zpu: wip eke out some simple instructions for load/store/add
[llvm/zpu.git] / lib / Target / X86 / X86ISelLowering.h
blobbc79719f2ce0607abe94069695ca45d0ba7edd54
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
27 namespace llvm {
28 namespace X86ISD {
29 // X86 Specific DAG Nodes
30 enum NodeType {
31 // Start the numbering where the builtin ops leave off.
32 FIRST_NUMBER = ISD::BUILTIN_OP_END,
34 /// BSF - Bit scan forward.
35 /// BSR - Bit scan reverse.
36 BSF,
37 BSR,
39 /// SHLD, SHRD - Double shift instructions. These correspond to
40 /// X86::SHLDxx and X86::SHRDxx instructions.
41 SHLD,
42 SHRD,
44 /// FAND - Bitwise logical AND of floating point values. This corresponds
45 /// to X86::ANDPS or X86::ANDPD.
46 FAND,
48 /// FOR - Bitwise logical OR of floating point values. This corresponds
49 /// to X86::ORPS or X86::ORPD.
50 FOR,
52 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53 /// to X86::XORPS or X86::XORPD.
54 FXOR,
56 /// FSRL - Bitwise logical right shift of floating point values. These
57 /// corresponds to X86::PSRLDQ.
58 FSRL,
60 /// CALL - These operations represent an abstract X86 call
61 /// instruction, which includes a bunch of information. In particular the
62 /// operands of these node are:
63 ///
64 /// #0 - The incoming token chain
65 /// #1 - The callee
66 /// #2 - The number of arg bytes the caller pushes on the stack.
67 /// #3 - The number of arg bytes the callee pops off the stack.
68 /// #4 - The value to pass in AL/AX/EAX (optional)
69 /// #5 - The value to pass in DL/DX/EDX (optional)
70 ///
71 /// The result values of these nodes are:
72 ///
73 /// #0 - The outgoing token chain
74 /// #1 - The first register result value (optional)
75 /// #2 - The second register result value (optional)
76 ///
77 CALL,
79 /// RDTSC_DAG - This operation implements the lowering for
80 /// readcyclecounter
81 RDTSC_DAG,
83 /// X86 compare and logical compare instructions.
84 CMP, COMI, UCOMI,
86 /// X86 bit-test instructions.
87 BT,
89 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
90 /// operand produced by a CMP instruction.
91 SETCC,
93 // Same as SETCC except it's materialized with a sbb and the value is all
94 // one's or all zero's.
95 SETCC_CARRY,
97 /// X86 conditional moves. Operand 0 and operand 1 are the two values
98 /// to select from. Operand 2 is the condition code, and operand 3 is the
99 /// flag operand produced by a CMP or TEST instruction. It also writes a
100 /// flag result.
101 CMOV,
103 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
104 /// is the block to branch if condition is true, operand 2 is the
105 /// condition code, and operand 3 is the flag operand produced by a CMP
106 /// or TEST instruction.
107 BRCOND,
109 /// Return with a flag operand. Operand 0 is the chain operand, operand
110 /// 1 is the number of bytes of stack to pop.
111 RET_FLAG,
113 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
114 REP_STOS,
116 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
117 REP_MOVS,
119 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
120 /// at function entry, used for PIC code.
121 GlobalBaseReg,
123 /// Wrapper - A wrapper node for TargetConstantPool,
124 /// TargetExternalSymbol, and TargetGlobalAddress.
125 Wrapper,
127 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
128 /// relative displacements.
129 WrapperRIP,
131 /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
132 /// of an XMM vector, with the high word zero filled.
133 MOVQ2DQ,
135 /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
136 /// to an MMX vector. If you think this is too close to the previous
137 /// mnemonic, so do I; blame Intel.
138 MOVDQ2Q,
140 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
141 /// i32, corresponds to X86::PEXTRB.
142 PEXTRB,
144 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
145 /// i32, corresponds to X86::PEXTRW.
146 PEXTRW,
148 /// INSERTPS - Insert any element of a 4 x float vector into any element
149 /// of a destination 4 x floatvector.
150 INSERTPS,
152 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
153 /// corresponds to X86::PINSRB.
154 PINSRB,
156 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
157 /// corresponds to X86::PINSRW.
158 PINSRW, MMX_PINSRW,
160 /// PSHUFB - Shuffle 16 8-bit values within a vector.
161 PSHUFB,
163 /// FMAX, FMIN - Floating point max and min.
165 FMAX, FMIN,
167 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
168 /// approximation. Note that these typically require refinement
169 /// in order to obtain suitable precision.
170 FRSQRT, FRCP,
172 // TLSADDR - Thread Local Storage.
173 TLSADDR,
175 // TLSCALL - Thread Local Storage. When calling to an OS provided
176 // thunk at the address from an earlier relocation.
177 TLSCALL,
179 // EH_RETURN - Exception Handling helpers.
180 EH_RETURN,
182 /// TC_RETURN - Tail call return.
183 /// operand #0 chain
184 /// operand #1 callee (register or absolute)
185 /// operand #2 stack adjustment
186 /// operand #3 optional in flag
187 TC_RETURN,
189 // VZEXT_MOVL - Vector move low and zero extend.
190 VZEXT_MOVL,
192 // VSHL, VSRL - Vector logical left / right shift.
193 VSHL, VSRL,
195 // CMPPD, CMPPS - Vector double/float comparison.
196 // CMPPD, CMPPS - Vector double/float comparison.
197 CMPPD, CMPPS,
199 // PCMP* - Vector integer comparisons.
200 PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
201 PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
203 // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
204 ADD, SUB, SMUL, UMUL,
205 INC, DEC, OR, XOR, AND,
207 // MUL_IMM - X86 specific multiply by immediate.
208 MUL_IMM,
210 // PTEST - Vector bitwise comparisons
211 PTEST,
213 // TESTP - Vector packed fp sign bitwise comparisons
214 TESTP,
216 // Several flavors of instructions with vector shuffle behaviors.
217 PALIGN,
218 PSHUFD,
219 PSHUFHW,
220 PSHUFLW,
221 PSHUFHW_LD,
222 PSHUFLW_LD,
223 SHUFPD,
224 SHUFPS,
225 MOVDDUP,
226 MOVSHDUP,
227 MOVSLDUP,
228 MOVSHDUP_LD,
229 MOVSLDUP_LD,
230 MOVLHPS,
231 MOVLHPD,
232 MOVHLPS,
233 MOVHLPD,
234 MOVLPS,
235 MOVLPD,
236 MOVSD,
237 MOVSS,
238 UNPCKLPS,
239 UNPCKLPD,
240 UNPCKHPS,
241 UNPCKHPD,
242 PUNPCKLBW,
243 PUNPCKLWD,
244 PUNPCKLDQ,
245 PUNPCKLQDQ,
246 PUNPCKHBW,
247 PUNPCKHWD,
248 PUNPCKHDQ,
249 PUNPCKHQDQ,
251 // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
252 // according to %al. An operator is needed so that this can be expanded
253 // with control flow.
254 VASTART_SAVE_XMM_REGS,
256 // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
257 WIN_ALLOCA,
259 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
260 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
261 // Atomic 64-bit binary operations.
262 ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
263 ATOMSUB64_DAG,
264 ATOMOR64_DAG,
265 ATOMXOR64_DAG,
266 ATOMAND64_DAG,
267 ATOMNAND64_DAG,
268 ATOMSWAP64_DAG,
270 // Memory barrier
271 MEMBARRIER,
272 MFENCE,
273 SFENCE,
274 LFENCE,
276 // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
277 LCMPXCHG_DAG,
278 LCMPXCHG8_DAG,
280 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
281 VZEXT_LOAD,
283 // FNSTCW16m - Store FP control world into i16 memory.
284 FNSTCW16m,
286 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
287 /// integer destination in memory and a FP reg source. This corresponds
288 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
289 /// has two inputs (token chain and address) and two outputs (int value
290 /// and token chain).
291 FP_TO_INT16_IN_MEM,
292 FP_TO_INT32_IN_MEM,
293 FP_TO_INT64_IN_MEM,
295 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
296 /// integer source in memory and FP reg result. This corresponds to the
297 /// X86::FILD*m instructions. It has three inputs (token chain, address,
298 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
299 /// also produces a flag).
300 FILD,
301 FILD_FLAG,
303 /// FLD - This instruction implements an extending load to FP stack slots.
304 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
305 /// operand, ptr to load from, and a ValueType node indicating the type
306 /// to load to.
307 FLD,
309 /// FST - This instruction implements a truncating store to FP stack
310 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
311 /// chain operand, value to store, address, and a ValueType to store it
312 /// as.
313 FST,
315 /// VAARG_64 - This instruction grabs the address of the next argument
316 /// from a va_list. (reads and modifies the va_list in memory)
317 VAARG_64
319 // WARNING: Do not add anything in the end unless you want the node to
320 // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
321 // thought as target memory ops!
325 /// Define some predicates that are used for node matching.
326 namespace X86 {
327 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
328 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
329 bool isPSHUFDMask(ShuffleVectorSDNode *N);
331 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
332 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
333 bool isPSHUFHWMask(ShuffleVectorSDNode *N);
335 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
336 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
337 bool isPSHUFLWMask(ShuffleVectorSDNode *N);
339 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
340 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
341 bool isSHUFPMask(ShuffleVectorSDNode *N);
343 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
344 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
345 bool isMOVHLPSMask(ShuffleVectorSDNode *N);
347 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
348 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
349 /// <2, 3, 2, 3>
350 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
352 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
353 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
354 bool isMOVLPMask(ShuffleVectorSDNode *N);
356 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
357 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
358 /// as well as MOVLHPS.
359 bool isMOVLHPSMask(ShuffleVectorSDNode *N);
361 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
362 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
363 bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
365 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
366 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
367 bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
369 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
370 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
371 /// <0, 0, 1, 1>
372 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
374 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
375 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
376 /// <2, 2, 3, 3>
377 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
379 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
380 /// specifies a shuffle of elements that is suitable for input to MOVSS,
381 /// MOVSD, and MOVD, i.e. setting the lowest element.
382 bool isMOVLMask(ShuffleVectorSDNode *N);
384 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
385 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
386 bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
388 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
389 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
390 bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
392 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
393 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
394 bool isMOVDDUPMask(ShuffleVectorSDNode *N);
396 /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
397 /// specifies a shuffle of elements that is suitable for input to PALIGNR.
398 bool isPALIGNRMask(ShuffleVectorSDNode *N);
400 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
401 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
402 /// instructions.
403 unsigned getShuffleSHUFImmediate(SDNode *N);
405 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
406 /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
407 unsigned getShufflePSHUFHWImmediate(SDNode *N);
409 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
410 /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
411 unsigned getShufflePSHUFLWImmediate(SDNode *N);
413 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
414 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
415 unsigned getShufflePALIGNRImmediate(SDNode *N);
417 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
418 /// constant +0.0.
419 bool isZeroNode(SDValue Elt);
421 /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
422 /// fit into displacement field of the instruction.
423 bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
424 bool hasSymbolicDisplacement = true);
427 //===--------------------------------------------------------------------===//
428 // X86TargetLowering - X86 Implementation of the TargetLowering interface
429 class X86TargetLowering : public TargetLowering {
430 public:
431 explicit X86TargetLowering(X86TargetMachine &TM);
433 /// getPICBaseSymbol - Return the X86-32 PIC base.
434 MCSymbol *getPICBaseSymbol(const MachineFunction *MF, MCContext &Ctx) const;
436 virtual unsigned getJumpTableEncoding() const;
438 virtual const MCExpr *
439 LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
440 const MachineBasicBlock *MBB, unsigned uid,
441 MCContext &Ctx) const;
443 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
444 /// jumptable.
445 virtual SDValue getPICJumpTableRelocBase(SDValue Table,
446 SelectionDAG &DAG) const;
447 virtual const MCExpr *
448 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
449 unsigned JTI, MCContext &Ctx) const;
451 /// getStackPtrReg - Return the stack pointer register we are using: either
452 /// ESP or RSP.
453 unsigned getStackPtrReg() const { return X86StackPtr; }
455 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
456 /// function arguments in the caller parameter area. For X86, aggregates
457 /// that contains are placed at 16-byte boundaries while the rest are at
458 /// 4-byte boundaries.
459 virtual unsigned getByValTypeAlignment(const Type *Ty) const;
461 /// getOptimalMemOpType - Returns the target specific optimal type for load
462 /// and store operations as a result of memset, memcpy, and memmove
463 /// lowering. If DstAlign is zero that means it's safe to destination
464 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
465 /// means there isn't a need to check it against alignment requirement,
466 /// probably because the source does not need to be loaded. If
467 /// 'NonScalarIntSafe' is true, that means it's safe to return a
468 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
469 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
470 /// constant so it does not need to be loaded.
471 /// It returns EVT::Other if the type should be determined using generic
472 /// target-independent logic.
473 virtual EVT
474 getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
475 bool NonScalarIntSafe, bool MemcpyStrSrc,
476 MachineFunction &MF) const;
478 /// allowsUnalignedMemoryAccesses - Returns true if the target allows
479 /// unaligned memory accesses. of the specified type.
480 virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
481 return true;
484 /// LowerOperation - Provide custom lowering hooks for some operations.
486 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
488 /// ReplaceNodeResults - Replace the results of node with an illegal result
489 /// type with new values built out of custom code.
491 virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
492 SelectionDAG &DAG) const;
495 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
497 /// isTypeDesirableForOp - Return true if the target has native support for
498 /// the specified value type and it is 'desirable' to use the type for the
499 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
500 /// instruction encodings are longer and some i16 instructions are slow.
501 virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
503 /// isTypeDesirable - Return true if the target has native support for the
504 /// specified value type and it is 'desirable' to use the type. e.g. On x86
505 /// i16 is legal, but undesirable since i16 instruction encodings are longer
506 /// and some i16 instructions are slow.
507 virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
509 virtual MachineBasicBlock *
510 EmitInstrWithCustomInserter(MachineInstr *MI,
511 MachineBasicBlock *MBB) const;
514 /// getTargetNodeName - This method returns the name of a target specific
515 /// DAG node.
516 virtual const char *getTargetNodeName(unsigned Opcode) const;
518 /// getSetCCResultType - Return the ISD::SETCC ValueType
519 virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
521 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
522 /// in Mask are known to be either zero or one and return them in the
523 /// KnownZero/KnownOne bitsets.
524 virtual void computeMaskedBitsForTargetNode(const SDValue Op,
525 const APInt &Mask,
526 APInt &KnownZero,
527 APInt &KnownOne,
528 const SelectionDAG &DAG,
529 unsigned Depth = 0) const;
531 // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
532 // operation that are sign bits.
533 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
534 unsigned Depth) const;
536 virtual bool
537 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
539 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
541 virtual bool ExpandInlineAsm(CallInst *CI) const;
543 ConstraintType getConstraintType(const std::string &Constraint) const;
545 /// Examine constraint string and operand type and determine a weight value.
546 /// The operand object must already have been set up with the operand type.
547 virtual ConstraintWeight getSingleConstraintMatchWeight(
548 AsmOperandInfo &info, const char *constraint) const;
550 std::vector<unsigned>
551 getRegClassForInlineAsmConstraint(const std::string &Constraint,
552 EVT VT) const;
554 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
556 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
557 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
558 /// true it means one of the asm constraint of the inline asm instruction
559 /// being processed is 'm'.
560 virtual void LowerAsmOperandForConstraint(SDValue Op,
561 char ConstraintLetter,
562 std::vector<SDValue> &Ops,
563 SelectionDAG &DAG) const;
565 /// getRegForInlineAsmConstraint - Given a physical register constraint
566 /// (e.g. {edx}), return the register number and the register class for the
567 /// register. This should only be used for C_Register constraints. On
568 /// error, this returns a register number of 0.
569 std::pair<unsigned, const TargetRegisterClass*>
570 getRegForInlineAsmConstraint(const std::string &Constraint,
571 EVT VT) const;
573 /// isLegalAddressingMode - Return true if the addressing mode represented
574 /// by AM is legal for this target, for a load/store of the specified type.
575 virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
577 /// isTruncateFree - Return true if it's free to truncate a value of
578 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
579 /// register EAX to i16 by referencing its sub-register AX.
580 virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
581 virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
583 /// isZExtFree - Return true if any actual instruction that defines a
584 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
585 /// register. This does not necessarily include registers defined in
586 /// unknown ways, such as incoming arguments, or copies from unknown
587 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
588 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
589 /// all instructions that define 32-bit values implicit zero-extend the
590 /// result out to 64 bits.
591 virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
592 virtual bool isZExtFree(EVT VT1, EVT VT2) const;
594 /// isNarrowingProfitable - Return true if it's profitable to narrow
595 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
596 /// from i32 to i8 but not from i32 to i16.
597 virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
599 /// isFPImmLegal - Returns true if the target can instruction select the
600 /// specified FP immediate natively. If false, the legalizer will
601 /// materialize the FP immediate as a load from a constant pool.
602 virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
604 /// isShuffleMaskLegal - Targets can use this to indicate that they only
605 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
606 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
607 /// values are assumed to be legal.
608 virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
609 EVT VT) const;
611 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
612 /// used by Targets can use this to indicate if there is a suitable
613 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
614 /// pool entry.
615 virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
616 EVT VT) const;
618 /// ShouldShrinkFPConstant - If true, then instruction selection should
619 /// seek to shrink the FP constant of the specified type to a smaller type
620 /// in order to save space and / or reduce runtime.
621 virtual bool ShouldShrinkFPConstant(EVT VT) const {
622 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
623 // expensive than a straight movsd. On the other hand, it's important to
624 // shrink long double fp constant since fldt is very slow.
625 return !X86ScalarSSEf64 || VT == MVT::f80;
628 const X86Subtarget* getSubtarget() const {
629 return Subtarget;
632 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
633 /// computed in an SSE register, not on the X87 floating point stack.
634 bool isScalarFPTypeInSSEReg(EVT VT) const {
635 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
636 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
639 /// createFastISel - This method returns a target specific FastISel object,
640 /// or null if the target does not support "fast" ISel.
641 virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
643 /// getFunctionAlignment - Return the Log2 alignment of this function.
644 virtual unsigned getFunctionAlignment(const Function *F) const;
646 unsigned getRegPressureLimit(const TargetRegisterClass *RC,
647 MachineFunction &MF) const;
649 /// getStackCookieLocation - Return true if the target stores stack
650 /// protector cookies at a fixed offset in some non-standard address
651 /// space, and populates the address space and offset as
652 /// appropriate.
653 virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
655 protected:
656 std::pair<const TargetRegisterClass*, uint8_t>
657 findRepresentativeClass(EVT VT) const;
659 private:
660 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
661 /// make the right decision when generating code for different targets.
662 const X86Subtarget *Subtarget;
663 const X86RegisterInfo *RegInfo;
664 const TargetData *TD;
666 /// X86StackPtr - X86 physical register used as stack ptr.
667 unsigned X86StackPtr;
669 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
670 /// floating point ops.
671 /// When SSE is available, use it for f32 operations.
672 /// When SSE2 is available, use it for f64 operations.
673 bool X86ScalarSSEf32;
674 bool X86ScalarSSEf64;
676 /// LegalFPImmediates - A list of legal fp immediates.
677 std::vector<APFloat> LegalFPImmediates;
679 /// addLegalFPImmediate - Indicate that this x86 target can instruction
680 /// select the specified FP immediate natively.
681 void addLegalFPImmediate(const APFloat& Imm) {
682 LegalFPImmediates.push_back(Imm);
685 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
686 CallingConv::ID CallConv, bool isVarArg,
687 const SmallVectorImpl<ISD::InputArg> &Ins,
688 DebugLoc dl, SelectionDAG &DAG,
689 SmallVectorImpl<SDValue> &InVals) const;
690 SDValue LowerMemArgument(SDValue Chain,
691 CallingConv::ID CallConv,
692 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
693 DebugLoc dl, SelectionDAG &DAG,
694 const CCValAssign &VA, MachineFrameInfo *MFI,
695 unsigned i) const;
696 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
697 DebugLoc dl, SelectionDAG &DAG,
698 const CCValAssign &VA,
699 ISD::ArgFlagsTy Flags) const;
701 // Call lowering helpers.
703 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
704 /// for tail call optimization. Targets which want to do tail call
705 /// optimization should implement this function.
706 bool IsEligibleForTailCallOptimization(SDValue Callee,
707 CallingConv::ID CalleeCC,
708 bool isVarArg,
709 bool isCalleeStructRet,
710 bool isCallerStructRet,
711 const SmallVectorImpl<ISD::OutputArg> &Outs,
712 const SmallVectorImpl<SDValue> &OutVals,
713 const SmallVectorImpl<ISD::InputArg> &Ins,
714 SelectionDAG& DAG) const;
715 bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
716 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
717 SDValue Chain, bool IsTailCall, bool Is64Bit,
718 int FPDiff, DebugLoc dl) const;
720 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
721 SelectionDAG &DAG) const;
723 std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
724 bool isSigned) const;
726 SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
727 SelectionDAG &DAG) const;
728 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
729 SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
730 SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
731 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
732 SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
733 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
734 SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
735 SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
736 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
737 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
738 SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
739 int64_t Offset, SelectionDAG &DAG) const;
740 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
741 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
742 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
743 SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
744 SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
745 SelectionDAG &DAG) const;
746 SDValue LowerBIT_CONVERT(SDValue op, SelectionDAG &DAG) const;
747 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
748 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
749 SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
750 SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
751 SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
752 SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
753 SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
754 SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
755 SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
756 SDValue LowerToBT(SDValue And, ISD::CondCode CC,
757 DebugLoc dl, SelectionDAG &DAG) const;
758 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
759 SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
760 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
761 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
762 SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
763 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
764 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
765 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
766 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
767 SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
768 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
769 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
770 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
771 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
772 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
773 SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
774 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
775 SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
776 SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
777 SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const;
778 SDValue LowerSHL(SDValue Op, SelectionDAG &DAG) const;
779 SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
781 SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
782 SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
783 SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
784 SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
786 // Utility functions to help LowerVECTOR_SHUFFLE
787 SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
789 virtual SDValue
790 LowerFormalArguments(SDValue Chain,
791 CallingConv::ID CallConv, bool isVarArg,
792 const SmallVectorImpl<ISD::InputArg> &Ins,
793 DebugLoc dl, SelectionDAG &DAG,
794 SmallVectorImpl<SDValue> &InVals) const;
795 virtual SDValue
796 LowerCall(SDValue Chain, SDValue Callee,
797 CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
798 const SmallVectorImpl<ISD::OutputArg> &Outs,
799 const SmallVectorImpl<SDValue> &OutVals,
800 const SmallVectorImpl<ISD::InputArg> &Ins,
801 DebugLoc dl, SelectionDAG &DAG,
802 SmallVectorImpl<SDValue> &InVals) const;
804 virtual SDValue
805 LowerReturn(SDValue Chain,
806 CallingConv::ID CallConv, bool isVarArg,
807 const SmallVectorImpl<ISD::OutputArg> &Outs,
808 const SmallVectorImpl<SDValue> &OutVals,
809 DebugLoc dl, SelectionDAG &DAG) const;
811 virtual bool
812 CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
813 const SmallVectorImpl<ISD::OutputArg> &Outs,
814 LLVMContext &Context) const;
816 void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
817 SelectionDAG &DAG, unsigned NewOp) const;
819 /// Utility function to emit string processing sse4.2 instructions
820 /// that return in xmm0.
821 /// This takes the instruction to expand, the associated machine basic
822 /// block, the number of args, and whether or not the second arg is
823 /// in memory or not.
824 MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
825 unsigned argNum, bool inMem) const;
827 /// Utility function to emit atomic bitwise operations (and, or, xor).
828 /// It takes the bitwise instruction to expand, the associated machine basic
829 /// block, and the associated X86 opcodes for reg/reg and reg/imm.
830 MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
831 MachineInstr *BInstr,
832 MachineBasicBlock *BB,
833 unsigned regOpc,
834 unsigned immOpc,
835 unsigned loadOpc,
836 unsigned cxchgOpc,
837 unsigned notOpc,
838 unsigned EAXreg,
839 TargetRegisterClass *RC,
840 bool invSrc = false) const;
842 MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
843 MachineInstr *BInstr,
844 MachineBasicBlock *BB,
845 unsigned regOpcL,
846 unsigned regOpcH,
847 unsigned immOpcL,
848 unsigned immOpcH,
849 bool invSrc = false) const;
851 /// Utility function to emit atomic min and max. It takes the min/max
852 /// instruction to expand, the associated basic block, and the associated
853 /// cmov opcode for moving the min or max value.
854 MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
855 MachineBasicBlock *BB,
856 unsigned cmovOpc) const;
858 // Utility function to emit the low-level va_arg code for X86-64.
859 MachineBasicBlock *EmitVAARG64WithCustomInserter(
860 MachineInstr *MI,
861 MachineBasicBlock *MBB) const;
863 /// Utility function to emit the xmm reg save portion of va_start.
864 MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
865 MachineInstr *BInstr,
866 MachineBasicBlock *BB) const;
868 MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
869 MachineBasicBlock *BB) const;
871 MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
872 MachineBasicBlock *BB) const;
874 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
875 MachineBasicBlock *BB) const;
877 /// Emit nodes that will be selected as "test Op0,Op0", or something
878 /// equivalent, for use with the given x86 condition code.
879 SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
881 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
882 /// equivalent, for use with the given x86 condition code.
883 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
884 SelectionDAG &DAG) const;
887 namespace X86 {
888 FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
892 #endif // X86ISELLOWERING_H