1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrBuilder.h"
17 #include "X86ISelLowering.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/GlobalAlias.h"
23 #include "llvm/GlobalVariable.h"
24 #include "llvm/Function.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/VectorExtras.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/ADT/SmallSet.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/raw_ostream.h"
45 DisableMMX("disable-mmx", cl::Hidden
, cl::desc("Disable use of MMX"));
47 // Forward declarations.
48 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
51 X86TargetLowering::X86TargetLowering(X86TargetMachine
&TM
)
52 : TargetLowering(TM
) {
53 Subtarget
= &TM
.getSubtarget
<X86Subtarget
>();
54 X86ScalarSSEf64
= Subtarget
->hasSSE2();
55 X86ScalarSSEf32
= Subtarget
->hasSSE1();
56 X86StackPtr
= Subtarget
->is64Bit() ? X86::RSP
: X86::ESP
;
58 RegInfo
= TM
.getRegisterInfo();
61 // Set up the TargetLowering object.
63 // X86 is weird, it always uses i8 for shift amounts and setcc results.
64 setShiftAmountType(MVT::i8
);
65 setBooleanContents(ZeroOrOneBooleanContent
);
66 setSchedulingPreference(SchedulingForRegPressure
);
67 setShiftAmountFlavor(Mask
); // shl X, 32 == shl X, 0
68 setStackPointerRegisterToSaveRestore(X86StackPtr
);
70 if (Subtarget
->isTargetDarwin()) {
71 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
72 setUseUnderscoreSetJmp(false);
73 setUseUnderscoreLongJmp(false);
74 } else if (Subtarget
->isTargetMingw()) {
75 // MS runtime is weird: it exports _setjmp, but longjmp!
76 setUseUnderscoreSetJmp(true);
77 setUseUnderscoreLongJmp(false);
79 setUseUnderscoreSetJmp(true);
80 setUseUnderscoreLongJmp(true);
83 // Set up the register classes.
84 addRegisterClass(MVT::i8
, X86::GR8RegisterClass
);
85 addRegisterClass(MVT::i16
, X86::GR16RegisterClass
);
86 addRegisterClass(MVT::i32
, X86::GR32RegisterClass
);
87 if (Subtarget
->is64Bit())
88 addRegisterClass(MVT::i64
, X86::GR64RegisterClass
);
90 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
92 // We don't accept any truncstore of integer registers.
93 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
94 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
95 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
96 setTruncStoreAction(MVT::i32
, MVT::i16
, Expand
);
97 setTruncStoreAction(MVT::i32
, MVT::i8
, Expand
);
98 setTruncStoreAction(MVT::i16
, MVT::i8
, Expand
);
100 // SETOEQ and SETUNE require checking two conditions.
101 setCondCodeAction(ISD::SETOEQ
, MVT::f32
, Expand
);
102 setCondCodeAction(ISD::SETOEQ
, MVT::f64
, Expand
);
103 setCondCodeAction(ISD::SETOEQ
, MVT::f80
, Expand
);
104 setCondCodeAction(ISD::SETUNE
, MVT::f32
, Expand
);
105 setCondCodeAction(ISD::SETUNE
, MVT::f64
, Expand
);
106 setCondCodeAction(ISD::SETUNE
, MVT::f80
, Expand
);
108 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
111 setOperationAction(ISD::UINT_TO_FP
, MVT::i8
, Promote
);
112 setOperationAction(ISD::UINT_TO_FP
, MVT::i16
, Promote
);
114 if (Subtarget
->is64Bit()) {
115 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Promote
);
116 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
117 } else if (!UseSoftFloat
) {
118 if (X86ScalarSSEf64
) {
119 // We have an impenetrably clever algorithm for ui64->double only.
120 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
122 // We have an algorithm for SSE2, and we turn this into a 64-bit
123 // FILD for other targets.
124 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
127 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
129 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
130 setOperationAction(ISD::SINT_TO_FP
, MVT::i8
, Promote
);
133 // SSE has no i16 to fp conversion, only i32
134 if (X86ScalarSSEf32
) {
135 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
136 // f32 and f64 cases are Legal, f80 case is not
137 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
139 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Custom
);
140 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
143 setOperationAction(ISD::SINT_TO_FP
, MVT::i16
, Promote
);
144 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Promote
);
147 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
148 // are Legal, f80 is custom lowered.
149 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
150 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
152 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
154 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Promote
);
155 setOperationAction(ISD::FP_TO_SINT
, MVT::i8
, Promote
);
157 if (X86ScalarSSEf32
) {
158 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Promote
);
159 // f32 and f64 cases are Legal, f80 case is not
160 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
162 setOperationAction(ISD::FP_TO_SINT
, MVT::i16
, Custom
);
163 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
166 // Handle FP_TO_UINT by promoting the destination to a larger signed
168 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Promote
);
169 setOperationAction(ISD::FP_TO_UINT
, MVT::i8
, Promote
);
170 setOperationAction(ISD::FP_TO_UINT
, MVT::i16
, Promote
);
172 if (Subtarget
->is64Bit()) {
173 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
174 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
175 } else if (!UseSoftFloat
) {
176 if (X86ScalarSSEf32
&& !Subtarget
->hasSSE3())
177 // Expand FP_TO_UINT into a select.
178 // FIXME: We would like to use a Custom expander here eventually to do
179 // the optimal thing for SSE vs. the default expansion in the legalizer.
180 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
182 // With SSE3 we can use fisttpll to convert to a signed i64; without
183 // SSE, we're stuck with a fistpll.
184 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
187 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
188 if (!X86ScalarSSEf64
) {
189 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
190 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
193 // Scalar integer divide and remainder are lowered to use operations that
194 // produce two results, to match the available instructions. This exposes
195 // the two-result form to trivial CSE, which is able to combine x/y and x%y
196 // into a single instruction.
198 // Scalar integer multiply-high is also lowered to use two-result
199 // operations, to match the available instructions. However, plain multiply
200 // (low) operations are left as Legal, as there are single-result
201 // instructions for this in x86. Using the two-result multiply instructions
202 // when both high and low results are needed must be arranged by dagcombine.
203 setOperationAction(ISD::MULHS
, MVT::i8
, Expand
);
204 setOperationAction(ISD::MULHU
, MVT::i8
, Expand
);
205 setOperationAction(ISD::SDIV
, MVT::i8
, Expand
);
206 setOperationAction(ISD::UDIV
, MVT::i8
, Expand
);
207 setOperationAction(ISD::SREM
, MVT::i8
, Expand
);
208 setOperationAction(ISD::UREM
, MVT::i8
, Expand
);
209 setOperationAction(ISD::MULHS
, MVT::i16
, Expand
);
210 setOperationAction(ISD::MULHU
, MVT::i16
, Expand
);
211 setOperationAction(ISD::SDIV
, MVT::i16
, Expand
);
212 setOperationAction(ISD::UDIV
, MVT::i16
, Expand
);
213 setOperationAction(ISD::SREM
, MVT::i16
, Expand
);
214 setOperationAction(ISD::UREM
, MVT::i16
, Expand
);
215 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
216 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
217 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
218 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
219 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
220 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
221 setOperationAction(ISD::MULHS
, MVT::i64
, Expand
);
222 setOperationAction(ISD::MULHU
, MVT::i64
, Expand
);
223 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
224 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
225 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
226 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
228 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
229 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
230 setOperationAction(ISD::BR_CC
, MVT::Other
, Expand
);
231 setOperationAction(ISD::SELECT_CC
, MVT::Other
, Expand
);
232 if (Subtarget
->is64Bit())
233 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
234 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Legal
);
235 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Legal
);
236 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
237 setOperationAction(ISD::FP_ROUND_INREG
, MVT::f32
, Expand
);
238 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
239 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
240 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
241 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
243 setOperationAction(ISD::CTPOP
, MVT::i8
, Expand
);
244 setOperationAction(ISD::CTTZ
, MVT::i8
, Custom
);
245 setOperationAction(ISD::CTLZ
, MVT::i8
, Custom
);
246 setOperationAction(ISD::CTPOP
, MVT::i16
, Expand
);
247 setOperationAction(ISD::CTTZ
, MVT::i16
, Custom
);
248 setOperationAction(ISD::CTLZ
, MVT::i16
, Custom
);
249 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
250 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
251 setOperationAction(ISD::CTLZ
, MVT::i32
, Custom
);
252 if (Subtarget
->is64Bit()) {
253 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
254 setOperationAction(ISD::CTTZ
, MVT::i64
, Custom
);
255 setOperationAction(ISD::CTLZ
, MVT::i64
, Custom
);
258 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
259 setOperationAction(ISD::BSWAP
, MVT::i16
, Expand
);
261 // These should be promoted to a larger select which is supported.
262 setOperationAction(ISD::SELECT
, MVT::i1
, Promote
);
263 setOperationAction(ISD::SELECT
, MVT::i8
, Promote
);
264 // X86 wants to expand cmov itself.
265 setOperationAction(ISD::SELECT
, MVT::i16
, Custom
);
266 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
267 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
268 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
269 setOperationAction(ISD::SELECT
, MVT::f80
, Custom
);
270 setOperationAction(ISD::SETCC
, MVT::i8
, Custom
);
271 setOperationAction(ISD::SETCC
, MVT::i16
, Custom
);
272 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
273 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
274 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
275 setOperationAction(ISD::SETCC
, MVT::f80
, Custom
);
276 if (Subtarget
->is64Bit()) {
277 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
278 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
280 // X86 ret instruction may pop stack.
281 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
282 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
285 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
286 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
287 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
288 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
289 if (Subtarget
->is64Bit())
290 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
291 setOperationAction(ISD::ExternalSymbol
, MVT::i32
, Custom
);
292 if (Subtarget
->is64Bit()) {
293 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
294 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
295 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
296 setOperationAction(ISD::ExternalSymbol
, MVT::i64
, Custom
);
298 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
299 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
300 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
301 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
302 if (Subtarget
->is64Bit()) {
303 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
304 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
305 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
308 if (Subtarget
->hasSSE1())
309 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
311 if (!Subtarget
->hasSSE2())
312 setOperationAction(ISD::MEMBARRIER
, MVT::Other
, Expand
);
314 // Expand certain atomics
315 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i8
, Custom
);
316 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i16
, Custom
);
317 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
318 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
320 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i8
, Custom
);
321 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i16
, Custom
);
322 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
323 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
325 if (!Subtarget
->is64Bit()) {
326 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i64
, Custom
);
327 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
328 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
329 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i64
, Custom
);
330 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i64
, Custom
);
331 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i64
, Custom
);
332 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i64
, Custom
);
335 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
336 setOperationAction(ISD::DBG_STOPPOINT
, MVT::Other
, Expand
);
337 // FIXME - use subtarget debug flags
338 if (!Subtarget
->isTargetDarwin() &&
339 !Subtarget
->isTargetELF() &&
340 !Subtarget
->isTargetCygMing()) {
341 setOperationAction(ISD::DBG_LABEL
, MVT::Other
, Expand
);
342 setOperationAction(ISD::EH_LABEL
, MVT::Other
, Expand
);
345 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
346 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
347 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
348 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
349 if (Subtarget
->is64Bit()) {
350 setExceptionPointerRegister(X86::RAX
);
351 setExceptionSelectorRegister(X86::RDX
);
353 setExceptionPointerRegister(X86::EAX
);
354 setExceptionSelectorRegister(X86::EDX
);
356 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
357 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i64
, Custom
);
359 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
361 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
363 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
364 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
365 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
366 if (Subtarget
->is64Bit()) {
367 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
368 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
370 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
371 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
374 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
375 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
376 if (Subtarget
->is64Bit())
377 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
378 if (Subtarget
->isTargetCygMing())
379 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
381 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
383 if (!UseSoftFloat
&& X86ScalarSSEf64
) {
384 // f32 and f64 use SSE.
385 // Set up the FP register classes.
386 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
387 addRegisterClass(MVT::f64
, X86::FR64RegisterClass
);
389 // Use ANDPD to simulate FABS.
390 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
391 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
393 // Use XORP to simulate FNEG.
394 setOperationAction(ISD::FNEG
, MVT::f64
, Custom
);
395 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
397 // Use ANDPD and ORPD to simulate FCOPYSIGN.
398 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
399 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
401 // We don't support sin/cos/fmod
402 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
403 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
404 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
405 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
407 // Expand FP immediates into loads from the stack, except for the special
409 addLegalFPImmediate(APFloat(+0.0)); // xorpd
410 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
411 } else if (!UseSoftFloat
&& X86ScalarSSEf32
) {
412 // Use SSE for f32, x87 for f64.
413 // Set up the FP register classes.
414 addRegisterClass(MVT::f32
, X86::FR32RegisterClass
);
415 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
417 // Use ANDPS to simulate FABS.
418 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
420 // Use XORP to simulate FNEG.
421 setOperationAction(ISD::FNEG
, MVT::f32
, Custom
);
423 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
425 // Use ANDPS and ORPS to simulate FCOPYSIGN.
426 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
427 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
429 // We don't support sin/cos/fmod
430 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
431 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
433 // Special cases we handle for FP constants.
434 addLegalFPImmediate(APFloat(+0.0f
)); // xorps
435 addLegalFPImmediate(APFloat(+0.0)); // FLD0
436 addLegalFPImmediate(APFloat(+1.0)); // FLD1
437 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
438 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
441 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
442 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
444 } else if (!UseSoftFloat
) {
445 // f32 and f64 in x87.
446 // Set up the FP register classes.
447 addRegisterClass(MVT::f64
, X86::RFP64RegisterClass
);
448 addRegisterClass(MVT::f32
, X86::RFP32RegisterClass
);
450 setOperationAction(ISD::UNDEF
, MVT::f64
, Expand
);
451 setOperationAction(ISD::UNDEF
, MVT::f32
, Expand
);
452 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
453 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
456 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
457 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
459 addLegalFPImmediate(APFloat(+0.0)); // FLD0
460 addLegalFPImmediate(APFloat(+1.0)); // FLD1
461 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
462 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
463 addLegalFPImmediate(APFloat(+0.0f
)); // FLD0
464 addLegalFPImmediate(APFloat(+1.0f
)); // FLD1
465 addLegalFPImmediate(APFloat(-0.0f
)); // FLD0/FCHS
466 addLegalFPImmediate(APFloat(-1.0f
)); // FLD1/FCHS
469 // Long double always uses X87.
471 addRegisterClass(MVT::f80
, X86::RFP80RegisterClass
);
472 setOperationAction(ISD::UNDEF
, MVT::f80
, Expand
);
473 setOperationAction(ISD::FCOPYSIGN
, MVT::f80
, Expand
);
476 APFloat
TmpFlt(+0.0);
477 TmpFlt
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
479 addLegalFPImmediate(TmpFlt
); // FLD0
481 addLegalFPImmediate(TmpFlt
); // FLD0/FCHS
482 APFloat
TmpFlt2(+1.0);
483 TmpFlt2
.convert(APFloat::x87DoubleExtended
, APFloat::rmNearestTiesToEven
,
485 addLegalFPImmediate(TmpFlt2
); // FLD1
486 TmpFlt2
.changeSign();
487 addLegalFPImmediate(TmpFlt2
); // FLD1/FCHS
491 setOperationAction(ISD::FSIN
, MVT::f80
, Expand
);
492 setOperationAction(ISD::FCOS
, MVT::f80
, Expand
);
496 // Always use a library call for pow.
497 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
498 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
499 setOperationAction(ISD::FPOW
, MVT::f80
, Expand
);
501 setOperationAction(ISD::FLOG
, MVT::f80
, Expand
);
502 setOperationAction(ISD::FLOG2
, MVT::f80
, Expand
);
503 setOperationAction(ISD::FLOG10
, MVT::f80
, Expand
);
504 setOperationAction(ISD::FEXP
, MVT::f80
, Expand
);
505 setOperationAction(ISD::FEXP2
, MVT::f80
, Expand
);
507 // First set operation action for all vector types to either promote
508 // (for widening) or expand (for scalarization). Then we will selectively
509 // turn on ones that can be effectively codegen'd.
510 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
511 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
512 setOperationAction(ISD::ADD
, (MVT::SimpleValueType
)VT
, Expand
);
513 setOperationAction(ISD::SUB
, (MVT::SimpleValueType
)VT
, Expand
);
514 setOperationAction(ISD::FADD
, (MVT::SimpleValueType
)VT
, Expand
);
515 setOperationAction(ISD::FNEG
, (MVT::SimpleValueType
)VT
, Expand
);
516 setOperationAction(ISD::FSUB
, (MVT::SimpleValueType
)VT
, Expand
);
517 setOperationAction(ISD::MUL
, (MVT::SimpleValueType
)VT
, Expand
);
518 setOperationAction(ISD::FMUL
, (MVT::SimpleValueType
)VT
, Expand
);
519 setOperationAction(ISD::SDIV
, (MVT::SimpleValueType
)VT
, Expand
);
520 setOperationAction(ISD::UDIV
, (MVT::SimpleValueType
)VT
, Expand
);
521 setOperationAction(ISD::FDIV
, (MVT::SimpleValueType
)VT
, Expand
);
522 setOperationAction(ISD::SREM
, (MVT::SimpleValueType
)VT
, Expand
);
523 setOperationAction(ISD::UREM
, (MVT::SimpleValueType
)VT
, Expand
);
524 setOperationAction(ISD::LOAD
, (MVT::SimpleValueType
)VT
, Expand
);
525 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::SimpleValueType
)VT
, Expand
);
526 setOperationAction(ISD::EXTRACT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
,Expand
);
527 setOperationAction(ISD::EXTRACT_SUBVECTOR
,(MVT::SimpleValueType
)VT
,Expand
);
528 setOperationAction(ISD::INSERT_VECTOR_ELT
,(MVT::SimpleValueType
)VT
, Expand
);
529 setOperationAction(ISD::FABS
, (MVT::SimpleValueType
)VT
, Expand
);
530 setOperationAction(ISD::FSIN
, (MVT::SimpleValueType
)VT
, Expand
);
531 setOperationAction(ISD::FCOS
, (MVT::SimpleValueType
)VT
, Expand
);
532 setOperationAction(ISD::FREM
, (MVT::SimpleValueType
)VT
, Expand
);
533 setOperationAction(ISD::FPOWI
, (MVT::SimpleValueType
)VT
, Expand
);
534 setOperationAction(ISD::FSQRT
, (MVT::SimpleValueType
)VT
, Expand
);
535 setOperationAction(ISD::FCOPYSIGN
, (MVT::SimpleValueType
)VT
, Expand
);
536 setOperationAction(ISD::SMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
537 setOperationAction(ISD::UMUL_LOHI
, (MVT::SimpleValueType
)VT
, Expand
);
538 setOperationAction(ISD::SDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
539 setOperationAction(ISD::UDIVREM
, (MVT::SimpleValueType
)VT
, Expand
);
540 setOperationAction(ISD::FPOW
, (MVT::SimpleValueType
)VT
, Expand
);
541 setOperationAction(ISD::CTPOP
, (MVT::SimpleValueType
)VT
, Expand
);
542 setOperationAction(ISD::CTTZ
, (MVT::SimpleValueType
)VT
, Expand
);
543 setOperationAction(ISD::CTLZ
, (MVT::SimpleValueType
)VT
, Expand
);
544 setOperationAction(ISD::SHL
, (MVT::SimpleValueType
)VT
, Expand
);
545 setOperationAction(ISD::SRA
, (MVT::SimpleValueType
)VT
, Expand
);
546 setOperationAction(ISD::SRL
, (MVT::SimpleValueType
)VT
, Expand
);
547 setOperationAction(ISD::ROTL
, (MVT::SimpleValueType
)VT
, Expand
);
548 setOperationAction(ISD::ROTR
, (MVT::SimpleValueType
)VT
, Expand
);
549 setOperationAction(ISD::BSWAP
, (MVT::SimpleValueType
)VT
, Expand
);
550 setOperationAction(ISD::VSETCC
, (MVT::SimpleValueType
)VT
, Expand
);
551 setOperationAction(ISD::FLOG
, (MVT::SimpleValueType
)VT
, Expand
);
552 setOperationAction(ISD::FLOG2
, (MVT::SimpleValueType
)VT
, Expand
);
553 setOperationAction(ISD::FLOG10
, (MVT::SimpleValueType
)VT
, Expand
);
554 setOperationAction(ISD::FEXP
, (MVT::SimpleValueType
)VT
, Expand
);
555 setOperationAction(ISD::FEXP2
, (MVT::SimpleValueType
)VT
, Expand
);
556 setOperationAction(ISD::FP_TO_UINT
, (MVT::SimpleValueType
)VT
, Expand
);
557 setOperationAction(ISD::FP_TO_SINT
, (MVT::SimpleValueType
)VT
, Expand
);
558 setOperationAction(ISD::UINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
559 setOperationAction(ISD::SINT_TO_FP
, (MVT::SimpleValueType
)VT
, Expand
);
562 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
563 // with -msoft-float, disable use of MMX as well.
564 if (!UseSoftFloat
&& !DisableMMX
&& Subtarget
->hasMMX()) {
565 addRegisterClass(MVT::v8i8
, X86::VR64RegisterClass
);
566 addRegisterClass(MVT::v4i16
, X86::VR64RegisterClass
);
567 addRegisterClass(MVT::v2i32
, X86::VR64RegisterClass
);
568 addRegisterClass(MVT::v2f32
, X86::VR64RegisterClass
);
569 addRegisterClass(MVT::v1i64
, X86::VR64RegisterClass
);
571 setOperationAction(ISD::ADD
, MVT::v8i8
, Legal
);
572 setOperationAction(ISD::ADD
, MVT::v4i16
, Legal
);
573 setOperationAction(ISD::ADD
, MVT::v2i32
, Legal
);
574 setOperationAction(ISD::ADD
, MVT::v1i64
, Legal
);
576 setOperationAction(ISD::SUB
, MVT::v8i8
, Legal
);
577 setOperationAction(ISD::SUB
, MVT::v4i16
, Legal
);
578 setOperationAction(ISD::SUB
, MVT::v2i32
, Legal
);
579 setOperationAction(ISD::SUB
, MVT::v1i64
, Legal
);
581 setOperationAction(ISD::MULHS
, MVT::v4i16
, Legal
);
582 setOperationAction(ISD::MUL
, MVT::v4i16
, Legal
);
584 setOperationAction(ISD::AND
, MVT::v8i8
, Promote
);
585 AddPromotedToType (ISD::AND
, MVT::v8i8
, MVT::v1i64
);
586 setOperationAction(ISD::AND
, MVT::v4i16
, Promote
);
587 AddPromotedToType (ISD::AND
, MVT::v4i16
, MVT::v1i64
);
588 setOperationAction(ISD::AND
, MVT::v2i32
, Promote
);
589 AddPromotedToType (ISD::AND
, MVT::v2i32
, MVT::v1i64
);
590 setOperationAction(ISD::AND
, MVT::v1i64
, Legal
);
592 setOperationAction(ISD::OR
, MVT::v8i8
, Promote
);
593 AddPromotedToType (ISD::OR
, MVT::v8i8
, MVT::v1i64
);
594 setOperationAction(ISD::OR
, MVT::v4i16
, Promote
);
595 AddPromotedToType (ISD::OR
, MVT::v4i16
, MVT::v1i64
);
596 setOperationAction(ISD::OR
, MVT::v2i32
, Promote
);
597 AddPromotedToType (ISD::OR
, MVT::v2i32
, MVT::v1i64
);
598 setOperationAction(ISD::OR
, MVT::v1i64
, Legal
);
600 setOperationAction(ISD::XOR
, MVT::v8i8
, Promote
);
601 AddPromotedToType (ISD::XOR
, MVT::v8i8
, MVT::v1i64
);
602 setOperationAction(ISD::XOR
, MVT::v4i16
, Promote
);
603 AddPromotedToType (ISD::XOR
, MVT::v4i16
, MVT::v1i64
);
604 setOperationAction(ISD::XOR
, MVT::v2i32
, Promote
);
605 AddPromotedToType (ISD::XOR
, MVT::v2i32
, MVT::v1i64
);
606 setOperationAction(ISD::XOR
, MVT::v1i64
, Legal
);
608 setOperationAction(ISD::LOAD
, MVT::v8i8
, Promote
);
609 AddPromotedToType (ISD::LOAD
, MVT::v8i8
, MVT::v1i64
);
610 setOperationAction(ISD::LOAD
, MVT::v4i16
, Promote
);
611 AddPromotedToType (ISD::LOAD
, MVT::v4i16
, MVT::v1i64
);
612 setOperationAction(ISD::LOAD
, MVT::v2i32
, Promote
);
613 AddPromotedToType (ISD::LOAD
, MVT::v2i32
, MVT::v1i64
);
614 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
615 AddPromotedToType (ISD::LOAD
, MVT::v2f32
, MVT::v1i64
);
616 setOperationAction(ISD::LOAD
, MVT::v1i64
, Legal
);
618 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i8
, Custom
);
619 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i16
, Custom
);
620 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i32
, Custom
);
621 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f32
, Custom
);
622 setOperationAction(ISD::BUILD_VECTOR
, MVT::v1i64
, Custom
);
624 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v8i8
, Custom
);
625 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i16
, Custom
);
626 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i32
, Custom
);
627 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v1i64
, Custom
);
629 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f32
, Custom
);
630 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i8
, Custom
);
631 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i16
, Custom
);
632 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v1i64
, Custom
);
634 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i16
, Custom
);
636 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Expand
);
637 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Expand
);
638 setOperationAction(ISD::SELECT
, MVT::v8i8
, Promote
);
639 setOperationAction(ISD::SELECT
, MVT::v4i16
, Promote
);
640 setOperationAction(ISD::SELECT
, MVT::v2i32
, Promote
);
641 setOperationAction(ISD::SELECT
, MVT::v1i64
, Custom
);
644 if (!UseSoftFloat
&& Subtarget
->hasSSE1()) {
645 addRegisterClass(MVT::v4f32
, X86::VR128RegisterClass
);
647 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
648 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
649 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
650 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
651 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
652 setOperationAction(ISD::FNEG
, MVT::v4f32
, Custom
);
653 setOperationAction(ISD::LOAD
, MVT::v4f32
, Legal
);
654 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
655 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
656 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
657 setOperationAction(ISD::SELECT
, MVT::v4f32
, Custom
);
658 setOperationAction(ISD::VSETCC
, MVT::v4f32
, Custom
);
661 if (!UseSoftFloat
&& Subtarget
->hasSSE2()) {
662 addRegisterClass(MVT::v2f64
, X86::VR128RegisterClass
);
664 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
665 // registers cannot be used even for integer operations.
666 addRegisterClass(MVT::v16i8
, X86::VR128RegisterClass
);
667 addRegisterClass(MVT::v8i16
, X86::VR128RegisterClass
);
668 addRegisterClass(MVT::v4i32
, X86::VR128RegisterClass
);
669 addRegisterClass(MVT::v2i64
, X86::VR128RegisterClass
);
671 setOperationAction(ISD::ADD
, MVT::v16i8
, Legal
);
672 setOperationAction(ISD::ADD
, MVT::v8i16
, Legal
);
673 setOperationAction(ISD::ADD
, MVT::v4i32
, Legal
);
674 setOperationAction(ISD::ADD
, MVT::v2i64
, Legal
);
675 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
676 setOperationAction(ISD::SUB
, MVT::v16i8
, Legal
);
677 setOperationAction(ISD::SUB
, MVT::v8i16
, Legal
);
678 setOperationAction(ISD::SUB
, MVT::v4i32
, Legal
);
679 setOperationAction(ISD::SUB
, MVT::v2i64
, Legal
);
680 setOperationAction(ISD::MUL
, MVT::v8i16
, Legal
);
681 setOperationAction(ISD::FADD
, MVT::v2f64
, Legal
);
682 setOperationAction(ISD::FSUB
, MVT::v2f64
, Legal
);
683 setOperationAction(ISD::FMUL
, MVT::v2f64
, Legal
);
684 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
685 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
686 setOperationAction(ISD::FNEG
, MVT::v2f64
, Custom
);
688 setOperationAction(ISD::VSETCC
, MVT::v2f64
, Custom
);
689 setOperationAction(ISD::VSETCC
, MVT::v16i8
, Custom
);
690 setOperationAction(ISD::VSETCC
, MVT::v8i16
, Custom
);
691 setOperationAction(ISD::VSETCC
, MVT::v4i32
, Custom
);
693 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Custom
);
694 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Custom
);
695 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
696 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
697 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
699 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
700 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; ++i
) {
701 MVT VT
= (MVT::SimpleValueType
)i
;
702 // Do not attempt to custom lower non-power-of-2 vectors
703 if (!isPowerOf2_32(VT
.getVectorNumElements()))
705 // Do not attempt to custom lower non-128-bit vectors
706 if (!VT
.is128BitVector())
708 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
709 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
710 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
713 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
714 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
715 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Custom
);
716 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Custom
);
717 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f64
, Custom
);
718 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Custom
);
720 if (Subtarget
->is64Bit()) {
721 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Custom
);
722 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Custom
);
725 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
726 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v2i64
; i
++) {
727 MVT VT
= (MVT::SimpleValueType
)i
;
729 // Do not attempt to promote non-128-bit vectors
730 if (!VT
.is128BitVector()) {
733 setOperationAction(ISD::AND
, VT
, Promote
);
734 AddPromotedToType (ISD::AND
, VT
, MVT::v2i64
);
735 setOperationAction(ISD::OR
, VT
, Promote
);
736 AddPromotedToType (ISD::OR
, VT
, MVT::v2i64
);
737 setOperationAction(ISD::XOR
, VT
, Promote
);
738 AddPromotedToType (ISD::XOR
, VT
, MVT::v2i64
);
739 setOperationAction(ISD::LOAD
, VT
, Promote
);
740 AddPromotedToType (ISD::LOAD
, VT
, MVT::v2i64
);
741 setOperationAction(ISD::SELECT
, VT
, Promote
);
742 AddPromotedToType (ISD::SELECT
, VT
, MVT::v2i64
);
745 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
747 // Custom lower v2i64 and v2f64 selects.
748 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
749 setOperationAction(ISD::LOAD
, MVT::v2i64
, Legal
);
750 setOperationAction(ISD::SELECT
, MVT::v2f64
, Custom
);
751 setOperationAction(ISD::SELECT
, MVT::v2i64
, Custom
);
753 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i32
, Legal
);
754 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Legal
);
755 if (!DisableMMX
&& Subtarget
->hasMMX()) {
756 setOperationAction(ISD::FP_TO_SINT
, MVT::v2i32
, Custom
);
757 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i32
, Custom
);
761 if (Subtarget
->hasSSE41()) {
762 // FIXME: Do we need to handle scalar-to-vector here?
763 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
765 // i8 and i16 vectors are custom , because the source register and source
766 // source memory operand types are not the same width. f32 vectors are
767 // custom since the immediate controlling the insert encodes additional
769 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
770 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
771 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
772 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
774 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Custom
);
775 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Custom
);
776 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
777 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
779 if (Subtarget
->is64Bit()) {
780 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i64
, Legal
);
781 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
785 if (Subtarget
->hasSSE42()) {
786 setOperationAction(ISD::VSETCC
, MVT::v2i64
, Custom
);
789 if (!UseSoftFloat
&& Subtarget
->hasAVX()) {
790 addRegisterClass(MVT::v8f32
, X86::VR256RegisterClass
);
791 addRegisterClass(MVT::v4f64
, X86::VR256RegisterClass
);
792 addRegisterClass(MVT::v8i32
, X86::VR256RegisterClass
);
793 addRegisterClass(MVT::v4i64
, X86::VR256RegisterClass
);
795 setOperationAction(ISD::LOAD
, MVT::v8f32
, Legal
);
796 setOperationAction(ISD::LOAD
, MVT::v8i32
, Legal
);
797 setOperationAction(ISD::LOAD
, MVT::v4f64
, Legal
);
798 setOperationAction(ISD::LOAD
, MVT::v4i64
, Legal
);
799 setOperationAction(ISD::FADD
, MVT::v8f32
, Legal
);
800 setOperationAction(ISD::FSUB
, MVT::v8f32
, Legal
);
801 setOperationAction(ISD::FMUL
, MVT::v8f32
, Legal
);
802 setOperationAction(ISD::FDIV
, MVT::v8f32
, Legal
);
803 setOperationAction(ISD::FSQRT
, MVT::v8f32
, Legal
);
804 setOperationAction(ISD::FNEG
, MVT::v8f32
, Custom
);
805 //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
806 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
807 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
808 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
809 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
811 // Operations to consider commented out -v16i16 v32i8
812 //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
813 setOperationAction(ISD::ADD
, MVT::v8i32
, Custom
);
814 setOperationAction(ISD::ADD
, MVT::v4i64
, Custom
);
815 //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
816 //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
817 setOperationAction(ISD::SUB
, MVT::v8i32
, Custom
);
818 setOperationAction(ISD::SUB
, MVT::v4i64
, Custom
);
819 //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
820 setOperationAction(ISD::FADD
, MVT::v4f64
, Legal
);
821 setOperationAction(ISD::FSUB
, MVT::v4f64
, Legal
);
822 setOperationAction(ISD::FMUL
, MVT::v4f64
, Legal
);
823 setOperationAction(ISD::FDIV
, MVT::v4f64
, Legal
);
824 setOperationAction(ISD::FSQRT
, MVT::v4f64
, Legal
);
825 setOperationAction(ISD::FNEG
, MVT::v4f64
, Custom
);
827 setOperationAction(ISD::VSETCC
, MVT::v4f64
, Custom
);
828 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
829 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
830 setOperationAction(ISD::VSETCC
, MVT::v8i32
, Custom
);
832 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
833 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
834 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
835 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i32
, Custom
);
836 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8f32
, Custom
);
838 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f64
, Custom
);
839 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i64
, Custom
);
840 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f64
, Custom
);
841 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i64
, Custom
);
842 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f64
, Custom
);
843 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f64
, Custom
);
846 // Not sure we want to do this since there are no 256-bit integer
849 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
850 // This includes 256-bit vectors
851 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; ++i
) {
852 MVT VT
= (MVT::SimpleValueType
)i
;
854 // Do not attempt to custom lower non-power-of-2 vectors
855 if (!isPowerOf2_32(VT
.getVectorNumElements()))
858 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
859 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
860 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
863 if (Subtarget
->is64Bit()) {
864 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i64
, Custom
);
865 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i64
, Custom
);
870 // Not sure we want to do this since there are no 256-bit integer
873 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
874 // Including 256-bit vectors
875 for (unsigned i
= (unsigned)MVT::v16i8
; i
!= (unsigned)MVT::v4i64
; i
++) {
876 MVT VT
= (MVT::SimpleValueType
)i
;
878 if (!VT
.is256BitVector()) {
881 setOperationAction(ISD::AND
, VT
, Promote
);
882 AddPromotedToType (ISD::AND
, VT
, MVT::v4i64
);
883 setOperationAction(ISD::OR
, VT
, Promote
);
884 AddPromotedToType (ISD::OR
, VT
, MVT::v4i64
);
885 setOperationAction(ISD::XOR
, VT
, Promote
);
886 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i64
);
887 setOperationAction(ISD::LOAD
, VT
, Promote
);
888 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i64
);
889 setOperationAction(ISD::SELECT
, VT
, Promote
);
890 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i64
);
893 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
897 // We want to custom lower some of our intrinsics.
898 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
900 // Add/Sub/Mul with overflow operations are custom lowered.
901 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
902 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
903 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
904 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
905 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
906 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
907 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
908 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
909 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
910 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
912 if (!Subtarget
->is64Bit()) {
913 // These libcalls are not available in 32-bit.
914 setLibcallName(RTLIB::SHL_I128
, 0);
915 setLibcallName(RTLIB::SRL_I128
, 0);
916 setLibcallName(RTLIB::SRA_I128
, 0);
919 // We have target-specific dag combine patterns for the following nodes:
920 setTargetDAGCombine(ISD::VECTOR_SHUFFLE
);
921 setTargetDAGCombine(ISD::BUILD_VECTOR
);
922 setTargetDAGCombine(ISD::SELECT
);
923 setTargetDAGCombine(ISD::SHL
);
924 setTargetDAGCombine(ISD::SRA
);
925 setTargetDAGCombine(ISD::SRL
);
926 setTargetDAGCombine(ISD::STORE
);
927 setTargetDAGCombine(ISD::MEMBARRIER
);
928 if (Subtarget
->is64Bit())
929 setTargetDAGCombine(ISD::MUL
);
931 computeRegisterProperties();
933 // FIXME: These should be based on subtarget info. Plus, the values should
934 // be smaller when we are in optimizing for size mode.
935 maxStoresPerMemset
= 16; // For @llvm.memset -> sequence of stores
936 maxStoresPerMemcpy
= 16; // For @llvm.memcpy -> sequence of stores
937 maxStoresPerMemmove
= 3; // For @llvm.memmove -> sequence of stores
938 allowUnalignedMemoryAccesses
= true; // x86 supports it!
939 setPrefLoopAlignment(16);
940 benefitFromCodePlacementOpt
= true;
944 MVT
X86TargetLowering::getSetCCResultType(MVT VT
) const {
949 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
950 /// the desired ByVal argument alignment.
951 static void getMaxByValAlign(const Type
*Ty
, unsigned &MaxAlign
) {
954 if (const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
955 if (VTy
->getBitWidth() == 128)
957 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
958 unsigned EltAlign
= 0;
959 getMaxByValAlign(ATy
->getElementType(), EltAlign
);
960 if (EltAlign
> MaxAlign
)
962 } else if (const StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
963 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
964 unsigned EltAlign
= 0;
965 getMaxByValAlign(STy
->getElementType(i
), EltAlign
);
966 if (EltAlign
> MaxAlign
)
975 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
976 /// function arguments in the caller parameter area. For X86, aggregates
977 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
978 /// are at 4-byte boundaries.
979 unsigned X86TargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
980 if (Subtarget
->is64Bit()) {
981 // Max of 8 and alignment of type.
982 unsigned TyAlign
= TD
->getABITypeAlignment(Ty
);
989 if (Subtarget
->hasSSE1())
990 getMaxByValAlign(Ty
, Align
);
994 /// getOptimalMemOpType - Returns the target specific optimal type for load
995 /// and store operations as a result of memset, memcpy, and memmove
996 /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
999 X86TargetLowering::getOptimalMemOpType(uint64_t Size
, unsigned Align
,
1000 bool isSrcConst
, bool isSrcStr
,
1001 SelectionDAG
&DAG
) const {
1002 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1003 // linux. This is because the stack realignment code can't handle certain
1004 // cases like PR2962. This should be removed when PR2962 is fixed.
1005 const Function
*F
= DAG
.getMachineFunction().getFunction();
1006 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
1007 if (!NoImplicitFloatOps
&& Subtarget
->getStackAlignment() >= 16) {
1008 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE2() && Size
>= 16)
1010 if ((isSrcConst
|| isSrcStr
) && Subtarget
->hasSSE1() && Size
>= 16)
1013 if (Subtarget
->is64Bit() && Size
>= 8)
1018 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1020 SDValue
X86TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
1021 SelectionDAG
&DAG
) const {
1022 if (usesGlobalOffsetTable())
1023 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy());
1024 if (!Subtarget
->is64Bit())
1025 // This doesn't have DebugLoc associated with it, but is not really the
1026 // same as a Register.
1027 return DAG
.getNode(X86ISD::GlobalBaseReg
, DebugLoc::getUnknownLoc(),
1032 /// getFunctionAlignment - Return the Log2 alignment of this function.
1033 unsigned X86TargetLowering::getFunctionAlignment(const Function
*F
) const {
1034 return F
->hasFnAttr(Attribute::OptimizeForSize
) ? 1 : 4;
1037 //===----------------------------------------------------------------------===//
1038 // Return Value Calling Convention Implementation
1039 //===----------------------------------------------------------------------===//
1041 #include "X86GenCallingConv.inc"
1043 /// LowerRET - Lower an ISD::RET node.
1044 SDValue
X86TargetLowering::LowerRET(SDValue Op
, SelectionDAG
&DAG
) {
1045 DebugLoc dl
= Op
.getDebugLoc();
1046 assert((Op
.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
1048 SmallVector
<CCValAssign
, 16> RVLocs
;
1049 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
1050 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
1051 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), RVLocs
, DAG
.getContext());
1052 CCInfo
.AnalyzeReturn(Op
.getNode(), RetCC_X86
);
1054 // If this is the first return lowered for this function, add the regs to the
1055 // liveout set for the function.
1056 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
1057 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
1058 if (RVLocs
[i
].isRegLoc())
1059 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
1061 SDValue Chain
= Op
.getOperand(0);
1063 // Handle tail call return.
1064 Chain
= GetPossiblePreceedingTailCall(Chain
, X86ISD::TAILCALL
);
1065 if (Chain
.getOpcode() == X86ISD::TAILCALL
) {
1066 SDValue TailCall
= Chain
;
1067 SDValue TargetAddress
= TailCall
.getOperand(1);
1068 SDValue StackAdjustment
= TailCall
.getOperand(2);
1069 assert(((TargetAddress
.getOpcode() == ISD::Register
&&
1070 (cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::EAX
||
1071 cast
<RegisterSDNode
>(TargetAddress
)->getReg() == X86::R11
)) ||
1072 TargetAddress
.getOpcode() == ISD::TargetExternalSymbol
||
1073 TargetAddress
.getOpcode() == ISD::TargetGlobalAddress
) &&
1074 "Expecting an global address, external symbol, or register");
1075 assert(StackAdjustment
.getOpcode() == ISD::Constant
&&
1076 "Expecting a const value");
1078 SmallVector
<SDValue
,8> Operands
;
1079 Operands
.push_back(Chain
.getOperand(0));
1080 Operands
.push_back(TargetAddress
);
1081 Operands
.push_back(StackAdjustment
);
1082 // Copy registers used by the call. Last operand is a flag so it is not
1084 for (unsigned i
=3; i
< TailCall
.getNumOperands()-1; i
++) {
1085 Operands
.push_back(Chain
.getOperand(i
));
1087 return DAG
.getNode(X86ISD::TC_RETURN
, dl
, MVT::Other
, &Operands
[0],
1094 SmallVector
<SDValue
, 6> RetOps
;
1095 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
1096 // Operand #1 = Bytes To Pop
1097 RetOps
.push_back(DAG
.getConstant(getBytesToPopOnReturn(), MVT::i16
));
1099 // Copy the result values into the output registers.
1100 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1101 CCValAssign
&VA
= RVLocs
[i
];
1102 assert(VA
.isRegLoc() && "Can only return in registers!");
1103 SDValue ValToCopy
= Op
.getOperand(i
*2+1);
1105 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1106 // the RET instruction and handled by the FP Stackifier.
1107 if (VA
.getLocReg() == X86::ST0
||
1108 VA
.getLocReg() == X86::ST1
) {
1109 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1110 // change the value to the FP stack register class.
1111 if (isScalarFPTypeInSSEReg(VA
.getValVT()))
1112 ValToCopy
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f80
, ValToCopy
);
1113 RetOps
.push_back(ValToCopy
);
1114 // Don't emit a copytoreg.
1118 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1119 // which is returned in RAX / RDX.
1120 if (Subtarget
->is64Bit()) {
1121 MVT ValVT
= ValToCopy
.getValueType();
1122 if (ValVT
.isVector() && ValVT
.getSizeInBits() == 64) {
1123 ValToCopy
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, ValToCopy
);
1124 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
)
1125 ValToCopy
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, ValToCopy
);
1129 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), ValToCopy
, Flag
);
1130 Flag
= Chain
.getValue(1);
1133 // The x86-64 ABI for returning structs by value requires that we copy
1134 // the sret argument into %rax for the return. We saved the argument into
1135 // a virtual register in the entry block, so now we copy the value out
1137 if (Subtarget
->is64Bit() &&
1138 DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1139 MachineFunction
&MF
= DAG
.getMachineFunction();
1140 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1141 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1143 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1144 FuncInfo
->setSRetReturnReg(Reg
);
1146 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, getPointerTy());
1148 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::RAX
, Val
, Flag
);
1149 Flag
= Chain
.getValue(1);
1152 RetOps
[0] = Chain
; // Update chain.
1154 // Add the flag if we have it.
1156 RetOps
.push_back(Flag
);
1158 return DAG
.getNode(X86ISD::RET_FLAG
, dl
,
1159 MVT::Other
, &RetOps
[0], RetOps
.size());
1163 /// LowerCallResult - Lower the result values of an ISD::CALL into the
1164 /// appropriate copies out of appropriate physical registers. This assumes that
1165 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1166 /// being lowered. The returns a SDNode with the same number of values as the
1168 SDNode
*X86TargetLowering::
1169 LowerCallResult(SDValue Chain
, SDValue InFlag
, CallSDNode
*TheCall
,
1170 unsigned CallingConv
, SelectionDAG
&DAG
) {
1172 DebugLoc dl
= TheCall
->getDebugLoc();
1173 // Assign locations to each value returned by this call.
1174 SmallVector
<CCValAssign
, 16> RVLocs
;
1175 bool isVarArg
= TheCall
->isVarArg();
1176 bool Is64Bit
= Subtarget
->is64Bit();
1177 CCState
CCInfo(CallingConv
, isVarArg
, getTargetMachine(),
1178 RVLocs
, DAG
.getContext());
1179 CCInfo
.AnalyzeCallResult(TheCall
, RetCC_X86
);
1181 SmallVector
<SDValue
, 8> ResultVals
;
1183 // Copy all of the result registers out of their specified physreg.
1184 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1185 CCValAssign
&VA
= RVLocs
[i
];
1186 MVT CopyVT
= VA
.getValVT();
1188 // If this is x86-64, and we disabled SSE, we can't return FP values
1189 if ((CopyVT
== MVT::f32
|| CopyVT
== MVT::f64
) &&
1190 ((Is64Bit
|| TheCall
->isInreg()) && !Subtarget
->hasSSE1())) {
1191 llvm_report_error("SSE register return with SSE disabled");
1194 // If this is a call to a function that returns an fp value on the floating
1195 // point stack, but where we prefer to use the value in xmm registers, copy
1196 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1197 if ((VA
.getLocReg() == X86::ST0
||
1198 VA
.getLocReg() == X86::ST1
) &&
1199 isScalarFPTypeInSSEReg(VA
.getValVT())) {
1204 if (Is64Bit
&& CopyVT
.isVector() && CopyVT
.getSizeInBits() == 64) {
1205 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1206 if (VA
.getLocReg() == X86::XMM0
|| VA
.getLocReg() == X86::XMM1
) {
1207 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1208 MVT::v2i64
, InFlag
).getValue(1);
1209 Val
= Chain
.getValue(0);
1210 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1211 Val
, DAG
.getConstant(0, MVT::i64
));
1213 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1214 MVT::i64
, InFlag
).getValue(1);
1215 Val
= Chain
.getValue(0);
1217 Val
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, CopyVT
, Val
);
1219 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(),
1220 CopyVT
, InFlag
).getValue(1);
1221 Val
= Chain
.getValue(0);
1223 InFlag
= Chain
.getValue(2);
1225 if (CopyVT
!= VA
.getValVT()) {
1226 // Round the F80 the right size, which also moves to the appropriate xmm
1228 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, VA
.getValVT(), Val
,
1229 // This truncation won't change the value.
1230 DAG
.getIntPtrConstant(1));
1233 ResultVals
.push_back(Val
);
1236 // Merge everything together with a MERGE_VALUES node.
1237 ResultVals
.push_back(Chain
);
1238 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, TheCall
->getVTList(),
1239 &ResultVals
[0], ResultVals
.size()).getNode();
1243 //===----------------------------------------------------------------------===//
1244 // C & StdCall & Fast Calling Convention implementation
1245 //===----------------------------------------------------------------------===//
1246 // StdCall calling convention seems to be standard for many Windows' API
1247 // routines and around. It differs from C calling convention just a little:
1248 // callee should clean up the stack, not caller. Symbols should be also
1249 // decorated in some fancy way :) It doesn't support any vector arguments.
1250 // For info on fast calling convention see Fast Calling Convention (tail call)
1251 // implementation LowerX86_32FastCCCallTo.
1253 /// CallIsStructReturn - Determines whether a CALL node uses struct return
1255 static bool CallIsStructReturn(CallSDNode
*TheCall
) {
1256 unsigned NumOps
= TheCall
->getNumArgs();
1260 return TheCall
->getArgFlags(0).isSRet();
1263 /// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1264 /// return semantics.
1265 static bool ArgsAreStructReturn(SDValue Op
) {
1266 unsigned NumArgs
= Op
.getNode()->getNumValues() - 1;
1270 return cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3))->getArgFlags().isSRet();
1273 /// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1274 /// the callee to pop its own arguments. Callee pop is necessary to support tail
1276 bool X86TargetLowering::IsCalleePop(bool IsVarArg
, unsigned CallingConv
) {
1280 switch (CallingConv
) {
1283 case CallingConv::X86_StdCall
:
1284 return !Subtarget
->is64Bit();
1285 case CallingConv::X86_FastCall
:
1286 return !Subtarget
->is64Bit();
1287 case CallingConv::Fast
:
1288 return PerformTailCallOpt
;
1292 /// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1293 /// given CallingConvention value.
1294 CCAssignFn
*X86TargetLowering::CCAssignFnForNode(unsigned CC
) const {
1295 if (Subtarget
->is64Bit()) {
1296 if (Subtarget
->isTargetWin64())
1297 return CC_X86_Win64_C
;
1302 if (CC
== CallingConv::X86_FastCall
)
1303 return CC_X86_32_FastCall
;
1304 else if (CC
== CallingConv::Fast
)
1305 return CC_X86_32_FastCC
;
1310 /// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1311 /// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1313 X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op
) {
1314 unsigned CC
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1315 if (CC
== CallingConv::X86_FastCall
)
1317 else if (CC
== CallingConv::X86_StdCall
)
1323 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1324 /// by "Src" to address "Dst" with size and alignment information specified by
1325 /// the specific parameter attribute. The copy will be passed as a byval
1326 /// function parameter.
1328 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
1329 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1331 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
1332 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
1333 /*AlwaysInline=*/true, NULL
, 0, NULL
, 0);
1336 SDValue
X86TargetLowering::LowerMemArgument(SDValue Op
, SelectionDAG
&DAG
,
1337 const CCValAssign
&VA
,
1338 MachineFrameInfo
*MFI
,
1340 SDValue Root
, unsigned i
) {
1341 // Create the nodes corresponding to a load from this parameter slot.
1342 ISD::ArgFlagsTy Flags
=
1343 cast
<ARG_FLAGSSDNode
>(Op
.getOperand(3 + i
))->getArgFlags();
1344 bool AlwaysUseMutable
= (CC
==CallingConv::Fast
) && PerformTailCallOpt
;
1345 bool isImmutable
= !AlwaysUseMutable
&& !Flags
.isByVal();
1347 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1348 // changed with more analysis.
1349 // In case of tail call optimization mark all arguments mutable. Since they
1350 // could be overwritten by lowering of arguments in case of a tail call.
1351 int FI
= MFI
->CreateFixedObject(VA
.getValVT().getSizeInBits()/8,
1352 VA
.getLocMemOffset(), isImmutable
);
1353 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1354 if (Flags
.isByVal())
1356 return DAG
.getLoad(VA
.getValVT(), Op
.getDebugLoc(), Root
, FIN
,
1357 PseudoSourceValue::getFixedStack(FI
), 0);
1361 X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op
, SelectionDAG
&DAG
) {
1362 MachineFunction
&MF
= DAG
.getMachineFunction();
1363 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1364 DebugLoc dl
= Op
.getDebugLoc();
1366 const Function
* Fn
= MF
.getFunction();
1367 if (Fn
->hasExternalLinkage() &&
1368 Subtarget
->isTargetCygMing() &&
1369 Fn
->getName() == "main")
1370 FuncInfo
->setForceFramePointer(true);
1372 // Decorate the function name.
1373 FuncInfo
->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op
));
1375 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1376 SDValue Root
= Op
.getOperand(0);
1377 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue() != 0;
1378 unsigned CC
= MF
.getFunction()->getCallingConv();
1379 bool Is64Bit
= Subtarget
->is64Bit();
1380 bool IsWin64
= Subtarget
->isTargetWin64();
1382 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1383 "Var args not supported with calling convention fastcc");
1385 // Assign locations to all of the incoming arguments.
1386 SmallVector
<CCValAssign
, 16> ArgLocs
;
1387 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
, DAG
.getContext());
1388 CCInfo
.AnalyzeFormalArguments(Op
.getNode(), CCAssignFnForNode(CC
));
1390 SmallVector
<SDValue
, 8> ArgValues
;
1391 unsigned LastVal
= ~0U;
1392 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1393 CCValAssign
&VA
= ArgLocs
[i
];
1394 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1396 assert(VA
.getValNo() != LastVal
&&
1397 "Don't support value assigned to multiple locs yet");
1398 LastVal
= VA
.getValNo();
1400 if (VA
.isRegLoc()) {
1401 MVT RegVT
= VA
.getLocVT();
1402 TargetRegisterClass
*RC
= NULL
;
1403 if (RegVT
== MVT::i32
)
1404 RC
= X86::GR32RegisterClass
;
1405 else if (Is64Bit
&& RegVT
== MVT::i64
)
1406 RC
= X86::GR64RegisterClass
;
1407 else if (RegVT
== MVT::f32
)
1408 RC
= X86::FR32RegisterClass
;
1409 else if (RegVT
== MVT::f64
)
1410 RC
= X86::FR64RegisterClass
;
1411 else if (RegVT
.isVector() && RegVT
.getSizeInBits() == 128)
1412 RC
= X86::VR128RegisterClass
;
1413 else if (RegVT
.isVector()) {
1414 assert(RegVT
.getSizeInBits() == 64);
1416 RC
= X86::VR64RegisterClass
; // MMX values are passed in MMXs.
1418 // Darwin calling convention passes MMX values in either GPRs or
1419 // XMMs in x86-64. Other targets pass them in memory.
1420 if (RegVT
!= MVT::v1i64
&& Subtarget
->hasSSE2()) {
1421 RC
= X86::VR128RegisterClass
; // MMX values are passed in XMMs.
1424 RC
= X86::GR64RegisterClass
; // v1i64 values are passed in GPRs.
1429 llvm_unreachable("Unknown argument type!");
1432 unsigned Reg
= DAG
.getMachineFunction().addLiveIn(VA
.getLocReg(), RC
);
1433 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, RegVT
);
1435 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1436 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1438 if (VA
.getLocInfo() == CCValAssign::SExt
)
1439 ArgValue
= DAG
.getNode(ISD::AssertSext
, dl
, RegVT
, ArgValue
,
1440 DAG
.getValueType(VA
.getValVT()));
1441 else if (VA
.getLocInfo() == CCValAssign::ZExt
)
1442 ArgValue
= DAG
.getNode(ISD::AssertZext
, dl
, RegVT
, ArgValue
,
1443 DAG
.getValueType(VA
.getValVT()));
1445 if (VA
.getLocInfo() != CCValAssign::Full
)
1446 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), ArgValue
);
1448 // Handle MMX values passed in GPRs.
1449 if (Is64Bit
&& RegVT
!= VA
.getLocVT()) {
1450 if (RegVT
.getSizeInBits() == 64 && RC
== X86::GR64RegisterClass
)
1451 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1452 else if (RC
== X86::VR128RegisterClass
) {
1453 ArgValue
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
,
1454 ArgValue
, DAG
.getConstant(0, MVT::i64
));
1455 ArgValue
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VA
.getLocVT(), ArgValue
);
1459 ArgValues
.push_back(ArgValue
);
1461 assert(VA
.isMemLoc());
1462 ArgValues
.push_back(LowerMemArgument(Op
, DAG
, VA
, MFI
, CC
, Root
, i
));
1466 // The x86-64 ABI for returning structs by value requires that we copy
1467 // the sret argument into %rax for the return. Save the argument into
1468 // a virtual register so that we can access it from the return points.
1469 if (Is64Bit
&& DAG
.getMachineFunction().getFunction()->hasStructRetAttr()) {
1470 MachineFunction
&MF
= DAG
.getMachineFunction();
1471 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
1472 unsigned Reg
= FuncInfo
->getSRetReturnReg();
1474 Reg
= MF
.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64
));
1475 FuncInfo
->setSRetReturnReg(Reg
);
1477 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, Reg
, ArgValues
[0]);
1478 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Copy
, Root
);
1481 unsigned StackSize
= CCInfo
.getNextStackOffset();
1482 // align stack specially for tail calls
1483 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1484 StackSize
= GetAlignedArgumentStackSize(StackSize
, DAG
);
1486 // If the function takes variable number of arguments, make a frame index for
1487 // the start of the first vararg value... for expansion of llvm.va_start.
1489 if (Is64Bit
|| CC
!= CallingConv::X86_FastCall
) {
1490 VarArgsFrameIndex
= MFI
->CreateFixedObject(1, StackSize
);
1493 unsigned TotalNumIntRegs
= 0, TotalNumXMMRegs
= 0;
1495 // FIXME: We should really autogenerate these arrays
1496 static const unsigned GPR64ArgRegsWin64
[] = {
1497 X86::RCX
, X86::RDX
, X86::R8
, X86::R9
1499 static const unsigned XMMArgRegsWin64
[] = {
1500 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
1502 static const unsigned GPR64ArgRegs64Bit
[] = {
1503 X86::RDI
, X86::RSI
, X86::RDX
, X86::RCX
, X86::R8
, X86::R9
1505 static const unsigned XMMArgRegs64Bit
[] = {
1506 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1507 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1509 const unsigned *GPR64ArgRegs
, *XMMArgRegs
;
1512 TotalNumIntRegs
= 4; TotalNumXMMRegs
= 4;
1513 GPR64ArgRegs
= GPR64ArgRegsWin64
;
1514 XMMArgRegs
= XMMArgRegsWin64
;
1516 TotalNumIntRegs
= 6; TotalNumXMMRegs
= 8;
1517 GPR64ArgRegs
= GPR64ArgRegs64Bit
;
1518 XMMArgRegs
= XMMArgRegs64Bit
;
1520 unsigned NumIntRegs
= CCInfo
.getFirstUnallocated(GPR64ArgRegs
,
1522 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
,
1525 bool NoImplicitFloatOps
= Fn
->hasFnAttr(Attribute::NoImplicitFloat
);
1526 assert(!(NumXMMRegs
&& !Subtarget
->hasSSE1()) &&
1527 "SSE register cannot be used when SSE is disabled!");
1528 assert(!(NumXMMRegs
&& UseSoftFloat
&& NoImplicitFloatOps
) &&
1529 "SSE register cannot be used when SSE is disabled!");
1530 if (UseSoftFloat
|| NoImplicitFloatOps
|| !Subtarget
->hasSSE1())
1531 // Kernel mode asks for SSE to be disabled, so don't push them
1533 TotalNumXMMRegs
= 0;
1535 // For X86-64, if there are vararg parameters that are passed via
1536 // registers, then we must store them to their spots on the stack so they
1537 // may be loaded by deferencing the result of va_next.
1538 VarArgsGPOffset
= NumIntRegs
* 8;
1539 VarArgsFPOffset
= TotalNumIntRegs
* 8 + NumXMMRegs
* 16;
1540 RegSaveFrameIndex
= MFI
->CreateStackObject(TotalNumIntRegs
* 8 +
1541 TotalNumXMMRegs
* 16, 16);
1543 // Store the integer parameter registers.
1544 SmallVector
<SDValue
, 8> MemOps
;
1545 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
1546 SDValue FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1547 DAG
.getIntPtrConstant(VarArgsGPOffset
));
1548 for (; NumIntRegs
!= TotalNumIntRegs
; ++NumIntRegs
) {
1549 unsigned VReg
= MF
.addLiveIn(GPR64ArgRegs
[NumIntRegs
],
1550 X86::GR64RegisterClass
);
1551 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::i64
);
1553 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1554 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1555 MemOps
.push_back(Store
);
1556 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1557 DAG
.getIntPtrConstant(8));
1560 // Now store the XMM (fp + vector) parameter registers.
1561 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), RSFIN
,
1562 DAG
.getIntPtrConstant(VarArgsFPOffset
));
1563 for (; NumXMMRegs
!= TotalNumXMMRegs
; ++NumXMMRegs
) {
1564 unsigned VReg
= MF
.addLiveIn(XMMArgRegs
[NumXMMRegs
],
1565 X86::VR128RegisterClass
);
1566 SDValue Val
= DAG
.getCopyFromReg(Root
, dl
, VReg
, MVT::v4f32
);
1568 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1569 PseudoSourceValue::getFixedStack(RegSaveFrameIndex
), 0);
1570 MemOps
.push_back(Store
);
1571 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), FIN
,
1572 DAG
.getIntPtrConstant(16));
1574 if (!MemOps
.empty())
1575 Root
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1576 &MemOps
[0], MemOps
.size());
1580 ArgValues
.push_back(Root
);
1582 // Some CCs need callee pop.
1583 if (IsCalleePop(isVarArg
, CC
)) {
1584 BytesToPopOnReturn
= StackSize
; // Callee pops everything.
1585 BytesCallerReserves
= 0;
1587 BytesToPopOnReturn
= 0; // Callee pops nothing.
1588 // If this is an sret function, the return should pop the hidden pointer.
1589 if (!Is64Bit
&& CC
!= CallingConv::Fast
&& ArgsAreStructReturn(Op
))
1590 BytesToPopOnReturn
= 4;
1591 BytesCallerReserves
= StackSize
;
1595 RegSaveFrameIndex
= 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only.
1596 if (CC
== CallingConv::X86_FastCall
)
1597 VarArgsFrameIndex
= 0xAAAAAAA; // fastcc functions can't have varargs.
1600 FuncInfo
->setBytesToPopOnReturn(BytesToPopOnReturn
);
1602 // Return the new list of results.
1603 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Op
.getNode()->getVTList(),
1604 &ArgValues
[0], ArgValues
.size()).getValue(Op
.getResNo());
1608 X86TargetLowering::LowerMemOpCallTo(CallSDNode
*TheCall
, SelectionDAG
&DAG
,
1609 const SDValue
&StackPtr
,
1610 const CCValAssign
&VA
,
1612 SDValue Arg
, ISD::ArgFlagsTy Flags
) {
1613 DebugLoc dl
= TheCall
->getDebugLoc();
1614 unsigned LocMemOffset
= VA
.getLocMemOffset();
1615 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
1616 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
1617 if (Flags
.isByVal()) {
1618 return CreateCopyOfByValArgument(Arg
, PtrOff
, Chain
, Flags
, DAG
, dl
);
1620 return DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
1621 PseudoSourceValue::getStack(), LocMemOffset
);
1624 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1625 /// optimization is performed and it is required.
1627 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG
&DAG
,
1628 SDValue
&OutRetAddr
,
1634 if (!IsTailCall
|| FPDiff
==0) return Chain
;
1636 // Adjust the Return address stack slot.
1637 MVT VT
= getPointerTy();
1638 OutRetAddr
= getReturnAddressFrameIndex(DAG
);
1640 // Load the "old" Return address.
1641 OutRetAddr
= DAG
.getLoad(VT
, dl
, Chain
, OutRetAddr
, NULL
, 0);
1642 return SDValue(OutRetAddr
.getNode(), 1);
1645 /// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1646 /// optimization is performed and it is required (FPDiff!=0).
1648 EmitTailCallStoreRetAddr(SelectionDAG
& DAG
, MachineFunction
&MF
,
1649 SDValue Chain
, SDValue RetAddrFrIdx
,
1650 bool Is64Bit
, int FPDiff
, DebugLoc dl
) {
1651 // Store the return address to the appropriate stack slot.
1652 if (!FPDiff
) return Chain
;
1653 // Calculate the new stack slot for the return address.
1654 int SlotSize
= Is64Bit
? 8 : 4;
1655 int NewReturnAddrFI
=
1656 MF
.getFrameInfo()->CreateFixedObject(SlotSize
, FPDiff
-SlotSize
);
1657 MVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
1658 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewReturnAddrFI
, VT
);
1659 Chain
= DAG
.getStore(Chain
, dl
, RetAddrFrIdx
, NewRetAddrFrIdx
,
1660 PseudoSourceValue::getFixedStack(NewReturnAddrFI
), 0);
1664 SDValue
X86TargetLowering::LowerCALL(SDValue Op
, SelectionDAG
&DAG
) {
1665 MachineFunction
&MF
= DAG
.getMachineFunction();
1666 CallSDNode
*TheCall
= cast
<CallSDNode
>(Op
.getNode());
1667 SDValue Chain
= TheCall
->getChain();
1668 unsigned CC
= TheCall
->getCallingConv();
1669 bool isVarArg
= TheCall
->isVarArg();
1670 bool IsTailCall
= TheCall
->isTailCall() &&
1671 CC
== CallingConv::Fast
&& PerformTailCallOpt
;
1672 SDValue Callee
= TheCall
->getCallee();
1673 bool Is64Bit
= Subtarget
->is64Bit();
1674 bool IsStructRet
= CallIsStructReturn(TheCall
);
1675 DebugLoc dl
= TheCall
->getDebugLoc();
1677 assert(!(isVarArg
&& CC
== CallingConv::Fast
) &&
1678 "Var args not supported with calling convention fastcc");
1680 // Analyze operands of the call, assigning locations to each operand.
1681 SmallVector
<CCValAssign
, 16> ArgLocs
;
1682 CCState
CCInfo(CC
, isVarArg
, getTargetMachine(), ArgLocs
, DAG
.getContext());
1683 CCInfo
.AnalyzeCallOperands(TheCall
, CCAssignFnForNode(CC
));
1685 // Get a count of how many bytes are to be pushed on the stack.
1686 unsigned NumBytes
= CCInfo
.getNextStackOffset();
1687 if (PerformTailCallOpt
&& CC
== CallingConv::Fast
)
1688 NumBytes
= GetAlignedArgumentStackSize(NumBytes
, DAG
);
1692 // Lower arguments at fp - stackoffset + fpdiff.
1693 unsigned NumBytesCallerPushed
=
1694 MF
.getInfo
<X86MachineFunctionInfo
>()->getBytesToPopOnReturn();
1695 FPDiff
= NumBytesCallerPushed
- NumBytes
;
1697 // Set the delta of movement of the returnaddr stackslot.
1698 // But only set if delta is greater than previous delta.
1699 if (FPDiff
< (MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta()))
1700 MF
.getInfo
<X86MachineFunctionInfo
>()->setTCReturnAddrDelta(FPDiff
);
1703 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
1705 SDValue RetAddrFrIdx
;
1706 // Load return adress for tail calls.
1707 Chain
= EmitTailCallLoadRetAddr(DAG
, RetAddrFrIdx
, Chain
, IsTailCall
, Is64Bit
,
1710 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
1711 SmallVector
<SDValue
, 8> MemOpChains
;
1714 // Walk the register/memloc assignments, inserting copies/loads. In the case
1715 // of tail call optimization arguments are handle later.
1716 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1717 CCValAssign
&VA
= ArgLocs
[i
];
1718 SDValue Arg
= TheCall
->getArg(i
);
1719 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1720 bool isByVal
= Flags
.isByVal();
1722 // Promote the value if needed.
1723 switch (VA
.getLocInfo()) {
1724 default: llvm_unreachable("Unknown loc info!");
1725 case CCValAssign::Full
: break;
1726 case CCValAssign::SExt
:
1727 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1729 case CCValAssign::ZExt
:
1730 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1732 case CCValAssign::AExt
:
1733 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1737 if (VA
.isRegLoc()) {
1739 MVT RegVT
= VA
.getLocVT();
1740 if (RegVT
.isVector() && RegVT
.getSizeInBits() == 64)
1741 switch (VA
.getLocReg()) {
1744 case X86::RDI
: case X86::RSI
: case X86::RDX
: case X86::RCX
:
1746 // Special case: passing MMX values in GPR registers.
1747 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1750 case X86::XMM0
: case X86::XMM1
: case X86::XMM2
: case X86::XMM3
:
1751 case X86::XMM4
: case X86::XMM5
: case X86::XMM6
: case X86::XMM7
: {
1752 // Special case: passing MMX values in XMM registers.
1753 Arg
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i64
, Arg
);
1754 Arg
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i64
, Arg
);
1755 Arg
= getMOVL(DAG
, dl
, MVT::v2i64
, DAG
.getUNDEF(MVT::v2i64
), Arg
);
1760 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1762 if (!IsTailCall
|| (IsTailCall
&& isByVal
)) {
1763 assert(VA
.isMemLoc());
1764 if (StackPtr
.getNode() == 0)
1765 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, getPointerTy());
1767 MemOpChains
.push_back(LowerMemOpCallTo(TheCall
, DAG
, StackPtr
, VA
,
1768 Chain
, Arg
, Flags
));
1773 if (!MemOpChains
.empty())
1774 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1775 &MemOpChains
[0], MemOpChains
.size());
1777 // Build a sequence of copy-to-reg nodes chained together with token chain
1778 // and flag operands which copy the outgoing args into registers.
1780 // Tail call byval lowering might overwrite argument registers so in case of
1781 // tail call optimization the copies to registers are lowered later.
1783 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1784 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1785 RegsToPass
[i
].second
, InFlag
);
1786 InFlag
= Chain
.getValue(1);
1790 if (Subtarget
->isPICStyleGOT()) {
1791 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1794 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EBX
,
1795 DAG
.getNode(X86ISD::GlobalBaseReg
,
1796 DebugLoc::getUnknownLoc(),
1799 InFlag
= Chain
.getValue(1);
1801 // If we are tail calling and generating PIC/GOT style code load the
1802 // address of the callee into ECX. The value in ecx is used as target of
1803 // the tail jump. This is done to circumvent the ebx/callee-saved problem
1804 // for tail calls on PIC/GOT architectures. Normally we would just put the
1805 // address of GOT into ebx and then call target@PLT. But for tail calls
1806 // ebx would be restored (since ebx is callee saved) before jumping to the
1809 // Note: The actual moving to ECX is done further down.
1810 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
1811 if (G
&& !G
->getGlobal()->hasHiddenVisibility() &&
1812 !G
->getGlobal()->hasProtectedVisibility())
1813 Callee
= LowerGlobalAddress(Callee
, DAG
);
1814 else if (isa
<ExternalSymbolSDNode
>(Callee
))
1815 Callee
= LowerExternalSymbol(Callee
, DAG
);
1819 if (Is64Bit
&& isVarArg
) {
1820 // From AMD64 ABI document:
1821 // For calls that may call functions that use varargs or stdargs
1822 // (prototype-less calls or calls to functions containing ellipsis (...) in
1823 // the declaration) %al is used as hidden argument to specify the number
1824 // of SSE registers used. The contents of %al do not need to match exactly
1825 // the number of registers, but must be an ubound on the number of SSE
1826 // registers used and is in the range 0 - 8 inclusive.
1828 // FIXME: Verify this on Win64
1829 // Count the number of XMM registers allocated.
1830 static const unsigned XMMArgRegs
[] = {
1831 X86::XMM0
, X86::XMM1
, X86::XMM2
, X86::XMM3
,
1832 X86::XMM4
, X86::XMM5
, X86::XMM6
, X86::XMM7
1834 unsigned NumXMMRegs
= CCInfo
.getFirstUnallocated(XMMArgRegs
, 8);
1835 assert((Subtarget
->hasSSE1() || !NumXMMRegs
)
1836 && "SSE registers cannot be used when SSE is disabled");
1838 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
,
1839 DAG
.getConstant(NumXMMRegs
, MVT::i8
), InFlag
);
1840 InFlag
= Chain
.getValue(1);
1844 // For tail calls lower the arguments to the 'real' stack slot.
1846 SmallVector
<SDValue
, 8> MemOpChains2
;
1849 // Do not flag preceeding copytoreg stuff together with the following stuff.
1851 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1852 CCValAssign
&VA
= ArgLocs
[i
];
1853 if (!VA
.isRegLoc()) {
1854 assert(VA
.isMemLoc());
1855 SDValue Arg
= TheCall
->getArg(i
);
1856 ISD::ArgFlagsTy Flags
= TheCall
->getArgFlags(i
);
1857 // Create frame index.
1858 int32_t Offset
= VA
.getLocMemOffset()+FPDiff
;
1859 uint32_t OpSize
= (VA
.getLocVT().getSizeInBits()+7)/8;
1860 FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
);
1861 FIN
= DAG
.getFrameIndex(FI
, getPointerTy());
1863 if (Flags
.isByVal()) {
1864 // Copy relative to framepointer.
1865 SDValue Source
= DAG
.getIntPtrConstant(VA
.getLocMemOffset());
1866 if (StackPtr
.getNode() == 0)
1867 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
,
1869 Source
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, Source
);
1871 MemOpChains2
.push_back(CreateCopyOfByValArgument(Source
, FIN
, Chain
,
1874 // Store relative to framepointer.
1875 MemOpChains2
.push_back(
1876 DAG
.getStore(Chain
, dl
, Arg
, FIN
,
1877 PseudoSourceValue::getFixedStack(FI
), 0));
1882 if (!MemOpChains2
.empty())
1883 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
1884 &MemOpChains2
[0], MemOpChains2
.size());
1886 // Copy arguments to their registers.
1887 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1888 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1889 RegsToPass
[i
].second
, InFlag
);
1890 InFlag
= Chain
.getValue(1);
1894 // Store the return address to the appropriate stack slot.
1895 Chain
= EmitTailCallStoreRetAddr(DAG
, MF
, Chain
, RetAddrFrIdx
, Is64Bit
,
1899 // If the callee is a GlobalAddress node (quite common, every direct call is)
1900 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1901 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
1902 // We should use extra load for direct calls to dllimported functions in
1904 GlobalValue
*GV
= G
->getGlobal();
1905 if (!GV
->hasDLLImportLinkage()) {
1906 unsigned char OpFlags
= 0;
1908 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1909 // external symbols most go through the PLT in PIC mode. If the symbol
1910 // has hidden or protected visibility, or if it is static or local, then
1911 // we don't need to use the PLT - we can directly call it.
1912 if (Subtarget
->isTargetELF() &&
1913 getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
1914 GV
->hasDefaultVisibility() && !GV
->hasLocalLinkage()) {
1915 OpFlags
= X86II::MO_PLT
;
1916 } else if (Subtarget
->isPICStyleStubAny() &&
1917 (GV
->isDeclaration() || GV
->isWeakForLinker()) &&
1918 Subtarget
->getDarwinVers() < 9) {
1919 // PC-relative references to external symbols should go through $stub,
1920 // unless we're building with the leopard linker or later, which
1921 // automatically synthesizes these stubs.
1922 OpFlags
= X86II::MO_DARWIN_STUB
;
1925 Callee
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(),
1926 G
->getOffset(), OpFlags
);
1928 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
1929 unsigned char OpFlags
= 0;
1931 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
1932 // symbols should go through the PLT.
1933 if (Subtarget
->isTargetELF() &&
1934 getTargetMachine().getRelocationModel() == Reloc::PIC_
) {
1935 OpFlags
= X86II::MO_PLT
;
1936 } else if (Subtarget
->isPICStyleStubAny() &&
1937 Subtarget
->getDarwinVers() < 9) {
1938 // PC-relative references to external symbols should go through $stub,
1939 // unless we're building with the leopard linker or later, which
1940 // automatically synthesizes these stubs.
1941 OpFlags
= X86II::MO_DARWIN_STUB
;
1944 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), getPointerTy(),
1946 } else if (IsTailCall
) {
1947 unsigned Opc
= Is64Bit
? X86::R11
: X86::EAX
;
1949 Chain
= DAG
.getCopyToReg(Chain
, dl
,
1950 DAG
.getRegister(Opc
, getPointerTy()),
1952 Callee
= DAG
.getRegister(Opc
, getPointerTy());
1953 // Add register as live out.
1954 DAG
.getMachineFunction().getRegInfo().addLiveOut(Opc
);
1957 // Returns a chain & a flag for retval copy to use.
1958 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1959 SmallVector
<SDValue
, 8> Ops
;
1962 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
1963 DAG
.getIntPtrConstant(0, true), InFlag
);
1964 InFlag
= Chain
.getValue(1);
1966 // Returns a chain & a flag for retval copy to use.
1967 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
1971 Ops
.push_back(Chain
);
1972 Ops
.push_back(Callee
);
1975 Ops
.push_back(DAG
.getConstant(FPDiff
, MVT::i32
));
1977 // Add argument registers to the end of the list so that they are known live
1979 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1980 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1981 RegsToPass
[i
].second
.getValueType()));
1983 // Add an implicit use GOT pointer in EBX.
1984 if (!IsTailCall
&& Subtarget
->isPICStyleGOT())
1985 Ops
.push_back(DAG
.getRegister(X86::EBX
, getPointerTy()));
1987 // Add an implicit use of AL for x86 vararg functions.
1988 if (Is64Bit
&& isVarArg
)
1989 Ops
.push_back(DAG
.getRegister(X86::AL
, MVT::i8
));
1991 if (InFlag
.getNode())
1992 Ops
.push_back(InFlag
);
1995 assert(InFlag
.getNode() &&
1996 "Flag must be set. Depend on flag being set in LowerRET");
1997 Chain
= DAG
.getNode(X86ISD::TAILCALL
, dl
,
1998 TheCall
->getVTList(), &Ops
[0], Ops
.size());
2000 return SDValue(Chain
.getNode(), Op
.getResNo());
2003 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2004 InFlag
= Chain
.getValue(1);
2006 // Create the CALLSEQ_END node.
2007 unsigned NumBytesForCalleeToPush
;
2008 if (IsCalleePop(isVarArg
, CC
))
2009 NumBytesForCalleeToPush
= NumBytes
; // Callee pops everything
2010 else if (!Is64Bit
&& CC
!= CallingConv::Fast
&& IsStructRet
)
2011 // If this is is a call to a struct-return function, the callee
2012 // pops the hidden struct pointer, so we have to push it back.
2013 // This is common for Darwin/X86, Linux & Mingw32 targets.
2014 NumBytesForCalleeToPush
= 4;
2016 NumBytesForCalleeToPush
= 0; // Callee pops nothing.
2018 // Returns a flag for retval copy to use.
2019 Chain
= DAG
.getCALLSEQ_END(Chain
,
2020 DAG
.getIntPtrConstant(NumBytes
, true),
2021 DAG
.getIntPtrConstant(NumBytesForCalleeToPush
,
2024 InFlag
= Chain
.getValue(1);
2026 // Handle result values, copying them out of physregs into vregs that we
2028 return SDValue(LowerCallResult(Chain
, InFlag
, TheCall
, CC
, DAG
),
2033 //===----------------------------------------------------------------------===//
2034 // Fast Calling Convention (tail call) implementation
2035 //===----------------------------------------------------------------------===//
2037 // Like std call, callee cleans arguments, convention except that ECX is
2038 // reserved for storing the tail called function address. Only 2 registers are
2039 // free for argument passing (inreg). Tail call optimization is performed
2041 // * tailcallopt is enabled
2042 // * caller/callee are fastcc
2043 // On X86_64 architecture with GOT-style position independent code only local
2044 // (within module) calls are supported at the moment.
2045 // To keep the stack aligned according to platform abi the function
2046 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2047 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2048 // If a tail called function callee has more arguments than the caller the
2049 // caller needs to make sure that there is room to move the RETADDR to. This is
2050 // achieved by reserving an area the size of the argument delta right after the
2051 // original REtADDR, but before the saved framepointer or the spilled registers
2052 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2064 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2065 /// for a 16 byte align requirement.
2066 unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize
,
2067 SelectionDAG
& DAG
) {
2068 MachineFunction
&MF
= DAG
.getMachineFunction();
2069 const TargetMachine
&TM
= MF
.getTarget();
2070 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
2071 unsigned StackAlignment
= TFI
.getStackAlignment();
2072 uint64_t AlignMask
= StackAlignment
- 1;
2073 int64_t Offset
= StackSize
;
2074 uint64_t SlotSize
= TD
->getPointerSize();
2075 if ( (Offset
& AlignMask
) <= (StackAlignment
- SlotSize
) ) {
2076 // Number smaller than 12 so just add the difference.
2077 Offset
+= ((StackAlignment
- SlotSize
) - (Offset
& AlignMask
));
2079 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2080 Offset
= ((~AlignMask
) & Offset
) + StackAlignment
+
2081 (StackAlignment
-SlotSize
);
2086 /// IsEligibleForTailCallElimination - Check to see whether the next instruction
2087 /// following the call is a return. A function is eligible if caller/callee
2088 /// calling conventions match, currently only fastcc supports tail calls, and
2089 /// the function CALL is immediatly followed by a RET.
2090 bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode
*TheCall
,
2092 SelectionDAG
& DAG
) const {
2093 if (!PerformTailCallOpt
)
2096 if (CheckTailCallReturnConstraints(TheCall
, Ret
)) {
2098 DAG
.getMachineFunction().getFunction()->getCallingConv();
2099 unsigned CalleeCC
= TheCall
->getCallingConv();
2100 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
)
2108 X86TargetLowering::createFastISel(MachineFunction
&mf
,
2109 MachineModuleInfo
*mmo
,
2111 DenseMap
<const Value
*, unsigned> &vm
,
2112 DenseMap
<const BasicBlock
*,
2113 MachineBasicBlock
*> &bm
,
2114 DenseMap
<const AllocaInst
*, int> &am
2116 , SmallSet
<Instruction
*, 8> &cil
2119 return X86::createFastISel(mf
, mmo
, dw
, vm
, bm
, am
2127 //===----------------------------------------------------------------------===//
2128 // Other Lowering Hooks
2129 //===----------------------------------------------------------------------===//
2132 SDValue
X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG
&DAG
) {
2133 MachineFunction
&MF
= DAG
.getMachineFunction();
2134 X86MachineFunctionInfo
*FuncInfo
= MF
.getInfo
<X86MachineFunctionInfo
>();
2135 int ReturnAddrIndex
= FuncInfo
->getRAIndex();
2137 if (ReturnAddrIndex
== 0) {
2138 // Set up a frame object for the return address.
2139 uint64_t SlotSize
= TD
->getPointerSize();
2140 ReturnAddrIndex
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, -SlotSize
);
2141 FuncInfo
->setRAIndex(ReturnAddrIndex
);
2144 return DAG
.getFrameIndex(ReturnAddrIndex
, getPointerTy());
2148 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2149 /// specific condition code, returning the condition code and the LHS/RHS of the
2150 /// comparison to make.
2151 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode
, bool isFP
,
2152 SDValue
&LHS
, SDValue
&RHS
, SelectionDAG
&DAG
) {
2154 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
2155 if (SetCCOpcode
== ISD::SETGT
&& RHSC
->isAllOnesValue()) {
2156 // X > -1 -> X == 0, jump !sign.
2157 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2158 return X86::COND_NS
;
2159 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->isNullValue()) {
2160 // X < 0 -> X == 0, jump on sign.
2162 } else if (SetCCOpcode
== ISD::SETLT
&& RHSC
->getZExtValue() == 1) {
2164 RHS
= DAG
.getConstant(0, RHS
.getValueType());
2165 return X86::COND_LE
;
2169 switch (SetCCOpcode
) {
2170 default: llvm_unreachable("Invalid integer condition!");
2171 case ISD::SETEQ
: return X86::COND_E
;
2172 case ISD::SETGT
: return X86::COND_G
;
2173 case ISD::SETGE
: return X86::COND_GE
;
2174 case ISD::SETLT
: return X86::COND_L
;
2175 case ISD::SETLE
: return X86::COND_LE
;
2176 case ISD::SETNE
: return X86::COND_NE
;
2177 case ISD::SETULT
: return X86::COND_B
;
2178 case ISD::SETUGT
: return X86::COND_A
;
2179 case ISD::SETULE
: return X86::COND_BE
;
2180 case ISD::SETUGE
: return X86::COND_AE
;
2184 // First determine if it is required or is profitable to flip the operands.
2186 // If LHS is a foldable load, but RHS is not, flip the condition.
2187 if ((ISD::isNON_EXTLoad(LHS
.getNode()) && LHS
.hasOneUse()) &&
2188 !(ISD::isNON_EXTLoad(RHS
.getNode()) && RHS
.hasOneUse())) {
2189 SetCCOpcode
= getSetCCSwappedOperands(SetCCOpcode
);
2190 std::swap(LHS
, RHS
);
2193 switch (SetCCOpcode
) {
2199 std::swap(LHS
, RHS
);
2203 // On a floating point condition, the flags are set as follows:
2205 // 0 | 0 | 0 | X > Y
2206 // 0 | 0 | 1 | X < Y
2207 // 1 | 0 | 0 | X == Y
2208 // 1 | 1 | 1 | unordered
2209 switch (SetCCOpcode
) {
2210 default: llvm_unreachable("Condcode should be pre-legalized away");
2212 case ISD::SETEQ
: return X86::COND_E
;
2213 case ISD::SETOLT
: // flipped
2215 case ISD::SETGT
: return X86::COND_A
;
2216 case ISD::SETOLE
: // flipped
2218 case ISD::SETGE
: return X86::COND_AE
;
2219 case ISD::SETUGT
: // flipped
2221 case ISD::SETLT
: return X86::COND_B
;
2222 case ISD::SETUGE
: // flipped
2224 case ISD::SETLE
: return X86::COND_BE
;
2226 case ISD::SETNE
: return X86::COND_NE
;
2227 case ISD::SETUO
: return X86::COND_P
;
2228 case ISD::SETO
: return X86::COND_NP
;
2232 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
2233 /// code. Current x86 isa includes the following FP cmov instructions:
2234 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2235 static bool hasFPCMov(unsigned X86CC
) {
2251 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
2252 /// the specified range (L, H].
2253 static bool isUndefOrInRange(int Val
, int Low
, int Hi
) {
2254 return (Val
< 0) || (Val
>= Low
&& Val
< Hi
);
2257 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2258 /// specified value.
2259 static bool isUndefOrEqual(int Val
, int CmpVal
) {
2260 if (Val
< 0 || Val
== CmpVal
)
2265 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2266 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
2267 /// the second operand.
2268 static bool isPSHUFDMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2269 if (VT
== MVT::v4f32
|| VT
== MVT::v4i32
|| VT
== MVT::v4i16
)
2270 return (Mask
[0] < 4 && Mask
[1] < 4 && Mask
[2] < 4 && Mask
[3] < 4);
2271 if (VT
== MVT::v2f64
|| VT
== MVT::v2i64
)
2272 return (Mask
[0] < 2 && Mask
[1] < 2);
2276 bool X86::isPSHUFDMask(ShuffleVectorSDNode
*N
) {
2277 SmallVector
<int, 8> M
;
2279 return ::isPSHUFDMask(M
, N
->getValueType(0));
2282 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2283 /// is suitable for input to PSHUFHW.
2284 static bool isPSHUFHWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2285 if (VT
!= MVT::v8i16
)
2288 // Lower quadword copied in order or undef.
2289 for (int i
= 0; i
!= 4; ++i
)
2290 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2293 // Upper quadword shuffled.
2294 for (int i
= 4; i
!= 8; ++i
)
2295 if (Mask
[i
] >= 0 && (Mask
[i
] < 4 || Mask
[i
] > 7))
2301 bool X86::isPSHUFHWMask(ShuffleVectorSDNode
*N
) {
2302 SmallVector
<int, 8> M
;
2304 return ::isPSHUFHWMask(M
, N
->getValueType(0));
2307 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2308 /// is suitable for input to PSHUFLW.
2309 static bool isPSHUFLWMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2310 if (VT
!= MVT::v8i16
)
2313 // Upper quadword copied in order.
2314 for (int i
= 4; i
!= 8; ++i
)
2315 if (Mask
[i
] >= 0 && Mask
[i
] != i
)
2318 // Lower quadword shuffled.
2319 for (int i
= 0; i
!= 4; ++i
)
2326 bool X86::isPSHUFLWMask(ShuffleVectorSDNode
*N
) {
2327 SmallVector
<int, 8> M
;
2329 return ::isPSHUFLWMask(M
, N
->getValueType(0));
2332 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2333 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
2334 static bool isSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2335 int NumElems
= VT
.getVectorNumElements();
2336 if (NumElems
!= 2 && NumElems
!= 4)
2339 int Half
= NumElems
/ 2;
2340 for (int i
= 0; i
< Half
; ++i
)
2341 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2343 for (int i
= Half
; i
< NumElems
; ++i
)
2344 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2350 bool X86::isSHUFPMask(ShuffleVectorSDNode
*N
) {
2351 SmallVector
<int, 8> M
;
2353 return ::isSHUFPMask(M
, N
->getValueType(0));
2356 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2357 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2358 /// half elements to come from vector 1 (which would equal the dest.) and
2359 /// the upper half to come from vector 2.
2360 static bool isCommutedSHUFPMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2361 int NumElems
= VT
.getVectorNumElements();
2363 if (NumElems
!= 2 && NumElems
!= 4)
2366 int Half
= NumElems
/ 2;
2367 for (int i
= 0; i
< Half
; ++i
)
2368 if (!isUndefOrInRange(Mask
[i
], NumElems
, NumElems
*2))
2370 for (int i
= Half
; i
< NumElems
; ++i
)
2371 if (!isUndefOrInRange(Mask
[i
], 0, NumElems
))
2376 static bool isCommutedSHUFP(ShuffleVectorSDNode
*N
) {
2377 SmallVector
<int, 8> M
;
2379 return isCommutedSHUFPMask(M
, N
->getValueType(0));
2382 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2383 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2384 bool X86::isMOVHLPSMask(ShuffleVectorSDNode
*N
) {
2385 if (N
->getValueType(0).getVectorNumElements() != 4)
2388 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2389 return isUndefOrEqual(N
->getMaskElt(0), 6) &&
2390 isUndefOrEqual(N
->getMaskElt(1), 7) &&
2391 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2392 isUndefOrEqual(N
->getMaskElt(3), 3);
2395 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2396 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2397 bool X86::isMOVLPMask(ShuffleVectorSDNode
*N
) {
2398 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2400 if (NumElems
!= 2 && NumElems
!= 4)
2403 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2404 if (!isUndefOrEqual(N
->getMaskElt(i
), i
+ NumElems
))
2407 for (unsigned i
= NumElems
/2; i
< NumElems
; ++i
)
2408 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2414 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2415 /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2417 bool X86::isMOVHPMask(ShuffleVectorSDNode
*N
) {
2418 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2420 if (NumElems
!= 2 && NumElems
!= 4)
2423 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2424 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2427 for (unsigned i
= 0; i
< NumElems
/2; ++i
)
2428 if (!isUndefOrEqual(N
->getMaskElt(i
+ NumElems
/2), i
+ NumElems
))
2434 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2435 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2437 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2438 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2443 return isUndefOrEqual(N
->getMaskElt(0), 2) &&
2444 isUndefOrEqual(N
->getMaskElt(1), 3) &&
2445 isUndefOrEqual(N
->getMaskElt(2), 2) &&
2446 isUndefOrEqual(N
->getMaskElt(3), 3);
2449 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2450 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
2451 static bool isUNPCKLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2452 bool V2IsSplat
= false) {
2453 int NumElts
= VT
.getVectorNumElements();
2454 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2457 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2459 int BitI1
= Mask
[i
+1];
2460 if (!isUndefOrEqual(BitI
, j
))
2463 if (!isUndefOrEqual(BitI1
, NumElts
))
2466 if (!isUndefOrEqual(BitI1
, j
+ NumElts
))
2473 bool X86::isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2474 SmallVector
<int, 8> M
;
2476 return ::isUNPCKLMask(M
, N
->getValueType(0), V2IsSplat
);
2479 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2480 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
2481 static bool isUNPCKHMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2482 bool V2IsSplat
= false) {
2483 int NumElts
= VT
.getVectorNumElements();
2484 if (NumElts
!= 2 && NumElts
!= 4 && NumElts
!= 8 && NumElts
!= 16)
2487 for (int i
= 0, j
= 0; i
!= NumElts
; i
+= 2, ++j
) {
2489 int BitI1
= Mask
[i
+1];
2490 if (!isUndefOrEqual(BitI
, j
+ NumElts
/2))
2493 if (isUndefOrEqual(BitI1
, NumElts
))
2496 if (!isUndefOrEqual(BitI1
, j
+ NumElts
/2 + NumElts
))
2503 bool X86::isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
) {
2504 SmallVector
<int, 8> M
;
2506 return ::isUNPCKHMask(M
, N
->getValueType(0), V2IsSplat
);
2509 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2510 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2512 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2513 int NumElems
= VT
.getVectorNumElements();
2514 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2517 for (int i
= 0, j
= 0; i
!= NumElems
; i
+= 2, ++j
) {
2519 int BitI1
= Mask
[i
+1];
2520 if (!isUndefOrEqual(BitI
, j
))
2522 if (!isUndefOrEqual(BitI1
, j
))
2528 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2529 SmallVector
<int, 8> M
;
2531 return ::isUNPCKL_v_undef_Mask(M
, N
->getValueType(0));
2534 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2535 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2537 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2538 int NumElems
= VT
.getVectorNumElements();
2539 if (NumElems
!= 2 && NumElems
!= 4 && NumElems
!= 8 && NumElems
!= 16)
2542 for (int i
= 0, j
= NumElems
/ 2; i
!= NumElems
; i
+= 2, ++j
) {
2544 int BitI1
= Mask
[i
+1];
2545 if (!isUndefOrEqual(BitI
, j
))
2547 if (!isUndefOrEqual(BitI1
, j
))
2553 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
) {
2554 SmallVector
<int, 8> M
;
2556 return ::isUNPCKH_v_undef_Mask(M
, N
->getValueType(0));
2559 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2560 /// specifies a shuffle of elements that is suitable for input to MOVSS,
2561 /// MOVSD, and MOVD, i.e. setting the lowest element.
2562 static bool isMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
) {
2563 if (VT
.getVectorElementType().getSizeInBits() < 32)
2566 int NumElts
= VT
.getVectorNumElements();
2568 if (!isUndefOrEqual(Mask
[0], NumElts
))
2571 for (int i
= 1; i
< NumElts
; ++i
)
2572 if (!isUndefOrEqual(Mask
[i
], i
))
2578 bool X86::isMOVLMask(ShuffleVectorSDNode
*N
) {
2579 SmallVector
<int, 8> M
;
2581 return ::isMOVLMask(M
, N
->getValueType(0));
2584 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2585 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
2586 /// element of vector 2 and the other elements to come from vector 1 in order.
2587 static bool isCommutedMOVLMask(const SmallVectorImpl
<int> &Mask
, MVT VT
,
2588 bool V2IsSplat
= false, bool V2IsUndef
= false) {
2589 int NumOps
= VT
.getVectorNumElements();
2590 if (NumOps
!= 2 && NumOps
!= 4 && NumOps
!= 8 && NumOps
!= 16)
2593 if (!isUndefOrEqual(Mask
[0], 0))
2596 for (int i
= 1; i
< NumOps
; ++i
)
2597 if (!(isUndefOrEqual(Mask
[i
], i
+NumOps
) ||
2598 (V2IsUndef
&& isUndefOrInRange(Mask
[i
], NumOps
, NumOps
*2)) ||
2599 (V2IsSplat
&& isUndefOrEqual(Mask
[i
], NumOps
))))
2605 static bool isCommutedMOVL(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false,
2606 bool V2IsUndef
= false) {
2607 SmallVector
<int, 8> M
;
2609 return isCommutedMOVLMask(M
, N
->getValueType(0), V2IsSplat
, V2IsUndef
);
2612 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2613 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2614 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode
*N
) {
2615 if (N
->getValueType(0).getVectorNumElements() != 4)
2618 // Expect 1, 1, 3, 3
2619 for (unsigned i
= 0; i
< 2; ++i
) {
2620 int Elt
= N
->getMaskElt(i
);
2621 if (Elt
>= 0 && Elt
!= 1)
2626 for (unsigned i
= 2; i
< 4; ++i
) {
2627 int Elt
= N
->getMaskElt(i
);
2628 if (Elt
>= 0 && Elt
!= 3)
2633 // Don't use movshdup if it can be done with a shufps.
2634 // FIXME: verify that matching u, u, 3, 3 is what we want.
2638 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2639 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2640 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode
*N
) {
2641 if (N
->getValueType(0).getVectorNumElements() != 4)
2644 // Expect 0, 0, 2, 2
2645 for (unsigned i
= 0; i
< 2; ++i
)
2646 if (N
->getMaskElt(i
) > 0)
2650 for (unsigned i
= 2; i
< 4; ++i
) {
2651 int Elt
= N
->getMaskElt(i
);
2652 if (Elt
>= 0 && Elt
!= 2)
2657 // Don't use movsldup if it can be done with a shufps.
2661 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2662 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2663 bool X86::isMOVDDUPMask(ShuffleVectorSDNode
*N
) {
2664 int e
= N
->getValueType(0).getVectorNumElements() / 2;
2666 for (int i
= 0; i
< e
; ++i
)
2667 if (!isUndefOrEqual(N
->getMaskElt(i
), i
))
2669 for (int i
= 0; i
< e
; ++i
)
2670 if (!isUndefOrEqual(N
->getMaskElt(e
+i
), i
))
2675 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2676 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2678 unsigned X86::getShuffleSHUFImmediate(SDNode
*N
) {
2679 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2680 int NumOperands
= SVOp
->getValueType(0).getVectorNumElements();
2682 unsigned Shift
= (NumOperands
== 4) ? 2 : 1;
2684 for (int i
= 0; i
< NumOperands
; ++i
) {
2685 int Val
= SVOp
->getMaskElt(NumOperands
-i
-1);
2686 if (Val
< 0) Val
= 0;
2687 if (Val
>= NumOperands
) Val
-= NumOperands
;
2689 if (i
!= NumOperands
- 1)
2695 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2696 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2698 unsigned X86::getShufflePSHUFHWImmediate(SDNode
*N
) {
2699 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2701 // 8 nodes, but we only care about the last 4.
2702 for (unsigned i
= 7; i
>= 4; --i
) {
2703 int Val
= SVOp
->getMaskElt(i
);
2712 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2713 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2715 unsigned X86::getShufflePSHUFLWImmediate(SDNode
*N
) {
2716 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2718 // 8 nodes, but we only care about the first 4.
2719 for (int i
= 3; i
>= 0; --i
) {
2720 int Val
= SVOp
->getMaskElt(i
);
2729 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
2730 /// their permute mask.
2731 static SDValue
CommuteVectorShuffle(ShuffleVectorSDNode
*SVOp
,
2732 SelectionDAG
&DAG
) {
2733 MVT VT
= SVOp
->getValueType(0);
2734 unsigned NumElems
= VT
.getVectorNumElements();
2735 SmallVector
<int, 8> MaskVec
;
2737 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2738 int idx
= SVOp
->getMaskElt(i
);
2740 MaskVec
.push_back(idx
);
2741 else if (idx
< (int)NumElems
)
2742 MaskVec
.push_back(idx
+ NumElems
);
2744 MaskVec
.push_back(idx
- NumElems
);
2746 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(1),
2747 SVOp
->getOperand(0), &MaskVec
[0]);
2750 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2751 /// the two vector operands have swapped position.
2752 static void CommuteVectorShuffleMask(SmallVectorImpl
<int> &Mask
, MVT VT
) {
2753 unsigned NumElems
= VT
.getVectorNumElements();
2754 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2758 else if (idx
< (int)NumElems
)
2759 Mask
[i
] = idx
+ NumElems
;
2761 Mask
[i
] = idx
- NumElems
;
2765 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2766 /// match movhlps. The lower half elements should come from upper half of
2767 /// V1 (and in order), and the upper half elements should come from the upper
2768 /// half of V2 (and in order).
2769 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode
*Op
) {
2770 if (Op
->getValueType(0).getVectorNumElements() != 4)
2772 for (unsigned i
= 0, e
= 2; i
!= e
; ++i
)
2773 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+2))
2775 for (unsigned i
= 2; i
!= 4; ++i
)
2776 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+4))
2781 /// isScalarLoadToVector - Returns true if the node is a scalar load that
2782 /// is promoted to a vector. It also returns the LoadSDNode by reference if
2784 static bool isScalarLoadToVector(SDNode
*N
, LoadSDNode
**LD
= NULL
) {
2785 if (N
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
2787 N
= N
->getOperand(0).getNode();
2788 if (!ISD::isNON_EXTLoad(N
))
2791 *LD
= cast
<LoadSDNode
>(N
);
2795 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2796 /// match movlp{s|d}. The lower half elements should come from lower half of
2797 /// V1 (and in order), and the upper half elements should come from the upper
2798 /// half of V2 (and in order). And since V1 will become the source of the
2799 /// MOVLP, it must be either a vector load or a scalar load to vector.
2800 static bool ShouldXformToMOVLP(SDNode
*V1
, SDNode
*V2
,
2801 ShuffleVectorSDNode
*Op
) {
2802 if (!ISD::isNON_EXTLoad(V1
) && !isScalarLoadToVector(V1
))
2804 // Is V2 is a vector load, don't do this transformation. We will try to use
2805 // load folding shufps op.
2806 if (ISD::isNON_EXTLoad(V2
))
2809 unsigned NumElems
= Op
->getValueType(0).getVectorNumElements();
2811 if (NumElems
!= 2 && NumElems
!= 4)
2813 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
)
2814 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
))
2816 for (unsigned i
= NumElems
/2; i
!= NumElems
; ++i
)
2817 if (!isUndefOrEqual(Op
->getMaskElt(i
), i
+NumElems
))
2822 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2824 static bool isSplatVector(SDNode
*N
) {
2825 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2828 SDValue SplatValue
= N
->getOperand(0);
2829 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
2830 if (N
->getOperand(i
) != SplatValue
)
2835 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
2837 static inline bool isZeroNode(SDValue Elt
) {
2838 return ((isa
<ConstantSDNode
>(Elt
) &&
2839 cast
<ConstantSDNode
>(Elt
)->getZExtValue() == 0) ||
2840 (isa
<ConstantFPSDNode
>(Elt
) &&
2841 cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().isPosZero()));
2844 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2845 /// to an zero vector.
2846 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
2847 static bool isZeroShuffle(ShuffleVectorSDNode
*N
) {
2848 SDValue V1
= N
->getOperand(0);
2849 SDValue V2
= N
->getOperand(1);
2850 unsigned NumElems
= N
->getValueType(0).getVectorNumElements();
2851 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2852 int Idx
= N
->getMaskElt(i
);
2853 if (Idx
>= (int)NumElems
) {
2854 unsigned Opc
= V2
.getOpcode();
2855 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V2
.getNode()))
2857 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V2
.getOperand(Idx
-NumElems
)))
2859 } else if (Idx
>= 0) {
2860 unsigned Opc
= V1
.getOpcode();
2861 if (Opc
== ISD::UNDEF
|| ISD::isBuildVectorAllZeros(V1
.getNode()))
2863 if (Opc
!= ISD::BUILD_VECTOR
|| !isZeroNode(V1
.getOperand(Idx
)))
2870 /// getZeroVector - Returns a vector of specified type with all zero elements.
2872 static SDValue
getZeroVector(MVT VT
, bool HasSSE2
, SelectionDAG
&DAG
,
2874 assert(VT
.isVector() && "Expected a vector type");
2876 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2877 // type. This ensures they get CSE'd.
2879 if (VT
.getSizeInBits() == 64) { // MMX
2880 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2881 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2882 } else if (HasSSE2
) { // SSE2
2883 SDValue Cst
= DAG
.getTargetConstant(0, MVT::i32
);
2884 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2886 SDValue Cst
= DAG
.getTargetConstantFP(+0.0, MVT::f32
);
2887 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Cst
, Cst
, Cst
, Cst
);
2889 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2892 /// getOnesVector - Returns a vector of specified type with all bits set.
2894 static SDValue
getOnesVector(MVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
2895 assert(VT
.isVector() && "Expected a vector type");
2897 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2898 // type. This ensures they get CSE'd.
2899 SDValue Cst
= DAG
.getTargetConstant(~0U, MVT::i32
);
2901 if (VT
.getSizeInBits() == 64) // MMX
2902 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i32
, Cst
, Cst
);
2904 Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Cst
, Cst
, Cst
, Cst
);
2905 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Vec
);
2909 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2910 /// that point to V2 points to its first element.
2911 static SDValue
NormalizeMask(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
2912 MVT VT
= SVOp
->getValueType(0);
2913 unsigned NumElems
= VT
.getVectorNumElements();
2915 bool Changed
= false;
2916 SmallVector
<int, 8> MaskVec
;
2917 SVOp
->getMask(MaskVec
);
2919 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
2920 if (MaskVec
[i
] > (int)NumElems
) {
2921 MaskVec
[i
] = NumElems
;
2926 return DAG
.getVectorShuffle(VT
, SVOp
->getDebugLoc(), SVOp
->getOperand(0),
2927 SVOp
->getOperand(1), &MaskVec
[0]);
2928 return SDValue(SVOp
, 0);
2931 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2932 /// operation of specified width.
2933 static SDValue
getMOVL(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2935 unsigned NumElems
= VT
.getVectorNumElements();
2936 SmallVector
<int, 8> Mask
;
2937 Mask
.push_back(NumElems
);
2938 for (unsigned i
= 1; i
!= NumElems
; ++i
)
2940 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2943 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
2944 static SDValue
getUnpackl(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2946 unsigned NumElems
= VT
.getVectorNumElements();
2947 SmallVector
<int, 8> Mask
;
2948 for (unsigned i
= 0, e
= NumElems
/2; i
!= e
; ++i
) {
2950 Mask
.push_back(i
+ NumElems
);
2952 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2955 /// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
2956 static SDValue
getUnpackh(SelectionDAG
&DAG
, DebugLoc dl
, MVT VT
, SDValue V1
,
2958 unsigned NumElems
= VT
.getVectorNumElements();
2959 unsigned Half
= NumElems
/2;
2960 SmallVector
<int, 8> Mask
;
2961 for (unsigned i
= 0; i
!= Half
; ++i
) {
2962 Mask
.push_back(i
+ Half
);
2963 Mask
.push_back(i
+ NumElems
+ Half
);
2965 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask
[0]);
2968 /// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2969 static SDValue
PromoteSplat(ShuffleVectorSDNode
*SV
, SelectionDAG
&DAG
,
2971 if (SV
->getValueType(0).getVectorNumElements() <= 4)
2972 return SDValue(SV
, 0);
2974 MVT PVT
= MVT::v4f32
;
2975 MVT VT
= SV
->getValueType(0);
2976 DebugLoc dl
= SV
->getDebugLoc();
2977 SDValue V1
= SV
->getOperand(0);
2978 int NumElems
= VT
.getVectorNumElements();
2979 int EltNo
= SV
->getSplatIndex();
2981 // unpack elements to the correct location
2982 while (NumElems
> 4) {
2983 if (EltNo
< NumElems
/2) {
2984 V1
= getUnpackl(DAG
, dl
, VT
, V1
, V1
);
2986 V1
= getUnpackh(DAG
, dl
, VT
, V1
, V1
);
2987 EltNo
-= NumElems
/2;
2992 // Perform the splat.
2993 int SplatMask
[4] = { EltNo
, EltNo
, EltNo
, EltNo
};
2994 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, PVT
, V1
);
2995 V1
= DAG
.getVectorShuffle(PVT
, dl
, V1
, DAG
.getUNDEF(PVT
), &SplatMask
[0]);
2996 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, V1
);
2999 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3000 /// vector of zero or undef vector. This produces a shuffle where the low
3001 /// element of V2 is swizzled into the zero/undef vector, landing at element
3002 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
3003 static SDValue
getShuffleVectorZeroOrUndef(SDValue V2
, unsigned Idx
,
3004 bool isZero
, bool HasSSE2
,
3005 SelectionDAG
&DAG
) {
3006 MVT VT
= V2
.getValueType();
3008 ? getZeroVector(VT
, HasSSE2
, DAG
, V2
.getDebugLoc()) : DAG
.getUNDEF(VT
);
3009 unsigned NumElems
= VT
.getVectorNumElements();
3010 SmallVector
<int, 16> MaskVec
;
3011 for (unsigned i
= 0; i
!= NumElems
; ++i
)
3012 // If this is the insertion idx, put the low elt of V2 here.
3013 MaskVec
.push_back(i
== Idx
? NumElems
: i
);
3014 return DAG
.getVectorShuffle(VT
, V2
.getDebugLoc(), V1
, V2
, &MaskVec
[0]);
3017 /// getNumOfConsecutiveZeros - Return the number of elements in a result of
3018 /// a shuffle that is zero.
3020 unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode
*SVOp
, int NumElems
,
3021 bool Low
, SelectionDAG
&DAG
) {
3022 unsigned NumZeros
= 0;
3023 for (int i
= 0; i
< NumElems
; ++i
) {
3024 unsigned Index
= Low
? i
: NumElems
-i
-1;
3025 int Idx
= SVOp
->getMaskElt(Index
);
3030 SDValue Elt
= DAG
.getShuffleScalarElt(SVOp
, Index
);
3031 if (Elt
.getNode() && isZeroNode(Elt
))
3039 /// isVectorShift - Returns true if the shuffle can be implemented as a
3040 /// logical left or right shift of a vector.
3041 /// FIXME: split into pslldqi, psrldqi, palignr variants.
3042 static bool isVectorShift(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
,
3043 bool &isLeft
, SDValue
&ShVal
, unsigned &ShAmt
) {
3044 int NumElems
= SVOp
->getValueType(0).getVectorNumElements();
3047 unsigned NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, true, DAG
);
3050 NumZeros
= getNumOfConsecutiveZeros(SVOp
, NumElems
, false, DAG
);
3054 bool SeenV1
= false;
3055 bool SeenV2
= false;
3056 for (int i
= NumZeros
; i
< NumElems
; ++i
) {
3057 int Val
= isLeft
? (i
- NumZeros
) : i
;
3058 int Idx
= SVOp
->getMaskElt(isLeft
? i
: (i
- NumZeros
));
3070 if (SeenV1
&& SeenV2
)
3073 ShVal
= SeenV1
? SVOp
->getOperand(0) : SVOp
->getOperand(1);
3079 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3081 static SDValue
LowerBuildVectorv16i8(SDValue Op
, unsigned NonZeros
,
3082 unsigned NumNonZero
, unsigned NumZero
,
3083 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3087 DebugLoc dl
= Op
.getDebugLoc();
3090 for (unsigned i
= 0; i
< 16; ++i
) {
3091 bool ThisIsNonZero
= (NonZeros
& (1 << i
)) != 0;
3092 if (ThisIsNonZero
&& First
) {
3094 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3096 V
= DAG
.getUNDEF(MVT::v8i16
);
3101 SDValue
ThisElt(0, 0), LastElt(0, 0);
3102 bool LastIsNonZero
= (NonZeros
& (1 << (i
-1))) != 0;
3103 if (LastIsNonZero
) {
3104 LastElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
3105 MVT::i16
, Op
.getOperand(i
-1));
3107 if (ThisIsNonZero
) {
3108 ThisElt
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i16
, Op
.getOperand(i
));
3109 ThisElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
,
3110 ThisElt
, DAG
.getConstant(8, MVT::i8
));
3112 ThisElt
= DAG
.getNode(ISD::OR
, dl
, MVT::i16
, ThisElt
, LastElt
);
3116 if (ThisElt
.getNode())
3117 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, V
, ThisElt
,
3118 DAG
.getIntPtrConstant(i
/2));
3122 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V
);
3125 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3127 static SDValue
LowerBuildVectorv8i16(SDValue Op
, unsigned NonZeros
,
3128 unsigned NumNonZero
, unsigned NumZero
,
3129 SelectionDAG
&DAG
, TargetLowering
&TLI
) {
3133 DebugLoc dl
= Op
.getDebugLoc();
3136 for (unsigned i
= 0; i
< 8; ++i
) {
3137 bool isNonZero
= (NonZeros
& (1 << i
)) != 0;
3141 V
= getZeroVector(MVT::v8i16
, true, DAG
, dl
);
3143 V
= DAG
.getUNDEF(MVT::v8i16
);
3146 V
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
,
3147 MVT::v8i16
, V
, Op
.getOperand(i
),
3148 DAG
.getIntPtrConstant(i
));
3155 /// getVShift - Return a vector logical shift node.
3157 static SDValue
getVShift(bool isLeft
, MVT VT
, SDValue SrcOp
,
3158 unsigned NumBits
, SelectionDAG
&DAG
,
3159 const TargetLowering
&TLI
, DebugLoc dl
) {
3160 bool isMMX
= VT
.getSizeInBits() == 64;
3161 MVT ShVT
= isMMX
? MVT::v1i64
: MVT::v2i64
;
3162 unsigned Opc
= isLeft
? X86ISD::VSHL
: X86ISD::VSRL
;
3163 SrcOp
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, ShVT
, SrcOp
);
3164 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3165 DAG
.getNode(Opc
, dl
, ShVT
, SrcOp
,
3166 DAG
.getConstant(NumBits
, TLI
.getShiftAmountTy())));
3170 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
3171 DebugLoc dl
= Op
.getDebugLoc();
3172 // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3173 if (ISD::isBuildVectorAllZeros(Op
.getNode())
3174 || ISD::isBuildVectorAllOnes(Op
.getNode())) {
3175 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3176 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3177 // eliminated on x86-32 hosts.
3178 if (Op
.getValueType() == MVT::v4i32
|| Op
.getValueType() == MVT::v2i32
)
3181 if (ISD::isBuildVectorAllOnes(Op
.getNode()))
3182 return getOnesVector(Op
.getValueType(), DAG
, dl
);
3183 return getZeroVector(Op
.getValueType(), Subtarget
->hasSSE2(), DAG
, dl
);
3186 MVT VT
= Op
.getValueType();
3187 MVT EVT
= VT
.getVectorElementType();
3188 unsigned EVTBits
= EVT
.getSizeInBits();
3190 unsigned NumElems
= Op
.getNumOperands();
3191 unsigned NumZero
= 0;
3192 unsigned NumNonZero
= 0;
3193 unsigned NonZeros
= 0;
3194 bool IsAllConstants
= true;
3195 SmallSet
<SDValue
, 8> Values
;
3196 for (unsigned i
= 0; i
< NumElems
; ++i
) {
3197 SDValue Elt
= Op
.getOperand(i
);
3198 if (Elt
.getOpcode() == ISD::UNDEF
)
3201 if (Elt
.getOpcode() != ISD::Constant
&&
3202 Elt
.getOpcode() != ISD::ConstantFP
)
3203 IsAllConstants
= false;
3204 if (isZeroNode(Elt
))
3207 NonZeros
|= (1 << i
);
3212 if (NumNonZero
== 0) {
3213 // All undef vector. Return an UNDEF. All zero vectors were handled above.
3214 return DAG
.getUNDEF(VT
);
3217 // Special case for single non-zero, non-undef, element.
3218 if (NumNonZero
== 1) {
3219 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3220 SDValue Item
= Op
.getOperand(Idx
);
3222 // If this is an insertion of an i64 value on x86-32, and if the top bits of
3223 // the value are obviously zero, truncate the value to i32 and do the
3224 // insertion that way. Only do this if the value is non-constant or if the
3225 // value is a constant being inserted into element 0. It is cheaper to do
3226 // a constant pool load than it is to do a movd + shuffle.
3227 if (EVT
== MVT::i64
&& !Subtarget
->is64Bit() &&
3228 (!IsAllConstants
|| Idx
== 0)) {
3229 if (DAG
.MaskedValueIsZero(Item
, APInt::getBitsSet(64, 32, 64))) {
3230 // Handle MMX and SSE both.
3231 MVT VecVT
= VT
== MVT::v2i64
? MVT::v4i32
: MVT::v2i32
;
3232 unsigned VecElts
= VT
== MVT::v2i64
? 4 : 2;
3234 // Truncate the value (which may itself be a constant) to i32, and
3235 // convert it to a vector with movd (S2V+shuffle to zero extend).
3236 Item
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Item
);
3237 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VecVT
, Item
);
3238 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3239 Subtarget
->hasSSE2(), DAG
);
3241 // Now we have our 32-bit value zero extended in the low element of
3242 // a vector. If Idx != 0, swizzle it into place.
3244 SmallVector
<int, 4> Mask
;
3245 Mask
.push_back(Idx
);
3246 for (unsigned i
= 1; i
!= VecElts
; ++i
)
3248 Item
= DAG
.getVectorShuffle(VecVT
, dl
, Item
,
3249 DAG
.getUNDEF(Item
.getValueType()),
3252 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(), Item
);
3256 // If we have a constant or non-constant insertion into the low element of
3257 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3258 // the rest of the elements. This will be matched as movd/movq/movss/movsd
3259 // depending on what the source datatype is.
3262 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3263 } else if (EVT
== MVT::i32
|| EVT
== MVT::f32
|| EVT
== MVT::f64
||
3264 (EVT
== MVT::i64
&& Subtarget
->is64Bit())) {
3265 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3266 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3267 return getShuffleVectorZeroOrUndef(Item
, 0, true, Subtarget
->hasSSE2(),
3269 } else if (EVT
== MVT::i16
|| EVT
== MVT::i8
) {
3270 Item
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Item
);
3271 MVT MiddleVT
= VT
.getSizeInBits() == 64 ? MVT::v2i32
: MVT::v4i32
;
3272 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MiddleVT
, Item
);
3273 Item
= getShuffleVectorZeroOrUndef(Item
, 0, true,
3274 Subtarget
->hasSSE2(), DAG
);
3275 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, Item
);
3279 // Is it a vector logical left shift?
3280 if (NumElems
== 2 && Idx
== 1 &&
3281 isZeroNode(Op
.getOperand(0)) && !isZeroNode(Op
.getOperand(1))) {
3282 unsigned NumBits
= VT
.getSizeInBits();
3283 return getVShift(true, VT
,
3284 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3285 VT
, Op
.getOperand(1)),
3286 NumBits
/2, DAG
, *this, dl
);
3289 if (IsAllConstants
) // Otherwise, it's better to do a constpool load.
3292 // Otherwise, if this is a vector with i32 or f32 elements, and the element
3293 // is a non-constant being inserted into an element other than the low one,
3294 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
3295 // movd/movss) to move this into the low element, then shuffle it into
3297 if (EVTBits
== 32) {
3298 Item
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Item
);
3300 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3301 Item
= getShuffleVectorZeroOrUndef(Item
, 0, NumZero
> 0,
3302 Subtarget
->hasSSE2(), DAG
);
3303 SmallVector
<int, 8> MaskVec
;
3304 for (unsigned i
= 0; i
< NumElems
; i
++)
3305 MaskVec
.push_back(i
== Idx
? 0 : 1);
3306 return DAG
.getVectorShuffle(VT
, dl
, Item
, DAG
.getUNDEF(VT
), &MaskVec
[0]);
3310 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3311 if (Values
.size() == 1)
3314 // A vector full of immediates; various special cases are already
3315 // handled, so this is best done with a single constant-pool load.
3319 // Let legalizer expand 2-wide build_vectors.
3320 if (EVTBits
== 64) {
3321 if (NumNonZero
== 1) {
3322 // One half is zero or undef.
3323 unsigned Idx
= CountTrailingZeros_32(NonZeros
);
3324 SDValue V2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
,
3325 Op
.getOperand(Idx
));
3326 return getShuffleVectorZeroOrUndef(V2
, Idx
, true,
3327 Subtarget
->hasSSE2(), DAG
);
3332 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3333 if (EVTBits
== 8 && NumElems
== 16) {
3334 SDValue V
= LowerBuildVectorv16i8(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3336 if (V
.getNode()) return V
;
3339 if (EVTBits
== 16 && NumElems
== 8) {
3340 SDValue V
= LowerBuildVectorv8i16(Op
, NonZeros
,NumNonZero
,NumZero
, DAG
,
3342 if (V
.getNode()) return V
;
3345 // If element VT is == 32 bits, turn it into a number of shuffles.
3346 SmallVector
<SDValue
, 8> V
;
3348 if (NumElems
== 4 && NumZero
> 0) {
3349 for (unsigned i
= 0; i
< 4; ++i
) {
3350 bool isZero
= !(NonZeros
& (1 << i
));
3352 V
[i
] = getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
3354 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3357 for (unsigned i
= 0; i
< 2; ++i
) {
3358 switch ((NonZeros
& (0x3 << i
*2)) >> (i
*2)) {
3361 V
[i
] = V
[i
*2]; // Must be a zero vector.
3364 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2+1], V
[i
*2]);
3367 V
[i
] = getMOVL(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3370 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
*2], V
[i
*2+1]);
3375 SmallVector
<int, 8> MaskVec
;
3376 bool Reverse
= (NonZeros
& 0x3) == 2;
3377 for (unsigned i
= 0; i
< 2; ++i
)
3378 MaskVec
.push_back(Reverse
? 1-i
: i
);
3379 Reverse
= ((NonZeros
& (0x3 << 2)) >> 2) == 2;
3380 for (unsigned i
= 0; i
< 2; ++i
)
3381 MaskVec
.push_back(Reverse
? 1-i
+NumElems
: i
+NumElems
);
3382 return DAG
.getVectorShuffle(VT
, dl
, V
[0], V
[1], &MaskVec
[0]);
3385 if (Values
.size() > 2) {
3386 // If we have SSE 4.1, Expand into a number of inserts unless the number of
3387 // values to be inserted is equal to the number of elements, in which case
3388 // use the unpack code below in the hopes of matching the consecutive elts
3389 // load merge pattern for shuffles.
3390 // FIXME: We could probably just check that here directly.
3391 if (Values
.size() < NumElems
&& VT
.getSizeInBits() == 128 &&
3392 getSubtarget()->hasSSE41()) {
3393 V
[0] = DAG
.getUNDEF(VT
);
3394 for (unsigned i
= 0; i
< NumElems
; ++i
)
3395 if (Op
.getOperand(i
).getOpcode() != ISD::UNDEF
)
3396 V
[0] = DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, V
[0],
3397 Op
.getOperand(i
), DAG
.getIntPtrConstant(i
));
3400 // Expand into a number of unpckl*.
3402 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3403 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3404 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3405 for (unsigned i
= 0; i
< NumElems
; ++i
)
3406 V
[i
] = DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op
.getOperand(i
));
3408 while (NumElems
!= 0) {
3409 for (unsigned i
= 0; i
< NumElems
; ++i
)
3410 V
[i
] = getUnpackl(DAG
, dl
, VT
, V
[i
], V
[i
+ NumElems
]);
3419 // v8i16 shuffles - Prefer shuffles in the following order:
3420 // 1. [all] pshuflw, pshufhw, optional move
3421 // 2. [ssse3] 1 x pshufb
3422 // 3. [ssse3] 2 x pshufb + 1 x por
3423 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3425 SDValue
LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode
*SVOp
,
3426 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3427 SDValue V1
= SVOp
->getOperand(0);
3428 SDValue V2
= SVOp
->getOperand(1);
3429 DebugLoc dl
= SVOp
->getDebugLoc();
3430 SmallVector
<int, 8> MaskVals
;
3432 // Determine if more than 1 of the words in each of the low and high quadwords
3433 // of the result come from the same quadword of one of the two inputs. Undef
3434 // mask values count as coming from any quadword, for better codegen.
3435 SmallVector
<unsigned, 4> LoQuad(4);
3436 SmallVector
<unsigned, 4> HiQuad(4);
3437 BitVector
InputQuads(4);
3438 for (unsigned i
= 0; i
< 8; ++i
) {
3439 SmallVectorImpl
<unsigned> &Quad
= i
< 4 ? LoQuad
: HiQuad
;
3440 int EltIdx
= SVOp
->getMaskElt(i
);
3441 MaskVals
.push_back(EltIdx
);
3450 InputQuads
.set(EltIdx
/ 4);
3453 int BestLoQuad
= -1;
3454 unsigned MaxQuad
= 1;
3455 for (unsigned i
= 0; i
< 4; ++i
) {
3456 if (LoQuad
[i
] > MaxQuad
) {
3458 MaxQuad
= LoQuad
[i
];
3462 int BestHiQuad
= -1;
3464 for (unsigned i
= 0; i
< 4; ++i
) {
3465 if (HiQuad
[i
] > MaxQuad
) {
3467 MaxQuad
= HiQuad
[i
];
3471 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3472 // of the two input vectors, shuffle them into one input vector so only a
3473 // single pshufb instruction is necessary. If There are more than 2 input
3474 // quads, disable the next transformation since it does not help SSSE3.
3475 bool V1Used
= InputQuads
[0] || InputQuads
[1];
3476 bool V2Used
= InputQuads
[2] || InputQuads
[3];
3477 if (TLI
.getSubtarget()->hasSSSE3()) {
3478 if (InputQuads
.count() == 2 && V1Used
&& V2Used
) {
3479 BestLoQuad
= InputQuads
.find_first();
3480 BestHiQuad
= InputQuads
.find_next(BestLoQuad
);
3482 if (InputQuads
.count() > 2) {
3488 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3489 // the shuffle mask. If a quad is scored as -1, that means that it contains
3490 // words from all 4 input quadwords.
3492 if (BestLoQuad
>= 0 || BestHiQuad
>= 0) {
3493 SmallVector
<int, 8> MaskV
;
3494 MaskV
.push_back(BestLoQuad
< 0 ? 0 : BestLoQuad
);
3495 MaskV
.push_back(BestHiQuad
< 0 ? 1 : BestHiQuad
);
3496 NewV
= DAG
.getVectorShuffle(MVT::v2i64
, dl
,
3497 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V1
),
3498 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, V2
), &MaskV
[0]);
3499 NewV
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, NewV
);
3501 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3502 // source words for the shuffle, to aid later transformations.
3503 bool AllWordsInNewV
= true;
3504 bool InOrder
[2] = { true, true };
3505 for (unsigned i
= 0; i
!= 8; ++i
) {
3506 int idx
= MaskVals
[i
];
3508 InOrder
[i
/4] = false;
3509 if (idx
< 0 || (idx
/4) == BestLoQuad
|| (idx
/4) == BestHiQuad
)
3511 AllWordsInNewV
= false;
3515 bool pshuflw
= AllWordsInNewV
, pshufhw
= AllWordsInNewV
;
3516 if (AllWordsInNewV
) {
3517 for (int i
= 0; i
!= 8; ++i
) {
3518 int idx
= MaskVals
[i
];
3521 idx
= MaskVals
[i
] = (idx
/ 4) == BestLoQuad
? (idx
& 3) : (idx
& 3) + 4;
3522 if ((idx
!= i
) && idx
< 4)
3524 if ((idx
!= i
) && idx
> 3)
3533 // If we've eliminated the use of V2, and the new mask is a pshuflw or
3534 // pshufhw, that's as cheap as it gets. Return the new shuffle.
3535 if ((pshufhw
&& InOrder
[0]) || (pshuflw
&& InOrder
[1])) {
3536 return DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
,
3537 DAG
.getUNDEF(MVT::v8i16
), &MaskVals
[0]);
3541 // If we have SSSE3, and all words of the result are from 1 input vector,
3542 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
3543 // is present, fall back to case 4.
3544 if (TLI
.getSubtarget()->hasSSSE3()) {
3545 SmallVector
<SDValue
,16> pshufbMask
;
3547 // If we have elements from both input vectors, set the high bit of the
3548 // shuffle mask element to zero out elements that come from V2 in the V1
3549 // mask, and elements that come from V1 in the V2 mask, so that the two
3550 // results can be OR'd together.
3551 bool TwoInputs
= V1Used
&& V2Used
;
3552 for (unsigned i
= 0; i
!= 8; ++i
) {
3553 int EltIdx
= MaskVals
[i
] * 2;
3554 if (TwoInputs
&& (EltIdx
>= 16)) {
3555 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3556 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3559 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3560 pshufbMask
.push_back(DAG
.getConstant(EltIdx
+1, MVT::i8
));
3562 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V1
);
3563 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3564 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3565 MVT::v16i8
, &pshufbMask
[0], 16));
3567 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3569 // Calculate the shuffle mask for the second input, shuffle it, and
3570 // OR it with the first shuffled input.
3572 for (unsigned i
= 0; i
!= 8; ++i
) {
3573 int EltIdx
= MaskVals
[i
] * 2;
3575 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3576 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3579 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3580 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 15, MVT::i8
));
3582 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, V2
);
3583 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3584 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3585 MVT::v16i8
, &pshufbMask
[0], 16));
3586 V1
= DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3587 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3590 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
3591 // and update MaskVals with new element order.
3592 BitVector
InOrder(8);
3593 if (BestLoQuad
>= 0) {
3594 SmallVector
<int, 8> MaskV
;
3595 for (int i
= 0; i
!= 4; ++i
) {
3596 int idx
= MaskVals
[i
];
3598 MaskV
.push_back(-1);
3600 } else if ((idx
/ 4) == BestLoQuad
) {
3601 MaskV
.push_back(idx
& 3);
3604 MaskV
.push_back(-1);
3607 for (unsigned i
= 4; i
!= 8; ++i
)
3609 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3613 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
3614 // and update MaskVals with the new element order.
3615 if (BestHiQuad
>= 0) {
3616 SmallVector
<int, 8> MaskV
;
3617 for (unsigned i
= 0; i
!= 4; ++i
)
3619 for (unsigned i
= 4; i
!= 8; ++i
) {
3620 int idx
= MaskVals
[i
];
3622 MaskV
.push_back(-1);
3624 } else if ((idx
/ 4) == BestHiQuad
) {
3625 MaskV
.push_back((idx
& 3) + 4);
3628 MaskV
.push_back(-1);
3631 NewV
= DAG
.getVectorShuffle(MVT::v8i16
, dl
, NewV
, DAG
.getUNDEF(MVT::v8i16
),
3635 // In case BestHi & BestLo were both -1, which means each quadword has a word
3636 // from each of the four input quadwords, calculate the InOrder bitvector now
3637 // before falling through to the insert/extract cleanup.
3638 if (BestLoQuad
== -1 && BestHiQuad
== -1) {
3640 for (int i
= 0; i
!= 8; ++i
)
3641 if (MaskVals
[i
] < 0 || MaskVals
[i
] == i
)
3645 // The other elements are put in the right place using pextrw and pinsrw.
3646 for (unsigned i
= 0; i
!= 8; ++i
) {
3649 int EltIdx
= MaskVals
[i
];
3652 SDValue ExtOp
= (EltIdx
< 8)
3653 ? DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V1
,
3654 DAG
.getIntPtrConstant(EltIdx
))
3655 : DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, V2
,
3656 DAG
.getIntPtrConstant(EltIdx
- 8));
3657 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, ExtOp
,
3658 DAG
.getIntPtrConstant(i
));
3663 // v16i8 shuffles - Prefer shuffles in the following order:
3664 // 1. [ssse3] 1 x pshufb
3665 // 2. [ssse3] 2 x pshufb + 1 x por
3666 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
3668 SDValue
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode
*SVOp
,
3669 SelectionDAG
&DAG
, X86TargetLowering
&TLI
) {
3670 SDValue V1
= SVOp
->getOperand(0);
3671 SDValue V2
= SVOp
->getOperand(1);
3672 DebugLoc dl
= SVOp
->getDebugLoc();
3673 SmallVector
<int, 16> MaskVals
;
3674 SVOp
->getMask(MaskVals
);
3676 // If we have SSSE3, case 1 is generated when all result bytes come from
3677 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
3678 // present, fall back to case 3.
3679 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
3682 for (unsigned i
= 0; i
< 16; ++i
) {
3683 int EltIdx
= MaskVals
[i
];
3692 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
3693 if (TLI
.getSubtarget()->hasSSSE3()) {
3694 SmallVector
<SDValue
,16> pshufbMask
;
3696 // If all result elements are from one input vector, then only translate
3697 // undef mask values to 0x80 (zero out result) in the pshufb mask.
3699 // Otherwise, we have elements from both input vectors, and must zero out
3700 // elements that come from V2 in the first mask, and V1 in the second mask
3701 // so that we can OR them together.
3702 bool TwoInputs
= !(V1Only
|| V2Only
);
3703 for (unsigned i
= 0; i
!= 16; ++i
) {
3704 int EltIdx
= MaskVals
[i
];
3705 if (EltIdx
< 0 || (TwoInputs
&& EltIdx
>= 16)) {
3706 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3709 pshufbMask
.push_back(DAG
.getConstant(EltIdx
, MVT::i8
));
3711 // If all the elements are from V2, assign it to V1 and return after
3712 // building the first pshufb.
3715 V1
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V1
,
3716 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3717 MVT::v16i8
, &pshufbMask
[0], 16));
3721 // Calculate the shuffle mask for the second input, shuffle it, and
3722 // OR it with the first shuffled input.
3724 for (unsigned i
= 0; i
!= 16; ++i
) {
3725 int EltIdx
= MaskVals
[i
];
3727 pshufbMask
.push_back(DAG
.getConstant(0x80, MVT::i8
));
3730 pshufbMask
.push_back(DAG
.getConstant(EltIdx
- 16, MVT::i8
));
3732 V2
= DAG
.getNode(X86ISD::PSHUFB
, dl
, MVT::v16i8
, V2
,
3733 DAG
.getNode(ISD::BUILD_VECTOR
, dl
,
3734 MVT::v16i8
, &pshufbMask
[0], 16));
3735 return DAG
.getNode(ISD::OR
, dl
, MVT::v16i8
, V1
, V2
);
3738 // No SSSE3 - Calculate in place words and then fix all out of place words
3739 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
3740 // the 16 different words that comprise the two doublequadword input vectors.
3741 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V1
);
3742 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v8i16
, V2
);
3743 SDValue NewV
= V2Only
? V2
: V1
;
3744 for (int i
= 0; i
!= 8; ++i
) {
3745 int Elt0
= MaskVals
[i
*2];
3746 int Elt1
= MaskVals
[i
*2+1];
3748 // This word of the result is all undef, skip it.
3749 if (Elt0
< 0 && Elt1
< 0)
3752 // This word of the result is already in the correct place, skip it.
3753 if (V1Only
&& (Elt0
== i
*2) && (Elt1
== i
*2+1))
3755 if (V2Only
&& (Elt0
== i
*2+16) && (Elt1
== i
*2+17))
3758 SDValue Elt0Src
= Elt0
< 16 ? V1
: V2
;
3759 SDValue Elt1Src
= Elt1
< 16 ? V1
: V2
;
3762 // If Elt0 and Elt1 are defined, are consecutive, and can be load
3763 // using a single extract together, load it and store it.
3764 if ((Elt0
>= 0) && ((Elt0
+ 1) == Elt1
) && ((Elt0
& 1) == 0)) {
3765 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3766 DAG
.getIntPtrConstant(Elt1
/ 2));
3767 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3768 DAG
.getIntPtrConstant(i
));
3772 // If Elt1 is defined, extract it from the appropriate source. If the
3773 // source byte is not also odd, shift the extracted word left 8 bits
3774 // otherwise clear the bottom 8 bits if we need to do an or.
3776 InsElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
, Elt1Src
,
3777 DAG
.getIntPtrConstant(Elt1
/ 2));
3778 if ((Elt1
& 1) == 0)
3779 InsElt
= DAG
.getNode(ISD::SHL
, dl
, MVT::i16
, InsElt
,
3780 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3782 InsElt
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt
,
3783 DAG
.getConstant(0xFF00, MVT::i16
));
3785 // If Elt0 is defined, extract it from the appropriate source. If the
3786 // source byte is not also even, shift the extracted word right 8 bits. If
3787 // Elt1 was also defined, OR the extracted values together before
3788 // inserting them in the result.
3790 SDValue InsElt0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i16
,
3791 Elt0Src
, DAG
.getIntPtrConstant(Elt0
/ 2));
3792 if ((Elt0
& 1) != 0)
3793 InsElt0
= DAG
.getNode(ISD::SRL
, dl
, MVT::i16
, InsElt0
,
3794 DAG
.getConstant(8, TLI
.getShiftAmountTy()));
3796 InsElt0
= DAG
.getNode(ISD::AND
, dl
, MVT::i16
, InsElt0
,
3797 DAG
.getConstant(0x00FF, MVT::i16
));
3798 InsElt
= Elt1
>= 0 ? DAG
.getNode(ISD::OR
, dl
, MVT::i16
, InsElt
, InsElt0
)
3801 NewV
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v8i16
, NewV
, InsElt
,
3802 DAG
.getIntPtrConstant(i
));
3804 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v16i8
, NewV
);
3807 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3808 /// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3809 /// done when every pair / quad of shuffle mask elements point to elements in
3810 /// the right sequence. e.g.
3811 /// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3813 SDValue
RewriteAsNarrowerShuffle(ShuffleVectorSDNode
*SVOp
,
3815 TargetLowering
&TLI
, DebugLoc dl
) {
3816 MVT VT
= SVOp
->getValueType(0);
3817 SDValue V1
= SVOp
->getOperand(0);
3818 SDValue V2
= SVOp
->getOperand(1);
3819 unsigned NumElems
= VT
.getVectorNumElements();
3820 unsigned NewWidth
= (NumElems
== 4) ? 2 : 4;
3821 MVT MaskVT
= MVT::getIntVectorWithNumElements(NewWidth
);
3822 MVT MaskEltVT
= MaskVT
.getVectorElementType();
3824 switch (VT
.getSimpleVT()) {
3825 default: assert(false && "Unexpected!");
3826 case MVT::v4f32
: NewVT
= MVT::v2f64
; break;
3827 case MVT::v4i32
: NewVT
= MVT::v2i64
; break;
3828 case MVT::v8i16
: NewVT
= MVT::v4i32
; break;
3829 case MVT::v16i8
: NewVT
= MVT::v4i32
; break;
3832 if (NewWidth
== 2) {
3838 int Scale
= NumElems
/ NewWidth
;
3839 SmallVector
<int, 8> MaskVec
;
3840 for (unsigned i
= 0; i
< NumElems
; i
+= Scale
) {
3842 for (int j
= 0; j
< Scale
; ++j
) {
3843 int EltIdx
= SVOp
->getMaskElt(i
+j
);
3847 StartIdx
= EltIdx
- (EltIdx
% Scale
);
3848 if (EltIdx
!= StartIdx
+ j
)
3852 MaskVec
.push_back(-1);
3854 MaskVec
.push_back(StartIdx
/ Scale
);
3857 V1
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V1
);
3858 V2
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, NewVT
, V2
);
3859 return DAG
.getVectorShuffle(NewVT
, dl
, V1
, V2
, &MaskVec
[0]);
3862 /// getVZextMovL - Return a zero-extending vector move low node.
3864 static SDValue
getVZextMovL(MVT VT
, MVT OpVT
,
3865 SDValue SrcOp
, SelectionDAG
&DAG
,
3866 const X86Subtarget
*Subtarget
, DebugLoc dl
) {
3867 if (VT
== MVT::v2f64
|| VT
== MVT::v4f32
) {
3868 LoadSDNode
*LD
= NULL
;
3869 if (!isScalarLoadToVector(SrcOp
.getNode(), &LD
))
3870 LD
= dyn_cast
<LoadSDNode
>(SrcOp
);
3872 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3874 MVT EVT
= (OpVT
== MVT::v2f64
) ? MVT::i64
: MVT::i32
;
3875 if ((EVT
!= MVT::i64
|| Subtarget
->is64Bit()) &&
3876 SrcOp
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
3877 SrcOp
.getOperand(0).getOpcode() == ISD::BIT_CONVERT
&&
3878 SrcOp
.getOperand(0).getOperand(0).getValueType() == EVT
) {
3880 OpVT
= (OpVT
== MVT::v2f64
) ? MVT::v2i64
: MVT::v4i32
;
3881 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3882 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3883 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
3891 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
3892 DAG
.getNode(X86ISD::VZEXT_MOVL
, dl
, OpVT
,
3893 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
3897 /// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3900 LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode
*SVOp
, SelectionDAG
&DAG
) {
3901 SDValue V1
= SVOp
->getOperand(0);
3902 SDValue V2
= SVOp
->getOperand(1);
3903 DebugLoc dl
= SVOp
->getDebugLoc();
3904 MVT VT
= SVOp
->getValueType(0);
3906 SmallVector
<std::pair
<int, int>, 8> Locs
;
3908 SmallVector
<int, 8> Mask1(4U, -1);
3909 SmallVector
<int, 8> PermMask
;
3910 SVOp
->getMask(PermMask
);
3914 for (unsigned i
= 0; i
!= 4; ++i
) {
3915 int Idx
= PermMask
[i
];
3917 Locs
[i
] = std::make_pair(-1, -1);
3919 assert(Idx
< 8 && "Invalid VECTOR_SHUFFLE index!");
3921 Locs
[i
] = std::make_pair(0, NumLo
);
3925 Locs
[i
] = std::make_pair(1, NumHi
);
3927 Mask1
[2+NumHi
] = Idx
;
3933 if (NumLo
<= 2 && NumHi
<= 2) {
3934 // If no more than two elements come from either vector. This can be
3935 // implemented with two shuffles. First shuffle gather the elements.
3936 // The second shuffle, which takes the first shuffle as both of its
3937 // vector operands, put the elements into the right order.
3938 V1
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3940 SmallVector
<int, 8> Mask2(4U, -1);
3942 for (unsigned i
= 0; i
!= 4; ++i
) {
3943 if (Locs
[i
].first
== -1)
3946 unsigned Idx
= (i
< 2) ? 0 : 4;
3947 Idx
+= Locs
[i
].first
* 2 + Locs
[i
].second
;
3952 return DAG
.getVectorShuffle(VT
, dl
, V1
, V1
, &Mask2
[0]);
3953 } else if (NumLo
== 3 || NumHi
== 3) {
3954 // Otherwise, we must have three elements from one vector, call it X, and
3955 // one element from the other, call it Y. First, use a shufps to build an
3956 // intermediate vector with the one element from Y and the element from X
3957 // that will be in the same half in the final destination (the indexes don't
3958 // matter). Then, use a shufps to build the final vector, taking the half
3959 // containing the element from Y from the intermediate, and the other half
3962 // Normalize it so the 3 elements come from V1.
3963 CommuteVectorShuffleMask(PermMask
, VT
);
3967 // Find the element from V2.
3969 for (HiIndex
= 0; HiIndex
< 3; ++HiIndex
) {
3970 int Val
= PermMask
[HiIndex
];
3977 Mask1
[0] = PermMask
[HiIndex
];
3979 Mask1
[2] = PermMask
[HiIndex
^1];
3981 V2
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3984 Mask1
[0] = PermMask
[0];
3985 Mask1
[1] = PermMask
[1];
3986 Mask1
[2] = HiIndex
& 1 ? 6 : 4;
3987 Mask1
[3] = HiIndex
& 1 ? 4 : 6;
3988 return DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &Mask1
[0]);
3990 Mask1
[0] = HiIndex
& 1 ? 2 : 0;
3991 Mask1
[1] = HiIndex
& 1 ? 0 : 2;
3992 Mask1
[2] = PermMask
[2];
3993 Mask1
[3] = PermMask
[3];
3998 return DAG
.getVectorShuffle(VT
, dl
, V2
, V1
, &Mask1
[0]);
4002 // Break it into (shuffle shuffle_hi, shuffle_lo).
4004 SmallVector
<int,8> LoMask(4U, -1);
4005 SmallVector
<int,8> HiMask(4U, -1);
4007 SmallVector
<int,8> *MaskPtr
= &LoMask
;
4008 unsigned MaskIdx
= 0;
4011 for (unsigned i
= 0; i
!= 4; ++i
) {
4018 int Idx
= PermMask
[i
];
4020 Locs
[i
] = std::make_pair(-1, -1);
4021 } else if (Idx
< 4) {
4022 Locs
[i
] = std::make_pair(MaskIdx
, LoIdx
);
4023 (*MaskPtr
)[LoIdx
] = Idx
;
4026 Locs
[i
] = std::make_pair(MaskIdx
, HiIdx
);
4027 (*MaskPtr
)[HiIdx
] = Idx
;
4032 SDValue LoShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &LoMask
[0]);
4033 SDValue HiShuffle
= DAG
.getVectorShuffle(VT
, dl
, V1
, V2
, &HiMask
[0]);
4034 SmallVector
<int, 8> MaskOps
;
4035 for (unsigned i
= 0; i
!= 4; ++i
) {
4036 if (Locs
[i
].first
== -1) {
4037 MaskOps
.push_back(-1);
4039 unsigned Idx
= Locs
[i
].first
* 4 + Locs
[i
].second
;
4040 MaskOps
.push_back(Idx
);
4043 return DAG
.getVectorShuffle(VT
, dl
, LoShuffle
, HiShuffle
, &MaskOps
[0]);
4047 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) {
4048 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4049 SDValue V1
= Op
.getOperand(0);
4050 SDValue V2
= Op
.getOperand(1);
4051 MVT VT
= Op
.getValueType();
4052 DebugLoc dl
= Op
.getDebugLoc();
4053 unsigned NumElems
= VT
.getVectorNumElements();
4054 bool isMMX
= VT
.getSizeInBits() == 64;
4055 bool V1IsUndef
= V1
.getOpcode() == ISD::UNDEF
;
4056 bool V2IsUndef
= V2
.getOpcode() == ISD::UNDEF
;
4057 bool V1IsSplat
= false;
4058 bool V2IsSplat
= false;
4060 if (isZeroShuffle(SVOp
))
4061 return getZeroVector(VT
, Subtarget
->hasSSE2(), DAG
, dl
);
4063 // Promote splats to v4f32.
4064 if (SVOp
->isSplat()) {
4065 if (isMMX
|| NumElems
< 4)
4067 return PromoteSplat(SVOp
, DAG
, Subtarget
->hasSSE2());
4070 // If the shuffle can be profitably rewritten as a narrower shuffle, then
4072 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
4073 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4074 if (NewOp
.getNode())
4075 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
4076 LowerVECTOR_SHUFFLE(NewOp
, DAG
));
4077 } else if ((VT
== MVT::v4i32
|| (VT
== MVT::v4f32
&& Subtarget
->hasSSE2()))) {
4078 // FIXME: Figure out a cleaner way to do this.
4079 // Try to make use of movq to zero out the top part.
4080 if (ISD::isBuildVectorAllZeros(V2
.getNode())) {
4081 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4082 if (NewOp
.getNode()) {
4083 if (isCommutedMOVL(cast
<ShuffleVectorSDNode
>(NewOp
), true, false))
4084 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(0),
4085 DAG
, Subtarget
, dl
);
4087 } else if (ISD::isBuildVectorAllZeros(V1
.getNode())) {
4088 SDValue NewOp
= RewriteAsNarrowerShuffle(SVOp
, DAG
, *this, dl
);
4089 if (NewOp
.getNode() && X86::isMOVLMask(cast
<ShuffleVectorSDNode
>(NewOp
)))
4090 return getVZextMovL(VT
, NewOp
.getValueType(), NewOp
.getOperand(1),
4091 DAG
, Subtarget
, dl
);
4095 if (X86::isPSHUFDMask(SVOp
))
4098 // Check if this can be converted into a logical shift.
4099 bool isLeft
= false;
4102 bool isShift
= getSubtarget()->hasSSE2() &&
4103 isVectorShift(SVOp
, DAG
, isLeft
, ShVal
, ShAmt
);
4104 if (isShift
&& ShVal
.hasOneUse()) {
4105 // If the shifted value has multiple uses, it may be cheaper to use
4106 // v_set0 + movlhps or movhlps, etc.
4107 MVT EVT
= VT
.getVectorElementType();
4108 ShAmt
*= EVT
.getSizeInBits();
4109 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4112 if (X86::isMOVLMask(SVOp
)) {
4115 if (ISD::isBuildVectorAllZeros(V1
.getNode()))
4116 return getVZextMovL(VT
, VT
, V2
, DAG
, Subtarget
, dl
);
4121 // FIXME: fold these into legal mask.
4122 if (!isMMX
&& (X86::isMOVSHDUPMask(SVOp
) ||
4123 X86::isMOVSLDUPMask(SVOp
) ||
4124 X86::isMOVHLPSMask(SVOp
) ||
4125 X86::isMOVHPMask(SVOp
) ||
4126 X86::isMOVLPMask(SVOp
)))
4129 if (ShouldXformToMOVHLPS(SVOp
) ||
4130 ShouldXformToMOVLP(V1
.getNode(), V2
.getNode(), SVOp
))
4131 return CommuteVectorShuffle(SVOp
, DAG
);
4134 // No better options. Use a vshl / vsrl.
4135 MVT EVT
= VT
.getVectorElementType();
4136 ShAmt
*= EVT
.getSizeInBits();
4137 return getVShift(isLeft
, VT
, ShVal
, ShAmt
, DAG
, *this, dl
);
4140 bool Commuted
= false;
4141 // FIXME: This should also accept a bitcast of a splat? Be careful, not
4142 // 1,1,1,1 -> v8i16 though.
4143 V1IsSplat
= isSplatVector(V1
.getNode());
4144 V2IsSplat
= isSplatVector(V2
.getNode());
4146 // Canonicalize the splat or undef, if present, to be on the RHS.
4147 if ((V1IsSplat
|| V1IsUndef
) && !(V2IsSplat
|| V2IsUndef
)) {
4148 Op
= CommuteVectorShuffle(SVOp
, DAG
);
4149 SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4150 V1
= SVOp
->getOperand(0);
4151 V2
= SVOp
->getOperand(1);
4152 std::swap(V1IsSplat
, V2IsSplat
);
4153 std::swap(V1IsUndef
, V2IsUndef
);
4157 if (isCommutedMOVL(SVOp
, V2IsSplat
, V2IsUndef
)) {
4158 // Shuffling low element of v1 into undef, just return v1.
4161 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4162 // the instruction selector will not match, so get a canonical MOVL with
4163 // swapped operands to undo the commute.
4164 return getMOVL(DAG
, dl
, VT
, V2
, V1
);
4167 if (X86::isUNPCKL_v_undef_Mask(SVOp
) ||
4168 X86::isUNPCKH_v_undef_Mask(SVOp
) ||
4169 X86::isUNPCKLMask(SVOp
) ||
4170 X86::isUNPCKHMask(SVOp
))
4174 // Normalize mask so all entries that point to V2 points to its first
4175 // element then try to match unpck{h|l} again. If match, return a
4176 // new vector_shuffle with the corrected mask.
4177 SDValue NewMask
= NormalizeMask(SVOp
, DAG
);
4178 ShuffleVectorSDNode
*NSVOp
= cast
<ShuffleVectorSDNode
>(NewMask
);
4179 if (NSVOp
!= SVOp
) {
4180 if (X86::isUNPCKLMask(NSVOp
, true)) {
4182 } else if (X86::isUNPCKHMask(NSVOp
, true)) {
4189 // Commute is back and try unpck* again.
4190 // FIXME: this seems wrong.
4191 SDValue NewOp
= CommuteVectorShuffle(SVOp
, DAG
);
4192 ShuffleVectorSDNode
*NewSVOp
= cast
<ShuffleVectorSDNode
>(NewOp
);
4193 if (X86::isUNPCKL_v_undef_Mask(NewSVOp
) ||
4194 X86::isUNPCKH_v_undef_Mask(NewSVOp
) ||
4195 X86::isUNPCKLMask(NewSVOp
) ||
4196 X86::isUNPCKHMask(NewSVOp
))
4200 // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4202 // Normalize the node to match x86 shuffle ops if needed
4203 if (!isMMX
&& V2
.getOpcode() != ISD::UNDEF
&& isCommutedSHUFP(SVOp
))
4204 return CommuteVectorShuffle(SVOp
, DAG
);
4206 // Check for legal shuffle and return?
4207 SmallVector
<int, 16> PermMask
;
4208 SVOp
->getMask(PermMask
);
4209 if (isShuffleMaskLegal(PermMask
, VT
))
4212 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4213 if (VT
== MVT::v8i16
) {
4214 SDValue NewOp
= LowerVECTOR_SHUFFLEv8i16(SVOp
, DAG
, *this);
4215 if (NewOp
.getNode())
4219 if (VT
== MVT::v16i8
) {
4220 SDValue NewOp
= LowerVECTOR_SHUFFLEv16i8(SVOp
, DAG
, *this);
4221 if (NewOp
.getNode())
4225 // Handle all 4 wide cases with a number of shuffles except for MMX.
4226 if (NumElems
== 4 && !isMMX
)
4227 return LowerVECTOR_SHUFFLE_4wide(SVOp
, DAG
);
4233 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
,
4234 SelectionDAG
&DAG
) {
4235 MVT VT
= Op
.getValueType();
4236 DebugLoc dl
= Op
.getDebugLoc();
4237 if (VT
.getSizeInBits() == 8) {
4238 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRB
, dl
, MVT::i32
,
4239 Op
.getOperand(0), Op
.getOperand(1));
4240 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4241 DAG
.getValueType(VT
));
4242 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4243 } else if (VT
.getSizeInBits() == 16) {
4244 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4245 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4247 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4248 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4249 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4253 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, MVT::i32
,
4254 Op
.getOperand(0), Op
.getOperand(1));
4255 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Extract
,
4256 DAG
.getValueType(VT
));
4257 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4258 } else if (VT
== MVT::f32
) {
4259 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4260 // the result back to FR32 register. It's only worth matching if the
4261 // result has a single use which is a store or a bitcast to i32. And in
4262 // the case of a store, it's not worth it if the index is a constant 0,
4263 // because a MOVSSmr can be used instead, which is smaller and faster.
4264 if (!Op
.hasOneUse())
4266 SDNode
*User
= *Op
.getNode()->use_begin();
4267 if ((User
->getOpcode() != ISD::STORE
||
4268 (isa
<ConstantSDNode
>(Op
.getOperand(1)) &&
4269 cast
<ConstantSDNode
>(Op
.getOperand(1))->isNullValue())) &&
4270 (User
->getOpcode() != ISD::BIT_CONVERT
||
4271 User
->getValueType(0) != MVT::i32
))
4273 SDValue Extract
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4274 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4i32
,
4277 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::f32
, Extract
);
4278 } else if (VT
== MVT::i32
) {
4279 // ExtractPS works with constant index.
4280 if (isa
<ConstantSDNode
>(Op
.getOperand(1)))
4288 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4289 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
4292 if (Subtarget
->hasSSE41()) {
4293 SDValue Res
= LowerEXTRACT_VECTOR_ELT_SSE4(Op
, DAG
);
4298 MVT VT
= Op
.getValueType();
4299 DebugLoc dl
= Op
.getDebugLoc();
4300 // TODO: handle v16i8.
4301 if (VT
.getSizeInBits() == 16) {
4302 SDValue Vec
= Op
.getOperand(0);
4303 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4305 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
,
4306 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
,
4307 DAG
.getNode(ISD::BIT_CONVERT
, dl
,
4310 // Transform it so it match pextrw which produces a 32-bit result.
4311 MVT EVT
= (MVT::SimpleValueType
)(VT
.getSimpleVT()+1);
4312 SDValue Extract
= DAG
.getNode(X86ISD::PEXTRW
, dl
, EVT
,
4313 Op
.getOperand(0), Op
.getOperand(1));
4314 SDValue Assert
= DAG
.getNode(ISD::AssertZext
, dl
, EVT
, Extract
,
4315 DAG
.getValueType(VT
));
4316 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Assert
);
4317 } else if (VT
.getSizeInBits() == 32) {
4318 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4322 // SHUFPS the element to the lowest double word, then movss.
4323 int Mask
[4] = { Idx
, -1, -1, -1 };
4324 MVT VVT
= Op
.getOperand(0).getValueType();
4325 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4326 DAG
.getUNDEF(VVT
), Mask
);
4327 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4328 DAG
.getIntPtrConstant(0));
4329 } else if (VT
.getSizeInBits() == 64) {
4330 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4331 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4332 // to match extract_elt for f64.
4333 unsigned Idx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
4337 // UNPCKHPD the element to the lowest double word, then movsd.
4338 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4339 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4340 int Mask
[2] = { 1, -1 };
4341 MVT VVT
= Op
.getOperand(0).getValueType();
4342 SDValue Vec
= DAG
.getVectorShuffle(VVT
, dl
, Op
.getOperand(0),
4343 DAG
.getUNDEF(VVT
), Mask
);
4344 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Vec
,
4345 DAG
.getIntPtrConstant(0));
4352 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
){
4353 MVT VT
= Op
.getValueType();
4354 MVT EVT
= VT
.getVectorElementType();
4355 DebugLoc dl
= Op
.getDebugLoc();
4357 SDValue N0
= Op
.getOperand(0);
4358 SDValue N1
= Op
.getOperand(1);
4359 SDValue N2
= Op
.getOperand(2);
4361 if ((EVT
.getSizeInBits() == 8 || EVT
.getSizeInBits() == 16) &&
4362 isa
<ConstantSDNode
>(N2
)) {
4363 unsigned Opc
= (EVT
.getSizeInBits() == 8) ? X86ISD::PINSRB
4365 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4367 if (N1
.getValueType() != MVT::i32
)
4368 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4369 if (N2
.getValueType() != MVT::i32
)
4370 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4371 return DAG
.getNode(Opc
, dl
, VT
, N0
, N1
, N2
);
4372 } else if (EVT
== MVT::f32
&& isa
<ConstantSDNode
>(N2
)) {
4373 // Bits [7:6] of the constant are the source select. This will always be
4374 // zero here. The DAG Combiner may combine an extract_elt index into these
4375 // bits. For example (insert (extract, 3), 2) could be matched by putting
4376 // the '3' into bits [7:6] of X86ISD::INSERTPS.
4377 // Bits [5:4] of the constant are the destination select. This is the
4378 // value of the incoming immediate.
4379 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
4380 // combine either bitwise AND or insert of float 0.0 to set these bits.
4381 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue() << 4);
4382 return DAG
.getNode(X86ISD::INSERTPS
, dl
, VT
, N0
, N1
, N2
);
4383 } else if (EVT
== MVT::i32
) {
4384 // InsertPS works with constant index.
4385 if (isa
<ConstantSDNode
>(N2
))
4392 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) {
4393 MVT VT
= Op
.getValueType();
4394 MVT EVT
= VT
.getVectorElementType();
4396 if (Subtarget
->hasSSE41())
4397 return LowerINSERT_VECTOR_ELT_SSE4(Op
, DAG
);
4402 DebugLoc dl
= Op
.getDebugLoc();
4403 SDValue N0
= Op
.getOperand(0);
4404 SDValue N1
= Op
.getOperand(1);
4405 SDValue N2
= Op
.getOperand(2);
4407 if (EVT
.getSizeInBits() == 16 && isa
<ConstantSDNode
>(N2
)) {
4408 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4409 // as its second argument.
4410 if (N1
.getValueType() != MVT::i32
)
4411 N1
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, N1
);
4412 if (N2
.getValueType() != MVT::i32
)
4413 N2
= DAG
.getIntPtrConstant(cast
<ConstantSDNode
>(N2
)->getZExtValue());
4414 return DAG
.getNode(X86ISD::PINSRW
, dl
, VT
, N0
, N1
, N2
);
4420 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) {
4421 DebugLoc dl
= Op
.getDebugLoc();
4422 if (Op
.getValueType() == MVT::v2f32
)
4423 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f32
,
4424 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2i32
,
4425 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::i32
,
4426 Op
.getOperand(0))));
4428 SDValue AnyExt
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, Op
.getOperand(0));
4429 MVT VT
= MVT::v2i32
;
4430 switch (Op
.getValueType().getSimpleVT()) {
4437 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, Op
.getValueType(),
4438 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, AnyExt
));
4441 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4442 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4443 // one of the above mentioned nodes. It has to be wrapped because otherwise
4444 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4445 // be used to form addressing mode. These wrapped nodes will be selected
4448 X86TargetLowering::LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) {
4449 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
4451 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4453 unsigned char OpFlag
= 0;
4454 unsigned WrapperKind
= X86ISD::Wrapper
;
4456 if (Subtarget
->isPICStyleRIPRel() &&
4457 getTargetMachine().getCodeModel() == CodeModel::Small
)
4458 WrapperKind
= X86ISD::WrapperRIP
;
4459 else if (Subtarget
->isPICStyleGOT())
4460 OpFlag
= X86II::MO_GOTOFF
;
4461 else if (Subtarget
->isPICStyleStubPIC())
4462 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4464 SDValue Result
= DAG
.getTargetConstantPool(CP
->getConstVal(), getPointerTy(),
4466 CP
->getOffset(), OpFlag
);
4467 DebugLoc DL
= CP
->getDebugLoc();
4468 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4469 // With PIC, the address is actually $g + Offset.
4471 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4472 DAG
.getNode(X86ISD::GlobalBaseReg
,
4473 DebugLoc::getUnknownLoc(), getPointerTy()),
4480 SDValue
X86TargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) {
4481 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
4483 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4485 unsigned char OpFlag
= 0;
4486 unsigned WrapperKind
= X86ISD::Wrapper
;
4488 if (Subtarget
->isPICStyleRIPRel() &&
4489 getTargetMachine().getCodeModel() == CodeModel::Small
)
4490 WrapperKind
= X86ISD::WrapperRIP
;
4491 else if (Subtarget
->isPICStyleGOT())
4492 OpFlag
= X86II::MO_GOTOFF
;
4493 else if (Subtarget
->isPICStyleStubPIC())
4494 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4496 SDValue Result
= DAG
.getTargetJumpTable(JT
->getIndex(), getPointerTy(),
4498 DebugLoc DL
= JT
->getDebugLoc();
4499 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4501 // With PIC, the address is actually $g + Offset.
4503 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4504 DAG
.getNode(X86ISD::GlobalBaseReg
,
4505 DebugLoc::getUnknownLoc(), getPointerTy()),
4513 X86TargetLowering::LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) {
4514 const char *Sym
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
4516 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4518 unsigned char OpFlag
= 0;
4519 unsigned WrapperKind
= X86ISD::Wrapper
;
4520 if (Subtarget
->isPICStyleRIPRel() &&
4521 getTargetMachine().getCodeModel() == CodeModel::Small
)
4522 WrapperKind
= X86ISD::WrapperRIP
;
4523 else if (Subtarget
->isPICStyleGOT())
4524 OpFlag
= X86II::MO_GOTOFF
;
4525 else if (Subtarget
->isPICStyleStubPIC())
4526 OpFlag
= X86II::MO_PIC_BASE_OFFSET
;
4528 SDValue Result
= DAG
.getTargetExternalSymbol(Sym
, getPointerTy(), OpFlag
);
4530 DebugLoc DL
= Op
.getDebugLoc();
4531 Result
= DAG
.getNode(WrapperKind
, DL
, getPointerTy(), Result
);
4534 // With PIC, the address is actually $g + Offset.
4535 if (getTargetMachine().getRelocationModel() == Reloc::PIC_
&&
4536 !Subtarget
->is64Bit()) {
4537 Result
= DAG
.getNode(ISD::ADD
, DL
, getPointerTy(),
4538 DAG
.getNode(X86ISD::GlobalBaseReg
,
4539 DebugLoc::getUnknownLoc(),
4548 X86TargetLowering::LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
4550 SelectionDAG
&DAG
) const {
4551 // Create the TargetGlobalAddress node, folding in the constant
4552 // offset if it is legal.
4553 unsigned char OpFlags
=
4554 Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
4556 if (OpFlags
== X86II::MO_NO_FLAG
&& isInt32(Offset
)) {
4557 // A direct static reference to a global.
4558 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), Offset
);
4561 Result
= DAG
.getTargetGlobalAddress(GV
, getPointerTy(), 0, OpFlags
);
4564 if (Subtarget
->isPICStyleRIPRel() &&
4565 getTargetMachine().getCodeModel() == CodeModel::Small
)
4566 Result
= DAG
.getNode(X86ISD::WrapperRIP
, dl
, getPointerTy(), Result
);
4568 Result
= DAG
.getNode(X86ISD::Wrapper
, dl
, getPointerTy(), Result
);
4570 // With PIC, the address is actually $g + Offset.
4571 if (isGlobalRelativeToPICBase(OpFlags
)) {
4572 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
4573 DAG
.getNode(X86ISD::GlobalBaseReg
, dl
, getPointerTy()),
4577 // For globals that require a load from a stub to get the address, emit the
4579 if (isGlobalStubReference(OpFlags
))
4580 Result
= DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(), Result
,
4581 PseudoSourceValue::getGOT(), 0);
4583 // If there was a non-zero offset that we didn't fold, create an explicit
4586 Result
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), Result
,
4587 DAG
.getConstant(Offset
, getPointerTy()));
4593 X86TargetLowering::LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) {
4594 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4595 int64_t Offset
= cast
<GlobalAddressSDNode
>(Op
)->getOffset();
4596 return LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
4600 GetTLSADDR(SelectionDAG
&DAG
, SDValue Chain
, GlobalAddressSDNode
*GA
,
4601 SDValue
*InFlag
, const MVT PtrVT
, unsigned ReturnReg
,
4602 unsigned char OperandFlags
) {
4603 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
4604 DebugLoc dl
= GA
->getDebugLoc();
4605 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(),
4606 GA
->getValueType(0),
4610 SDValue Ops
[] = { Chain
, TGA
, *InFlag
};
4611 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 3);
4613 SDValue Ops
[] = { Chain
, TGA
};
4614 Chain
= DAG
.getNode(X86ISD::TLSADDR
, dl
, NodeTys
, Ops
, 2);
4616 SDValue Flag
= Chain
.getValue(1);
4617 return DAG
.getCopyFromReg(Chain
, dl
, ReturnReg
, PtrVT
, Flag
);
4620 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4622 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4625 DebugLoc dl
= GA
->getDebugLoc(); // ? function entry point might be better
4626 SDValue Chain
= DAG
.getCopyToReg(DAG
.getEntryNode(), dl
, X86::EBX
,
4627 DAG
.getNode(X86ISD::GlobalBaseReg
,
4628 DebugLoc::getUnknownLoc(),
4630 InFlag
= Chain
.getValue(1);
4632 return GetTLSADDR(DAG
, Chain
, GA
, &InFlag
, PtrVT
, X86::EAX
, X86II::MO_TLSGD
);
4635 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4637 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4639 return GetTLSADDR(DAG
, DAG
.getEntryNode(), GA
, NULL
, PtrVT
,
4640 X86::RAX
, X86II::MO_TLSGD
);
4643 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4644 // "local exec" model.
4645 static SDValue
LowerToTLSExecModel(GlobalAddressSDNode
*GA
, SelectionDAG
&DAG
,
4646 const MVT PtrVT
, TLSModel::Model model
,
4648 DebugLoc dl
= GA
->getDebugLoc();
4649 // Get the Thread Pointer
4650 SDValue Base
= DAG
.getNode(X86ISD::SegmentBaseAddress
,
4651 DebugLoc::getUnknownLoc(), PtrVT
,
4652 DAG
.getRegister(is64Bit
? X86::FS
: X86::GS
,
4655 SDValue ThreadPointer
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Base
,
4658 unsigned char OperandFlags
= 0;
4659 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
4661 unsigned WrapperKind
= X86ISD::Wrapper
;
4662 if (model
== TLSModel::LocalExec
) {
4663 OperandFlags
= is64Bit
? X86II::MO_TPOFF
: X86II::MO_NTPOFF
;
4664 } else if (is64Bit
) {
4665 assert(model
== TLSModel::InitialExec
);
4666 OperandFlags
= X86II::MO_GOTTPOFF
;
4667 WrapperKind
= X86ISD::WrapperRIP
;
4669 assert(model
== TLSModel::InitialExec
);
4670 OperandFlags
= X86II::MO_INDNTPOFF
;
4673 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4675 SDValue TGA
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), GA
->getValueType(0),
4676 GA
->getOffset(), OperandFlags
);
4677 SDValue Offset
= DAG
.getNode(WrapperKind
, dl
, PtrVT
, TGA
);
4679 if (model
== TLSModel::InitialExec
)
4680 Offset
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Offset
,
4681 PseudoSourceValue::getGOT(), 0);
4683 // The address of the thread local variable is the add of the thread
4684 // pointer with the offset of the variable.
4685 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
4689 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) {
4690 // TODO: implement the "local dynamic" model
4691 // TODO: implement the "initial exec"model for pic executables
4692 assert(Subtarget
->isTargetELF() &&
4693 "TLS not implemented for non-ELF targets");
4694 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4695 const GlobalValue
*GV
= GA
->getGlobal();
4697 // If GV is an alias then use the aliasee for determining
4698 // thread-localness.
4699 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
4700 GV
= GA
->resolveAliasedGlobal(false);
4702 TLSModel::Model model
= getTLSModel(GV
,
4703 getTargetMachine().getRelocationModel());
4706 case TLSModel::GeneralDynamic
:
4707 case TLSModel::LocalDynamic
: // not implemented
4708 if (Subtarget
->is64Bit())
4709 return LowerToTLSGeneralDynamicModel64(GA
, DAG
, getPointerTy());
4710 return LowerToTLSGeneralDynamicModel32(GA
, DAG
, getPointerTy());
4712 case TLSModel::InitialExec
:
4713 case TLSModel::LocalExec
:
4714 return LowerToTLSExecModel(GA
, DAG
, getPointerTy(), model
,
4715 Subtarget
->is64Bit());
4718 llvm_unreachable("Unreachable");
4723 /// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4724 /// take a 2 x i32 value to shift plus a shift amount.
4725 SDValue
X86TargetLowering::LowerShift(SDValue Op
, SelectionDAG
&DAG
) {
4726 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
4727 MVT VT
= Op
.getValueType();
4728 unsigned VTBits
= VT
.getSizeInBits();
4729 DebugLoc dl
= Op
.getDebugLoc();
4730 bool isSRA
= Op
.getOpcode() == ISD::SRA_PARTS
;
4731 SDValue ShOpLo
= Op
.getOperand(0);
4732 SDValue ShOpHi
= Op
.getOperand(1);
4733 SDValue ShAmt
= Op
.getOperand(2);
4734 SDValue Tmp1
= isSRA
?
4735 DAG
.getNode(ISD::SRA
, dl
, VT
, ShOpHi
,
4736 DAG
.getConstant(VTBits
- 1, MVT::i8
)) :
4737 DAG
.getConstant(0, VT
);
4740 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4741 Tmp2
= DAG
.getNode(X86ISD::SHLD
, dl
, VT
, ShOpHi
, ShOpLo
, ShAmt
);
4742 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
4744 Tmp2
= DAG
.getNode(X86ISD::SHRD
, dl
, VT
, ShOpLo
, ShOpHi
, ShAmt
);
4745 Tmp3
= DAG
.getNode(isSRA
? ISD::SRA
: ISD::SRL
, dl
, VT
, ShOpHi
, ShAmt
);
4748 SDValue AndNode
= DAG
.getNode(ISD::AND
, dl
, MVT::i8
, ShAmt
,
4749 DAG
.getConstant(VTBits
, MVT::i8
));
4750 SDValue Cond
= DAG
.getNode(X86ISD::CMP
, dl
, VT
,
4751 AndNode
, DAG
.getConstant(0, MVT::i8
));
4754 SDValue CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
4755 SDValue Ops0
[4] = { Tmp2
, Tmp3
, CC
, Cond
};
4756 SDValue Ops1
[4] = { Tmp3
, Tmp1
, CC
, Cond
};
4758 if (Op
.getOpcode() == ISD::SHL_PARTS
) {
4759 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4760 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4762 Lo
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops0
, 4);
4763 Hi
= DAG
.getNode(X86ISD::CMOV
, dl
, VT
, Ops1
, 4);
4766 SDValue Ops
[2] = { Lo
, Hi
};
4767 return DAG
.getMergeValues(Ops
, 2, dl
);
4770 SDValue
X86TargetLowering::LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4771 MVT SrcVT
= Op
.getOperand(0).getValueType();
4773 if (SrcVT
.isVector()) {
4774 if (SrcVT
== MVT::v2i32
&& Op
.getValueType() == MVT::v2f64
) {
4780 assert(SrcVT
.getSimpleVT() <= MVT::i64
&& SrcVT
.getSimpleVT() >= MVT::i16
&&
4781 "Unknown SINT_TO_FP to lower!");
4783 // These are really Legal; return the operand so the caller accepts it as
4785 if (SrcVT
== MVT::i32
&& isScalarFPTypeInSSEReg(Op
.getValueType()))
4787 if (SrcVT
== MVT::i64
&& isScalarFPTypeInSSEReg(Op
.getValueType()) &&
4788 Subtarget
->is64Bit()) {
4792 DebugLoc dl
= Op
.getDebugLoc();
4793 unsigned Size
= SrcVT
.getSizeInBits()/8;
4794 MachineFunction
&MF
= DAG
.getMachineFunction();
4795 int SSFI
= MF
.getFrameInfo()->CreateStackObject(Size
, Size
);
4796 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4797 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
4799 PseudoSourceValue::getFixedStack(SSFI
), 0);
4800 return BuildFILD(Op
, SrcVT
, Chain
, StackSlot
, DAG
);
4803 SDValue
X86TargetLowering::BuildFILD(SDValue Op
, MVT SrcVT
, SDValue Chain
,
4805 SelectionDAG
&DAG
) {
4807 DebugLoc dl
= Op
.getDebugLoc();
4809 bool useSSE
= isScalarFPTypeInSSEReg(Op
.getValueType());
4811 Tys
= DAG
.getVTList(MVT::f64
, MVT::Other
, MVT::Flag
);
4813 Tys
= DAG
.getVTList(Op
.getValueType(), MVT::Other
);
4814 SmallVector
<SDValue
, 8> Ops
;
4815 Ops
.push_back(Chain
);
4816 Ops
.push_back(StackSlot
);
4817 Ops
.push_back(DAG
.getValueType(SrcVT
));
4818 SDValue Result
= DAG
.getNode(useSSE
? X86ISD::FILD_FLAG
: X86ISD::FILD
, dl
,
4819 Tys
, &Ops
[0], Ops
.size());
4822 Chain
= Result
.getValue(1);
4823 SDValue InFlag
= Result
.getValue(2);
4825 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4826 // shouldn't be necessary except that RFP cannot be live across
4827 // multiple blocks. When stackifier is fixed, they can be uncoupled.
4828 MachineFunction
&MF
= DAG
.getMachineFunction();
4829 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8);
4830 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
4831 Tys
= DAG
.getVTList(MVT::Other
);
4832 SmallVector
<SDValue
, 8> Ops
;
4833 Ops
.push_back(Chain
);
4834 Ops
.push_back(Result
);
4835 Ops
.push_back(StackSlot
);
4836 Ops
.push_back(DAG
.getValueType(Op
.getValueType()));
4837 Ops
.push_back(InFlag
);
4838 Chain
= DAG
.getNode(X86ISD::FST
, dl
, Tys
, &Ops
[0], Ops
.size());
4839 Result
= DAG
.getLoad(Op
.getValueType(), dl
, Chain
, StackSlot
,
4840 PseudoSourceValue::getFixedStack(SSFI
), 0);
4846 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
4847 SDValue
X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) {
4848 // This algorithm is not obvious. Here it is in C code, more or less:
4850 double uint64_to_double( uint32_t hi, uint32_t lo ) {
4851 static const __m128i exp = { 0x4330000045300000ULL, 0 };
4852 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4854 // Copy ints to xmm registers.
4855 __m128i xh = _mm_cvtsi32_si128( hi );
4856 __m128i xl = _mm_cvtsi32_si128( lo );
4858 // Combine into low half of a single xmm register.
4859 __m128i x = _mm_unpacklo_epi32( xh, xl );
4863 // Merge in appropriate exponents to give the integer bits the right
4865 x = _mm_unpacklo_epi32( x, exp );
4867 // Subtract away the biases to deal with the IEEE-754 double precision
4869 d = _mm_sub_pd( (__m128d) x, bias );
4871 // All conversions up to here are exact. The correctly rounded result is
4872 // calculated using the current rounding mode using the following
4874 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4875 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
4876 // store doesn't really need to be here (except
4877 // maybe to zero the other double)
4882 DebugLoc dl
= Op
.getDebugLoc();
4884 // Build some magic constants.
4885 std::vector
<Constant
*> CV0
;
4886 CV0
.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4887 CV0
.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4888 CV0
.push_back(ConstantInt::get(APInt(32, 0)));
4889 CV0
.push_back(ConstantInt::get(APInt(32, 0)));
4890 Constant
*C0
= ConstantVector::get(CV0
);
4891 SDValue CPIdx0
= DAG
.getConstantPool(C0
, getPointerTy(), 16);
4893 std::vector
<Constant
*> CV1
;
4894 CV1
.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL
))));
4895 CV1
.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL
))));
4896 Constant
*C1
= ConstantVector::get(CV1
);
4897 SDValue CPIdx1
= DAG
.getConstantPool(C1
, getPointerTy(), 16);
4899 SDValue XR1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4900 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4902 DAG
.getIntPtrConstant(1)));
4903 SDValue XR2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4904 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4906 DAG
.getIntPtrConstant(0)));
4907 SDValue Unpck1
= getUnpackl(DAG
, dl
, MVT::v4i32
, XR1
, XR2
);
4908 SDValue CLod0
= DAG
.getLoad(MVT::v4i32
, dl
, DAG
.getEntryNode(), CPIdx0
,
4909 PseudoSourceValue::getConstantPool(), 0,
4911 SDValue Unpck2
= getUnpackl(DAG
, dl
, MVT::v4i32
, Unpck1
, CLod0
);
4912 SDValue XR2F
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Unpck2
);
4913 SDValue CLod1
= DAG
.getLoad(MVT::v2f64
, dl
, CLod0
.getValue(1), CPIdx1
,
4914 PseudoSourceValue::getConstantPool(), 0,
4916 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::v2f64
, XR2F
, CLod1
);
4918 // Add the halves; easiest way is to swap them into another reg first.
4919 int ShufMask
[2] = { 1, -1 };
4920 SDValue Shuf
= DAG
.getVectorShuffle(MVT::v2f64
, dl
, Sub
,
4921 DAG
.getUNDEF(MVT::v2f64
), ShufMask
);
4922 SDValue Add
= DAG
.getNode(ISD::FADD
, dl
, MVT::v2f64
, Shuf
, Sub
);
4923 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Add
,
4924 DAG
.getIntPtrConstant(0));
4927 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
4928 SDValue
X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) {
4929 DebugLoc dl
= Op
.getDebugLoc();
4930 // FP constant to bias correct the final result.
4931 SDValue Bias
= DAG
.getConstantFP(BitsToDouble(0x4330000000000000ULL
),
4934 // Load the 32-bit value into an XMM register.
4935 SDValue Load
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v4i32
,
4936 DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
4938 DAG
.getIntPtrConstant(0)));
4940 Load
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4941 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Load
),
4942 DAG
.getIntPtrConstant(0));
4944 // Or the load with the bias.
4945 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, MVT::v2i64
,
4946 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4947 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4949 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
4950 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
4951 MVT::v2f64
, Bias
)));
4952 Or
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
4953 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2f64
, Or
),
4954 DAG
.getIntPtrConstant(0));
4956 // Subtract the bias.
4957 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Or
, Bias
);
4959 // Handle final rounding.
4960 MVT DestVT
= Op
.getValueType();
4962 if (DestVT
.bitsLT(MVT::f64
)) {
4963 return DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, Sub
,
4964 DAG
.getIntPtrConstant(0));
4965 } else if (DestVT
.bitsGT(MVT::f64
)) {
4966 return DAG
.getNode(ISD::FP_EXTEND
, dl
, DestVT
, Sub
);
4969 // Handle final rounding.
4973 SDValue
X86TargetLowering::LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
4974 SDValue N0
= Op
.getOperand(0);
4975 DebugLoc dl
= Op
.getDebugLoc();
4977 // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
4978 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
4979 // the optimization here.
4980 if (DAG
.SignBitIsZero(N0
))
4981 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, Op
.getValueType(), N0
);
4983 MVT SrcVT
= N0
.getValueType();
4984 if (SrcVT
== MVT::i64
) {
4985 // We only handle SSE2 f64 target here; caller can expand the rest.
4986 if (Op
.getValueType() != MVT::f64
|| !X86ScalarSSEf64
)
4989 return LowerUINT_TO_FP_i64(Op
, DAG
);
4990 } else if (SrcVT
== MVT::i32
&& X86ScalarSSEf64
) {
4991 return LowerUINT_TO_FP_i32(Op
, DAG
);
4994 assert(SrcVT
== MVT::i32
&& "Unknown UINT_TO_FP to lower!");
4996 // Make a 64-bit buffer, and use it to build an FILD.
4997 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::i64
);
4998 SDValue WordOff
= DAG
.getConstant(4, getPointerTy());
4999 SDValue OffsetSlot
= DAG
.getNode(ISD::ADD
, dl
,
5000 getPointerTy(), StackSlot
, WordOff
);
5001 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0),
5002 StackSlot
, NULL
, 0);
5003 SDValue Store2
= DAG
.getStore(Store1
, dl
, DAG
.getConstant(0, MVT::i32
),
5004 OffsetSlot
, NULL
, 0);
5005 return BuildFILD(Op
, MVT::i64
, Store2
, StackSlot
, DAG
);
5008 std::pair
<SDValue
,SDValue
> X86TargetLowering::
5009 FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
, bool IsSigned
) {
5010 DebugLoc dl
= Op
.getDebugLoc();
5012 MVT DstTy
= Op
.getValueType();
5015 assert(DstTy
== MVT::i32
&& "Unexpected FP_TO_UINT");
5019 assert(DstTy
.getSimpleVT() <= MVT::i64
&&
5020 DstTy
.getSimpleVT() >= MVT::i16
&&
5021 "Unknown FP_TO_SINT to lower!");
5023 // These are really Legal.
5024 if (DstTy
== MVT::i32
&&
5025 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5026 return std::make_pair(SDValue(), SDValue());
5027 if (Subtarget
->is64Bit() &&
5028 DstTy
== MVT::i64
&&
5029 isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType()))
5030 return std::make_pair(SDValue(), SDValue());
5032 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5034 MachineFunction
&MF
= DAG
.getMachineFunction();
5035 unsigned MemSize
= DstTy
.getSizeInBits()/8;
5036 int SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5037 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5040 switch (DstTy
.getSimpleVT()) {
5041 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5042 case MVT::i16
: Opc
= X86ISD::FP_TO_INT16_IN_MEM
; break;
5043 case MVT::i32
: Opc
= X86ISD::FP_TO_INT32_IN_MEM
; break;
5044 case MVT::i64
: Opc
= X86ISD::FP_TO_INT64_IN_MEM
; break;
5047 SDValue Chain
= DAG
.getEntryNode();
5048 SDValue Value
= Op
.getOperand(0);
5049 if (isScalarFPTypeInSSEReg(Op
.getOperand(0).getValueType())) {
5050 assert(DstTy
== MVT::i64
&& "Invalid FP_TO_SINT to lower!");
5051 Chain
= DAG
.getStore(Chain
, dl
, Value
, StackSlot
,
5052 PseudoSourceValue::getFixedStack(SSFI
), 0);
5053 SDVTList Tys
= DAG
.getVTList(Op
.getOperand(0).getValueType(), MVT::Other
);
5055 Chain
, StackSlot
, DAG
.getValueType(Op
.getOperand(0).getValueType())
5057 Value
= DAG
.getNode(X86ISD::FLD
, dl
, Tys
, Ops
, 3);
5058 Chain
= Value
.getValue(1);
5059 SSFI
= MF
.getFrameInfo()->CreateStackObject(MemSize
, MemSize
);
5060 StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
5063 // Build the FP_TO_INT*_IN_MEM
5064 SDValue Ops
[] = { Chain
, Value
, StackSlot
};
5065 SDValue FIST
= DAG
.getNode(Opc
, dl
, MVT::Other
, Ops
, 3);
5067 return std::make_pair(FIST
, StackSlot
);
5070 SDValue
X86TargetLowering::LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) {
5071 if (Op
.getValueType().isVector()) {
5072 if (Op
.getValueType() == MVT::v2i32
&&
5073 Op
.getOperand(0).getValueType() == MVT::v2f64
) {
5079 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, true);
5080 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5081 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5082 if (FIST
.getNode() == 0) return Op
;
5085 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5086 FIST
, StackSlot
, NULL
, 0);
5089 SDValue
X86TargetLowering::LowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) {
5090 std::pair
<SDValue
,SDValue
> Vals
= FP_TO_INTHelper(Op
, DAG
, false);
5091 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
5092 assert(FIST
.getNode() && "Unexpected failure");
5095 return DAG
.getLoad(Op
.getValueType(), Op
.getDebugLoc(),
5096 FIST
, StackSlot
, NULL
, 0);
5099 SDValue
X86TargetLowering::LowerFABS(SDValue Op
, SelectionDAG
&DAG
) {
5100 DebugLoc dl
= Op
.getDebugLoc();
5101 MVT VT
= Op
.getValueType();
5104 EltVT
= VT
.getVectorElementType();
5105 std::vector
<Constant
*> CV
;
5106 if (EltVT
== MVT::f64
) {
5107 Constant
*C
= ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
5111 Constant
*C
= ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
5117 Constant
*C
= ConstantVector::get(CV
);
5118 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5119 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5120 PseudoSourceValue::getConstantPool(), 0,
5122 return DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op
.getOperand(0), Mask
);
5125 SDValue
X86TargetLowering::LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) {
5126 DebugLoc dl
= Op
.getDebugLoc();
5127 MVT VT
= Op
.getValueType();
5129 unsigned EltNum
= 1;
5130 if (VT
.isVector()) {
5131 EltVT
= VT
.getVectorElementType();
5132 EltNum
= VT
.getVectorNumElements();
5134 std::vector
<Constant
*> CV
;
5135 if (EltVT
== MVT::f64
) {
5136 Constant
*C
= ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
5140 Constant
*C
= ConstantFP::get(APFloat(APInt(32, 1U << 31)));
5146 Constant
*C
= ConstantVector::get(CV
);
5147 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5148 SDValue Mask
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5149 PseudoSourceValue::getConstantPool(), 0,
5151 if (VT
.isVector()) {
5152 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
5153 DAG
.getNode(ISD::XOR
, dl
, MVT::v2i64
,
5154 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
,
5156 DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v2i64
, Mask
)));
5158 return DAG
.getNode(X86ISD::FXOR
, dl
, VT
, Op
.getOperand(0), Mask
);
5162 SDValue
X86TargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) {
5163 SDValue Op0
= Op
.getOperand(0);
5164 SDValue Op1
= Op
.getOperand(1);
5165 DebugLoc dl
= Op
.getDebugLoc();
5166 MVT VT
= Op
.getValueType();
5167 MVT SrcVT
= Op1
.getValueType();
5169 // If second operand is smaller, extend it first.
5170 if (SrcVT
.bitsLT(VT
)) {
5171 Op1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, VT
, Op1
);
5174 // And if it is bigger, shrink it first.
5175 if (SrcVT
.bitsGT(VT
)) {
5176 Op1
= DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op1
, DAG
.getIntPtrConstant(1));
5180 // At this point the operands and the result should have the same
5181 // type, and that won't be f80 since that is not custom lowered.
5183 // First get the sign bit of second operand.
5184 std::vector
<Constant
*> CV
;
5185 if (SrcVT
== MVT::f64
) {
5186 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
5187 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5189 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
5190 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5191 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5192 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5194 Constant
*C
= ConstantVector::get(CV
);
5195 SDValue CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5196 SDValue Mask1
= DAG
.getLoad(SrcVT
, dl
, DAG
.getEntryNode(), CPIdx
,
5197 PseudoSourceValue::getConstantPool(), 0,
5199 SDValue SignBit
= DAG
.getNode(X86ISD::FAND
, dl
, SrcVT
, Op1
, Mask1
);
5201 // Shift sign bit right or left if the two operands have different types.
5202 if (SrcVT
.bitsGT(VT
)) {
5203 // Op0 is MVT::f32, Op1 is MVT::f64.
5204 SignBit
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f64
, SignBit
);
5205 SignBit
= DAG
.getNode(X86ISD::FSRL
, dl
, MVT::v2f64
, SignBit
,
5206 DAG
.getConstant(32, MVT::i32
));
5207 SignBit
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, MVT::v4f32
, SignBit
);
5208 SignBit
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, SignBit
,
5209 DAG
.getIntPtrConstant(0));
5212 // Clear first operand sign bit.
5214 if (VT
== MVT::f64
) {
5215 CV
.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
5216 CV
.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
5218 CV
.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
5219 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5220 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5221 CV
.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5223 C
= ConstantVector::get(CV
);
5224 CPIdx
= DAG
.getConstantPool(C
, getPointerTy(), 16);
5225 SDValue Mask2
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), CPIdx
,
5226 PseudoSourceValue::getConstantPool(), 0,
5228 SDValue Val
= DAG
.getNode(X86ISD::FAND
, dl
, VT
, Op0
, Mask2
);
5230 // Or the value with the sign bit.
5231 return DAG
.getNode(X86ISD::FOR
, dl
, VT
, Val
, SignBit
);
5234 /// Emit nodes that will be selected as "test Op0,Op0", or something
5236 SDValue
X86TargetLowering::EmitTest(SDValue Op
, unsigned X86CC
,
5237 SelectionDAG
&DAG
) {
5238 DebugLoc dl
= Op
.getDebugLoc();
5240 // CF and OF aren't always set the way we want. Determine which
5241 // of these we need.
5242 bool NeedCF
= false;
5243 bool NeedOF
= false;
5245 case X86::COND_A
: case X86::COND_AE
:
5246 case X86::COND_B
: case X86::COND_BE
:
5249 case X86::COND_G
: case X86::COND_GE
:
5250 case X86::COND_L
: case X86::COND_LE
:
5251 case X86::COND_O
: case X86::COND_NO
:
5257 // See if we can use the EFLAGS value from the operand instead of
5258 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5259 // we prove that the arithmetic won't overflow, we can't use OF or CF.
5260 if (Op
.getResNo() == 0 && !NeedOF
&& !NeedCF
) {
5261 unsigned Opcode
= 0;
5262 unsigned NumOperands
= 0;
5263 switch (Op
.getNode()->getOpcode()) {
5265 // Due to an isel shortcoming, be conservative if this add is likely to
5266 // be selected as part of a load-modify-store instruction. When the root
5267 // node in a match is a store, isel doesn't know how to remap non-chain
5268 // non-flag uses of other nodes in the match, such as the ADD in this
5269 // case. This leads to the ADD being left around and reselected, with
5270 // the result being two adds in the output.
5271 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5272 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5273 if (UI
->getOpcode() == ISD::STORE
)
5275 if (ConstantSDNode
*C
=
5276 dyn_cast
<ConstantSDNode
>(Op
.getNode()->getOperand(1))) {
5277 // An add of one will be selected as an INC.
5278 if (C
->getAPIntValue() == 1) {
5279 Opcode
= X86ISD::INC
;
5283 // An add of negative one (subtract of one) will be selected as a DEC.
5284 if (C
->getAPIntValue().isAllOnesValue()) {
5285 Opcode
= X86ISD::DEC
;
5290 // Otherwise use a regular EFLAGS-setting add.
5291 Opcode
= X86ISD::ADD
;
5295 // Due to the ISEL shortcoming noted above, be conservative if this sub is
5296 // likely to be selected as part of a load-modify-store instruction.
5297 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
5298 UE
= Op
.getNode()->use_end(); UI
!= UE
; ++UI
)
5299 if (UI
->getOpcode() == ISD::STORE
)
5301 // Otherwise use a regular EFLAGS-setting sub.
5302 Opcode
= X86ISD::SUB
;
5309 return SDValue(Op
.getNode(), 1);
5315 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
5316 SmallVector
<SDValue
, 4> Ops
;
5317 for (unsigned i
= 0; i
!= NumOperands
; ++i
)
5318 Ops
.push_back(Op
.getOperand(i
));
5319 SDValue New
= DAG
.getNode(Opcode
, dl
, VTs
, &Ops
[0], NumOperands
);
5320 DAG
.ReplaceAllUsesWith(Op
, New
);
5321 return SDValue(New
.getNode(), 1);
5325 // Otherwise just emit a CMP with 0, which is the TEST pattern.
5326 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op
,
5327 DAG
.getConstant(0, Op
.getValueType()));
5330 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
5332 SDValue
X86TargetLowering::EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
5333 SelectionDAG
&DAG
) {
5334 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op1
))
5335 if (C
->getAPIntValue() == 0)
5336 return EmitTest(Op0
, X86CC
, DAG
);
5338 DebugLoc dl
= Op0
.getDebugLoc();
5339 return DAG
.getNode(X86ISD::CMP
, dl
, MVT::i32
, Op0
, Op1
);
5342 SDValue
X86TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5343 assert(Op
.getValueType() == MVT::i8
&& "SetCC type must be 8-bit integer");
5344 SDValue Op0
= Op
.getOperand(0);
5345 SDValue Op1
= Op
.getOperand(1);
5346 DebugLoc dl
= Op
.getDebugLoc();
5347 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5349 // Lower (X & (1 << N)) == 0 to BT(X, N).
5350 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5351 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5352 if (Op0
.getOpcode() == ISD::AND
&&
5354 Op1
.getOpcode() == ISD::Constant
&&
5355 cast
<ConstantSDNode
>(Op1
)->getZExtValue() == 0 &&
5356 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5358 if (Op0
.getOperand(1).getOpcode() == ISD::SHL
) {
5359 if (ConstantSDNode
*Op010C
=
5360 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1).getOperand(0)))
5361 if (Op010C
->getZExtValue() == 1) {
5362 LHS
= Op0
.getOperand(0);
5363 RHS
= Op0
.getOperand(1).getOperand(1);
5365 } else if (Op0
.getOperand(0).getOpcode() == ISD::SHL
) {
5366 if (ConstantSDNode
*Op000C
=
5367 dyn_cast
<ConstantSDNode
>(Op0
.getOperand(0).getOperand(0)))
5368 if (Op000C
->getZExtValue() == 1) {
5369 LHS
= Op0
.getOperand(1);
5370 RHS
= Op0
.getOperand(0).getOperand(1);
5372 } else if (Op0
.getOperand(1).getOpcode() == ISD::Constant
) {
5373 ConstantSDNode
*AndRHS
= cast
<ConstantSDNode
>(Op0
.getOperand(1));
5374 SDValue AndLHS
= Op0
.getOperand(0);
5375 if (AndRHS
->getZExtValue() == 1 && AndLHS
.getOpcode() == ISD::SRL
) {
5376 LHS
= AndLHS
.getOperand(0);
5377 RHS
= AndLHS
.getOperand(1);
5381 if (LHS
.getNode()) {
5382 // If LHS is i8, promote it to i16 with any_extend. There is no i8 BT
5383 // instruction. Since the shift amount is in-range-or-undefined, we know
5384 // that doing a bittest on the i16 value is ok. We extend to i32 because
5385 // the encoding for the i16 version is larger than the i32 version.
5386 if (LHS
.getValueType() == MVT::i8
)
5387 LHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
5389 // If the operand types disagree, extend the shift amount to match. Since
5390 // BT ignores high bits (like shifts) we can use anyextend.
5391 if (LHS
.getValueType() != RHS
.getValueType())
5392 RHS
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, LHS
.getValueType(), RHS
);
5394 SDValue BT
= DAG
.getNode(X86ISD::BT
, dl
, MVT::i32
, LHS
, RHS
);
5395 unsigned Cond
= CC
== ISD::SETEQ
? X86::COND_AE
: X86::COND_B
;
5396 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5397 DAG
.getConstant(Cond
, MVT::i8
), BT
);
5401 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5402 unsigned X86CC
= TranslateX86CC(CC
, isFP
, Op0
, Op1
, DAG
);
5404 SDValue Cond
= EmitCmp(Op0
, Op1
, X86CC
, DAG
);
5405 return DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
5406 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
5409 SDValue
X86TargetLowering::LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) {
5411 SDValue Op0
= Op
.getOperand(0);
5412 SDValue Op1
= Op
.getOperand(1);
5413 SDValue CC
= Op
.getOperand(2);
5414 MVT VT
= Op
.getValueType();
5415 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
5416 bool isFP
= Op
.getOperand(1).getValueType().isFloatingPoint();
5417 DebugLoc dl
= Op
.getDebugLoc();
5421 MVT VT0
= Op0
.getValueType();
5422 assert(VT0
== MVT::v4f32
|| VT0
== MVT::v2f64
);
5423 unsigned Opc
= VT0
== MVT::v4f32
? X86ISD::CMPPS
: X86ISD::CMPPD
;
5426 switch (SetCCOpcode
) {
5429 case ISD::SETEQ
: SSECC
= 0; break;
5431 case ISD::SETGT
: Swap
= true; // Fallthrough
5433 case ISD::SETOLT
: SSECC
= 1; break;
5435 case ISD::SETGE
: Swap
= true; // Fallthrough
5437 case ISD::SETOLE
: SSECC
= 2; break;
5438 case ISD::SETUO
: SSECC
= 3; break;
5440 case ISD::SETNE
: SSECC
= 4; break;
5441 case ISD::SETULE
: Swap
= true;
5442 case ISD::SETUGE
: SSECC
= 5; break;
5443 case ISD::SETULT
: Swap
= true;
5444 case ISD::SETUGT
: SSECC
= 6; break;
5445 case ISD::SETO
: SSECC
= 7; break;
5448 std::swap(Op0
, Op1
);
5450 // In the two special cases we can't handle, emit two comparisons.
5452 if (SetCCOpcode
== ISD::SETUEQ
) {
5454 UNORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(3, MVT::i8
));
5455 EQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(0, MVT::i8
));
5456 return DAG
.getNode(ISD::OR
, dl
, VT
, UNORD
, EQ
);
5458 else if (SetCCOpcode
== ISD::SETONE
) {
5460 ORD
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(7, MVT::i8
));
5461 NEQ
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(4, MVT::i8
));
5462 return DAG
.getNode(ISD::AND
, dl
, VT
, ORD
, NEQ
);
5464 llvm_unreachable("Illegal FP comparison");
5466 // Handle all other FP comparisons here.
5467 return DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
, DAG
.getConstant(SSECC
, MVT::i8
));
5470 // We are handling one of the integer comparisons here. Since SSE only has
5471 // GT and EQ comparisons for integer, swapping operands and multiple
5472 // operations may be required for some comparisons.
5473 unsigned Opc
= 0, EQOpc
= 0, GTOpc
= 0;
5474 bool Swap
= false, Invert
= false, FlipSigns
= false;
5476 switch (VT
.getSimpleVT()) {
5478 case MVT::v16i8
: EQOpc
= X86ISD::PCMPEQB
; GTOpc
= X86ISD::PCMPGTB
; break;
5479 case MVT::v8i16
: EQOpc
= X86ISD::PCMPEQW
; GTOpc
= X86ISD::PCMPGTW
; break;
5480 case MVT::v4i32
: EQOpc
= X86ISD::PCMPEQD
; GTOpc
= X86ISD::PCMPGTD
; break;
5481 case MVT::v2i64
: EQOpc
= X86ISD::PCMPEQQ
; GTOpc
= X86ISD::PCMPGTQ
; break;
5484 switch (SetCCOpcode
) {
5486 case ISD::SETNE
: Invert
= true;
5487 case ISD::SETEQ
: Opc
= EQOpc
; break;
5488 case ISD::SETLT
: Swap
= true;
5489 case ISD::SETGT
: Opc
= GTOpc
; break;
5490 case ISD::SETGE
: Swap
= true;
5491 case ISD::SETLE
: Opc
= GTOpc
; Invert
= true; break;
5492 case ISD::SETULT
: Swap
= true;
5493 case ISD::SETUGT
: Opc
= GTOpc
; FlipSigns
= true; break;
5494 case ISD::SETUGE
: Swap
= true;
5495 case ISD::SETULE
: Opc
= GTOpc
; FlipSigns
= true; Invert
= true; break;
5498 std::swap(Op0
, Op1
);
5500 // Since SSE has no unsigned integer comparisons, we need to flip the sign
5501 // bits of the inputs before performing those operations.
5503 MVT EltVT
= VT
.getVectorElementType();
5504 SDValue SignBit
= DAG
.getConstant(APInt::getSignBit(EltVT
.getSizeInBits()),
5506 std::vector
<SDValue
> SignBits(VT
.getVectorNumElements(), SignBit
);
5507 SDValue SignVec
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, VT
, &SignBits
[0],
5509 Op0
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
, SignVec
);
5510 Op1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Op1
, SignVec
);
5513 SDValue Result
= DAG
.getNode(Opc
, dl
, VT
, Op0
, Op1
);
5515 // If the logical-not of the result is required, perform that now.
5517 Result
= DAG
.getNOT(dl
, Result
, VT
);
5522 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5523 static bool isX86LogicalCmp(SDValue Op
) {
5524 unsigned Opc
= Op
.getNode()->getOpcode();
5525 if (Opc
== X86ISD::CMP
|| Opc
== X86ISD::COMI
|| Opc
== X86ISD::UCOMI
)
5527 if (Op
.getResNo() == 1 &&
5528 (Opc
== X86ISD::ADD
||
5529 Opc
== X86ISD::SUB
||
5530 Opc
== X86ISD::SMUL
||
5531 Opc
== X86ISD::UMUL
||
5532 Opc
== X86ISD::INC
||
5533 Opc
== X86ISD::DEC
))
5539 SDValue
X86TargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) {
5540 bool addTest
= true;
5541 SDValue Cond
= Op
.getOperand(0);
5542 DebugLoc dl
= Op
.getDebugLoc();
5545 if (Cond
.getOpcode() == ISD::SETCC
)
5546 Cond
= LowerSETCC(Cond
, DAG
);
5548 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5549 // setting operand in place of the X86ISD::SETCC.
5550 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5551 CC
= Cond
.getOperand(0);
5553 SDValue Cmp
= Cond
.getOperand(1);
5554 unsigned Opc
= Cmp
.getOpcode();
5555 MVT VT
= Op
.getValueType();
5557 bool IllegalFPCMov
= false;
5558 if (VT
.isFloatingPoint() && !VT
.isVector() &&
5559 !isScalarFPTypeInSSEReg(VT
)) // FPStack?
5560 IllegalFPCMov
= !hasFPCMov(cast
<ConstantSDNode
>(CC
)->getSExtValue());
5562 if ((isX86LogicalCmp(Cmp
) && !IllegalFPCMov
) ||
5563 Opc
== X86ISD::BT
) { // FIXME
5570 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5571 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5574 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::Flag
);
5575 SmallVector
<SDValue
, 4> Ops
;
5576 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5577 // condition is true.
5578 Ops
.push_back(Op
.getOperand(2));
5579 Ops
.push_back(Op
.getOperand(1));
5581 Ops
.push_back(Cond
);
5582 return DAG
.getNode(X86ISD::CMOV
, dl
, VTs
, &Ops
[0], Ops
.size());
5585 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5586 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5587 // from the AND / OR.
5588 static bool isAndOrOfSetCCs(SDValue Op
, unsigned &Opc
) {
5589 Opc
= Op
.getOpcode();
5590 if (Opc
!= ISD::OR
&& Opc
!= ISD::AND
)
5592 return (Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5593 Op
.getOperand(0).hasOneUse() &&
5594 Op
.getOperand(1).getOpcode() == X86ISD::SETCC
&&
5595 Op
.getOperand(1).hasOneUse());
5598 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
5599 // 1 and that the SETCC node has a single use.
5600 static bool isXor1OfSetCC(SDValue Op
) {
5601 if (Op
.getOpcode() != ISD::XOR
)
5603 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
5604 if (N1C
&& N1C
->getAPIntValue() == 1) {
5605 return Op
.getOperand(0).getOpcode() == X86ISD::SETCC
&&
5606 Op
.getOperand(0).hasOneUse();
5611 SDValue
X86TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) {
5612 bool addTest
= true;
5613 SDValue Chain
= Op
.getOperand(0);
5614 SDValue Cond
= Op
.getOperand(1);
5615 SDValue Dest
= Op
.getOperand(2);
5616 DebugLoc dl
= Op
.getDebugLoc();
5619 if (Cond
.getOpcode() == ISD::SETCC
)
5620 Cond
= LowerSETCC(Cond
, DAG
);
5622 // FIXME: LowerXALUO doesn't handle these!!
5623 else if (Cond
.getOpcode() == X86ISD::ADD
||
5624 Cond
.getOpcode() == X86ISD::SUB
||
5625 Cond
.getOpcode() == X86ISD::SMUL
||
5626 Cond
.getOpcode() == X86ISD::UMUL
)
5627 Cond
= LowerXALUO(Cond
, DAG
);
5630 // If condition flag is set by a X86ISD::CMP, then use it as the condition
5631 // setting operand in place of the X86ISD::SETCC.
5632 if (Cond
.getOpcode() == X86ISD::SETCC
) {
5633 CC
= Cond
.getOperand(0);
5635 SDValue Cmp
= Cond
.getOperand(1);
5636 unsigned Opc
= Cmp
.getOpcode();
5637 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
5638 if (isX86LogicalCmp(Cmp
) || Opc
== X86ISD::BT
) {
5642 switch (cast
<ConstantSDNode
>(CC
)->getZExtValue()) {
5646 // These can only come from an arithmetic instruction with overflow,
5647 // e.g. SADDO, UADDO.
5648 Cond
= Cond
.getNode()->getOperand(1);
5655 if (Cond
.hasOneUse() && isAndOrOfSetCCs(Cond
, CondOpc
)) {
5656 SDValue Cmp
= Cond
.getOperand(0).getOperand(1);
5657 if (CondOpc
== ISD::OR
) {
5658 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5659 // two branches instead of an explicit OR instruction with a
5661 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5662 isX86LogicalCmp(Cmp
)) {
5663 CC
= Cond
.getOperand(0).getOperand(0);
5664 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5665 Chain
, Dest
, CC
, Cmp
);
5666 CC
= Cond
.getOperand(1).getOperand(0);
5670 } else { // ISD::AND
5671 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5672 // two branches instead of an explicit AND instruction with a
5673 // separate test. However, we only do this if this block doesn't
5674 // have a fall-through edge, because this requires an explicit
5675 // jmp when the condition is false.
5676 if (Cmp
== Cond
.getOperand(1).getOperand(1) &&
5677 isX86LogicalCmp(Cmp
) &&
5678 Op
.getNode()->hasOneUse()) {
5679 X86::CondCode CCode
=
5680 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5681 CCode
= X86::GetOppositeBranchCondition(CCode
);
5682 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5683 SDValue User
= SDValue(*Op
.getNode()->use_begin(), 0);
5684 // Look for an unconditional branch following this conditional branch.
5685 // We need this because we need to reverse the successors in order
5686 // to implement FCMP_OEQ.
5687 if (User
.getOpcode() == ISD::BR
) {
5688 SDValue FalseBB
= User
.getOperand(1);
5690 DAG
.UpdateNodeOperands(User
, User
.getOperand(0), Dest
);
5691 assert(NewBR
== User
);
5694 Chain
= DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5695 Chain
, Dest
, CC
, Cmp
);
5696 X86::CondCode CCode
=
5697 (X86::CondCode
)Cond
.getOperand(1).getConstantOperandVal(0);
5698 CCode
= X86::GetOppositeBranchCondition(CCode
);
5699 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5705 } else if (Cond
.hasOneUse() && isXor1OfSetCC(Cond
)) {
5706 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
5707 // It should be transformed during dag combiner except when the condition
5708 // is set by a arithmetics with overflow node.
5709 X86::CondCode CCode
=
5710 (X86::CondCode
)Cond
.getOperand(0).getConstantOperandVal(0);
5711 CCode
= X86::GetOppositeBranchCondition(CCode
);
5712 CC
= DAG
.getConstant(CCode
, MVT::i8
);
5713 Cond
= Cond
.getOperand(0).getOperand(1);
5719 CC
= DAG
.getConstant(X86::COND_NE
, MVT::i8
);
5720 Cond
= EmitTest(Cond
, X86::COND_NE
, DAG
);
5722 return DAG
.getNode(X86ISD::BRCOND
, dl
, Op
.getValueType(),
5723 Chain
, Dest
, CC
, Cond
);
5727 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5728 // Calls to _alloca is needed to probe the stack when allocating more than 4k
5729 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
5730 // that the guard pages used by the OS virtual memory manager are allocated in
5731 // correct sequence.
5733 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
5734 SelectionDAG
&DAG
) {
5735 assert(Subtarget
->isTargetCygMing() &&
5736 "This should be used only on Cygwin/Mingw targets");
5737 DebugLoc dl
= Op
.getDebugLoc();
5740 SDValue Chain
= Op
.getOperand(0);
5741 SDValue Size
= Op
.getOperand(1);
5742 // FIXME: Ensure alignment here
5746 MVT IntPtr
= getPointerTy();
5747 MVT SPTy
= Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
;
5749 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(0, true));
5751 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::EAX
, Size
, Flag
);
5752 Flag
= Chain
.getValue(1);
5754 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5755 SDValue Ops
[] = { Chain
,
5756 DAG
.getTargetExternalSymbol("_alloca", IntPtr
),
5757 DAG
.getRegister(X86::EAX
, IntPtr
),
5758 DAG
.getRegister(X86StackPtr
, SPTy
),
5760 Chain
= DAG
.getNode(X86ISD::CALL
, dl
, NodeTys
, Ops
, 5);
5761 Flag
= Chain
.getValue(1);
5763 Chain
= DAG
.getCALLSEQ_END(Chain
,
5764 DAG
.getIntPtrConstant(0, true),
5765 DAG
.getIntPtrConstant(0, true),
5768 Chain
= DAG
.getCopyFromReg(Chain
, dl
, X86StackPtr
, SPTy
).getValue(1);
5770 SDValue Ops1
[2] = { Chain
.getValue(0), Chain
};
5771 return DAG
.getMergeValues(Ops1
, 2, dl
);
5775 X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG
&DAG
, DebugLoc dl
,
5777 SDValue Dst
, SDValue Src
,
5778 SDValue Size
, unsigned Align
,
5780 uint64_t DstSVOff
) {
5781 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5783 // If not DWORD aligned or size is more than the threshold, call the library.
5784 // The libc version is likely to be faster for these cases. It can use the
5785 // address value and run time information about the CPU.
5786 if ((Align
& 3) != 0 ||
5788 ConstantSize
->getZExtValue() >
5789 getSubtarget()->getMaxInlineSizeThreshold()) {
5790 SDValue
InFlag(0, 0);
5792 // Check to see if there is a specialized entry-point for memory zeroing.
5793 ConstantSDNode
*V
= dyn_cast
<ConstantSDNode
>(Src
);
5795 if (const char *bzeroEntry
= V
&&
5796 V
->isNullValue() ? Subtarget
->getBZeroEntry() : 0) {
5797 MVT IntPtr
= getPointerTy();
5798 const Type
*IntPtrTy
= TD
->getIntPtrType();
5799 TargetLowering::ArgListTy Args
;
5800 TargetLowering::ArgListEntry Entry
;
5802 Entry
.Ty
= IntPtrTy
;
5803 Args
.push_back(Entry
);
5805 Args
.push_back(Entry
);
5806 std::pair
<SDValue
,SDValue
> CallResult
=
5807 LowerCallTo(Chain
, Type::VoidTy
, false, false, false, false,
5808 0, CallingConv::C
, false,
5809 DAG
.getExternalSymbol(bzeroEntry
, IntPtr
), Args
, DAG
, dl
);
5810 return CallResult
.second
;
5813 // Otherwise have the target-independent code call memset.
5817 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5818 SDValue
InFlag(0, 0);
5821 ConstantSDNode
*ValC
= dyn_cast
<ConstantSDNode
>(Src
);
5822 unsigned BytesLeft
= 0;
5823 bool TwoRepStos
= false;
5826 uint64_t Val
= ValC
->getZExtValue() & 255;
5828 // If the value is a constant, then we can potentially use larger sets.
5829 switch (Align
& 3) {
5830 case 2: // WORD aligned
5833 Val
= (Val
<< 8) | Val
;
5835 case 0: // DWORD aligned
5838 Val
= (Val
<< 8) | Val
;
5839 Val
= (Val
<< 16) | Val
;
5840 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) { // QWORD aligned
5843 Val
= (Val
<< 32) | Val
;
5846 default: // Byte aligned
5849 Count
= DAG
.getIntPtrConstant(SizeVal
);
5853 if (AVT
.bitsGT(MVT::i8
)) {
5854 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5855 Count
= DAG
.getIntPtrConstant(SizeVal
/ UBytes
);
5856 BytesLeft
= SizeVal
% UBytes
;
5859 Chain
= DAG
.getCopyToReg(Chain
, dl
, ValReg
, DAG
.getConstant(Val
, AVT
),
5861 InFlag
= Chain
.getValue(1);
5864 Count
= DAG
.getIntPtrConstant(SizeVal
);
5865 Chain
= DAG
.getCopyToReg(Chain
, dl
, X86::AL
, Src
, InFlag
);
5866 InFlag
= Chain
.getValue(1);
5869 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5872 InFlag
= Chain
.getValue(1);
5873 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5876 InFlag
= Chain
.getValue(1);
5878 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5879 SmallVector
<SDValue
, 8> Ops
;
5880 Ops
.push_back(Chain
);
5881 Ops
.push_back(DAG
.getValueType(AVT
));
5882 Ops
.push_back(InFlag
);
5883 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5886 InFlag
= Chain
.getValue(1);
5888 MVT CVT
= Count
.getValueType();
5889 SDValue Left
= DAG
.getNode(ISD::AND
, dl
, CVT
, Count
,
5890 DAG
.getConstant((AVT
== MVT::i64
) ? 7 : 3, CVT
));
5891 Chain
= DAG
.getCopyToReg(Chain
, dl
, (CVT
== MVT::i64
) ? X86::RCX
:
5894 InFlag
= Chain
.getValue(1);
5895 Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5897 Ops
.push_back(Chain
);
5898 Ops
.push_back(DAG
.getValueType(MVT::i8
));
5899 Ops
.push_back(InFlag
);
5900 Chain
= DAG
.getNode(X86ISD::REP_STOS
, dl
, Tys
, &Ops
[0], Ops
.size());
5901 } else if (BytesLeft
) {
5902 // Handle the last 1 - 7 bytes.
5903 unsigned Offset
= SizeVal
- BytesLeft
;
5904 MVT AddrVT
= Dst
.getValueType();
5905 MVT SizeVT
= Size
.getValueType();
5907 Chain
= DAG
.getMemset(Chain
, dl
,
5908 DAG
.getNode(ISD::ADD
, dl
, AddrVT
, Dst
,
5909 DAG
.getConstant(Offset
, AddrVT
)),
5911 DAG
.getConstant(BytesLeft
, SizeVT
),
5912 Align
, DstSV
, DstSVOff
+ Offset
);
5915 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5920 X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG
&DAG
, DebugLoc dl
,
5921 SDValue Chain
, SDValue Dst
, SDValue Src
,
5922 SDValue Size
, unsigned Align
,
5924 const Value
*DstSV
, uint64_t DstSVOff
,
5925 const Value
*SrcSV
, uint64_t SrcSVOff
) {
5926 // This requires the copy size to be a constant, preferrably
5927 // within a subtarget-specific limit.
5928 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
5931 uint64_t SizeVal
= ConstantSize
->getZExtValue();
5932 if (!AlwaysInline
&& SizeVal
> getSubtarget()->getMaxInlineSizeThreshold())
5935 /// If not DWORD aligned, call the library.
5936 if ((Align
& 3) != 0)
5941 if (Subtarget
->is64Bit() && ((Align
& 0x7) == 0)) // QWORD aligned
5944 unsigned UBytes
= AVT
.getSizeInBits() / 8;
5945 unsigned CountVal
= SizeVal
/ UBytes
;
5946 SDValue Count
= DAG
.getIntPtrConstant(CountVal
);
5947 unsigned BytesLeft
= SizeVal
% UBytes
;
5949 SDValue
InFlag(0, 0);
5950 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RCX
:
5953 InFlag
= Chain
.getValue(1);
5954 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RDI
:
5957 InFlag
= Chain
.getValue(1);
5958 Chain
= DAG
.getCopyToReg(Chain
, dl
, Subtarget
->is64Bit() ? X86::RSI
:
5961 InFlag
= Chain
.getValue(1);
5963 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
5964 SmallVector
<SDValue
, 8> Ops
;
5965 Ops
.push_back(Chain
);
5966 Ops
.push_back(DAG
.getValueType(AVT
));
5967 Ops
.push_back(InFlag
);
5968 SDValue RepMovs
= DAG
.getNode(X86ISD::REP_MOVS
, dl
, Tys
, &Ops
[0], Ops
.size());
5970 SmallVector
<SDValue
, 4> Results
;
5971 Results
.push_back(RepMovs
);
5973 // Handle the last 1 - 7 bytes.
5974 unsigned Offset
= SizeVal
- BytesLeft
;
5975 MVT DstVT
= Dst
.getValueType();
5976 MVT SrcVT
= Src
.getValueType();
5977 MVT SizeVT
= Size
.getValueType();
5978 Results
.push_back(DAG
.getMemcpy(Chain
, dl
,
5979 DAG
.getNode(ISD::ADD
, dl
, DstVT
, Dst
,
5980 DAG
.getConstant(Offset
, DstVT
)),
5981 DAG
.getNode(ISD::ADD
, dl
, SrcVT
, Src
,
5982 DAG
.getConstant(Offset
, SrcVT
)),
5983 DAG
.getConstant(BytesLeft
, SizeVT
),
5984 Align
, AlwaysInline
,
5985 DstSV
, DstSVOff
+ Offset
,
5986 SrcSV
, SrcSVOff
+ Offset
));
5989 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5990 &Results
[0], Results
.size());
5993 SDValue
X86TargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
5994 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5995 DebugLoc dl
= Op
.getDebugLoc();
5997 if (!Subtarget
->is64Bit()) {
5998 // vastart just stores the address of the VarArgsFrameIndex slot into the
5999 // memory location argument.
6000 SDValue FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6001 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1), SV
, 0);
6005 // gp_offset (0 - 6 * 8)
6006 // fp_offset (48 - 48 + 8 * 16)
6007 // overflow_arg_area (point to parameters coming in memory).
6009 SmallVector
<SDValue
, 8> MemOps
;
6010 SDValue FIN
= Op
.getOperand(1);
6012 SDValue Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6013 DAG
.getConstant(VarArgsGPOffset
, MVT::i32
),
6015 MemOps
.push_back(Store
);
6018 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6019 FIN
, DAG
.getIntPtrConstant(4));
6020 Store
= DAG
.getStore(Op
.getOperand(0), dl
,
6021 DAG
.getConstant(VarArgsFPOffset
, MVT::i32
),
6023 MemOps
.push_back(Store
);
6025 // Store ptr to overflow_arg_area
6026 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6027 FIN
, DAG
.getIntPtrConstant(4));
6028 SDValue OVFIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, getPointerTy());
6029 Store
= DAG
.getStore(Op
.getOperand(0), dl
, OVFIN
, FIN
, SV
, 0);
6030 MemOps
.push_back(Store
);
6032 // Store ptr to reg_save_area.
6033 FIN
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6034 FIN
, DAG
.getIntPtrConstant(8));
6035 SDValue RSFIN
= DAG
.getFrameIndex(RegSaveFrameIndex
, getPointerTy());
6036 Store
= DAG
.getStore(Op
.getOperand(0), dl
, RSFIN
, FIN
, SV
, 0);
6037 MemOps
.push_back(Store
);
6038 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
6039 &MemOps
[0], MemOps
.size());
6042 SDValue
X86TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) {
6043 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6044 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_arg!");
6045 SDValue Chain
= Op
.getOperand(0);
6046 SDValue SrcPtr
= Op
.getOperand(1);
6047 SDValue SrcSV
= Op
.getOperand(2);
6049 llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6053 SDValue
X86TargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) {
6054 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6055 assert(Subtarget
->is64Bit() && "This code only handles 64-bit va_copy!");
6056 SDValue Chain
= Op
.getOperand(0);
6057 SDValue DstPtr
= Op
.getOperand(1);
6058 SDValue SrcPtr
= Op
.getOperand(2);
6059 const Value
*DstSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
6060 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6061 DebugLoc dl
= Op
.getDebugLoc();
6063 return DAG
.getMemcpy(Chain
, dl
, DstPtr
, SrcPtr
,
6064 DAG
.getIntPtrConstant(24), 8, false,
6065 DstSV
, 0, SrcSV
, 0);
6069 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) {
6070 DebugLoc dl
= Op
.getDebugLoc();
6071 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6073 default: return SDValue(); // Don't custom lower most intrinsics.
6074 // Comparison intrinsics.
6075 case Intrinsic::x86_sse_comieq_ss
:
6076 case Intrinsic::x86_sse_comilt_ss
:
6077 case Intrinsic::x86_sse_comile_ss
:
6078 case Intrinsic::x86_sse_comigt_ss
:
6079 case Intrinsic::x86_sse_comige_ss
:
6080 case Intrinsic::x86_sse_comineq_ss
:
6081 case Intrinsic::x86_sse_ucomieq_ss
:
6082 case Intrinsic::x86_sse_ucomilt_ss
:
6083 case Intrinsic::x86_sse_ucomile_ss
:
6084 case Intrinsic::x86_sse_ucomigt_ss
:
6085 case Intrinsic::x86_sse_ucomige_ss
:
6086 case Intrinsic::x86_sse_ucomineq_ss
:
6087 case Intrinsic::x86_sse2_comieq_sd
:
6088 case Intrinsic::x86_sse2_comilt_sd
:
6089 case Intrinsic::x86_sse2_comile_sd
:
6090 case Intrinsic::x86_sse2_comigt_sd
:
6091 case Intrinsic::x86_sse2_comige_sd
:
6092 case Intrinsic::x86_sse2_comineq_sd
:
6093 case Intrinsic::x86_sse2_ucomieq_sd
:
6094 case Intrinsic::x86_sse2_ucomilt_sd
:
6095 case Intrinsic::x86_sse2_ucomile_sd
:
6096 case Intrinsic::x86_sse2_ucomigt_sd
:
6097 case Intrinsic::x86_sse2_ucomige_sd
:
6098 case Intrinsic::x86_sse2_ucomineq_sd
: {
6100 ISD::CondCode CC
= ISD::SETCC_INVALID
;
6103 case Intrinsic::x86_sse_comieq_ss
:
6104 case Intrinsic::x86_sse2_comieq_sd
:
6108 case Intrinsic::x86_sse_comilt_ss
:
6109 case Intrinsic::x86_sse2_comilt_sd
:
6113 case Intrinsic::x86_sse_comile_ss
:
6114 case Intrinsic::x86_sse2_comile_sd
:
6118 case Intrinsic::x86_sse_comigt_ss
:
6119 case Intrinsic::x86_sse2_comigt_sd
:
6123 case Intrinsic::x86_sse_comige_ss
:
6124 case Intrinsic::x86_sse2_comige_sd
:
6128 case Intrinsic::x86_sse_comineq_ss
:
6129 case Intrinsic::x86_sse2_comineq_sd
:
6133 case Intrinsic::x86_sse_ucomieq_ss
:
6134 case Intrinsic::x86_sse2_ucomieq_sd
:
6135 Opc
= X86ISD::UCOMI
;
6138 case Intrinsic::x86_sse_ucomilt_ss
:
6139 case Intrinsic::x86_sse2_ucomilt_sd
:
6140 Opc
= X86ISD::UCOMI
;
6143 case Intrinsic::x86_sse_ucomile_ss
:
6144 case Intrinsic::x86_sse2_ucomile_sd
:
6145 Opc
= X86ISD::UCOMI
;
6148 case Intrinsic::x86_sse_ucomigt_ss
:
6149 case Intrinsic::x86_sse2_ucomigt_sd
:
6150 Opc
= X86ISD::UCOMI
;
6153 case Intrinsic::x86_sse_ucomige_ss
:
6154 case Intrinsic::x86_sse2_ucomige_sd
:
6155 Opc
= X86ISD::UCOMI
;
6158 case Intrinsic::x86_sse_ucomineq_ss
:
6159 case Intrinsic::x86_sse2_ucomineq_sd
:
6160 Opc
= X86ISD::UCOMI
;
6165 SDValue LHS
= Op
.getOperand(1);
6166 SDValue RHS
= Op
.getOperand(2);
6167 unsigned X86CC
= TranslateX86CC(CC
, true, LHS
, RHS
, DAG
);
6168 SDValue Cond
= DAG
.getNode(Opc
, dl
, MVT::i32
, LHS
, RHS
);
6169 SDValue SetCC
= DAG
.getNode(X86ISD::SETCC
, dl
, MVT::i8
,
6170 DAG
.getConstant(X86CC
, MVT::i8
), Cond
);
6171 return DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, SetCC
);
6174 // Fix vector shift instructions where the last operand is a non-immediate
6176 case Intrinsic::x86_sse2_pslli_w
:
6177 case Intrinsic::x86_sse2_pslli_d
:
6178 case Intrinsic::x86_sse2_pslli_q
:
6179 case Intrinsic::x86_sse2_psrli_w
:
6180 case Intrinsic::x86_sse2_psrli_d
:
6181 case Intrinsic::x86_sse2_psrli_q
:
6182 case Intrinsic::x86_sse2_psrai_w
:
6183 case Intrinsic::x86_sse2_psrai_d
:
6184 case Intrinsic::x86_mmx_pslli_w
:
6185 case Intrinsic::x86_mmx_pslli_d
:
6186 case Intrinsic::x86_mmx_pslli_q
:
6187 case Intrinsic::x86_mmx_psrli_w
:
6188 case Intrinsic::x86_mmx_psrli_d
:
6189 case Intrinsic::x86_mmx_psrli_q
:
6190 case Intrinsic::x86_mmx_psrai_w
:
6191 case Intrinsic::x86_mmx_psrai_d
: {
6192 SDValue ShAmt
= Op
.getOperand(2);
6193 if (isa
<ConstantSDNode
>(ShAmt
))
6196 unsigned NewIntNo
= 0;
6197 MVT ShAmtVT
= MVT::v4i32
;
6199 case Intrinsic::x86_sse2_pslli_w
:
6200 NewIntNo
= Intrinsic::x86_sse2_psll_w
;
6202 case Intrinsic::x86_sse2_pslli_d
:
6203 NewIntNo
= Intrinsic::x86_sse2_psll_d
;
6205 case Intrinsic::x86_sse2_pslli_q
:
6206 NewIntNo
= Intrinsic::x86_sse2_psll_q
;
6208 case Intrinsic::x86_sse2_psrli_w
:
6209 NewIntNo
= Intrinsic::x86_sse2_psrl_w
;
6211 case Intrinsic::x86_sse2_psrli_d
:
6212 NewIntNo
= Intrinsic::x86_sse2_psrl_d
;
6214 case Intrinsic::x86_sse2_psrli_q
:
6215 NewIntNo
= Intrinsic::x86_sse2_psrl_q
;
6217 case Intrinsic::x86_sse2_psrai_w
:
6218 NewIntNo
= Intrinsic::x86_sse2_psra_w
;
6220 case Intrinsic::x86_sse2_psrai_d
:
6221 NewIntNo
= Intrinsic::x86_sse2_psra_d
;
6224 ShAmtVT
= MVT::v2i32
;
6226 case Intrinsic::x86_mmx_pslli_w
:
6227 NewIntNo
= Intrinsic::x86_mmx_psll_w
;
6229 case Intrinsic::x86_mmx_pslli_d
:
6230 NewIntNo
= Intrinsic::x86_mmx_psll_d
;
6232 case Intrinsic::x86_mmx_pslli_q
:
6233 NewIntNo
= Intrinsic::x86_mmx_psll_q
;
6235 case Intrinsic::x86_mmx_psrli_w
:
6236 NewIntNo
= Intrinsic::x86_mmx_psrl_w
;
6238 case Intrinsic::x86_mmx_psrli_d
:
6239 NewIntNo
= Intrinsic::x86_mmx_psrl_d
;
6241 case Intrinsic::x86_mmx_psrli_q
:
6242 NewIntNo
= Intrinsic::x86_mmx_psrl_q
;
6244 case Intrinsic::x86_mmx_psrai_w
:
6245 NewIntNo
= Intrinsic::x86_mmx_psra_w
;
6247 case Intrinsic::x86_mmx_psrai_d
:
6248 NewIntNo
= Intrinsic::x86_mmx_psra_d
;
6250 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6255 MVT VT
= Op
.getValueType();
6256 ShAmt
= DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
,
6257 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, ShAmtVT
, ShAmt
));
6258 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6259 DAG
.getConstant(NewIntNo
, MVT::i32
),
6260 Op
.getOperand(1), ShAmt
);
6265 SDValue
X86TargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) {
6266 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6267 DebugLoc dl
= Op
.getDebugLoc();
6270 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
6272 DAG
.getConstant(TD
->getPointerSize(),
6273 Subtarget
->is64Bit() ? MVT::i64
: MVT::i32
);
6274 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6275 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
6280 // Just load the return address.
6281 SDValue RetAddrFI
= getReturnAddressFrameIndex(DAG
);
6282 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
6283 RetAddrFI
, NULL
, 0);
6286 SDValue
X86TargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) {
6287 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
6288 MFI
->setFrameAddressIsTaken(true);
6289 MVT VT
= Op
.getValueType();
6290 DebugLoc dl
= Op
.getDebugLoc(); // FIXME probably not meaningful
6291 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
6292 unsigned FrameReg
= Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
;
6293 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
6295 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
, NULL
, 0);
6299 SDValue
X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op
,
6300 SelectionDAG
&DAG
) {
6301 return DAG
.getIntPtrConstant(2*TD
->getPointerSize());
6304 SDValue
X86TargetLowering::LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
6306 MachineFunction
&MF
= DAG
.getMachineFunction();
6307 SDValue Chain
= Op
.getOperand(0);
6308 SDValue Offset
= Op
.getOperand(1);
6309 SDValue Handler
= Op
.getOperand(2);
6310 DebugLoc dl
= Op
.getDebugLoc();
6312 SDValue Frame
= DAG
.getRegister(Subtarget
->is64Bit() ? X86::RBP
: X86::EBP
,
6314 unsigned StoreAddrReg
= (Subtarget
->is64Bit() ? X86::RCX
: X86::ECX
);
6316 SDValue StoreAddr
= DAG
.getNode(ISD::SUB
, dl
, getPointerTy(), Frame
,
6317 DAG
.getIntPtrConstant(-TD
->getPointerSize()));
6318 StoreAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StoreAddr
, Offset
);
6319 Chain
= DAG
.getStore(Chain
, dl
, Handler
, StoreAddr
, NULL
, 0);
6320 Chain
= DAG
.getCopyToReg(Chain
, dl
, StoreAddrReg
, StoreAddr
);
6321 MF
.getRegInfo().addLiveOut(StoreAddrReg
);
6323 return DAG
.getNode(X86ISD::EH_RETURN
, dl
,
6325 Chain
, DAG
.getRegister(StoreAddrReg
, getPointerTy()));
6328 SDValue
X86TargetLowering::LowerTRAMPOLINE(SDValue Op
,
6329 SelectionDAG
&DAG
) {
6330 SDValue Root
= Op
.getOperand(0);
6331 SDValue Trmp
= Op
.getOperand(1); // trampoline
6332 SDValue FPtr
= Op
.getOperand(2); // nested function
6333 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
6334 DebugLoc dl
= Op
.getDebugLoc();
6336 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
6338 const X86InstrInfo
*TII
=
6339 ((X86TargetMachine
&)getTargetMachine()).getInstrInfo();
6341 if (Subtarget
->is64Bit()) {
6342 SDValue OutChains
[6];
6344 // Large code-model.
6346 const unsigned char JMP64r
= TII
->getBaseOpcodeFor(X86::JMP64r
);
6347 const unsigned char MOV64ri
= TII
->getBaseOpcodeFor(X86::MOV64ri
);
6349 const unsigned char N86R10
= RegInfo
->getX86RegNum(X86::R10
);
6350 const unsigned char N86R11
= RegInfo
->getX86RegNum(X86::R11
);
6352 const unsigned char REX_WB
= 0x40 | 0x08 | 0x01; // REX prefix
6354 // Load the pointer to the nested function into R11.
6355 unsigned OpCode
= ((MOV64ri
| N86R11
) << 8) | REX_WB
; // movabsq r11
6356 SDValue Addr
= Trmp
;
6357 OutChains
[0] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6360 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6361 DAG
.getConstant(2, MVT::i64
));
6362 OutChains
[1] = DAG
.getStore(Root
, dl
, FPtr
, Addr
, TrmpAddr
, 2, false, 2);
6364 // Load the 'nest' parameter value into R10.
6365 // R10 is specified in X86CallingConv.td
6366 OpCode
= ((MOV64ri
| N86R10
) << 8) | REX_WB
; // movabsq r10
6367 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6368 DAG
.getConstant(10, MVT::i64
));
6369 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6370 Addr
, TrmpAddr
, 10);
6372 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6373 DAG
.getConstant(12, MVT::i64
));
6374 OutChains
[3] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 12, false, 2);
6376 // Jump to the nested function.
6377 OpCode
= (JMP64r
<< 8) | REX_WB
; // jmpq *...
6378 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6379 DAG
.getConstant(20, MVT::i64
));
6380 OutChains
[4] = DAG
.getStore(Root
, dl
, DAG
.getConstant(OpCode
, MVT::i16
),
6381 Addr
, TrmpAddr
, 20);
6383 unsigned char ModRM
= N86R11
| (4 << 3) | (3 << 6); // ...r11
6384 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Trmp
,
6385 DAG
.getConstant(22, MVT::i64
));
6386 OutChains
[5] = DAG
.getStore(Root
, dl
, DAG
.getConstant(ModRM
, MVT::i8
), Addr
,
6390 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 6) };
6391 return DAG
.getMergeValues(Ops
, 2, dl
);
6393 const Function
*Func
=
6394 cast
<Function
>(cast
<SrcValueSDNode
>(Op
.getOperand(5))->getValue());
6395 unsigned CC
= Func
->getCallingConv();
6400 llvm_unreachable("Unsupported calling convention");
6401 case CallingConv::C
:
6402 case CallingConv::X86_StdCall
: {
6403 // Pass 'nest' parameter in ECX.
6404 // Must be kept in sync with X86CallingConv.td
6407 // Check that ECX wasn't needed by an 'inreg' parameter.
6408 const FunctionType
*FTy
= Func
->getFunctionType();
6409 const AttrListPtr
&Attrs
= Func
->getAttributes();
6411 if (!Attrs
.isEmpty() && !Func
->isVarArg()) {
6412 unsigned InRegCount
= 0;
6415 for (FunctionType::param_iterator I
= FTy
->param_begin(),
6416 E
= FTy
->param_end(); I
!= E
; ++I
, ++Idx
)
6417 if (Attrs
.paramHasAttr(Idx
, Attribute::InReg
))
6418 // FIXME: should only count parameters that are lowered to integers.
6419 InRegCount
+= (TD
->getTypeSizeInBits(*I
) + 31) / 32;
6421 if (InRegCount
> 2) {
6422 llvm_report_error("Nest register in use - reduce number of inreg parameters!");
6427 case CallingConv::X86_FastCall
:
6428 case CallingConv::Fast
:
6429 // Pass 'nest' parameter in EAX.
6430 // Must be kept in sync with X86CallingConv.td
6435 SDValue OutChains
[4];
6438 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6439 DAG
.getConstant(10, MVT::i32
));
6440 Disp
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, FPtr
, Addr
);
6442 const unsigned char MOV32ri
= TII
->getBaseOpcodeFor(X86::MOV32ri
);
6443 const unsigned char N86Reg
= RegInfo
->getX86RegNum(NestReg
);
6444 OutChains
[0] = DAG
.getStore(Root
, dl
,
6445 DAG
.getConstant(MOV32ri
|N86Reg
, MVT::i8
),
6448 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6449 DAG
.getConstant(1, MVT::i32
));
6450 OutChains
[1] = DAG
.getStore(Root
, dl
, Nest
, Addr
, TrmpAddr
, 1, false, 1);
6452 const unsigned char JMP
= TII
->getBaseOpcodeFor(X86::JMP
);
6453 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6454 DAG
.getConstant(5, MVT::i32
));
6455 OutChains
[2] = DAG
.getStore(Root
, dl
, DAG
.getConstant(JMP
, MVT::i8
), Addr
,
6456 TrmpAddr
, 5, false, 1);
6458 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
6459 DAG
.getConstant(6, MVT::i32
));
6460 OutChains
[3] = DAG
.getStore(Root
, dl
, Disp
, Addr
, TrmpAddr
, 6, false, 1);
6463 { Trmp
, DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
, 4) };
6464 return DAG
.getMergeValues(Ops
, 2, dl
);
6468 SDValue
X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) {
6470 The rounding mode is in bits 11:10 of FPSR, and has the following
6477 FLT_ROUNDS, on the other hand, expects the following:
6484 To perform the conversion, we do:
6485 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6488 MachineFunction
&MF
= DAG
.getMachineFunction();
6489 const TargetMachine
&TM
= MF
.getTarget();
6490 const TargetFrameInfo
&TFI
= *TM
.getFrameInfo();
6491 unsigned StackAlignment
= TFI
.getStackAlignment();
6492 MVT VT
= Op
.getValueType();
6493 DebugLoc dl
= Op
.getDebugLoc();
6495 // Save FP Control Word to stack slot
6496 int SSFI
= MF
.getFrameInfo()->CreateStackObject(2, StackAlignment
);
6497 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, getPointerTy());
6499 SDValue Chain
= DAG
.getNode(X86ISD::FNSTCW16m
, dl
, MVT::Other
,
6500 DAG
.getEntryNode(), StackSlot
);
6502 // Load FP Control Word from stack slot
6503 SDValue CWD
= DAG
.getLoad(MVT::i16
, dl
, Chain
, StackSlot
, NULL
, 0);
6505 // Transform as necessary
6507 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6508 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6509 CWD
, DAG
.getConstant(0x800, MVT::i16
)),
6510 DAG
.getConstant(11, MVT::i8
));
6512 DAG
.getNode(ISD::SRL
, dl
, MVT::i16
,
6513 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6514 CWD
, DAG
.getConstant(0x400, MVT::i16
)),
6515 DAG
.getConstant(9, MVT::i8
));
6518 DAG
.getNode(ISD::AND
, dl
, MVT::i16
,
6519 DAG
.getNode(ISD::ADD
, dl
, MVT::i16
,
6520 DAG
.getNode(ISD::OR
, dl
, MVT::i16
, CWD1
, CWD2
),
6521 DAG
.getConstant(1, MVT::i16
)),
6522 DAG
.getConstant(3, MVT::i16
));
6525 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
6526 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
6529 SDValue
X86TargetLowering::LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) {
6530 MVT VT
= Op
.getValueType();
6532 unsigned NumBits
= VT
.getSizeInBits();
6533 DebugLoc dl
= Op
.getDebugLoc();
6535 Op
= Op
.getOperand(0);
6536 if (VT
== MVT::i8
) {
6537 // Zero extend to i32 since there is not an i8 bsr.
6539 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6542 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6543 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6544 Op
= DAG
.getNode(X86ISD::BSR
, dl
, VTs
, Op
);
6546 // If src is zero (i.e. bsr sets ZF), returns NumBits.
6547 SmallVector
<SDValue
, 4> Ops
;
6549 Ops
.push_back(DAG
.getConstant(NumBits
+NumBits
-1, OpVT
));
6550 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6551 Ops
.push_back(Op
.getValue(1));
6552 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6554 // Finally xor with NumBits-1.
6555 Op
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Op
, DAG
.getConstant(NumBits
-1, OpVT
));
6558 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6562 SDValue
X86TargetLowering::LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) {
6563 MVT VT
= Op
.getValueType();
6565 unsigned NumBits
= VT
.getSizeInBits();
6566 DebugLoc dl
= Op
.getDebugLoc();
6568 Op
= Op
.getOperand(0);
6569 if (VT
== MVT::i8
) {
6571 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, OpVT
, Op
);
6574 // Issue a bsf (scan bits forward) which also sets EFLAGS.
6575 SDVTList VTs
= DAG
.getVTList(OpVT
, MVT::i32
);
6576 Op
= DAG
.getNode(X86ISD::BSF
, dl
, VTs
, Op
);
6578 // If src is zero (i.e. bsf sets ZF), returns NumBits.
6579 SmallVector
<SDValue
, 4> Ops
;
6581 Ops
.push_back(DAG
.getConstant(NumBits
, OpVT
));
6582 Ops
.push_back(DAG
.getConstant(X86::COND_E
, MVT::i8
));
6583 Ops
.push_back(Op
.getValue(1));
6584 Op
= DAG
.getNode(X86ISD::CMOV
, dl
, OpVT
, &Ops
[0], 4);
6587 Op
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i8
, Op
);
6591 SDValue
X86TargetLowering::LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) {
6592 MVT VT
= Op
.getValueType();
6593 assert(VT
== MVT::v2i64
&& "Only know how to lower V2I64 multiply");
6594 DebugLoc dl
= Op
.getDebugLoc();
6596 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6597 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6598 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6599 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6600 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6602 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6603 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6604 // return AloBlo + AloBhi + AhiBlo;
6606 SDValue A
= Op
.getOperand(0);
6607 SDValue B
= Op
.getOperand(1);
6609 SDValue Ahi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6610 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6611 A
, DAG
.getConstant(32, MVT::i32
));
6612 SDValue Bhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6613 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
6614 B
, DAG
.getConstant(32, MVT::i32
));
6615 SDValue AloBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6616 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6618 SDValue AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6619 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6621 SDValue AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6622 DAG
.getConstant(Intrinsic::x86_sse2_pmulu_dq
, MVT::i32
),
6624 AloBhi
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6625 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6626 AloBhi
, DAG
.getConstant(32, MVT::i32
));
6627 AhiBlo
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
,
6628 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
6629 AhiBlo
, DAG
.getConstant(32, MVT::i32
));
6630 SDValue Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, AloBlo
, AloBhi
);
6631 Res
= DAG
.getNode(ISD::ADD
, dl
, VT
, Res
, AhiBlo
);
6636 SDValue
X86TargetLowering::LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
6637 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6638 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6639 // looks for this combo and may remove the "setcc" instruction if the "setcc"
6640 // has only one use.
6641 SDNode
*N
= Op
.getNode();
6642 SDValue LHS
= N
->getOperand(0);
6643 SDValue RHS
= N
->getOperand(1);
6644 unsigned BaseOp
= 0;
6646 DebugLoc dl
= Op
.getDebugLoc();
6648 switch (Op
.getOpcode()) {
6649 default: llvm_unreachable("Unknown ovf instruction!");
6651 // A subtract of one will be selected as a INC. Note that INC doesn't
6652 // set CF, so we can't do this for UADDO.
6653 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6654 if (C
->getAPIntValue() == 1) {
6655 BaseOp
= X86ISD::INC
;
6659 BaseOp
= X86ISD::ADD
;
6663 BaseOp
= X86ISD::ADD
;
6667 // A subtract of one will be selected as a DEC. Note that DEC doesn't
6668 // set CF, so we can't do this for USUBO.
6669 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
6670 if (C
->getAPIntValue() == 1) {
6671 BaseOp
= X86ISD::DEC
;
6675 BaseOp
= X86ISD::SUB
;
6679 BaseOp
= X86ISD::SUB
;
6683 BaseOp
= X86ISD::SMUL
;
6687 BaseOp
= X86ISD::UMUL
;
6692 // Also sets EFLAGS.
6693 SDVTList VTs
= DAG
.getVTList(N
->getValueType(0), MVT::i32
);
6694 SDValue Sum
= DAG
.getNode(BaseOp
, dl
, VTs
, LHS
, RHS
);
6697 DAG
.getNode(X86ISD::SETCC
, dl
, N
->getValueType(1),
6698 DAG
.getConstant(Cond
, MVT::i32
), SDValue(Sum
.getNode(), 1));
6700 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), SetCC
);
6704 SDValue
X86TargetLowering::LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) {
6705 MVT T
= Op
.getValueType();
6706 DebugLoc dl
= Op
.getDebugLoc();
6709 switch(T
.getSimpleVT()) {
6711 assert(false && "Invalid value type!");
6712 case MVT::i8
: Reg
= X86::AL
; size
= 1; break;
6713 case MVT::i16
: Reg
= X86::AX
; size
= 2; break;
6714 case MVT::i32
: Reg
= X86::EAX
; size
= 4; break;
6716 assert(Subtarget
->is64Bit() && "Node not type legal!");
6717 Reg
= X86::RAX
; size
= 8;
6720 SDValue cpIn
= DAG
.getCopyToReg(Op
.getOperand(0), dl
, Reg
,
6721 Op
.getOperand(2), SDValue());
6722 SDValue Ops
[] = { cpIn
.getValue(0),
6725 DAG
.getTargetConstant(size
, MVT::i8
),
6727 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6728 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG_DAG
, dl
, Tys
, Ops
, 5);
6730 DAG
.getCopyFromReg(Result
.getValue(0), dl
, Reg
, T
, Result
.getValue(1));
6734 SDValue
X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op
,
6735 SelectionDAG
&DAG
) {
6736 assert(Subtarget
->is64Bit() && "Result not type legalized?");
6737 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6738 SDValue TheChain
= Op
.getOperand(0);
6739 DebugLoc dl
= Op
.getDebugLoc();
6740 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6741 SDValue rax
= DAG
.getCopyFromReg(rd
, dl
, X86::RAX
, MVT::i64
, rd
.getValue(1));
6742 SDValue rdx
= DAG
.getCopyFromReg(rax
.getValue(1), dl
, X86::RDX
, MVT::i64
,
6744 SDValue Tmp
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, rdx
,
6745 DAG
.getConstant(32, MVT::i8
));
6747 DAG
.getNode(ISD::OR
, dl
, MVT::i64
, rax
, Tmp
),
6750 return DAG
.getMergeValues(Ops
, 2, dl
);
6753 SDValue
X86TargetLowering::LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) {
6754 SDNode
*Node
= Op
.getNode();
6755 DebugLoc dl
= Node
->getDebugLoc();
6756 MVT T
= Node
->getValueType(0);
6757 SDValue negOp
= DAG
.getNode(ISD::SUB
, dl
, T
,
6758 DAG
.getConstant(0, T
), Node
->getOperand(2));
6759 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
,
6760 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
6761 Node
->getOperand(0),
6762 Node
->getOperand(1), negOp
,
6763 cast
<AtomicSDNode
>(Node
)->getSrcValue(),
6764 cast
<AtomicSDNode
>(Node
)->getAlignment());
6767 /// LowerOperation - Provide custom lowering hooks for some operations.
6769 SDValue
X86TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) {
6770 switch (Op
.getOpcode()) {
6771 default: llvm_unreachable("Should not custom lower this!");
6772 case ISD::ATOMIC_CMP_SWAP
: return LowerCMP_SWAP(Op
,DAG
);
6773 case ISD::ATOMIC_LOAD_SUB
: return LowerLOAD_SUB(Op
,DAG
);
6774 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
6775 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
6776 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
6777 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
6778 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
6779 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
6780 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
6781 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
6782 case ISD::ExternalSymbol
: return LowerExternalSymbol(Op
, DAG
);
6783 case ISD::SHL_PARTS
:
6784 case ISD::SRA_PARTS
:
6785 case ISD::SRL_PARTS
: return LowerShift(Op
, DAG
);
6786 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
6787 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
6788 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
6789 case ISD::FP_TO_UINT
: return LowerFP_TO_UINT(Op
, DAG
);
6790 case ISD::FABS
: return LowerFABS(Op
, DAG
);
6791 case ISD::FNEG
: return LowerFNEG(Op
, DAG
);
6792 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
6793 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
6794 case ISD::VSETCC
: return LowerVSETCC(Op
, DAG
);
6795 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
6796 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
6797 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
6798 case ISD::CALL
: return LowerCALL(Op
, DAG
);
6799 case ISD::RET
: return LowerRET(Op
, DAG
);
6800 case ISD::FORMAL_ARGUMENTS
: return LowerFORMAL_ARGUMENTS(Op
, DAG
);
6801 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
6802 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
6803 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
6804 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
6805 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
6806 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
6807 case ISD::FRAME_TO_ARGS_OFFSET
:
6808 return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
6809 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
6810 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
6811 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
6812 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
6813 case ISD::CTLZ
: return LowerCTLZ(Op
, DAG
);
6814 case ISD::CTTZ
: return LowerCTTZ(Op
, DAG
);
6815 case ISD::MUL
: return LowerMUL_V2I64(Op
, DAG
);
6821 case ISD::UMULO
: return LowerXALUO(Op
, DAG
);
6822 case ISD::READCYCLECOUNTER
: return LowerREADCYCLECOUNTER(Op
, DAG
);
6826 void X86TargetLowering::
6827 ReplaceATOMIC_BINARY_64(SDNode
*Node
, SmallVectorImpl
<SDValue
>&Results
,
6828 SelectionDAG
&DAG
, unsigned NewOp
) {
6829 MVT T
= Node
->getValueType(0);
6830 DebugLoc dl
= Node
->getDebugLoc();
6831 assert (T
== MVT::i64
&& "Only know how to expand i64 atomics");
6833 SDValue Chain
= Node
->getOperand(0);
6834 SDValue In1
= Node
->getOperand(1);
6835 SDValue In2L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6836 Node
->getOperand(2), DAG
.getIntPtrConstant(0));
6837 SDValue In2H
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
6838 Node
->getOperand(2), DAG
.getIntPtrConstant(1));
6839 // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6840 // have a MemOperand. Pass the info through as a normal operand.
6841 SDValue LSI
= DAG
.getMemOperand(cast
<MemSDNode
>(Node
)->getMemOperand());
6842 SDValue Ops
[] = { Chain
, In1
, In2L
, In2H
, LSI
};
6843 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
6844 SDValue Result
= DAG
.getNode(NewOp
, dl
, Tys
, Ops
, 5);
6845 SDValue OpsF
[] = { Result
.getValue(0), Result
.getValue(1)};
6846 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6847 Results
.push_back(Result
.getValue(2));
6850 /// ReplaceNodeResults - Replace a node with an illegal result type
6851 /// with a new node built out of custom code.
6852 void X86TargetLowering::ReplaceNodeResults(SDNode
*N
,
6853 SmallVectorImpl
<SDValue
>&Results
,
6854 SelectionDAG
&DAG
) {
6855 DebugLoc dl
= N
->getDebugLoc();
6856 switch (N
->getOpcode()) {
6858 assert(false && "Do not know how to custom type legalize this operation!");
6860 case ISD::FP_TO_SINT
: {
6861 std::pair
<SDValue
,SDValue
> Vals
=
6862 FP_TO_INTHelper(SDValue(N
, 0), DAG
, true);
6863 SDValue FIST
= Vals
.first
, StackSlot
= Vals
.second
;
6864 if (FIST
.getNode() != 0) {
6865 MVT VT
= N
->getValueType(0);
6866 // Return a load from the stack slot.
6867 Results
.push_back(DAG
.getLoad(VT
, dl
, FIST
, StackSlot
, NULL
, 0));
6871 case ISD::READCYCLECOUNTER
: {
6872 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6873 SDValue TheChain
= N
->getOperand(0);
6874 SDValue rd
= DAG
.getNode(X86ISD::RDTSC_DAG
, dl
, Tys
, &TheChain
, 1);
6875 SDValue eax
= DAG
.getCopyFromReg(rd
, dl
, X86::EAX
, MVT::i32
,
6877 SDValue edx
= DAG
.getCopyFromReg(eax
.getValue(1), dl
, X86::EDX
, MVT::i32
,
6879 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6880 SDValue Ops
[] = { eax
, edx
};
6881 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Ops
, 2));
6882 Results
.push_back(edx
.getValue(1));
6885 case ISD::ATOMIC_CMP_SWAP
: {
6886 MVT T
= N
->getValueType(0);
6887 assert (T
== MVT::i64
&& "Only know how to expand i64 Cmp and Swap");
6888 SDValue cpInL
, cpInH
;
6889 cpInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6890 DAG
.getConstant(0, MVT::i32
));
6891 cpInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(2),
6892 DAG
.getConstant(1, MVT::i32
));
6893 cpInL
= DAG
.getCopyToReg(N
->getOperand(0), dl
, X86::EAX
, cpInL
, SDValue());
6894 cpInH
= DAG
.getCopyToReg(cpInL
.getValue(0), dl
, X86::EDX
, cpInH
,
6896 SDValue swapInL
, swapInH
;
6897 swapInL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6898 DAG
.getConstant(0, MVT::i32
));
6899 swapInH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, N
->getOperand(3),
6900 DAG
.getConstant(1, MVT::i32
));
6901 swapInL
= DAG
.getCopyToReg(cpInH
.getValue(0), dl
, X86::EBX
, swapInL
,
6903 swapInH
= DAG
.getCopyToReg(swapInL
.getValue(0), dl
, X86::ECX
, swapInH
,
6904 swapInL
.getValue(1));
6905 SDValue Ops
[] = { swapInH
.getValue(0),
6907 swapInH
.getValue(1) };
6908 SDVTList Tys
= DAG
.getVTList(MVT::Other
, MVT::Flag
);
6909 SDValue Result
= DAG
.getNode(X86ISD::LCMPXCHG8_DAG
, dl
, Tys
, Ops
, 3);
6910 SDValue cpOutL
= DAG
.getCopyFromReg(Result
.getValue(0), dl
, X86::EAX
,
6911 MVT::i32
, Result
.getValue(1));
6912 SDValue cpOutH
= DAG
.getCopyFromReg(cpOutL
.getValue(1), dl
, X86::EDX
,
6913 MVT::i32
, cpOutL
.getValue(2));
6914 SDValue OpsF
[] = { cpOutL
.getValue(0), cpOutH
.getValue(0)};
6915 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, OpsF
, 2));
6916 Results
.push_back(cpOutH
.getValue(1));
6919 case ISD::ATOMIC_LOAD_ADD
:
6920 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMADD64_DAG
);
6922 case ISD::ATOMIC_LOAD_AND
:
6923 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMAND64_DAG
);
6925 case ISD::ATOMIC_LOAD_NAND
:
6926 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMNAND64_DAG
);
6928 case ISD::ATOMIC_LOAD_OR
:
6929 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMOR64_DAG
);
6931 case ISD::ATOMIC_LOAD_SUB
:
6932 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSUB64_DAG
);
6934 case ISD::ATOMIC_LOAD_XOR
:
6935 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMXOR64_DAG
);
6937 case ISD::ATOMIC_SWAP
:
6938 ReplaceATOMIC_BINARY_64(N
, Results
, DAG
, X86ISD::ATOMSWAP64_DAG
);
6943 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode
) const {
6945 default: return NULL
;
6946 case X86ISD::BSF
: return "X86ISD::BSF";
6947 case X86ISD::BSR
: return "X86ISD::BSR";
6948 case X86ISD::SHLD
: return "X86ISD::SHLD";
6949 case X86ISD::SHRD
: return "X86ISD::SHRD";
6950 case X86ISD::FAND
: return "X86ISD::FAND";
6951 case X86ISD::FOR
: return "X86ISD::FOR";
6952 case X86ISD::FXOR
: return "X86ISD::FXOR";
6953 case X86ISD::FSRL
: return "X86ISD::FSRL";
6954 case X86ISD::FILD
: return "X86ISD::FILD";
6955 case X86ISD::FILD_FLAG
: return "X86ISD::FILD_FLAG";
6956 case X86ISD::FP_TO_INT16_IN_MEM
: return "X86ISD::FP_TO_INT16_IN_MEM";
6957 case X86ISD::FP_TO_INT32_IN_MEM
: return "X86ISD::FP_TO_INT32_IN_MEM";
6958 case X86ISD::FP_TO_INT64_IN_MEM
: return "X86ISD::FP_TO_INT64_IN_MEM";
6959 case X86ISD::FLD
: return "X86ISD::FLD";
6960 case X86ISD::FST
: return "X86ISD::FST";
6961 case X86ISD::CALL
: return "X86ISD::CALL";
6962 case X86ISD::TAILCALL
: return "X86ISD::TAILCALL";
6963 case X86ISD::RDTSC_DAG
: return "X86ISD::RDTSC_DAG";
6964 case X86ISD::BT
: return "X86ISD::BT";
6965 case X86ISD::CMP
: return "X86ISD::CMP";
6966 case X86ISD::COMI
: return "X86ISD::COMI";
6967 case X86ISD::UCOMI
: return "X86ISD::UCOMI";
6968 case X86ISD::SETCC
: return "X86ISD::SETCC";
6969 case X86ISD::CMOV
: return "X86ISD::CMOV";
6970 case X86ISD::BRCOND
: return "X86ISD::BRCOND";
6971 case X86ISD::RET_FLAG
: return "X86ISD::RET_FLAG";
6972 case X86ISD::REP_STOS
: return "X86ISD::REP_STOS";
6973 case X86ISD::REP_MOVS
: return "X86ISD::REP_MOVS";
6974 case X86ISD::GlobalBaseReg
: return "X86ISD::GlobalBaseReg";
6975 case X86ISD::Wrapper
: return "X86ISD::Wrapper";
6976 case X86ISD::WrapperRIP
: return "X86ISD::WrapperRIP";
6977 case X86ISD::PEXTRB
: return "X86ISD::PEXTRB";
6978 case X86ISD::PEXTRW
: return "X86ISD::PEXTRW";
6979 case X86ISD::INSERTPS
: return "X86ISD::INSERTPS";
6980 case X86ISD::PINSRB
: return "X86ISD::PINSRB";
6981 case X86ISD::PINSRW
: return "X86ISD::PINSRW";
6982 case X86ISD::PSHUFB
: return "X86ISD::PSHUFB";
6983 case X86ISD::FMAX
: return "X86ISD::FMAX";
6984 case X86ISD::FMIN
: return "X86ISD::FMIN";
6985 case X86ISD::FRSQRT
: return "X86ISD::FRSQRT";
6986 case X86ISD::FRCP
: return "X86ISD::FRCP";
6987 case X86ISD::TLSADDR
: return "X86ISD::TLSADDR";
6988 case X86ISD::SegmentBaseAddress
: return "X86ISD::SegmentBaseAddress";
6989 case X86ISD::EH_RETURN
: return "X86ISD::EH_RETURN";
6990 case X86ISD::TC_RETURN
: return "X86ISD::TC_RETURN";
6991 case X86ISD::FNSTCW16m
: return "X86ISD::FNSTCW16m";
6992 case X86ISD::LCMPXCHG_DAG
: return "X86ISD::LCMPXCHG_DAG";
6993 case X86ISD::LCMPXCHG8_DAG
: return "X86ISD::LCMPXCHG8_DAG";
6994 case X86ISD::ATOMADD64_DAG
: return "X86ISD::ATOMADD64_DAG";
6995 case X86ISD::ATOMSUB64_DAG
: return "X86ISD::ATOMSUB64_DAG";
6996 case X86ISD::ATOMOR64_DAG
: return "X86ISD::ATOMOR64_DAG";
6997 case X86ISD::ATOMXOR64_DAG
: return "X86ISD::ATOMXOR64_DAG";
6998 case X86ISD::ATOMAND64_DAG
: return "X86ISD::ATOMAND64_DAG";
6999 case X86ISD::ATOMNAND64_DAG
: return "X86ISD::ATOMNAND64_DAG";
7000 case X86ISD::VZEXT_MOVL
: return "X86ISD::VZEXT_MOVL";
7001 case X86ISD::VZEXT_LOAD
: return "X86ISD::VZEXT_LOAD";
7002 case X86ISD::VSHL
: return "X86ISD::VSHL";
7003 case X86ISD::VSRL
: return "X86ISD::VSRL";
7004 case X86ISD::CMPPD
: return "X86ISD::CMPPD";
7005 case X86ISD::CMPPS
: return "X86ISD::CMPPS";
7006 case X86ISD::PCMPEQB
: return "X86ISD::PCMPEQB";
7007 case X86ISD::PCMPEQW
: return "X86ISD::PCMPEQW";
7008 case X86ISD::PCMPEQD
: return "X86ISD::PCMPEQD";
7009 case X86ISD::PCMPEQQ
: return "X86ISD::PCMPEQQ";
7010 case X86ISD::PCMPGTB
: return "X86ISD::PCMPGTB";
7011 case X86ISD::PCMPGTW
: return "X86ISD::PCMPGTW";
7012 case X86ISD::PCMPGTD
: return "X86ISD::PCMPGTD";
7013 case X86ISD::PCMPGTQ
: return "X86ISD::PCMPGTQ";
7014 case X86ISD::ADD
: return "X86ISD::ADD";
7015 case X86ISD::SUB
: return "X86ISD::SUB";
7016 case X86ISD::SMUL
: return "X86ISD::SMUL";
7017 case X86ISD::UMUL
: return "X86ISD::UMUL";
7018 case X86ISD::INC
: return "X86ISD::INC";
7019 case X86ISD::DEC
: return "X86ISD::DEC";
7020 case X86ISD::MUL_IMM
: return "X86ISD::MUL_IMM";
7024 // isLegalAddressingMode - Return true if the addressing mode represented
7025 // by AM is legal for this target, for a load/store of the specified type.
7026 bool X86TargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
7027 const Type
*Ty
) const {
7028 // X86 supports extremely general addressing modes.
7030 // X86 allows a sign-extended 32-bit immediate field as a displacement.
7031 if (AM
.BaseOffs
<= -(1LL << 32) || AM
.BaseOffs
>= (1LL << 32)-1)
7036 Subtarget
->ClassifyGlobalReference(AM
.BaseGV
, getTargetMachine());
7038 // If a reference to this global requires an extra load, we can't fold it.
7039 if (isGlobalStubReference(GVFlags
))
7042 // If BaseGV requires a register for the PIC base, we cannot also have a
7043 // BaseReg specified.
7044 if (AM
.HasBaseReg
&& isGlobalRelativeToPICBase(GVFlags
))
7047 // X86-64 only supports addr of globals in small code model.
7048 if (Subtarget
->is64Bit()) {
7049 if (getTargetMachine().getCodeModel() != CodeModel::Small
)
7051 // If lower 4G is not available, then we must use rip-relative addressing.
7052 if (AM
.BaseOffs
|| AM
.Scale
> 1)
7063 // These scales always work.
7068 // These scales are formed with basereg+scalereg. Only accept if there is
7073 default: // Other stuff never works.
7081 bool X86TargetLowering::isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const {
7082 if (!Ty1
->isInteger() || !Ty2
->isInteger())
7084 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
7085 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
7086 if (NumBits1
<= NumBits2
)
7088 return Subtarget
->is64Bit() || NumBits1
< 64;
7091 bool X86TargetLowering::isTruncateFree(MVT VT1
, MVT VT2
) const {
7092 if (!VT1
.isInteger() || !VT2
.isInteger())
7094 unsigned NumBits1
= VT1
.getSizeInBits();
7095 unsigned NumBits2
= VT2
.getSizeInBits();
7096 if (NumBits1
<= NumBits2
)
7098 return Subtarget
->is64Bit() || NumBits1
< 64;
7101 bool X86TargetLowering::isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const {
7102 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7103 return Ty1
== Type::Int32Ty
&& Ty2
== Type::Int64Ty
&& Subtarget
->is64Bit();
7106 bool X86TargetLowering::isZExtFree(MVT VT1
, MVT VT2
) const {
7107 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7108 return VT1
== MVT::i32
&& VT2
== MVT::i64
&& Subtarget
->is64Bit();
7111 bool X86TargetLowering::isNarrowingProfitable(MVT VT1
, MVT VT2
) const {
7112 // i16 instructions are longer (0x66 prefix) and potentially slower.
7113 return !(VT1
== MVT::i32
&& VT2
== MVT::i16
);
7116 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7117 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7118 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7119 /// are assumed to be legal.
7121 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl
<int> &M
,
7123 // Only do shuffles on 128-bit vector types for now.
7124 if (VT
.getSizeInBits() == 64)
7127 // FIXME: pshufb, blends, palignr, shifts.
7128 return (VT
.getVectorNumElements() == 2 ||
7129 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
7130 isMOVLMask(M
, VT
) ||
7131 isSHUFPMask(M
, VT
) ||
7132 isPSHUFDMask(M
, VT
) ||
7133 isPSHUFHWMask(M
, VT
) ||
7134 isPSHUFLWMask(M
, VT
) ||
7135 isUNPCKLMask(M
, VT
) ||
7136 isUNPCKHMask(M
, VT
) ||
7137 isUNPCKL_v_undef_Mask(M
, VT
) ||
7138 isUNPCKH_v_undef_Mask(M
, VT
));
7142 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
7144 unsigned NumElts
= VT
.getVectorNumElements();
7145 // FIXME: This collection of masks seems suspect.
7148 if (NumElts
== 4 && VT
.getSizeInBits() == 128) {
7149 return (isMOVLMask(Mask
, VT
) ||
7150 isCommutedMOVLMask(Mask
, VT
, true) ||
7151 isSHUFPMask(Mask
, VT
) ||
7152 isCommutedSHUFPMask(Mask
, VT
));
7157 //===----------------------------------------------------------------------===//
7158 // X86 Scheduler Hooks
7159 //===----------------------------------------------------------------------===//
7161 // private utility function
7163 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr
*bInstr
,
7164 MachineBasicBlock
*MBB
,
7172 TargetRegisterClass
*RC
,
7173 bool invSrc
) const {
7174 // For the atomic bitwise operator, we generate
7177 // ld t1 = [bitinstr.addr]
7178 // op t2 = t1, [bitinstr.val]
7180 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7182 // fallthrough -->nextMBB
7183 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7184 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7185 MachineFunction::iterator MBBIter
= MBB
;
7188 /// First build the CFG
7189 MachineFunction
*F
= MBB
->getParent();
7190 MachineBasicBlock
*thisMBB
= MBB
;
7191 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7192 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7193 F
->insert(MBBIter
, newMBB
);
7194 F
->insert(MBBIter
, nextMBB
);
7196 // Move all successors to thisMBB to nextMBB
7197 nextMBB
->transferSuccessors(thisMBB
);
7199 // Update thisMBB to fall through to newMBB
7200 thisMBB
->addSuccessor(newMBB
);
7202 // newMBB jumps to itself and fall through to nextMBB
7203 newMBB
->addSuccessor(nextMBB
);
7204 newMBB
->addSuccessor(newMBB
);
7206 // Insert instructions into newMBB based on incoming instruction
7207 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7208 "unexpected number of operands");
7209 DebugLoc dl
= bInstr
->getDebugLoc();
7210 MachineOperand
& destOper
= bInstr
->getOperand(0);
7211 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7212 int numArgs
= bInstr
->getNumOperands() - 1;
7213 for (int i
=0; i
< numArgs
; ++i
)
7214 argOpers
[i
] = &bInstr
->getOperand(i
+1);
7216 // x86 address has 4 operands: base, index, scale, and displacement
7217 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7218 int valArgIndx
= lastAddrIndx
+ 1;
7220 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7221 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(LoadOpc
), t1
);
7222 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7223 (*MIB
).addOperand(*argOpers
[i
]);
7225 unsigned tt
= F
->getRegInfo().createVirtualRegister(RC
);
7227 MIB
= BuildMI(newMBB
, dl
, TII
->get(notOpc
), tt
).addReg(t1
);
7232 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7233 assert((argOpers
[valArgIndx
]->isReg() ||
7234 argOpers
[valArgIndx
]->isImm()) &&
7236 if (argOpers
[valArgIndx
]->isReg())
7237 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpc
), t2
);
7239 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpc
), t2
);
7241 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7243 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), EAXreg
);
7246 MIB
= BuildMI(newMBB
, dl
, TII
->get(CXchgOpc
));
7247 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7248 (*MIB
).addOperand(*argOpers
[i
]);
7250 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7251 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7253 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), destOper
.getReg());
7257 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7259 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7263 // private utility function: 64 bit atomics on 32 bit host.
7265 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr
*bInstr
,
7266 MachineBasicBlock
*MBB
,
7271 bool invSrc
) const {
7272 // For the atomic bitwise operator, we generate
7273 // thisMBB (instructions are in pairs, except cmpxchg8b)
7274 // ld t1,t2 = [bitinstr.addr]
7276 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7277 // op t5, t6 <- out1, out2, [bitinstr.val]
7278 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
7279 // mov ECX, EBX <- t5, t6
7280 // mov EAX, EDX <- t1, t2
7281 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
7282 // mov t3, t4 <- EAX, EDX
7284 // result in out1, out2
7285 // fallthrough -->nextMBB
7287 const TargetRegisterClass
*RC
= X86::GR32RegisterClass
;
7288 const unsigned LoadOpc
= X86::MOV32rm
;
7289 const unsigned copyOpc
= X86::MOV32rr
;
7290 const unsigned NotOpc
= X86::NOT32r
;
7291 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7292 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7293 MachineFunction::iterator MBBIter
= MBB
;
7296 /// First build the CFG
7297 MachineFunction
*F
= MBB
->getParent();
7298 MachineBasicBlock
*thisMBB
= MBB
;
7299 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7300 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7301 F
->insert(MBBIter
, newMBB
);
7302 F
->insert(MBBIter
, nextMBB
);
7304 // Move all successors to thisMBB to nextMBB
7305 nextMBB
->transferSuccessors(thisMBB
);
7307 // Update thisMBB to fall through to newMBB
7308 thisMBB
->addSuccessor(newMBB
);
7310 // newMBB jumps to itself and fall through to nextMBB
7311 newMBB
->addSuccessor(nextMBB
);
7312 newMBB
->addSuccessor(newMBB
);
7314 DebugLoc dl
= bInstr
->getDebugLoc();
7315 // Insert instructions into newMBB based on incoming instruction
7316 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7317 assert(bInstr
->getNumOperands() < X86AddrNumOperands
+ 14 &&
7318 "unexpected number of operands");
7319 MachineOperand
& dest1Oper
= bInstr
->getOperand(0);
7320 MachineOperand
& dest2Oper
= bInstr
->getOperand(1);
7321 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7322 for (int i
=0; i
< 2 + X86AddrNumOperands
; ++i
)
7323 argOpers
[i
] = &bInstr
->getOperand(i
+2);
7325 // x86 address has 4 operands: base, index, scale, and displacement
7326 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7328 unsigned t1
= F
->getRegInfo().createVirtualRegister(RC
);
7329 MachineInstrBuilder MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t1
);
7330 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7331 (*MIB
).addOperand(*argOpers
[i
]);
7332 unsigned t2
= F
->getRegInfo().createVirtualRegister(RC
);
7333 MIB
= BuildMI(thisMBB
, dl
, TII
->get(LoadOpc
), t2
);
7334 // add 4 to displacement.
7335 for (int i
=0; i
<= lastAddrIndx
-2; ++i
)
7336 (*MIB
).addOperand(*argOpers
[i
]);
7337 MachineOperand newOp3
= *(argOpers
[3]);
7339 newOp3
.setImm(newOp3
.getImm()+4);
7341 newOp3
.setOffset(newOp3
.getOffset()+4);
7342 (*MIB
).addOperand(newOp3
);
7343 (*MIB
).addOperand(*argOpers
[lastAddrIndx
]);
7345 // t3/4 are defined later, at the bottom of the loop
7346 unsigned t3
= F
->getRegInfo().createVirtualRegister(RC
);
7347 unsigned t4
= F
->getRegInfo().createVirtualRegister(RC
);
7348 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest1Oper
.getReg())
7349 .addReg(t1
).addMBB(thisMBB
).addReg(t3
).addMBB(newMBB
);
7350 BuildMI(newMBB
, dl
, TII
->get(X86::PHI
), dest2Oper
.getReg())
7351 .addReg(t2
).addMBB(thisMBB
).addReg(t4
).addMBB(newMBB
);
7353 unsigned tt1
= F
->getRegInfo().createVirtualRegister(RC
);
7354 unsigned tt2
= F
->getRegInfo().createVirtualRegister(RC
);
7356 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt1
).addReg(t1
);
7357 MIB
= BuildMI(newMBB
, dl
, TII
->get(NotOpc
), tt2
).addReg(t2
);
7363 int valArgIndx
= lastAddrIndx
+ 1;
7364 assert((argOpers
[valArgIndx
]->isReg() ||
7365 argOpers
[valArgIndx
]->isImm()) &&
7367 unsigned t5
= F
->getRegInfo().createVirtualRegister(RC
);
7368 unsigned t6
= F
->getRegInfo().createVirtualRegister(RC
);
7369 if (argOpers
[valArgIndx
]->isReg())
7370 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcL
), t5
);
7372 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcL
), t5
);
7373 if (regOpcL
!= X86::MOV32rr
)
7375 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7376 assert(argOpers
[valArgIndx
+ 1]->isReg() ==
7377 argOpers
[valArgIndx
]->isReg());
7378 assert(argOpers
[valArgIndx
+ 1]->isImm() ==
7379 argOpers
[valArgIndx
]->isImm());
7380 if (argOpers
[valArgIndx
+ 1]->isReg())
7381 MIB
= BuildMI(newMBB
, dl
, TII
->get(regOpcH
), t6
);
7383 MIB
= BuildMI(newMBB
, dl
, TII
->get(immOpcH
), t6
);
7384 if (regOpcH
!= X86::MOV32rr
)
7386 (*MIB
).addOperand(*argOpers
[valArgIndx
+ 1]);
7388 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EAX
);
7390 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EDX
);
7393 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::EBX
);
7395 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), X86::ECX
);
7398 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG8B
));
7399 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7400 (*MIB
).addOperand(*argOpers
[i
]);
7402 assert(bInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7403 (*MIB
).addMemOperand(*F
, *bInstr
->memoperands_begin());
7405 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t3
);
7406 MIB
.addReg(X86::EAX
);
7407 MIB
= BuildMI(newMBB
, dl
, TII
->get(copyOpc
), t4
);
7408 MIB
.addReg(X86::EDX
);
7411 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7413 F
->DeleteMachineInstr(bInstr
); // The pseudo instruction is gone now.
7417 // private utility function
7419 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr
*mInstr
,
7420 MachineBasicBlock
*MBB
,
7421 unsigned cmovOpc
) const {
7422 // For the atomic min/max operator, we generate
7425 // ld t1 = [min/max.addr]
7426 // mov t2 = [min/max.val]
7428 // cmov[cond] t2 = t1
7430 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
7432 // fallthrough -->nextMBB
7434 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7435 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
7436 MachineFunction::iterator MBBIter
= MBB
;
7439 /// First build the CFG
7440 MachineFunction
*F
= MBB
->getParent();
7441 MachineBasicBlock
*thisMBB
= MBB
;
7442 MachineBasicBlock
*newMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7443 MachineBasicBlock
*nextMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7444 F
->insert(MBBIter
, newMBB
);
7445 F
->insert(MBBIter
, nextMBB
);
7447 // Move all successors to thisMBB to nextMBB
7448 nextMBB
->transferSuccessors(thisMBB
);
7450 // Update thisMBB to fall through to newMBB
7451 thisMBB
->addSuccessor(newMBB
);
7453 // newMBB jumps to newMBB and fall through to nextMBB
7454 newMBB
->addSuccessor(nextMBB
);
7455 newMBB
->addSuccessor(newMBB
);
7457 DebugLoc dl
= mInstr
->getDebugLoc();
7458 // Insert instructions into newMBB based on incoming instruction
7459 assert(mInstr
->getNumOperands() < X86AddrNumOperands
+ 4 &&
7460 "unexpected number of operands");
7461 MachineOperand
& destOper
= mInstr
->getOperand(0);
7462 MachineOperand
* argOpers
[2 + X86AddrNumOperands
];
7463 int numArgs
= mInstr
->getNumOperands() - 1;
7464 for (int i
=0; i
< numArgs
; ++i
)
7465 argOpers
[i
] = &mInstr
->getOperand(i
+1);
7467 // x86 address has 4 operands: base, index, scale, and displacement
7468 int lastAddrIndx
= X86AddrNumOperands
- 1; // [0,3]
7469 int valArgIndx
= lastAddrIndx
+ 1;
7471 unsigned t1
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7472 MachineInstrBuilder MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rm
), t1
);
7473 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7474 (*MIB
).addOperand(*argOpers
[i
]);
7476 // We only support register and immediate values
7477 assert((argOpers
[valArgIndx
]->isReg() ||
7478 argOpers
[valArgIndx
]->isImm()) &&
7481 unsigned t2
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7482 if (argOpers
[valArgIndx
]->isReg())
7483 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7485 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), t2
);
7486 (*MIB
).addOperand(*argOpers
[valArgIndx
]);
7488 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), X86::EAX
);
7491 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::CMP32rr
));
7496 unsigned t3
= F
->getRegInfo().createVirtualRegister(X86::GR32RegisterClass
);
7497 MIB
= BuildMI(newMBB
, dl
, TII
->get(cmovOpc
),t3
);
7501 // Cmp and exchange if none has modified the memory location
7502 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::LCMPXCHG32
));
7503 for (int i
=0; i
<= lastAddrIndx
; ++i
)
7504 (*MIB
).addOperand(*argOpers
[i
]);
7506 assert(mInstr
->hasOneMemOperand() && "Unexpected number of memoperand");
7507 (*MIB
).addMemOperand(*F
, *mInstr
->memoperands_begin());
7509 MIB
= BuildMI(newMBB
, dl
, TII
->get(X86::MOV32rr
), destOper
.getReg());
7510 MIB
.addReg(X86::EAX
);
7513 BuildMI(newMBB
, dl
, TII
->get(X86::JNE
)).addMBB(newMBB
);
7515 F
->DeleteMachineInstr(mInstr
); // The pseudo instruction is gone now.
7521 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
7522 MachineBasicBlock
*BB
) const {
7523 DebugLoc dl
= MI
->getDebugLoc();
7524 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
7525 switch (MI
->getOpcode()) {
7526 default: assert(false && "Unexpected instr type to insert");
7527 case X86::CMOV_V1I64
:
7528 case X86::CMOV_FR32
:
7529 case X86::CMOV_FR64
:
7530 case X86::CMOV_V4F32
:
7531 case X86::CMOV_V2F64
:
7532 case X86::CMOV_V2I64
: {
7533 // To "insert" a SELECT_CC instruction, we actually have to insert the
7534 // diamond control-flow pattern. The incoming instruction knows the
7535 // destination vreg to set, the condition code register to branch on, the
7536 // true/false values to select between, and a branch opcode to use.
7537 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
7538 MachineFunction::iterator It
= BB
;
7544 // cmpTY ccX, r1, r2
7546 // fallthrough --> copy0MBB
7547 MachineBasicBlock
*thisMBB
= BB
;
7548 MachineFunction
*F
= BB
->getParent();
7549 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7550 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
7552 X86::GetCondBranchFromCond((X86::CondCode
)MI
->getOperand(3).getImm());
7553 BuildMI(BB
, dl
, TII
->get(Opc
)).addMBB(sinkMBB
);
7554 F
->insert(It
, copy0MBB
);
7555 F
->insert(It
, sinkMBB
);
7556 // Update machine-CFG edges by transferring all successors of the current
7557 // block to the new block which will contain the Phi node for the select.
7558 sinkMBB
->transferSuccessors(BB
);
7560 // Add the true and fallthrough blocks as its successors.
7561 BB
->addSuccessor(copy0MBB
);
7562 BB
->addSuccessor(sinkMBB
);
7565 // %FalseValue = ...
7566 // # fallthrough to sinkMBB
7569 // Update machine-CFG edges
7570 BB
->addSuccessor(sinkMBB
);
7573 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7576 BuildMI(BB
, dl
, TII
->get(X86::PHI
), MI
->getOperand(0).getReg())
7577 .addReg(MI
->getOperand(1).getReg()).addMBB(copy0MBB
)
7578 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
7580 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7584 case X86::FP32_TO_INT16_IN_MEM
:
7585 case X86::FP32_TO_INT32_IN_MEM
:
7586 case X86::FP32_TO_INT64_IN_MEM
:
7587 case X86::FP64_TO_INT16_IN_MEM
:
7588 case X86::FP64_TO_INT32_IN_MEM
:
7589 case X86::FP64_TO_INT64_IN_MEM
:
7590 case X86::FP80_TO_INT16_IN_MEM
:
7591 case X86::FP80_TO_INT32_IN_MEM
:
7592 case X86::FP80_TO_INT64_IN_MEM
: {
7593 // Change the floating point control register to use "round towards zero"
7594 // mode when truncating to an integer value.
7595 MachineFunction
*F
= BB
->getParent();
7596 int CWFrameIdx
= F
->getFrameInfo()->CreateStackObject(2, 2);
7597 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FNSTCW16m
)), CWFrameIdx
);
7599 // Load the old value of the high byte of the control word...
7601 F
->getRegInfo().createVirtualRegister(X86::GR16RegisterClass
);
7602 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16rm
), OldCW
),
7605 // Set the high part to be round to zero...
7606 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mi
)), CWFrameIdx
)
7609 // Reload the modified control word now...
7610 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7612 // Restore the memory image of control word to original value
7613 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::MOV16mr
)), CWFrameIdx
)
7616 // Get the X86 opcode to use.
7618 switch (MI
->getOpcode()) {
7619 default: llvm_unreachable("illegal opcode!");
7620 case X86::FP32_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m32
; break;
7621 case X86::FP32_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m32
; break;
7622 case X86::FP32_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m32
; break;
7623 case X86::FP64_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m64
; break;
7624 case X86::FP64_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m64
; break;
7625 case X86::FP64_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m64
; break;
7626 case X86::FP80_TO_INT16_IN_MEM
: Opc
= X86::IST_Fp16m80
; break;
7627 case X86::FP80_TO_INT32_IN_MEM
: Opc
= X86::IST_Fp32m80
; break;
7628 case X86::FP80_TO_INT64_IN_MEM
: Opc
= X86::IST_Fp64m80
; break;
7632 MachineOperand
&Op
= MI
->getOperand(0);
7634 AM
.BaseType
= X86AddressMode::RegBase
;
7635 AM
.Base
.Reg
= Op
.getReg();
7637 AM
.BaseType
= X86AddressMode::FrameIndexBase
;
7638 AM
.Base
.FrameIndex
= Op
.getIndex();
7640 Op
= MI
->getOperand(1);
7642 AM
.Scale
= Op
.getImm();
7643 Op
= MI
->getOperand(2);
7645 AM
.IndexReg
= Op
.getImm();
7646 Op
= MI
->getOperand(3);
7647 if (Op
.isGlobal()) {
7648 AM
.GV
= Op
.getGlobal();
7650 AM
.Disp
= Op
.getImm();
7652 addFullAddress(BuildMI(BB
, dl
, TII
->get(Opc
)), AM
)
7653 .addReg(MI
->getOperand(X86AddrNumOperands
).getReg());
7655 // Reload the original control word now.
7656 addFrameReference(BuildMI(BB
, dl
, TII
->get(X86::FLDCW16m
)), CWFrameIdx
);
7658 F
->DeleteMachineInstr(MI
); // The pseudo instruction is gone now.
7661 case X86::ATOMAND32
:
7662 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7663 X86::AND32ri
, X86::MOV32rm
,
7664 X86::LCMPXCHG32
, X86::MOV32rr
,
7665 X86::NOT32r
, X86::EAX
,
7666 X86::GR32RegisterClass
);
7668 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR32rr
,
7669 X86::OR32ri
, X86::MOV32rm
,
7670 X86::LCMPXCHG32
, X86::MOV32rr
,
7671 X86::NOT32r
, X86::EAX
,
7672 X86::GR32RegisterClass
);
7673 case X86::ATOMXOR32
:
7674 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR32rr
,
7675 X86::XOR32ri
, X86::MOV32rm
,
7676 X86::LCMPXCHG32
, X86::MOV32rr
,
7677 X86::NOT32r
, X86::EAX
,
7678 X86::GR32RegisterClass
);
7679 case X86::ATOMNAND32
:
7680 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND32rr
,
7681 X86::AND32ri
, X86::MOV32rm
,
7682 X86::LCMPXCHG32
, X86::MOV32rr
,
7683 X86::NOT32r
, X86::EAX
,
7684 X86::GR32RegisterClass
, true);
7685 case X86::ATOMMIN32
:
7686 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL32rr
);
7687 case X86::ATOMMAX32
:
7688 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG32rr
);
7689 case X86::ATOMUMIN32
:
7690 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB32rr
);
7691 case X86::ATOMUMAX32
:
7692 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA32rr
);
7694 case X86::ATOMAND16
:
7695 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7696 X86::AND16ri
, X86::MOV16rm
,
7697 X86::LCMPXCHG16
, X86::MOV16rr
,
7698 X86::NOT16r
, X86::AX
,
7699 X86::GR16RegisterClass
);
7701 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR16rr
,
7702 X86::OR16ri
, X86::MOV16rm
,
7703 X86::LCMPXCHG16
, X86::MOV16rr
,
7704 X86::NOT16r
, X86::AX
,
7705 X86::GR16RegisterClass
);
7706 case X86::ATOMXOR16
:
7707 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR16rr
,
7708 X86::XOR16ri
, X86::MOV16rm
,
7709 X86::LCMPXCHG16
, X86::MOV16rr
,
7710 X86::NOT16r
, X86::AX
,
7711 X86::GR16RegisterClass
);
7712 case X86::ATOMNAND16
:
7713 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND16rr
,
7714 X86::AND16ri
, X86::MOV16rm
,
7715 X86::LCMPXCHG16
, X86::MOV16rr
,
7716 X86::NOT16r
, X86::AX
,
7717 X86::GR16RegisterClass
, true);
7718 case X86::ATOMMIN16
:
7719 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL16rr
);
7720 case X86::ATOMMAX16
:
7721 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG16rr
);
7722 case X86::ATOMUMIN16
:
7723 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB16rr
);
7724 case X86::ATOMUMAX16
:
7725 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA16rr
);
7728 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7729 X86::AND8ri
, X86::MOV8rm
,
7730 X86::LCMPXCHG8
, X86::MOV8rr
,
7731 X86::NOT8r
, X86::AL
,
7732 X86::GR8RegisterClass
);
7734 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR8rr
,
7735 X86::OR8ri
, X86::MOV8rm
,
7736 X86::LCMPXCHG8
, X86::MOV8rr
,
7737 X86::NOT8r
, X86::AL
,
7738 X86::GR8RegisterClass
);
7740 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR8rr
,
7741 X86::XOR8ri
, X86::MOV8rm
,
7742 X86::LCMPXCHG8
, X86::MOV8rr
,
7743 X86::NOT8r
, X86::AL
,
7744 X86::GR8RegisterClass
);
7745 case X86::ATOMNAND8
:
7746 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND8rr
,
7747 X86::AND8ri
, X86::MOV8rm
,
7748 X86::LCMPXCHG8
, X86::MOV8rr
,
7749 X86::NOT8r
, X86::AL
,
7750 X86::GR8RegisterClass
, true);
7751 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7752 // This group is for 64-bit host.
7753 case X86::ATOMAND64
:
7754 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7755 X86::AND64ri32
, X86::MOV64rm
,
7756 X86::LCMPXCHG64
, X86::MOV64rr
,
7757 X86::NOT64r
, X86::RAX
,
7758 X86::GR64RegisterClass
);
7760 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::OR64rr
,
7761 X86::OR64ri32
, X86::MOV64rm
,
7762 X86::LCMPXCHG64
, X86::MOV64rr
,
7763 X86::NOT64r
, X86::RAX
,
7764 X86::GR64RegisterClass
);
7765 case X86::ATOMXOR64
:
7766 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::XOR64rr
,
7767 X86::XOR64ri32
, X86::MOV64rm
,
7768 X86::LCMPXCHG64
, X86::MOV64rr
,
7769 X86::NOT64r
, X86::RAX
,
7770 X86::GR64RegisterClass
);
7771 case X86::ATOMNAND64
:
7772 return EmitAtomicBitwiseWithCustomInserter(MI
, BB
, X86::AND64rr
,
7773 X86::AND64ri32
, X86::MOV64rm
,
7774 X86::LCMPXCHG64
, X86::MOV64rr
,
7775 X86::NOT64r
, X86::RAX
,
7776 X86::GR64RegisterClass
, true);
7777 case X86::ATOMMIN64
:
7778 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVL64rr
);
7779 case X86::ATOMMAX64
:
7780 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVG64rr
);
7781 case X86::ATOMUMIN64
:
7782 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVB64rr
);
7783 case X86::ATOMUMAX64
:
7784 return EmitAtomicMinMaxWithCustomInserter(MI
, BB
, X86::CMOVA64rr
);
7786 // This group does 64-bit operations on a 32-bit host.
7787 case X86::ATOMAND6432
:
7788 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7789 X86::AND32rr
, X86::AND32rr
,
7790 X86::AND32ri
, X86::AND32ri
,
7792 case X86::ATOMOR6432
:
7793 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7794 X86::OR32rr
, X86::OR32rr
,
7795 X86::OR32ri
, X86::OR32ri
,
7797 case X86::ATOMXOR6432
:
7798 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7799 X86::XOR32rr
, X86::XOR32rr
,
7800 X86::XOR32ri
, X86::XOR32ri
,
7802 case X86::ATOMNAND6432
:
7803 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7804 X86::AND32rr
, X86::AND32rr
,
7805 X86::AND32ri
, X86::AND32ri
,
7807 case X86::ATOMADD6432
:
7808 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7809 X86::ADD32rr
, X86::ADC32rr
,
7810 X86::ADD32ri
, X86::ADC32ri
,
7812 case X86::ATOMSUB6432
:
7813 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7814 X86::SUB32rr
, X86::SBB32rr
,
7815 X86::SUB32ri
, X86::SBB32ri
,
7817 case X86::ATOMSWAP6432
:
7818 return EmitAtomicBit6432WithCustomInserter(MI
, BB
,
7819 X86::MOV32rr
, X86::MOV32rr
,
7820 X86::MOV32ri
, X86::MOV32ri
,
7825 //===----------------------------------------------------------------------===//
7826 // X86 Optimization Hooks
7827 //===----------------------------------------------------------------------===//
7829 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
7833 const SelectionDAG
&DAG
,
7834 unsigned Depth
) const {
7835 unsigned Opc
= Op
.getOpcode();
7836 assert((Opc
>= ISD::BUILTIN_OP_END
||
7837 Opc
== ISD::INTRINSIC_WO_CHAIN
||
7838 Opc
== ISD::INTRINSIC_W_CHAIN
||
7839 Opc
== ISD::INTRINSIC_VOID
) &&
7840 "Should use MaskedValueIsZero if you don't know whether Op"
7841 " is a target node!");
7843 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0); // Don't know anything.
7852 // These nodes' second result is a boolean.
7853 if (Op
.getResNo() == 0)
7857 KnownZero
|= APInt::getHighBitsSet(Mask
.getBitWidth(),
7858 Mask
.getBitWidth() - 1);
7863 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7864 /// node is a GlobalAddress + offset.
7865 bool X86TargetLowering::isGAPlusOffset(SDNode
*N
,
7866 GlobalValue
* &GA
, int64_t &Offset
) const{
7867 if (N
->getOpcode() == X86ISD::Wrapper
) {
7868 if (isa
<GlobalAddressSDNode
>(N
->getOperand(0))) {
7869 GA
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getGlobal();
7870 Offset
= cast
<GlobalAddressSDNode
>(N
->getOperand(0))->getOffset();
7874 return TargetLowering::isGAPlusOffset(N
, GA
, Offset
);
7877 static bool isBaseAlignmentOfN(unsigned N
, SDNode
*Base
,
7878 const TargetLowering
&TLI
) {
7881 if (TLI
.isGAPlusOffset(Base
, GV
, Offset
))
7882 return (GV
->getAlignment() >= N
&& (Offset
% N
) == 0);
7883 // DAG combine handles the stack object case.
7887 static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode
*N
, unsigned NumElems
,
7888 MVT EVT
, LoadSDNode
*&LDBase
,
7889 unsigned &LastLoadedElt
,
7890 SelectionDAG
&DAG
, MachineFrameInfo
*MFI
,
7891 const TargetLowering
&TLI
) {
7893 LastLoadedElt
= -1U;
7894 for (unsigned i
= 0; i
< NumElems
; ++i
) {
7895 if (N
->getMaskElt(i
) < 0) {
7901 SDValue Elt
= DAG
.getShuffleScalarElt(N
, i
);
7902 if (!Elt
.getNode() ||
7903 (Elt
.getOpcode() != ISD::UNDEF
&& !ISD::isNON_EXTLoad(Elt
.getNode())))
7906 if (Elt
.getNode()->getOpcode() == ISD::UNDEF
)
7908 LDBase
= cast
<LoadSDNode
>(Elt
.getNode());
7912 if (Elt
.getOpcode() == ISD::UNDEF
)
7915 LoadSDNode
*LD
= cast
<LoadSDNode
>(Elt
);
7916 if (!TLI
.isConsecutiveLoad(LD
, LDBase
, EVT
.getSizeInBits()/8, i
, MFI
))
7923 /// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7924 /// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7925 /// if the load addresses are consecutive, non-overlapping, and in the right
7926 /// order. In the case of v2i64, it will see if it can rewrite the
7927 /// shuffle to be an appropriate build vector so it can take advantage of
7928 // performBuildVectorCombine.
7929 static SDValue
PerformShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
,
7930 const TargetLowering
&TLI
) {
7931 DebugLoc dl
= N
->getDebugLoc();
7932 MVT VT
= N
->getValueType(0);
7933 MVT EVT
= VT
.getVectorElementType();
7934 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
7935 unsigned NumElems
= VT
.getVectorNumElements();
7937 if (VT
.getSizeInBits() != 128)
7940 // Try to combine a vector_shuffle into a 128-bit load.
7941 MachineFrameInfo
*MFI
= DAG
.getMachineFunction().getFrameInfo();
7942 LoadSDNode
*LD
= NULL
;
7943 unsigned LastLoadedElt
;
7944 if (!EltsFromConsecutiveLoads(SVN
, NumElems
, EVT
, LD
, LastLoadedElt
, DAG
,
7948 if (LastLoadedElt
== NumElems
- 1) {
7949 if (isBaseAlignmentOfN(16, LD
->getBasePtr().getNode(), TLI
))
7950 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7951 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7953 return DAG
.getLoad(VT
, dl
, LD
->getChain(), LD
->getBasePtr(),
7954 LD
->getSrcValue(), LD
->getSrcValueOffset(),
7955 LD
->isVolatile(), LD
->getAlignment());
7956 } else if (NumElems
== 4 && LastLoadedElt
== 1) {
7957 SDVTList Tys
= DAG
.getVTList(MVT::v2i64
, MVT::Other
);
7958 SDValue Ops
[] = { LD
->getChain(), LD
->getBasePtr() };
7959 SDValue ResNode
= DAG
.getNode(X86ISD::VZEXT_LOAD
, dl
, Tys
, Ops
, 2);
7960 return DAG
.getNode(ISD::BIT_CONVERT
, dl
, VT
, ResNode
);
7965 /// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7966 static SDValue
PerformSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
7967 const X86Subtarget
*Subtarget
) {
7968 DebugLoc DL
= N
->getDebugLoc();
7969 SDValue Cond
= N
->getOperand(0);
7970 // Get the LHS/RHS of the select.
7971 SDValue LHS
= N
->getOperand(1);
7972 SDValue RHS
= N
->getOperand(2);
7974 // If we have SSE[12] support, try to form min/max nodes.
7975 if (Subtarget
->hasSSE2() &&
7976 (LHS
.getValueType() == MVT::f32
|| LHS
.getValueType() == MVT::f64
) &&
7977 Cond
.getOpcode() == ISD::SETCC
) {
7978 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
7980 unsigned Opcode
= 0;
7981 if (LHS
== Cond
.getOperand(0) && RHS
== Cond
.getOperand(1)) {
7984 case ISD::SETOLE
: // (X <= Y) ? X : Y -> min
7987 if (!UnsafeFPMath
) break;
7989 case ISD::SETOLT
: // (X olt/lt Y) ? X : Y -> min
7991 Opcode
= X86ISD::FMIN
;
7994 case ISD::SETOGT
: // (X > Y) ? X : Y -> max
7997 if (!UnsafeFPMath
) break;
7999 case ISD::SETUGE
: // (X uge/ge Y) ? X : Y -> max
8001 Opcode
= X86ISD::FMAX
;
8004 } else if (LHS
== Cond
.getOperand(1) && RHS
== Cond
.getOperand(0)) {
8007 case ISD::SETOGT
: // (X > Y) ? Y : X -> min
8010 if (!UnsafeFPMath
) break;
8012 case ISD::SETUGE
: // (X uge/ge Y) ? Y : X -> min
8014 Opcode
= X86ISD::FMIN
;
8017 case ISD::SETOLE
: // (X <= Y) ? Y : X -> max
8020 if (!UnsafeFPMath
) break;
8022 case ISD::SETOLT
: // (X olt/lt Y) ? Y : X -> max
8024 Opcode
= X86ISD::FMAX
;
8030 return DAG
.getNode(Opcode
, DL
, N
->getValueType(0), LHS
, RHS
);
8033 // If this is a select between two integer constants, try to do some
8035 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(LHS
)) {
8036 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(RHS
))
8037 // Don't do this for crazy integer types.
8038 if (DAG
.getTargetLoweringInfo().isTypeLegal(LHS
.getValueType())) {
8039 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8040 // so that TrueC (the true value) is larger than FalseC.
8041 bool NeedsCondInvert
= false;
8043 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue()) &&
8044 // Efficiently invertible.
8045 (Cond
.getOpcode() == ISD::SETCC
|| // setcc -> invertible.
8046 (Cond
.getOpcode() == ISD::XOR
&& // xor(X, C) -> invertible.
8047 isa
<ConstantSDNode
>(Cond
.getOperand(1))))) {
8048 NeedsCondInvert
= true;
8049 std::swap(TrueC
, FalseC
);
8052 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
8053 if (FalseC
->getAPIntValue() == 0 &&
8054 TrueC
->getAPIntValue().isPowerOf2()) {
8055 if (NeedsCondInvert
) // Invert the condition if needed.
8056 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8057 DAG
.getConstant(1, Cond
.getValueType()));
8059 // Zero extend the condition if needed.
8060 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LHS
.getValueType(), Cond
);
8062 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8063 return DAG
.getNode(ISD::SHL
, DL
, LHS
.getValueType(), Cond
,
8064 DAG
.getConstant(ShAmt
, MVT::i8
));
8067 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8068 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8069 if (NeedsCondInvert
) // Invert the condition if needed.
8070 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8071 DAG
.getConstant(1, Cond
.getValueType()));
8073 // Zero extend the condition if needed.
8074 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8075 FalseC
->getValueType(0), Cond
);
8076 return DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8077 SDValue(FalseC
, 0));
8080 // Optimize cases that will turn into an LEA instruction. This requires
8081 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8082 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8083 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8084 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8086 bool isFastMultiplier
= false;
8088 switch ((unsigned char)Diff
) {
8090 case 1: // result = add base, cond
8091 case 2: // result = lea base( , cond*2)
8092 case 3: // result = lea base(cond, cond*2)
8093 case 4: // result = lea base( , cond*4)
8094 case 5: // result = lea base(cond, cond*4)
8095 case 8: // result = lea base( , cond*8)
8096 case 9: // result = lea base(cond, cond*8)
8097 isFastMultiplier
= true;
8102 if (isFastMultiplier
) {
8103 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8104 if (NeedsCondInvert
) // Invert the condition if needed.
8105 Cond
= DAG
.getNode(ISD::XOR
, DL
, Cond
.getValueType(), Cond
,
8106 DAG
.getConstant(1, Cond
.getValueType()));
8108 // Zero extend the condition if needed.
8109 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8111 // Scale the condition by the difference.
8113 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8114 DAG
.getConstant(Diff
, Cond
.getValueType()));
8116 // Add the base if non-zero.
8117 if (FalseC
->getAPIntValue() != 0)
8118 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8119 SDValue(FalseC
, 0));
8129 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
8130 static SDValue
PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
,
8131 TargetLowering::DAGCombinerInfo
&DCI
) {
8132 DebugLoc DL
= N
->getDebugLoc();
8134 // If the flag operand isn't dead, don't touch this CMOV.
8135 if (N
->getNumValues() == 2 && !SDValue(N
, 1).use_empty())
8138 // If this is a select between two integer constants, try to do some
8139 // optimizations. Note that the operands are ordered the opposite of SELECT
8141 if (ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
8142 if (ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
8143 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
8144 // larger than FalseC (the false value).
8145 X86::CondCode CC
= (X86::CondCode
)N
->getConstantOperandVal(2);
8147 if (TrueC
->getAPIntValue().ult(FalseC
->getAPIntValue())) {
8148 CC
= X86::GetOppositeBranchCondition(CC
);
8149 std::swap(TrueC
, FalseC
);
8152 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
8153 // This is efficient for any integer data type (including i8/i16) and
8155 if (FalseC
->getAPIntValue() == 0 && TrueC
->getAPIntValue().isPowerOf2()) {
8156 SDValue Cond
= N
->getOperand(3);
8157 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8158 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8160 // Zero extend the condition if needed.
8161 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TrueC
->getValueType(0), Cond
);
8163 unsigned ShAmt
= TrueC
->getAPIntValue().logBase2();
8164 Cond
= DAG
.getNode(ISD::SHL
, DL
, Cond
.getValueType(), Cond
,
8165 DAG
.getConstant(ShAmt
, MVT::i8
));
8166 if (N
->getNumValues() == 2) // Dead flag value?
8167 return DCI
.CombineTo(N
, Cond
, SDValue());
8171 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
8172 // for any integer data type, including i8/i16.
8173 if (FalseC
->getAPIntValue()+1 == TrueC
->getAPIntValue()) {
8174 SDValue Cond
= N
->getOperand(3);
8175 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8176 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8178 // Zero extend the condition if needed.
8179 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
,
8180 FalseC
->getValueType(0), Cond
);
8181 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8182 SDValue(FalseC
, 0));
8184 if (N
->getNumValues() == 2) // Dead flag value?
8185 return DCI
.CombineTo(N
, Cond
, SDValue());
8189 // Optimize cases that will turn into an LEA instruction. This requires
8190 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8191 if (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i64
) {
8192 uint64_t Diff
= TrueC
->getZExtValue()-FalseC
->getZExtValue();
8193 if (N
->getValueType(0) == MVT::i32
) Diff
= (unsigned)Diff
;
8195 bool isFastMultiplier
= false;
8197 switch ((unsigned char)Diff
) {
8199 case 1: // result = add base, cond
8200 case 2: // result = lea base( , cond*2)
8201 case 3: // result = lea base(cond, cond*2)
8202 case 4: // result = lea base( , cond*4)
8203 case 5: // result = lea base(cond, cond*4)
8204 case 8: // result = lea base( , cond*8)
8205 case 9: // result = lea base(cond, cond*8)
8206 isFastMultiplier
= true;
8211 if (isFastMultiplier
) {
8212 APInt Diff
= TrueC
->getAPIntValue()-FalseC
->getAPIntValue();
8213 SDValue Cond
= N
->getOperand(3);
8214 Cond
= DAG
.getNode(X86ISD::SETCC
, DL
, MVT::i8
,
8215 DAG
.getConstant(CC
, MVT::i8
), Cond
);
8216 // Zero extend the condition if needed.
8217 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, FalseC
->getValueType(0),
8219 // Scale the condition by the difference.
8221 Cond
= DAG
.getNode(ISD::MUL
, DL
, Cond
.getValueType(), Cond
,
8222 DAG
.getConstant(Diff
, Cond
.getValueType()));
8224 // Add the base if non-zero.
8225 if (FalseC
->getAPIntValue() != 0)
8226 Cond
= DAG
.getNode(ISD::ADD
, DL
, Cond
.getValueType(), Cond
,
8227 SDValue(FalseC
, 0));
8228 if (N
->getNumValues() == 2) // Dead flag value?
8229 return DCI
.CombineTo(N
, Cond
, SDValue());
8239 /// PerformMulCombine - Optimize a single multiply with constant into two
8240 /// in order to implement it with two cheaper instructions, e.g.
8241 /// LEA + SHL, LEA + LEA.
8242 static SDValue
PerformMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
8243 TargetLowering::DAGCombinerInfo
&DCI
) {
8244 if (DAG
.getMachineFunction().
8245 getFunction()->hasFnAttr(Attribute::OptimizeForSize
))
8248 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
8251 MVT VT
= N
->getValueType(0);
8255 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
8258 uint64_t MulAmt
= C
->getZExtValue();
8259 if (isPowerOf2_64(MulAmt
) || MulAmt
== 3 || MulAmt
== 5 || MulAmt
== 9)
8262 uint64_t MulAmt1
= 0;
8263 uint64_t MulAmt2
= 0;
8264 if ((MulAmt
% 9) == 0) {
8266 MulAmt2
= MulAmt
/ 9;
8267 } else if ((MulAmt
% 5) == 0) {
8269 MulAmt2
= MulAmt
/ 5;
8270 } else if ((MulAmt
% 3) == 0) {
8272 MulAmt2
= MulAmt
/ 3;
8275 (isPowerOf2_64(MulAmt2
) || MulAmt2
== 3 || MulAmt2
== 5 || MulAmt2
== 9)){
8276 DebugLoc DL
= N
->getDebugLoc();
8278 if (isPowerOf2_64(MulAmt2
) &&
8279 !(N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::ADD
))
8280 // If second multiplifer is pow2, issue it first. We want the multiply by
8281 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
8283 std::swap(MulAmt1
, MulAmt2
);
8286 if (isPowerOf2_64(MulAmt1
))
8287 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
8288 DAG
.getConstant(Log2_64(MulAmt1
), MVT::i8
));
8290 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, N
->getOperand(0),
8291 DAG
.getConstant(MulAmt1
, VT
));
8293 if (isPowerOf2_64(MulAmt2
))
8294 NewMul
= DAG
.getNode(ISD::SHL
, DL
, VT
, NewMul
,
8295 DAG
.getConstant(Log2_64(MulAmt2
), MVT::i8
));
8297 NewMul
= DAG
.getNode(X86ISD::MUL_IMM
, DL
, VT
, NewMul
,
8298 DAG
.getConstant(MulAmt2
, VT
));
8300 // Do not add new nodes to DAG combiner worklist.
8301 DCI
.CombineTo(N
, NewMul
, false);
8307 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
8309 static SDValue
PerformShiftCombine(SDNode
* N
, SelectionDAG
&DAG
,
8310 const X86Subtarget
*Subtarget
) {
8311 // On X86 with SSE2 support, we can transform this to a vector shift if
8312 // all elements are shifted by the same amount. We can't do this in legalize
8313 // because the a constant vector is typically transformed to a constant pool
8314 // so we have no knowledge of the shift amount.
8315 if (!Subtarget
->hasSSE2())
8318 MVT VT
= N
->getValueType(0);
8319 if (VT
!= MVT::v2i64
&& VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
8322 SDValue ShAmtOp
= N
->getOperand(1);
8323 MVT EltVT
= VT
.getVectorElementType();
8324 DebugLoc DL
= N
->getDebugLoc();
8326 if (ShAmtOp
.getOpcode() == ISD::BUILD_VECTOR
) {
8327 unsigned NumElts
= VT
.getVectorNumElements();
8329 for (; i
!= NumElts
; ++i
) {
8330 SDValue Arg
= ShAmtOp
.getOperand(i
);
8331 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8335 for (; i
!= NumElts
; ++i
) {
8336 SDValue Arg
= ShAmtOp
.getOperand(i
);
8337 if (Arg
.getOpcode() == ISD::UNDEF
) continue;
8338 if (Arg
!= BaseShAmt
) {
8342 } else if (ShAmtOp
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
8343 cast
<ShuffleVectorSDNode
>(ShAmtOp
)->isSplat()) {
8344 BaseShAmt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, ShAmtOp
,
8345 DAG
.getIntPtrConstant(0));
8349 if (EltVT
.bitsGT(MVT::i32
))
8350 BaseShAmt
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, BaseShAmt
);
8351 else if (EltVT
.bitsLT(MVT::i32
))
8352 BaseShAmt
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, BaseShAmt
);
8354 // The shift amount is identical so we can do a vector shift.
8355 SDValue ValOp
= N
->getOperand(0);
8356 switch (N
->getOpcode()) {
8358 llvm_unreachable("Unknown shift opcode!");
8361 if (VT
== MVT::v2i64
)
8362 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8363 DAG
.getConstant(Intrinsic::x86_sse2_pslli_q
, MVT::i32
),
8365 if (VT
== MVT::v4i32
)
8366 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8367 DAG
.getConstant(Intrinsic::x86_sse2_pslli_d
, MVT::i32
),
8369 if (VT
== MVT::v8i16
)
8370 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8371 DAG
.getConstant(Intrinsic::x86_sse2_pslli_w
, MVT::i32
),
8375 if (VT
== MVT::v4i32
)
8376 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8377 DAG
.getConstant(Intrinsic::x86_sse2_psrai_d
, MVT::i32
),
8379 if (VT
== MVT::v8i16
)
8380 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8381 DAG
.getConstant(Intrinsic::x86_sse2_psrai_w
, MVT::i32
),
8385 if (VT
== MVT::v2i64
)
8386 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8387 DAG
.getConstant(Intrinsic::x86_sse2_psrli_q
, MVT::i32
),
8389 if (VT
== MVT::v4i32
)
8390 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8391 DAG
.getConstant(Intrinsic::x86_sse2_psrli_d
, MVT::i32
),
8393 if (VT
== MVT::v8i16
)
8394 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
8395 DAG
.getConstant(Intrinsic::x86_sse2_psrli_w
, MVT::i32
),
8402 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
8403 static SDValue
PerformSTORECombine(SDNode
*N
, SelectionDAG
&DAG
,
8404 const X86Subtarget
*Subtarget
) {
8405 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
8406 // the FP state in cases where an emms may be missing.
8407 // A preferable solution to the general problem is to figure out the right
8408 // places to insert EMMS. This qualifies as a quick hack.
8410 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
8411 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
8412 MVT VT
= St
->getValue().getValueType();
8413 if (VT
.getSizeInBits() != 64)
8416 const Function
*F
= DAG
.getMachineFunction().getFunction();
8417 bool NoImplicitFloatOps
= F
->hasFnAttr(Attribute::NoImplicitFloat
);
8418 bool F64IsLegal
= !UseSoftFloat
&& !NoImplicitFloatOps
8419 && Subtarget
->hasSSE2();
8420 if ((VT
.isVector() ||
8421 (VT
== MVT::i64
&& F64IsLegal
&& !Subtarget
->is64Bit())) &&
8422 isa
<LoadSDNode
>(St
->getValue()) &&
8423 !cast
<LoadSDNode
>(St
->getValue())->isVolatile() &&
8424 St
->getChain().hasOneUse() && !St
->isVolatile()) {
8425 SDNode
* LdVal
= St
->getValue().getNode();
8427 int TokenFactorIndex
= -1;
8428 SmallVector
<SDValue
, 8> Ops
;
8429 SDNode
* ChainVal
= St
->getChain().getNode();
8430 // Must be a store of a load. We currently handle two cases: the load
8431 // is a direct child, and it's under an intervening TokenFactor. It is
8432 // possible to dig deeper under nested TokenFactors.
8433 if (ChainVal
== LdVal
)
8434 Ld
= cast
<LoadSDNode
>(St
->getChain());
8435 else if (St
->getValue().hasOneUse() &&
8436 ChainVal
->getOpcode() == ISD::TokenFactor
) {
8437 for (unsigned i
=0, e
= ChainVal
->getNumOperands(); i
!= e
; ++i
) {
8438 if (ChainVal
->getOperand(i
).getNode() == LdVal
) {
8439 TokenFactorIndex
= i
;
8440 Ld
= cast
<LoadSDNode
>(St
->getValue());
8442 Ops
.push_back(ChainVal
->getOperand(i
));
8446 if (!Ld
|| !ISD::isNormalLoad(Ld
))
8449 // If this is not the MMX case, i.e. we are just turning i64 load/store
8450 // into f64 load/store, avoid the transformation if there are multiple
8451 // uses of the loaded value.
8452 if (!VT
.isVector() && !Ld
->hasNUsesOfValue(1, 0))
8455 DebugLoc LdDL
= Ld
->getDebugLoc();
8456 DebugLoc StDL
= N
->getDebugLoc();
8457 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
8458 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
8460 if (Subtarget
->is64Bit() || F64IsLegal
) {
8461 MVT LdVT
= Subtarget
->is64Bit() ? MVT::i64
: MVT::f64
;
8462 SDValue NewLd
= DAG
.getLoad(LdVT
, LdDL
, Ld
->getChain(),
8463 Ld
->getBasePtr(), Ld
->getSrcValue(),
8464 Ld
->getSrcValueOffset(), Ld
->isVolatile(),
8465 Ld
->getAlignment());
8466 SDValue NewChain
= NewLd
.getValue(1);
8467 if (TokenFactorIndex
!= -1) {
8468 Ops
.push_back(NewChain
);
8469 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8472 return DAG
.getStore(NewChain
, StDL
, NewLd
, St
->getBasePtr(),
8473 St
->getSrcValue(), St
->getSrcValueOffset(),
8474 St
->isVolatile(), St
->getAlignment());
8477 // Otherwise, lower to two pairs of 32-bit loads / stores.
8478 SDValue LoAddr
= Ld
->getBasePtr();
8479 SDValue HiAddr
= DAG
.getNode(ISD::ADD
, LdDL
, MVT::i32
, LoAddr
,
8480 DAG
.getConstant(4, MVT::i32
));
8482 SDValue LoLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), LoAddr
,
8483 Ld
->getSrcValue(), Ld
->getSrcValueOffset(),
8484 Ld
->isVolatile(), Ld
->getAlignment());
8485 SDValue HiLd
= DAG
.getLoad(MVT::i32
, LdDL
, Ld
->getChain(), HiAddr
,
8486 Ld
->getSrcValue(), Ld
->getSrcValueOffset()+4,
8488 MinAlign(Ld
->getAlignment(), 4));
8490 SDValue NewChain
= LoLd
.getValue(1);
8491 if (TokenFactorIndex
!= -1) {
8492 Ops
.push_back(LoLd
);
8493 Ops
.push_back(HiLd
);
8494 NewChain
= DAG
.getNode(ISD::TokenFactor
, LdDL
, MVT::Other
, &Ops
[0],
8498 LoAddr
= St
->getBasePtr();
8499 HiAddr
= DAG
.getNode(ISD::ADD
, StDL
, MVT::i32
, LoAddr
,
8500 DAG
.getConstant(4, MVT::i32
));
8502 SDValue LoSt
= DAG
.getStore(NewChain
, StDL
, LoLd
, LoAddr
,
8503 St
->getSrcValue(), St
->getSrcValueOffset(),
8504 St
->isVolatile(), St
->getAlignment());
8505 SDValue HiSt
= DAG
.getStore(NewChain
, StDL
, HiLd
, HiAddr
,
8507 St
->getSrcValueOffset() + 4,
8509 MinAlign(St
->getAlignment(), 4));
8510 return DAG
.getNode(ISD::TokenFactor
, StDL
, MVT::Other
, LoSt
, HiSt
);
8515 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
8516 /// X86ISD::FXOR nodes.
8517 static SDValue
PerformFORCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8518 assert(N
->getOpcode() == X86ISD::FOR
|| N
->getOpcode() == X86ISD::FXOR
);
8519 // F[X]OR(0.0, x) -> x
8520 // F[X]OR(x, 0.0) -> x
8521 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8522 if (C
->getValueAPF().isPosZero())
8523 return N
->getOperand(1);
8524 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8525 if (C
->getValueAPF().isPosZero())
8526 return N
->getOperand(0);
8530 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
8531 static SDValue
PerformFANDCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8532 // FAND(0.0, x) -> 0.0
8533 // FAND(x, 0.0) -> 0.0
8534 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
8535 if (C
->getValueAPF().isPosZero())
8536 return N
->getOperand(0);
8537 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(1)))
8538 if (C
->getValueAPF().isPosZero())
8539 return N
->getOperand(1);
8543 static SDValue
PerformBTCombine(SDNode
*N
,
8545 TargetLowering::DAGCombinerInfo
&DCI
) {
8546 // BT ignores high bits in the bit index operand.
8547 SDValue Op1
= N
->getOperand(1);
8548 if (Op1
.hasOneUse()) {
8549 unsigned BitWidth
= Op1
.getValueSizeInBits();
8550 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, Log2_32(BitWidth
));
8551 APInt KnownZero
, KnownOne
;
8552 TargetLowering::TargetLoweringOpt
TLO(DAG
);
8553 TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8554 if (TLO
.ShrinkDemandedConstant(Op1
, DemandedMask
) ||
8555 TLI
.SimplifyDemandedBits(Op1
, DemandedMask
, KnownZero
, KnownOne
, TLO
))
8556 DCI
.CommitTargetLoweringOpt(TLO
);
8561 static SDValue
PerformVZEXT_MOVLCombine(SDNode
*N
, SelectionDAG
&DAG
) {
8562 SDValue Op
= N
->getOperand(0);
8563 if (Op
.getOpcode() == ISD::BIT_CONVERT
)
8564 Op
= Op
.getOperand(0);
8565 MVT VT
= N
->getValueType(0), OpVT
= Op
.getValueType();
8566 if (Op
.getOpcode() == X86ISD::VZEXT_LOAD
&&
8567 VT
.getVectorElementType().getSizeInBits() ==
8568 OpVT
.getVectorElementType().getSizeInBits()) {
8569 return DAG
.getNode(ISD::BIT_CONVERT
, N
->getDebugLoc(), VT
, Op
);
8574 // On X86 and X86-64, atomic operations are lowered to locked instructions.
8575 // Locked instructions, in turn, have implicit fence semantics (all memory
8576 // operations are flushed before issuing the locked instruction, and the
8577 // are not buffered), so we can fold away the common pattern of
8578 // fence-atomic-fence.
8579 static SDValue
PerformMEMBARRIERCombine(SDNode
* N
, SelectionDAG
&DAG
) {
8580 SDValue atomic
= N
->getOperand(0);
8581 switch (atomic
.getOpcode()) {
8582 case ISD::ATOMIC_CMP_SWAP
:
8583 case ISD::ATOMIC_SWAP
:
8584 case ISD::ATOMIC_LOAD_ADD
:
8585 case ISD::ATOMIC_LOAD_SUB
:
8586 case ISD::ATOMIC_LOAD_AND
:
8587 case ISD::ATOMIC_LOAD_OR
:
8588 case ISD::ATOMIC_LOAD_XOR
:
8589 case ISD::ATOMIC_LOAD_NAND
:
8590 case ISD::ATOMIC_LOAD_MIN
:
8591 case ISD::ATOMIC_LOAD_MAX
:
8592 case ISD::ATOMIC_LOAD_UMIN
:
8593 case ISD::ATOMIC_LOAD_UMAX
:
8599 SDValue fence
= atomic
.getOperand(0);
8600 if (fence
.getOpcode() != ISD::MEMBARRIER
)
8603 switch (atomic
.getOpcode()) {
8604 case ISD::ATOMIC_CMP_SWAP
:
8605 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8606 atomic
.getOperand(1), atomic
.getOperand(2),
8607 atomic
.getOperand(3));
8608 case ISD::ATOMIC_SWAP
:
8609 case ISD::ATOMIC_LOAD_ADD
:
8610 case ISD::ATOMIC_LOAD_SUB
:
8611 case ISD::ATOMIC_LOAD_AND
:
8612 case ISD::ATOMIC_LOAD_OR
:
8613 case ISD::ATOMIC_LOAD_XOR
:
8614 case ISD::ATOMIC_LOAD_NAND
:
8615 case ISD::ATOMIC_LOAD_MIN
:
8616 case ISD::ATOMIC_LOAD_MAX
:
8617 case ISD::ATOMIC_LOAD_UMIN
:
8618 case ISD::ATOMIC_LOAD_UMAX
:
8619 return DAG
.UpdateNodeOperands(atomic
, fence
.getOperand(0),
8620 atomic
.getOperand(1), atomic
.getOperand(2));
8626 SDValue
X86TargetLowering::PerformDAGCombine(SDNode
*N
,
8627 DAGCombinerInfo
&DCI
) const {
8628 SelectionDAG
&DAG
= DCI
.DAG
;
8629 switch (N
->getOpcode()) {
8631 case ISD::VECTOR_SHUFFLE
: return PerformShuffleCombine(N
, DAG
, *this);
8632 case ISD::SELECT
: return PerformSELECTCombine(N
, DAG
, Subtarget
);
8633 case X86ISD::CMOV
: return PerformCMOVCombine(N
, DAG
, DCI
);
8634 case ISD::MUL
: return PerformMulCombine(N
, DAG
, DCI
);
8637 case ISD::SRL
: return PerformShiftCombine(N
, DAG
, Subtarget
);
8638 case ISD::STORE
: return PerformSTORECombine(N
, DAG
, Subtarget
);
8640 case X86ISD::FOR
: return PerformFORCombine(N
, DAG
);
8641 case X86ISD::FAND
: return PerformFANDCombine(N
, DAG
);
8642 case X86ISD::BT
: return PerformBTCombine(N
, DAG
, DCI
);
8643 case X86ISD::VZEXT_MOVL
: return PerformVZEXT_MOVLCombine(N
, DAG
);
8644 case ISD::MEMBARRIER
: return PerformMEMBARRIERCombine(N
, DAG
);
8650 //===----------------------------------------------------------------------===//
8651 // X86 Inline Assembly Support
8652 //===----------------------------------------------------------------------===//
8654 /// getConstraintType - Given a constraint letter, return the type of
8655 /// constraint it is for this target.
8656 X86TargetLowering::ConstraintType
8657 X86TargetLowering::getConstraintType(const std::string
&Constraint
) const {
8658 if (Constraint
.size() == 1) {
8659 switch (Constraint
[0]) {
8671 return C_RegisterClass
;
8679 return TargetLowering::getConstraintType(Constraint
);
8682 /// LowerXConstraint - try to replace an X constraint, which matches anything,
8683 /// with another that has more specific requirements based on the type of the
8684 /// corresponding operand.
8685 const char *X86TargetLowering::
8686 LowerXConstraint(MVT ConstraintVT
) const {
8687 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
8688 // 'f' like normal targets.
8689 if (ConstraintVT
.isFloatingPoint()) {
8690 if (Subtarget
->hasSSE2())
8692 if (Subtarget
->hasSSE1())
8696 return TargetLowering::LowerXConstraint(ConstraintVT
);
8699 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8700 /// vector. If it is invalid, don't add anything to Ops.
8701 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
8704 std::vector
<SDValue
>&Ops
,
8705 SelectionDAG
&DAG
) const {
8706 SDValue
Result(0, 0);
8708 switch (Constraint
) {
8711 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8712 if (C
->getZExtValue() <= 31) {
8713 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8719 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8720 if (C
->getZExtValue() <= 63) {
8721 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8727 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8728 if ((int8_t)C
->getSExtValue() == C
->getSExtValue()) {
8729 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8735 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8736 if (C
->getZExtValue() <= 255) {
8737 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8743 // 32-bit signed value
8744 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8745 const ConstantInt
*CI
= C
->getConstantIntValue();
8746 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getSExtValue())) {
8747 // Widen to 64 bits here to get it sign extended.
8748 Result
= DAG
.getTargetConstant(C
->getSExtValue(), MVT::i64
);
8751 // FIXME gcc accepts some relocatable values here too, but only in certain
8752 // memory models; it's complicated.
8757 // 32-bit unsigned value
8758 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
8759 const ConstantInt
*CI
= C
->getConstantIntValue();
8760 if (CI
->isValueValidForType(Type::Int32Ty
, C
->getZExtValue())) {
8761 Result
= DAG
.getTargetConstant(C
->getZExtValue(), Op
.getValueType());
8765 // FIXME gcc accepts some relocatable values here too, but only in certain
8766 // memory models; it's complicated.
8770 // Literal immediates are always ok.
8771 if (ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
)) {
8772 // Widen to 64 bits here to get it sign extended.
8773 Result
= DAG
.getTargetConstant(CST
->getSExtValue(), MVT::i64
);
8777 // If we are in non-pic codegen mode, we allow the address of a global (with
8778 // an optional displacement) to be used with 'i'.
8779 GlobalAddressSDNode
*GA
= 0;
8782 // Match either (GA), (GA+C), (GA+C1+C2), etc.
8784 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
))) {
8785 Offset
+= GA
->getOffset();
8787 } else if (Op
.getOpcode() == ISD::ADD
) {
8788 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8789 Offset
+= C
->getZExtValue();
8790 Op
= Op
.getOperand(0);
8793 } else if (Op
.getOpcode() == ISD::SUB
) {
8794 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
8795 Offset
+= -C
->getZExtValue();
8796 Op
= Op
.getOperand(0);
8801 // Otherwise, this isn't something we can handle, reject it.
8805 GlobalValue
*GV
= GA
->getGlobal();
8806 // If we require an extra load to get this address, as in PIC mode, we
8808 if (isGlobalStubReference(Subtarget
->ClassifyGlobalReference(GV
,
8809 getTargetMachine())))
8813 Op
= LowerGlobalAddress(GV
, Op
.getDebugLoc(), Offset
, DAG
);
8815 Op
= DAG
.getTargetGlobalAddress(GV
, GA
->getValueType(0), Offset
);
8821 if (Result
.getNode()) {
8822 Ops
.push_back(Result
);
8825 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, hasMemory
,
8829 std::vector
<unsigned> X86TargetLowering::
8830 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
8832 if (Constraint
.size() == 1) {
8833 // FIXME: not handling fp-stack yet!
8834 switch (Constraint
[0]) { // GCC X86 Constraint Letters
8835 default: break; // Unknown constraint letter
8836 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
8839 return make_vector
<unsigned>(X86::EAX
, X86::EDX
, X86::ECX
, X86::EBX
, 0);
8840 else if (VT
== MVT::i16
)
8841 return make_vector
<unsigned>(X86::AX
, X86::DX
, X86::CX
, X86::BX
, 0);
8842 else if (VT
== MVT::i8
)
8843 return make_vector
<unsigned>(X86::AL
, X86::DL
, X86::CL
, X86::BL
, 0);
8844 else if (VT
== MVT::i64
)
8845 return make_vector
<unsigned>(X86::RAX
, X86::RDX
, X86::RCX
, X86::RBX
, 0);
8850 return std::vector
<unsigned>();
8853 std::pair
<unsigned, const TargetRegisterClass
*>
8854 X86TargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
8856 // First, see if this is a constraint that directly corresponds to an LLVM
8858 if (Constraint
.size() == 1) {
8859 // GCC Constraint Letters
8860 switch (Constraint
[0]) {
8862 case 'r': // GENERAL_REGS
8863 case 'R': // LEGACY_REGS
8864 case 'l': // INDEX_REGS
8866 return std::make_pair(0U, X86::GR8RegisterClass
);
8868 return std::make_pair(0U, X86::GR16RegisterClass
);
8869 if (VT
== MVT::i32
|| !Subtarget
->is64Bit())
8870 return std::make_pair(0U, X86::GR32RegisterClass
);
8871 return std::make_pair(0U, X86::GR64RegisterClass
);
8872 case 'f': // FP Stack registers.
8873 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
8874 // value to the correct fpstack register class.
8875 if (VT
== MVT::f32
&& !isScalarFPTypeInSSEReg(VT
))
8876 return std::make_pair(0U, X86::RFP32RegisterClass
);
8877 if (VT
== MVT::f64
&& !isScalarFPTypeInSSEReg(VT
))
8878 return std::make_pair(0U, X86::RFP64RegisterClass
);
8879 return std::make_pair(0U, X86::RFP80RegisterClass
);
8880 case 'y': // MMX_REGS if MMX allowed.
8881 if (!Subtarget
->hasMMX()) break;
8882 return std::make_pair(0U, X86::VR64RegisterClass
);
8883 case 'Y': // SSE_REGS if SSE2 allowed
8884 if (!Subtarget
->hasSSE2()) break;
8886 case 'x': // SSE_REGS if SSE1 allowed
8887 if (!Subtarget
->hasSSE1()) break;
8889 switch (VT
.getSimpleVT()) {
8891 // Scalar SSE types.
8894 return std::make_pair(0U, X86::FR32RegisterClass
);
8897 return std::make_pair(0U, X86::FR64RegisterClass
);
8905 return std::make_pair(0U, X86::VR128RegisterClass
);
8911 // Use the default implementation in TargetLowering to convert the register
8912 // constraint into a member of a register class.
8913 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
8914 Res
= TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
8916 // Not found as a standard register?
8917 if (Res
.second
== 0) {
8918 // GCC calls "st(0)" just plain "st".
8919 if (StringsEqualNoCase("{st}", Constraint
)) {
8920 Res
.first
= X86::ST0
;
8921 Res
.second
= X86::RFP80RegisterClass
;
8923 // 'A' means EAX + EDX.
8924 if (Constraint
== "A") {
8925 Res
.first
= X86::EAX
;
8926 Res
.second
= X86::GRADRegisterClass
;
8931 // Otherwise, check to see if this is a register class of the wrong value
8932 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
8933 // turn into {ax},{dx}.
8934 if (Res
.second
->hasType(VT
))
8935 return Res
; // Correct type already, nothing to do.
8937 // All of the single-register GCC register classes map their values onto
8938 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
8939 // really want an 8-bit or 32-bit register, map to the appropriate register
8940 // class and return the appropriate register.
8941 if (Res
.second
== X86::GR16RegisterClass
) {
8942 if (VT
== MVT::i8
) {
8943 unsigned DestReg
= 0;
8944 switch (Res
.first
) {
8946 case X86::AX
: DestReg
= X86::AL
; break;
8947 case X86::DX
: DestReg
= X86::DL
; break;
8948 case X86::CX
: DestReg
= X86::CL
; break;
8949 case X86::BX
: DestReg
= X86::BL
; break;
8952 Res
.first
= DestReg
;
8953 Res
.second
= X86::GR8RegisterClass
;
8955 } else if (VT
== MVT::i32
) {
8956 unsigned DestReg
= 0;
8957 switch (Res
.first
) {
8959 case X86::AX
: DestReg
= X86::EAX
; break;
8960 case X86::DX
: DestReg
= X86::EDX
; break;
8961 case X86::CX
: DestReg
= X86::ECX
; break;
8962 case X86::BX
: DestReg
= X86::EBX
; break;
8963 case X86::SI
: DestReg
= X86::ESI
; break;
8964 case X86::DI
: DestReg
= X86::EDI
; break;
8965 case X86::BP
: DestReg
= X86::EBP
; break;
8966 case X86::SP
: DestReg
= X86::ESP
; break;
8969 Res
.first
= DestReg
;
8970 Res
.second
= X86::GR32RegisterClass
;
8972 } else if (VT
== MVT::i64
) {
8973 unsigned DestReg
= 0;
8974 switch (Res
.first
) {
8976 case X86::AX
: DestReg
= X86::RAX
; break;
8977 case X86::DX
: DestReg
= X86::RDX
; break;
8978 case X86::CX
: DestReg
= X86::RCX
; break;
8979 case X86::BX
: DestReg
= X86::RBX
; break;
8980 case X86::SI
: DestReg
= X86::RSI
; break;
8981 case X86::DI
: DestReg
= X86::RDI
; break;
8982 case X86::BP
: DestReg
= X86::RBP
; break;
8983 case X86::SP
: DestReg
= X86::RSP
; break;
8986 Res
.first
= DestReg
;
8987 Res
.second
= X86::GR64RegisterClass
;
8990 } else if (Res
.second
== X86::FR32RegisterClass
||
8991 Res
.second
== X86::FR64RegisterClass
||
8992 Res
.second
== X86::VR128RegisterClass
) {
8993 // Handle references to XMM physical registers that got mapped into the
8994 // wrong class. This can happen with constraints like {xmm0} where the
8995 // target independent register mapper will just pick the first match it can
8996 // find, ignoring the required type.
8998 Res
.second
= X86::FR32RegisterClass
;
8999 else if (VT
== MVT::f64
)
9000 Res
.second
= X86::FR64RegisterClass
;
9001 else if (X86::VR128RegisterClass
->hasType(VT
))
9002 Res
.second
= X86::VR128RegisterClass
;
9008 //===----------------------------------------------------------------------===//
9009 // X86 Widen vector type
9010 //===----------------------------------------------------------------------===//
9012 /// getWidenVectorType: given a vector type, returns the type to widen
9013 /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
9014 /// If there is no vector type that we want to widen to, returns MVT::Other
9015 /// When and where to widen is target dependent based on the cost of
9016 /// scalarizing vs using the wider vector type.
9018 MVT
X86TargetLowering::getWidenVectorType(MVT VT
) const {
9019 assert(VT
.isVector());
9020 if (isTypeLegal(VT
))
9023 // TODO: In computeRegisterProperty, we can compute the list of legal vector
9024 // type based on element type. This would speed up our search (though
9025 // it may not be worth it since the size of the list is relatively
9027 MVT EltVT
= VT
.getVectorElementType();
9028 unsigned NElts
= VT
.getVectorNumElements();
9030 // On X86, it make sense to widen any vector wider than 1
9034 for (unsigned nVT
= MVT::FIRST_VECTOR_VALUETYPE
;
9035 nVT
<= MVT::LAST_VECTOR_VALUETYPE
; ++nVT
) {
9036 MVT SVT
= (MVT::SimpleValueType
)nVT
;
9038 if (isTypeLegal(SVT
) &&
9039 SVT
.getVectorElementType() == EltVT
&&
9040 SVT
.getVectorNumElements() > NElts
)