
2968 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2969 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
2970 bool HasSSE2) {
2971 if (SV->getValueType(0).getVectorNumElements() <= 4)
2972 return SDValue(SV, 0);
2974 MVT PVT = MVT::v4f32;
2975 MVT VT = SV->getValueType(0);
2976 DebugLoc dl = SV->getDebugLoc();
2977 SDValue V1 = SV->getOperand(0);
2978 int NumElems = VT.getVectorNumElements();
2979 int EltNo = SV->getSplatIndex();
2981 // unpack elements to the correct location
2982 while (NumElems > 4) {
2983 if (EltNo < NumElems/2) {
2984 V1 = getUnpackl(DAG, dl, VT, V1, V1);
2985 } else {
2986 V1 = getUnpackh(DAG, dl, VT, V1, V1);
2987 EltNo -= NumElems/2;
2989 NumElems >>= 1;
2992 // Perform the splat.
2993 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
2994 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
2995 V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
2996 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
2999 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3000 /// vector of zero or undef vector. This produces a shuffle where the low
3001 /// element of V2 is swizzled into the zero/undef vector, landing at element
3002 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3003 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3004 bool isZero, bool HasSSE2,
3005 SelectionDAG &DAG) {
3006 MVT VT = V2.getValueType();
3007 SDValue V1 = isZero
3008 ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3009 unsigned NumElems = VT.getVectorNumElements();
3010 SmallVector<int, 16> MaskVec;
3011 for (unsigned i = 0; i != NumElems; ++i)
3012 // If this is the insertion idx, put the low elt of V2 here.
3013 MaskVec.push_back(i == Idx ? NumElems : i);
3014 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3017 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3018 /// a shuffle that is zero.
3019 static
3020 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3021 bool Low, SelectionDAG &DAG) {
3022 unsigned NumZeros = 0;
3023 for (int i = 0; i < NumElems; ++i) {
3024 unsigned Index = Low ? i : NumElems-i-1;
3025 int Idx = SVOp->getMaskElt(Index);
3026 if (Idx < 0) {
3027 ++NumZeros;
3028 continue;
3030 SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3031 if (Elt.getNode() && isZeroNode(Elt))
3032 ++NumZeros;
3033 else
3034 break;
3036 return NumZeros;
3039 /// isVectorShift - Returns true if the shuffle can be implemented as a
3040 /// logical left or right shift of a vector.
3041 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3042 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3043 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3044 int NumElems = SVOp->getValueType(0).getVectorNumElements();
3046 isLeft = true;
3047 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3048 if (!NumZeros) {
3049 isLeft = false;
3050 NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3051 if (!NumZeros)
3052 return false;
3054 bool SeenV1 = false;
3055 bool SeenV2 = false;
3056 for (int i = NumZeros; i < NumElems; ++i) {
3057 int Val = isLeft ? (i - NumZeros) : i;
3058 int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3059 if (Idx < 0)
3060 continue;
3061 if (Idx < NumElems)
3062 SeenV1 = true;
3063 else {
3064 Idx -= NumElems;
3065 SeenV2 = true;
3067 if (Idx != Val)
3068 return false;
3070 if (SeenV1 && SeenV2)
3071 return false;
3073 ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3074 ShAmt = NumZeros;
3075 return true;
3079 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3081 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3082 unsigned NumNonZero, unsigned NumZero,
3083 SelectionDAG &DAG, TargetLowering &TLI) {
3084 if (NumNonZero > 8)
3085 return SDValue();
3087 DebugLoc dl = Op.getDebugLoc();
3088 SDValue V(0, 0);
3089 bool First = true;
3090 for (unsigned i = 0; i < 16; ++i) {
3091 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3092 if (ThisIsNonZero && First) {
3093 if (NumZero)
3094 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3095 else
3096 V = DAG.getUNDEF(MVT::v8i16);
3097 First = false;
3100 if ((i & 1) != 0) {
3101 SDValue ThisElt(0, 0), LastElt(0, 0);
3102 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3103 if (LastIsNonZero) {
3104 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3105 MVT::i16, Op.getOperand(i-1));
3107 if (ThisIsNonZero) {
3108 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3109 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3110 ThisElt, DAG.getConstant(8, MVT::i8));
3111 if (LastIsNonZero)
3112 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3113 } else
3114 ThisElt = LastElt;
3116 if (ThisElt.getNode())
3117 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3118 DAG.getIntPtrConstant(i/2));
3122 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3125 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3127 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3128 unsigned NumNonZero, unsigned NumZero,
3129 SelectionDAG &DAG, TargetLowering &TLI) {
3130 if (NumNonZero > 4)
3131 return SDValue();
3133 DebugLoc dl = Op.getDebugLoc();
3134 SDValue V(0, 0);
3135 bool First = true;
3136 for (unsigned i = 0; i < 8; ++i) {
3137 bool isNonZero = (NonZeros & (1 << i)) != 0;
3138 if (isNonZero) {
3139 if (First) {
3140 if (NumZero)
3141 V = getZeroVector(MVT::v8i16, true, DAG, dl);
3142 else
3143 V = DAG.getUNDEF(MVT::v8i16);
3144 First = false;
3146 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3147 MVT::v8i16, V, Op.getOperand(i),
3148 DAG.getIntPtrConstant(i));
3152 return V;
3155 /// getVShift - Return a vector logical shift node.
3157 static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3158 unsigned NumBits, SelectionDAG &DAG,
3159 const TargetLowering &TLI, DebugLoc dl) {
3160 bool isMMX = VT.getSizeInBits() == 64;
3161 MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3162 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3163 SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3164 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3165 DAG.getNode(Opc, dl, ShVT, SrcOp,
3166 DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3169 SDValue
3170 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3171 DebugLoc dl = Op.getDebugLoc();
3172 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3173 if (ISD::isBuildVectorAllZeros(Op.getNode())
3174 || ISD::isBuildVectorAllOnes(Op.getNode())) {
3175 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3176 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3177 // eliminated on x86-32 hosts.
3178 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3179 return Op;
3181 if (ISD::isBuildVectorAllOnes(Op.getNode()))
3182 return getOnesVector(Op.getValueType(), DAG, dl);
3183 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3186 MVT VT = Op.getValueType();
3187 MVT EVT = VT.getVectorElementType();
3188 unsigned EVTBits = EVT.getSizeInBits();
3190 unsigned NumElems = Op.getNumOperands();
3191 unsigned NumZero = 0;
3192 unsigned NumNonZero = 0;
3193 unsigned NonZeros = 0;
3194 bool IsAllConstants = true;
3195 SmallSet<SDValue, 8> Values;
3196 for (unsigned i = 0; i < NumElems; ++i) {
3197 SDValue Elt = Op.getOperand(i);
3198 if (Elt.getOpcode() == ISD::UNDEF)
3199 continue;
3200 Values.insert(Elt);
3201 if (Elt.getOpcode() != ISD::Constant &&
3202 Elt.getOpcode() != ISD::ConstantFP)
3203 IsAllConstants = false;
3204 if (isZeroNode(Elt))
3205 NumZero++;
3206 else {
3207 NonZeros |= (1 << i);
3208 NumNonZero++;
3212 if (NumNonZero == 0) {
3213 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3214 return DAG.getUNDEF(VT);
3217 // Special case for single non-zero, non-undef, element.
3218 if (NumNonZero == 1) {
3219 unsigned Idx = CountTrailingZeros_32(NonZeros);
3220 SDValue Item = Op.getOperand(Idx);
3222 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3223 // the value are obviously zero, truncate the value to i32 and do the
3224 // insertion that way. Only do this if the value is non-constant or if the
3225 // value is a constant being inserted into element 0. It is cheaper to do
3226 // a constant pool load than it is to do a movd + shuffle.
3227 if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3228 (!IsAllConstants || Idx == 0)) {
3229 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3230 // Handle MMX and SSE both.
3231 MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3232 unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3234 // Truncate the value (which may itself be a constant) to i32, and
3235 // convert it to a vector with movd (S2V+shuffle to zero extend).
3236 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3237 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3238 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3239 Subtarget->hasSSE2(), DAG);
3241 // Now we have our 32-bit value zero extended in the low element of
3242 // a vector. If Idx != 0, swizzle it into place.
3243 if (Idx != 0) {
3244 SmallVector<int, 4> Mask;
3245 Mask.push_back(Idx);
3246 for (unsigned i = 1; i != VecElts; ++i)
3247 Mask.push_back(i);
3248 Item = DAG.getVectorShuffle(VecVT, dl, Item,
3249 DAG.getUNDEF(Item.getValueType()),
3250 &Mask[0]);
3252 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3256 // If we have a constant or non-constant insertion into the low element of
3257 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3258 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3259 // depending on what the source datatype is.
3260 if (Idx == 0) {
3261 if (NumZero == 0) {
3262 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3263 } else if (EVT == MVT::i32 || EVT == MVT::f32 || EVT == MVT::f64 ||
3264 (EVT == MVT::i64 && Subtarget->is64Bit())) {
3265 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3266 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3267 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3268 DAG);
3269 } else if (EVT == MVT::i16 || EVT == MVT::i8) {
3270 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3271 MVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3272 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3273 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3274 Subtarget->hasSSE2(), DAG);
3275 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3279 // Is it a vector logical left shift?
3280 if (NumElems == 2 && Idx == 1 &&
3281 isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3282 unsigned NumBits = VT.getSizeInBits();
3283 return getVShift(true, VT,
3284 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3285 VT, Op.getOperand(1)),
3286 NumBits/2, DAG, *this, dl);
3289 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3290 return SDValue();
3292 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3293 // is a non-constant being inserted into an element other than the low one,
3294 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3295 // movd/movss) to move this into the low element, then shuffle it into
3296 // place.
3297 if (EVTBits == 32) {
3298 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3300 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3301 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3302 Subtarget->hasSSE2(), DAG);
3303 SmallVector<int, 8> MaskVec;
3304 for (unsigned i = 0; i < NumElems; i++)
3305 MaskVec.push_back(i == Idx ? 0 : 1);
3306 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3310 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3311 if (Values.size() == 1)
3312 return SDValue();
3314 // A vector full of immediates; various special cases are already
3315 // handled, so this is best done with a single constant-pool load.
3316 if (IsAllConstants)
3317 return SDValue();
3319 // Let legalizer expand 2-wide build_vectors.
3320 if (EVTBits == 64) {
3321 if (NumNonZero == 1) {
3322 // One half is zero or undef.
3323 unsigned Idx = CountTrailingZeros_32(NonZeros);
3324 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3325 Op.getOperand(Idx));
3326 return getShuffleVectorZeroOrUndef(V2, Idx, true,
3327 Subtarget->hasSSE2(), DAG);
3329 return SDValue();
3332 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3333 if (EVTBits == 8 && NumElems == 16) {
3334 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3335 *this);
3336 if (V.getNode()) return V;
3339 if (EVTBits == 16 && NumElems == 8) {
3340 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3341 *this);
3342 if (V.getNode()) return V;
3345 // If element VT is == 32 bits, turn it into a number of shuffles.
3346 SmallVector<SDValue, 8> V;
3347 V.resize(NumElems);
3348 if (NumElems == 4 && NumZero > 0) {
3349 for (unsigned i = 0; i < 4; ++i) {
3350 bool isZero = !(NonZeros & (1 << i));
3351 if (isZero)
3352 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3353 else
3354 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3357 for (unsigned i = 0; i < 2; ++i) {
3358 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3359 default: break;
3360 case 0:
3361 V[i] = V[i*2]; // Must be a zero vector.
3362 break;
3363 case 1:
3364 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3365 break;
3366 case 2:
3367 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3368 break;
3369 case 3:
3370 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3371 break;
3375 SmallVector<int, 8> MaskVec;
3376 bool Reverse = (NonZeros & 0x3) == 2;
3377 for (unsigned i = 0; i < 2; ++i)
3378 MaskVec.push_back(Reverse ? 1-i : i);
3379 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3380 for (unsigned i = 0; i < 2; ++i)
3381 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3382 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3385 if (Values.size() > 2) {
3386 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3387 // values to be inserted is equal to the number of elements, in which case
3388 // use the unpack code below in the hopes of matching the consecutive elts
3389 // load merge pattern for shuffles.
3390 // FIXME: We could probably just check that here directly.
3391 if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3392 getSubtarget()->hasSSE41()) {
3393 V[0] = DAG.getUNDEF(VT);
3394 for (unsigned i = 0; i < NumElems; ++i)
3395 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3396 V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3397 Op.getOperand(i), DAG.getIntPtrConstant(i));
3398 return V[0];
3400 // Expand into a number of unpckl*.
3401 // e.g. for v4f32
3402 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3403 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3404 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3405 for (unsigned i = 0; i < NumElems; ++i)
3406 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3407 NumElems >>= 1;
3408 while (NumElems != 0) {
3409 for (unsigned i = 0; i < NumElems; ++i)
3410 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3411 NumElems >>= 1;
3413 return V[0];
3416 return SDValue();
3419 // v8i16 shuffles - Prefer shuffles in the following order:
3420 // 1. [all] pshuflw, pshufhw, optional move
3421 // 2. [ssse3] 1 x pshufb
3422 // 3. [ssse3] 2 x pshufb + 1 x por
3423 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3424 static
3425 SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3426 SelectionDAG &DAG, X86TargetLowering &TLI) {
3427 SDValue V1 = SVOp->getOperand(0);
3428 SDValue V2 = SVOp->getOperand(1);
3429 DebugLoc dl = SVOp->getDebugLoc();
3430 SmallVector<int, 8> MaskVals;
3432 // Determine if more than 1 of the words in each of the low and high quadwords
3433 // of the result come from the same quadword of one of the two inputs. Undef
3434 // mask values count as coming from any quadword, for better codegen.
3435 SmallVector<unsigned, 4> LoQuad(4);
3436 SmallVector<unsigned, 4> HiQuad(4);
3437 BitVector InputQuads(4);
3438 for (unsigned i = 0; i < 8; ++i) {
3439 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3440 int EltIdx = SVOp->getMaskElt(i);
3441 MaskVals.push_back(EltIdx);
3442 if (EltIdx < 0) {
3443 ++Quad[0];
3444 ++Quad[1];
3445 ++Quad[2];
3446 ++Quad[3];
3447 continue;
3449 ++Quad[EltIdx / 4];
3450 InputQuads.set(EltIdx / 4);
3453 int BestLoQuad = -1;
3454 unsigned MaxQuad = 1;
3455 for (unsigned i = 0; i < 4; ++i) {
3456 if (LoQuad[i] > MaxQuad) {
3457 BestLoQuad = i;
3458 MaxQuad = LoQuad[i];
3462 int BestHiQuad = -1;
3463 MaxQuad = 1;
3464 for (unsigned i = 0; i < 4; ++i) {
3465 if (HiQuad[i] > MaxQuad) {
3466 BestHiQuad = i;
3467 MaxQuad = HiQuad[i];
3471 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3472 // of the two input vectors, shuffle them into one input vector so only a
3473 // single pshufb instruction is necessary. If There are more than 2 input
3474 // quads, disable the next transformation since it does not help SSSE3.
3475 bool V1Used = InputQuads[0] || InputQuads[1];
3476 bool V2Used = InputQuads[2] || InputQuads[3];
3477 if (TLI.getSubtarget()->hasSSSE3()) {
3478 if (InputQuads.count() == 2 && V1Used && V2Used) {
3479 BestLoQuad = InputQuads.find_first();
3480 BestHiQuad = InputQuads.find_next(BestLoQuad);
3482 if (InputQuads.count() > 2) {
3483 BestLoQuad = -1;
3484 BestHiQuad = -1;
3488 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3489 // the shuffle mask. If a quad is scored as -1, that means that it contains
3490 // words from all 4 input quadwords.
3491 SDValue NewV;
3492 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3493 SmallVector<int, 8> MaskV;
3494 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3495 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3496 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3497 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3498 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3499 NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3501 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3502 // source words for the shuffle, to aid later transformations.
3503 bool AllWordsInNewV = true;
3504 bool InOrder[2] = { true, true };
3505 for (unsigned i = 0; i != 8; ++i) {
3506 int idx = MaskVals[i];
3507 if (idx != (int)i)
3508 InOrder[i/4] = false;
3509 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3510 continue;
3511 AllWordsInNewV = false;
3512 break;
3515 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3516 if (AllWordsInNewV) {
3517 for (int i = 0; i != 8; ++i) {
3518 int idx = MaskVals[i];
3519 if (idx < 0)
3520 continue;
3521 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3522 if ((idx != i) && idx < 4)
3523 pshufhw = false;
3524 if ((idx != i) && idx > 3)
3525 pshuflw = false;
3527 V1 = NewV;
3528 V2Used = false;
3529 BestLoQuad = 0;
3530 BestHiQuad = 1;
3533 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3534 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3535 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3536 return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
3537 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
3541 // If we have SSSE3, and all words of the result are from 1 input vector,
3542 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3543 // is present, fall back to case 4.
3544 if (TLI.getSubtarget()->hasSSSE3()) {
3545 SmallVector<SDValue,16> pshufbMask;
3547 // If we have elements from both input vectors, set the high bit of the
3548 // shuffle mask element to zero out elements that come from V2 in the V1
3549 // mask, and elements that come from V1 in the V2 mask, so that the two
3550 // results can be OR'd together.
3551 bool TwoInputs = V1Used && V2Used;
3552 for (unsigned i = 0; i != 8; ++i) {
3553 int EltIdx = MaskVals[i] * 2;
3554 if (TwoInputs && (EltIdx >= 16)) {
3555 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3556 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3557 continue;
3559 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3560 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
3562 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
3563 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3564 DAG.getNode(ISD::BUILD_VECTOR, dl,
3565 MVT::v16i8, &pshufbMask[0], 16));
3566 if (!TwoInputs)
3567 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3569 // Calculate the shuffle mask for the second input, shuffle it, and
3570 // OR it with the first shuffled input.
3571 pshufbMask.clear();
3572 for (unsigned i = 0; i != 8; ++i) {
3573 int EltIdx = MaskVals[i] * 2;
3574 if (EltIdx < 16) {
3575 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3576 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3577 continue;
3579 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3580 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
3582 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
3583 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3584 DAG.getNode(ISD::BUILD_VECTOR, dl,
3585 MVT::v16i8, &pshufbMask[0], 16));
3586 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3587 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3590 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3591 // and update MaskVals with new element order.
3592 BitVector InOrder(8);
3593 if (BestLoQuad >= 0) {
3594 SmallVector<int, 8> MaskV;
3595 for (int i = 0; i != 4; ++i) {
3596 int idx = MaskVals[i];
3597 if (idx < 0) {
3598 MaskV.push_back(-1);
3599 InOrder.set(i);
3600 } else if ((idx / 4) == BestLoQuad) {
3601 MaskV.push_back(idx & 3);
3602 InOrder.set(i);
3603 } else {
3604 MaskV.push_back(-1);
3607 for (unsigned i = 4; i != 8; ++i)
3608 MaskV.push_back(i);
3609 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3610 &MaskV[0]);
3613 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3614 // and update MaskVals with the new element order.
3615 if (BestHiQuad >= 0) {
3616 SmallVector<int, 8> MaskV;
3617 for (unsigned i = 0; i != 4; ++i)
3618 MaskV.push_back(i);
3619 for (unsigned i = 4; i != 8; ++i) {
3620 int idx = MaskVals[i];
3621 if (idx < 0) {
3622 MaskV.push_back(-1);
3623 InOrder.set(i);
3624 } else if ((idx / 4) == BestHiQuad) {
3625 MaskV.push_back((idx & 3) + 4);
3626 InOrder.set(i);
3627 } else {
3628 MaskV.push_back(-1);
3631 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
3632 &MaskV[0]);
3635 // In case BestHi & BestLo were both -1, which means each quadword has a word
3636 // from each of the four input quadwords, calculate the InOrder bitvector now
3637 // before falling through to the insert/extract cleanup.
3638 if (BestLoQuad == -1 && BestHiQuad == -1) {
3639 NewV = V1;
3640 for (int i = 0; i != 8; ++i)
3641 if (MaskVals[i] < 0 || MaskVals[i] == i)
3642 InOrder.set(i);
3645 // The other elements are put in the right place using pextrw and pinsrw.
3646 for (unsigned i = 0; i != 8; ++i) {
3647 if (InOrder[i])
3648 continue;
3649 int EltIdx = MaskVals[i];
3650 if (EltIdx < 0)
3651 continue;
3652 SDValue ExtOp = (EltIdx < 8)
3653 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
3654 DAG.getIntPtrConstant(EltIdx))
3655 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
3656 DAG.getIntPtrConstant(EltIdx - 8));
3657 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
3658 DAG.getIntPtrConstant(i));
3660 return NewV;
3663 // v16i8 shuffles - Prefer shuffles in the following order:
3664 // 1. [ssse3] 1 x pshufb
3665 // 2. [ssse3] 2 x pshufb + 1 x por
3666 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3667 static
3668 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
3669 SelectionDAG &DAG, X86TargetLowering &TLI) {
3670 SDValue V1 = SVOp->getOperand(0);
3671 SDValue V2 = SVOp->getOperand(1);
3672 DebugLoc dl = SVOp->getDebugLoc();
3673 SmallVector<int, 16> MaskVals;
3674 SVOp->getMask(MaskVals);
3676 // If we have SSSE3, case 1 is generated when all result bytes come from
3677 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3678 // present, fall back to case 3.
3679 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3680 bool V1Only = true;
3681 bool V2Only = true;
3682 for (unsigned i = 0; i < 16; ++i) {
3683 int EltIdx = MaskVals[i];
3684 if (EltIdx < 0)
3685 continue;
3686 if (EltIdx < 16)
3687 V2Only = false;
3688 else
3689 V1Only = false;
3692 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3693 if (TLI.getSubtarget()->hasSSSE3()) {
3694 SmallVector<SDValue,16> pshufbMask;
3696 // If all result elements are from one input vector, then only translate
3697 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3699 // Otherwise, we have elements from both input vectors, and must zero out
3700 // elements that come from V2 in the first mask, and V1 in the second mask
3701 // so that we can OR them together.
3702 bool TwoInputs = !(V1Only || V2Only);
3703 for (unsigned i = 0; i != 16; ++i) {
3704 int EltIdx = MaskVals[i];
3705 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
3706 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3707 continue;
3709 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
3711 // If all the elements are from V2, assign it to V1 and return after
3712 // building the first pshufb.
3713 if (V2Only)
3714 V1 = V2;
3715 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
3716 DAG.getNode(ISD::BUILD_VECTOR, dl,
3717 MVT::v16i8, &pshufbMask[0], 16));
3718 if (!TwoInputs)
3719 return V1;
3721 // Calculate the shuffle mask for the second input, shuffle it, and
3722 // OR it with the first shuffled input.
3723 pshufbMask.clear();
3724 for (unsigned i = 0; i != 16; ++i) {
3725 int EltIdx = MaskVals[i];
3726 if (EltIdx < 16) {
3727 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
3728 continue;
3730 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
3732 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
3733 DAG.getNode(ISD::BUILD_VECTOR, dl,
3734 MVT::v16i8, &pshufbMask[0], 16));
3735 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
3738 // No SSSE3 - Calculate in place words and then fix all out of place words
3739 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3740 // the 16 different words that comprise the two doublequadword input vectors.
3741 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
3742 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
3743 SDValue NewV = V2Only ? V2 : V1;
3744 for (int i = 0; i != 8; ++i) {
3745 int Elt0 = MaskVals[i*2];
3746 int Elt1 = MaskVals[i*2+1];
3748 // This word of the result is all undef, skip it.
3749 if (Elt0 < 0 && Elt1 < 0)
3750 continue;
3752 // This word of the result is already in the correct place, skip it.
3753 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
3754 continue;
3755 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
3756 continue;
3758 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
3759 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
3760 SDValue InsElt;
3762 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3763 // using a single extract together, load it and store it.
3764 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
3765 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3766 DAG.getIntPtrConstant(Elt1 / 2));
3767 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3768 DAG.getIntPtrConstant(i));
3769 continue;
3772 // If Elt1 is defined, extract it from the appropriate source. If the
3773 // source byte is not also odd, shift the extracted word left 8 bits
3774 // otherwise clear the bottom 8 bits if we need to do an or.
3775 if (Elt1 >= 0) {
3776 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
3777 DAG.getIntPtrConstant(Elt1 / 2));
3778 if ((Elt1 & 1) == 0)
3779 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
3780 DAG.getConstant(8, TLI.getShiftAmountTy()));
3781 else if (Elt0 >= 0)
3782 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
3783 DAG.getConstant(0xFF00, MVT::i16));
3785 // If Elt0 is defined, extract it from the appropriate source. If the
3786 // source byte is not also even, shift the extracted word right 8 bits. If
3787 // Elt1 was also defined, OR the extracted values together before
3788 // inserting them in the result.
3789 if (Elt0 >= 0) {
3790 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
3791 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
3792 if ((Elt0 & 1) != 0)
3793 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
3794 DAG.getConstant(8, TLI.getShiftAmountTy()));
3795 else if (Elt1 >= 0)
3796 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
3797 DAG.getConstant(0x00FF, MVT::i16));
3798 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
3799 : InsElt0;
3801 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
3802 DAG.getIntPtrConstant(i));
3804 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
3807 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3808 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3809 /// done when every pair / quad of shuffle mask elements point to elements in
3810 /// the right sequence. e.g.
3811 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3812 static
3813 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
3814 SelectionDAG &DAG,
3815 TargetLowering &TLI, DebugLoc dl) {
3816 MVT VT = SVOp->getValueType(0);
3817 SDValue V1 = SVOp->getOperand(0);
3818 SDValue V2 = SVOp->getOperand(1);
3819 unsigned NumElems = VT.getVectorNumElements();
3820 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3821 MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3822 MVT MaskEltVT = MaskVT.getVectorElementType();
3823 MVT NewVT = MaskVT;
3824 switch (VT.getSimpleVT()) {
3825 default: assert(false && "Unexpected!");
3826 case MVT::v4f32: NewVT = MVT::v2f64; break;
3827 case MVT::v4i32: NewVT = MVT::v2i64; break;
3828 case MVT::v8i16: NewVT = MVT::v4i32; break;
3829 case MVT::v16i8: NewVT = MVT::v4i32; break;
3832 if (NewWidth == 2) {
3833 if (VT.isInteger())
3834 NewVT = MVT::v2i64;
3835 else
3836 NewVT = MVT::v2f64;
3838 int Scale = NumElems / NewWidth;
3839 SmallVector<int, 8> MaskVec;
3840 for (unsigned i = 0; i < NumElems; i += Scale) {
3841 int StartIdx = -1;
3842 for (int j = 0; j < Scale; ++j) {
3843 int EltIdx = SVOp->getMaskElt(i+j);
3844 if (EltIdx < 0)
3845 continue;
3846 if (StartIdx == -1)
3847 StartIdx = EltIdx - (EltIdx % Scale);
3848 if (EltIdx != StartIdx + j)
3849 return SDValue();
3851 if (StartIdx == -1)
3852 MaskVec.push_back(-1);
3853 else
3854 MaskVec.push_back(StartIdx / Scale);
3857 V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
3858 V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
3859 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
3862 /// getVZextMovL - Return a zero-extending vector move low node.
3864 static SDValue getVZextMovL(MVT VT, MVT OpVT,
3865 SDValue SrcOp, SelectionDAG &DAG,
3866 const X86Subtarget *Subtarget, DebugLoc dl) {
3867 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3868 LoadSDNode *LD = NULL;
3869 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3870 LD = dyn_cast<LoadSDNode>(SrcOp);
3871 if (!LD) {
3872 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3873 // instead.
3874 MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3875 if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3876 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3877 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3878 SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3879 // PR2108
3880 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3881 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3882 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3883 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3884 OpVT,
3885 SrcOp.getOperand(0)
3886 .getOperand(0))));
3891 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3892 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
3893 DAG.getNode(ISD::BIT_CONVERT, dl,
3894 OpVT, SrcOp)));
3897 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3898 /// shuffles.
3899 static SDValue
3900 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3901 SDValue V1 = SVOp->getOperand(0);
3902 SDValue V2 = SVOp->getOperand(1);
3903 DebugLoc dl = SVOp->getDebugLoc();
3904 MVT VT = SVOp->getValueType(0);
3906 SmallVector<std::pair<int, int>, 8> Locs;
3907 Locs.resize(4);
3908 SmallVector<int, 8> Mask1(4U, -1);
3909 SmallVector<int, 8> PermMask;
3910 SVOp->getMask(PermMask);
3912 unsigned NumHi = 0;
3913 unsigned NumLo = 0;
3914 for (unsigned i = 0; i != 4; ++i) {
3915 int Idx = PermMask[i];
3916 if (Idx < 0) {
3917 Locs[i] = std::make_pair(-1, -1);
3918 } else {
3919 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
3920 if (Idx < 4) {
3921 Locs[i] = std::make_pair(0, NumLo);
3922 Mask1[NumLo] = Idx;
3923 NumLo++;
3924 } else {
3925 Locs[i] = std::make_pair(1, NumHi);
3926 if (2+NumHi < 4)
3927 Mask1[2+NumHi] = Idx;
3928 NumHi++;
3933 if (NumLo <= 2 && NumHi <= 2) {
3934 // If no more than two elements come from either vector. This can be
3935 // implemented with two shuffles. First shuffle gather the elements.
3936 // The second shuffle, which takes the first shuffle as both of its
3937 // vector operands, put the elements into the right order.
3938 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3940 SmallVector<int, 8> Mask2(4U, -1);
3942 for (unsigned i = 0; i != 4; ++i) {
3943 if (Locs[i].first == -1)
3944 continue;
3945 else {
3946 unsigned Idx = (i < 2) ? 0 : 4;
3947 Idx += Locs[i].first * 2 + Locs[i].second;
3948 Mask2[i] = Idx;
3952 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
3953 } else if (NumLo == 3 || NumHi == 3) {
3954 // Otherwise, we must have three elements from one vector, call it X, and
3955 // one element from the other, call it Y. First, use a shufps to build an
3956 // intermediate vector with the one element from Y and the element from X
3957 // that will be in the same half in the final destination (the indexes don't
3958 // matter). Then, use a shufps to build the final vector, taking the half
3959 // containing the element from Y from the intermediate, and the other half
3960 // from X.
3961 if (NumHi == 3) {
3962 // Normalize it so the 3 elements come from V1.
3963 CommuteVectorShuffleMask(PermMask, VT);
3964 std::swap(V1, V2);
3967 // Find the element from V2.
3968 unsigned HiIndex;
3969 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3970 int Val = PermMask[HiIndex];
3971 if (Val < 0)
3972 continue;
3973 if (Val >= 4)
3974 break;
3977 Mask1[0] = PermMask[HiIndex];
3978 Mask1[1] = -1;
3979 Mask1[2] = PermMask[HiIndex^1];
3980 Mask1[3] = -1;
3981 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3983 if (HiIndex >= 2) {
3984 Mask1[0] = PermMask[0];
3985 Mask1[1] = PermMask[1];
3986 Mask1[2] = HiIndex & 1 ? 6 : 4;
3987 Mask1[3] = HiIndex & 1 ? 4 : 6;
3988 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
3989 } else {
3990 Mask1[0] = HiIndex & 1 ? 2 : 0;
3991 Mask1[1] = HiIndex & 1 ? 0 : 2;
3992 Mask1[2] = PermMask[2];
3993 Mask1[3] = PermMask[3];
3994 if (Mask1[2] >= 0)
3995 Mask1[2] += 4;
3996 if (Mask1[3] >= 0)
3997 Mask1[3] += 4;
3998 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4002 // Break it into (shuffle shuffle_hi, shuffle_lo).
4003 Locs.clear();
4004 SmallVector<int,8> LoMask(4U, -1);
4005 SmallVector<int,8> HiMask(4U, -1);
4007 SmallVector<int,8> *MaskPtr = &LoMask;
4008 unsigned MaskIdx = 0;
4009 unsigned LoIdx = 0;
4010 unsigned HiIdx = 2;
4011 for (unsigned i = 0; i != 4; ++i) {
4012 if (i == 2) {
4013 MaskPtr = &HiMask;
4014 MaskIdx = 1;
4015 LoIdx = 0;
4016 HiIdx = 2;
4018 int Idx = PermMask[i];
4019 if (Idx < 0) {
4020 Locs[i] = std::make_pair(-1, -1);
4021 } else if (Idx < 4) {
4022 Locs[i] = std::make_pair(MaskIdx, LoIdx);
4023 (*MaskPtr)[LoIdx] = Idx;
4024 LoIdx++;
4025 } else {
4026 Locs[i] = std::make_pair(MaskIdx, HiIdx);
4027 (*MaskPtr)[HiIdx] = Idx;
4028 HiIdx++;
4032 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4033 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4034 SmallVector<int, 8> MaskOps;
4035 for (unsigned i = 0; i != 4; ++i) {
4036 if (Locs[i].first == -1) {
4037 MaskOps.push_back(-1);
4038 } else {
4039 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4040 MaskOps.push_back(Idx);
4043 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4046 SDValue
4047 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4048 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4049 SDValue V1 = Op.getOperand(0);
4050 SDValue V2 = Op.getOperand(1);
4051 MVT VT = Op.getValueType();
4052 DebugLoc dl = Op.getDebugLoc();
4053 unsigned NumElems = VT.getVectorNumElements();
4054 bool isMMX = VT.getSizeInBits() == 64;
4055 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4056 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4057 bool V1IsSplat = false;
4058 bool V2IsSplat = false;
4060 if (isZeroShuffle(SVOp))
4061 return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4063 // Promote splats to v4f32.
4064 if (SVOp->isSplat()) {
4065 if (isMMX || NumElems < 4)
4066 return Op;
4067 return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4070 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4071 // do it!
4072 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4073 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4074 if (NewOp.getNode())
4075 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4076 LowerVECTOR_SHUFFLE(NewOp, DAG));
4077 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4078 // FIXME: Figure out a cleaner way to do this.
4079 // Try to make use of movq to zero out the top part.
4080 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4081 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4082 if (NewOp.getNode()) {
4083 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4084 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4085 DAG, Subtarget, dl);
4087 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4088 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4089 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4090 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4091 DAG, Subtarget, dl);
4095 if (X86::isPSHUFDMask(SVOp))
4096 return Op;
4098 // Check if this can be converted into a logical shift.
4099 bool isLeft = false;
4100 unsigned ShAmt = 0;
4101 SDValue ShVal;
4102 bool isShift = getSubtarget()->hasSSE2() &&
4103 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4104 if (isShift && ShVal.hasOneUse()) {
4105 // If the shifted value has multiple uses, it may be cheaper to use
4106 // v_set0 + movlhps or movhlps, etc.
4107 MVT EVT = VT.getVectorElementType();
4108 ShAmt *= EVT.getSizeInBits();
4109 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4112 if (X86::isMOVLMask(SVOp)) {
4113 if (V1IsUndef)
4114 return V2;
4115 if (ISD::isBuildVectorAllZeros(V1.getNode()))
4116 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4117 if (!isMMX)
4118 return Op;
4121 // FIXME: fold these into legal mask.
4122 if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4123 X86::isMOVSLDUPMask(SVOp) ||
4124 X86::isMOVHLPSMask(SVOp) ||
4125 X86::isMOVHPMask(SVOp) ||
4126 X86::isMOVLPMask(SVOp)))
4127 return Op;
4129 if (ShouldXformToMOVHLPS(SVOp) ||
4130 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4131 return CommuteVectorShuffle(SVOp, DAG);
4133 if (isShift) {
4134 // No better options. Use a vshl / vsrl.
4135 MVT EVT = VT.getVectorElementType();
4136 ShAmt *= EVT.getSizeInBits();
4137 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4140 bool Commuted = false;
4141 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4142 // 1,1,1,1 -> v8i16 though.
4143 V1IsSplat = isSplatVector(V1.getNode());
4144 V2IsSplat = isSplatVector(V2.getNode());
4146 // Canonicalize the splat or undef, if present, to be on the RHS.
4147 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4148 Op = CommuteVectorShuffle(SVOp, DAG);
4149 SVOp = cast<ShuffleVectorSDNode>(Op);
4150 V1 = SVOp->getOperand(0);
4151 V2 = SVOp->getOperand(1);
4152 std::swap(V1IsSplat, V2IsSplat);
4153 std::swap(V1IsUndef, V2IsUndef);
4154 Commuted = true;
4157 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4158 // Shuffling low element of v1 into undef, just return v1.
4159 if (V2IsUndef)
4160 return V1;
4161 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4162 // the instruction selector will not match, so get a canonical MOVL with
4163 // swapped operands to undo the commute.
4164 return getMOVL(DAG, dl, VT, V2, V1);
4167 if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4168 X86::isUNPCKH_v_undef_Mask(SVOp) ||
4169 X86::isUNPCKLMask(SVOp) ||
4170 X86::isUNPCKHMask(SVOp))
4171 return Op;
4173 if (V2IsSplat) {
4174 // Normalize mask so all entries that point to V2 points to its first
4175 // element then try to match unpck{h|l} again. If match, return a
4176 // new vector_shuffle with the corrected mask.
4177 SDValue NewMask = NormalizeMask(SVOp, DAG);
4178 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4179 if (NSVOp != SVOp) {
4180 if (X86::isUNPCKLMask(NSVOp, true)) {
4181 return NewMask;
4182 } else if (X86::isUNPCKHMask(NSVOp, true)) {
4183 return NewMask;
4188 if (Commuted) {
4189 // Commute is back and try unpck* again.
4190 // FIXME: this seems wrong.
4191 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4192 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4193 if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4194 X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4195 X86::isUNPCKLMask(NewSVOp) ||
4196 X86::isUNPCKHMask(NewSVOp))
4197 return NewOp;
4200 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4202 // Normalize the node to match x86 shuffle ops if needed
4203 if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4204 return CommuteVectorShuffle(SVOp, DAG);
4206 // Check for legal shuffle and return?
4207 SmallVector<int, 16> PermMask;
4208 SVOp->getMask(PermMask);
4209 if (isShuffleMaskLegal(PermMask, VT))
4210 return Op;
4212 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4213 if (VT == MVT::v8i16) {
4214 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4215 if (NewOp.getNode())
4216 return NewOp;
4219 if (VT == MVT::v16i8) {
4220 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4221 if (NewOp.getNode())
4222 return NewOp;
4225 // Handle all 4 wide cases with a number of shuffles except for MMX.
4226 if (NumElems == 4 && !isMMX)
4227 return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4229 return SDValue();
4232 SDValue
4233 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4234 SelectionDAG &DAG) {
4235 MVT VT = Op.getValueType();
4236 DebugLoc dl = Op.getDebugLoc();
4237 if (VT.getSizeInBits() == 8) {
4238 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4239 Op.getOperand(0), Op.getOperand(1));
4240 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4241 DAG.getValueType(VT));
4242 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4243 } else if (VT.getSizeInBits() == 16) {
4244 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4245 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4246 if (Idx == 0)
4247 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4248 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4249 DAG.getNode(ISD::BIT_CONVERT, dl,
4250 MVT::v4i32,
4251 Op.getOperand(0)),
4252 Op.getOperand(1)));
4253 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4254 Op.getOperand(0), Op.getOperand(1));
4255 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4256 DAG.getValueType(VT));
4257 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4258 } else if (VT == MVT::f32) {
4259 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4260 // the result back to FR32 register. It's only worth matching if the
4261 // result has a single use which is a store or a bitcast to i32. And in
4262 // the case of a store, it's not worth it if the index is a constant 0,
4263 // because a MOVSSmr can be used instead, which is smaller and faster.
4264 if (!Op.hasOneUse())
4265 return SDValue();
4266 SDNode *User = *Op.getNode()->use_begin();
4267 if ((User->getOpcode() != ISD::STORE ||
4268 (isa<ConstantSDNode>(Op.getOperand(1)) &&
4269 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4270 (User->getOpcode() != ISD::BIT_CONVERT ||
4271 User->getValueType(0) != MVT::i32))
4272 return SDValue();
4273 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4274 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4275 Op.getOperand(0)),
4276 Op.getOperand(1));
4277 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4278 } else if (VT == MVT::i32) {
4279 // ExtractPS works with constant index.
4280 if (isa<ConstantSDNode>(Op.getOperand(1)))
4281 return Op;
4283 return SDValue();
4287 SDValue
4288 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4289 if (!isa<ConstantSDNode>(Op.getOperand(1)))
4290 return SDValue();
4292 if (Subtarget->hasSSE41()) {
4293 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4294 if (Res.getNode())
4295 return Res;
4298 MVT VT = Op.getValueType();
4299 DebugLoc dl = Op.getDebugLoc();
4300 // TODO: handle v16i8.
4301 if (VT.getSizeInBits() == 16) {
4302 SDValue Vec = Op.getOperand(0);
4303 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4304 if (Idx == 0)
4305 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4306 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4307 DAG.getNode(ISD::BIT_CONVERT, dl,
4308 MVT::v4i32, Vec),
4309 Op.getOperand(1)));
4310 // Transform it so it match pextrw which produces a 32-bit result.
4311 MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4312 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EVT,
4313 Op.getOperand(0), Op.getOperand(1));
4314 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EVT, Extract,
4315 DAG.getValueType(VT));
4316 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4317 } else if (VT.getSizeInBits() == 32) {
4318 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4319 if (Idx == 0)
4320 return Op;
4322 // SHUFPS the element to the lowest double word, then movss.
4323 int Mask[4] = { Idx, -1, -1, -1 };
4324 MVT VVT = Op.getOperand(0).getValueType();
4325 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4326 DAG.getUNDEF(VVT), Mask);
4327 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4328 DAG.getIntPtrConstant(0));
4329 } else if (VT.getSizeInBits() == 64) {
4330 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4331 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4332 // to match extract_elt for f64.
4333 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4334 if (Idx == 0)
4335 return Op;
4337 // UNPCKHPD the element to the lowest double word, then movsd.
4338 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4339 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4340 int Mask[2] = { 1, -1 };
4341 MVT VVT = Op.getOperand(0).getValueType();
4342 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4343 DAG.getUNDEF(VVT), Mask);
4344 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4345 DAG.getIntPtrConstant(0));
4348 return SDValue();
4351 SDValue
4352 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4353 MVT VT = Op.getValueType();
4354 MVT EVT = VT.getVectorElementType();
4355 DebugLoc dl = Op.getDebugLoc();
4357 SDValue N0 = Op.getOperand(0);
4358 SDValue N1 = Op.getOperand(1);
4359 SDValue N2 = Op.getOperand(2);
4361 if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4362 isa<ConstantSDNode>(N2)) {
4363 unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4364 : X86ISD::PINSRW;
4365 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4366 // argument.
4367 if (N1.getValueType() != MVT::i32)
4368 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4369 if (N2.getValueType() != MVT::i32)
4370 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4371 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4372 } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4373 // Bits [7:6] of the constant are the source select. This will always be
4374 // zero here. The DAG Combiner may combine an extract_elt index into these
4375 // bits. For example (insert (extract, 3), 2) could be matched by putting
4376 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4377 // Bits [5:4] of the constant are the destination select. This is the
4378 // value of the incoming immediate.
4379 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4380 // combine either bitwise AND or insert of float 0.0 to set these bits.
4381 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4382 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4383 } else if (EVT == MVT::i32) {
4384 // InsertPS works with constant index.
4385 if (isa<ConstantSDNode>(N2))
4386 return Op;
4388 return SDValue();
4391 SDValue
4392 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4393 MVT VT = Op.getValueType();
4394 MVT EVT = VT.getVectorElementType();
4396 if (Subtarget->hasSSE41())
4397 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4399 if (EVT == MVT::i8)
4400 return SDValue();
4402 DebugLoc dl = Op.getDebugLoc();
4403 SDValue N0 = Op.getOperand(0);
4404 SDValue N1 = Op.getOperand(1);
4405 SDValue N2 = Op.getOperand(2);
4407 if (EVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4408 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4409 // as its second argument.
4410 if (N1.getValueType() != MVT::i32)
4411 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4412 if (N2.getValueType() != MVT::i32)
4413 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4414 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4416 return SDValue();
4419 SDValue
4420 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4421 DebugLoc dl = Op.getDebugLoc();
4422 if (Op.getValueType() == MVT::v2f32)
4423 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4424 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4425 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4426 Op.getOperand(0))));
4428 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4429 MVT VT = MVT::v2i32;
4430 switch (Op.getValueType().getSimpleVT()) {
4431 default: break;
4432 case MVT::v16i8:
4433 case MVT::v8i16:
4434 VT = MVT::v4i32;
4435 break;
4437 return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4438 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4441 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4442 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4443 // one of the above mentioned nodes. It has to be wrapped because otherwise
4444 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4445 // be used to form addressing mode. These wrapped nodes will be selected
4446 // into MOV32ri.
4447 SDValue
4448 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4449 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4451 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4452 // global base reg.
4453 unsigned char OpFlag = 0;
4454 unsigned WrapperKind = X86ISD::Wrapper;
4456 if (Subtarget->isPICStyleRIPRel() &&
4457 getTargetMachine().getCodeModel() == CodeModel::Small)
4458 WrapperKind = X86ISD::WrapperRIP;
4459 else if (Subtarget->isPICStyleGOT())
4460 OpFlag = X86II::MO_GOTOFF;
4461 else if (Subtarget->isPICStyleStubPIC())
4462 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4464 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4465 CP->getAlignment(),
4466 CP->getOffset(), OpFlag);
4467 DebugLoc DL = CP->getDebugLoc();
4468 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4469 // With PIC, the address is actually $g + Offset.
4470 if (OpFlag) {
4471 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4472 DAG.getNode(X86ISD::GlobalBaseReg,
4473 DebugLoc::getUnknownLoc(), getPointerTy()),
4474 Result);
4477 return Result;
4480 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4481 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4483 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4484 // global base reg.
4485 unsigned char OpFlag = 0;
4486 unsigned WrapperKind = X86ISD::Wrapper;
4488 if (Subtarget->isPICStyleRIPRel() &&
4489 getTargetMachine().getCodeModel() == CodeModel::Small)
4490 WrapperKind = X86ISD::WrapperRIP;
4491 else if (Subtarget->isPICStyleGOT())
4492 OpFlag = X86II::MO_GOTOFF;
4493 else if (Subtarget->isPICStyleStubPIC())
4494 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4496 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4497 OpFlag);
4498 DebugLoc DL = JT->getDebugLoc();
4499 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4501 // With PIC, the address is actually $g + Offset.
4502 if (OpFlag) {
4503 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4504 DAG.getNode(X86ISD::GlobalBaseReg,
4505 DebugLoc::getUnknownLoc(), getPointerTy()),
4506 Result);
4509 return Result;
4512 SDValue
4513 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4514 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4516 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4517 // global base reg.
4518 unsigned char OpFlag = 0;
4519 unsigned WrapperKind = X86ISD::Wrapper;
4520 if (Subtarget->isPICStyleRIPRel() &&
4521 getTargetMachine().getCodeModel() == CodeModel::Small)
4522 WrapperKind = X86ISD::WrapperRIP;
4523 else if (Subtarget->isPICStyleGOT())
4524 OpFlag = X86II::MO_GOTOFF;
4525 else if (Subtarget->isPICStyleStubPIC())
4526 OpFlag = X86II::MO_PIC_BASE_OFFSET;
4528 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
4530 DebugLoc DL = Op.getDebugLoc();
4531 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4534 // With PIC, the address is actually $g + Offset.
4535 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4536 !Subtarget->is64Bit()) {
4537 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4538 DAG.getNode(X86ISD::GlobalBaseReg,
4539 DebugLoc::getUnknownLoc(),
4540 getPointerTy()),
4541 Result);
4544 return Result;
4547 SDValue
4548 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
4549 int64_t Offset,
4550 SelectionDAG &DAG) const {
4551 // Create the TargetGlobalAddress node, folding in the constant
4552 // offset if it is legal.
4553 unsigned char OpFlags =
4554 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
4555 SDValue Result;
4556 if (OpFlags == X86II::MO_NO_FLAG && isInt32(Offset)) {
4557 // A direct static reference to a global.
4558 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4559 Offset = 0;
4560 } else {
4561 Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
4564 if (Subtarget->isPICStyleRIPRel() &&
4565 getTargetMachine().getCodeModel() == CodeModel::Small)
4566 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
4567 else
4568 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
4570 // With PIC, the address is actually $g + Offset.
4571 if (isGlobalRelativeToPICBase(OpFlags)) {
4572 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
4573 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
4574 Result);
4577 // For globals that require a load from a stub to get the address, emit the
4578 // load.
4579 if (isGlobalStubReference(OpFlags))
4580 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
4581 PseudoSourceValue::getGOT(), 0);
4583 // If there was a non-zero offset that we didn't fold, create an explicit
4584 // addition for it.
4585 if (Offset != 0)
4586 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
4587 DAG.getConstant(Offset, getPointerTy()));
4589 return Result;
4592 SDValue
4593 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4594 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4595 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4596 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
4599 static SDValue
4600 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
4601 SDValue *InFlag, const MVT PtrVT, unsigned ReturnReg,
4602 unsigned char OperandFlags) {
4603 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4604 DebugLoc dl = GA->getDebugLoc();
4605 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4606 GA->getValueType(0),
4607 GA->getOffset(),
4608 OperandFlags);
4609 if (InFlag) {
4610 SDValue Ops[] = { Chain, TGA, *InFlag };
4611 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
4612 } else {
4613 SDValue Ops[] = { Chain, TGA };
4614 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
4616 SDValue Flag = Chain.getValue(1);
4617 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
4620 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4621 static SDValue
4622 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4623 const MVT PtrVT) {
4624 SDValue InFlag;
4625 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
4626 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
4627 DAG.getNode(X86ISD::GlobalBaseReg,
4628 DebugLoc::getUnknownLoc(),
4629 PtrVT), InFlag);
4630 InFlag = Chain.getValue(1);
4632 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
4635 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4636 static SDValue
4637 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4638 const MVT PtrVT) {
4639 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
4640 X86::RAX, X86II::MO_TLSGD);
4643 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4644 // "local exec" model.
4645 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4646 const MVT PtrVT, TLSModel::Model model,
4647 bool is64Bit) {
4648 DebugLoc dl = GA->getDebugLoc();
4649 // Get the Thread Pointer
4650 SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
4651 DebugLoc::getUnknownLoc(), PtrVT,
4652 DAG.getRegister(is64Bit? X86::FS : X86::GS,
4653 MVT::i32));
4655 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
4656 NULL, 0);
4658 unsigned char OperandFlags = 0;
4659 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4660 // initialexec.
4661 unsigned WrapperKind = X86ISD::Wrapper;
4662 if (model == TLSModel::LocalExec) {
4663 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
4664 } else if (is64Bit) {
4665 assert(model == TLSModel::InitialExec);
4666 OperandFlags = X86II::MO_GOTTPOFF;
4667 WrapperKind = X86ISD::WrapperRIP;
4668 } else {
4669 assert(model == TLSModel::InitialExec);
4670 OperandFlags = X86II::MO_INDNTPOFF;
4673 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4674 // exec)
4675 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4676 GA->getOffset(), OperandFlags);
4677 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
4679 if (model == TLSModel::InitialExec)
4680 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
4681 PseudoSourceValue::getGOT(), 0);
4683 // The address of the thread local variable is the add of the thread
4684 // pointer with the offset of the variable.
4685 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
4688 SDValue
4689 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4690 // TODO: implement the "local dynamic" model
4691 // TODO: implement the "initial exec"model for pic executables
4692 assert(Subtarget->isTargetELF() &&
4693 "TLS not implemented for non-ELF targets");
4694 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4695 const GlobalValue *GV = GA->getGlobal();
4697 // If GV is an alias then use the aliasee for determining
4698 // thread-localness.
4699 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4700 GV = GA->resolveAliasedGlobal(false);
4702 TLSModel::Model model = getTLSModel(GV,
4703 getTargetMachine().getRelocationModel());
4705 switch (model) {
4706 case TLSModel::GeneralDynamic:
4707 case TLSModel::LocalDynamic: // not implemented
4708 if (Subtarget->is64Bit())
4709 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4710 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4712 case TLSModel::InitialExec:
4713 case TLSModel::LocalExec:
4714 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
4715 Subtarget->is64Bit());
4718 llvm_unreachable("Unreachable");
4719 return SDValue();
4723 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4724 /// take a 2 x i32 value to shift plus a shift amount.
4725 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4726 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4727 MVT VT = Op.getValueType();
4728 unsigned VTBits = VT.getSizeInBits();
4729 DebugLoc dl = Op.getDebugLoc();
4730 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4731 SDValue ShOpLo = Op.getOperand(0);
4732 SDValue ShOpHi = Op.getOperand(1);
4733 SDValue ShAmt = Op.getOperand(2);
4734 SDValue Tmp1 = isSRA ?
4735 DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
4736 DAG.getConstant(VTBits - 1, MVT::i8)) :
4737 DAG.getConstant(0, VT);
4739 SDValue Tmp2, Tmp3;
4740 if (Op.getOpcode() == ISD::SHL_PARTS) {
4741 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
4742 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4743 } else {
4744 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
4745 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
4748 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
4749 DAG.getConstant(VTBits, MVT::i8));
4750 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
4751 AndNode, DAG.getConstant(0, MVT::i8));
4753 SDValue Hi, Lo;
4754 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4755 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4756 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4758 if (Op.getOpcode() == ISD::SHL_PARTS) {
4759 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4760 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4761 } else {
4762 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
4763 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
4766 SDValue Ops[2] = { Lo, Hi };
4767 return DAG.getMergeValues(Ops, 2, dl);
4770 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4771 MVT SrcVT = Op.getOperand(0).getValueType();
4773 if (SrcVT.isVector()) {
4774 if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
4775 return Op;
4777 return SDValue();
4780 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4781 "Unknown SINT_TO_FP to lower!");
4783 // These are really Legal; return the operand so the caller accepts it as
4784 // Legal.
4785 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4786 return Op;
4787 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
4788 Subtarget->is64Bit()) {
4789 return Op;
4792 DebugLoc dl = Op.getDebugLoc();
4793 unsigned Size = SrcVT.getSizeInBits()/8;
4794 MachineFunction &MF = DAG.getMachineFunction();
4795 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4796 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4797 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
4798 StackSlot,
4799 PseudoSourceValue::getFixedStack(SSFI), 0);
4800 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
4803 SDValue X86TargetLowering::BuildFILD(SDValue Op, MVT SrcVT, SDValue Chain,
4804 SDValue StackSlot,
4805 SelectionDAG &DAG) {
4806 // Build the FILD
4807 DebugLoc dl = Op.getDebugLoc();
4808 SDVTList Tys;
4809 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4810 if (useSSE)
4811 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4812 else
4813 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4814 SmallVector<SDValue, 8> Ops;
4815 Ops.push_back(Chain);
4816 Ops.push_back(StackSlot);
4817 Ops.push_back(DAG.getValueType(SrcVT));
4818 SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
4819 Tys, &Ops[0], Ops.size());
4821 if (useSSE) {
4822 Chain = Result.getValue(1);
4823 SDValue InFlag = Result.getValue(2);
4825 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4826 // shouldn't be necessary except that RFP cannot be live across
4827 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4828 MachineFunction &MF = DAG.getMachineFunction();
4829 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4830 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4831 Tys = DAG.getVTList(MVT::Other);
4832 SmallVector<SDValue, 8> Ops;
4833 Ops.push_back(Chain);
4834 Ops.push_back(Result);
4835 Ops.push_back(StackSlot);
4836 Ops.push_back(DAG.getValueType(Op.getValueType()));
4837 Ops.push_back(InFlag);
4838 Chain = DAG.getNode(X86ISD::FST, dl, Tys, &Ops[0], Ops.size());
4839 Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
4840 PseudoSourceValue::getFixedStack(SSFI), 0);
4843 return Result;
4846 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4847 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
4848 // This algorithm is not obvious. Here it is in C code, more or less:
4850 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4851 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4852 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4854 // Copy ints to xmm registers.
4855 __m128i xh = _mm_cvtsi32_si128( hi );
4856 __m128i xl = _mm_cvtsi32_si128( lo );
4858 // Combine into low half of a single xmm register.
4859 __m128i x = _mm_unpacklo_epi32( xh, xl );
4860 __m128d d;
4861 double sd;
4863 // Merge in appropriate exponents to give the integer bits the right
4864 // magnitude.
4865 x = _mm_unpacklo_epi32( x, exp );
4867 // Subtract away the biases to deal with the IEEE-754 double precision
4868 // implicit 1.
4869 d = _mm_sub_pd( (__m128d) x, bias );
4871 // All conversions up to here are exact. The correctly rounded result is
4872 // calculated using the current rounding mode using the following
4873 // horizontal add.
4874 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4875 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4876 // store doesn't really need to be here (except
4877 // maybe to zero the other double)
4878 return sd;
4882 DebugLoc dl = Op.getDebugLoc();
4884 // Build some magic constants.
4885 std::vector<Constant*> CV0;
4886 CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4887 CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4888 CV0.push_back(ConstantInt::get(APInt(32, 0)));
4889 CV0.push_back(ConstantInt::get(APInt(32, 0)));
4890 Constant *C0 = ConstantVector::get(CV0);
4891 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
4893 std::vector<Constant*> CV1;
4894 CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4895 CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4896 Constant *C1 = ConstantVector::get(CV1);
4897 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
4899 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4900 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4901 Op.getOperand(0),
4902 DAG.getIntPtrConstant(1)));
4903 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4904 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4905 Op.getOperand(0),
4906 DAG.getIntPtrConstant(0)));
4907 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
4908 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
4909 PseudoSourceValue::getConstantPool(), 0,
4910 false, 16);
4911 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
4912 SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
4913 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
4914 PseudoSourceValue::getConstantPool(), 0,
4915 false, 16);
4916 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
4918 // Add the halves; easiest way is to swap them into another reg first.
4919 int ShufMask[2] = { 1, -1 };
4920 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
4921 DAG.getUNDEF(MVT::v2f64), ShufMask);
4922 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
4923 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
4924 DAG.getIntPtrConstant(0));
4927 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4928 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
4929 DebugLoc dl = Op.getDebugLoc();
4930 // FP constant to bias correct the final result.
4931 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
4932 MVT::f64);
4934 // Load the 32-bit value into an XMM register.
4935 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
4936 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
4937 Op.getOperand(0),
4938 DAG.getIntPtrConstant(0)));
4940 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4941 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
4942 DAG.getIntPtrConstant(0));
4944 // Or the load with the bias.
4945 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
4946 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4947 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4948 MVT::v2f64, Load)),
4949 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
4950 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4951 MVT::v2f64, Bias)));
4952 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4953 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
4954 DAG.getIntPtrConstant(0));
4956 // Subtract the bias.
4957 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
4959 // Handle final rounding.
4960 MVT DestVT = Op.getValueType();
4962 if (DestVT.bitsLT(MVT::f64)) {
4963 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
4964 DAG.getIntPtrConstant(0));
4965 } else if (DestVT.bitsGT(MVT::f64)) {
4966 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
4969 // Handle final rounding.
4970 return Sub;
4973 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4974 SDValue N0 = Op.getOperand(0);
4975 DebugLoc dl = Op.getDebugLoc();
4977 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4978 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4979 // the optimization here.
4980 if (DAG.SignBitIsZero(N0))
4981 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
4983 MVT SrcVT = N0.getValueType();
4984 if (SrcVT == MVT::i64) {
4985 // We only handle SSE2 f64 target here; caller can expand the rest.
4986 if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4987 return SDValue();
4989 return LowerUINT_TO_FP_i64(Op, DAG);
4990 } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
4991 return LowerUINT_TO_FP_i32(Op, DAG);
4994 assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
4996 // Make a 64-bit buffer, and use it to build an FILD.
4997 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
4998 SDValue WordOff = DAG.getConstant(4, getPointerTy());
4999 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5000 getPointerTy(), StackSlot, WordOff);
5001 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5002 StackSlot, NULL, 0);
5003 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5004 OffsetSlot, NULL, 0);
5005 return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5008 std::pair<SDValue,SDValue> X86TargetLowering::
5009 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5010 DebugLoc dl = Op.getDebugLoc();
5012 MVT DstTy = Op.getValueType();
5014 if (!IsSigned) {
5015 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5016 DstTy = MVT::i64;
5019 assert(DstTy.getSimpleVT() <= MVT::i64 &&
5020 DstTy.getSimpleVT() >= MVT::i16 &&
5021 "Unknown FP_TO_SINT to lower!");
5023 // These are really Legal.
5024 if (DstTy == MVT::i32 &&
5025 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5026 return std::make_pair(SDValue(), SDValue());
5027 if (Subtarget->is64Bit() &&
5028 DstTy == MVT::i64 &&
5029 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5030 return std::make_pair(SDValue(), SDValue());
5032 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5033 // stack slot.
5034 MachineFunction &MF = DAG.getMachineFunction();
5035 unsigned MemSize = DstTy.getSizeInBits()/8;
5036 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5037 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5039 unsigned Opc;
5040 switch (DstTy.getSimpleVT()) {
5041 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5042 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5043 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5044 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5047 SDValue Chain = DAG.getEntryNode();
5048 SDValue Value = Op.getOperand(0);
5049 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5050 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5051 Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5052 PseudoSourceValue::getFixedStack(SSFI), 0);
5053 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5054 SDValue Ops[] = {
5055 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5057 Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5058 Chain = Value.getValue(1);
5059 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
5060 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5063 // Build the FP_TO_INT*_IN_MEM
5064 SDValue Ops[] = { Chain, Value, StackSlot };
5065 SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5067 return std::make_pair(FIST, StackSlot);
5070 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5071 if (Op.getValueType().isVector()) {
5072 if (Op.getValueType() == MVT::v2i32 &&
5073 Op.getOperand(0).getValueType() == MVT::v2f64) {
5074 return Op;
5076 return SDValue();
5079 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5080 SDValue FIST = Vals.first, StackSlot = Vals.second;
5081 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5082 if (FIST.getNode() == 0) return Op;
5084 // Load the result.
5085 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5086 FIST, StackSlot, NULL, 0);
5089 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5090 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5091 SDValue FIST = Vals.first, StackSlot = Vals.second;
5092 assert(FIST.getNode() && "Unexpected failure");
5094 // Load the result.
5095 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5096 FIST, StackSlot, NULL, 0);
5099 SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5100 DebugLoc dl = Op.getDebugLoc();
5101 MVT VT = Op.getValueType();
5102 MVT EltVT = VT;
5103 if (VT.isVector())
5104 EltVT = VT.getVectorElementType();
5105 std::vector<Constant*> CV;
5106 if (EltVT == MVT::f64) {
5107 Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
5108 CV.push_back(C);
5109 CV.push_back(C);
5110 } else {
5111 Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
5112 CV.push_back(C);
5113 CV.push_back(C);
5114 CV.push_back(C);
5115 CV.push_back(C);
5117 Constant *C = ConstantVector::get(CV);
5118 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5119 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5120 PseudoSourceValue::getConstantPool(), 0,
5121 false, 16);
5122 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5125 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5126 DebugLoc dl = Op.getDebugLoc();
5127 MVT VT = Op.getValueType();
5128 MVT EltVT = VT;
5129 unsigned EltNum = 1;
5130 if (VT.isVector()) {
5131 EltVT = VT.getVectorElementType();
5132 EltNum = VT.getVectorNumElements();
5134 std::vector<Constant*> CV;
5135 if (EltVT == MVT::f64) {
5136 Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
5137 CV.push_back(C);
5138 CV.push_back(C);
5139 } else {
5140 Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
5141 CV.push_back(C);
5142 CV.push_back(C);
5143 CV.push_back(C);
5144 CV.push_back(C);
5146 Constant *C = ConstantVector::get(CV);
5147 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5148 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5149 PseudoSourceValue::getConstantPool(), 0,
5150 false, 16);
5151 if (VT.isVector()) {
5152 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5153 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5154 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5155 Op.getOperand(0)),
5156 DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5157 } else {
5158 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5162 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5163 SDValue Op0 = Op.getOperand(0);
5164 SDValue Op1 = Op.getOperand(1);
5165 DebugLoc dl = Op.getDebugLoc();
5166 MVT VT = Op.getValueType();
5167 MVT SrcVT = Op1.getValueType();
5169 // If second operand is smaller, extend it first.
5170 if (SrcVT.bitsLT(VT)) {
5171 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5172 SrcVT = VT;
5174 // And if it is bigger, shrink it first.
5175 if (SrcVT.bitsGT(VT)) {
5176 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5177 SrcVT = VT;
5180 // At this point the operands and the result should have the same
5181 // type, and that won't be f80 since that is not custom lowered.
5183 // First get the sign bit of second operand.
5184 std::vector<Constant*> CV;
5185 if (SrcVT == MVT::f64) {
5186 CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5187 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5188 } else {
5189 CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5190 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5191 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5192 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5194 Constant *C = ConstantVector::get(CV);
5195 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5196 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5197 PseudoSourceValue::getConstantPool(), 0,
5198 false, 16);
5199 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5201 // Shift sign bit right or left if the two operands have different types.
5202 if (SrcVT.bitsGT(VT)) {
5203 // Op0 is MVT::f32, Op1 is MVT::f64.
5204 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5205 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5206 DAG.getConstant(32, MVT::i32));
5207 SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5208 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5209 DAG.getIntPtrConstant(0));
5212 // Clear first operand sign bit.
5213 CV.clear();
5214 if (VT == MVT::f64) {
5215 CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5216 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5217 } else {
5218 CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5219 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5220 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5221 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5223 C = ConstantVector::get(CV);
5224 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5225 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5226 PseudoSourceValue::getConstantPool(), 0,
5227 false, 16);
5228 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5230 // Or the value with the sign bit.
5231 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5234 /// Emit nodes that will be selected as "test Op0,Op0", or something
5235 /// equivalent.
5236 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5237 SelectionDAG &DAG) {
5238 DebugLoc dl = Op.getDebugLoc();
5240 // CF and OF aren't always set the way we want. Determine which
5241 // of these we need.
5242 bool NeedCF = false;
5243 bool NeedOF = false;
5244 switch (X86CC) {
5245 case X86::COND_A: case X86::COND_AE:
5246 case X86::COND_B: case X86::COND_BE:
5247 NeedCF = true;
5248 break;
5249 case X86::COND_G: case X86::COND_GE:
5250 case X86::COND_L: case X86::COND_LE:
5251 case X86::COND_O: case X86::COND_NO:
5252 NeedOF = true;
5253 break;
5254 default: break;
5257 // See if we can use the EFLAGS value from the operand instead of
5258 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5259 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5260 if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5261 unsigned Opcode = 0;
5262 unsigned NumOperands = 0;
5263 switch (Op.getNode()->getOpcode()) {
5264 case ISD::ADD:
5265 // Due to an isel shortcoming, be conservative if this add is likely to
5266 // be selected as part of a load-modify-store instruction. When the root
5267 // node in a match is a store, isel doesn't know how to remap non-chain
5268 // non-flag uses of other nodes in the match, such as the ADD in this
5269 // case. This leads to the ADD being left around and reselected, with
5270 // the result being two adds in the output.
5271 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5272 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5273 if (UI->getOpcode() == ISD::STORE)
5274 goto default_case;
5275 if (ConstantSDNode *C =
5276 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5277 // An add of one will be selected as an INC.
5278 if (C->getAPIntValue() == 1) {
5279 Opcode = X86ISD::INC;
5280 NumOperands = 1;
5281 break;
5283 // An add of negative one (subtract of one) will be selected as a DEC.
5284 if (C->getAPIntValue().isAllOnesValue()) {
5285 Opcode = X86ISD::DEC;
5286 NumOperands = 1;
5287 break;
5290 // Otherwise use a regular EFLAGS-setting add.
5291 Opcode = X86ISD::ADD;
5292 NumOperands = 2;
5293 break;
5294 case ISD::SUB:
5295 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5296 // likely to be selected as part of a load-modify-store instruction.
5297 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5298 UE = Op.getNode()->use_end(); UI != UE; ++UI)
5299 if (UI->getOpcode() == ISD::STORE)
5300 goto default_case;
5301 // Otherwise use a regular EFLAGS-setting sub.
5302 Opcode = X86ISD::SUB;
5303 NumOperands = 2;
5304 break;
5305 case X86ISD::ADD:
5306 case X86ISD::SUB:
5307 case X86ISD::INC:
5308 case X86ISD::DEC:
5309 return SDValue(Op.getNode(), 1);
5310 default:
5311 default_case:
5312 break;
5314 if (Opcode != 0) {
5315 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5316 SmallVector<SDValue, 4> Ops;
5317 for (unsigned i = 0; i != NumOperands; ++i)
5318 Ops.push_back(Op.getOperand(i));
5319 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5320 DAG.ReplaceAllUsesWith(Op, New);
5321 return SDValue(New.getNode(), 1);
5325 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5326 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5327 DAG.getConstant(0, Op.getValueType()));
5330 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5331 /// equivalent.
5332 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5333 SelectionDAG &DAG) {
5334 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5335 if (C->getAPIntValue() == 0)
5336 return EmitTest(Op0, X86CC, DAG);
5338 DebugLoc dl = Op0.getDebugLoc();
5339 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5342 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5343 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5344 SDValue Op0 = Op.getOperand(0);
5345 SDValue Op1 = Op.getOperand(1);
5346 DebugLoc dl = Op.getDebugLoc();
5347 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5349 // Lower (X & (1 << N)) == 0 to BT(X, N).
5350 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5351 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5352 if (Op0.getOpcode() == ISD::AND &&
5353 Op0.hasOneUse() &&
5354 Op1.getOpcode() == ISD::Constant &&
5355 cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5356 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5357 SDValue LHS, RHS;
5358 if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5359 if (ConstantSDNode *Op010C =
5360 dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5361 if (Op010C->getZExtValue() == 1) {
5362 LHS = Op0.getOperand(0);
5363 RHS = Op0.getOperand(1).getOperand(1);
5365 } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5366 if (ConstantSDNode *Op000C =
5367 dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5368 if (Op000C->getZExtValue() == 1) {
5369 LHS = Op0.getOperand(1);
5370 RHS = Op0.getOperand(0).getOperand(1);
5372 } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5373 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5374 SDValue AndLHS = Op0.getOperand(0);
5375 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5376 LHS = AndLHS.getOperand(0);
5377 RHS = AndLHS.getOperand(1);
5381 if (LHS.getNode()) {
5382 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5383 // instruction. Since the shift amount is in-range-or-undefined, we know
5384 // that doing a bittest on the i16 value is ok. We extend to i32 because
5385 // the encoding for the i16 version is larger than the i32 version.
5386 if (LHS.getValueType() == MVT::i8)
5387 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5389 // If the operand types disagree, extend the shift amount to match. Since
5390 // BT ignores high bits (like shifts) we can use anyextend.
5391 if (LHS.getValueType() != RHS.getValueType())
5392 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5394 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5395 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5396 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5397 DAG.getConstant(Cond, MVT::i8), BT);
5401 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5402 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5404 SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5405 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5406 DAG.getConstant(X86CC, MVT::i8), Cond);
5409 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5410 SDValue Cond;
5411 SDValue Op0 = Op.getOperand(0);
5412 SDValue Op1 = Op.getOperand(1);
5413 SDValue CC = Op.getOperand(2);
5414 MVT VT = Op.getValueType();
5415 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5416 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5417 DebugLoc dl = Op.getDebugLoc();
5419 if (isFP) {
5420 unsigned SSECC = 8;
5421 MVT VT0 = Op0.getValueType();
5422 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5423 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5424 bool Swap = false;
5426 switch (SetCCOpcode) {
5427 default: break;
5428 case ISD::SETOEQ:
5429 case ISD::SETEQ: SSECC = 0; break;
5430 case ISD::SETOGT:
5431 case ISD::SETGT: Swap = true; // Fallthrough
5432 case ISD::SETLT:
5433 case ISD::SETOLT: SSECC = 1; break;
5434 case ISD::SETOGE:
5435 case ISD::SETGE: Swap = true; // Fallthrough
5436 case ISD::SETLE:
5437 case ISD::SETOLE: SSECC = 2; break;
5438 case ISD::SETUO: SSECC = 3; break;
5439 case ISD::SETUNE:
5440 case ISD::SETNE: SSECC = 4; break;
5441 case ISD::SETULE: Swap = true;
5442 case ISD::SETUGE: SSECC = 5; break;
5443 case ISD::SETULT: Swap = true;
5444 case ISD::SETUGT: SSECC = 6; break;
5445 case ISD::SETO: SSECC = 7; break;
5447 if (Swap)
5448 std::swap(Op0, Op1);
5450 // In the two special cases we can't handle, emit two comparisons.
5451 if (SSECC == 8) {
5452 if (SetCCOpcode == ISD::SETUEQ) {
5453 SDValue UNORD, EQ;
5454 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5455 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5456 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
5458 else if (SetCCOpcode == ISD::SETONE) {
5459 SDValue ORD, NEQ;
5460 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5461 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5462 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
5464 llvm_unreachable("Illegal FP comparison");
5466 // Handle all other FP comparisons here.
5467 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5470 // We are handling one of the integer comparisons here. Since SSE only has
5471 // GT and EQ comparisons for integer, swapping operands and multiple
5472 // operations may be required for some comparisons.
5473 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5474 bool Swap = false, Invert = false, FlipSigns = false;
5476 switch (VT.getSimpleVT()) {
5477 default: break;
5478 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5479 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5480 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5481 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5484 switch (SetCCOpcode) {
5485 default: break;
5486 case ISD::SETNE: Invert = true;
5487 case ISD::SETEQ: Opc = EQOpc; break;
5488 case ISD::SETLT: Swap = true;
5489 case ISD::SETGT: Opc = GTOpc; break;
5490 case ISD::SETGE: Swap = true;
5491 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
5492 case ISD::SETULT: Swap = true;
5493 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5494 case ISD::SETUGE: Swap = true;
5495 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5497 if (Swap)
5498 std::swap(Op0, Op1);
5500 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5501 // bits of the inputs before performing those operations.
5502 if (FlipSigns) {
5503 MVT EltVT = VT.getVectorElementType();
5504 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
5505 EltVT);
5506 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5507 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
5508 SignBits.size());
5509 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
5510 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
5513 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
5515 // If the logical-not of the result is required, perform that now.
5516 if (Invert)
5517 Result = DAG.getNOT(dl, Result, VT);
5519 return Result;
5522 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5523 static bool isX86LogicalCmp(SDValue Op) {
5524 unsigned Opc = Op.getNode()->getOpcode();
5525 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
5526 return true;
5527 if (Op.getResNo() == 1 &&
5528 (Opc == X86ISD::ADD ||
5529 Opc == X86ISD::SUB ||
5530 Opc == X86ISD::SMUL ||
5531 Opc == X86ISD::UMUL ||
5532 Opc == X86ISD::INC ||
5533 Opc == X86ISD::DEC))
5534 return true;
5536 return false;
5539 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5540 bool addTest = true;
5541 SDValue Cond = Op.getOperand(0);
5542 DebugLoc dl = Op.getDebugLoc();
5543 SDValue CC;
5545 if (Cond.getOpcode() == ISD::SETCC)
5546 Cond = LowerSETCC(Cond, DAG);
5548 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5549 // setting operand in place of the X86ISD::SETCC.
5550 if (Cond.getOpcode() == X86ISD::SETCC) {
5551 CC = Cond.getOperand(0);
5553 SDValue Cmp = Cond.getOperand(1);
5554 unsigned Opc = Cmp.getOpcode();
5555 MVT VT = Op.getValueType();
5557 bool IllegalFPCMov = false;
5558 if (VT.isFloatingPoint() && !VT.isVector() &&
5559 !isScalarFPTypeInSSEReg(VT)) // FPStack?
5560 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5562 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
5563 Opc == X86ISD::BT) { // FIXME
5564 Cond = Cmp;
5565 addTest = false;
5569 if (addTest) {
5570 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5571 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5574 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
5575 SmallVector<SDValue, 4> Ops;
5576 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5577 // condition is true.
5578 Ops.push_back(Op.getOperand(2));
5579 Ops.push_back(Op.getOperand(1));
5580 Ops.push_back(CC);
5581 Ops.push_back(Cond);
5582 return DAG.getNode(X86ISD::CMOV, dl, VTs, &Ops[0], Ops.size());
5585 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5586 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5587 // from the AND / OR.
5588 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5589 Opc = Op.getOpcode();
5590 if (Opc != ISD::OR && Opc != ISD::AND)
5591 return false;
5592 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5593 Op.getOperand(0).hasOneUse() &&
5594 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5595 Op.getOperand(1).hasOneUse());
5598 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5599 // 1 and that the SETCC node has a single use.
5600 static bool isXor1OfSetCC(SDValue Op) {
5601 if (Op.getOpcode() != ISD::XOR)
5602 return false;
5603 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5604 if (N1C && N1C->getAPIntValue() == 1) {
5605 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5606 Op.getOperand(0).hasOneUse();
5608 return false;
5611 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5612 bool addTest = true;
5613 SDValue Chain = Op.getOperand(0);
5614 SDValue Cond = Op.getOperand(1);
5615 SDValue Dest = Op.getOperand(2);
5616 DebugLoc dl = Op.getDebugLoc();
5617 SDValue CC;
5619 if (Cond.getOpcode() == ISD::SETCC)
5620 Cond = LowerSETCC(Cond, DAG);
5621 #if 0
5622 // FIXME: LowerXALUO doesn't handle these!!
5623 else if (Cond.getOpcode() == X86ISD::ADD ||
5624 Cond.getOpcode() == X86ISD::SUB ||
5625 Cond.getOpcode() == X86ISD::SMUL ||
5626 Cond.getOpcode() == X86ISD::UMUL)
5627 Cond = LowerXALUO(Cond, DAG);
5628 #endif
5630 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5631 // setting operand in place of the X86ISD::SETCC.
5632 if (Cond.getOpcode() == X86ISD::SETCC) {
5633 CC = Cond.getOperand(0);
5635 SDValue Cmp = Cond.getOperand(1);
5636 unsigned Opc = Cmp.getOpcode();
5637 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5638 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
5639 Cond = Cmp;
5640 addTest = false;
5641 } else {
5642 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5643 default: break;
5644 case X86::COND_O:
5645 case X86::COND_B:
5646 // These can only come from an arithmetic instruction with overflow,
5647 // e.g. SADDO, UADDO.
5648 Cond = Cond.getNode()->getOperand(1);
5649 addTest = false;
5650 break;
5653 } else {
5654 unsigned CondOpc;
5655 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5656 SDValue Cmp = Cond.getOperand(0).getOperand(1);
5657 if (CondOpc == ISD::OR) {
5658 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5659 // two branches instead of an explicit OR instruction with a
5660 // separate test.
5661 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5662 isX86LogicalCmp(Cmp)) {
5663 CC = Cond.getOperand(0).getOperand(0);
5664 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5665 Chain, Dest, CC, Cmp);
5666 CC = Cond.getOperand(1).getOperand(0);
5667 Cond = Cmp;
5668 addTest = false;
5670 } else { // ISD::AND
5671 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5672 // two branches instead of an explicit AND instruction with a
5673 // separate test. However, we only do this if this block doesn't
5674 // have a fall-through edge, because this requires an explicit
5675 // jmp when the condition is false.
5676 if (Cmp == Cond.getOperand(1).getOperand(1) &&
5677 isX86LogicalCmp(Cmp) &&
5678 Op.getNode()->hasOneUse()) {
5679 X86::CondCode CCode =
5680 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5681 CCode = X86::GetOppositeBranchCondition(CCode);
5682 CC = DAG.getConstant(CCode, MVT::i8);
5683 SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5684 // Look for an unconditional branch following this conditional branch.
5685 // We need this because we need to reverse the successors in order
5686 // to implement FCMP_OEQ.
5687 if (User.getOpcode() == ISD::BR) {
5688 SDValue FalseBB = User.getOperand(1);
5689 SDValue NewBR =
5690 DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5691 assert(NewBR == User);
5692 Dest = FalseBB;
5694 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5695 Chain, Dest, CC, Cmp);
5696 X86::CondCode CCode =
5697 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5698 CCode = X86::GetOppositeBranchCondition(CCode);
5699 CC = DAG.getConstant(CCode, MVT::i8);
5700 Cond = Cmp;
5701 addTest = false;
5705 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
5706 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5707 // It should be transformed during dag combiner except when the condition
5708 // is set by a arithmetics with overflow node.
5709 X86::CondCode CCode =
5710 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5711 CCode = X86::GetOppositeBranchCondition(CCode);
5712 CC = DAG.getConstant(CCode, MVT::i8);
5713 Cond = Cond.getOperand(0).getOperand(1);
5714 addTest = false;
5718 if (addTest) {
5719 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5720 Cond = EmitTest(Cond, X86::COND_NE, DAG);
5722 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
5723 Chain, Dest, CC, Cond);
5727 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5728 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5729 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5730 // that the guard pages used by the OS virtual memory manager are allocated in
5731 // correct sequence.
5732 SDValue
5733 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5734 SelectionDAG &DAG) {
5735 assert(Subtarget->isTargetCygMing() &&
5736 "This should be used only on Cygwin/Mingw targets");
5737 DebugLoc dl = Op.getDebugLoc();
5739 // Get the inputs.
5740 SDValue Chain = Op.getOperand(0);
5741 SDValue Size = Op.getOperand(1);
5742 // FIXME: Ensure alignment here
5744 SDValue Flag;
5746 MVT IntPtr = getPointerTy();
5747 MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5749 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5751 Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
5752 Flag = Chain.getValue(1);
5754 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5755 SDValue Ops[] = { Chain,
5756 DAG.getTargetExternalSymbol("_alloca", IntPtr),
5757 DAG.getRegister(X86::EAX, IntPtr),
5758 DAG.getRegister(X86StackPtr, SPTy),
5759 Flag };
5760 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
5761 Flag = Chain.getValue(1);
5763 Chain = DAG.getCALLSEQ_END(Chain,
5764 DAG.getIntPtrConstant(0, true),
5765 DAG.getIntPtrConstant(0, true),
5766 Flag);
5768 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
5770 SDValue Ops1[2] = { Chain.getValue(0), Chain };
5771 return DAG.getMergeValues(Ops1, 2, dl);
5774 SDValue
5775 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
5776 SDValue Chain,
5777 SDValue Dst, SDValue Src,
5778 SDValue Size, unsigned Align,
5779 const Value *DstSV,
5780 uint64_t DstSVOff) {
5781 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5783 // If not DWORD aligned or size is more than the threshold, call the library.
5784 // The libc version is likely to be faster for these cases. It can use the
5785 // address value and run time information about the CPU.
5786 if ((Align & 3) != 0 ||
5787 !ConstantSize ||
5788 ConstantSize->getZExtValue() >
5789 getSubtarget()->getMaxInlineSizeThreshold()) {
5790 SDValue InFlag(0, 0);
5792 // Check to see if there is a specialized entry-point for memory zeroing.
5793 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5795 if (const char *bzeroEntry = V &&
5796 V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5797 MVT IntPtr = getPointerTy();
5798 const Type *IntPtrTy = TD->getIntPtrType();
5799 TargetLowering::ArgListTy Args;
5800 TargetLowering::ArgListEntry Entry;
5801 Entry.Node = Dst;
5802 Entry.Ty = IntPtrTy;
5803 Args.push_back(Entry);
5804 Entry.Node = Size;
5805 Args.push_back(Entry);
5806 std::pair<SDValue,SDValue> CallResult =
5807 LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5808 0, CallingConv::C, false,
5809 DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl);
5810 return CallResult.second;
5813 // Otherwise have the target-independent code call memset.
5814 return SDValue();
5817 uint64_t SizeVal = ConstantSize->getZExtValue();
5818 SDValue InFlag(0, 0);
5819 MVT AVT;
5820 SDValue Count;
5821 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5822 unsigned BytesLeft = 0;
5823 bool TwoRepStos = false;
5824 if (ValC) {
5825 unsigned ValReg;
5826 uint64_t Val = ValC->getZExtValue() & 255;
5828 // If the value is a constant, then we can potentially use larger sets.
5829 switch (Align & 3) {
5830 case 2: // WORD aligned
5831 AVT = MVT::i16;
5832 ValReg = X86::AX;
5833 Val = (Val << 8) | Val;
5834 break;
5835 case 0: // DWORD aligned
5836 AVT = MVT::i32;
5837 ValReg = X86::EAX;
5838 Val = (Val << 8) | Val;
5839 Val = (Val << 16) | Val;
5840 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
5841 AVT = MVT::i64;
5842 ValReg = X86::RAX;
5843 Val = (Val << 32) | Val;
5845 break;
5846 default: // Byte aligned
5847 AVT = MVT::i8;
5848 ValReg = X86::AL;
5849 Count = DAG.getIntPtrConstant(SizeVal);
5850 break;
5853 if (AVT.bitsGT(MVT::i8)) {
5854 unsigned UBytes = AVT.getSizeInBits() / 8;
5855 Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5856 BytesLeft = SizeVal % UBytes;
5859 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
5860 InFlag);
5861 InFlag = Chain.getValue(1);
5862 } else {
5863 AVT = MVT::i8;
5864 Count = DAG.getIntPtrConstant(SizeVal);
5865 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
5866 InFlag = Chain.getValue(1);
5869 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5870 X86::ECX,
5871 Count, InFlag);
5872 InFlag = Chain.getValue(1);
5873 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5874 X86::EDI,
5875 Dst, InFlag);
5876 InFlag = Chain.getValue(1);
5878 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5879 SmallVector<SDValue, 8> Ops;
5880 Ops.push_back(Chain);
5881 Ops.push_back(DAG.getValueType(AVT));
5882 Ops.push_back(InFlag);
5883 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5885 if (TwoRepStos) {
5886 InFlag = Chain.getValue(1);
5887 Count = Size;
5888 MVT CVT = Count.getValueType();
5889 SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
5890 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5891 Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
5892 X86::ECX,
5893 Left, InFlag);
5894 InFlag = Chain.getValue(1);
5895 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5896 Ops.clear();
5897 Ops.push_back(Chain);
5898 Ops.push_back(DAG.getValueType(MVT::i8));
5899 Ops.push_back(InFlag);
5900 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, &Ops[0], Ops.size());
5901 } else if (BytesLeft) {
5902 // Handle the last 1 - 7 bytes.
5903 unsigned Offset = SizeVal - BytesLeft;
5904 MVT AddrVT = Dst.getValueType();
5905 MVT SizeVT = Size.getValueType();
5907 Chain = DAG.getMemset(Chain, dl,
5908 DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
5909 DAG.getConstant(Offset, AddrVT)),
5910 Src,
5911 DAG.getConstant(BytesLeft, SizeVT),
5912 Align, DstSV, DstSVOff + Offset);
5915 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5916 return Chain;
5919 SDValue
5920 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
5921 SDValue Chain, SDValue Dst, SDValue Src,
5922 SDValue Size, unsigned Align,
5923 bool AlwaysInline,
5924 const Value *DstSV, uint64_t DstSVOff,
5925 const Value *SrcSV, uint64_t SrcSVOff) {
5926 // This requires the copy size to be a constant, preferrably
5927 // within a subtarget-specific limit.
5928 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5929 if (!ConstantSize)
5930 return SDValue();
5931 uint64_t SizeVal = ConstantSize->getZExtValue();
5932 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5933 return SDValue();
5935 /// If not DWORD aligned, call the library.
5936 if ((Align & 3) != 0)
5937 return SDValue();
5939 // DWORD aligned
5940 MVT AVT = MVT::i32;
5941 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) // QWORD aligned
5942 AVT = MVT::i64;
5944 unsigned UBytes = AVT.getSizeInBits() / 8;
5945 unsigned CountVal = SizeVal / UBytes;
5946 SDValue Count = DAG.getIntPtrConstant(CountVal);
5947 unsigned BytesLeft = SizeVal % UBytes;
5949 SDValue InFlag(0, 0);
5950 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
5951 X86::ECX,
5952 Count, InFlag);
5953 InFlag = Chain.getValue(1);
5954 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
5955 X86::EDI,
5956 Dst, InFlag);
5957 InFlag = Chain.getValue(1);
5958 Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
5959 X86::ESI,
5960 Src, InFlag);
5961 InFlag = Chain.getValue(1);
5963 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5964 SmallVector<SDValue, 8> Ops;
5965 Ops.push_back(Chain);
5966 Ops.push_back(DAG.getValueType(AVT));
5967 Ops.push_back(InFlag);
5968 SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, &Ops[0], Ops.size());
5970 SmallVector<SDValue, 4> Results;
5971 Results.push_back(RepMovs);
5972 if (BytesLeft) {
5973 // Handle the last 1 - 7 bytes.
5974 unsigned Offset = SizeVal - BytesLeft;
5975 MVT DstVT = Dst.getValueType();
5976 MVT SrcVT = Src.getValueType();
5977 MVT SizeVT = Size.getValueType();
5978 Results.push_back(DAG.getMemcpy(Chain, dl,
5979 DAG.getNode(ISD::ADD, dl, DstVT, Dst,
5980 DAG.getConstant(Offset, DstVT)),
5981 DAG.getNode(ISD::ADD, dl, SrcVT, Src,
5982 DAG.getConstant(Offset, SrcVT)),
5983 DAG.getConstant(BytesLeft, SizeVT),
5984 Align, AlwaysInline,
5985 DstSV, DstSVOff + Offset,
5986 SrcSV, SrcSVOff + Offset));
5989 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
5990 &Results[0], Results.size());
5993 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5994 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5995 DebugLoc dl = Op.getDebugLoc();
5997 if (!Subtarget->is64Bit()) {
5998 // vastart just stores the address of the VarArgsFrameIndex slot into the
5999 // memory location argument.
6000 SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6001 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6004 // __va_list_tag:
6005 // gp_offset (0 - 6 * 8)
6006 // fp_offset (48 - 48 + 8 * 16)
6007 // overflow_arg_area (point to parameters coming in memory).
6008 // reg_save_area
6009 SmallVector<SDValue, 8> MemOps;
6010 SDValue FIN = Op.getOperand(1);
6011 // Store gp_offset
6012 SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6013 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6014 FIN, SV, 0);
6015 MemOps.push_back(Store);
6017 // Store fp_offset
6018 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6019 FIN, DAG.getIntPtrConstant(4));
6020 Store = DAG.getStore(Op.getOperand(0), dl,
6021 DAG.getConstant(VarArgsFPOffset, MVT::i32),
6022 FIN, SV, 0);
6023 MemOps.push_back(Store);
6025 // Store ptr to overflow_arg_area
6026 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6027 FIN, DAG.getIntPtrConstant(4));
6028 SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6029 Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6030 MemOps.push_back(Store);
6032 // Store ptr to reg_save_area.
6033 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6034 FIN, DAG.getIntPtrConstant(8));
6035 SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6036 Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6037 MemOps.push_back(Store);
6038 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6039 &MemOps[0], MemOps.size());
6042 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6043 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6044 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6045 SDValue Chain = Op.getOperand(0);
6046 SDValue SrcPtr = Op.getOperand(1);
6047 SDValue SrcSV = Op.getOperand(2);
6049 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6050 return SDValue();
6053 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6054 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6055 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6056 SDValue Chain = Op.getOperand(0);
6057 SDValue DstPtr = Op.getOperand(1);
6058 SDValue SrcPtr = Op.getOperand(2);
6059 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6060 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6061 DebugLoc dl = Op.getDebugLoc();
6063 return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6064 DAG.getIntPtrConstant(24), 8, false,
6065 DstSV, 0, SrcSV, 0);
6068 SDValue
6069 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6070 DebugLoc dl = Op.getDebugLoc();
6071 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6072 switch (IntNo) {
6073 default: return SDValue(); // Don't custom lower most intrinsics.
6074 // Comparison intrinsics.
6075 case Intrinsic::x86_sse_comieq_ss:
6076 case Intrinsic::x86_sse_comilt_ss:
6077 case Intrinsic::x86_sse_comile_ss:
6078 case Intrinsic::x86_sse_comigt_ss:
6079 case Intrinsic::x86_sse_comige_ss:
6080 case Intrinsic::x86_sse_comineq_ss:
6081 case Intrinsic::x86_sse_ucomieq_ss:
6082 case Intrinsic::x86_sse_ucomilt_ss:
6083 case Intrinsic::x86_sse_ucomile_ss:
6084 case Intrinsic::x86_sse_ucomigt_ss:
6085 case Intrinsic::x86_sse_ucomige_ss:
6086 case Intrinsic::x86_sse_ucomineq_ss:
6087 case Intrinsic::x86_sse2_comieq_sd:
6088 case Intrinsic::x86_sse2_comilt_sd:
6089 case Intrinsic::x86_sse2_comile_sd:
6090 case Intrinsic::x86_sse2_comigt_sd:
6091 case Intrinsic::x86_sse2_comige_sd:
6092 case Intrinsic::x86_sse2_comineq_sd:
6093 case Intrinsic::x86_sse2_ucomieq_sd:
6094 case Intrinsic::x86_sse2_ucomilt_sd:
6095 case Intrinsic::x86_sse2_ucomile_sd:
6096 case Intrinsic::x86_sse2_ucomigt_sd:
6097 case Intrinsic::x86_sse2_ucomige_sd:
6098 case Intrinsic::x86_sse2_ucomineq_sd: {
6099 unsigned Opc = 0;
6100 ISD::CondCode CC = ISD::SETCC_INVALID;
6101 switch (IntNo) {
6102 default: break;
6103 case Intrinsic::x86_sse_comieq_ss:
6104 case Intrinsic::x86_sse2_comieq_sd:
6105 Opc = X86ISD::COMI;
6106 CC = ISD::SETEQ;
6107 break;
6108 case Intrinsic::x86_sse_comilt_ss:
6109 case Intrinsic::x86_sse2_comilt_sd:
6110 Opc = X86ISD::COMI;
6111 CC = ISD::SETLT;
6112 break;
6113 case Intrinsic::x86_sse_comile_ss:
6114 case Intrinsic::x86_sse2_comile_sd:
6115 Opc = X86ISD::COMI;
6116 CC = ISD::SETLE;
6117 break;
6118 case Intrinsic::x86_sse_comigt_ss:
6119 case Intrinsic::x86_sse2_comigt_sd:
6120 Opc = X86ISD::COMI;
6121 CC = ISD::SETGT;
6122 break;
6123 case Intrinsic::x86_sse_comige_ss:
6124 case Intrinsic::x86_sse2_comige_sd:
6125 Opc = X86ISD::COMI;
6126 CC = ISD::SETGE;
6127 break;
6128 case Intrinsic::x86_sse_comineq_ss:
6129 case Intrinsic::x86_sse2_comineq_sd:
6130 Opc = X86ISD::COMI;
6131 CC = ISD::SETNE;
6132 break;
6133 case Intrinsic::x86_sse_ucomieq_ss:
6134 case Intrinsic::x86_sse2_ucomieq_sd:
6135 Opc = X86ISD::UCOMI;
6136 CC = ISD::SETEQ;
6137 break;
6138 case Intrinsic::x86_sse_ucomilt_ss:
6139 case Intrinsic::x86_sse2_ucomilt_sd:
6140 Opc = X86ISD::UCOMI;
6141 CC = ISD::SETLT;
6142 break;
6143 case Intrinsic::x86_sse_ucomile_ss:
6144 case Intrinsic::x86_sse2_ucomile_sd:
6145 Opc = X86ISD::UCOMI;
6146 CC = ISD::SETLE;
6147 break;
6148 case Intrinsic::x86_sse_ucomigt_ss:
6149 case Intrinsic::x86_sse2_ucomigt_sd:
6150 Opc = X86ISD::UCOMI;
6151 CC = ISD::SETGT;
6152 break;
6153 case Intrinsic::x86_sse_ucomige_ss:
6154 case Intrinsic::x86_sse2_ucomige_sd:
6155 Opc = X86ISD::UCOMI;
6156 CC = ISD::SETGE;
6157 break;
6158 case Intrinsic::x86_sse_ucomineq_ss:
6159 case Intrinsic::x86_sse2_ucomineq_sd:
6160 Opc = X86ISD::UCOMI;
6161 CC = ISD::SETNE;
6162 break;
6165 SDValue LHS = Op.getOperand(1);
6166 SDValue RHS = Op.getOperand(2);
6167 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6168 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6169 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6170 DAG.getConstant(X86CC, MVT::i8), Cond);
6171 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6174 // Fix vector shift instructions where the last operand is a non-immediate
6175 // i32 value.
6176 case Intrinsic::x86_sse2_pslli_w:
6177 case Intrinsic::x86_sse2_pslli_d:
6178 case Intrinsic::x86_sse2_pslli_q:
6179 case Intrinsic::x86_sse2_psrli_w:
6180 case Intrinsic::x86_sse2_psrli_d:
6181 case Intrinsic::x86_sse2_psrli_q:
6182 case Intrinsic::x86_sse2_psrai_w:
6183 case Intrinsic::x86_sse2_psrai_d:
6184 case Intrinsic::x86_mmx_pslli_w:
6185 case Intrinsic::x86_mmx_pslli_d:
6186 case Intrinsic::x86_mmx_pslli_q:
6187 case Intrinsic::x86_mmx_psrli_w:
6188 case Intrinsic::x86_mmx_psrli_d:
6189 case Intrinsic::x86_mmx_psrli_q:
6190 case Intrinsic::x86_mmx_psrai_w:
6191 case Intrinsic::x86_mmx_psrai_d: {
6192 SDValue ShAmt = Op.getOperand(2);
6193 if (isa<ConstantSDNode>(ShAmt))
6194 return SDValue();
6196 unsigned NewIntNo = 0;
6197 MVT ShAmtVT = MVT::v4i32;
6198 switch (IntNo) {
6199 case Intrinsic::x86_sse2_pslli_w:
6200 NewIntNo = Intrinsic::x86_sse2_psll_w;
6201 break;
6202 case Intrinsic::x86_sse2_pslli_d:
6203 NewIntNo = Intrinsic::x86_sse2_psll_d;
6204 break;
6205 case Intrinsic::x86_sse2_pslli_q:
6206 NewIntNo = Intrinsic::x86_sse2_psll_q;
6207 break;
6208 case Intrinsic::x86_sse2_psrli_w:
6209 NewIntNo = Intrinsic::x86_sse2_psrl_w;
6210 break;
6211 case Intrinsic::x86_sse2_psrli_d:
6212 NewIntNo = Intrinsic::x86_sse2_psrl_d;
6213 break;
6214 case Intrinsic::x86_sse2_psrli_q:
6215 NewIntNo = Intrinsic::x86_sse2_psrl_q;
6216 break;
6217 case Intrinsic::x86_sse2_psrai_w:
6218 NewIntNo = Intrinsic::x86_sse2_psra_w;
6219 break;
6220 case Intrinsic::x86_sse2_psrai_d:
6221 NewIntNo = Intrinsic::x86_sse2_psra_d;
6222 break;
6223 default: {
6224 ShAmtVT = MVT::v2i32;
6225 switch (IntNo) {
6226 case Intrinsic::x86_mmx_pslli_w:
6227 NewIntNo = Intrinsic::x86_mmx_psll_w;
6228 break;
6229 case Intrinsic::x86_mmx_pslli_d:
6230 NewIntNo = Intrinsic::x86_mmx_psll_d;
6231 break;
6232 case Intrinsic::x86_mmx_pslli_q:
6233 NewIntNo = Intrinsic::x86_mmx_psll_q;
6234 break;
6235 case Intrinsic::x86_mmx_psrli_w:
6236 NewIntNo = Intrinsic::x86_mmx_psrl_w;
6237 break;
6238 case Intrinsic::x86_mmx_psrli_d:
6239 NewIntNo = Intrinsic::x86_mmx_psrl_d;
6240 break;
6241 case Intrinsic::x86_mmx_psrli_q:
6242 NewIntNo = Intrinsic::x86_mmx_psrl_q;
6243 break;
6244 case Intrinsic::x86_mmx_psrai_w:
6245 NewIntNo = Intrinsic::x86_mmx_psra_w;
6246 break;
6247 case Intrinsic::x86_mmx_psrai_d:
6248 NewIntNo = Intrinsic::x86_mmx_psra_d;
6249 break;
6250 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6252 break;
6255 MVT VT = Op.getValueType();
6256 ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6257 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShAmtVT, ShAmt));
6258 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6259 DAG.getConstant(NewIntNo, MVT::i32),
6260 Op.getOperand(1), ShAmt);
6265 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6266 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6267 DebugLoc dl = Op.getDebugLoc();
6269 if (Depth > 0) {
6270 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6271 SDValue Offset =
6272 DAG.getConstant(TD->getPointerSize(),
6273 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6274 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6275 DAG.getNode(ISD::ADD, dl, getPointerTy(),
6276 FrameAddr, Offset),
6277 NULL, 0);
6280 // Just load the return address.
6281 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6282 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6283 RetAddrFI, NULL, 0);
6286 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6287 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6288 MFI->setFrameAddressIsTaken(true);
6289 MVT VT = Op.getValueType();
6290 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
6291 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6292 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6293 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6294 while (Depth--)
6295 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6296 return FrameAddr;
6299 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6300 SelectionDAG &DAG) {
6301 return DAG.getIntPtrConstant(2*TD->getPointerSize());
6304 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6306 MachineFunction &MF = DAG.getMachineFunction();
6307 SDValue Chain = Op.getOperand(0);
6308 SDValue Offset = Op.getOperand(1);
6309 SDValue Handler = Op.getOperand(2);
6310 DebugLoc dl = Op.getDebugLoc();
6312 SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6313 getPointerTy());
6314 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6316 SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6317 DAG.getIntPtrConstant(-TD->getPointerSize()));
6318 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6319 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
6320 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
6321 MF.getRegInfo().addLiveOut(StoreAddrReg);
6323 return DAG.getNode(X86ISD::EH_RETURN, dl,
6324 MVT::Other,
6325 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
6328 SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
6329 SelectionDAG &DAG) {
6330 SDValue Root = Op.getOperand(0);
6331 SDValue Trmp = Op.getOperand(1); // trampoline
6332 SDValue FPtr = Op.getOperand(2); // nested function
6333 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
6334 DebugLoc dl = Op.getDebugLoc();
6336 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6338 const X86InstrInfo *TII =
6339 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
6341 if (Subtarget->is64Bit()) {
6342 SDValue OutChains[6];
6344 // Large code-model.
6346 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r);
6347 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
6349 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
6350 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
6352 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
6354 // Load the pointer to the nested function into R11.
6355 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
6356 SDValue Addr = Trmp;
6357 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6358 Addr, TrmpAddr, 0);
6360 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6361 DAG.getConstant(2, MVT::i64));
6362 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
6364 // Load the 'nest' parameter value into R10.
6365 // R10 is specified in X86CallingConv.td
6366 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
6367 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6368 DAG.getConstant(10, MVT::i64));
6369 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6370 Addr, TrmpAddr, 10);
6372 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6373 DAG.getConstant(12, MVT::i64));
6374 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
6376 // Jump to the nested function.
6377 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
6378 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6379 DAG.getConstant(20, MVT::i64));
6380 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
6381 Addr, TrmpAddr, 20);
6383 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
6384 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
6385 DAG.getConstant(22, MVT::i64));
6386 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
6387 TrmpAddr, 22);
6389 SDValue Ops[] =
6390 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
6391 return DAG.getMergeValues(Ops, 2, dl);
6392 } else {
6393 const Function *Func =
6394 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
6395 unsigned CC = Func->getCallingConv();
6396 unsigned NestReg;
6398 switch (CC) {
6399 default:
6400 llvm_unreachable("Unsupported calling convention");
6401 case CallingConv::C:
6402 case CallingConv::X86_StdCall: {
6403 // Pass 'nest' parameter in ECX.
6404 // Must be kept in sync with X86CallingConv.td
6405 NestReg = X86::ECX;
6407 // Check that ECX wasn't needed by an 'inreg' parameter.
6408 const FunctionType *FTy = Func->getFunctionType();
6409 const AttrListPtr &Attrs = Func->getAttributes();
6411 if (!Attrs.isEmpty() && !Func->isVarArg()) {
6412 unsigned InRegCount = 0;
6413 unsigned Idx = 1;
6415 for (FunctionType::param_iterator I = FTy->param_begin(),
6416 E = FTy->param_end(); I != E; ++I, ++Idx)
6417 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
6418 // FIXME: should only count parameters that are lowered to integers.
6419 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
6421 if (InRegCount > 2) {
6422 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6425 break;
6427 case CallingConv::X86_FastCall:
6428 case CallingConv::Fast:
6429 // Pass 'nest' parameter in EAX.
6430 // Must be kept in sync with X86CallingConv.td
6431 NestReg = X86::EAX;
6432 break;
6435 SDValue OutChains[4];
6436 SDValue Addr, Disp;
6438 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6439 DAG.getConstant(10, MVT::i32));
6440 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
6442 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
6443 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
6444 OutChains[0] = DAG.getStore(Root, dl,
6445 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6446 Trmp, TrmpAddr, 0);
6448 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6449 DAG.getConstant(1, MVT::i32));
6450 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
6452 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6453 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6454 DAG.getConstant(5, MVT::i32));
6455 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
6456 TrmpAddr, 5, false, 1);
6458 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
6459 DAG.getConstant(6, MVT::i32));
6460 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
6462 SDValue Ops[] =
6463 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
6464 return DAG.getMergeValues(Ops, 2, dl);
6468 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6470 The rounding mode is in bits 11:10 of FPSR, and has the following
6471 settings:
6472 00 Round to nearest
6473 01 Round to -inf
6474 10 Round to +inf
6475 11 Round to 0
6477 FLT_ROUNDS, on the other hand, expects the following:
6478 -1 Undefined
6479 0 Round to 0
6480 1 Round to nearest
6481 2 Round to +inf
6482 3 Round to -inf
6484 To perform the conversion, we do:
6485 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6488 MachineFunction &MF = DAG.getMachineFunction();
6489 const TargetMachine &TM = MF.getTarget();
6490 const TargetFrameInfo &TFI = *TM.getFrameInfo();
6491 unsigned StackAlignment = TFI.getStackAlignment();
6492 MVT VT = Op.getValueType();
6493 DebugLoc dl = Op.getDebugLoc();
6495 // Save FP Control Word to stack slot
6496 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6497 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6499 SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
6500 DAG.getEntryNode(), StackSlot);
6502 // Load FP Control Word from stack slot
6503 SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
6505 // Transform as necessary
6506 SDValue CWD1 =
6507 DAG.getNode(ISD::SRL, dl, MVT::i16,
6508 DAG.getNode(ISD::AND, dl, MVT::i16,
6509 CWD, DAG.getConstant(0x800, MVT::i16)),
6510 DAG.getConstant(11, MVT::i8));
6511 SDValue CWD2 =
6512 DAG.getNode(ISD::SRL, dl, MVT::i16,
6513 DAG.getNode(ISD::AND, dl, MVT::i16,
6514 CWD, DAG.getConstant(0x400, MVT::i16)),
6515 DAG.getConstant(9, MVT::i8));
6517 SDValue RetVal =
6518 DAG.getNode(ISD::AND, dl, MVT::i16,
6519 DAG.getNode(ISD::ADD, dl, MVT::i16,
6520 DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
6521 DAG.getConstant(1, MVT::i16)),
6522 DAG.getConstant(3, MVT::i16));
6525 return DAG.getNode((VT.getSizeInBits() < 16 ?
6526 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
6529 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6530 MVT VT = Op.getValueType();
6531 MVT OpVT = VT;
6532 unsigned NumBits = VT.getSizeInBits();
6533 DebugLoc dl = Op.getDebugLoc();
6535 Op = Op.getOperand(0);
6536 if (VT == MVT::i8) {
6537 // Zero extend to i32 since there is not an i8 bsr.
6538 OpVT = MVT::i32;
6539 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6542 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6543 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6544 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
6546 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6547 SmallVector<SDValue, 4> Ops;
6548 Ops.push_back(Op);
6549 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6550 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6551 Ops.push_back(Op.getValue(1));
6552 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6554 // Finally xor with NumBits-1.
6555 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6557 if (VT == MVT::i8)
6558 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6559 return Op;
6562 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6563 MVT VT = Op.getValueType();
6564 MVT OpVT = VT;
6565 unsigned NumBits = VT.getSizeInBits();
6566 DebugLoc dl = Op.getDebugLoc();
6568 Op = Op.getOperand(0);
6569 if (VT == MVT::i8) {
6570 OpVT = MVT::i32;
6571 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
6574 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6575 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6576 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
6578 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6579 SmallVector<SDValue, 4> Ops;
6580 Ops.push_back(Op);
6581 Ops.push_back(DAG.getConstant(NumBits, OpVT));
6582 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6583 Ops.push_back(Op.getValue(1));
6584 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, &Ops[0], 4);
6586 if (VT == MVT::i8)
6587 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
6588 return Op;
6591 SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6592 MVT VT = Op.getValueType();
6593 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6594 DebugLoc dl = Op.getDebugLoc();
6596 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6597 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6598 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6599 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6600 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6602 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6603 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6604 // return AloBlo + AloBhi + AhiBlo;
6606 SDValue A = Op.getOperand(0);
6607 SDValue B = Op.getOperand(1);
6609 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6610 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6611 A, DAG.getConstant(32, MVT::i32));
6612 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6613 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6614 B, DAG.getConstant(32, MVT::i32));
6615 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6616 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6617 A, B);
6618 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6619 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6620 A, Bhi);
6621 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6622 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6623 Ahi, B);
6624 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6625 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6626 AloBhi, DAG.getConstant(32, MVT::i32));
6627 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6628 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6629 AhiBlo, DAG.getConstant(32, MVT::i32));
6630 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
6631 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
6632 return Res;
6636 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6637 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6638 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6639 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6640 // has only one use.
6641 SDNode *N = Op.getNode();
6642 SDValue LHS = N->getOperand(0);
6643 SDValue RHS = N->getOperand(1);
6644 unsigned BaseOp = 0;
6645 unsigned Cond = 0;
6646 DebugLoc dl = Op.getDebugLoc();
6648 switch (Op.getOpcode()) {
6649 default: llvm_unreachable("Unknown ovf instruction!");
6650 case ISD::SADDO:
6651 // A subtract of one will be selected as a INC. Note that INC doesn't
6652 // set CF, so we can't do this for UADDO.
6653 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6654 if (C->getAPIntValue() == 1) {
6655 BaseOp = X86ISD::INC;
6656 Cond = X86::COND_O;
6657 break;
6659 BaseOp = X86ISD::ADD;
6660 Cond = X86::COND_O;
6661 break;
6662 case ISD::UADDO:
6663 BaseOp = X86ISD::ADD;
6664 Cond = X86::COND_B;
6665 break;
6666 case ISD::SSUBO:
6667 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6668 // set CF, so we can't do this for USUBO.
6669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
6670 if (C->getAPIntValue() == 1) {
6671 BaseOp = X86ISD::DEC;
6672 Cond = X86::COND_O;
6673 break;
6675 BaseOp = X86ISD::SUB;
6676 Cond = X86::COND_O;
6677 break;
6678 case ISD::USUBO:
6679 BaseOp = X86ISD::SUB;
6680 Cond = X86::COND_B;
6681 break;
6682 case ISD::SMULO:
6683 BaseOp = X86ISD::SMUL;
6684 Cond = X86::COND_O;
6685 break;
6686 case ISD::UMULO:
6687 BaseOp = X86ISD::UMUL;
6688 Cond = X86::COND_B;
6689 break;
6692 // Also sets EFLAGS.
6693 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6694 SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
6696 SDValue SetCC =
6697 DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
6698 DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6700 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6701 return Sum;
6704 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6705 MVT T = Op.getValueType();
6706 DebugLoc dl = Op.getDebugLoc();
6707 unsigned Reg = 0;
6708 unsigned size = 0;
6709 switch(T.getSimpleVT()) {
6710 default:
6711 assert(false && "Invalid value type!");
6712 case MVT::i8: Reg = X86::AL; size = 1; break;
6713 case MVT::i16: Reg = X86::AX; size = 2; break;
6714 case MVT::i32: Reg = X86::EAX; size = 4; break;
6715 case MVT::i64:
6716 assert(Subtarget->is64Bit() && "Node not type legal!");
6717 Reg = X86::RAX; size = 8;
6718 break;
6720 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
6721 Op.getOperand(2), SDValue());
6722 SDValue Ops[] = { cpIn.getValue(0),
6723 Op.getOperand(1),
6724 Op.getOperand(3),
6725 DAG.getTargetConstant(size, MVT::i8),
6726 cpIn.getValue(1) };
6727 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6728 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
6729 SDValue cpOut =
6730 DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
6731 return cpOut;
6734 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6735 SelectionDAG &DAG) {
6736 assert(Subtarget->is64Bit() && "Result not type legalized?");
6737 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6738 SDValue TheChain = Op.getOperand(0);
6739 DebugLoc dl = Op.getDebugLoc();
6740 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6741 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
6742 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
6743 rax.getValue(2));
6744 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
6745 DAG.getConstant(32, MVT::i8));
6746 SDValue Ops[] = {
6747 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
6748 rdx.getValue(1)
6750 return DAG.getMergeValues(Ops, 2, dl);
6753 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6754 SDNode *Node = Op.getNode();
6755 DebugLoc dl = Node->getDebugLoc();
6756 MVT T = Node->getValueType(0);
6757 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
6758 DAG.getConstant(0, T), Node->getOperand(2));
6759 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
6760 cast<AtomicSDNode>(Node)->getMemoryVT(),
6761 Node->getOperand(0),
6762 Node->getOperand(1), negOp,
6763 cast<AtomicSDNode>(Node)->getSrcValue(),
6764 cast<AtomicSDNode>(Node)->getAlignment());
6767 /// LowerOperation - Provide custom lowering hooks for some operations.
6769 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6770 switch (Op.getOpcode()) {
6771 default: llvm_unreachable("Should not custom lower this!");
6772 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
6773 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
6774 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
6775 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
6776 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6777 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
6778 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
6779 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
6780 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
6781 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
6782 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
6783 case ISD::SHL_PARTS:
6784 case ISD::SRA_PARTS:
6785 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
6786 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
6787 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
6788 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
6789 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
6790 case ISD::FABS: return LowerFABS(Op, DAG);
6791 case ISD::FNEG: return LowerFNEG(Op, DAG);
6792 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
6793 case ISD::SETCC: return LowerSETCC(Op, DAG);
6794 case ISD::VSETCC: return LowerVSETCC(Op, DAG);
6795 case ISD::SELECT: return LowerSELECT(Op, DAG);
6796 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
6797 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
6798 case ISD::CALL: return LowerCALL(Op, DAG);
6799 case ISD::RET: return LowerRET(Op, DAG);
6800 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
6801 case ISD::VASTART: return LowerVASTART(Op, DAG);
6802 case ISD::VAARG: return LowerVAARG(Op, DAG);
6803 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
6804 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6805 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
6806 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
6807 case ISD::FRAME_TO_ARGS_OFFSET:
6808 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6809 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6810 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
6811 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
6812 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
6813 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
6814 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
6815 case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
6816 case ISD::SADDO:
6817 case ISD::UADDO:
6818 case ISD::SSUBO:
6819 case ISD::USUBO:
6820 case ISD::SMULO:
6821 case ISD::UMULO: return LowerXALUO(Op, DAG);
6822 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
6826 void X86TargetLowering::
6827 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6828 SelectionDAG &DAG, unsigned NewOp) {
6829 MVT T = Node->getValueType(0);
6830 DebugLoc dl = Node->getDebugLoc();
6831 assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6833 SDValue Chain = Node->getOperand(0);
6834 SDValue In1 = Node->getOperand(1);
6835 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6836 Node->getOperand(2), DAG.getIntPtrConstant(0));
6837 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6838 Node->getOperand(2), DAG.getIntPtrConstant(1));
6839 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6840 // have a MemOperand. Pass the info through as a normal operand.
6841 SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6842 SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6843 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6844 SDValue Result = DAG.getNode(NewOp, dl, Tys, Ops, 5);
6845 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6846 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6847 Results.push_back(Result.getValue(2));
6850 /// ReplaceNodeResults - Replace a node with an illegal result type
6851 /// with a new node built out of custom code.
6852 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6853 SmallVectorImpl<SDValue>&Results,
6854 SelectionDAG &DAG) {
6855 DebugLoc dl = N->getDebugLoc();
6856 switch (N->getOpcode()) {
6857 default:
6858 assert(false && "Do not know how to custom type legalize this operation!");
6859 return;
6860 case ISD::FP_TO_SINT: {
6861 std::pair<SDValue,SDValue> Vals =
6862 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
6863 SDValue FIST = Vals.first, StackSlot = Vals.second;
6864 if (FIST.getNode() != 0) {
6865 MVT VT = N->getValueType(0);
6866 // Return a load from the stack slot.
6867 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
6869 return;
6871 case ISD::READCYCLECOUNTER: {
6872 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6873 SDValue TheChain = N->getOperand(0);
6874 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
6875 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
6876 rd.getValue(1));
6877 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
6878 eax.getValue(2));
6879 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6880 SDValue Ops[] = { eax, edx };
6881 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
6882 Results.push_back(edx.getValue(1));
6883 return;
6885 case ISD::ATOMIC_CMP_SWAP: {
6886 MVT T = N->getValueType(0);
6887 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6888 SDValue cpInL, cpInH;
6889 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6890 DAG.getConstant(0, MVT::i32));
6891 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
6892 DAG.getConstant(1, MVT::i32));
6893 cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
6894 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
6895 cpInL.getValue(1));
6896 SDValue swapInL, swapInH;
6897 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6898 DAG.getConstant(0, MVT::i32));
6899 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
6900 DAG.getConstant(1, MVT::i32));
6901 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
6902 cpInH.getValue(1));
6903 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
6904 swapInL.getValue(1));
6905 SDValue Ops[] = { swapInH.getValue(0),
6906 N->getOperand(1),
6907 swapInH.getValue(1) };
6908 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6909 SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
6910 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
6911 MVT::i32, Result.getValue(1));
6912 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
6913 MVT::i32, cpOutL.getValue(2));
6914 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6915 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
6916 Results.push_back(cpOutH.getValue(1));
6917 return;
6919 case ISD::ATOMIC_LOAD_ADD:
6920 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6921 return;
6922 case ISD::ATOMIC_LOAD_AND:
6923 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6924 return;
6925 case ISD::ATOMIC_LOAD_NAND:
6926 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6927 return;
6928 case ISD::ATOMIC_LOAD_OR:
6929 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6930 return;
6931 case ISD::ATOMIC_LOAD_SUB:
6932 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6933 return;
6934 case ISD::ATOMIC_LOAD_XOR:
6935 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6936 return;
6937 case ISD::ATOMIC_SWAP:
6938 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6939 return;
6943 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6944 switch (Opcode) {
6945 default: return NULL;
6946 case X86ISD::BSF: return "X86ISD::BSF";
6947 case X86ISD::BSR: return "X86ISD::BSR";
6948 case X86ISD::SHLD: return "X86ISD::SHLD";
6949 case X86ISD::SHRD: return "X86ISD::SHRD";
6950 case X86ISD::FAND: return "X86ISD::FAND";
6951 case X86ISD::FOR: return "X86ISD::FOR";
6952 case X86ISD::FXOR: return "X86ISD::FXOR";
6953 case X86ISD::FSRL: return "X86ISD::FSRL";
6954 case X86ISD::FILD: return "X86ISD::FILD";
6955 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
6956 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6957 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6958 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6959 case X86ISD::FLD: return "X86ISD::FLD";
6960 case X86ISD::FST: return "X86ISD::FST";
6961 case X86ISD::CALL: return "X86ISD::CALL";
6962 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
6963 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
6964 case X86ISD::BT: return "X86ISD::BT";
6965 case X86ISD::CMP: return "X86ISD::CMP";
6966 case X86ISD::COMI: return "X86ISD::COMI";
6967 case X86ISD::UCOMI: return "X86ISD::UCOMI";
6968 case X86ISD::SETCC: return "X86ISD::SETCC";
6969 case X86ISD::CMOV: return "X86ISD::CMOV";
6970 case X86ISD::BRCOND: return "X86ISD::BRCOND";
6971 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
6972 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
6973 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
6974 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
6975 case X86ISD::Wrapper: return "X86ISD::Wrapper";
6976 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
6977 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
6978 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
6979 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
6980 case X86ISD::PINSRB: return "X86ISD::PINSRB";
6981 case X86ISD::PINSRW: return "X86ISD::PINSRW";
6982 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
6983 case X86ISD::FMAX: return "X86ISD::FMAX";
6984 case X86ISD::FMIN: return "X86ISD::FMIN";
6985 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
6986 case X86ISD::FRCP: return "X86ISD::FRCP";
6987 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
6988 case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
6989 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
6990 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
6991 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
6992 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
6993 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
6994 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
6995 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
6996 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
6997 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
6998 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
6999 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
7000 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
7001 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
7002 case X86ISD::VSHL: return "X86ISD::VSHL";
7003 case X86ISD::VSRL: return "X86ISD::VSRL";
7004 case X86ISD::CMPPD: return "X86ISD::CMPPD";
7005 case X86ISD::CMPPS: return "X86ISD::CMPPS";
7006 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
7007 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
7008 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
7009 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
7010 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
7011 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
7012 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
7013 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
7014 case X86ISD::ADD: return "X86ISD::ADD";
7015 case X86ISD::SUB: return "X86ISD::SUB";
7016 case X86ISD::SMUL: return "X86ISD::SMUL";
7017 case X86ISD::UMUL: return "X86ISD::UMUL";
7018 case X86ISD::INC: return "X86ISD::INC";
7019 case X86ISD::DEC: return "X86ISD::DEC";
7020 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
7024 // isLegalAddressingMode - Return true if the addressing mode represented
7025 // by AM is legal for this target, for a load/store of the specified type.
7026 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7027 const Type *Ty) const {
7028 // X86 supports extremely general addressing modes.
7030 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7031 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
7032 return false;
7034 if (AM.BaseGV) {
7035 unsigned GVFlags =
7036 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7038 // If a reference to this global requires an extra load, we can't fold it.
7039 if (isGlobalStubReference(GVFlags))
7040 return false;
7042 // If BaseGV requires a register for the PIC base, we cannot also have a
7043 // BaseReg specified.
7044 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7045 return false;
7047 // X86-64 only supports addr of globals in small code model.
7048 if (Subtarget->is64Bit()) {
7049 if (getTargetMachine().getCodeModel() != CodeModel::Small)
7050 return false;
7051 // If lower 4G is not available, then we must use rip-relative addressing.
7052 if (AM.BaseOffs || AM.Scale > 1)
7053 return false;
7057 switch (AM.Scale) {
7058 case 0:
7059 case 1:
7060 case 2:
7061 case 4:
7062 case 8:
7063 // These scales always work.
7064 break;
7065 case 3:
7066 case 5:
7067 case 9:
7068 // These scales are formed with basereg+scalereg. Only accept if there is
7069 // no basereg yet.
7070 if (AM.HasBaseReg)
7071 return false;
7072 break;
7073 default: // Other stuff never works.
7074 return false;
7077 return true;
7081 bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7082 if (!Ty1->isInteger() || !Ty2->isInteger())
7083 return false;
7084 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7085 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7086 if (NumBits1 <= NumBits2)
7087 return false;
7088 return Subtarget->is64Bit() || NumBits1 < 64;
7091 bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
7092 if (!VT1.isInteger() || !VT2.isInteger())
7093 return false;
7094 unsigned NumBits1 = VT1.getSizeInBits();
7095 unsigned NumBits2 = VT2.getSizeInBits();
7096 if (NumBits1 <= NumBits2)
7097 return false;
7098 return Subtarget->is64Bit() || NumBits1 < 64;
7101 bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7102 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7103 return Ty1 == Type::Int32Ty && Ty2 == Type::Int64Ty && Subtarget->is64Bit();
7106 bool X86TargetLowering::isZExtFree(MVT VT1, MVT VT2) const {
7107 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7108 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7111 bool X86TargetLowering::isNarrowingProfitable(MVT VT1, MVT VT2) const {
7112 // i16 instructions are longer (0x66 prefix) and potentially slower.
7113 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7116 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7117 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7118 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7119 /// are assumed to be legal.
7120 bool
7121 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7122 MVT VT) const {
7123 // Only do shuffles on 128-bit vector types for now.
7124 if (VT.getSizeInBits() == 64)
7125 return false;
7127 // FIXME: pshufb, blends, palignr, shifts.
7128 return (VT.getVectorNumElements() == 2 ||
7129 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7130 isMOVLMask(M, VT) ||
7131 isSHUFPMask(M, VT) ||
7132 isPSHUFDMask(M, VT) ||
7133 isPSHUFHWMask(M, VT) ||
7134 isPSHUFLWMask(M, VT) ||
7135 isUNPCKLMask(M, VT) ||
7136 isUNPCKHMask(M, VT) ||
7137 isUNPCKL_v_undef_Mask(M, VT) ||
7138 isUNPCKH_v_undef_Mask(M, VT));
7141 bool
7142 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7143 MVT VT) const {
7144 unsigned NumElts = VT.getVectorNumElements();
7145 // FIXME: This collection of masks seems suspect.
7146 if (NumElts == 2)
7147 return true;
7148 if (NumElts == 4 && VT.getSizeInBits() == 128) {
7149 return (isMOVLMask(Mask, VT) ||
7150 isCommutedMOVLMask(Mask, VT, true) ||
7151 isSHUFPMask(Mask, VT) ||
7152 isCommutedSHUFPMask(Mask, VT));
7154 return false;
7157 //===----------------------------------------------------------------------===//
7158 // X86 Scheduler Hooks
7159 //===----------------------------------------------------------------------===//
7161 // private utility function
7162 MachineBasicBlock *
7163 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7164 MachineBasicBlock *MBB,
7165 unsigned regOpc,
7166 unsigned immOpc,
7167 unsigned LoadOpc,
7168 unsigned CXchgOpc,
7169 unsigned copyOpc,
7170 unsigned notOpc,
7171 unsigned EAXreg,
7172 TargetRegisterClass *RC,
7173 bool invSrc) const {
7174 // For the atomic bitwise operator, we generate
7175 // thisMBB:
7176 // newMBB:
7177 // ld t1 = [bitinstr.addr]
7178 // op t2 = t1, [bitinstr.val]
7179 // mov EAX = t1
7180 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7181 // bz newMBB
7182 // fallthrough -->nextMBB
7183 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7184 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7185 MachineFunction::iterator MBBIter = MBB;
7186 ++MBBIter;
7188 /// First build the CFG
7189 MachineFunction *F = MBB->getParent();
7190 MachineBasicBlock *thisMBB = MBB;
7191 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7192 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7193 F->insert(MBBIter, newMBB);
7194 F->insert(MBBIter, nextMBB);
7196 // Move all successors to thisMBB to nextMBB
7197 nextMBB->transferSuccessors(thisMBB);
7199 // Update thisMBB to fall through to newMBB
7200 thisMBB->addSuccessor(newMBB);
7202 // newMBB jumps to itself and fall through to nextMBB
7203 newMBB->addSuccessor(nextMBB);
7204 newMBB->addSuccessor(newMBB);
7206 // Insert instructions into newMBB based on incoming instruction
7207 assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7208 "unexpected number of operands");
7209 DebugLoc dl = bInstr->getDebugLoc();
7210 MachineOperand& destOper = bInstr->getOperand(0);
7211 MachineOperand* argOpers[2 + X86AddrNumOperands];
7212 int numArgs = bInstr->getNumOperands() - 1;
7213 for (int i=0; i < numArgs; ++i)
7214 argOpers[i] = &bInstr->getOperand(i+1);
7216 // x86 address has 4 operands: base, index, scale, and displacement
7217 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7218 int valArgIndx = lastAddrIndx + 1;
7220 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7221 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7222 for (int i=0; i <= lastAddrIndx; ++i)
7223 (*MIB).addOperand(*argOpers[i]);
7225 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7226 if (invSrc) {
7227 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7229 else
7230 tt = t1;
7232 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7233 assert((argOpers[valArgIndx]->isReg() ||
7234 argOpers[valArgIndx]->isImm()) &&
7235 "invalid operand");
7236 if (argOpers[valArgIndx]->isReg())
7237 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7238 else
7239 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7240 MIB.addReg(tt);
7241 (*MIB).addOperand(*argOpers[valArgIndx]);
7243 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7244 MIB.addReg(t1);
7246 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7247 for (int i=0; i <= lastAddrIndx; ++i)
7248 (*MIB).addOperand(*argOpers[i]);
7249 MIB.addReg(t2);
7250 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7251 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7253 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7254 MIB.addReg(EAXreg);
7256 // insert branch
7257 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7259 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7260 return nextMBB;
7263 // private utility function: 64 bit atomics on 32 bit host.
7264 MachineBasicBlock *
7265 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7266 MachineBasicBlock *MBB,
7267 unsigned regOpcL,
7268 unsigned regOpcH,
7269 unsigned immOpcL,
7270 unsigned immOpcH,
7271 bool invSrc) const {
7272 // For the atomic bitwise operator, we generate
7273 // thisMBB (instructions are in pairs, except cmpxchg8b)
7274 // ld t1,t2 = [bitinstr.addr]
7275 // newMBB:
7276 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7277 // op t5, t6 <- out1, out2, [bitinstr.val]
7278 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7279 // mov ECX, EBX <- t5, t6
7280 // mov EAX, EDX <- t1, t2
7281 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7282 // mov t3, t4 <- EAX, EDX
7283 // bz newMBB
7284 // result in out1, out2
7285 // fallthrough -->nextMBB
7287 const TargetRegisterClass *RC = X86::GR32RegisterClass;
7288 const unsigned LoadOpc = X86::MOV32rm;
7289 const unsigned copyOpc = X86::MOV32rr;
7290 const unsigned NotOpc = X86::NOT32r;
7291 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7292 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7293 MachineFunction::iterator MBBIter = MBB;
7294 ++MBBIter;
7296 /// First build the CFG
7297 MachineFunction *F = MBB->getParent();
7298 MachineBasicBlock *thisMBB = MBB;
7299 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7300 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7301 F->insert(MBBIter, newMBB);
7302 F->insert(MBBIter, nextMBB);
7304 // Move all successors to thisMBB to nextMBB
7305 nextMBB->transferSuccessors(thisMBB);
7307 // Update thisMBB to fall through to newMBB
7308 thisMBB->addSuccessor(newMBB);
7310 // newMBB jumps to itself and fall through to nextMBB
7311 newMBB->addSuccessor(nextMBB);
7312 newMBB->addSuccessor(newMBB);
7314 DebugLoc dl = bInstr->getDebugLoc();
7315 // Insert instructions into newMBB based on incoming instruction
7316 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7317 assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7318 "unexpected number of operands");
7319 MachineOperand& dest1Oper = bInstr->getOperand(0);
7320 MachineOperand& dest2Oper = bInstr->getOperand(1);
7321 MachineOperand* argOpers[2 + X86AddrNumOperands];
7322 for (int i=0; i < 2 + X86AddrNumOperands; ++i)
7323 argOpers[i] = &bInstr->getOperand(i+2);
7325 // x86 address has 4 operands: base, index, scale, and displacement
7326 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7328 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7329 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
7330 for (int i=0; i <= lastAddrIndx; ++i)
7331 (*MIB).addOperand(*argOpers[i]);
7332 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7333 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
7334 // add 4 to displacement.
7335 for (int i=0; i <= lastAddrIndx-2; ++i)
7336 (*MIB).addOperand(*argOpers[i]);
7337 MachineOperand newOp3 = *(argOpers[3]);
7338 if (newOp3.isImm())
7339 newOp3.setImm(newOp3.getImm()+4);
7340 else
7341 newOp3.setOffset(newOp3.getOffset()+4);
7342 (*MIB).addOperand(newOp3);
7343 (*MIB).addOperand(*argOpers[lastAddrIndx]);
7345 // t3/4 are defined later, at the bottom of the loop
7346 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
7347 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
7348 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
7349 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
7350 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
7351 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
7353 unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
7354 unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
7355 if (invSrc) {
7356 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt1).addReg(t1);
7357 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), tt2).addReg(t2);
7358 } else {
7359 tt1 = t1;
7360 tt2 = t2;
7363 int valArgIndx = lastAddrIndx + 1;
7364 assert((argOpers[valArgIndx]->isReg() ||
7365 argOpers[valArgIndx]->isImm()) &&
7366 "invalid operand");
7367 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
7368 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
7369 if (argOpers[valArgIndx]->isReg())
7370 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
7371 else
7372 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
7373 if (regOpcL != X86::MOV32rr)
7374 MIB.addReg(tt1);
7375 (*MIB).addOperand(*argOpers[valArgIndx]);
7376 assert(argOpers[valArgIndx + 1]->isReg() ==
7377 argOpers[valArgIndx]->isReg());
7378 assert(argOpers[valArgIndx + 1]->isImm() ==
7379 argOpers[valArgIndx]->isImm());
7380 if (argOpers[valArgIndx + 1]->isReg())
7381 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
7382 else
7383 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
7384 if (regOpcH != X86::MOV32rr)
7385 MIB.addReg(tt2);
7386 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
7388 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
7389 MIB.addReg(t1);
7390 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
7391 MIB.addReg(t2);
7393 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
7394 MIB.addReg(t5);
7395 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
7396 MIB.addReg(t6);
7398 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
7399 for (int i=0; i <= lastAddrIndx; ++i)
7400 (*MIB).addOperand(*argOpers[i]);
7402 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7403 (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
7405 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
7406 MIB.addReg(X86::EAX);
7407 MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
7408 MIB.addReg(X86::EDX);
7410 // insert branch
7411 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7413 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
7414 return nextMBB;
7417 // private utility function
7418 MachineBasicBlock *
7419 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
7420 MachineBasicBlock *MBB,
7421 unsigned cmovOpc) const {
7422 // For the atomic min/max operator, we generate
7423 // thisMBB:
7424 // newMBB:
7425 // ld t1 = [min/max.addr]
7426 // mov t2 = [min/max.val]
7427 // cmp t1, t2
7428 // cmov[cond] t2 = t1
7429 // mov EAX = t1
7430 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7431 // bz newMBB
7432 // fallthrough -->nextMBB
7434 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7435 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7436 MachineFunction::iterator MBBIter = MBB;
7437 ++MBBIter;
7439 /// First build the CFG
7440 MachineFunction *F = MBB->getParent();
7441 MachineBasicBlock *thisMBB = MBB;
7442 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7443 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7444 F->insert(MBBIter, newMBB);
7445 F->insert(MBBIter, nextMBB);
7447 // Move all successors to thisMBB to nextMBB
7448 nextMBB->transferSuccessors(thisMBB);
7450 // Update thisMBB to fall through to newMBB
7451 thisMBB->addSuccessor(newMBB);
7453 // newMBB jumps to newMBB and fall through to nextMBB
7454 newMBB->addSuccessor(nextMBB);
7455 newMBB->addSuccessor(newMBB);
7457 DebugLoc dl = mInstr->getDebugLoc();
7458 // Insert instructions into newMBB based on incoming instruction
7459 assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7460 "unexpected number of operands");
7461 MachineOperand& destOper = mInstr->getOperand(0);
7462 MachineOperand* argOpers[2 + X86AddrNumOperands];
7463 int numArgs = mInstr->getNumOperands() - 1;
7464 for (int i=0; i < numArgs; ++i)
7465 argOpers[i] = &mInstr->getOperand(i+1);
7467 // x86 address has 4 operands: base, index, scale, and displacement
7468 int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7469 int valArgIndx = lastAddrIndx + 1;
7471 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7472 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
7473 for (int i=0; i <= lastAddrIndx; ++i)
7474 (*MIB).addOperand(*argOpers[i]);
7476 // We only support register and immediate values
7477 assert((argOpers[valArgIndx]->isReg() ||
7478 argOpers[valArgIndx]->isImm()) &&
7479 "invalid operand");
7481 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7482 if (argOpers[valArgIndx]->isReg())
7483 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7484 else
7485 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
7486 (*MIB).addOperand(*argOpers[valArgIndx]);
7488 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
7489 MIB.addReg(t1);
7491 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
7492 MIB.addReg(t1);
7493 MIB.addReg(t2);
7495 // Generate movc
7496 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
7497 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
7498 MIB.addReg(t2);
7499 MIB.addReg(t1);
7501 // Cmp and exchange if none has modified the memory location
7502 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
7503 for (int i=0; i <= lastAddrIndx; ++i)
7504 (*MIB).addOperand(*argOpers[i]);
7505 MIB.addReg(t3);
7506 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7507 (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
7509 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
7510 MIB.addReg(X86::EAX);
7512 // insert branch
7513 BuildMI(newMBB, dl, TII->get(X86::JNE)).addMBB(newMBB);
7515 F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now.
7516 return nextMBB;
7520 MachineBasicBlock *
7521 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7522 MachineBasicBlock *BB) const {
7523 DebugLoc dl = MI->getDebugLoc();
7524 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7525 switch (MI->getOpcode()) {
7526 default: assert(false && "Unexpected instr type to insert");
7527 case X86::CMOV_V1I64:
7528 case X86::CMOV_FR32:
7529 case X86::CMOV_FR64:
7530 case X86::CMOV_V4F32:
7531 case X86::CMOV_V2F64:
7532 case X86::CMOV_V2I64: {
7533 // To "insert" a SELECT_CC instruction, we actually have to insert the
7534 // diamond control-flow pattern. The incoming instruction knows the
7535 // destination vreg to set, the condition code register to branch on, the
7536 // true/false values to select between, and a branch opcode to use.
7537 const BasicBlock *LLVM_BB = BB->getBasicBlock();
7538 MachineFunction::iterator It = BB;
7539 ++It;
7541 // thisMBB:
7542 // ...
7543 // TrueVal = ...
7544 // cmpTY ccX, r1, r2
7545 // bCC copy1MBB
7546 // fallthrough --> copy0MBB
7547 MachineBasicBlock *thisMBB = BB;
7548 MachineFunction *F = BB->getParent();
7549 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7550 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7551 unsigned Opc =
7552 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7553 BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
7554 F->insert(It, copy0MBB);
7555 F->insert(It, sinkMBB);
7556 // Update machine-CFG edges by transferring all successors of the current
7557 // block to the new block which will contain the Phi node for the select.
7558 sinkMBB->transferSuccessors(BB);
7560 // Add the true and fallthrough blocks as its successors.
7561 BB->addSuccessor(copy0MBB);
7562 BB->addSuccessor(sinkMBB);
7564 // copy0MBB:
7565 // %FalseValue = ...
7566 // # fallthrough to sinkMBB
7567 BB = copy0MBB;
7569 // Update machine-CFG edges
7570 BB->addSuccessor(sinkMBB);
7572 // sinkMBB:
7573 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7574 // ...
7575 BB = sinkMBB;
7576 BuildMI(BB, dl, TII->get(X86::PHI), MI->getOperand(0).getReg())
7577 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7578 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7580 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7581 return BB;
7584 case X86::FP32_TO_INT16_IN_MEM:
7585 case X86::FP32_TO_INT32_IN_MEM:
7586 case X86::FP32_TO_INT64_IN_MEM:
7587 case X86::FP64_TO_INT16_IN_MEM:
7588 case X86::FP64_TO_INT32_IN_MEM:
7589 case X86::FP64_TO_INT64_IN_MEM:
7590 case X86::FP80_TO_INT16_IN_MEM:
7591 case X86::FP80_TO_INT32_IN_MEM:
7592 case X86::FP80_TO_INT64_IN_MEM: {
7593 // Change the floating point control register to use "round towards zero"
7594 // mode when truncating to an integer value.
7595 MachineFunction *F = BB->getParent();
7596 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7597 addFrameReference(BuildMI(BB, dl, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7599 // Load the old value of the high byte of the control word...
7600 unsigned OldCW =
7601 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7602 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16rm), OldCW),
7603 CWFrameIdx);
7605 // Set the high part to be round to zero...
7606 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mi)), CWFrameIdx)
7607 .addImm(0xC7F);
7609 // Reload the modified control word now...
7610 addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7612 // Restore the memory image of control word to original value
7613 addFrameReference(BuildMI(BB, dl, TII->get(X86::MOV16mr)), CWFrameIdx)
7614 .addReg(OldCW);
7616 // Get the X86 opcode to use.
7617 unsigned Opc;
7618 switch (MI->getOpcode()) {
7619 default: llvm_unreachable("illegal opcode!");
7620 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7621 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7622 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7623 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7624 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7625 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7626 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7627 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7628 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7631 X86AddressMode AM;
7632 MachineOperand &Op = MI->getOperand(0);
7633 if (Op.isReg()) {
7634 AM.BaseType = X86AddressMode::RegBase;
7635 AM.Base.Reg = Op.getReg();
7636 } else {
7637 AM.BaseType = X86AddressMode::FrameIndexBase;
7638 AM.Base.FrameIndex = Op.getIndex();
7640 Op = MI->getOperand(1);
7641 if (Op.isImm())
7642 AM.Scale = Op.getImm();
7643 Op = MI->getOperand(2);
7644 if (Op.isImm())
7645 AM.IndexReg = Op.getImm();
7646 Op = MI->getOperand(3);
7647 if (Op.isGlobal()) {
7648 AM.GV = Op.getGlobal();
7649 } else {
7650 AM.Disp = Op.getImm();
7652 addFullAddress(BuildMI(BB, dl, TII->get(Opc)), AM)
7653 .addReg(MI->getOperand(X86AddrNumOperands).getReg());
7655 // Reload the original control word now.
7656 addFrameReference(BuildMI(BB, dl, TII->get(X86::FLDCW16m)), CWFrameIdx);
7658 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
7659 return BB;
7661 case X86::ATOMAND32:
7662 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7663 X86::AND32ri, X86::MOV32rm,
7664 X86::LCMPXCHG32, X86::MOV32rr,
7665 X86::NOT32r, X86::EAX,
7666 X86::GR32RegisterClass);
7667 case X86::ATOMOR32:
7668 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7669 X86::OR32ri, X86::MOV32rm,
7670 X86::LCMPXCHG32, X86::MOV32rr,
7671 X86::NOT32r, X86::EAX,
7672 X86::GR32RegisterClass);
7673 case X86::ATOMXOR32:
7674 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7675 X86::XOR32ri, X86::MOV32rm,
7676 X86::LCMPXCHG32, X86::MOV32rr,
7677 X86::NOT32r, X86::EAX,
7678 X86::GR32RegisterClass);
7679 case X86::ATOMNAND32:
7680 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7681 X86::AND32ri, X86::MOV32rm,
7682 X86::LCMPXCHG32, X86::MOV32rr,
7683 X86::NOT32r, X86::EAX,
7684 X86::GR32RegisterClass, true);
7685 case X86::ATOMMIN32:
7686 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7687 case X86::ATOMMAX32:
7688 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7689 case X86::ATOMUMIN32:
7690 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7691 case X86::ATOMUMAX32:
7692 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7694 case X86::ATOMAND16:
7695 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7696 X86::AND16ri, X86::MOV16rm,
7697 X86::LCMPXCHG16, X86::MOV16rr,
7698 X86::NOT16r, X86::AX,
7699 X86::GR16RegisterClass);
7700 case X86::ATOMOR16:
7701 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7702 X86::OR16ri, X86::MOV16rm,
7703 X86::LCMPXCHG16, X86::MOV16rr,
7704 X86::NOT16r, X86::AX,
7705 X86::GR16RegisterClass);
7706 case X86::ATOMXOR16:
7707 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7708 X86::XOR16ri, X86::MOV16rm,
7709 X86::LCMPXCHG16, X86::MOV16rr,
7710 X86::NOT16r, X86::AX,
7711 X86::GR16RegisterClass);
7712 case X86::ATOMNAND16:
7713 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7714 X86::AND16ri, X86::MOV16rm,
7715 X86::LCMPXCHG16, X86::MOV16rr,
7716 X86::NOT16r, X86::AX,
7717 X86::GR16RegisterClass, true);
7718 case X86::ATOMMIN16:
7719 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7720 case X86::ATOMMAX16:
7721 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7722 case X86::ATOMUMIN16:
7723 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7724 case X86::ATOMUMAX16:
7725 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7727 case X86::ATOMAND8:
7728 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7729 X86::AND8ri, X86::MOV8rm,
7730 X86::LCMPXCHG8, X86::MOV8rr,
7731 X86::NOT8r, X86::AL,
7732 X86::GR8RegisterClass);
7733 case X86::ATOMOR8:
7734 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7735 X86::OR8ri, X86::MOV8rm,
7736 X86::LCMPXCHG8, X86::MOV8rr,
7737 X86::NOT8r, X86::AL,
7738 X86::GR8RegisterClass);
7739 case X86::ATOMXOR8:
7740 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7741 X86::XOR8ri, X86::MOV8rm,
7742 X86::LCMPXCHG8, X86::MOV8rr,
7743 X86::NOT8r, X86::AL,
7744 X86::GR8RegisterClass);
7745 case X86::ATOMNAND8:
7746 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7747 X86::AND8ri, X86::MOV8rm,
7748 X86::LCMPXCHG8, X86::MOV8rr,
7749 X86::NOT8r, X86::AL,
7750 X86::GR8RegisterClass, true);
7751 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7752 // This group is for 64-bit host.
7753 case X86::ATOMAND64:
7754 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7755 X86::AND64ri32, X86::MOV64rm,
7756 X86::LCMPXCHG64, X86::MOV64rr,
7757 X86::NOT64r, X86::RAX,
7758 X86::GR64RegisterClass);
7759 case X86::ATOMOR64:
7760 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7761 X86::OR64ri32, X86::MOV64rm,
7762 X86::LCMPXCHG64, X86::MOV64rr,
7763 X86::NOT64r, X86::RAX,
7764 X86::GR64RegisterClass);
7765 case X86::ATOMXOR64:
7766 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7767 X86::XOR64ri32, X86::MOV64rm,
7768 X86::LCMPXCHG64, X86::MOV64rr,
7769 X86::NOT64r, X86::RAX,
7770 X86::GR64RegisterClass);
7771 case X86::ATOMNAND64:
7772 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7773 X86::AND64ri32, X86::MOV64rm,
7774 X86::LCMPXCHG64, X86::MOV64rr,
7775 X86::NOT64r, X86::RAX,
7776 X86::GR64RegisterClass, true);
7777 case X86::ATOMMIN64:
7778 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7779 case X86::ATOMMAX64:
7780 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7781 case X86::ATOMUMIN64:
7782 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7783 case X86::ATOMUMAX64:
7784 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7786 // This group does 64-bit operations on a 32-bit host.
7787 case X86::ATOMAND6432:
7788 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7789 X86::AND32rr, X86::AND32rr,
7790 X86::AND32ri, X86::AND32ri,
7791 false);
7792 case X86::ATOMOR6432:
7793 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7794 X86::OR32rr, X86::OR32rr,
7795 X86::OR32ri, X86::OR32ri,
7796 false);
7797 case X86::ATOMXOR6432:
7798 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7799 X86::XOR32rr, X86::XOR32rr,
7800 X86::XOR32ri, X86::XOR32ri,
7801 false);
7802 case X86::ATOMNAND6432:
7803 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7804 X86::AND32rr, X86::AND32rr,
7805 X86::AND32ri, X86::AND32ri,
7806 true);
7807 case X86::ATOMADD6432:
7808 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7809 X86::ADD32rr, X86::ADC32rr,
7810 X86::ADD32ri, X86::ADC32ri,
7811 false);
7812 case X86::ATOMSUB6432:
7813 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7814 X86::SUB32rr, X86::SBB32rr,
7815 X86::SUB32ri, X86::SBB32ri,
7816 false);
7817 case X86::ATOMSWAP6432:
7818 return EmitAtomicBit6432WithCustomInserter(MI, BB,
7819 X86::MOV32rr, X86::MOV32rr,
7820 X86::MOV32ri, X86::MOV32ri,
7821 false);
7825 //===----------------------------------------------------------------------===//
7826 // X86 Optimization Hooks
7827 //===----------------------------------------------------------------------===//
7829 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7830 const APInt &Mask,
7831 APInt &KnownZero,
7832 APInt &KnownOne,
7833 const SelectionDAG &DAG,
7834 unsigned Depth) const {
7835 unsigned Opc = Op.getOpcode();
7836 assert((Opc >= ISD::BUILTIN_OP_END ||
7837 Opc == ISD::INTRINSIC_WO_CHAIN ||
7838 Opc == ISD::INTRINSIC_W_CHAIN ||
7839 Opc == ISD::INTRINSIC_VOID) &&
7840 "Should use MaskedValueIsZero if you don't know whether Op"
7841 " is a target node!");
7843 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
7844 switch (Opc) {
7845 default: break;
7846 case X86ISD::ADD:
7847 case X86ISD::SUB:
7848 case X86ISD::SMUL:
7849 case X86ISD::UMUL:
7850 case X86ISD::INC:
7851 case X86ISD::DEC:
7852 // These nodes' second result is a boolean.
7853 if (Op.getResNo() == 0)
7854 break;
7855 // Fallthrough
7856 case X86ISD::SETCC:
7857 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7858 Mask.getBitWidth() - 1);
7859 break;
7863 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7864 /// node is a GlobalAddress + offset.
7865 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7866 GlobalValue* &GA, int64_t &Offset) const{
7867 if (N->getOpcode() == X86ISD::Wrapper) {
7868 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7869 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7870 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7871 return true;
7874 return TargetLowering::isGAPlusOffset(N, GA, Offset);
7877 static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7878 const TargetLowering &TLI) {
7879 GlobalValue *GV;
7880 int64_t Offset = 0;
7881 if (TLI.isGAPlusOffset(Base, GV, Offset))
7882 return (GV->getAlignment() >= N && (Offset % N) == 0);
7883 // DAG combine handles the stack object case.
7884 return false;
7887 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
7888 MVT EVT, LoadSDNode *&LDBase,
7889 unsigned &LastLoadedElt,
7890 SelectionDAG &DAG, MachineFrameInfo *MFI,
7891 const TargetLowering &TLI) {
7892 LDBase = NULL;
7893 LastLoadedElt = -1U;
7894 for (unsigned i = 0; i < NumElems; ++i) {
7895 if (N->getMaskElt(i) < 0) {
7896 if (!LDBase)
7897 return false;
7898 continue;
7901 SDValue Elt = DAG.getShuffleScalarElt(N, i);
7902 if (!Elt.getNode() ||
7903 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7904 return false;
7905 if (!LDBase) {
7906 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
7907 return false;
7908 LDBase = cast<LoadSDNode>(Elt.getNode());
7909 LastLoadedElt = i;
7910 continue;
7912 if (Elt.getOpcode() == ISD::UNDEF)
7913 continue;
7915 LoadSDNode *LD = cast<LoadSDNode>(Elt);
7916 if (!TLI.isConsecutiveLoad(LD, LDBase, EVT.getSizeInBits()/8, i, MFI))
7917 return false;
7918 LastLoadedElt = i;
7920 return true;
7923 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7924 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7925 /// if the load addresses are consecutive, non-overlapping, and in the right
7926 /// order. In the case of v2i64, it will see if it can rewrite the
7927 /// shuffle to be an appropriate build vector so it can take advantage of
7928 // performBuildVectorCombine.
7929 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7930 const TargetLowering &TLI) {
7931 DebugLoc dl = N->getDebugLoc();
7932 MVT VT = N->getValueType(0);
7933 MVT EVT = VT.getVectorElementType();
7934 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
7935 unsigned NumElems = VT.getVectorNumElements();
7937 if (VT.getSizeInBits() != 128)
7938 return SDValue();
7940 // Try to combine a vector_shuffle into a 128-bit load.
7941 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7942 LoadSDNode *LD = NULL;
7943 unsigned LastLoadedElt;
7944 if (!EltsFromConsecutiveLoads(SVN, NumElems, EVT, LD, LastLoadedElt, DAG,
7945 MFI, TLI))
7946 return SDValue();
7948 if (LastLoadedElt == NumElems - 1) {
7949 if (isBaseAlignmentOfN(16, LD->getBasePtr().getNode(), TLI))
7950 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7951 LD->getSrcValue(), LD->getSrcValueOffset(),
7952 LD->isVolatile());
7953 return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
7954 LD->getSrcValue(), LD->getSrcValueOffset(),
7955 LD->isVolatile(), LD->getAlignment());
7956 } else if (NumElems == 4 && LastLoadedElt == 1) {
7957 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
7958 SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7959 SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
7960 return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
7962 return SDValue();
7965 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7966 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7967 const X86Subtarget *Subtarget) {
7968 DebugLoc DL = N->getDebugLoc();
7969 SDValue Cond = N->getOperand(0);
7970 // Get the LHS/RHS of the select.
7971 SDValue LHS = N->getOperand(1);
7972 SDValue RHS = N->getOperand(2);
7974 // If we have SSE[12] support, try to form min/max nodes.
7975 if (Subtarget->hasSSE2() &&
7976 (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
7977 Cond.getOpcode() == ISD::SETCC) {
7978 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7980 unsigned Opcode = 0;
7981 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7982 switch (CC) {
7983 default: break;
7984 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7985 case ISD::SETULE:
7986 case ISD::SETLE:
7987 if (!UnsafeFPMath) break;
7988 // FALL THROUGH.
7989 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
7990 case ISD::SETLT:
7991 Opcode = X86ISD::FMIN;
7992 break;
7994 case ISD::SETOGT: // (X > Y) ? X : Y -> max
7995 case ISD::SETUGT:
7996 case ISD::SETGT:
7997 if (!UnsafeFPMath) break;
7998 // FALL THROUGH.
7999 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
8000 case ISD::SETGE:
8001 Opcode = X86ISD::FMAX;
8002 break;
8004 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8005 switch (CC) {
8006 default: break;
8007 case ISD::SETOGT: // (X > Y) ? Y : X -> min
8008 case ISD::SETUGT:
8009 case ISD::SETGT:
8010 if (!UnsafeFPMath) break;
8011 // FALL THROUGH.
8012 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
8013 case ISD::SETGE:
8014 Opcode = X86ISD::FMIN;
8015 break;
8017 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
8018 case ISD::SETULE:
8019 case ISD::SETLE:
8020 if (!UnsafeFPMath) break;
8021 // FALL THROUGH.
8022 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
8023 case ISD::SETLT:
8024 Opcode = X86ISD::FMAX;
8025 break;
8029 if (Opcode)
8030 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8033 // If this is a select between two integer constants, try to do some
8034 // optimizations.
8035 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8036 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8037 // Don't do this for crazy integer types.
8038 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8039 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8040 // so that TrueC (the true value) is larger than FalseC.
8041 bool NeedsCondInvert = false;
8043 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8044 // Efficiently invertible.
8045 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
8046 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
8047 isa<ConstantSDNode>(Cond.getOperand(1))))) {
8048 NeedsCondInvert = true;
8049 std::swap(TrueC, FalseC);
8052 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8053 if (FalseC->getAPIntValue() == 0 &&
8054 TrueC->getAPIntValue().isPowerOf2()) {
8055 if (NeedsCondInvert) // Invert the condition if needed.
8056 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8057 DAG.getConstant(1, Cond.getValueType()));
8059 // Zero extend the condition if needed.
8060 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8062 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8063 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8064 DAG.getConstant(ShAmt, MVT::i8));
8067 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8068 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8069 if (NeedsCondInvert) // Invert the condition if needed.
8070 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8071 DAG.getConstant(1, Cond.getValueType()));
8073 // Zero extend the condition if needed.
8074 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8075 FalseC->getValueType(0), Cond);
8076 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8077 SDValue(FalseC, 0));
8080 // Optimize cases that will turn into an LEA instruction. This requires
8081 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8082 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8083 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8084 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8086 bool isFastMultiplier = false;
8087 if (Diff < 10) {
8088 switch ((unsigned char)Diff) {
8089 default: break;
8090 case 1: // result = add base, cond
8091 case 2: // result = lea base( , cond*2)
8092 case 3: // result = lea base(cond, cond*2)
8093 case 4: // result = lea base( , cond*4)
8094 case 5: // result = lea base(cond, cond*4)
8095 case 8: // result = lea base( , cond*8)
8096 case 9: // result = lea base(cond, cond*8)
8097 isFastMultiplier = true;
8098 break;
8102 if (isFastMultiplier) {
8103 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8104 if (NeedsCondInvert) // Invert the condition if needed.
8105 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8106 DAG.getConstant(1, Cond.getValueType()));
8108 // Zero extend the condition if needed.
8109 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8110 Cond);
8111 // Scale the condition by the difference.
8112 if (Diff != 1)
8113 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8114 DAG.getConstant(Diff, Cond.getValueType()));
8116 // Add the base if non-zero.
8117 if (FalseC->getAPIntValue() != 0)
8118 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8119 SDValue(FalseC, 0));
8120 return Cond;
8126 return SDValue();
8129 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8130 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
8131 TargetLowering::DAGCombinerInfo &DCI) {
8132 DebugLoc DL = N->getDebugLoc();
8134 // If the flag operand isn't dead, don't touch this CMOV.
8135 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
8136 return SDValue();
8138 // If this is a select between two integer constants, try to do some
8139 // optimizations. Note that the operands are ordered the opposite of SELECT
8140 // operands.
8141 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
8142 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
8143 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8144 // larger than FalseC (the false value).
8145 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
8147 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
8148 CC = X86::GetOppositeBranchCondition(CC);
8149 std::swap(TrueC, FalseC);
8152 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8153 // This is efficient for any integer data type (including i8/i16) and
8154 // shift amount.
8155 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
8156 SDValue Cond = N->getOperand(3);
8157 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8158 DAG.getConstant(CC, MVT::i8), Cond);
8160 // Zero extend the condition if needed.
8161 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
8163 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8164 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
8165 DAG.getConstant(ShAmt, MVT::i8));
8166 if (N->getNumValues() == 2) // Dead flag value?
8167 return DCI.CombineTo(N, Cond, SDValue());
8168 return Cond;
8171 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8172 // for any integer data type, including i8/i16.
8173 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8174 SDValue Cond = N->getOperand(3);
8175 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8176 DAG.getConstant(CC, MVT::i8), Cond);
8178 // Zero extend the condition if needed.
8179 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8180 FalseC->getValueType(0), Cond);
8181 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8182 SDValue(FalseC, 0));
8184 if (N->getNumValues() == 2) // Dead flag value?
8185 return DCI.CombineTo(N, Cond, SDValue());
8186 return Cond;
8189 // Optimize cases that will turn into an LEA instruction. This requires
8190 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8191 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8192 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8193 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
8195 bool isFastMultiplier = false;
8196 if (Diff < 10) {
8197 switch ((unsigned char)Diff) {
8198 default: break;
8199 case 1: // result = add base, cond
8200 case 2: // result = lea base( , cond*2)
8201 case 3: // result = lea base(cond, cond*2)
8202 case 4: // result = lea base( , cond*4)
8203 case 5: // result = lea base(cond, cond*4)
8204 case 8: // result = lea base( , cond*8)
8205 case 9: // result = lea base(cond, cond*8)
8206 isFastMultiplier = true;
8207 break;
8211 if (isFastMultiplier) {
8212 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
8213 SDValue Cond = N->getOperand(3);
8214 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8215 DAG.getConstant(CC, MVT::i8), Cond);
8216 // Zero extend the condition if needed.
8217 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
8218 Cond);
8219 // Scale the condition by the difference.
8220 if (Diff != 1)
8221 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
8222 DAG.getConstant(Diff, Cond.getValueType()));
8224 // Add the base if non-zero.
8225 if (FalseC->getAPIntValue() != 0)
8226 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8227 SDValue(FalseC, 0));
8228 if (N->getNumValues() == 2) // Dead flag value?
8229 return DCI.CombineTo(N, Cond, SDValue());
8230 return Cond;
8235 return SDValue();
8239 /// PerformMulCombine - Optimize a single multiply with constant into two
8240 /// in order to implement it with two cheaper instructions, e.g.
8241 /// LEA + SHL, LEA + LEA.
8242 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
8243 TargetLowering::DAGCombinerInfo &DCI) {
8244 if (DAG.getMachineFunction().
8245 getFunction()->hasFnAttr(Attribute::OptimizeForSize))
8246 return SDValue();
8248 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8249 return SDValue();
8251 MVT VT = N->getValueType(0);
8252 if (VT != MVT::i64)
8253 return SDValue();
8255 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8256 if (!C)
8257 return SDValue();
8258 uint64_t MulAmt = C->getZExtValue();
8259 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
8260 return SDValue();
8262 uint64_t MulAmt1 = 0;
8263 uint64_t MulAmt2 = 0;
8264 if ((MulAmt % 9) == 0) {
8265 MulAmt1 = 9;
8266 MulAmt2 = MulAmt / 9;
8267 } else if ((MulAmt % 5) == 0) {
8268 MulAmt1 = 5;
8269 MulAmt2 = MulAmt / 5;
8270 } else if ((MulAmt % 3) == 0) {
8271 MulAmt1 = 3;
8272 MulAmt2 = MulAmt / 3;
8274 if (MulAmt2 &&
8275 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
8276 DebugLoc DL = N->getDebugLoc();
8278 if (isPowerOf2_64(MulAmt2) &&
8279 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
8280 // If second multiplifer is pow2, issue it first. We want the multiply by
8281 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8282 // is an add.
8283 std::swap(MulAmt1, MulAmt2);
8285 SDValue NewMul;
8286 if (isPowerOf2_64(MulAmt1))
8287 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
8288 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
8289 else
8290 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
8291 DAG.getConstant(MulAmt1, VT));
8293 if (isPowerOf2_64(MulAmt2))
8294 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
8295 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
8296 else
8297 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
8298 DAG.getConstant(MulAmt2, VT));
8300 // Do not add new nodes to DAG combiner worklist.
8301 DCI.CombineTo(N, NewMul, false);
8303 return SDValue();
8307 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8308 /// when possible.
8309 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
8310 const X86Subtarget *Subtarget) {
8311 // On X86 with SSE2 support, we can transform this to a vector shift if
8312 // all elements are shifted by the same amount. We can't do this in legalize
8313 // because the a constant vector is typically transformed to a constant pool
8314 // so we have no knowledge of the shift amount.
8315 if (!Subtarget->hasSSE2())
8316 return SDValue();
8318 MVT VT = N->getValueType(0);
8319 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
8320 return SDValue();
8322 SDValue ShAmtOp = N->getOperand(1);
8323 MVT EltVT = VT.getVectorElementType();
8324 DebugLoc DL = N->getDebugLoc();
8325 SDValue BaseShAmt;
8326 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
8327 unsigned NumElts = VT.getVectorNumElements();
8328 unsigned i = 0;
8329 for (; i != NumElts; ++i) {
8330 SDValue Arg = ShAmtOp.getOperand(i);
8331 if (Arg.getOpcode() == ISD::UNDEF) continue;
8332 BaseShAmt = Arg;
8333 break;
8335 for (; i != NumElts; ++i) {
8336 SDValue Arg = ShAmtOp.getOperand(i);
8337 if (Arg.getOpcode() == ISD::UNDEF) continue;
8338 if (Arg != BaseShAmt) {
8339 return SDValue();
8342 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
8343 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
8344 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
8345 DAG.getIntPtrConstant(0));
8346 } else
8347 return SDValue();
8349 if (EltVT.bitsGT(MVT::i32))
8350 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
8351 else if (EltVT.bitsLT(MVT::i32))
8352 BaseShAmt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, BaseShAmt);
8354 // The shift amount is identical so we can do a vector shift.
8355 SDValue ValOp = N->getOperand(0);
8356 switch (N->getOpcode()) {
8357 default:
8358 llvm_unreachable("Unknown shift opcode!");
8359 break;
8360 case ISD::SHL:
8361 if (VT == MVT::v2i64)
8362 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8363 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8364 ValOp, BaseShAmt);
8365 if (VT == MVT::v4i32)
8366 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8367 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8368 ValOp, BaseShAmt);
8369 if (VT == MVT::v8i16)
8370 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8371 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8372 ValOp, BaseShAmt);
8373 break;
8374 case ISD::SRA:
8375 if (VT == MVT::v4i32)
8376 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8377 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
8378 ValOp, BaseShAmt);
8379 if (VT == MVT::v8i16)
8380 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8381 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
8382 ValOp, BaseShAmt);
8383 break;
8384 case ISD::SRL:
8385 if (VT == MVT::v2i64)
8386 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8387 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8388 ValOp, BaseShAmt);
8389 if (VT == MVT::v4i32)
8390 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8391 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
8392 ValOp, BaseShAmt);
8393 if (VT == MVT::v8i16)
8394 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
8395 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
8396 ValOp, BaseShAmt);
8397 break;
8399 return SDValue();
8402 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8403 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
8404 const X86Subtarget *Subtarget) {
8405 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8406 // the FP state in cases where an emms may be missing.
8407 // A preferable solution to the general problem is to figure out the right
8408 // places to insert EMMS. This qualifies as a quick hack.
8410 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8411 StoreSDNode *St = cast<StoreSDNode>(N);
8412 MVT VT = St->getValue().getValueType();
8413 if (VT.getSizeInBits() != 64)
8414 return SDValue();
8416 const Function *F = DAG.getMachineFunction().getFunction();
8417 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
8418 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
8419 && Subtarget->hasSSE2();
8420 if ((VT.isVector() ||
8421 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
8422 isa<LoadSDNode>(St->getValue()) &&
8423 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
8424 St->getChain().hasOneUse() && !St->isVolatile()) {
8425 SDNode* LdVal = St->getValue().getNode();
8426 LoadSDNode *Ld = 0;
8427 int TokenFactorIndex = -1;
8428 SmallVector<SDValue, 8> Ops;
8429 SDNode* ChainVal = St->getChain().getNode();
8430 // Must be a store of a load. We currently handle two cases: the load
8431 // is a direct child, and it's under an intervening TokenFactor. It is
8432 // possible to dig deeper under nested TokenFactors.
8433 if (ChainVal == LdVal)
8434 Ld = cast<LoadSDNode>(St->getChain());
8435 else if (St->getValue().hasOneUse() &&
8436 ChainVal->getOpcode() == ISD::TokenFactor) {
8437 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
8438 if (ChainVal->getOperand(i).getNode() == LdVal) {
8439 TokenFactorIndex = i;
8440 Ld = cast<LoadSDNode>(St->getValue());
8441 } else
8442 Ops.push_back(ChainVal->getOperand(i));
8446 if (!Ld || !ISD::isNormalLoad(Ld))
8447 return SDValue();
8449 // If this is not the MMX case, i.e. we are just turning i64 load/store
8450 // into f64 load/store, avoid the transformation if there are multiple
8451 // uses of the loaded value.
8452 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
8453 return SDValue();
8455 DebugLoc LdDL = Ld->getDebugLoc();
8456 DebugLoc StDL = N->getDebugLoc();
8457 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8458 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8459 // pair instead.
8460 if (Subtarget->is64Bit() || F64IsLegal) {
8461 MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
8462 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
8463 Ld->getBasePtr(), Ld->getSrcValue(),
8464 Ld->getSrcValueOffset(), Ld->isVolatile(),
8465 Ld->getAlignment());
8466 SDValue NewChain = NewLd.getValue(1);
8467 if (TokenFactorIndex != -1) {
8468 Ops.push_back(NewChain);
8469 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8470 Ops.size());
8472 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
8473 St->getSrcValue(), St->getSrcValueOffset(),
8474 St->isVolatile(), St->getAlignment());
8477 // Otherwise, lower to two pairs of 32-bit loads / stores.
8478 SDValue LoAddr = Ld->getBasePtr();
8479 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
8480 DAG.getConstant(4, MVT::i32));
8482 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
8483 Ld->getSrcValue(), Ld->getSrcValueOffset(),
8484 Ld->isVolatile(), Ld->getAlignment());
8485 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
8486 Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
8487 Ld->isVolatile(),
8488 MinAlign(Ld->getAlignment(), 4));
8490 SDValue NewChain = LoLd.getValue(1);
8491 if (TokenFactorIndex != -1) {
8492 Ops.push_back(LoLd);
8493 Ops.push_back(HiLd);
8494 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
8495 Ops.size());
8498 LoAddr = St->getBasePtr();
8499 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
8500 DAG.getConstant(4, MVT::i32));
8502 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
8503 St->getSrcValue(), St->getSrcValueOffset(),
8504 St->isVolatile(), St->getAlignment());
8505 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
8506 St->getSrcValue(),
8507 St->getSrcValueOffset() + 4,
8508 St->isVolatile(),
8509 MinAlign(St->getAlignment(), 4));
8510 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
8512 return SDValue();
8515 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8516 /// X86ISD::FXOR nodes.
8517 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
8518 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
8519 // F[X]OR(0.0, x) -> x
8520 // F[X]OR(x, 0.0) -> x
8521 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8522 if (C->getValueAPF().isPosZero())
8523 return N->getOperand(1);
8524 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8525 if (C->getValueAPF().isPosZero())
8526 return N->getOperand(0);
8527 return SDValue();
8530 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8531 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
8532 // FAND(0.0, x) -> 0.0
8533 // FAND(x, 0.0) -> 0.0
8534 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
8535 if (C->getValueAPF().isPosZero())
8536 return N->getOperand(0);
8537 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
8538 if (C->getValueAPF().isPosZero())
8539 return N->getOperand(1);
8540 return SDValue();
8543 static SDValue PerformBTCombine(SDNode *N,
8544 SelectionDAG &DAG,
8545 TargetLowering::DAGCombinerInfo &DCI) {
8546 // BT ignores high bits in the bit index operand.
8547 SDValue Op1 = N->getOperand(1);
8548 if (Op1.hasOneUse()) {
8549 unsigned BitWidth = Op1.getValueSizeInBits();
8550 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
8551 APInt KnownZero, KnownOne;
8552 TargetLowering::TargetLoweringOpt TLO(DAG);
8553 TargetLowering &TLI = DAG.getTargetLoweringInfo();
8554 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
8555 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
8556 DCI.CommitTargetLoweringOpt(TLO);
8558 return SDValue();
8561 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
8562 SDValue Op = N->getOperand(0);
8563 if (Op.getOpcode() == ISD::BIT_CONVERT)
8564 Op = Op.getOperand(0);
8565 MVT VT = N->getValueType(0), OpVT = Op.getValueType();
8566 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
8567 VT.getVectorElementType().getSizeInBits() ==
8568 OpVT.getVectorElementType().getSizeInBits()) {
8569 return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
8571 return SDValue();
8574 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8575 // Locked instructions, in turn, have implicit fence semantics (all memory
8576 // operations are flushed before issuing the locked instruction, and the
8577 // are not buffered), so we can fold away the common pattern of
8578 // fence-atomic-fence.
8579 static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
8580 SDValue atomic = N->getOperand(0);
8581 switch (atomic.getOpcode()) {
8582 case ISD::ATOMIC_CMP_SWAP:
8583 case ISD::ATOMIC_SWAP:
8584 case ISD::ATOMIC_LOAD_ADD:
8585 case ISD::ATOMIC_LOAD_SUB:
8586 case ISD::ATOMIC_LOAD_AND:
8587 case ISD::ATOMIC_LOAD_OR:
8588 case ISD::ATOMIC_LOAD_XOR:
8589 case ISD::ATOMIC_LOAD_NAND:
8590 case ISD::ATOMIC_LOAD_MIN:
8591 case ISD::ATOMIC_LOAD_MAX:
8592 case ISD::ATOMIC_LOAD_UMIN:
8593 case ISD::ATOMIC_LOAD_UMAX:
8594 break;
8595 default:
8596 return SDValue();
8599 SDValue fence = atomic.getOperand(0);
8600 if (fence.getOpcode() != ISD::MEMBARRIER)
8601 return SDValue();
8603 switch (atomic.getOpcode()) {
8604 case ISD::ATOMIC_CMP_SWAP:
8605 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8606 atomic.getOperand(1), atomic.getOperand(2),
8607 atomic.getOperand(3));
8608 case ISD::ATOMIC_SWAP:
8609 case ISD::ATOMIC_LOAD_ADD:
8610 case ISD::ATOMIC_LOAD_SUB:
8611 case ISD::ATOMIC_LOAD_AND:
8612 case ISD::ATOMIC_LOAD_OR:
8613 case ISD::ATOMIC_LOAD_XOR:
8614 case ISD::ATOMIC_LOAD_NAND:
8615 case ISD::ATOMIC_LOAD_MIN:
8616 case ISD::ATOMIC_LOAD_MAX:
8617 case ISD::ATOMIC_LOAD_UMIN:
8618 case ISD::ATOMIC_LOAD_UMAX:
8619 return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
8620 atomic.getOperand(1), atomic.getOperand(2));
8621 default:
8622 return SDValue();
8626 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
8627 DAGCombinerInfo &DCI) const {
8628 SelectionDAG &DAG = DCI.DAG;
8629 switch (N->getOpcode()) {
8630 default: break;
8631 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
8632 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
8633 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
8634 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
8635 case ISD::SHL:
8636 case ISD::SRA:
8637 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
8638 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
8639 case X86ISD::FXOR:
8640 case X86ISD::FOR: return PerformFORCombine(N, DAG);
8641 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
8642 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
8643 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
8644 case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG);
8647 return SDValue();
8650 //===----------------------------------------------------------------------===//
8651 // X86 Inline Assembly Support
8652 //===----------------------------------------------------------------------===//
8654 /// getConstraintType - Given a constraint letter, return the type of
8655 /// constraint it is for this target.
8656 X86TargetLowering::ConstraintType
8657 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
8658 if (Constraint.size() == 1) {
8659 switch (Constraint[0]) {
8660 case 'A':
8661 return C_Register;
8662 case 'f':
8663 case 'r':
8664 case 'R':
8665 case 'l':
8666 case 'q':
8667 case 'Q':
8668 case 'x':
8669 case 'y':
8670 case 'Y':
8671 return C_RegisterClass;
8672 case 'e':
8673 case 'Z':
8674 return C_Other;
8675 default:
8676 break;
8679 return TargetLowering::getConstraintType(Constraint);
8682 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8683 /// with another that has more specific requirements based on the type of the
8684 /// corresponding operand.
8685 const char *X86TargetLowering::
8686 LowerXConstraint(MVT ConstraintVT) const {
8687 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8688 // 'f' like normal targets.
8689 if (ConstraintVT.isFloatingPoint()) {
8690 if (Subtarget->hasSSE2())
8691 return "Y";
8692 if (Subtarget->hasSSE1())
8693 return "x";
8696 return TargetLowering::LowerXConstraint(ConstraintVT);
8699 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8700 /// vector. If it is invalid, don't add anything to Ops.
8701 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8702 char Constraint,
8703 bool hasMemory,
8704 std::vector<SDValue>&Ops,
8705 SelectionDAG &DAG) const {
8706 SDValue Result(0, 0);
8708 switch (Constraint) {
8709 default: break;
8710 case 'I':
8711 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8712 if (C->getZExtValue() <= 31) {
8713 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8714 break;
8717 return;
8718 case 'J':
8719 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8720 if (C->getZExtValue() <= 63) {
8721 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8722 break;
8725 return;
8726 case 'K':
8727 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8728 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
8729 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8730 break;
8733 return;
8734 case 'N':
8735 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8736 if (C->getZExtValue() <= 255) {
8737 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8738 break;
8741 return;
8742 case 'e': {
8743 // 32-bit signed value
8744 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8745 const ConstantInt *CI = C->getConstantIntValue();
8746 if (CI->isValueValidForType(Type::Int32Ty, C->getSExtValue())) {
8747 // Widen to 64 bits here to get it sign extended.
8748 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
8749 break;
8751 // FIXME gcc accepts some relocatable values here too, but only in certain
8752 // memory models; it's complicated.
8754 return;
8756 case 'Z': {
8757 // 32-bit unsigned value
8758 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
8759 const ConstantInt *CI = C->getConstantIntValue();
8760 if (CI->isValueValidForType(Type::Int32Ty, C->getZExtValue())) {
8761 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
8762 break;
8765 // FIXME gcc accepts some relocatable values here too, but only in certain
8766 // memory models; it's complicated.
8767 return;
8769 case 'i': {
8770 // Literal immediates are always ok.
8771 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
8772 // Widen to 64 bits here to get it sign extended.
8773 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
8774 break;
8777 // If we are in non-pic codegen mode, we allow the address of a global (with
8778 // an optional displacement) to be used with 'i'.
8779 GlobalAddressSDNode *GA = 0;
8780 int64_t Offset = 0;
8782 // Match either (GA), (GA+C), (GA+C1+C2), etc.
8783 while (1) {
8784 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
8785 Offset += GA->getOffset();
8786 break;
8787 } else if (Op.getOpcode() == ISD::ADD) {
8788 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8789 Offset += C->getZExtValue();
8790 Op = Op.getOperand(0);
8791 continue;
8793 } else if (Op.getOpcode() == ISD::SUB) {
8794 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8795 Offset += -C->getZExtValue();
8796 Op = Op.getOperand(0);
8797 continue;
8801 // Otherwise, this isn't something we can handle, reject it.
8802 return;
8805 GlobalValue *GV = GA->getGlobal();
8806 // If we require an extra load to get this address, as in PIC mode, we
8807 // can't accept it.
8808 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
8809 getTargetMachine())))
8810 return;
8812 if (hasMemory)
8813 Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
8814 else
8815 Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
8816 Result = Op;
8817 break;
8821 if (Result.getNode()) {
8822 Ops.push_back(Result);
8823 return;
8825 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
8826 Ops, DAG);
8829 std::vector<unsigned> X86TargetLowering::
8830 getRegClassForInlineAsmConstraint(const std::string &Constraint,
8831 MVT VT) const {
8832 if (Constraint.size() == 1) {
8833 // FIXME: not handling fp-stack yet!
8834 switch (Constraint[0]) { // GCC X86 Constraint Letters
8835 default: break; // Unknown constraint letter
8836 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
8837 case 'Q': // Q_REGS
8838 if (VT == MVT::i32)
8839 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
8840 else if (VT == MVT::i16)
8841 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
8842 else if (VT == MVT::i8)
8843 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
8844 else if (VT == MVT::i64)
8845 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
8846 break;
8850 return std::vector<unsigned>();
8853 std::pair<unsigned, const TargetRegisterClass*>
8854 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8855 MVT VT) const {
8856 // First, see if this is a constraint that directly corresponds to an LLVM
8857 // register class.
8858 if (Constraint.size() == 1) {
8859 // GCC Constraint Letters
8860 switch (Constraint[0]) {
8861 default: break;
8862 case 'r': // GENERAL_REGS
8863 case 'R': // LEGACY_REGS
8864 case 'l': // INDEX_REGS
8865 if (VT == MVT::i8)
8866 return std::make_pair(0U, X86::GR8RegisterClass);
8867 if (VT == MVT::i16)
8868 return std::make_pair(0U, X86::GR16RegisterClass);
8869 if (VT == MVT::i32 || !Subtarget->is64Bit())
8870 return std::make_pair(0U, X86::GR32RegisterClass);
8871 return std::make_pair(0U, X86::GR64RegisterClass);
8872 case 'f': // FP Stack registers.
8873 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8874 // value to the correct fpstack register class.
8875 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
8876 return std::make_pair(0U, X86::RFP32RegisterClass);
8877 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
8878 return std::make_pair(0U, X86::RFP64RegisterClass);
8879 return std::make_pair(0U, X86::RFP80RegisterClass);
8880 case 'y': // MMX_REGS if MMX allowed.
8881 if (!Subtarget->hasMMX()) break;
8882 return std::make_pair(0U, X86::VR64RegisterClass);
8883 case 'Y': // SSE_REGS if SSE2 allowed
8884 if (!Subtarget->hasSSE2()) break;
8885 // FALL THROUGH.
8886 case 'x': // SSE_REGS if SSE1 allowed
8887 if (!Subtarget->hasSSE1()) break;
8889 switch (VT.getSimpleVT()) {
8890 default: break;
8891 // Scalar SSE types.
8892 case MVT::f32:
8893 case MVT::i32:
8894 return std::make_pair(0U, X86::FR32RegisterClass);
8895 case MVT::f64:
8896 case MVT::i64:
8897 return std::make_pair(0U, X86::FR64RegisterClass);
8898 // Vector types.
8899 case MVT::v16i8:
8900 case MVT::v8i16:
8901 case MVT::v4i32:
8902 case MVT::v2i64:
8903 case MVT::v4f32:
8904 case MVT::v2f64:
8905 return std::make_pair(0U, X86::VR128RegisterClass);
8907 break;
8911 // Use the default implementation in TargetLowering to convert the register
8912 // constraint into a member of a register class.
8913 std::pair<unsigned, const TargetRegisterClass*> Res;
8914 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8916 // Not found as a standard register?
8917 if (Res.second == 0) {
8918 // GCC calls "st(0)" just plain "st".
8919 if (StringsEqualNoCase("{st}", Constraint)) {
8920 Res.first = X86::ST0;
8921 Res.second = X86::RFP80RegisterClass;
8923 // 'A' means EAX + EDX.
8924 if (Constraint == "A") {
8925 Res.first = X86::EAX;
8926 Res.second = X86::GRADRegisterClass;
8928 return Res;
8931 // Otherwise, check to see if this is a register class of the wrong value
8932 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8933 // turn into {ax},{dx}.
8934 if (Res.second->hasType(VT))
8935 return Res; // Correct type already, nothing to do.
8937 // All of the single-register GCC register classes map their values onto
8938 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
8939 // really want an 8-bit or 32-bit register, map to the appropriate register
8940 // class and return the appropriate register.
8941 if (Res.second == X86::GR16RegisterClass) {
8942 if (VT == MVT::i8) {
8943 unsigned DestReg = 0;
8944 switch (Res.first) {
8945 default: break;
8946 case X86::AX: DestReg = X86::AL; break;
8947 case X86::DX: DestReg = X86::DL; break;
8948 case X86::CX: DestReg = X86::CL; break;
8949 case X86::BX: DestReg = X86::BL; break;
8951 if (DestReg) {
8952 Res.first = DestReg;
8953 Res.second = X86::GR8RegisterClass;
8955 } else if (VT == MVT::i32) {
8956 unsigned DestReg = 0;
8957 switch (Res.first) {
8958 default: break;
8959 case X86::AX: DestReg = X86::EAX; break;
8960 case X86::DX: DestReg = X86::EDX; break;
8961 case X86::CX: DestReg = X86::ECX; break;
8962 case X86::BX: DestReg = X86::EBX; break;
8963 case X86::SI: DestReg = X86::ESI; break;
8964 case X86::DI: DestReg = X86::EDI; break;
8965 case X86::BP: DestReg = X86::EBP; break;
8966 case X86::SP: DestReg = X86::ESP; break;
8968 if (DestReg) {
8969 Res.first = DestReg;
8970 Res.second = X86::GR32RegisterClass;
8972 } else if (VT == MVT::i64) {
8973 unsigned DestReg = 0;
8974 switch (Res.first) {
8975 default: break;
8976 case X86::AX: DestReg = X86::RAX; break;
8977 case X86::DX: DestReg = X86::RDX; break;
8978 case X86::CX: DestReg = X86::RCX; break;
8979 case X86::BX: DestReg = X86::RBX; break;
8980 case X86::SI: DestReg = X86::RSI; break;
8981 case X86::DI: DestReg = X86::RDI; break;
8982 case X86::BP: DestReg = X86::RBP; break;
8983 case X86::SP: DestReg = X86::RSP; break;
8985 if (DestReg) {
8986 Res.first = DestReg;
8987 Res.second = X86::GR64RegisterClass;
8990 } else if (Res.second == X86::FR32RegisterClass ||
8991 Res.second == X86::FR64RegisterClass ||
8992 Res.second == X86::VR128RegisterClass) {
8993 // Handle references to XMM physical registers that got mapped into the
8994 // wrong class. This can happen with constraints like {xmm0} where the
8995 // target independent register mapper will just pick the first match it can
8996 // find, ignoring the required type.
8997 if (VT == MVT::f32)
8998 Res.second = X86::FR32RegisterClass;
8999 else if (VT == MVT::f64)
9000 Res.second = X86::FR64RegisterClass;
9001 else if (X86::VR128RegisterClass->hasType(VT))
9002 Res.second = X86::VR128RegisterClass;
9005 return Res;
9008 //===----------------------------------------------------------------------===//
9009 // X86 Widen vector type
9010 //===----------------------------------------------------------------------===//
9012 /// getWidenVectorType: given a vector type, returns the type to widen
9013 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9014 /// If there is no vector type that we want to widen to, returns MVT::Other
9015 /// When and where to widen is target dependent based on the cost of
9016 /// scalarizing vs using the wider vector type.
9018 MVT X86TargetLowering::getWidenVectorType(MVT VT) const {
9019 assert(VT.isVector());
9020 if (isTypeLegal(VT))
9021 return VT;
9023 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9024 // type based on element type. This would speed up our search (though
9025 // it may not be worth it since the size of the list is relatively
9026 // small).
9027 MVT EltVT = VT.getVectorElementType();
9028 unsigned NElts = VT.getVectorNumElements();
9030 // On X86, it make sense to widen any vector wider than 1
9031 if (NElts <= 1)
9032 return MVT::Other;
9034 for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
9035 nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
9036 MVT SVT = (MVT::SimpleValueType)nVT;
9038 if (isTypeLegal(SVT) &&
9039 SVT.getVectorElementType() == EltVT &&
9040 SVT.getVectorNumElements() > NElts)
9041 return SVT;
9043 return MVT::Other;