1 //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * All other things that are tested by asserts spread about the code...
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Analysis/Verifier.h"
43 #include "llvm/CallingConv.h"
44 #include "llvm/Constants.h"
45 #include "llvm/DerivedTypes.h"
46 #include "llvm/InlineAsm.h"
47 #include "llvm/IntrinsicInst.h"
48 #include "llvm/Metadata.h"
49 #include "llvm/Module.h"
50 #include "llvm/Pass.h"
51 #include "llvm/PassManager.h"
52 #include "llvm/TypeSymbolTable.h"
53 #include "llvm/Analysis/Dominators.h"
54 #include "llvm/Assembly/Writer.h"
55 #include "llvm/CodeGen/ValueTypes.h"
56 #include "llvm/Support/CallSite.h"
57 #include "llvm/Support/CFG.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/InstVisitor.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallPtrSet.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/StringExtras.h"
64 #include "llvm/ADT/STLExtras.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
71 namespace { // Anonymous namespace for class
72 struct PreVerifier
: public FunctionPass
{
73 static char ID
; // Pass ID, replacement for typeid
75 PreVerifier() : FunctionPass(ID
) {
76 initializePreVerifierPass(*PassRegistry::getPassRegistry());
79 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
83 // Check that the prerequisites for successful DominatorTree construction
85 bool runOnFunction(Function
&F
) {
88 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
89 if (I
->empty() || !I
->back().isTerminator()) {
90 dbgs() << "Basic Block in function '" << F
.getName()
91 << "' does not have terminator!\n";
92 WriteAsOperand(dbgs(), I
, true);
99 report_fatal_error("Broken module, no Basic Block terminator!");
106 char PreVerifier::ID
= 0;
107 INITIALIZE_PASS(PreVerifier
, "preverify", "Preliminary module verification",
109 static char &PreVerifyID
= PreVerifier::ID
;
112 class TypeSet
: public AbstractTypeUser
{
116 /// Insert a type into the set of types.
117 bool insert(const Type
*Ty
) {
118 if (!Types
.insert(Ty
))
120 if (Ty
->isAbstract())
121 Ty
->addAbstractTypeUser(this);
125 // Remove ourselves as abstract type listeners for any types that remain
126 // abstract when the TypeSet is destroyed.
128 for (SmallSetVector
<const Type
*, 16>::iterator I
= Types
.begin(),
129 E
= Types
.end(); I
!= E
; ++I
) {
131 if (Ty
->isAbstract())
132 Ty
->removeAbstractTypeUser(this);
136 // Abstract type user interface.
138 /// Remove types from the set when refined. Do not insert the type it was
139 /// refined to because that type hasn't been verified yet.
140 void refineAbstractType(const DerivedType
*OldTy
, const Type
*NewTy
) {
142 OldTy
->removeAbstractTypeUser(this);
145 /// Stop listening for changes to a type which is no longer abstract.
146 void typeBecameConcrete(const DerivedType
*AbsTy
) {
147 AbsTy
->removeAbstractTypeUser(this);
153 SmallSetVector
<const Type
*, 16> Types
;
156 TypeSet(const TypeSet
&);
157 TypeSet
&operator=(const TypeSet
&);
160 struct Verifier
: public FunctionPass
, public InstVisitor
<Verifier
> {
161 static char ID
; // Pass ID, replacement for typeid
162 bool Broken
; // Is this module found to be broken?
163 bool RealPass
; // Are we not being run by a PassManager?
164 VerifierFailureAction action
;
165 // What to do if verification fails.
166 Module
*Mod
; // Module we are verifying right now
167 LLVMContext
*Context
; // Context within which we are verifying
168 DominatorTree
*DT
; // Dominator Tree, caution can be null!
170 std::string Messages
;
171 raw_string_ostream MessagesStr
;
173 /// InstInThisBlock - when verifying a basic block, keep track of all of the
174 /// instructions we have seen so far. This allows us to do efficient
175 /// dominance checks for the case when an instruction has an operand that is
176 /// an instruction in the same block.
177 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
179 /// Types - keep track of the types that have been checked already.
182 /// MDNodes - keep track of the metadata nodes that have been checked
184 SmallPtrSet
<MDNode
*, 32> MDNodes
;
188 Broken(false), RealPass(true), action(AbortProcessAction
),
189 Mod(0), Context(0), DT(0), MessagesStr(Messages
) {
190 initializeVerifierPass(*PassRegistry::getPassRegistry());
192 explicit Verifier(VerifierFailureAction ctn
)
194 Broken(false), RealPass(true), action(ctn
), Mod(0), Context(0), DT(0),
195 MessagesStr(Messages
) {
196 initializeVerifierPass(*PassRegistry::getPassRegistry());
199 bool doInitialization(Module
&M
) {
201 Context
= &M
.getContext();
202 verifyTypeSymbolTable(M
.getTypeSymbolTable());
204 // If this is a real pass, in a pass manager, we must abort before
205 // returning back to the pass manager, or else the pass manager may try to
206 // run other passes on the broken module.
208 return abortIfBroken();
212 bool runOnFunction(Function
&F
) {
213 // Get dominator information if we are being run by PassManager
214 if (RealPass
) DT
= &getAnalysis
<DominatorTree
>();
217 if (!Context
) Context
= &F
.getContext();
220 InstsInThisBlock
.clear();
222 // If this is a real pass, in a pass manager, we must abort before
223 // returning back to the pass manager, or else the pass manager may try to
224 // run other passes on the broken module.
226 return abortIfBroken();
231 bool doFinalization(Module
&M
) {
232 // Scan through, checking all of the external function's linkage now...
233 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
234 visitGlobalValue(*I
);
236 // Check to make sure function prototypes are okay.
237 if (I
->isDeclaration()) visitFunction(*I
);
240 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
242 visitGlobalVariable(*I
);
244 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
246 visitGlobalAlias(*I
);
248 for (Module::named_metadata_iterator I
= M
.named_metadata_begin(),
249 E
= M
.named_metadata_end(); I
!= E
; ++I
)
250 visitNamedMDNode(*I
);
252 // If the module is broken, abort at this time.
253 return abortIfBroken();
256 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
257 AU
.setPreservesAll();
258 AU
.addRequiredID(PreVerifyID
);
260 AU
.addRequired
<DominatorTree
>();
263 /// abortIfBroken - If the module is broken and we are supposed to abort on
264 /// this condition, do so.
266 bool abortIfBroken() {
267 if (!Broken
) return false;
268 MessagesStr
<< "Broken module found, ";
270 default: llvm_unreachable("Unknown action");
271 case AbortProcessAction
:
272 MessagesStr
<< "compilation aborted!\n";
273 dbgs() << MessagesStr
.str();
274 // Client should choose different reaction if abort is not desired
276 case PrintMessageAction
:
277 MessagesStr
<< "verification continues.\n";
278 dbgs() << MessagesStr
.str();
280 case ReturnStatusAction
:
281 MessagesStr
<< "compilation terminated.\n";
287 // Verification methods...
288 void verifyTypeSymbolTable(TypeSymbolTable
&ST
);
289 void visitGlobalValue(GlobalValue
&GV
);
290 void visitGlobalVariable(GlobalVariable
&GV
);
291 void visitGlobalAlias(GlobalAlias
&GA
);
292 void visitNamedMDNode(NamedMDNode
&NMD
);
293 void visitMDNode(MDNode
&MD
, Function
*F
);
294 void visitFunction(Function
&F
);
295 void visitBasicBlock(BasicBlock
&BB
);
296 using InstVisitor
<Verifier
>::visit
;
298 void visit(Instruction
&I
);
300 void visitTruncInst(TruncInst
&I
);
301 void visitZExtInst(ZExtInst
&I
);
302 void visitSExtInst(SExtInst
&I
);
303 void visitFPTruncInst(FPTruncInst
&I
);
304 void visitFPExtInst(FPExtInst
&I
);
305 void visitFPToUIInst(FPToUIInst
&I
);
306 void visitFPToSIInst(FPToSIInst
&I
);
307 void visitUIToFPInst(UIToFPInst
&I
);
308 void visitSIToFPInst(SIToFPInst
&I
);
309 void visitIntToPtrInst(IntToPtrInst
&I
);
310 void visitPtrToIntInst(PtrToIntInst
&I
);
311 void visitBitCastInst(BitCastInst
&I
);
312 void visitPHINode(PHINode
&PN
);
313 void visitBinaryOperator(BinaryOperator
&B
);
314 void visitICmpInst(ICmpInst
&IC
);
315 void visitFCmpInst(FCmpInst
&FC
);
316 void visitExtractElementInst(ExtractElementInst
&EI
);
317 void visitInsertElementInst(InsertElementInst
&EI
);
318 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
319 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
320 void visitCallInst(CallInst
&CI
);
321 void visitInvokeInst(InvokeInst
&II
);
322 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
323 void visitLoadInst(LoadInst
&LI
);
324 void visitStoreInst(StoreInst
&SI
);
325 void visitInstruction(Instruction
&I
);
326 void visitTerminatorInst(TerminatorInst
&I
);
327 void visitBranchInst(BranchInst
&BI
);
328 void visitReturnInst(ReturnInst
&RI
);
329 void visitSwitchInst(SwitchInst
&SI
);
330 void visitIndirectBrInst(IndirectBrInst
&BI
);
331 void visitSelectInst(SelectInst
&SI
);
332 void visitUserOp1(Instruction
&I
);
333 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
334 void visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
);
335 void visitAllocaInst(AllocaInst
&AI
);
336 void visitExtractValueInst(ExtractValueInst
&EVI
);
337 void visitInsertValueInst(InsertValueInst
&IVI
);
339 void VerifyCallSite(CallSite CS
);
340 bool PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
341 int VT
, unsigned ArgNo
, std::string
&Suffix
);
342 void VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
343 unsigned RetNum
, unsigned ParamNum
, ...);
344 void VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
345 bool isReturnValue
, const Value
*V
);
346 void VerifyFunctionAttrs(const FunctionType
*FT
, const AttrListPtr
&Attrs
,
348 void VerifyType(const Type
*Ty
);
350 void WriteValue(const Value
*V
) {
352 if (isa
<Instruction
>(V
)) {
353 MessagesStr
<< *V
<< '\n';
355 WriteAsOperand(MessagesStr
, V
, true, Mod
);
360 void WriteType(const Type
*T
) {
363 WriteTypeSymbolic(MessagesStr
, T
, Mod
);
367 // CheckFailed - A check failed, so print out the condition and the message
368 // that failed. This provides a nice place to put a breakpoint if you want
369 // to see why something is not correct.
370 void CheckFailed(const Twine
&Message
,
371 const Value
*V1
= 0, const Value
*V2
= 0,
372 const Value
*V3
= 0, const Value
*V4
= 0) {
373 MessagesStr
<< Message
.str() << "\n";
381 void CheckFailed(const Twine
&Message
, const Value
*V1
,
382 const Type
*T2
, const Value
*V3
= 0) {
383 MessagesStr
<< Message
.str() << "\n";
390 void CheckFailed(const Twine
&Message
, const Type
*T1
,
391 const Type
*T2
= 0, const Type
*T3
= 0) {
392 MessagesStr
<< Message
.str() << "\n";
399 } // End anonymous namespace
401 char Verifier::ID
= 0;
402 INITIALIZE_PASS_BEGIN(Verifier
, "verify", "Module Verifier", false, false)
403 INITIALIZE_PASS_DEPENDENCY(PreVerifier
)
404 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
405 INITIALIZE_PASS_END(Verifier
, "verify", "Module Verifier", false, false)
407 // Assert - We know that cond should be true, if not print an error message.
408 #define Assert(C, M) \
409 do { if (!(C)) { CheckFailed(M); return; } } while (0)
410 #define Assert1(C, M, V1) \
411 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
412 #define Assert2(C, M, V1, V2) \
413 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
414 #define Assert3(C, M, V1, V2, V3) \
415 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
416 #define Assert4(C, M, V1, V2, V3, V4) \
417 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
419 void Verifier::visit(Instruction
&I
) {
420 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
421 Assert1(I
.getOperand(i
) != 0, "Operand is null", &I
);
422 InstVisitor
<Verifier
>::visit(I
);
426 void Verifier::visitGlobalValue(GlobalValue
&GV
) {
427 Assert1(!GV
.isDeclaration() ||
428 GV
.isMaterializable() ||
429 GV
.hasExternalLinkage() ||
430 GV
.hasDLLImportLinkage() ||
431 GV
.hasExternalWeakLinkage() ||
432 (isa
<GlobalAlias
>(GV
) &&
433 (GV
.hasLocalLinkage() || GV
.hasWeakLinkage())),
434 "Global is external, but doesn't have external or dllimport or weak linkage!",
437 Assert1(!GV
.hasDLLImportLinkage() || GV
.isDeclaration(),
438 "Global is marked as dllimport, but not external", &GV
);
440 Assert1(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
441 "Only global variables can have appending linkage!", &GV
);
443 if (GV
.hasAppendingLinkage()) {
444 GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
445 Assert1(GVar
&& GVar
->getType()->getElementType()->isArrayTy(),
446 "Only global arrays can have appending linkage!", GVar
);
449 Assert1(!GV
.hasLinkerPrivateWeakDefAutoLinkage() || GV
.hasDefaultVisibility(),
450 "linker_private_weak_def_auto can only have default visibility!",
454 void Verifier::visitGlobalVariable(GlobalVariable
&GV
) {
455 if (GV
.hasInitializer()) {
456 Assert1(GV
.getInitializer()->getType() == GV
.getType()->getElementType(),
457 "Global variable initializer type does not match global "
458 "variable type!", &GV
);
460 // If the global has common linkage, it must have a zero initializer and
461 // cannot be constant.
462 if (GV
.hasCommonLinkage()) {
463 Assert1(GV
.getInitializer()->isNullValue(),
464 "'common' global must have a zero initializer!", &GV
);
465 Assert1(!GV
.isConstant(), "'common' global may not be marked constant!",
469 Assert1(GV
.hasExternalLinkage() || GV
.hasDLLImportLinkage() ||
470 GV
.hasExternalWeakLinkage(),
471 "invalid linkage type for global declaration", &GV
);
474 visitGlobalValue(GV
);
477 void Verifier::visitGlobalAlias(GlobalAlias
&GA
) {
478 Assert1(!GA
.getName().empty(),
479 "Alias name cannot be empty!", &GA
);
480 Assert1(GA
.hasExternalLinkage() || GA
.hasLocalLinkage() ||
482 "Alias should have external or external weak linkage!", &GA
);
483 Assert1(GA
.getAliasee(),
484 "Aliasee cannot be NULL!", &GA
);
485 Assert1(GA
.getType() == GA
.getAliasee()->getType(),
486 "Alias and aliasee types should match!", &GA
);
488 if (!isa
<GlobalValue
>(GA
.getAliasee())) {
489 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GA
.getAliasee());
491 (CE
->getOpcode() == Instruction::BitCast
||
492 CE
->getOpcode() == Instruction::GetElementPtr
) &&
493 isa
<GlobalValue
>(CE
->getOperand(0)),
494 "Aliasee should be either GlobalValue or bitcast of GlobalValue",
498 const GlobalValue
* Aliasee
= GA
.resolveAliasedGlobal(/*stopOnWeak*/ false);
500 "Aliasing chain should end with function or global variable", &GA
);
502 visitGlobalValue(GA
);
505 void Verifier::visitNamedMDNode(NamedMDNode
&NMD
) {
506 for (unsigned i
= 0, e
= NMD
.getNumOperands(); i
!= e
; ++i
) {
507 MDNode
*MD
= NMD
.getOperand(i
);
511 Assert1(!MD
->isFunctionLocal(),
512 "Named metadata operand cannot be function local!", MD
);
517 void Verifier::visitMDNode(MDNode
&MD
, Function
*F
) {
518 // Only visit each node once. Metadata can be mutually recursive, so this
519 // avoids infinite recursion here, as well as being an optimization.
520 if (!MDNodes
.insert(&MD
))
523 for (unsigned i
= 0, e
= MD
.getNumOperands(); i
!= e
; ++i
) {
524 Value
*Op
= MD
.getOperand(i
);
527 if (isa
<Constant
>(Op
) || isa
<MDString
>(Op
))
529 if (MDNode
*N
= dyn_cast
<MDNode
>(Op
)) {
530 Assert2(MD
.isFunctionLocal() || !N
->isFunctionLocal(),
531 "Global metadata operand cannot be function local!", &MD
, N
);
535 Assert2(MD
.isFunctionLocal(), "Invalid operand for global metadata!", &MD
, Op
);
537 // If this was an instruction, bb, or argument, verify that it is in the
538 // function that we expect.
539 Function
*ActualF
= 0;
540 if (Instruction
*I
= dyn_cast
<Instruction
>(Op
))
541 ActualF
= I
->getParent()->getParent();
542 else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(Op
))
543 ActualF
= BB
->getParent();
544 else if (Argument
*A
= dyn_cast
<Argument
>(Op
))
545 ActualF
= A
->getParent();
546 assert(ActualF
&& "Unimplemented function local metadata case!");
548 Assert2(ActualF
== F
, "function-local metadata used in wrong function",
553 void Verifier::verifyTypeSymbolTable(TypeSymbolTable
&ST
) {
554 for (TypeSymbolTable::iterator I
= ST
.begin(), E
= ST
.end(); I
!= E
; ++I
)
555 VerifyType(I
->second
);
558 // VerifyParameterAttrs - Check the given attributes for an argument or return
559 // value of the specified type. The value V is printed in error messages.
560 void Verifier::VerifyParameterAttrs(Attributes Attrs
, const Type
*Ty
,
561 bool isReturnValue
, const Value
*V
) {
562 if (Attrs
== Attribute::None
)
565 Attributes FnCheckAttr
= Attrs
& Attribute::FunctionOnly
;
566 Assert1(!FnCheckAttr
, "Attribute " + Attribute::getAsString(FnCheckAttr
) +
567 " only applies to the function!", V
);
570 Attributes RetI
= Attrs
& Attribute::ParameterOnly
;
571 Assert1(!RetI
, "Attribute " + Attribute::getAsString(RetI
) +
572 " does not apply to return values!", V
);
576 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
577 Attributes MutI
= Attrs
& Attribute::MutuallyIncompatible
[i
];
578 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
579 Attribute::getAsString(MutI
) + " are incompatible!", V
);
582 Attributes TypeI
= Attrs
& Attribute::typeIncompatible(Ty
);
583 Assert1(!TypeI
, "Wrong type for attribute " +
584 Attribute::getAsString(TypeI
), V
);
586 Attributes ByValI
= Attrs
& Attribute::ByVal
;
587 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
588 Assert1(!ByValI
|| PTy
->getElementType()->isSized(),
589 "Attribute " + Attribute::getAsString(ByValI
) +
590 " does not support unsized types!", V
);
593 "Attribute " + Attribute::getAsString(ByValI
) +
594 " only applies to parameters with pointer type!", V
);
598 // VerifyFunctionAttrs - Check parameter attributes against a function type.
599 // The value V is printed in error messages.
600 void Verifier::VerifyFunctionAttrs(const FunctionType
*FT
,
601 const AttrListPtr
&Attrs
,
606 bool SawNest
= false;
608 for (unsigned i
= 0, e
= Attrs
.getNumSlots(); i
!= e
; ++i
) {
609 const AttributeWithIndex
&Attr
= Attrs
.getSlot(i
);
613 Ty
= FT
->getReturnType();
614 else if (Attr
.Index
-1 < FT
->getNumParams())
615 Ty
= FT
->getParamType(Attr
.Index
-1);
617 break; // VarArgs attributes, verified elsewhere.
619 VerifyParameterAttrs(Attr
.Attrs
, Ty
, Attr
.Index
== 0, V
);
621 if (Attr
.Attrs
& Attribute::Nest
) {
622 Assert1(!SawNest
, "More than one parameter has attribute nest!", V
);
626 if (Attr
.Attrs
& Attribute::StructRet
)
627 Assert1(Attr
.Index
== 1, "Attribute sret not on first parameter!", V
);
630 Attributes FAttrs
= Attrs
.getFnAttributes();
631 Attributes NotFn
= FAttrs
& (~Attribute::FunctionOnly
);
632 Assert1(!NotFn
, "Attribute " + Attribute::getAsString(NotFn
) +
633 " does not apply to the function!", V
);
636 i
< array_lengthof(Attribute::MutuallyIncompatible
); ++i
) {
637 Attributes MutI
= FAttrs
& Attribute::MutuallyIncompatible
[i
];
638 Assert1(!(MutI
& (MutI
- 1)), "Attributes " +
639 Attribute::getAsString(MutI
) + " are incompatible!", V
);
643 static bool VerifyAttributeCount(const AttrListPtr
&Attrs
, unsigned Params
) {
647 unsigned LastSlot
= Attrs
.getNumSlots() - 1;
648 unsigned LastIndex
= Attrs
.getSlot(LastSlot
).Index
;
649 if (LastIndex
<= Params
650 || (LastIndex
== (unsigned)~0
651 && (LastSlot
== 0 || Attrs
.getSlot(LastSlot
- 1).Index
<= Params
)))
657 // visitFunction - Verify that a function is ok.
659 void Verifier::visitFunction(Function
&F
) {
660 // Check function arguments.
661 const FunctionType
*FT
= F
.getFunctionType();
662 unsigned NumArgs
= F
.arg_size();
664 Assert1(Context
== &F
.getContext(),
665 "Function context does not match Module context!", &F
);
667 Assert1(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
668 Assert2(FT
->getNumParams() == NumArgs
,
669 "# formal arguments must match # of arguments for function type!",
671 Assert1(F
.getReturnType()->isFirstClassType() ||
672 F
.getReturnType()->isVoidTy() ||
673 F
.getReturnType()->isStructTy(),
674 "Functions cannot return aggregate values!", &F
);
676 Assert1(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
677 "Invalid struct return type!", &F
);
679 const AttrListPtr
&Attrs
= F
.getAttributes();
681 Assert1(VerifyAttributeCount(Attrs
, FT
->getNumParams()),
682 "Attributes after last parameter!", &F
);
684 // Check function attributes.
685 VerifyFunctionAttrs(FT
, Attrs
, &F
);
687 // Check that this function meets the restrictions on this calling convention.
688 switch (F
.getCallingConv()) {
693 case CallingConv::Fast
:
694 case CallingConv::Cold
:
695 case CallingConv::X86_FastCall
:
696 case CallingConv::X86_ThisCall
:
697 case CallingConv::PTX_Kernel
:
698 case CallingConv::PTX_Device
:
699 Assert1(!F
.isVarArg(),
700 "Varargs functions must have C calling conventions!", &F
);
704 bool isLLVMdotName
= F
.getName().size() >= 5 &&
705 F
.getName().substr(0, 5) == "llvm.";
707 // Check that the argument values match the function type for this function...
709 for (Function::arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
711 Assert2(I
->getType() == FT
->getParamType(i
),
712 "Argument value does not match function argument type!",
713 I
, FT
->getParamType(i
));
714 Assert1(I
->getType()->isFirstClassType(),
715 "Function arguments must have first-class types!", I
);
717 Assert2(!I
->getType()->isMetadataTy(),
718 "Function takes metadata but isn't an intrinsic", I
, &F
);
721 if (F
.isMaterializable()) {
722 // Function has a body somewhere we can't see.
723 } else if (F
.isDeclaration()) {
724 Assert1(F
.hasExternalLinkage() || F
.hasDLLImportLinkage() ||
725 F
.hasExternalWeakLinkage(),
726 "invalid linkage type for function declaration", &F
);
728 // Verify that this function (which has a body) is not named "llvm.*". It
729 // is not legal to define intrinsics.
730 Assert1(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
732 // Check the entry node
733 BasicBlock
*Entry
= &F
.getEntryBlock();
734 Assert1(pred_begin(Entry
) == pred_end(Entry
),
735 "Entry block to function must not have predecessors!", Entry
);
737 // The address of the entry block cannot be taken, unless it is dead.
738 if (Entry
->hasAddressTaken()) {
739 Assert1(!BlockAddress::get(Entry
)->isConstantUsed(),
740 "blockaddress may not be used with the entry block!", Entry
);
744 // If this function is actually an intrinsic, verify that it is only used in
745 // direct call/invokes, never having its "address taken".
746 if (F
.getIntrinsicID()) {
748 if (F
.hasAddressTaken(&U
))
749 Assert1(0, "Invalid user of intrinsic instruction!", U
);
753 // verifyBasicBlock - Verify that a basic block is well formed...
755 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
756 InstsInThisBlock
.clear();
758 // Ensure that basic blocks have terminators!
759 Assert1(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
761 // Check constraints that this basic block imposes on all of the PHI nodes in
763 if (isa
<PHINode
>(BB
.front())) {
764 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
765 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
766 std::sort(Preds
.begin(), Preds
.end());
768 for (BasicBlock::iterator I
= BB
.begin(); (PN
= dyn_cast
<PHINode
>(I
));++I
) {
769 // Ensure that PHI nodes have at least one entry!
770 Assert1(PN
->getNumIncomingValues() != 0,
771 "PHI nodes must have at least one entry. If the block is dead, "
772 "the PHI should be removed!", PN
);
773 Assert1(PN
->getNumIncomingValues() == Preds
.size(),
774 "PHINode should have one entry for each predecessor of its "
775 "parent basic block!", PN
);
777 // Get and sort all incoming values in the PHI node...
779 Values
.reserve(PN
->getNumIncomingValues());
780 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
781 Values
.push_back(std::make_pair(PN
->getIncomingBlock(i
),
782 PN
->getIncomingValue(i
)));
783 std::sort(Values
.begin(), Values
.end());
785 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
786 // Check to make sure that if there is more than one entry for a
787 // particular basic block in this PHI node, that the incoming values are
790 Assert4(i
== 0 || Values
[i
].first
!= Values
[i
-1].first
||
791 Values
[i
].second
== Values
[i
-1].second
,
792 "PHI node has multiple entries for the same basic block with "
793 "different incoming values!", PN
, Values
[i
].first
,
794 Values
[i
].second
, Values
[i
-1].second
);
796 // Check to make sure that the predecessors and PHI node entries are
798 Assert3(Values
[i
].first
== Preds
[i
],
799 "PHI node entries do not match predecessors!", PN
,
800 Values
[i
].first
, Preds
[i
]);
806 void Verifier::visitTerminatorInst(TerminatorInst
&I
) {
807 // Ensure that terminators only exist at the end of the basic block.
808 Assert1(&I
== I
.getParent()->getTerminator(),
809 "Terminator found in the middle of a basic block!", I
.getParent());
813 void Verifier::visitBranchInst(BranchInst
&BI
) {
814 if (BI
.isConditional()) {
815 Assert2(BI
.getCondition()->getType()->isIntegerTy(1),
816 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
818 visitTerminatorInst(BI
);
821 void Verifier::visitReturnInst(ReturnInst
&RI
) {
822 Function
*F
= RI
.getParent()->getParent();
823 unsigned N
= RI
.getNumOperands();
824 if (F
->getReturnType()->isVoidTy())
826 "Found return instr that returns non-void in Function of void "
827 "return type!", &RI
, F
->getReturnType());
828 else if (N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType()) {
829 // Exactly one return value and it matches the return type. Good.
830 } else if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
831 // The return type is a struct; check for multiple return values.
832 Assert2(STy
->getNumElements() == N
,
833 "Incorrect number of return values in ret instruction!",
834 &RI
, F
->getReturnType());
835 for (unsigned i
= 0; i
!= N
; ++i
)
836 Assert2(STy
->getElementType(i
) == RI
.getOperand(i
)->getType(),
837 "Function return type does not match operand "
838 "type of return inst!", &RI
, F
->getReturnType());
839 } else if (const ArrayType
*ATy
= dyn_cast
<ArrayType
>(F
->getReturnType())) {
840 // The return type is an array; check for multiple return values.
841 Assert2(ATy
->getNumElements() == N
,
842 "Incorrect number of return values in ret instruction!",
843 &RI
, F
->getReturnType());
844 for (unsigned i
= 0; i
!= N
; ++i
)
845 Assert2(ATy
->getElementType() == RI
.getOperand(i
)->getType(),
846 "Function return type does not match operand "
847 "type of return inst!", &RI
, F
->getReturnType());
849 CheckFailed("Function return type does not match operand "
850 "type of return inst!", &RI
, F
->getReturnType());
853 // Check to make sure that the return value has necessary properties for
855 visitTerminatorInst(RI
);
858 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
859 // Check to make sure that all of the constants in the switch instruction
860 // have the same type as the switched-on value.
861 const Type
*SwitchTy
= SI
.getCondition()->getType();
862 SmallPtrSet
<ConstantInt
*, 32> Constants
;
863 for (unsigned i
= 1, e
= SI
.getNumCases(); i
!= e
; ++i
) {
864 Assert1(SI
.getCaseValue(i
)->getType() == SwitchTy
,
865 "Switch constants must all be same type as switch value!", &SI
);
866 Assert2(Constants
.insert(SI
.getCaseValue(i
)),
867 "Duplicate integer as switch case", &SI
, SI
.getCaseValue(i
));
870 visitTerminatorInst(SI
);
873 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
874 Assert1(BI
.getAddress()->getType()->isPointerTy(),
875 "Indirectbr operand must have pointer type!", &BI
);
876 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
877 Assert1(BI
.getDestination(i
)->getType()->isLabelTy(),
878 "Indirectbr destinations must all have pointer type!", &BI
);
880 visitTerminatorInst(BI
);
883 void Verifier::visitSelectInst(SelectInst
&SI
) {
884 Assert1(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
886 "Invalid operands for select instruction!", &SI
);
888 Assert1(SI
.getTrueValue()->getType() == SI
.getType(),
889 "Select values must have same type as select instruction!", &SI
);
890 visitInstruction(SI
);
893 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
894 /// a pass, if any exist, it's an error.
896 void Verifier::visitUserOp1(Instruction
&I
) {
897 Assert1(0, "User-defined operators should not live outside of a pass!", &I
);
900 void Verifier::visitTruncInst(TruncInst
&I
) {
901 // Get the source and destination types
902 const Type
*SrcTy
= I
.getOperand(0)->getType();
903 const Type
*DestTy
= I
.getType();
905 // Get the size of the types in bits, we'll need this later
906 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
907 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
909 Assert1(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
910 Assert1(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
911 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
912 "trunc source and destination must both be a vector or neither", &I
);
913 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for Trunc", &I
);
918 void Verifier::visitZExtInst(ZExtInst
&I
) {
919 // Get the source and destination types
920 const Type
*SrcTy
= I
.getOperand(0)->getType();
921 const Type
*DestTy
= I
.getType();
923 // Get the size of the types in bits, we'll need this later
924 Assert1(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
925 Assert1(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
926 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
927 "zext source and destination must both be a vector or neither", &I
);
928 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
929 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
931 Assert1(SrcBitSize
< DestBitSize
,"Type too small for ZExt", &I
);
936 void Verifier::visitSExtInst(SExtInst
&I
) {
937 // Get the source and destination types
938 const Type
*SrcTy
= I
.getOperand(0)->getType();
939 const Type
*DestTy
= I
.getType();
941 // Get the size of the types in bits, we'll need this later
942 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
943 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
945 Assert1(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
946 Assert1(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
947 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
948 "sext source and destination must both be a vector or neither", &I
);
949 Assert1(SrcBitSize
< DestBitSize
,"Type too small for SExt", &I
);
954 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
955 // Get the source and destination types
956 const Type
*SrcTy
= I
.getOperand(0)->getType();
957 const Type
*DestTy
= I
.getType();
958 // Get the size of the types in bits, we'll need this later
959 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
960 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
962 Assert1(SrcTy
->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I
);
963 Assert1(DestTy
->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I
);
964 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
965 "fptrunc source and destination must both be a vector or neither",&I
);
966 Assert1(SrcBitSize
> DestBitSize
,"DestTy too big for FPTrunc", &I
);
971 void Verifier::visitFPExtInst(FPExtInst
&I
) {
972 // Get the source and destination types
973 const Type
*SrcTy
= I
.getOperand(0)->getType();
974 const Type
*DestTy
= I
.getType();
976 // Get the size of the types in bits, we'll need this later
977 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
978 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
980 Assert1(SrcTy
->isFPOrFPVectorTy(),"FPExt only operates on FP", &I
);
981 Assert1(DestTy
->isFPOrFPVectorTy(),"FPExt only produces an FP", &I
);
982 Assert1(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
983 "fpext source and destination must both be a vector or neither", &I
);
984 Assert1(SrcBitSize
< DestBitSize
,"DestTy too small for FPExt", &I
);
989 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
990 // Get the source and destination types
991 const Type
*SrcTy
= I
.getOperand(0)->getType();
992 const Type
*DestTy
= I
.getType();
994 bool SrcVec
= SrcTy
->isVectorTy();
995 bool DstVec
= DestTy
->isVectorTy();
997 Assert1(SrcVec
== DstVec
,
998 "UIToFP source and dest must both be vector or scalar", &I
);
999 Assert1(SrcTy
->isIntOrIntVectorTy(),
1000 "UIToFP source must be integer or integer vector", &I
);
1001 Assert1(DestTy
->isFPOrFPVectorTy(),
1002 "UIToFP result must be FP or FP vector", &I
);
1004 if (SrcVec
&& DstVec
)
1005 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1006 cast
<VectorType
>(DestTy
)->getNumElements(),
1007 "UIToFP source and dest vector length mismatch", &I
);
1009 visitInstruction(I
);
1012 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
1013 // Get the source and destination types
1014 const Type
*SrcTy
= I
.getOperand(0)->getType();
1015 const Type
*DestTy
= I
.getType();
1017 bool SrcVec
= SrcTy
->isVectorTy();
1018 bool DstVec
= DestTy
->isVectorTy();
1020 Assert1(SrcVec
== DstVec
,
1021 "SIToFP source and dest must both be vector or scalar", &I
);
1022 Assert1(SrcTy
->isIntOrIntVectorTy(),
1023 "SIToFP source must be integer or integer vector", &I
);
1024 Assert1(DestTy
->isFPOrFPVectorTy(),
1025 "SIToFP result must be FP or FP vector", &I
);
1027 if (SrcVec
&& DstVec
)
1028 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1029 cast
<VectorType
>(DestTy
)->getNumElements(),
1030 "SIToFP source and dest vector length mismatch", &I
);
1032 visitInstruction(I
);
1035 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
1036 // Get the source and destination types
1037 const Type
*SrcTy
= I
.getOperand(0)->getType();
1038 const Type
*DestTy
= I
.getType();
1040 bool SrcVec
= SrcTy
->isVectorTy();
1041 bool DstVec
= DestTy
->isVectorTy();
1043 Assert1(SrcVec
== DstVec
,
1044 "FPToUI source and dest must both be vector or scalar", &I
);
1045 Assert1(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1047 Assert1(DestTy
->isIntOrIntVectorTy(),
1048 "FPToUI result must be integer or integer vector", &I
);
1050 if (SrcVec
&& DstVec
)
1051 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1052 cast
<VectorType
>(DestTy
)->getNumElements(),
1053 "FPToUI source and dest vector length mismatch", &I
);
1055 visitInstruction(I
);
1058 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
1059 // Get the source and destination types
1060 const Type
*SrcTy
= I
.getOperand(0)->getType();
1061 const Type
*DestTy
= I
.getType();
1063 bool SrcVec
= SrcTy
->isVectorTy();
1064 bool DstVec
= DestTy
->isVectorTy();
1066 Assert1(SrcVec
== DstVec
,
1067 "FPToSI source and dest must both be vector or scalar", &I
);
1068 Assert1(SrcTy
->isFPOrFPVectorTy(),
1069 "FPToSI source must be FP or FP vector", &I
);
1070 Assert1(DestTy
->isIntOrIntVectorTy(),
1071 "FPToSI result must be integer or integer vector", &I
);
1073 if (SrcVec
&& DstVec
)
1074 Assert1(cast
<VectorType
>(SrcTy
)->getNumElements() ==
1075 cast
<VectorType
>(DestTy
)->getNumElements(),
1076 "FPToSI source and dest vector length mismatch", &I
);
1078 visitInstruction(I
);
1081 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
1082 // Get the source and destination types
1083 const Type
*SrcTy
= I
.getOperand(0)->getType();
1084 const Type
*DestTy
= I
.getType();
1086 Assert1(SrcTy
->isPointerTy(), "PtrToInt source must be pointer", &I
);
1087 Assert1(DestTy
->isIntegerTy(), "PtrToInt result must be integral", &I
);
1089 visitInstruction(I
);
1092 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
1093 // Get the source and destination types
1094 const Type
*SrcTy
= I
.getOperand(0)->getType();
1095 const Type
*DestTy
= I
.getType();
1097 Assert1(SrcTy
->isIntegerTy(), "IntToPtr source must be an integral", &I
);
1098 Assert1(DestTy
->isPointerTy(), "IntToPtr result must be a pointer",&I
);
1100 visitInstruction(I
);
1103 void Verifier::visitBitCastInst(BitCastInst
&I
) {
1104 // Get the source and destination types
1105 const Type
*SrcTy
= I
.getOperand(0)->getType();
1106 const Type
*DestTy
= I
.getType();
1108 // Get the size of the types in bits, we'll need this later
1109 unsigned SrcBitSize
= SrcTy
->getPrimitiveSizeInBits();
1110 unsigned DestBitSize
= DestTy
->getPrimitiveSizeInBits();
1112 // BitCast implies a no-op cast of type only. No bits change.
1113 // However, you can't cast pointers to anything but pointers.
1114 Assert1(DestTy
->isPointerTy() == DestTy
->isPointerTy(),
1115 "Bitcast requires both operands to be pointer or neither", &I
);
1116 Assert1(SrcBitSize
== DestBitSize
, "Bitcast requires types of same width",&I
);
1118 // Disallow aggregates.
1119 Assert1(!SrcTy
->isAggregateType(),
1120 "Bitcast operand must not be aggregate", &I
);
1121 Assert1(!DestTy
->isAggregateType(),
1122 "Bitcast type must not be aggregate", &I
);
1124 visitInstruction(I
);
1127 /// visitPHINode - Ensure that a PHI node is well formed.
1129 void Verifier::visitPHINode(PHINode
&PN
) {
1130 // Ensure that the PHI nodes are all grouped together at the top of the block.
1131 // This can be tested by checking whether the instruction before this is
1132 // either nonexistent (because this is begin()) or is a PHI node. If not,
1133 // then there is some other instruction before a PHI.
1134 Assert2(&PN
== &PN
.getParent()->front() ||
1135 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
1136 "PHI nodes not grouped at top of basic block!",
1137 &PN
, PN
.getParent());
1139 // Check that all of the values of the PHI node have the same type as the
1140 // result, and that the incoming blocks are really basic blocks.
1141 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
1142 Assert1(PN
.getType() == PN
.getIncomingValue(i
)->getType(),
1143 "PHI node operands are not the same type as the result!", &PN
);
1144 Assert1(isa
<BasicBlock
>(PN
.getOperand(
1145 PHINode::getOperandNumForIncomingBlock(i
))),
1146 "PHI node incoming block is not a BasicBlock!", &PN
);
1149 // All other PHI node constraints are checked in the visitBasicBlock method.
1151 visitInstruction(PN
);
1154 void Verifier::VerifyCallSite(CallSite CS
) {
1155 Instruction
*I
= CS
.getInstruction();
1157 Assert1(CS
.getCalledValue()->getType()->isPointerTy(),
1158 "Called function must be a pointer!", I
);
1159 const PointerType
*FPTy
= cast
<PointerType
>(CS
.getCalledValue()->getType());
1161 Assert1(FPTy
->getElementType()->isFunctionTy(),
1162 "Called function is not pointer to function type!", I
);
1163 const FunctionType
*FTy
= cast
<FunctionType
>(FPTy
->getElementType());
1165 // Verify that the correct number of arguments are being passed
1166 if (FTy
->isVarArg())
1167 Assert1(CS
.arg_size() >= FTy
->getNumParams(),
1168 "Called function requires more parameters than were provided!",I
);
1170 Assert1(CS
.arg_size() == FTy
->getNumParams(),
1171 "Incorrect number of arguments passed to called function!", I
);
1173 // Verify that all arguments to the call match the function type.
1174 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1175 Assert3(CS
.getArgument(i
)->getType() == FTy
->getParamType(i
),
1176 "Call parameter type does not match function signature!",
1177 CS
.getArgument(i
), FTy
->getParamType(i
), I
);
1179 const AttrListPtr
&Attrs
= CS
.getAttributes();
1181 Assert1(VerifyAttributeCount(Attrs
, CS
.arg_size()),
1182 "Attributes after last parameter!", I
);
1184 // Verify call attributes.
1185 VerifyFunctionAttrs(FTy
, Attrs
, I
);
1187 if (FTy
->isVarArg())
1188 // Check attributes on the varargs part.
1189 for (unsigned Idx
= 1 + FTy
->getNumParams(); Idx
<= CS
.arg_size(); ++Idx
) {
1190 Attributes Attr
= Attrs
.getParamAttributes(Idx
);
1192 VerifyParameterAttrs(Attr
, CS
.getArgument(Idx
-1)->getType(), false, I
);
1194 Attributes VArgI
= Attr
& Attribute::VarArgsIncompatible
;
1195 Assert1(!VArgI
, "Attribute " + Attribute::getAsString(VArgI
) +
1196 " cannot be used for vararg call arguments!", I
);
1199 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1200 if (!CS
.getCalledFunction() ||
1201 !CS
.getCalledFunction()->getName().startswith("llvm.")) {
1202 for (FunctionType::param_iterator PI
= FTy
->param_begin(),
1203 PE
= FTy
->param_end(); PI
!= PE
; ++PI
)
1204 Assert1(!PI
->get()->isMetadataTy(),
1205 "Function has metadata parameter but isn't an intrinsic", I
);
1208 visitInstruction(*I
);
1211 void Verifier::visitCallInst(CallInst
&CI
) {
1212 VerifyCallSite(&CI
);
1214 if (Function
*F
= CI
.getCalledFunction())
1215 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
1216 visitIntrinsicFunctionCall(ID
, CI
);
1219 void Verifier::visitInvokeInst(InvokeInst
&II
) {
1220 VerifyCallSite(&II
);
1221 visitTerminatorInst(II
);
1224 /// visitBinaryOperator - Check that both arguments to the binary operator are
1225 /// of the same type!
1227 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
1228 Assert1(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
1229 "Both operands to a binary operator are not of the same type!", &B
);
1231 switch (B
.getOpcode()) {
1232 // Check that integer arithmetic operators are only used with
1233 // integral operands.
1234 case Instruction::Add
:
1235 case Instruction::Sub
:
1236 case Instruction::Mul
:
1237 case Instruction::SDiv
:
1238 case Instruction::UDiv
:
1239 case Instruction::SRem
:
1240 case Instruction::URem
:
1241 Assert1(B
.getType()->isIntOrIntVectorTy(),
1242 "Integer arithmetic operators only work with integral types!", &B
);
1243 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1244 "Integer arithmetic operators must have same type "
1245 "for operands and result!", &B
);
1247 // Check that floating-point arithmetic operators are only used with
1248 // floating-point operands.
1249 case Instruction::FAdd
:
1250 case Instruction::FSub
:
1251 case Instruction::FMul
:
1252 case Instruction::FDiv
:
1253 case Instruction::FRem
:
1254 Assert1(B
.getType()->isFPOrFPVectorTy(),
1255 "Floating-point arithmetic operators only work with "
1256 "floating-point types!", &B
);
1257 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1258 "Floating-point arithmetic operators must have same type "
1259 "for operands and result!", &B
);
1261 // Check that logical operators are only used with integral operands.
1262 case Instruction::And
:
1263 case Instruction::Or
:
1264 case Instruction::Xor
:
1265 Assert1(B
.getType()->isIntOrIntVectorTy(),
1266 "Logical operators only work with integral types!", &B
);
1267 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1268 "Logical operators must have same type for operands and result!",
1271 case Instruction::Shl
:
1272 case Instruction::LShr
:
1273 case Instruction::AShr
:
1274 Assert1(B
.getType()->isIntOrIntVectorTy(),
1275 "Shifts only work with integral types!", &B
);
1276 Assert1(B
.getType() == B
.getOperand(0)->getType(),
1277 "Shift return type must be same as operands!", &B
);
1280 llvm_unreachable("Unknown BinaryOperator opcode!");
1283 visitInstruction(B
);
1286 void Verifier::visitICmpInst(ICmpInst
&IC
) {
1287 // Check that the operands are the same type
1288 const Type
*Op0Ty
= IC
.getOperand(0)->getType();
1289 const Type
*Op1Ty
= IC
.getOperand(1)->getType();
1290 Assert1(Op0Ty
== Op1Ty
,
1291 "Both operands to ICmp instruction are not of the same type!", &IC
);
1292 // Check that the operands are the right type
1293 Assert1(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPointerTy(),
1294 "Invalid operand types for ICmp instruction", &IC
);
1295 // Check that the predicate is valid.
1296 Assert1(IC
.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE
&&
1297 IC
.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE
,
1298 "Invalid predicate in ICmp instruction!", &IC
);
1300 visitInstruction(IC
);
1303 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
1304 // Check that the operands are the same type
1305 const Type
*Op0Ty
= FC
.getOperand(0)->getType();
1306 const Type
*Op1Ty
= FC
.getOperand(1)->getType();
1307 Assert1(Op0Ty
== Op1Ty
,
1308 "Both operands to FCmp instruction are not of the same type!", &FC
);
1309 // Check that the operands are the right type
1310 Assert1(Op0Ty
->isFPOrFPVectorTy(),
1311 "Invalid operand types for FCmp instruction", &FC
);
1312 // Check that the predicate is valid.
1313 Assert1(FC
.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE
&&
1314 FC
.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE
,
1315 "Invalid predicate in FCmp instruction!", &FC
);
1317 visitInstruction(FC
);
1320 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
1321 Assert1(ExtractElementInst::isValidOperands(EI
.getOperand(0),
1323 "Invalid extractelement operands!", &EI
);
1324 visitInstruction(EI
);
1327 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
1328 Assert1(InsertElementInst::isValidOperands(IE
.getOperand(0),
1331 "Invalid insertelement operands!", &IE
);
1332 visitInstruction(IE
);
1335 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
1336 Assert1(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
1338 "Invalid shufflevector operands!", &SV
);
1339 visitInstruction(SV
);
1342 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
1343 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
1345 GetElementPtrInst::getIndexedType(GEP
.getOperand(0)->getType(),
1346 Idxs
.begin(), Idxs
.end());
1347 Assert1(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
1348 Assert2(GEP
.getType()->isPointerTy() &&
1349 cast
<PointerType
>(GEP
.getType())->getElementType() == ElTy
,
1350 "GEP is not of right type for indices!", &GEP
, ElTy
);
1351 visitInstruction(GEP
);
1354 void Verifier::visitLoadInst(LoadInst
&LI
) {
1355 const PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
1356 Assert1(PTy
, "Load operand must be a pointer.", &LI
);
1357 const Type
*ElTy
= PTy
->getElementType();
1358 Assert2(ElTy
== LI
.getType(),
1359 "Load result type does not match pointer operand type!", &LI
, ElTy
);
1360 visitInstruction(LI
);
1363 void Verifier::visitStoreInst(StoreInst
&SI
) {
1364 const PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
1365 Assert1(PTy
, "Store operand must be a pointer.", &SI
);
1366 const Type
*ElTy
= PTy
->getElementType();
1367 Assert2(ElTy
== SI
.getOperand(0)->getType(),
1368 "Stored value type does not match pointer operand type!",
1370 visitInstruction(SI
);
1373 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
1374 const PointerType
*PTy
= AI
.getType();
1375 Assert1(PTy
->getAddressSpace() == 0,
1376 "Allocation instruction pointer not in the generic address space!",
1378 Assert1(PTy
->getElementType()->isSized(), "Cannot allocate unsized type",
1380 Assert1(AI
.getArraySize()->getType()->isIntegerTy(),
1381 "Alloca array size must have integer type", &AI
);
1382 visitInstruction(AI
);
1385 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
1386 Assert1(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
1387 EVI
.idx_begin(), EVI
.idx_end()) ==
1389 "Invalid ExtractValueInst operands!", &EVI
);
1391 visitInstruction(EVI
);
1394 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
1395 Assert1(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
1396 IVI
.idx_begin(), IVI
.idx_end()) ==
1397 IVI
.getOperand(1)->getType(),
1398 "Invalid InsertValueInst operands!", &IVI
);
1400 visitInstruction(IVI
);
1403 /// verifyInstruction - Verify that an instruction is well formed.
1405 void Verifier::visitInstruction(Instruction
&I
) {
1406 BasicBlock
*BB
= I
.getParent();
1407 Assert1(BB
, "Instruction not embedded in basic block!", &I
);
1409 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
1410 for (Value::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1412 Assert1(*UI
!= (User
*)&I
|| !DT
->isReachableFromEntry(BB
),
1413 "Only PHI nodes may reference their own value!", &I
);
1416 // Check that void typed values don't have names
1417 Assert1(!I
.getType()->isVoidTy() || !I
.hasName(),
1418 "Instruction has a name, but provides a void value!", &I
);
1420 // Check that the return value of the instruction is either void or a legal
1422 Assert1(I
.getType()->isVoidTy() ||
1423 I
.getType()->isFirstClassType(),
1424 "Instruction returns a non-scalar type!", &I
);
1426 // Check that the instruction doesn't produce metadata. Calls are already
1427 // checked against the callee type.
1428 Assert1(!I
.getType()->isMetadataTy() ||
1429 isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
1430 "Invalid use of metadata!", &I
);
1432 // Check that all uses of the instruction, if they are instructions
1433 // themselves, actually have parent basic blocks. If the use is not an
1434 // instruction, it is an error!
1435 for (User::use_iterator UI
= I
.use_begin(), UE
= I
.use_end();
1437 if (Instruction
*Used
= dyn_cast
<Instruction
>(*UI
))
1438 Assert2(Used
->getParent() != 0, "Instruction referencing instruction not"
1439 " embedded in a basic block!", &I
, Used
);
1441 CheckFailed("Use of instruction is not an instruction!", *UI
);
1446 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1447 Assert1(I
.getOperand(i
) != 0, "Instruction has null operand!", &I
);
1449 // Check to make sure that only first-class-values are operands to
1451 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
1452 Assert1(0, "Instruction operands must be first-class values!", &I
);
1455 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
1456 // Check to make sure that the "address of" an intrinsic function is never
1458 Assert1(!F
->isIntrinsic() || (i
+ 1 == e
&& isa
<CallInst
>(I
)),
1459 "Cannot take the address of an intrinsic!", &I
);
1460 Assert1(F
->getParent() == Mod
, "Referencing function in another module!",
1462 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
1463 Assert1(OpBB
->getParent() == BB
->getParent(),
1464 "Referring to a basic block in another function!", &I
);
1465 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
1466 Assert1(OpArg
->getParent() == BB
->getParent(),
1467 "Referring to an argument in another function!", &I
);
1468 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
1469 Assert1(GV
->getParent() == Mod
, "Referencing global in another module!",
1471 } else if (Instruction
*Op
= dyn_cast
<Instruction
>(I
.getOperand(i
))) {
1472 BasicBlock
*OpBlock
= Op
->getParent();
1474 // Check that a definition dominates all of its uses.
1475 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
1476 // Invoke results are only usable in the normal destination, not in the
1477 // exceptional destination.
1478 BasicBlock
*NormalDest
= II
->getNormalDest();
1480 Assert2(NormalDest
!= II
->getUnwindDest(),
1481 "No uses of invoke possible due to dominance structure!",
1484 // PHI nodes differ from other nodes because they actually "use" the
1485 // value in the predecessor basic blocks they correspond to.
1486 BasicBlock
*UseBlock
= BB
;
1487 if (isa
<PHINode
>(I
))
1488 UseBlock
= dyn_cast
<BasicBlock
>(I
.getOperand(i
+1));
1489 Assert2(UseBlock
, "Invoke operand is PHI node with bad incoming-BB",
1492 if (isa
<PHINode
>(I
) && UseBlock
== OpBlock
) {
1493 // Special case of a phi node in the normal destination or the unwind
1495 Assert2(BB
== NormalDest
|| !DT
->isReachableFromEntry(UseBlock
),
1496 "Invoke result not available in the unwind destination!",
1499 Assert2(DT
->dominates(NormalDest
, UseBlock
) ||
1500 !DT
->isReachableFromEntry(UseBlock
),
1501 "Invoke result does not dominate all uses!", Op
, &I
);
1503 // If the normal successor of an invoke instruction has multiple
1504 // predecessors, then the normal edge from the invoke is critical,
1505 // so the invoke value can only be live if the destination block
1506 // dominates all of it's predecessors (other than the invoke).
1507 if (!NormalDest
->getSinglePredecessor() &&
1508 DT
->isReachableFromEntry(UseBlock
))
1509 // If it is used by something non-phi, then the other case is that
1510 // 'NormalDest' dominates all of its predecessors other than the
1511 // invoke. In this case, the invoke value can still be used.
1512 for (pred_iterator PI
= pred_begin(NormalDest
),
1513 E
= pred_end(NormalDest
); PI
!= E
; ++PI
)
1514 if (*PI
!= II
->getParent() && !DT
->dominates(NormalDest
, *PI
) &&
1515 DT
->isReachableFromEntry(*PI
)) {
1516 CheckFailed("Invoke result does not dominate all uses!", Op
,&I
);
1520 } else if (isa
<PHINode
>(I
)) {
1521 // PHI nodes are more difficult than other nodes because they actually
1522 // "use" the value in the predecessor basic blocks they correspond to.
1523 BasicBlock
*PredBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
+1));
1524 Assert2(PredBB
&& (DT
->dominates(OpBlock
, PredBB
) ||
1525 !DT
->isReachableFromEntry(PredBB
)),
1526 "Instruction does not dominate all uses!", Op
, &I
);
1528 if (OpBlock
== BB
) {
1529 // If they are in the same basic block, make sure that the definition
1530 // comes before the use.
1531 Assert2(InstsInThisBlock
.count(Op
) || !DT
->isReachableFromEntry(BB
),
1532 "Instruction does not dominate all uses!", Op
, &I
);
1535 // Definition must dominate use unless use is unreachable!
1536 Assert2(InstsInThisBlock
.count(Op
) || DT
->dominates(Op
, &I
) ||
1537 !DT
->isReachableFromEntry(BB
),
1538 "Instruction does not dominate all uses!", Op
, &I
);
1540 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
1541 Assert1((i
+ 1 == e
&& isa
<CallInst
>(I
)) ||
1542 (i
+ 3 == e
&& isa
<InvokeInst
>(I
)),
1543 "Cannot take the address of an inline asm!", &I
);
1546 InstsInThisBlock
.insert(&I
);
1548 VerifyType(I
.getType());
1551 /// VerifyType - Verify that a type is well formed.
1553 void Verifier::VerifyType(const Type
*Ty
) {
1554 if (!Types
.insert(Ty
)) return;
1556 Assert1(Context
== &Ty
->getContext(),
1557 "Type context does not match Module context!", Ty
);
1559 switch (Ty
->getTypeID()) {
1560 case Type::FunctionTyID
: {
1561 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
1563 const Type
*RetTy
= FTy
->getReturnType();
1564 Assert2(FunctionType::isValidReturnType(RetTy
),
1565 "Function type with invalid return type", RetTy
, FTy
);
1568 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
1569 const Type
*ElTy
= FTy
->getParamType(i
);
1570 Assert2(FunctionType::isValidArgumentType(ElTy
),
1571 "Function type with invalid parameter type", ElTy
, FTy
);
1576 case Type::StructTyID
: {
1577 const StructType
*STy
= cast
<StructType
>(Ty
);
1578 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1579 const Type
*ElTy
= STy
->getElementType(i
);
1580 Assert2(StructType::isValidElementType(ElTy
),
1581 "Structure type with invalid element type", ElTy
, STy
);
1586 case Type::ArrayTyID
: {
1587 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
1588 Assert1(ArrayType::isValidElementType(ATy
->getElementType()),
1589 "Array type with invalid element type", ATy
);
1590 VerifyType(ATy
->getElementType());
1593 case Type::PointerTyID
: {
1594 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
1595 Assert1(PointerType::isValidElementType(PTy
->getElementType()),
1596 "Pointer type with invalid element type", PTy
);
1597 VerifyType(PTy
->getElementType());
1600 case Type::VectorTyID
: {
1601 const VectorType
*VTy
= cast
<VectorType
>(Ty
);
1602 Assert1(VectorType::isValidElementType(VTy
->getElementType()),
1603 "Vector type with invalid element type", VTy
);
1604 VerifyType(VTy
->getElementType());
1612 // Flags used by TableGen to mark intrinsic parameters with the
1613 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
1614 static const unsigned ExtendedElementVectorType
= 0x40000000;
1615 static const unsigned TruncatedElementVectorType
= 0x20000000;
1617 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
1619 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID
, CallInst
&CI
) {
1620 Function
*IF
= CI
.getCalledFunction();
1621 Assert1(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
1624 #define GET_INTRINSIC_VERIFIER
1625 #include "llvm/Intrinsics.gen"
1626 #undef GET_INTRINSIC_VERIFIER
1628 // If the intrinsic takes MDNode arguments, verify that they are either global
1629 // or are local to *this* function.
1630 for (unsigned i
= 0, e
= CI
.getNumArgOperands(); i
!= e
; ++i
)
1631 if (MDNode
*MD
= dyn_cast
<MDNode
>(CI
.getArgOperand(i
)))
1632 visitMDNode(*MD
, CI
.getParent()->getParent());
1637 case Intrinsic::dbg_declare
: { // llvm.dbg.declare
1638 Assert1(CI
.getArgOperand(0) && isa
<MDNode
>(CI
.getArgOperand(0)),
1639 "invalid llvm.dbg.declare intrinsic call 1", &CI
);
1640 MDNode
*MD
= cast
<MDNode
>(CI
.getArgOperand(0));
1641 Assert1(MD
->getNumOperands() == 1,
1642 "invalid llvm.dbg.declare intrinsic call 2", &CI
);
1644 case Intrinsic::memcpy
:
1645 case Intrinsic::memmove
:
1646 case Intrinsic::memset
:
1647 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(3)),
1648 "alignment argument of memory intrinsics must be a constant int",
1651 case Intrinsic::gcroot
:
1652 case Intrinsic::gcwrite
:
1653 case Intrinsic::gcread
:
1654 if (ID
== Intrinsic::gcroot
) {
1656 dyn_cast
<AllocaInst
>(CI
.getArgOperand(0)->stripPointerCasts());
1657 Assert1(AI
, "llvm.gcroot parameter #1 must be an alloca.", &CI
);
1658 Assert1(isa
<Constant
>(CI
.getArgOperand(1)),
1659 "llvm.gcroot parameter #2 must be a constant.", &CI
);
1660 if (!AI
->getType()->getElementType()->isPointerTy()) {
1661 Assert1(!isa
<ConstantPointerNull
>(CI
.getArgOperand(1)),
1662 "llvm.gcroot parameter #1 must either be a pointer alloca, "
1663 "or argument #2 must be a non-null constant.", &CI
);
1667 Assert1(CI
.getParent()->getParent()->hasGC(),
1668 "Enclosing function does not use GC.", &CI
);
1670 case Intrinsic::init_trampoline
:
1671 Assert1(isa
<Function
>(CI
.getArgOperand(1)->stripPointerCasts()),
1672 "llvm.init_trampoline parameter #2 must resolve to a function.",
1675 case Intrinsic::prefetch
:
1676 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(1)) &&
1677 isa
<ConstantInt
>(CI
.getArgOperand(2)) &&
1678 cast
<ConstantInt
>(CI
.getArgOperand(1))->getZExtValue() < 2 &&
1679 cast
<ConstantInt
>(CI
.getArgOperand(2))->getZExtValue() < 4,
1680 "invalid arguments to llvm.prefetch",
1683 case Intrinsic::stackprotector
:
1684 Assert1(isa
<AllocaInst
>(CI
.getArgOperand(1)->stripPointerCasts()),
1685 "llvm.stackprotector parameter #2 must resolve to an alloca.",
1688 case Intrinsic::lifetime_start
:
1689 case Intrinsic::lifetime_end
:
1690 case Intrinsic::invariant_start
:
1691 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(0)),
1692 "size argument of memory use markers must be a constant integer",
1695 case Intrinsic::invariant_end
:
1696 Assert1(isa
<ConstantInt
>(CI
.getArgOperand(1)),
1697 "llvm.invariant.end parameter #2 must be a constant integer", &CI
);
1702 /// Produce a string to identify an intrinsic parameter or return value.
1703 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
1704 /// parameters beginning with NumRets.
1706 static std::string
IntrinsicParam(unsigned ArgNo
, unsigned NumRets
) {
1707 if (ArgNo
>= NumRets
)
1708 return "Intrinsic parameter #" + utostr(ArgNo
- NumRets
);
1710 return "Intrinsic result type";
1711 return "Intrinsic result type #" + utostr(ArgNo
);
1714 bool Verifier::PerformTypeCheck(Intrinsic::ID ID
, Function
*F
, const Type
*Ty
,
1715 int VT
, unsigned ArgNo
, std::string
&Suffix
) {
1716 const FunctionType
*FTy
= F
->getFunctionType();
1718 unsigned NumElts
= 0;
1719 const Type
*EltTy
= Ty
;
1720 const VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1722 EltTy
= VTy
->getElementType();
1723 NumElts
= VTy
->getNumElements();
1726 const Type
*RetTy
= FTy
->getReturnType();
1727 const StructType
*ST
= dyn_cast
<StructType
>(RetTy
);
1728 unsigned NumRetVals
;
1729 if (RetTy
->isVoidTy())
1732 NumRetVals
= ST
->getNumElements();
1739 // Check flags that indicate a type that is an integral vector type with
1740 // elements that are larger or smaller than the elements of the matched
1742 if ((Match
& (ExtendedElementVectorType
|
1743 TruncatedElementVectorType
)) != 0) {
1744 const IntegerType
*IEltTy
= dyn_cast
<IntegerType
>(EltTy
);
1745 if (!VTy
|| !IEltTy
) {
1746 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1747 "an integral vector type.", F
);
1750 // Adjust the current Ty (in the opposite direction) rather than
1751 // the type being matched against.
1752 if ((Match
& ExtendedElementVectorType
) != 0) {
1753 if ((IEltTy
->getBitWidth() & 1) != 0) {
1754 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " vector "
1755 "element bit-width is odd.", F
);
1758 Ty
= VectorType::getTruncatedElementVectorType(VTy
);
1760 Ty
= VectorType::getExtendedElementVectorType(VTy
);
1761 Match
&= ~(ExtendedElementVectorType
| TruncatedElementVectorType
);
1764 if (Match
<= static_cast<int>(NumRetVals
- 1)) {
1766 RetTy
= ST
->getElementType(Match
);
1769 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " does not "
1770 "match return type.", F
);
1774 if (Ty
!= FTy
->getParamType(Match
- NumRetVals
)) {
1775 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " does not "
1776 "match parameter %" + utostr(Match
- NumRetVals
) + ".", F
);
1780 } else if (VT
== MVT::iAny
) {
1781 if (!EltTy
->isIntegerTy()) {
1782 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1783 "an integer type.", F
);
1787 unsigned GotBits
= cast
<IntegerType
>(EltTy
)->getBitWidth();
1791 Suffix
+= "v" + utostr(NumElts
);
1793 Suffix
+= "i" + utostr(GotBits
);
1795 // Check some constraints on various intrinsics.
1797 default: break; // Not everything needs to be checked.
1798 case Intrinsic::bswap
:
1799 if (GotBits
< 16 || GotBits
% 16 != 0) {
1800 CheckFailed("Intrinsic requires even byte width argument", F
);
1805 } else if (VT
== MVT::fAny
) {
1806 if (!EltTy
->isFloatingPointTy()) {
1807 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not "
1808 "a floating-point type.", F
);
1815 Suffix
+= "v" + utostr(NumElts
);
1817 Suffix
+= EVT::getEVT(EltTy
).getEVTString();
1818 } else if (VT
== MVT::vAny
) {
1820 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a vector type.",
1824 Suffix
+= ".v" + utostr(NumElts
) + EVT::getEVT(EltTy
).getEVTString();
1825 } else if (VT
== MVT::iPTR
) {
1826 if (!Ty
->isPointerTy()) {
1827 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a "
1828 "pointer and a pointer is required.", F
);
1831 } else if (VT
== MVT::iPTRAny
) {
1832 // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
1833 // and iPTR. In the verifier, we can not distinguish which case we have so
1834 // allow either case to be legal.
1835 if (const PointerType
* PTyp
= dyn_cast
<PointerType
>(Ty
)) {
1836 EVT PointeeVT
= EVT::getEVT(PTyp
->getElementType(), true);
1837 if (PointeeVT
== MVT::Other
) {
1838 CheckFailed("Intrinsic has pointer to complex type.");
1841 Suffix
+= ".p" + utostr(PTyp
->getAddressSpace()) +
1842 PointeeVT
.getEVTString();
1844 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is not a "
1845 "pointer and a pointer is required.", F
);
1848 } else if (EVT((MVT::SimpleValueType
)VT
).isVector()) {
1849 EVT VVT
= EVT((MVT::SimpleValueType
)VT
);
1851 // If this is a vector argument, verify the number and type of elements.
1852 if (VVT
.getVectorElementType() != EVT::getEVT(EltTy
)) {
1853 CheckFailed("Intrinsic prototype has incorrect vector element type!", F
);
1857 if (VVT
.getVectorNumElements() != NumElts
) {
1858 CheckFailed("Intrinsic prototype has incorrect number of "
1859 "vector elements!", F
);
1862 } else if (EVT((MVT::SimpleValueType
)VT
).getTypeForEVT(Ty
->getContext()) !=
1864 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is wrong!", F
);
1866 } else if (EltTy
!= Ty
) {
1867 CheckFailed(IntrinsicParam(ArgNo
, NumRetVals
) + " is a vector "
1868 "and a scalar is required.", F
);
1875 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
1876 /// Intrinsics.gen. This implements a little state machine that verifies the
1877 /// prototype of intrinsics.
1878 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID
, Function
*F
,
1879 unsigned NumRetVals
,
1880 unsigned NumParams
, ...) {
1882 va_start(VA
, NumParams
);
1883 const FunctionType
*FTy
= F
->getFunctionType();
1885 // For overloaded intrinsics, the Suffix of the function name must match the
1886 // types of the arguments. This variable keeps track of the expected
1887 // suffix, to be checked at the end.
1890 if (FTy
->getNumParams() + FTy
->isVarArg() != NumParams
) {
1891 CheckFailed("Intrinsic prototype has incorrect number of arguments!", F
);
1895 const Type
*Ty
= FTy
->getReturnType();
1896 const StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1898 if (NumRetVals
== 0 && !Ty
->isVoidTy()) {
1899 CheckFailed("Intrinsic should return void", F
);
1903 // Verify the return types.
1904 if (ST
&& ST
->getNumElements() != NumRetVals
) {
1905 CheckFailed("Intrinsic prototype has incorrect number of return types!", F
);
1909 for (unsigned ArgNo
= 0; ArgNo
!= NumRetVals
; ++ArgNo
) {
1910 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1912 if (ST
) Ty
= ST
->getElementType(ArgNo
);
1913 if (!PerformTypeCheck(ID
, F
, Ty
, VT
, ArgNo
, Suffix
))
1917 // Verify the parameter types.
1918 for (unsigned ArgNo
= 0; ArgNo
!= NumParams
; ++ArgNo
) {
1919 int VT
= va_arg(VA
, int); // An MVT::SimpleValueType when non-negative.
1921 if (VT
== MVT::isVoid
&& ArgNo
> 0) {
1922 if (!FTy
->isVarArg())
1923 CheckFailed("Intrinsic prototype has no '...'!", F
);
1927 if (!PerformTypeCheck(ID
, F
, FTy
->getParamType(ArgNo
), VT
,
1928 ArgNo
+ NumRetVals
, Suffix
))
1934 // For intrinsics without pointer arguments, if we computed a Suffix then the
1935 // intrinsic is overloaded and we need to make sure that the name of the
1936 // function is correct. We add the suffix to the name of the intrinsic and
1937 // compare against the given function name. If they are not the same, the
1938 // function name is invalid. This ensures that overloading of intrinsics
1939 // uses a sane and consistent naming convention. Note that intrinsics with
1940 // pointer argument may or may not be overloaded so we will check assuming it
1941 // has a suffix and not.
1942 if (!Suffix
.empty()) {
1943 std::string
Name(Intrinsic::getName(ID
));
1944 if (Name
+ Suffix
!= F
->getName()) {
1945 CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
1946 F
->getName().substr(Name
.length()) + "'. It should be '" +
1951 // Check parameter attributes.
1952 Assert1(F
->getAttributes() == Intrinsic::getAttributes(ID
),
1953 "Intrinsic has wrong parameter attributes!", F
);
1957 //===----------------------------------------------------------------------===//
1958 // Implement the public interfaces to this file...
1959 //===----------------------------------------------------------------------===//
1961 FunctionPass
*llvm::createVerifierPass(VerifierFailureAction action
) {
1962 return new Verifier(action
);
1966 /// verifyFunction - Check a function for errors, printing messages on stderr.
1967 /// Return true if the function is corrupt.
1969 bool llvm::verifyFunction(const Function
&f
, VerifierFailureAction action
) {
1970 Function
&F
= const_cast<Function
&>(f
);
1971 assert(!F
.isDeclaration() && "Cannot verify external functions");
1973 FunctionPassManager
FPM(F
.getParent());
1974 Verifier
*V
= new Verifier(action
);
1980 /// verifyModule - Check a module for errors, printing messages on stderr.
1981 /// Return true if the module is corrupt.
1983 bool llvm::verifyModule(const Module
&M
, VerifierFailureAction action
,
1984 std::string
*ErrorInfo
) {
1986 Verifier
*V
= new Verifier(action
);
1988 PM
.run(const_cast<Module
&>(M
));
1990 if (ErrorInfo
&& V
->Broken
)
1991 *ErrorInfo
= V
->MessagesStr
.str();