zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / RegAllocLinearScan.cpp
blob947a6c74bd1cb0536686121d9ebb61617c9d5978
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "VirtRegRewriter.h"
17 #include "Spiller.h"
18 #include "llvm/Function.h"
19 #include "llvm/CodeGen/CalcSpillWeights.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/MachineFunctionPass.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegAllocRegistry.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetRegisterInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/ADT/EquivalenceClasses.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <set>
41 #include <queue>
42 #include <memory>
43 #include <cmath>
45 using namespace llvm;
47 STATISTIC(NumIters , "Number of iterations performed");
48 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
49 STATISTIC(NumCoalesce, "Number of copies coalesced");
50 STATISTIC(NumDowngrade, "Number of registers downgraded");
52 static cl::opt<bool>
53 NewHeuristic("new-spilling-heuristic",
54 cl::desc("Use new spilling heuristic"),
55 cl::init(false), cl::Hidden);
57 static cl::opt<bool>
58 PreSplitIntervals("pre-alloc-split",
59 cl::desc("Pre-register allocation live interval splitting"),
60 cl::init(false), cl::Hidden);
62 static cl::opt<bool>
63 TrivCoalesceEnds("trivial-coalesce-ends",
64 cl::desc("Attempt trivial coalescing of interval ends"),
65 cl::init(false), cl::Hidden);
67 static RegisterRegAlloc
68 linearscanRegAlloc("linearscan", "linear scan register allocator",
69 createLinearScanRegisterAllocator);
71 namespace {
72 // When we allocate a register, add it to a fixed-size queue of
73 // registers to skip in subsequent allocations. This trades a small
74 // amount of register pressure and increased spills for flexibility in
75 // the post-pass scheduler.
77 // Note that in a the number of registers used for reloading spills
78 // will be one greater than the value of this option.
80 // One big limitation of this is that it doesn't differentiate between
81 // different register classes. So on x86-64, if there is xmm register
82 // pressure, it can caused fewer GPRs to be held in the queue.
83 static cl::opt<unsigned>
84 NumRecentlyUsedRegs("linearscan-skip-count",
85 cl::desc("Number of registers for linearscan to remember"
86 "to skip."),
87 cl::init(0),
88 cl::Hidden);
90 struct RALinScan : public MachineFunctionPass {
91 static char ID;
92 RALinScan() : MachineFunctionPass(ID) {
93 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
94 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
95 initializeRegisterCoalescerAnalysisGroup(
96 *PassRegistry::getPassRegistry());
97 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
98 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
99 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
100 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
101 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
102 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
103 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
105 // Initialize the queue to record recently-used registers.
106 if (NumRecentlyUsedRegs > 0)
107 RecentRegs.resize(NumRecentlyUsedRegs, 0);
108 RecentNext = RecentRegs.begin();
111 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
112 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
113 private:
114 /// RelatedRegClasses - This structure is built the first time a function is
115 /// compiled, and keeps track of which register classes have registers that
116 /// belong to multiple classes or have aliases that are in other classes.
117 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
118 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
120 // NextReloadMap - For each register in the map, it maps to the another
121 // register which is defined by a reload from the same stack slot and
122 // both reloads are in the same basic block.
123 DenseMap<unsigned, unsigned> NextReloadMap;
125 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
126 // un-favored for allocation.
127 SmallSet<unsigned, 8> DowngradedRegs;
129 // DowngradeMap - A map from virtual registers to physical registers being
130 // downgraded for the virtual registers.
131 DenseMap<unsigned, unsigned> DowngradeMap;
133 MachineFunction* mf_;
134 MachineRegisterInfo* mri_;
135 const TargetMachine* tm_;
136 const TargetRegisterInfo* tri_;
137 const TargetInstrInfo* tii_;
138 BitVector allocatableRegs_;
139 BitVector reservedRegs_;
140 LiveIntervals* li_;
141 MachineLoopInfo *loopInfo;
143 /// handled_ - Intervals are added to the handled_ set in the order of their
144 /// start value. This is uses for backtracking.
145 std::vector<LiveInterval*> handled_;
147 /// fixed_ - Intervals that correspond to machine registers.
149 IntervalPtrs fixed_;
151 /// active_ - Intervals that are currently being processed, and which have a
152 /// live range active for the current point.
153 IntervalPtrs active_;
155 /// inactive_ - Intervals that are currently being processed, but which have
156 /// a hold at the current point.
157 IntervalPtrs inactive_;
159 typedef std::priority_queue<LiveInterval*,
160 SmallVector<LiveInterval*, 64>,
161 greater_ptr<LiveInterval> > IntervalHeap;
162 IntervalHeap unhandled_;
164 /// regUse_ - Tracks register usage.
165 SmallVector<unsigned, 32> regUse_;
166 SmallVector<unsigned, 32> regUseBackUp_;
168 /// vrm_ - Tracks register assignments.
169 VirtRegMap* vrm_;
171 std::auto_ptr<VirtRegRewriter> rewriter_;
173 std::auto_ptr<Spiller> spiller_;
175 // The queue of recently-used registers.
176 SmallVector<unsigned, 4> RecentRegs;
177 SmallVector<unsigned, 4>::iterator RecentNext;
179 // Record that we just picked this register.
180 void recordRecentlyUsed(unsigned reg) {
181 assert(reg != 0 && "Recently used register is NOREG!");
182 if (!RecentRegs.empty()) {
183 *RecentNext++ = reg;
184 if (RecentNext == RecentRegs.end())
185 RecentNext = RecentRegs.begin();
189 public:
190 virtual const char* getPassName() const {
191 return "Linear Scan Register Allocator";
194 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
195 AU.setPreservesCFG();
196 AU.addRequired<LiveIntervals>();
197 AU.addPreserved<SlotIndexes>();
198 if (StrongPHIElim)
199 AU.addRequiredID(StrongPHIEliminationID);
200 // Make sure PassManager knows which analyses to make available
201 // to coalescing and which analyses coalescing invalidates.
202 AU.addRequiredTransitive<RegisterCoalescer>();
203 AU.addRequired<CalculateSpillWeights>();
204 if (PreSplitIntervals)
205 AU.addRequiredID(PreAllocSplittingID);
206 AU.addRequiredID(LiveStacksID);
207 AU.addPreservedID(LiveStacksID);
208 AU.addRequired<MachineLoopInfo>();
209 AU.addPreserved<MachineLoopInfo>();
210 AU.addRequired<VirtRegMap>();
211 AU.addPreserved<VirtRegMap>();
212 AU.addRequiredID(MachineDominatorsID);
213 AU.addPreservedID(MachineDominatorsID);
214 MachineFunctionPass::getAnalysisUsage(AU);
217 /// runOnMachineFunction - register allocate the whole function
218 bool runOnMachineFunction(MachineFunction&);
220 // Determine if we skip this register due to its being recently used.
221 bool isRecentlyUsed(unsigned reg) const {
222 return std::find(RecentRegs.begin(), RecentRegs.end(), reg) !=
223 RecentRegs.end();
226 private:
227 /// linearScan - the linear scan algorithm
228 void linearScan();
230 /// initIntervalSets - initialize the interval sets.
232 void initIntervalSets();
234 /// processActiveIntervals - expire old intervals and move non-overlapping
235 /// ones to the inactive list.
236 void processActiveIntervals(SlotIndex CurPoint);
238 /// processInactiveIntervals - expire old intervals and move overlapping
239 /// ones to the active list.
240 void processInactiveIntervals(SlotIndex CurPoint);
242 /// hasNextReloadInterval - Return the next liveinterval that's being
243 /// defined by a reload from the same SS as the specified one.
244 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
246 /// DowngradeRegister - Downgrade a register for allocation.
247 void DowngradeRegister(LiveInterval *li, unsigned Reg);
249 /// UpgradeRegister - Upgrade a register for allocation.
250 void UpgradeRegister(unsigned Reg);
252 /// assignRegOrStackSlotAtInterval - assign a register if one
253 /// is available, or spill.
254 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
256 void updateSpillWeights(std::vector<float> &Weights,
257 unsigned reg, float weight,
258 const TargetRegisterClass *RC);
260 /// findIntervalsToSpill - Determine the intervals to spill for the
261 /// specified interval. It's passed the physical registers whose spill
262 /// weight is the lowest among all the registers whose live intervals
263 /// conflict with the interval.
264 void findIntervalsToSpill(LiveInterval *cur,
265 std::vector<std::pair<unsigned,float> > &Candidates,
266 unsigned NumCands,
267 SmallVector<LiveInterval*, 8> &SpillIntervals);
269 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
270 /// try to allocate the definition to the same register as the source,
271 /// if the register is not defined during the life time of the interval.
272 /// This eliminates a copy, and is used to coalesce copies which were not
273 /// coalesced away before allocation either due to dest and src being in
274 /// different register classes or because the coalescer was overly
275 /// conservative.
276 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
279 /// Register usage / availability tracking helpers.
282 void initRegUses() {
283 regUse_.resize(tri_->getNumRegs(), 0);
284 regUseBackUp_.resize(tri_->getNumRegs(), 0);
287 void finalizeRegUses() {
288 #ifndef NDEBUG
289 // Verify all the registers are "freed".
290 bool Error = false;
291 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
292 if (regUse_[i] != 0) {
293 dbgs() << tri_->getName(i) << " is still in use!\n";
294 Error = true;
297 if (Error)
298 llvm_unreachable(0);
299 #endif
300 regUse_.clear();
301 regUseBackUp_.clear();
304 void addRegUse(unsigned physReg) {
305 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
306 "should be physical register!");
307 ++regUse_[physReg];
308 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
309 ++regUse_[*as];
312 void delRegUse(unsigned physReg) {
313 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
314 "should be physical register!");
315 assert(regUse_[physReg] != 0);
316 --regUse_[physReg];
317 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
318 assert(regUse_[*as] != 0);
319 --regUse_[*as];
323 bool isRegAvail(unsigned physReg) const {
324 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
325 "should be physical register!");
326 return regUse_[physReg] == 0;
329 void backUpRegUses() {
330 regUseBackUp_ = regUse_;
333 void restoreRegUses() {
334 regUse_ = regUseBackUp_;
338 /// Register handling helpers.
341 /// getFreePhysReg - return a free physical register for this virtual
342 /// register interval if we have one, otherwise return 0.
343 unsigned getFreePhysReg(LiveInterval* cur);
344 unsigned getFreePhysReg(LiveInterval* cur,
345 const TargetRegisterClass *RC,
346 unsigned MaxInactiveCount,
347 SmallVector<unsigned, 256> &inactiveCounts,
348 bool SkipDGRegs);
350 /// getFirstNonReservedPhysReg - return the first non-reserved physical
351 /// register in the register class.
352 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
353 TargetRegisterClass::iterator aoe = RC->allocation_order_end(*mf_);
354 TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_);
355 while (i != aoe && reservedRegs_.test(*i))
356 ++i;
357 assert(i != aoe && "All registers reserved?!");
358 return *i;
361 void ComputeRelatedRegClasses();
363 template <typename ItTy>
364 void printIntervals(const char* const str, ItTy i, ItTy e) const {
365 DEBUG({
366 if (str)
367 dbgs() << str << " intervals:\n";
369 for (; i != e; ++i) {
370 dbgs() << "\t" << *i->first << " -> ";
372 unsigned reg = i->first->reg;
373 if (TargetRegisterInfo::isVirtualRegister(reg))
374 reg = vrm_->getPhys(reg);
376 dbgs() << tri_->getName(reg) << '\n';
381 char RALinScan::ID = 0;
384 INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
385 "Linear Scan Register Allocator", false, false)
386 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
387 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
388 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
389 INITIALIZE_PASS_DEPENDENCY(PreAllocSplitting)
390 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
391 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
392 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
393 INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
394 INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
395 "Linear Scan Register Allocator", false, false)
397 void RALinScan::ComputeRelatedRegClasses() {
398 // First pass, add all reg classes to the union, and determine at least one
399 // reg class that each register is in.
400 bool HasAliases = false;
401 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
402 E = tri_->regclass_end(); RCI != E; ++RCI) {
403 RelatedRegClasses.insert(*RCI);
404 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
405 I != E; ++I) {
406 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
408 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
409 if (PRC) {
410 // Already processed this register. Just make sure we know that
411 // multiple register classes share a register.
412 RelatedRegClasses.unionSets(PRC, *RCI);
413 } else {
414 PRC = *RCI;
419 // Second pass, now that we know conservatively what register classes each reg
420 // belongs to, add info about aliases. We don't need to do this for targets
421 // without register aliases.
422 if (HasAliases)
423 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
424 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
425 I != E; ++I)
426 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS)
427 RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]);
430 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
431 /// allocate the definition the same register as the source register if the
432 /// register is not defined during live time of the interval. If the interval is
433 /// killed by a copy, try to use the destination register. This eliminates a
434 /// copy. This is used to coalesce copies which were not coalesced away before
435 /// allocation either due to dest and src being in different register classes or
436 /// because the coalescer was overly conservative.
437 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
438 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
439 if ((Preference && Preference == Reg) || !cur.containsOneValue())
440 return Reg;
442 // We cannot handle complicated live ranges. Simple linear stuff only.
443 if (cur.ranges.size() != 1)
444 return Reg;
446 const LiveRange &range = cur.ranges.front();
448 VNInfo *vni = range.valno;
449 if (vni->isUnused())
450 return Reg;
452 unsigned CandReg;
454 MachineInstr *CopyMI;
455 if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
456 // Defined by a copy, try to extend SrcReg forward
457 CandReg = CopyMI->getOperand(1).getReg();
458 else if (TrivCoalesceEnds &&
459 (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
460 CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
461 // Only used by a copy, try to extend DstReg backwards
462 CandReg = CopyMI->getOperand(0).getReg();
463 else
464 return Reg;
467 if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
468 if (!vrm_->isAssignedReg(CandReg))
469 return Reg;
470 CandReg = vrm_->getPhys(CandReg);
472 if (Reg == CandReg)
473 return Reg;
475 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
476 if (!RC->contains(CandReg))
477 return Reg;
479 if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
480 return Reg;
482 // Try to coalesce.
483 DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
484 << '\n');
485 vrm_->clearVirt(cur.reg);
486 vrm_->assignVirt2Phys(cur.reg, CandReg);
488 ++NumCoalesce;
489 return CandReg;
492 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
493 mf_ = &fn;
494 mri_ = &fn.getRegInfo();
495 tm_ = &fn.getTarget();
496 tri_ = tm_->getRegisterInfo();
497 tii_ = tm_->getInstrInfo();
498 allocatableRegs_ = tri_->getAllocatableSet(fn);
499 reservedRegs_ = tri_->getReservedRegs(fn);
500 li_ = &getAnalysis<LiveIntervals>();
501 loopInfo = &getAnalysis<MachineLoopInfo>();
503 // We don't run the coalescer here because we have no reason to
504 // interact with it. If the coalescer requires interaction, it
505 // won't do anything. If it doesn't require interaction, we assume
506 // it was run as a separate pass.
508 // If this is the first function compiled, compute the related reg classes.
509 if (RelatedRegClasses.empty())
510 ComputeRelatedRegClasses();
512 // Also resize register usage trackers.
513 initRegUses();
515 vrm_ = &getAnalysis<VirtRegMap>();
516 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
518 spiller_.reset(createSpiller(*this, *mf_, *vrm_));
520 initIntervalSets();
522 linearScan();
524 // Rewrite spill code and update the PhysRegsUsed set.
525 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
527 assert(unhandled_.empty() && "Unhandled live intervals remain!");
529 finalizeRegUses();
531 fixed_.clear();
532 active_.clear();
533 inactive_.clear();
534 handled_.clear();
535 NextReloadMap.clear();
536 DowngradedRegs.clear();
537 DowngradeMap.clear();
538 spiller_.reset(0);
540 return true;
543 /// initIntervalSets - initialize the interval sets.
545 void RALinScan::initIntervalSets()
547 assert(unhandled_.empty() && fixed_.empty() &&
548 active_.empty() && inactive_.empty() &&
549 "interval sets should be empty on initialization");
551 handled_.reserve(li_->getNumIntervals());
553 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
554 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
555 if (!i->second->empty()) {
556 mri_->setPhysRegUsed(i->second->reg);
557 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
559 } else {
560 if (i->second->empty()) {
561 assignRegOrStackSlotAtInterval(i->second);
563 else
564 unhandled_.push(i->second);
569 void RALinScan::linearScan() {
570 // linear scan algorithm
571 DEBUG({
572 dbgs() << "********** LINEAR SCAN **********\n"
573 << "********** Function: "
574 << mf_->getFunction()->getName() << '\n';
575 printIntervals("fixed", fixed_.begin(), fixed_.end());
578 while (!unhandled_.empty()) {
579 // pick the interval with the earliest start point
580 LiveInterval* cur = unhandled_.top();
581 unhandled_.pop();
582 ++NumIters;
583 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
585 assert(!cur->empty() && "Empty interval in unhandled set.");
587 processActiveIntervals(cur->beginIndex());
588 processInactiveIntervals(cur->beginIndex());
590 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
591 "Can only allocate virtual registers!");
593 // Allocating a virtual register. try to find a free
594 // physical register or spill an interval (possibly this one) in order to
595 // assign it one.
596 assignRegOrStackSlotAtInterval(cur);
598 DEBUG({
599 printIntervals("active", active_.begin(), active_.end());
600 printIntervals("inactive", inactive_.begin(), inactive_.end());
604 // Expire any remaining active intervals
605 while (!active_.empty()) {
606 IntervalPtr &IP = active_.back();
607 unsigned reg = IP.first->reg;
608 DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
609 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
610 "Can only allocate virtual registers!");
611 reg = vrm_->getPhys(reg);
612 delRegUse(reg);
613 active_.pop_back();
616 // Expire any remaining inactive intervals
617 DEBUG({
618 for (IntervalPtrs::reverse_iterator
619 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
620 dbgs() << "\tinterval " << *i->first << " expired\n";
622 inactive_.clear();
624 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
625 MachineFunction::iterator EntryMBB = mf_->begin();
626 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
627 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
628 LiveInterval &cur = *i->second;
629 unsigned Reg = 0;
630 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
631 if (isPhys)
632 Reg = cur.reg;
633 else if (vrm_->isAssignedReg(cur.reg))
634 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
635 if (!Reg)
636 continue;
637 // Ignore splited live intervals.
638 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
639 continue;
641 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
642 I != E; ++I) {
643 const LiveRange &LR = *I;
644 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
645 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
646 if (LiveInMBBs[i] != EntryMBB) {
647 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
648 "Adding a virtual register to livein set?");
649 LiveInMBBs[i]->addLiveIn(Reg);
651 LiveInMBBs.clear();
656 DEBUG(dbgs() << *vrm_);
658 // Look for physical registers that end up not being allocated even though
659 // register allocator had to spill other registers in its register class.
660 if (!vrm_->FindUnusedRegisters(li_))
661 return;
664 /// processActiveIntervals - expire old intervals and move non-overlapping ones
665 /// to the inactive list.
666 void RALinScan::processActiveIntervals(SlotIndex CurPoint)
668 DEBUG(dbgs() << "\tprocessing active intervals:\n");
670 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
671 LiveInterval *Interval = active_[i].first;
672 LiveInterval::iterator IntervalPos = active_[i].second;
673 unsigned reg = Interval->reg;
675 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
677 if (IntervalPos == Interval->end()) { // Remove expired intervals.
678 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
679 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
680 "Can only allocate virtual registers!");
681 reg = vrm_->getPhys(reg);
682 delRegUse(reg);
684 // Pop off the end of the list.
685 active_[i] = active_.back();
686 active_.pop_back();
687 --i; --e;
689 } else if (IntervalPos->start > CurPoint) {
690 // Move inactive intervals to inactive list.
691 DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
692 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
693 "Can only allocate virtual registers!");
694 reg = vrm_->getPhys(reg);
695 delRegUse(reg);
696 // add to inactive.
697 inactive_.push_back(std::make_pair(Interval, IntervalPos));
699 // Pop off the end of the list.
700 active_[i] = active_.back();
701 active_.pop_back();
702 --i; --e;
703 } else {
704 // Otherwise, just update the iterator position.
705 active_[i].second = IntervalPos;
710 /// processInactiveIntervals - expire old intervals and move overlapping
711 /// ones to the active list.
712 void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
714 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
716 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
717 LiveInterval *Interval = inactive_[i].first;
718 LiveInterval::iterator IntervalPos = inactive_[i].second;
719 unsigned reg = Interval->reg;
721 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
723 if (IntervalPos == Interval->end()) { // remove expired intervals.
724 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
726 // Pop off the end of the list.
727 inactive_[i] = inactive_.back();
728 inactive_.pop_back();
729 --i; --e;
730 } else if (IntervalPos->start <= CurPoint) {
731 // move re-activated intervals in active list
732 DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
733 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
734 "Can only allocate virtual registers!");
735 reg = vrm_->getPhys(reg);
736 addRegUse(reg);
737 // add to active
738 active_.push_back(std::make_pair(Interval, IntervalPos));
740 // Pop off the end of the list.
741 inactive_[i] = inactive_.back();
742 inactive_.pop_back();
743 --i; --e;
744 } else {
745 // Otherwise, just update the iterator position.
746 inactive_[i].second = IntervalPos;
751 /// updateSpillWeights - updates the spill weights of the specifed physical
752 /// register and its weight.
753 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
754 unsigned reg, float weight,
755 const TargetRegisterClass *RC) {
756 SmallSet<unsigned, 4> Processed;
757 SmallSet<unsigned, 4> SuperAdded;
758 SmallVector<unsigned, 4> Supers;
759 Weights[reg] += weight;
760 Processed.insert(reg);
761 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
762 Weights[*as] += weight;
763 Processed.insert(*as);
764 if (tri_->isSubRegister(*as, reg) &&
765 SuperAdded.insert(*as) &&
766 RC->contains(*as)) {
767 Supers.push_back(*as);
771 // If the alias is a super-register, and the super-register is in the
772 // register class we are trying to allocate. Then add the weight to all
773 // sub-registers of the super-register even if they are not aliases.
774 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
775 // bl should get the same spill weight otherwise it will be choosen
776 // as a spill candidate since spilling bh doesn't make ebx available.
777 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
778 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
779 if (!Processed.count(*sr))
780 Weights[*sr] += weight;
784 static
785 RALinScan::IntervalPtrs::iterator
786 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
787 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
788 I != E; ++I)
789 if (I->first == LI) return I;
790 return IP.end();
793 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
794 SlotIndex Point){
795 for (unsigned i = 0, e = V.size(); i != e; ++i) {
796 RALinScan::IntervalPtr &IP = V[i];
797 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
798 IP.second, Point);
799 if (I != IP.first->begin()) --I;
800 IP.second = I;
804 /// getConflictWeight - Return the number of conflicts between cur
805 /// live interval and defs and uses of Reg weighted by loop depthes.
806 static
807 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
808 MachineRegisterInfo *mri_,
809 MachineLoopInfo *loopInfo) {
810 float Conflicts = 0;
811 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
812 E = mri_->reg_end(); I != E; ++I) {
813 MachineInstr *MI = &*I;
814 if (cur->liveAt(li_->getInstructionIndex(MI))) {
815 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
816 Conflicts += std::pow(10.0f, (float)loopDepth);
819 return Conflicts;
822 /// findIntervalsToSpill - Determine the intervals to spill for the
823 /// specified interval. It's passed the physical registers whose spill
824 /// weight is the lowest among all the registers whose live intervals
825 /// conflict with the interval.
826 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
827 std::vector<std::pair<unsigned,float> > &Candidates,
828 unsigned NumCands,
829 SmallVector<LiveInterval*, 8> &SpillIntervals) {
830 // We have figured out the *best* register to spill. But there are other
831 // registers that are pretty good as well (spill weight within 3%). Spill
832 // the one that has fewest defs and uses that conflict with cur.
833 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
834 SmallVector<LiveInterval*, 8> SLIs[3];
836 DEBUG({
837 dbgs() << "\tConsidering " << NumCands << " candidates: ";
838 for (unsigned i = 0; i != NumCands; ++i)
839 dbgs() << tri_->getName(Candidates[i].first) << " ";
840 dbgs() << "\n";
843 // Calculate the number of conflicts of each candidate.
844 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
845 unsigned Reg = i->first->reg;
846 unsigned PhysReg = vrm_->getPhys(Reg);
847 if (!cur->overlapsFrom(*i->first, i->second))
848 continue;
849 for (unsigned j = 0; j < NumCands; ++j) {
850 unsigned Candidate = Candidates[j].first;
851 if (tri_->regsOverlap(PhysReg, Candidate)) {
852 if (NumCands > 1)
853 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
854 SLIs[j].push_back(i->first);
859 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
860 unsigned Reg = i->first->reg;
861 unsigned PhysReg = vrm_->getPhys(Reg);
862 if (!cur->overlapsFrom(*i->first, i->second-1))
863 continue;
864 for (unsigned j = 0; j < NumCands; ++j) {
865 unsigned Candidate = Candidates[j].first;
866 if (tri_->regsOverlap(PhysReg, Candidate)) {
867 if (NumCands > 1)
868 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
869 SLIs[j].push_back(i->first);
874 // Which is the best candidate?
875 unsigned BestCandidate = 0;
876 float MinConflicts = Conflicts[0];
877 for (unsigned i = 1; i != NumCands; ++i) {
878 if (Conflicts[i] < MinConflicts) {
879 BestCandidate = i;
880 MinConflicts = Conflicts[i];
884 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
885 std::back_inserter(SpillIntervals));
888 namespace {
889 struct WeightCompare {
890 private:
891 const RALinScan &Allocator;
893 public:
894 WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
896 typedef std::pair<unsigned, float> RegWeightPair;
897 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
898 return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
903 static bool weightsAreClose(float w1, float w2) {
904 if (!NewHeuristic)
905 return false;
907 float diff = w1 - w2;
908 if (diff <= 0.02f) // Within 0.02f
909 return true;
910 return (diff / w2) <= 0.05f; // Within 5%.
913 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
914 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
915 if (I == NextReloadMap.end())
916 return 0;
917 return &li_->getInterval(I->second);
920 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
921 bool isNew = DowngradedRegs.insert(Reg);
922 isNew = isNew; // Silence compiler warning.
923 assert(isNew && "Multiple reloads holding the same register?");
924 DowngradeMap.insert(std::make_pair(li->reg, Reg));
925 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
926 isNew = DowngradedRegs.insert(*AS);
927 isNew = isNew; // Silence compiler warning.
928 assert(isNew && "Multiple reloads holding the same register?");
929 DowngradeMap.insert(std::make_pair(li->reg, *AS));
931 ++NumDowngrade;
934 void RALinScan::UpgradeRegister(unsigned Reg) {
935 if (Reg) {
936 DowngradedRegs.erase(Reg);
937 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
938 DowngradedRegs.erase(*AS);
942 namespace {
943 struct LISorter {
944 bool operator()(LiveInterval* A, LiveInterval* B) {
945 return A->beginIndex() < B->beginIndex();
950 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
951 /// spill.
952 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
953 DEBUG(dbgs() << "\tallocating current interval: ");
955 // This is an implicitly defined live interval, just assign any register.
956 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
957 if (cur->empty()) {
958 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
959 if (!physReg)
960 physReg = getFirstNonReservedPhysReg(RC);
961 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
962 // Note the register is not really in use.
963 vrm_->assignVirt2Phys(cur->reg, physReg);
964 return;
967 backUpRegUses();
969 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
970 SlotIndex StartPosition = cur->beginIndex();
971 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
973 // If start of this live interval is defined by a move instruction and its
974 // source is assigned a physical register that is compatible with the target
975 // register class, then we should try to assign it the same register.
976 // This can happen when the move is from a larger register class to a smaller
977 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
978 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
979 VNInfo *vni = cur->begin()->valno;
980 if (!vni->isUnused()) {
981 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
982 if (CopyMI && CopyMI->isCopy()) {
983 unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
984 unsigned SrcReg = CopyMI->getOperand(1).getReg();
985 unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
986 unsigned Reg = 0;
987 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
988 Reg = SrcReg;
989 else if (vrm_->isAssignedReg(SrcReg))
990 Reg = vrm_->getPhys(SrcReg);
991 if (Reg) {
992 if (SrcSubReg)
993 Reg = tri_->getSubReg(Reg, SrcSubReg);
994 if (DstSubReg)
995 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
996 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
997 mri_->setRegAllocationHint(cur->reg, 0, Reg);
1003 // For every interval in inactive we overlap with, mark the
1004 // register as not free and update spill weights.
1005 for (IntervalPtrs::const_iterator i = inactive_.begin(),
1006 e = inactive_.end(); i != e; ++i) {
1007 unsigned Reg = i->first->reg;
1008 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
1009 "Can only allocate virtual registers!");
1010 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
1011 // If this is not in a related reg class to the register we're allocating,
1012 // don't check it.
1013 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1014 cur->overlapsFrom(*i->first, i->second-1)) {
1015 Reg = vrm_->getPhys(Reg);
1016 addRegUse(Reg);
1017 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
1021 // Speculatively check to see if we can get a register right now. If not,
1022 // we know we won't be able to by adding more constraints. If so, we can
1023 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1024 // is very bad (it contains all callee clobbered registers for any functions
1025 // with a call), so we want to avoid doing that if possible.
1026 unsigned physReg = getFreePhysReg(cur);
1027 unsigned BestPhysReg = physReg;
1028 if (physReg) {
1029 // We got a register. However, if it's in the fixed_ list, we might
1030 // conflict with it. Check to see if we conflict with it or any of its
1031 // aliases.
1032 SmallSet<unsigned, 8> RegAliases;
1033 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
1034 RegAliases.insert(*AS);
1036 bool ConflictsWithFixed = false;
1037 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1038 IntervalPtr &IP = fixed_[i];
1039 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
1040 // Okay, this reg is on the fixed list. Check to see if we actually
1041 // conflict.
1042 LiveInterval *I = IP.first;
1043 if (I->endIndex() > StartPosition) {
1044 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1045 IP.second = II;
1046 if (II != I->begin() && II->start > StartPosition)
1047 --II;
1048 if (cur->overlapsFrom(*I, II)) {
1049 ConflictsWithFixed = true;
1050 break;
1056 // Okay, the register picked by our speculative getFreePhysReg call turned
1057 // out to be in use. Actually add all of the conflicting fixed registers to
1058 // regUse_ so we can do an accurate query.
1059 if (ConflictsWithFixed) {
1060 // For every interval in fixed we overlap with, mark the register as not
1061 // free and update spill weights.
1062 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1063 IntervalPtr &IP = fixed_[i];
1064 LiveInterval *I = IP.first;
1066 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1067 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1068 I->endIndex() > StartPosition) {
1069 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1070 IP.second = II;
1071 if (II != I->begin() && II->start > StartPosition)
1072 --II;
1073 if (cur->overlapsFrom(*I, II)) {
1074 unsigned reg = I->reg;
1075 addRegUse(reg);
1076 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1081 // Using the newly updated regUse_ object, which includes conflicts in the
1082 // future, see if there are any registers available.
1083 physReg = getFreePhysReg(cur);
1087 // Restore the physical register tracker, removing information about the
1088 // future.
1089 restoreRegUses();
1091 // If we find a free register, we are done: assign this virtual to
1092 // the free physical register and add this interval to the active
1093 // list.
1094 if (physReg) {
1095 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
1096 vrm_->assignVirt2Phys(cur->reg, physReg);
1097 addRegUse(physReg);
1098 active_.push_back(std::make_pair(cur, cur->begin()));
1099 handled_.push_back(cur);
1101 // "Upgrade" the physical register since it has been allocated.
1102 UpgradeRegister(physReg);
1103 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1104 // "Downgrade" physReg to try to keep physReg from being allocated until
1105 // the next reload from the same SS is allocated.
1106 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1107 DowngradeRegister(cur, physReg);
1109 return;
1111 DEBUG(dbgs() << "no free registers\n");
1113 // Compile the spill weights into an array that is better for scanning.
1114 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1115 for (std::vector<std::pair<unsigned, float> >::iterator
1116 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1117 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1119 // for each interval in active, update spill weights.
1120 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1121 i != e; ++i) {
1122 unsigned reg = i->first->reg;
1123 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1124 "Can only allocate virtual registers!");
1125 reg = vrm_->getPhys(reg);
1126 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1129 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1131 // Find a register to spill.
1132 float minWeight = HUGE_VALF;
1133 unsigned minReg = 0;
1135 bool Found = false;
1136 std::vector<std::pair<unsigned,float> > RegsWeights;
1137 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1138 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1139 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1140 unsigned reg = *i;
1141 float regWeight = SpillWeights[reg];
1142 // Don't even consider reserved regs.
1143 if (reservedRegs_.test(reg))
1144 continue;
1145 // Skip recently allocated registers and reserved registers.
1146 if (minWeight > regWeight && !isRecentlyUsed(reg))
1147 Found = true;
1148 RegsWeights.push_back(std::make_pair(reg, regWeight));
1151 // If we didn't find a register that is spillable, try aliases?
1152 if (!Found) {
1153 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1154 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1155 unsigned reg = *i;
1156 if (reservedRegs_.test(reg))
1157 continue;
1158 // No need to worry about if the alias register size < regsize of RC.
1159 // We are going to spill all registers that alias it anyway.
1160 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1161 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1165 // Sort all potential spill candidates by weight.
1166 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
1167 minReg = RegsWeights[0].first;
1168 minWeight = RegsWeights[0].second;
1169 if (minWeight == HUGE_VALF) {
1170 // All registers must have inf weight. Just grab one!
1171 minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
1172 if (cur->weight == HUGE_VALF ||
1173 li_->getApproximateInstructionCount(*cur) == 0) {
1174 // Spill a physical register around defs and uses.
1175 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1176 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1177 // in fixed_. Reset them.
1178 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1179 IntervalPtr &IP = fixed_[i];
1180 LiveInterval *I = IP.first;
1181 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1182 IP.second = I->advanceTo(I->begin(), StartPosition);
1185 DowngradedRegs.clear();
1186 assignRegOrStackSlotAtInterval(cur);
1187 } else {
1188 assert(false && "Ran out of registers during register allocation!");
1189 report_fatal_error("Ran out of registers during register allocation!");
1191 return;
1195 // Find up to 3 registers to consider as spill candidates.
1196 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1197 while (LastCandidate > 1) {
1198 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1199 break;
1200 --LastCandidate;
1203 DEBUG({
1204 dbgs() << "\t\tregister(s) with min weight(s): ";
1206 for (unsigned i = 0; i != LastCandidate; ++i)
1207 dbgs() << tri_->getName(RegsWeights[i].first)
1208 << " (" << RegsWeights[i].second << ")\n";
1211 // If the current has the minimum weight, we need to spill it and
1212 // add any added intervals back to unhandled, and restart
1213 // linearscan.
1214 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1215 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
1216 SmallVector<LiveInterval*, 8> spillIs, added;
1217 spiller_->spill(cur, added, spillIs);
1219 std::sort(added.begin(), added.end(), LISorter());
1220 if (added.empty())
1221 return; // Early exit if all spills were folded.
1223 // Merge added with unhandled. Note that we have already sorted
1224 // intervals returned by addIntervalsForSpills by their starting
1225 // point.
1226 // This also update the NextReloadMap. That is, it adds mapping from a
1227 // register defined by a reload from SS to the next reload from SS in the
1228 // same basic block.
1229 MachineBasicBlock *LastReloadMBB = 0;
1230 LiveInterval *LastReload = 0;
1231 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1232 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1233 LiveInterval *ReloadLi = added[i];
1234 if (ReloadLi->weight == HUGE_VALF &&
1235 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1236 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1237 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1238 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1239 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1240 // Last reload of same SS is in the same MBB. We want to try to
1241 // allocate both reloads the same register and make sure the reg
1242 // isn't clobbered in between if at all possible.
1243 assert(LastReload->beginIndex() < ReloadIdx);
1244 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1246 LastReloadMBB = ReloadMBB;
1247 LastReload = ReloadLi;
1248 LastReloadSS = ReloadSS;
1250 unhandled_.push(ReloadLi);
1252 return;
1255 ++NumBacktracks;
1257 // Push the current interval back to unhandled since we are going
1258 // to re-run at least this iteration. Since we didn't modify it it
1259 // should go back right in the front of the list
1260 unhandled_.push(cur);
1262 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1263 "did not choose a register to spill?");
1265 // We spill all intervals aliasing the register with
1266 // minimum weight, rollback to the interval with the earliest
1267 // start point and let the linear scan algorithm run again
1268 SmallVector<LiveInterval*, 8> spillIs;
1270 // Determine which intervals have to be spilled.
1271 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1273 // Set of spilled vregs (used later to rollback properly)
1274 SmallSet<unsigned, 8> spilled;
1276 // The earliest start of a Spilled interval indicates up to where
1277 // in handled we need to roll back
1278 assert(!spillIs.empty() && "No spill intervals?");
1279 SlotIndex earliestStart = spillIs[0]->beginIndex();
1281 // Spill live intervals of virtual regs mapped to the physical register we
1282 // want to clear (and its aliases). We only spill those that overlap with the
1283 // current interval as the rest do not affect its allocation. we also keep
1284 // track of the earliest start of all spilled live intervals since this will
1285 // mark our rollback point.
1286 SmallVector<LiveInterval*, 8> added;
1287 while (!spillIs.empty()) {
1288 LiveInterval *sli = spillIs.back();
1289 spillIs.pop_back();
1290 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
1291 if (sli->beginIndex() < earliestStart)
1292 earliestStart = sli->beginIndex();
1293 spiller_->spill(sli, added, spillIs);
1294 spilled.insert(sli->reg);
1297 // Include any added intervals in earliestStart.
1298 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1299 SlotIndex SI = added[i]->beginIndex();
1300 if (SI < earliestStart)
1301 earliestStart = SI;
1304 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
1306 // Scan handled in reverse order up to the earliest start of a
1307 // spilled live interval and undo each one, restoring the state of
1308 // unhandled.
1309 while (!handled_.empty()) {
1310 LiveInterval* i = handled_.back();
1311 // If this interval starts before t we are done.
1312 if (!i->empty() && i->beginIndex() < earliestStart)
1313 break;
1314 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
1315 handled_.pop_back();
1317 // When undoing a live interval allocation we must know if it is active or
1318 // inactive to properly update regUse_ and the VirtRegMap.
1319 IntervalPtrs::iterator it;
1320 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1321 active_.erase(it);
1322 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1323 if (!spilled.count(i->reg))
1324 unhandled_.push(i);
1325 delRegUse(vrm_->getPhys(i->reg));
1326 vrm_->clearVirt(i->reg);
1327 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1328 inactive_.erase(it);
1329 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1330 if (!spilled.count(i->reg))
1331 unhandled_.push(i);
1332 vrm_->clearVirt(i->reg);
1333 } else {
1334 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1335 "Can only allocate virtual registers!");
1336 vrm_->clearVirt(i->reg);
1337 unhandled_.push(i);
1340 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1341 if (ii == DowngradeMap.end())
1342 // It interval has a preference, it must be defined by a copy. Clear the
1343 // preference now since the source interval allocation may have been
1344 // undone as well.
1345 mri_->setRegAllocationHint(i->reg, 0, 0);
1346 else {
1347 UpgradeRegister(ii->second);
1351 // Rewind the iterators in the active, inactive, and fixed lists back to the
1352 // point we reverted to.
1353 RevertVectorIteratorsTo(active_, earliestStart);
1354 RevertVectorIteratorsTo(inactive_, earliestStart);
1355 RevertVectorIteratorsTo(fixed_, earliestStart);
1357 // Scan the rest and undo each interval that expired after t and
1358 // insert it in active (the next iteration of the algorithm will
1359 // put it in inactive if required)
1360 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1361 LiveInterval *HI = handled_[i];
1362 if (!HI->expiredAt(earliestStart) &&
1363 HI->expiredAt(cur->beginIndex())) {
1364 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
1365 active_.push_back(std::make_pair(HI, HI->begin()));
1366 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1367 addRegUse(vrm_->getPhys(HI->reg));
1371 // Merge added with unhandled.
1372 // This also update the NextReloadMap. That is, it adds mapping from a
1373 // register defined by a reload from SS to the next reload from SS in the
1374 // same basic block.
1375 MachineBasicBlock *LastReloadMBB = 0;
1376 LiveInterval *LastReload = 0;
1377 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1378 std::sort(added.begin(), added.end(), LISorter());
1379 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1380 LiveInterval *ReloadLi = added[i];
1381 if (ReloadLi->weight == HUGE_VALF &&
1382 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1383 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1384 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1385 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1386 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1387 // Last reload of same SS is in the same MBB. We want to try to
1388 // allocate both reloads the same register and make sure the reg
1389 // isn't clobbered in between if at all possible.
1390 assert(LastReload->beginIndex() < ReloadIdx);
1391 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1393 LastReloadMBB = ReloadMBB;
1394 LastReload = ReloadLi;
1395 LastReloadSS = ReloadSS;
1397 unhandled_.push(ReloadLi);
1401 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1402 const TargetRegisterClass *RC,
1403 unsigned MaxInactiveCount,
1404 SmallVector<unsigned, 256> &inactiveCounts,
1405 bool SkipDGRegs) {
1406 unsigned FreeReg = 0;
1407 unsigned FreeRegInactiveCount = 0;
1409 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1410 // Resolve second part of the hint (if possible) given the current allocation.
1411 unsigned physReg = Hint.second;
1412 if (physReg &&
1413 TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1414 physReg = vrm_->getPhys(physReg);
1416 TargetRegisterClass::iterator I, E;
1417 tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
1418 assert(I != E && "No allocatable register in this register class!");
1420 // Scan for the first available register.
1421 for (; I != E; ++I) {
1422 unsigned Reg = *I;
1423 // Ignore "downgraded" registers.
1424 if (SkipDGRegs && DowngradedRegs.count(Reg))
1425 continue;
1426 // Skip reserved registers.
1427 if (reservedRegs_.test(Reg))
1428 continue;
1429 // Skip recently allocated registers.
1430 if (isRegAvail(Reg) && !isRecentlyUsed(Reg)) {
1431 FreeReg = Reg;
1432 if (FreeReg < inactiveCounts.size())
1433 FreeRegInactiveCount = inactiveCounts[FreeReg];
1434 else
1435 FreeRegInactiveCount = 0;
1436 break;
1440 // If there are no free regs, or if this reg has the max inactive count,
1441 // return this register.
1442 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
1443 // Remember what register we picked so we can skip it next time.
1444 if (FreeReg != 0) recordRecentlyUsed(FreeReg);
1445 return FreeReg;
1448 // Continue scanning the registers, looking for the one with the highest
1449 // inactive count. Alkis found that this reduced register pressure very
1450 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1451 // reevaluated now.
1452 for (; I != E; ++I) {
1453 unsigned Reg = *I;
1454 // Ignore "downgraded" registers.
1455 if (SkipDGRegs && DowngradedRegs.count(Reg))
1456 continue;
1457 // Skip reserved registers.
1458 if (reservedRegs_.test(Reg))
1459 continue;
1460 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1461 FreeRegInactiveCount < inactiveCounts[Reg] && !isRecentlyUsed(Reg)) {
1462 FreeReg = Reg;
1463 FreeRegInactiveCount = inactiveCounts[Reg];
1464 if (FreeRegInactiveCount == MaxInactiveCount)
1465 break; // We found the one with the max inactive count.
1469 // Remember what register we picked so we can skip it next time.
1470 recordRecentlyUsed(FreeReg);
1472 return FreeReg;
1475 /// getFreePhysReg - return a free physical register for this virtual register
1476 /// interval if we have one, otherwise return 0.
1477 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1478 SmallVector<unsigned, 256> inactiveCounts;
1479 unsigned MaxInactiveCount = 0;
1481 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1482 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1484 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1485 i != e; ++i) {
1486 unsigned reg = i->first->reg;
1487 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1488 "Can only allocate virtual registers!");
1490 // If this is not in a related reg class to the register we're allocating,
1491 // don't check it.
1492 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1493 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1494 reg = vrm_->getPhys(reg);
1495 if (inactiveCounts.size() <= reg)
1496 inactiveCounts.resize(reg+1);
1497 ++inactiveCounts[reg];
1498 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1502 // If copy coalescer has assigned a "preferred" register, check if it's
1503 // available first.
1504 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1505 if (Preference) {
1506 DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
1507 if (isRegAvail(Preference) &&
1508 RC->contains(Preference))
1509 return Preference;
1512 if (!DowngradedRegs.empty()) {
1513 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1514 true);
1515 if (FreeReg)
1516 return FreeReg;
1518 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1521 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1522 return new RALinScan();