zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / SelectionDAG / SelectionDAG.cpp
blob0840bd740be154f201cdab8eaba9a2c5d2942bb3
1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Analysis/DebugInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Target/TargetFrameInfo.h"
35 #include "llvm/Target/TargetLowering.h"
36 #include "llvm/Target/TargetSelectionDAGInfo.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetIntrinsicInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/ManagedStatic.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/System/Mutex.h"
48 #include "llvm/ADT/SetVector.h"
49 #include "llvm/ADT/SmallPtrSet.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringExtras.h"
53 #include <algorithm>
54 #include <cmath>
55 using namespace llvm;
57 /// makeVTList - Return an instance of the SDVTList struct initialized with the
58 /// specified members.
59 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60 SDVTList Res = {VTs, NumVTs};
61 return Res;
64 static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65 switch (VT.getSimpleVT().SimpleTy) {
66 default: llvm_unreachable("Unknown FP format");
67 case MVT::f32: return &APFloat::IEEEsingle;
68 case MVT::f64: return &APFloat::IEEEdouble;
69 case MVT::f80: return &APFloat::x87DoubleExtended;
70 case MVT::f128: return &APFloat::IEEEquad;
71 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
75 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
77 //===----------------------------------------------------------------------===//
78 // ConstantFPSDNode Class
79 //===----------------------------------------------------------------------===//
81 /// isExactlyValue - We don't rely on operator== working on double values, as
82 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83 /// As such, this method can be used to do an exact bit-for-bit comparison of
84 /// two floating point values.
85 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86 return getValueAPF().bitwiseIsEqual(V);
89 bool ConstantFPSDNode::isValueValidForType(EVT VT,
90 const APFloat& Val) {
91 assert(VT.isFloatingPoint() && "Can only convert between FP types");
93 // PPC long double cannot be converted to any other type.
94 if (VT == MVT::ppcf128 ||
95 &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96 return false;
98 // convert modifies in place, so make a copy.
99 APFloat Val2 = APFloat(Val);
100 bool losesInfo;
101 (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102 &losesInfo);
103 return !losesInfo;
106 //===----------------------------------------------------------------------===//
107 // ISD Namespace
108 //===----------------------------------------------------------------------===//
110 /// isBuildVectorAllOnes - Return true if the specified node is a
111 /// BUILD_VECTOR where all of the elements are ~0 or undef.
112 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113 // Look through a bit convert.
114 if (N->getOpcode() == ISD::BIT_CONVERT)
115 N = N->getOperand(0).getNode();
117 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
119 unsigned i = 0, e = N->getNumOperands();
121 // Skip over all of the undef values.
122 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123 ++i;
125 // Do not accept an all-undef vector.
126 if (i == e) return false;
128 // Do not accept build_vectors that aren't all constants or which have non-~0
129 // elements.
130 SDValue NotZero = N->getOperand(i);
131 if (isa<ConstantSDNode>(NotZero)) {
132 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133 return false;
134 } else if (isa<ConstantFPSDNode>(NotZero)) {
135 if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136 bitcastToAPInt().isAllOnesValue())
137 return false;
138 } else
139 return false;
141 // Okay, we have at least one ~0 value, check to see if the rest match or are
142 // undefs.
143 for (++i; i != e; ++i)
144 if (N->getOperand(i) != NotZero &&
145 N->getOperand(i).getOpcode() != ISD::UNDEF)
146 return false;
147 return true;
151 /// isBuildVectorAllZeros - Return true if the specified node is a
152 /// BUILD_VECTOR where all of the elements are 0 or undef.
153 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154 // Look through a bit convert.
155 if (N->getOpcode() == ISD::BIT_CONVERT)
156 N = N->getOperand(0).getNode();
158 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
160 unsigned i = 0, e = N->getNumOperands();
162 // Skip over all of the undef values.
163 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164 ++i;
166 // Do not accept an all-undef vector.
167 if (i == e) return false;
169 // Do not accept build_vectors that aren't all constants or which have non-0
170 // elements.
171 SDValue Zero = N->getOperand(i);
172 if (isa<ConstantSDNode>(Zero)) {
173 if (!cast<ConstantSDNode>(Zero)->isNullValue())
174 return false;
175 } else if (isa<ConstantFPSDNode>(Zero)) {
176 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177 return false;
178 } else
179 return false;
181 // Okay, we have at least one 0 value, check to see if the rest match or are
182 // undefs.
183 for (++i; i != e; ++i)
184 if (N->getOperand(i) != Zero &&
185 N->getOperand(i).getOpcode() != ISD::UNDEF)
186 return false;
187 return true;
190 /// isScalarToVector - Return true if the specified node is a
191 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192 /// element is not an undef.
193 bool ISD::isScalarToVector(const SDNode *N) {
194 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195 return true;
197 if (N->getOpcode() != ISD::BUILD_VECTOR)
198 return false;
199 if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200 return false;
201 unsigned NumElems = N->getNumOperands();
202 for (unsigned i = 1; i < NumElems; ++i) {
203 SDValue V = N->getOperand(i);
204 if (V.getOpcode() != ISD::UNDEF)
205 return false;
207 return true;
210 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211 /// when given the operation for (X op Y).
212 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213 // To perform this operation, we just need to swap the L and G bits of the
214 // operation.
215 unsigned OldL = (Operation >> 2) & 1;
216 unsigned OldG = (Operation >> 1) & 1;
217 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
218 (OldL << 1) | // New G bit
219 (OldG << 2)); // New L bit.
222 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223 /// 'op' is a valid SetCC operation.
224 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225 unsigned Operation = Op;
226 if (isInteger)
227 Operation ^= 7; // Flip L, G, E bits, but not U.
228 else
229 Operation ^= 15; // Flip all of the condition bits.
231 if (Operation > ISD::SETTRUE2)
232 Operation &= ~8; // Don't let N and U bits get set.
234 return ISD::CondCode(Operation);
238 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
239 /// signed operation and 2 if the result is an unsigned comparison. Return zero
240 /// if the operation does not depend on the sign of the input (setne and seteq).
241 static int isSignedOp(ISD::CondCode Opcode) {
242 switch (Opcode) {
243 default: llvm_unreachable("Illegal integer setcc operation!");
244 case ISD::SETEQ:
245 case ISD::SETNE: return 0;
246 case ISD::SETLT:
247 case ISD::SETLE:
248 case ISD::SETGT:
249 case ISD::SETGE: return 1;
250 case ISD::SETULT:
251 case ISD::SETULE:
252 case ISD::SETUGT:
253 case ISD::SETUGE: return 2;
257 /// getSetCCOrOperation - Return the result of a logical OR between different
258 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
259 /// returns SETCC_INVALID if it is not possible to represent the resultant
260 /// comparison.
261 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262 bool isInteger) {
263 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264 // Cannot fold a signed integer setcc with an unsigned integer setcc.
265 return ISD::SETCC_INVALID;
267 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
269 // If the N and U bits get set then the resultant comparison DOES suddenly
270 // care about orderedness, and is true when ordered.
271 if (Op > ISD::SETTRUE2)
272 Op &= ~16; // Clear the U bit if the N bit is set.
274 // Canonicalize illegal integer setcc's.
275 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
276 Op = ISD::SETNE;
278 return ISD::CondCode(Op);
281 /// getSetCCAndOperation - Return the result of a logical AND between different
282 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
283 /// function returns zero if it is not possible to represent the resultant
284 /// comparison.
285 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286 bool isInteger) {
287 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288 // Cannot fold a signed setcc with an unsigned setcc.
289 return ISD::SETCC_INVALID;
291 // Combine all of the condition bits.
292 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294 // Canonicalize illegal integer setcc's.
295 if (isInteger) {
296 switch (Result) {
297 default: break;
298 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
299 case ISD::SETOEQ: // SETEQ & SETU[LG]E
300 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
301 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
302 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
306 return Result;
309 //===----------------------------------------------------------------------===//
310 // SDNode Profile Support
311 //===----------------------------------------------------------------------===//
313 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
316 ID.AddInteger(OpC);
319 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320 /// solely with their pointer.
321 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322 ID.AddPointer(VTList.VTs);
325 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327 static void AddNodeIDOperands(FoldingSetNodeID &ID,
328 const SDValue *Ops, unsigned NumOps) {
329 for (; NumOps; --NumOps, ++Ops) {
330 ID.AddPointer(Ops->getNode());
331 ID.AddInteger(Ops->getResNo());
335 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337 static void AddNodeIDOperands(FoldingSetNodeID &ID,
338 const SDUse *Ops, unsigned NumOps) {
339 for (; NumOps; --NumOps, ++Ops) {
340 ID.AddPointer(Ops->getNode());
341 ID.AddInteger(Ops->getResNo());
345 static void AddNodeIDNode(FoldingSetNodeID &ID,
346 unsigned short OpC, SDVTList VTList,
347 const SDValue *OpList, unsigned N) {
348 AddNodeIDOpcode(ID, OpC);
349 AddNodeIDValueTypes(ID, VTList);
350 AddNodeIDOperands(ID, OpList, N);
353 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354 /// the NodeID data.
355 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356 switch (N->getOpcode()) {
357 case ISD::TargetExternalSymbol:
358 case ISD::ExternalSymbol:
359 llvm_unreachable("Should only be used on nodes with operands");
360 default: break; // Normal nodes don't need extra info.
361 case ISD::TargetConstant:
362 case ISD::Constant:
363 ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364 break;
365 case ISD::TargetConstantFP:
366 case ISD::ConstantFP: {
367 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368 break;
370 case ISD::TargetGlobalAddress:
371 case ISD::GlobalAddress:
372 case ISD::TargetGlobalTLSAddress:
373 case ISD::GlobalTLSAddress: {
374 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375 ID.AddPointer(GA->getGlobal());
376 ID.AddInteger(GA->getOffset());
377 ID.AddInteger(GA->getTargetFlags());
378 break;
380 case ISD::BasicBlock:
381 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382 break;
383 case ISD::Register:
384 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385 break;
387 case ISD::SRCVALUE:
388 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389 break;
390 case ISD::FrameIndex:
391 case ISD::TargetFrameIndex:
392 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393 break;
394 case ISD::JumpTable:
395 case ISD::TargetJumpTable:
396 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398 break;
399 case ISD::ConstantPool:
400 case ISD::TargetConstantPool: {
401 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402 ID.AddInteger(CP->getAlignment());
403 ID.AddInteger(CP->getOffset());
404 if (CP->isMachineConstantPoolEntry())
405 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406 else
407 ID.AddPointer(CP->getConstVal());
408 ID.AddInteger(CP->getTargetFlags());
409 break;
411 case ISD::LOAD: {
412 const LoadSDNode *LD = cast<LoadSDNode>(N);
413 ID.AddInteger(LD->getMemoryVT().getRawBits());
414 ID.AddInteger(LD->getRawSubclassData());
415 break;
417 case ISD::STORE: {
418 const StoreSDNode *ST = cast<StoreSDNode>(N);
419 ID.AddInteger(ST->getMemoryVT().getRawBits());
420 ID.AddInteger(ST->getRawSubclassData());
421 break;
423 case ISD::ATOMIC_CMP_SWAP:
424 case ISD::ATOMIC_SWAP:
425 case ISD::ATOMIC_LOAD_ADD:
426 case ISD::ATOMIC_LOAD_SUB:
427 case ISD::ATOMIC_LOAD_AND:
428 case ISD::ATOMIC_LOAD_OR:
429 case ISD::ATOMIC_LOAD_XOR:
430 case ISD::ATOMIC_LOAD_NAND:
431 case ISD::ATOMIC_LOAD_MIN:
432 case ISD::ATOMIC_LOAD_MAX:
433 case ISD::ATOMIC_LOAD_UMIN:
434 case ISD::ATOMIC_LOAD_UMAX: {
435 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436 ID.AddInteger(AT->getMemoryVT().getRawBits());
437 ID.AddInteger(AT->getRawSubclassData());
438 break;
440 case ISD::VECTOR_SHUFFLE: {
441 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443 i != e; ++i)
444 ID.AddInteger(SVN->getMaskElt(i));
445 break;
447 case ISD::TargetBlockAddress:
448 case ISD::BlockAddress: {
449 ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450 ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451 break;
453 } // end switch (N->getOpcode())
456 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457 /// data.
458 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459 AddNodeIDOpcode(ID, N->getOpcode());
460 // Add the return value info.
461 AddNodeIDValueTypes(ID, N->getVTList());
462 // Add the operand info.
463 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465 // Handle SDNode leafs with special info.
466 AddNodeIDCustom(ID, N);
469 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470 /// the CSE map that carries volatility, temporalness, indexing mode, and
471 /// extension/truncation information.
473 static inline unsigned
474 encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475 bool isNonTemporal) {
476 assert((ConvType & 3) == ConvType &&
477 "ConvType may not require more than 2 bits!");
478 assert((AM & 7) == AM &&
479 "AM may not require more than 3 bits!");
480 return ConvType |
481 (AM << 2) |
482 (isVolatile << 5) |
483 (isNonTemporal << 6);
486 //===----------------------------------------------------------------------===//
487 // SelectionDAG Class
488 //===----------------------------------------------------------------------===//
490 /// doNotCSE - Return true if CSE should not be performed for this node.
491 static bool doNotCSE(SDNode *N) {
492 if (N->getValueType(0) == MVT::Flag)
493 return true; // Never CSE anything that produces a flag.
495 switch (N->getOpcode()) {
496 default: break;
497 case ISD::HANDLENODE:
498 case ISD::EH_LABEL:
499 return true; // Never CSE these nodes.
502 // Check that remaining values produced are not flags.
503 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504 if (N->getValueType(i) == MVT::Flag)
505 return true; // Never CSE anything that produces a flag.
507 return false;
510 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
511 /// SelectionDAG.
512 void SelectionDAG::RemoveDeadNodes() {
513 // Create a dummy node (which is not added to allnodes), that adds a reference
514 // to the root node, preventing it from being deleted.
515 HandleSDNode Dummy(getRoot());
517 SmallVector<SDNode*, 128> DeadNodes;
519 // Add all obviously-dead nodes to the DeadNodes worklist.
520 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521 if (I->use_empty())
522 DeadNodes.push_back(I);
524 RemoveDeadNodes(DeadNodes);
526 // If the root changed (e.g. it was a dead load, update the root).
527 setRoot(Dummy.getValue());
530 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
531 /// given list, and any nodes that become unreachable as a result.
532 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533 DAGUpdateListener *UpdateListener) {
535 // Process the worklist, deleting the nodes and adding their uses to the
536 // worklist.
537 while (!DeadNodes.empty()) {
538 SDNode *N = DeadNodes.pop_back_val();
540 if (UpdateListener)
541 UpdateListener->NodeDeleted(N, 0);
543 // Take the node out of the appropriate CSE map.
544 RemoveNodeFromCSEMaps(N);
546 // Next, brutally remove the operand list. This is safe to do, as there are
547 // no cycles in the graph.
548 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549 SDUse &Use = *I++;
550 SDNode *Operand = Use.getNode();
551 Use.set(SDValue());
553 // Now that we removed this operand, see if there are no uses of it left.
554 if (Operand->use_empty())
555 DeadNodes.push_back(Operand);
558 DeallocateNode(N);
562 void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563 SmallVector<SDNode*, 16> DeadNodes(1, N);
564 RemoveDeadNodes(DeadNodes, UpdateListener);
567 void SelectionDAG::DeleteNode(SDNode *N) {
568 // First take this out of the appropriate CSE map.
569 RemoveNodeFromCSEMaps(N);
571 // Finally, remove uses due to operands of this node, remove from the
572 // AllNodes list, and delete the node.
573 DeleteNodeNotInCSEMaps(N);
576 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577 assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578 assert(N->use_empty() && "Cannot delete a node that is not dead!");
580 // Drop all of the operands and decrement used node's use counts.
581 N->DropOperands();
583 DeallocateNode(N);
586 void SelectionDAG::DeallocateNode(SDNode *N) {
587 if (N->OperandsNeedDelete)
588 delete[] N->OperandList;
590 // Set the opcode to DELETED_NODE to help catch bugs when node
591 // memory is reallocated.
592 N->NodeType = ISD::DELETED_NODE;
594 NodeAllocator.Deallocate(AllNodes.remove(N));
596 // Remove the ordering of this node.
597 Ordering->remove(N);
599 // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600 SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601 for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602 DbgVals[i]->setIsInvalidated();
605 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606 /// correspond to it. This is useful when we're about to delete or repurpose
607 /// the node. We don't want future request for structurally identical nodes
608 /// to return N anymore.
609 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610 bool Erased = false;
611 switch (N->getOpcode()) {
612 case ISD::EntryToken:
613 llvm_unreachable("EntryToken should not be in CSEMaps!");
614 return false;
615 case ISD::HANDLENODE: return false; // noop.
616 case ISD::CONDCODE:
617 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618 "Cond code doesn't exist!");
619 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621 break;
622 case ISD::ExternalSymbol:
623 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624 break;
625 case ISD::TargetExternalSymbol: {
626 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627 Erased = TargetExternalSymbols.erase(
628 std::pair<std::string,unsigned char>(ESN->getSymbol(),
629 ESN->getTargetFlags()));
630 break;
632 case ISD::VALUETYPE: {
633 EVT VT = cast<VTSDNode>(N)->getVT();
634 if (VT.isExtended()) {
635 Erased = ExtendedValueTypeNodes.erase(VT);
636 } else {
637 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
640 break;
642 default:
643 // Remove it from the CSE Map.
644 Erased = CSEMap.RemoveNode(N);
645 break;
647 #ifndef NDEBUG
648 // Verify that the node was actually in one of the CSE maps, unless it has a
649 // flag result (which cannot be CSE'd) or is one of the special cases that are
650 // not subject to CSE.
651 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652 !N->isMachineOpcode() && !doNotCSE(N)) {
653 N->dump(this);
654 dbgs() << "\n";
655 llvm_unreachable("Node is not in map!");
657 #endif
658 return Erased;
661 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662 /// maps and modified in place. Add it back to the CSE maps, unless an identical
663 /// node already exists, in which case transfer all its users to the existing
664 /// node. This transfer can potentially trigger recursive merging.
666 void
667 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668 DAGUpdateListener *UpdateListener) {
669 // For node types that aren't CSE'd, just act as if no identical node
670 // already exists.
671 if (!doNotCSE(N)) {
672 SDNode *Existing = CSEMap.GetOrInsertNode(N);
673 if (Existing != N) {
674 // If there was already an existing matching node, use ReplaceAllUsesWith
675 // to replace the dead one with the existing one. This can cause
676 // recursive merging of other unrelated nodes down the line.
677 ReplaceAllUsesWith(N, Existing, UpdateListener);
679 // N is now dead. Inform the listener if it exists and delete it.
680 if (UpdateListener)
681 UpdateListener->NodeDeleted(N, Existing);
682 DeleteNodeNotInCSEMaps(N);
683 return;
687 // If the node doesn't already exist, we updated it. Inform a listener if
688 // it exists.
689 if (UpdateListener)
690 UpdateListener->NodeUpdated(N);
693 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694 /// were replaced with those specified. If this node is never memoized,
695 /// return null, otherwise return a pointer to the slot it would take. If a
696 /// node already exists with these operands, the slot will be non-null.
697 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698 void *&InsertPos) {
699 if (doNotCSE(N))
700 return 0;
702 SDValue Ops[] = { Op };
703 FoldingSetNodeID ID;
704 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705 AddNodeIDCustom(ID, N);
706 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707 return Node;
710 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711 /// were replaced with those specified. If this node is never memoized,
712 /// return null, otherwise return a pointer to the slot it would take. If a
713 /// node already exists with these operands, the slot will be non-null.
714 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715 SDValue Op1, SDValue Op2,
716 void *&InsertPos) {
717 if (doNotCSE(N))
718 return 0;
720 SDValue Ops[] = { Op1, Op2 };
721 FoldingSetNodeID ID;
722 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723 AddNodeIDCustom(ID, N);
724 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725 return Node;
729 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730 /// were replaced with those specified. If this node is never memoized,
731 /// return null, otherwise return a pointer to the slot it would take. If a
732 /// node already exists with these operands, the slot will be non-null.
733 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734 const SDValue *Ops,unsigned NumOps,
735 void *&InsertPos) {
736 if (doNotCSE(N))
737 return 0;
739 FoldingSetNodeID ID;
740 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741 AddNodeIDCustom(ID, N);
742 SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743 return Node;
746 /// VerifyNode - Sanity check the given node. Aborts if it is invalid.
747 void SelectionDAG::VerifyNode(SDNode *N) {
748 switch (N->getOpcode()) {
749 default:
750 break;
751 case ISD::BUILD_PAIR: {
752 EVT VT = N->getValueType(0);
753 assert(N->getNumValues() == 1 && "Too many results!");
754 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755 "Wrong return type!");
756 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758 "Mismatched operand types!");
759 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760 "Wrong operand type!");
761 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762 "Wrong return type size");
763 break;
765 case ISD::BUILD_VECTOR: {
766 assert(N->getNumValues() == 1 && "Too many results!");
767 assert(N->getValueType(0).isVector() && "Wrong return type!");
768 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769 "Wrong number of operands!");
770 EVT EltVT = N->getValueType(0).getVectorElementType();
771 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772 assert((I->getValueType() == EltVT ||
773 (EltVT.isInteger() && I->getValueType().isInteger() &&
774 EltVT.bitsLE(I->getValueType()))) &&
775 "Wrong operand type!");
776 break;
781 /// getEVTAlignment - Compute the default alignment value for the
782 /// given type.
784 unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785 const Type *Ty = VT == MVT::iPTR ?
786 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787 VT.getTypeForEVT(*getContext());
789 return TLI.getTargetData()->getABITypeAlignment(Ty);
792 // EntryNode could meaningfully have debug info if we can find it...
793 SelectionDAG::SelectionDAG(const TargetMachine &tm)
794 : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795 EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
796 Root(getEntryNode()), Ordering(0) {
797 AllNodes.push_back(&EntryNode);
798 Ordering = new SDNodeOrdering();
799 DbgInfo = new SDDbgInfo();
802 void SelectionDAG::init(MachineFunction &mf) {
803 MF = &mf;
804 Context = &mf.getFunction()->getContext();
807 SelectionDAG::~SelectionDAG() {
808 allnodes_clear();
809 delete Ordering;
810 delete DbgInfo;
813 void SelectionDAG::allnodes_clear() {
814 assert(&*AllNodes.begin() == &EntryNode);
815 AllNodes.remove(AllNodes.begin());
816 while (!AllNodes.empty())
817 DeallocateNode(AllNodes.begin());
820 void SelectionDAG::clear() {
821 allnodes_clear();
822 OperandAllocator.Reset();
823 CSEMap.clear();
825 ExtendedValueTypeNodes.clear();
826 ExternalSymbols.clear();
827 TargetExternalSymbols.clear();
828 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829 static_cast<CondCodeSDNode*>(0));
830 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831 static_cast<SDNode*>(0));
833 EntryNode.UseList = 0;
834 AllNodes.push_back(&EntryNode);
835 Root = getEntryNode();
836 Ordering->clear();
837 DbgInfo->clear();
840 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
841 return VT.bitsGT(Op.getValueType()) ?
842 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
843 getNode(ISD::TRUNCATE, DL, VT, Op);
846 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847 return VT.bitsGT(Op.getValueType()) ?
848 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
849 getNode(ISD::TRUNCATE, DL, VT, Op);
852 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
853 assert(!VT.isVector() &&
854 "getZeroExtendInReg should use the vector element type instead of "
855 "the vector type!");
856 if (Op.getValueType() == VT) return Op;
857 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
858 APInt Imm = APInt::getLowBitsSet(BitWidth,
859 VT.getSizeInBits());
860 return getNode(ISD::AND, DL, Op.getValueType(), Op,
861 getConstant(Imm, Op.getValueType()));
864 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
866 SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
867 EVT EltVT = VT.getScalarType();
868 SDValue NegOne =
869 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
870 return getNode(ISD::XOR, DL, VT, Val, NegOne);
873 SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
874 EVT EltVT = VT.getScalarType();
875 assert((EltVT.getSizeInBits() >= 64 ||
876 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
877 "getConstant with a uint64_t value that doesn't fit in the type!");
878 return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
881 SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
882 return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
885 SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
886 assert(VT.isInteger() && "Cannot create FP integer constant!");
888 EVT EltVT = VT.getScalarType();
889 assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
890 "APInt size does not match type size!");
892 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
893 FoldingSetNodeID ID;
894 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
895 ID.AddPointer(&Val);
896 void *IP = 0;
897 SDNode *N = NULL;
898 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
899 if (!VT.isVector())
900 return SDValue(N, 0);
902 if (!N) {
903 N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
904 CSEMap.InsertNode(N, IP);
905 AllNodes.push_back(N);
908 SDValue Result(N, 0);
909 if (VT.isVector()) {
910 SmallVector<SDValue, 8> Ops;
911 Ops.assign(VT.getVectorNumElements(), Result);
912 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
914 return Result;
917 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918 return getConstant(Val, TLI.getPointerTy(), isTarget);
922 SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923 return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
926 SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
929 EVT EltVT = VT.getScalarType();
931 // Do the map lookup using the actual bit pattern for the floating point
932 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933 // we don't have issues with SNANs.
934 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935 FoldingSetNodeID ID;
936 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937 ID.AddPointer(&V);
938 void *IP = 0;
939 SDNode *N = NULL;
940 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941 if (!VT.isVector())
942 return SDValue(N, 0);
944 if (!N) {
945 N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
946 CSEMap.InsertNode(N, IP);
947 AllNodes.push_back(N);
950 SDValue Result(N, 0);
951 if (VT.isVector()) {
952 SmallVector<SDValue, 8> Ops;
953 Ops.assign(VT.getVectorNumElements(), Result);
954 // FIXME DebugLoc info might be appropriate here
955 Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
957 return Result;
960 SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961 EVT EltVT = VT.getScalarType();
962 if (EltVT==MVT::f32)
963 return getConstantFP(APFloat((float)Val), VT, isTarget);
964 else if (EltVT==MVT::f64)
965 return getConstantFP(APFloat(Val), VT, isTarget);
966 else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
967 bool ignored;
968 APFloat apf = APFloat(Val);
969 apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
970 &ignored);
971 return getConstantFP(apf, VT, isTarget);
972 } else {
973 assert(0 && "Unsupported type in getConstantFP");
974 return SDValue();
978 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
979 EVT VT, int64_t Offset,
980 bool isTargetGA,
981 unsigned char TargetFlags) {
982 assert((TargetFlags == 0 || isTargetGA) &&
983 "Cannot set target flags on target-independent globals");
985 // Truncate (with sign-extension) the offset value to the pointer size.
986 EVT PTy = TLI.getPointerTy();
987 unsigned BitWidth = PTy.getSizeInBits();
988 if (BitWidth < 64)
989 Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
991 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
992 if (!GVar) {
993 // If GV is an alias then use the aliasee for determining thread-localness.
994 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
995 GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
998 unsigned Opc;
999 if (GVar && GVar->isThreadLocal())
1000 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1001 else
1002 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1004 FoldingSetNodeID ID;
1005 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1006 ID.AddPointer(GV);
1007 ID.AddInteger(Offset);
1008 ID.AddInteger(TargetFlags);
1009 void *IP = 0;
1010 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011 return SDValue(E, 0);
1013 SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1014 Offset, TargetFlags);
1015 CSEMap.InsertNode(N, IP);
1016 AllNodes.push_back(N);
1017 return SDValue(N, 0);
1020 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1021 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1022 FoldingSetNodeID ID;
1023 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1024 ID.AddInteger(FI);
1025 void *IP = 0;
1026 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1027 return SDValue(E, 0);
1029 SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1030 CSEMap.InsertNode(N, IP);
1031 AllNodes.push_back(N);
1032 return SDValue(N, 0);
1035 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1036 unsigned char TargetFlags) {
1037 assert((TargetFlags == 0 || isTarget) &&
1038 "Cannot set target flags on target-independent jump tables");
1039 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1040 FoldingSetNodeID ID;
1041 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1042 ID.AddInteger(JTI);
1043 ID.AddInteger(TargetFlags);
1044 void *IP = 0;
1045 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046 return SDValue(E, 0);
1048 SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1049 TargetFlags);
1050 CSEMap.InsertNode(N, IP);
1051 AllNodes.push_back(N);
1052 return SDValue(N, 0);
1055 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1056 unsigned Alignment, int Offset,
1057 bool isTarget,
1058 unsigned char TargetFlags) {
1059 assert((TargetFlags == 0 || isTarget) &&
1060 "Cannot set target flags on target-independent globals");
1061 if (Alignment == 0)
1062 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1063 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1064 FoldingSetNodeID ID;
1065 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1066 ID.AddInteger(Alignment);
1067 ID.AddInteger(Offset);
1068 ID.AddPointer(C);
1069 ID.AddInteger(TargetFlags);
1070 void *IP = 0;
1071 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072 return SDValue(E, 0);
1074 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1075 Alignment, TargetFlags);
1076 CSEMap.InsertNode(N, IP);
1077 AllNodes.push_back(N);
1078 return SDValue(N, 0);
1082 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1083 unsigned Alignment, int Offset,
1084 bool isTarget,
1085 unsigned char TargetFlags) {
1086 assert((TargetFlags == 0 || isTarget) &&
1087 "Cannot set target flags on target-independent globals");
1088 if (Alignment == 0)
1089 Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1090 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1091 FoldingSetNodeID ID;
1092 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1093 ID.AddInteger(Alignment);
1094 ID.AddInteger(Offset);
1095 C->AddSelectionDAGCSEId(ID);
1096 ID.AddInteger(TargetFlags);
1097 void *IP = 0;
1098 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1099 return SDValue(E, 0);
1101 SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1102 Alignment, TargetFlags);
1103 CSEMap.InsertNode(N, IP);
1104 AllNodes.push_back(N);
1105 return SDValue(N, 0);
1108 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1109 FoldingSetNodeID ID;
1110 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1111 ID.AddPointer(MBB);
1112 void *IP = 0;
1113 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1114 return SDValue(E, 0);
1116 SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1117 CSEMap.InsertNode(N, IP);
1118 AllNodes.push_back(N);
1119 return SDValue(N, 0);
1122 SDValue SelectionDAG::getValueType(EVT VT) {
1123 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1124 ValueTypeNodes.size())
1125 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1127 SDNode *&N = VT.isExtended() ?
1128 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1130 if (N) return SDValue(N, 0);
1131 N = new (NodeAllocator) VTSDNode(VT);
1132 AllNodes.push_back(N);
1133 return SDValue(N, 0);
1136 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1137 SDNode *&N = ExternalSymbols[Sym];
1138 if (N) return SDValue(N, 0);
1139 N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1140 AllNodes.push_back(N);
1141 return SDValue(N, 0);
1144 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1145 unsigned char TargetFlags) {
1146 SDNode *&N =
1147 TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1148 TargetFlags)];
1149 if (N) return SDValue(N, 0);
1150 N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1151 AllNodes.push_back(N);
1152 return SDValue(N, 0);
1155 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1156 if ((unsigned)Cond >= CondCodeNodes.size())
1157 CondCodeNodes.resize(Cond+1);
1159 if (CondCodeNodes[Cond] == 0) {
1160 CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1161 CondCodeNodes[Cond] = N;
1162 AllNodes.push_back(N);
1165 return SDValue(CondCodeNodes[Cond], 0);
1168 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169 // the shuffle mask M that point at N1 to point at N2, and indices that point
1170 // N2 to point at N1.
1171 static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172 std::swap(N1, N2);
1173 int NElts = M.size();
1174 for (int i = 0; i != NElts; ++i) {
1175 if (M[i] >= NElts)
1176 M[i] -= NElts;
1177 else if (M[i] >= 0)
1178 M[i] += NElts;
1182 SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1183 SDValue N2, const int *Mask) {
1184 assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185 assert(VT.isVector() && N1.getValueType().isVector() &&
1186 "Vector Shuffle VTs must be a vectors");
1187 assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188 && "Vector Shuffle VTs must have same element type");
1190 // Canonicalize shuffle undef, undef -> undef
1191 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192 return getUNDEF(VT);
1194 // Validate that all indices in Mask are within the range of the elements
1195 // input to the shuffle.
1196 unsigned NElts = VT.getVectorNumElements();
1197 SmallVector<int, 8> MaskVec;
1198 for (unsigned i = 0; i != NElts; ++i) {
1199 assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200 MaskVec.push_back(Mask[i]);
1203 // Canonicalize shuffle v, v -> v, undef
1204 if (N1 == N2) {
1205 N2 = getUNDEF(VT);
1206 for (unsigned i = 0; i != NElts; ++i)
1207 if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1210 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1211 if (N1.getOpcode() == ISD::UNDEF)
1212 commuteShuffle(N1, N2, MaskVec);
1214 // Canonicalize all index into lhs, -> shuffle lhs, undef
1215 // Canonicalize all index into rhs, -> shuffle rhs, undef
1216 bool AllLHS = true, AllRHS = true;
1217 bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218 for (unsigned i = 0; i != NElts; ++i) {
1219 if (MaskVec[i] >= (int)NElts) {
1220 if (N2Undef)
1221 MaskVec[i] = -1;
1222 else
1223 AllLHS = false;
1224 } else if (MaskVec[i] >= 0) {
1225 AllRHS = false;
1228 if (AllLHS && AllRHS)
1229 return getUNDEF(VT);
1230 if (AllLHS && !N2Undef)
1231 N2 = getUNDEF(VT);
1232 if (AllRHS) {
1233 N1 = getUNDEF(VT);
1234 commuteShuffle(N1, N2, MaskVec);
1237 // If Identity shuffle, or all shuffle in to undef, return that node.
1238 bool AllUndef = true;
1239 bool Identity = true;
1240 for (unsigned i = 0; i != NElts; ++i) {
1241 if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242 if (MaskVec[i] >= 0) AllUndef = false;
1244 if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245 return N1;
1246 if (AllUndef)
1247 return getUNDEF(VT);
1249 FoldingSetNodeID ID;
1250 SDValue Ops[2] = { N1, N2 };
1251 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252 for (unsigned i = 0; i != NElts; ++i)
1253 ID.AddInteger(MaskVec[i]);
1255 void* IP = 0;
1256 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257 return SDValue(E, 0);
1259 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260 // SDNode doesn't have access to it. This memory will be "leaked" when
1261 // the node is deallocated, but recovered when the NodeAllocator is released.
1262 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263 memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1265 ShuffleVectorSDNode *N =
1266 new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267 CSEMap.InsertNode(N, IP);
1268 AllNodes.push_back(N);
1269 return SDValue(N, 0);
1272 SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1273 SDValue Val, SDValue DTy,
1274 SDValue STy, SDValue Rnd, SDValue Sat,
1275 ISD::CvtCode Code) {
1276 // If the src and dest types are the same and the conversion is between
1277 // integer types of the same sign or two floats, no conversion is necessary.
1278 if (DTy == STy &&
1279 (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280 return Val;
1282 FoldingSetNodeID ID;
1283 SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1284 AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1285 void* IP = 0;
1286 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1287 return SDValue(E, 0);
1289 CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1290 Code);
1291 CSEMap.InsertNode(N, IP);
1292 AllNodes.push_back(N);
1293 return SDValue(N, 0);
1296 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1297 FoldingSetNodeID ID;
1298 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1299 ID.AddInteger(RegNo);
1300 void *IP = 0;
1301 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1302 return SDValue(E, 0);
1304 SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1305 CSEMap.InsertNode(N, IP);
1306 AllNodes.push_back(N);
1307 return SDValue(N, 0);
1310 SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1311 FoldingSetNodeID ID;
1312 SDValue Ops[] = { Root };
1313 AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1314 ID.AddPointer(Label);
1315 void *IP = 0;
1316 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317 return SDValue(E, 0);
1319 SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1320 CSEMap.InsertNode(N, IP);
1321 AllNodes.push_back(N);
1322 return SDValue(N, 0);
1326 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1327 bool isTarget,
1328 unsigned char TargetFlags) {
1329 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1331 FoldingSetNodeID ID;
1332 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1333 ID.AddPointer(BA);
1334 ID.AddInteger(TargetFlags);
1335 void *IP = 0;
1336 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337 return SDValue(E, 0);
1339 SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1340 CSEMap.InsertNode(N, IP);
1341 AllNodes.push_back(N);
1342 return SDValue(N, 0);
1345 SDValue SelectionDAG::getSrcValue(const Value *V) {
1346 assert((!V || V->getType()->isPointerTy()) &&
1347 "SrcValue is not a pointer?");
1349 FoldingSetNodeID ID;
1350 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1351 ID.AddPointer(V);
1353 void *IP = 0;
1354 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1355 return SDValue(E, 0);
1357 SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1358 CSEMap.InsertNode(N, IP);
1359 AllNodes.push_back(N);
1360 return SDValue(N, 0);
1363 /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1364 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1365 FoldingSetNodeID ID;
1366 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1367 ID.AddPointer(MD);
1369 void *IP = 0;
1370 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1371 return SDValue(E, 0);
1373 SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1374 CSEMap.InsertNode(N, IP);
1375 AllNodes.push_back(N);
1376 return SDValue(N, 0);
1380 /// getShiftAmountOperand - Return the specified value casted to
1381 /// the target's desired shift amount type.
1382 SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1383 EVT OpTy = Op.getValueType();
1384 MVT ShTy = TLI.getShiftAmountTy();
1385 if (OpTy == ShTy || OpTy.isVector()) return Op;
1387 ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
1388 return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1391 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1392 /// specified value type.
1393 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1394 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1395 unsigned ByteSize = VT.getStoreSize();
1396 const Type *Ty = VT.getTypeForEVT(*getContext());
1397 unsigned StackAlign =
1398 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1400 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1401 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1404 /// CreateStackTemporary - Create a stack temporary suitable for holding
1405 /// either of the specified value types.
1406 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1407 unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1408 VT2.getStoreSizeInBits())/8;
1409 const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1410 const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1411 const TargetData *TD = TLI.getTargetData();
1412 unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1413 TD->getPrefTypeAlignment(Ty2));
1415 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1416 int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1417 return getFrameIndex(FrameIdx, TLI.getPointerTy());
1420 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1421 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1422 // These setcc operations always fold.
1423 switch (Cond) {
1424 default: break;
1425 case ISD::SETFALSE:
1426 case ISD::SETFALSE2: return getConstant(0, VT);
1427 case ISD::SETTRUE:
1428 case ISD::SETTRUE2: return getConstant(1, VT);
1430 case ISD::SETOEQ:
1431 case ISD::SETOGT:
1432 case ISD::SETOGE:
1433 case ISD::SETOLT:
1434 case ISD::SETOLE:
1435 case ISD::SETONE:
1436 case ISD::SETO:
1437 case ISD::SETUO:
1438 case ISD::SETUEQ:
1439 case ISD::SETUNE:
1440 assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1441 break;
1444 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1445 const APInt &C2 = N2C->getAPIntValue();
1446 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1447 const APInt &C1 = N1C->getAPIntValue();
1449 switch (Cond) {
1450 default: llvm_unreachable("Unknown integer setcc!");
1451 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1452 case ISD::SETNE: return getConstant(C1 != C2, VT);
1453 case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1454 case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1455 case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1456 case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1457 case ISD::SETLT: return getConstant(C1.slt(C2), VT);
1458 case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
1459 case ISD::SETLE: return getConstant(C1.sle(C2), VT);
1460 case ISD::SETGE: return getConstant(C1.sge(C2), VT);
1464 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1465 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1466 // No compile time operations on this type yet.
1467 if (N1C->getValueType(0) == MVT::ppcf128)
1468 return SDValue();
1470 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1471 switch (Cond) {
1472 default: break;
1473 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1474 return getUNDEF(VT);
1475 // fall through
1476 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1477 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1478 return getUNDEF(VT);
1479 // fall through
1480 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1481 R==APFloat::cmpLessThan, VT);
1482 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1483 return getUNDEF(VT);
1484 // fall through
1485 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1486 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1487 return getUNDEF(VT);
1488 // fall through
1489 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1490 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1491 return getUNDEF(VT);
1492 // fall through
1493 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1494 R==APFloat::cmpEqual, VT);
1495 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1496 return getUNDEF(VT);
1497 // fall through
1498 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1499 R==APFloat::cmpEqual, VT);
1500 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1501 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1502 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1503 R==APFloat::cmpEqual, VT);
1504 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1505 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1506 R==APFloat::cmpLessThan, VT);
1507 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1508 R==APFloat::cmpUnordered, VT);
1509 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1510 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1512 } else {
1513 // Ensure that the constant occurs on the RHS.
1514 return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1518 // Could not fold it.
1519 return SDValue();
1522 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1523 /// use this predicate to simplify operations downstream.
1524 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1525 // This predicate is not safe for vector operations.
1526 if (Op.getValueType().isVector())
1527 return false;
1529 unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1530 return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1533 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1534 /// this predicate to simplify operations downstream. Mask is known to be zero
1535 /// for bits that V cannot have.
1536 bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1537 unsigned Depth) const {
1538 APInt KnownZero, KnownOne;
1539 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1540 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1541 return (KnownZero & Mask) == Mask;
1544 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1545 /// known to be either zero or one and return them in the KnownZero/KnownOne
1546 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1547 /// processing.
1548 void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1549 APInt &KnownZero, APInt &KnownOne,
1550 unsigned Depth) const {
1551 unsigned BitWidth = Mask.getBitWidth();
1552 assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1553 "Mask size mismatches value type size!");
1555 KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
1556 if (Depth == 6 || Mask == 0)
1557 return; // Limit search depth.
1559 APInt KnownZero2, KnownOne2;
1561 switch (Op.getOpcode()) {
1562 case ISD::Constant:
1563 // We know all of the bits for a constant!
1564 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1565 KnownZero = ~KnownOne & Mask;
1566 return;
1567 case ISD::AND:
1568 // If either the LHS or the RHS are Zero, the result is zero.
1569 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1571 KnownZero2, KnownOne2, Depth+1);
1572 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1575 // Output known-1 bits are only known if set in both the LHS & RHS.
1576 KnownOne &= KnownOne2;
1577 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1578 KnownZero |= KnownZero2;
1579 return;
1580 case ISD::OR:
1581 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1582 ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1583 KnownZero2, KnownOne2, Depth+1);
1584 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1585 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1587 // Output known-0 bits are only known if clear in both the LHS & RHS.
1588 KnownZero &= KnownZero2;
1589 // Output known-1 are known to be set if set in either the LHS | RHS.
1590 KnownOne |= KnownOne2;
1591 return;
1592 case ISD::XOR: {
1593 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1594 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1595 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1598 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1599 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1600 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1601 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1602 KnownZero = KnownZeroOut;
1603 return;
1605 case ISD::MUL: {
1606 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1607 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1608 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1609 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1610 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1612 // If low bits are zero in either operand, output low known-0 bits.
1613 // Also compute a conserative estimate for high known-0 bits.
1614 // More trickiness is possible, but this is sufficient for the
1615 // interesting case of alignment computation.
1616 KnownOne.clear();
1617 unsigned TrailZ = KnownZero.countTrailingOnes() +
1618 KnownZero2.countTrailingOnes();
1619 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
1620 KnownZero2.countLeadingOnes(),
1621 BitWidth) - BitWidth;
1623 TrailZ = std::min(TrailZ, BitWidth);
1624 LeadZ = std::min(LeadZ, BitWidth);
1625 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1626 APInt::getHighBitsSet(BitWidth, LeadZ);
1627 KnownZero &= Mask;
1628 return;
1630 case ISD::UDIV: {
1631 // For the purposes of computing leading zeros we can conservatively
1632 // treat a udiv as a logical right shift by the power of 2 known to
1633 // be less than the denominator.
1634 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1635 ComputeMaskedBits(Op.getOperand(0),
1636 AllOnes, KnownZero2, KnownOne2, Depth+1);
1637 unsigned LeadZ = KnownZero2.countLeadingOnes();
1639 KnownOne2.clear();
1640 KnownZero2.clear();
1641 ComputeMaskedBits(Op.getOperand(1),
1642 AllOnes, KnownZero2, KnownOne2, Depth+1);
1643 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1644 if (RHSUnknownLeadingOnes != BitWidth)
1645 LeadZ = std::min(BitWidth,
1646 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1648 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1649 return;
1651 case ISD::SELECT:
1652 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1653 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1654 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1655 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1657 // Only known if known in both the LHS and RHS.
1658 KnownOne &= KnownOne2;
1659 KnownZero &= KnownZero2;
1660 return;
1661 case ISD::SELECT_CC:
1662 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1663 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1664 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1665 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1667 // Only known if known in both the LHS and RHS.
1668 KnownOne &= KnownOne2;
1669 KnownZero &= KnownZero2;
1670 return;
1671 case ISD::SADDO:
1672 case ISD::UADDO:
1673 case ISD::SSUBO:
1674 case ISD::USUBO:
1675 case ISD::SMULO:
1676 case ISD::UMULO:
1677 if (Op.getResNo() != 1)
1678 return;
1679 // The boolean result conforms to getBooleanContents. Fall through.
1680 case ISD::SETCC:
1681 // If we know the result of a setcc has the top bits zero, use this info.
1682 if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1683 BitWidth > 1)
1684 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1685 return;
1686 case ISD::SHL:
1687 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1688 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1689 unsigned ShAmt = SA->getZExtValue();
1691 // If the shift count is an invalid immediate, don't do anything.
1692 if (ShAmt >= BitWidth)
1693 return;
1695 ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1696 KnownZero, KnownOne, Depth+1);
1697 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698 KnownZero <<= ShAmt;
1699 KnownOne <<= ShAmt;
1700 // low bits known zero.
1701 KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1703 return;
1704 case ISD::SRL:
1705 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1706 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1707 unsigned ShAmt = SA->getZExtValue();
1709 // If the shift count is an invalid immediate, don't do anything.
1710 if (ShAmt >= BitWidth)
1711 return;
1713 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1714 KnownZero, KnownOne, Depth+1);
1715 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1716 KnownZero = KnownZero.lshr(ShAmt);
1717 KnownOne = KnownOne.lshr(ShAmt);
1719 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720 KnownZero |= HighBits; // High bits known zero.
1722 return;
1723 case ISD::SRA:
1724 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1725 unsigned ShAmt = SA->getZExtValue();
1727 // If the shift count is an invalid immediate, don't do anything.
1728 if (ShAmt >= BitWidth)
1729 return;
1731 APInt InDemandedMask = (Mask << ShAmt);
1732 // If any of the demanded bits are produced by the sign extension, we also
1733 // demand the input sign bit.
1734 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1735 if (HighBits.getBoolValue())
1736 InDemandedMask |= APInt::getSignBit(BitWidth);
1738 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1739 Depth+1);
1740 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1741 KnownZero = KnownZero.lshr(ShAmt);
1742 KnownOne = KnownOne.lshr(ShAmt);
1744 // Handle the sign bits.
1745 APInt SignBit = APInt::getSignBit(BitWidth);
1746 SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
1748 if (KnownZero.intersects(SignBit)) {
1749 KnownZero |= HighBits; // New bits are known zero.
1750 } else if (KnownOne.intersects(SignBit)) {
1751 KnownOne |= HighBits; // New bits are known one.
1754 return;
1755 case ISD::SIGN_EXTEND_INREG: {
1756 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757 unsigned EBits = EVT.getScalarType().getSizeInBits();
1759 // Sign extension. Compute the demanded bits in the result that are not
1760 // present in the input.
1761 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1763 APInt InSignBit = APInt::getSignBit(EBits);
1764 APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1766 // If the sign extended bits are demanded, we know that the sign
1767 // bit is demanded.
1768 InSignBit.zext(BitWidth);
1769 if (NewBits.getBoolValue())
1770 InputDemandedBits |= InSignBit;
1772 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1773 KnownZero, KnownOne, Depth+1);
1774 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1776 // If the sign bit of the input is known set or clear, then we know the
1777 // top bits of the result.
1778 if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
1779 KnownZero |= NewBits;
1780 KnownOne &= ~NewBits;
1781 } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1782 KnownOne |= NewBits;
1783 KnownZero &= ~NewBits;
1784 } else { // Input sign bit unknown
1785 KnownZero &= ~NewBits;
1786 KnownOne &= ~NewBits;
1788 return;
1790 case ISD::CTTZ:
1791 case ISD::CTLZ:
1792 case ISD::CTPOP: {
1793 unsigned LowBits = Log2_32(BitWidth)+1;
1794 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1795 KnownOne.clear();
1796 return;
1798 case ISD::LOAD: {
1799 if (ISD::isZEXTLoad(Op.getNode())) {
1800 LoadSDNode *LD = cast<LoadSDNode>(Op);
1801 EVT VT = LD->getMemoryVT();
1802 unsigned MemBits = VT.getScalarType().getSizeInBits();
1803 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1805 return;
1807 case ISD::ZERO_EXTEND: {
1808 EVT InVT = Op.getOperand(0).getValueType();
1809 unsigned InBits = InVT.getScalarType().getSizeInBits();
1810 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811 APInt InMask = Mask;
1812 InMask.trunc(InBits);
1813 KnownZero.trunc(InBits);
1814 KnownOne.trunc(InBits);
1815 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816 KnownZero.zext(BitWidth);
1817 KnownOne.zext(BitWidth);
1818 KnownZero |= NewBits;
1819 return;
1821 case ISD::SIGN_EXTEND: {
1822 EVT InVT = Op.getOperand(0).getValueType();
1823 unsigned InBits = InVT.getScalarType().getSizeInBits();
1824 APInt InSignBit = APInt::getSignBit(InBits);
1825 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1826 APInt InMask = Mask;
1827 InMask.trunc(InBits);
1829 // If any of the sign extended bits are demanded, we know that the sign
1830 // bit is demanded. Temporarily set this bit in the mask for our callee.
1831 if (NewBits.getBoolValue())
1832 InMask |= InSignBit;
1834 KnownZero.trunc(InBits);
1835 KnownOne.trunc(InBits);
1836 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1838 // Note if the sign bit is known to be zero or one.
1839 bool SignBitKnownZero = KnownZero.isNegative();
1840 bool SignBitKnownOne = KnownOne.isNegative();
1841 assert(!(SignBitKnownZero && SignBitKnownOne) &&
1842 "Sign bit can't be known to be both zero and one!");
1844 // If the sign bit wasn't actually demanded by our caller, we don't
1845 // want it set in the KnownZero and KnownOne result values. Reset the
1846 // mask and reapply it to the result values.
1847 InMask = Mask;
1848 InMask.trunc(InBits);
1849 KnownZero &= InMask;
1850 KnownOne &= InMask;
1852 KnownZero.zext(BitWidth);
1853 KnownOne.zext(BitWidth);
1855 // If the sign bit is known zero or one, the top bits match.
1856 if (SignBitKnownZero)
1857 KnownZero |= NewBits;
1858 else if (SignBitKnownOne)
1859 KnownOne |= NewBits;
1860 return;
1862 case ISD::ANY_EXTEND: {
1863 EVT InVT = Op.getOperand(0).getValueType();
1864 unsigned InBits = InVT.getScalarType().getSizeInBits();
1865 APInt InMask = Mask;
1866 InMask.trunc(InBits);
1867 KnownZero.trunc(InBits);
1868 KnownOne.trunc(InBits);
1869 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1870 KnownZero.zext(BitWidth);
1871 KnownOne.zext(BitWidth);
1872 return;
1874 case ISD::TRUNCATE: {
1875 EVT InVT = Op.getOperand(0).getValueType();
1876 unsigned InBits = InVT.getScalarType().getSizeInBits();
1877 APInt InMask = Mask;
1878 InMask.zext(InBits);
1879 KnownZero.zext(InBits);
1880 KnownOne.zext(InBits);
1881 ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1882 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1883 KnownZero.trunc(BitWidth);
1884 KnownOne.trunc(BitWidth);
1885 break;
1887 case ISD::AssertZext: {
1888 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1889 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1890 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1891 KnownOne, Depth+1);
1892 KnownZero |= (~InMask) & Mask;
1893 return;
1895 case ISD::FGETSIGN:
1896 // All bits are zero except the low bit.
1897 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1898 return;
1900 case ISD::SUB: {
1901 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1902 // We know that the top bits of C-X are clear if X contains less bits
1903 // than C (i.e. no wrap-around can happen). For example, 20-X is
1904 // positive if we can prove that X is >= 0 and < 16.
1905 if (CLHS->getAPIntValue().isNonNegative()) {
1906 unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1907 // NLZ can't be BitWidth with no sign bit
1908 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1909 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1910 Depth+1);
1912 // If all of the MaskV bits are known to be zero, then we know the
1913 // output top bits are zero, because we now know that the output is
1914 // from [0-C].
1915 if ((KnownZero2 & MaskV) == MaskV) {
1916 unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1917 // Top bits known zero.
1918 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1923 // fall through
1924 case ISD::ADD: {
1925 // Output known-0 bits are known if clear or set in both the low clear bits
1926 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1927 // low 3 bits clear.
1928 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1929 BitWidth - Mask.countLeadingZeros());
1930 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1931 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1932 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1934 ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1935 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1936 KnownZeroOut = std::min(KnownZeroOut,
1937 KnownZero2.countTrailingOnes());
1939 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1940 return;
1942 case ISD::SREM:
1943 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1944 const APInt &RA = Rem->getAPIntValue().abs();
1945 if (RA.isPowerOf2()) {
1946 APInt LowBits = RA - 1;
1947 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1948 ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1950 // The low bits of the first operand are unchanged by the srem.
1951 KnownZero = KnownZero2 & LowBits;
1952 KnownOne = KnownOne2 & LowBits;
1954 // If the first operand is non-negative or has all low bits zero, then
1955 // the upper bits are all zero.
1956 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1957 KnownZero |= ~LowBits;
1959 // If the first operand is negative and not all low bits are zero, then
1960 // the upper bits are all one.
1961 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1962 KnownOne |= ~LowBits;
1964 KnownZero &= Mask;
1965 KnownOne &= Mask;
1967 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1970 return;
1971 case ISD::UREM: {
1972 if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1973 const APInt &RA = Rem->getAPIntValue();
1974 if (RA.isPowerOf2()) {
1975 APInt LowBits = (RA - 1);
1976 APInt Mask2 = LowBits & Mask;
1977 KnownZero |= ~LowBits & Mask;
1978 ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1979 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1980 break;
1984 // Since the result is less than or equal to either operand, any leading
1985 // zero bits in either operand must also exist in the result.
1986 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1987 ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1988 Depth+1);
1989 ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1990 Depth+1);
1992 uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1993 KnownZero2.countLeadingOnes());
1994 KnownOne.clear();
1995 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1996 return;
1998 default:
1999 // Allow the target to implement this method for its nodes.
2000 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2001 case ISD::INTRINSIC_WO_CHAIN:
2002 case ISD::INTRINSIC_W_CHAIN:
2003 case ISD::INTRINSIC_VOID:
2004 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2005 Depth);
2007 return;
2011 /// ComputeNumSignBits - Return the number of times the sign bit of the
2012 /// register is replicated into the other bits. We know that at least 1 bit
2013 /// is always equal to the sign bit (itself), but other cases can give us
2014 /// information. For example, immediately after an "SRA X, 2", we know that
2015 /// the top 3 bits are all equal to each other, so we return 3.
2016 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2017 EVT VT = Op.getValueType();
2018 assert(VT.isInteger() && "Invalid VT!");
2019 unsigned VTBits = VT.getScalarType().getSizeInBits();
2020 unsigned Tmp, Tmp2;
2021 unsigned FirstAnswer = 1;
2023 if (Depth == 6)
2024 return 1; // Limit search depth.
2026 switch (Op.getOpcode()) {
2027 default: break;
2028 case ISD::AssertSext:
2029 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2030 return VTBits-Tmp+1;
2031 case ISD::AssertZext:
2032 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2033 return VTBits-Tmp;
2035 case ISD::Constant: {
2036 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2037 // If negative, return # leading ones.
2038 if (Val.isNegative())
2039 return Val.countLeadingOnes();
2041 // Return # leading zeros.
2042 return Val.countLeadingZeros();
2045 case ISD::SIGN_EXTEND:
2046 Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2047 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2049 case ISD::SIGN_EXTEND_INREG:
2050 // Max of the input and what this extends.
2051 Tmp =
2052 cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2053 Tmp = VTBits-Tmp+1;
2055 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2056 return std::max(Tmp, Tmp2);
2058 case ISD::SRA:
2059 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2060 // SRA X, C -> adds C sign bits.
2061 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2062 Tmp += C->getZExtValue();
2063 if (Tmp > VTBits) Tmp = VTBits;
2065 return Tmp;
2066 case ISD::SHL:
2067 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2068 // shl destroys sign bits.
2069 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070 if (C->getZExtValue() >= VTBits || // Bad shift.
2071 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
2072 return Tmp - C->getZExtValue();
2074 break;
2075 case ISD::AND:
2076 case ISD::OR:
2077 case ISD::XOR: // NOT is handled here.
2078 // Logical binary ops preserve the number of sign bits at the worst.
2079 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2080 if (Tmp != 1) {
2081 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2082 FirstAnswer = std::min(Tmp, Tmp2);
2083 // We computed what we know about the sign bits as our first
2084 // answer. Now proceed to the generic code that uses
2085 // ComputeMaskedBits, and pick whichever answer is better.
2087 break;
2089 case ISD::SELECT:
2090 Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2091 if (Tmp == 1) return 1; // Early out.
2092 Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2093 return std::min(Tmp, Tmp2);
2095 case ISD::SADDO:
2096 case ISD::UADDO:
2097 case ISD::SSUBO:
2098 case ISD::USUBO:
2099 case ISD::SMULO:
2100 case ISD::UMULO:
2101 if (Op.getResNo() != 1)
2102 break;
2103 // The boolean result conforms to getBooleanContents. Fall through.
2104 case ISD::SETCC:
2105 // If setcc returns 0/-1, all bits are sign bits.
2106 if (TLI.getBooleanContents() ==
2107 TargetLowering::ZeroOrNegativeOneBooleanContent)
2108 return VTBits;
2109 break;
2110 case ISD::ROTL:
2111 case ISD::ROTR:
2112 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2113 unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2115 // Handle rotate right by N like a rotate left by 32-N.
2116 if (Op.getOpcode() == ISD::ROTR)
2117 RotAmt = (VTBits-RotAmt) & (VTBits-1);
2119 // If we aren't rotating out all of the known-in sign bits, return the
2120 // number that are left. This handles rotl(sext(x), 1) for example.
2121 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2122 if (Tmp > RotAmt+1) return Tmp-RotAmt;
2124 break;
2125 case ISD::ADD:
2126 // Add can have at most one carry bit. Thus we know that the output
2127 // is, at worst, one more bit than the inputs.
2128 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129 if (Tmp == 1) return 1; // Early out.
2131 // Special case decrementing a value (ADD X, -1):
2132 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2133 if (CRHS->isAllOnesValue()) {
2134 APInt KnownZero, KnownOne;
2135 APInt Mask = APInt::getAllOnesValue(VTBits);
2136 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2138 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2139 // sign bits set.
2140 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2141 return VTBits;
2143 // If we are subtracting one from a positive number, there is no carry
2144 // out of the result.
2145 if (KnownZero.isNegative())
2146 return Tmp;
2149 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2150 if (Tmp2 == 1) return 1;
2151 return std::min(Tmp, Tmp2)-1;
2152 break;
2154 case ISD::SUB:
2155 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2156 if (Tmp2 == 1) return 1;
2158 // Handle NEG.
2159 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2160 if (CLHS->isNullValue()) {
2161 APInt KnownZero, KnownOne;
2162 APInt Mask = APInt::getAllOnesValue(VTBits);
2163 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2164 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2165 // sign bits set.
2166 if ((KnownZero | APInt(VTBits, 1)) == Mask)
2167 return VTBits;
2169 // If the input is known to be positive (the sign bit is known clear),
2170 // the output of the NEG has the same number of sign bits as the input.
2171 if (KnownZero.isNegative())
2172 return Tmp2;
2174 // Otherwise, we treat this like a SUB.
2177 // Sub can have at most one carry bit. Thus we know that the output
2178 // is, at worst, one more bit than the inputs.
2179 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2180 if (Tmp == 1) return 1; // Early out.
2181 return std::min(Tmp, Tmp2)-1;
2182 break;
2183 case ISD::TRUNCATE:
2184 // FIXME: it's tricky to do anything useful for this, but it is an important
2185 // case for targets like X86.
2186 break;
2189 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2190 if (Op.getOpcode() == ISD::LOAD) {
2191 LoadSDNode *LD = cast<LoadSDNode>(Op);
2192 unsigned ExtType = LD->getExtensionType();
2193 switch (ExtType) {
2194 default: break;
2195 case ISD::SEXTLOAD: // '17' bits known
2196 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2197 return VTBits-Tmp+1;
2198 case ISD::ZEXTLOAD: // '16' bits known
2199 Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2200 return VTBits-Tmp;
2204 // Allow the target to implement this method for its nodes.
2205 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2206 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2207 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2208 Op.getOpcode() == ISD::INTRINSIC_VOID) {
2209 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2210 if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2213 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2214 // use this information.
2215 APInt KnownZero, KnownOne;
2216 APInt Mask = APInt::getAllOnesValue(VTBits);
2217 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2219 if (KnownZero.isNegative()) { // sign bit is 0
2220 Mask = KnownZero;
2221 } else if (KnownOne.isNegative()) { // sign bit is 1;
2222 Mask = KnownOne;
2223 } else {
2224 // Nothing known.
2225 return FirstAnswer;
2228 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2229 // the number of identical bits in the top of the input value.
2230 Mask = ~Mask;
2231 Mask <<= Mask.getBitWidth()-VTBits;
2232 // Return # leading zeros. We use 'min' here in case Val was zero before
2233 // shifting. We don't want to return '64' as for an i32 "0".
2234 return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2237 bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2238 // If we're told that NaNs won't happen, assume they won't.
2239 if (NoNaNsFPMath)
2240 return true;
2242 // If the value is a constant, we can obviously see if it is a NaN or not.
2243 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2244 return !C->getValueAPF().isNaN();
2246 // TODO: Recognize more cases here.
2248 return false;
2251 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2252 // If the value is a constant, we can obviously see if it is a zero or not.
2253 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2254 return !C->isZero();
2256 // TODO: Recognize more cases here.
2258 return false;
2261 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2262 // Check the obvious case.
2263 if (A == B) return true;
2265 // For for negative and positive zero.
2266 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2267 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2268 if (CA->isZero() && CB->isZero()) return true;
2270 // Otherwise they may not be equal.
2271 return false;
2274 bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2275 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2276 if (!GA) return false;
2277 if (GA->getOffset() != 0) return false;
2278 const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2279 if (!GV) return false;
2280 return MF->getMMI().hasDebugInfo();
2284 /// getNode - Gets or creates the specified node.
2286 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2287 FoldingSetNodeID ID;
2288 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2289 void *IP = 0;
2290 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2291 return SDValue(E, 0);
2293 SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2294 CSEMap.InsertNode(N, IP);
2296 AllNodes.push_back(N);
2297 #ifndef NDEBUG
2298 VerifyNode(N);
2299 #endif
2300 return SDValue(N, 0);
2303 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2304 EVT VT, SDValue Operand) {
2305 // Constant fold unary operations with an integer constant operand.
2306 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2307 const APInt &Val = C->getAPIntValue();
2308 switch (Opcode) {
2309 default: break;
2310 case ISD::SIGN_EXTEND:
2311 return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2312 case ISD::ANY_EXTEND:
2313 case ISD::ZERO_EXTEND:
2314 case ISD::TRUNCATE:
2315 return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2316 case ISD::UINT_TO_FP:
2317 case ISD::SINT_TO_FP: {
2318 const uint64_t zero[] = {0, 0};
2319 // No compile time operations on ppcf128.
2320 if (VT == MVT::ppcf128) break;
2321 APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2322 (void)apf.convertFromAPInt(Val,
2323 Opcode==ISD::SINT_TO_FP,
2324 APFloat::rmNearestTiesToEven);
2325 return getConstantFP(apf, VT);
2327 case ISD::BIT_CONVERT:
2328 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2329 return getConstantFP(Val.bitsToFloat(), VT);
2330 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2331 return getConstantFP(Val.bitsToDouble(), VT);
2332 break;
2333 case ISD::BSWAP:
2334 return getConstant(Val.byteSwap(), VT);
2335 case ISD::CTPOP:
2336 return getConstant(Val.countPopulation(), VT);
2337 case ISD::CTLZ:
2338 return getConstant(Val.countLeadingZeros(), VT);
2339 case ISD::CTTZ:
2340 return getConstant(Val.countTrailingZeros(), VT);
2344 // Constant fold unary operations with a floating point constant operand.
2345 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2346 APFloat V = C->getValueAPF(); // make copy
2347 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2348 switch (Opcode) {
2349 case ISD::FNEG:
2350 V.changeSign();
2351 return getConstantFP(V, VT);
2352 case ISD::FABS:
2353 V.clearSign();
2354 return getConstantFP(V, VT);
2355 case ISD::FP_ROUND:
2356 case ISD::FP_EXTEND: {
2357 bool ignored;
2358 // This can return overflow, underflow, or inexact; we don't care.
2359 // FIXME need to be more flexible about rounding mode.
2360 (void)V.convert(*EVTToAPFloatSemantics(VT),
2361 APFloat::rmNearestTiesToEven, &ignored);
2362 return getConstantFP(V, VT);
2364 case ISD::FP_TO_SINT:
2365 case ISD::FP_TO_UINT: {
2366 integerPart x[2];
2367 bool ignored;
2368 assert(integerPartWidth >= 64);
2369 // FIXME need to be more flexible about rounding mode.
2370 APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2371 Opcode==ISD::FP_TO_SINT,
2372 APFloat::rmTowardZero, &ignored);
2373 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
2374 break;
2375 APInt api(VT.getSizeInBits(), 2, x);
2376 return getConstant(api, VT);
2378 case ISD::BIT_CONVERT:
2379 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2380 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2381 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2382 return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2383 break;
2388 unsigned OpOpcode = Operand.getNode()->getOpcode();
2389 switch (Opcode) {
2390 case ISD::TokenFactor:
2391 case ISD::MERGE_VALUES:
2392 case ISD::CONCAT_VECTORS:
2393 return Operand; // Factor, merge or concat of one node? No need.
2394 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2395 case ISD::FP_EXTEND:
2396 assert(VT.isFloatingPoint() &&
2397 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2398 if (Operand.getValueType() == VT) return Operand; // noop conversion.
2399 assert((!VT.isVector() ||
2400 VT.getVectorNumElements() ==
2401 Operand.getValueType().getVectorNumElements()) &&
2402 "Vector element count mismatch!");
2403 if (Operand.getOpcode() == ISD::UNDEF)
2404 return getUNDEF(VT);
2405 break;
2406 case ISD::SIGN_EXTEND:
2407 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2408 "Invalid SIGN_EXTEND!");
2409 if (Operand.getValueType() == VT) return Operand; // noop extension
2410 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2411 "Invalid sext node, dst < src!");
2412 assert((!VT.isVector() ||
2413 VT.getVectorNumElements() ==
2414 Operand.getValueType().getVectorNumElements()) &&
2415 "Vector element count mismatch!");
2416 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2417 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2418 break;
2419 case ISD::ZERO_EXTEND:
2420 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2421 "Invalid ZERO_EXTEND!");
2422 if (Operand.getValueType() == VT) return Operand; // noop extension
2423 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2424 "Invalid zext node, dst < src!");
2425 assert((!VT.isVector() ||
2426 VT.getVectorNumElements() ==
2427 Operand.getValueType().getVectorNumElements()) &&
2428 "Vector element count mismatch!");
2429 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
2430 return getNode(ISD::ZERO_EXTEND, DL, VT,
2431 Operand.getNode()->getOperand(0));
2432 break;
2433 case ISD::ANY_EXTEND:
2434 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2435 "Invalid ANY_EXTEND!");
2436 if (Operand.getValueType() == VT) return Operand; // noop extension
2437 assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2438 "Invalid anyext node, dst < src!");
2439 assert((!VT.isVector() ||
2440 VT.getVectorNumElements() ==
2441 Operand.getValueType().getVectorNumElements()) &&
2442 "Vector element count mismatch!");
2444 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2445 OpOpcode == ISD::ANY_EXTEND)
2446 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2447 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2449 // (ext (trunx x)) -> x
2450 if (OpOpcode == ISD::TRUNCATE) {
2451 SDValue OpOp = Operand.getNode()->getOperand(0);
2452 if (OpOp.getValueType() == VT)
2453 return OpOp;
2455 break;
2456 case ISD::TRUNCATE:
2457 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2458 "Invalid TRUNCATE!");
2459 if (Operand.getValueType() == VT) return Operand; // noop truncate
2460 assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2461 "Invalid truncate node, src < dst!");
2462 assert((!VT.isVector() ||
2463 VT.getVectorNumElements() ==
2464 Operand.getValueType().getVectorNumElements()) &&
2465 "Vector element count mismatch!");
2466 if (OpOpcode == ISD::TRUNCATE)
2467 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2468 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2469 OpOpcode == ISD::ANY_EXTEND) {
2470 // If the source is smaller than the dest, we still need an extend.
2471 if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2472 .bitsLT(VT.getScalarType()))
2473 return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2474 else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2475 return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2476 else
2477 return Operand.getNode()->getOperand(0);
2479 break;
2480 case ISD::BIT_CONVERT:
2481 // Basic sanity checking.
2482 assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2483 && "Cannot BIT_CONVERT between types of different sizes!");
2484 if (VT == Operand.getValueType()) return Operand; // noop conversion.
2485 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
2486 return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2487 if (OpOpcode == ISD::UNDEF)
2488 return getUNDEF(VT);
2489 break;
2490 case ISD::SCALAR_TO_VECTOR:
2491 assert(VT.isVector() && !Operand.getValueType().isVector() &&
2492 (VT.getVectorElementType() == Operand.getValueType() ||
2493 (VT.getVectorElementType().isInteger() &&
2494 Operand.getValueType().isInteger() &&
2495 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2496 "Illegal SCALAR_TO_VECTOR node!");
2497 if (OpOpcode == ISD::UNDEF)
2498 return getUNDEF(VT);
2499 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2500 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2501 isa<ConstantSDNode>(Operand.getOperand(1)) &&
2502 Operand.getConstantOperandVal(1) == 0 &&
2503 Operand.getOperand(0).getValueType() == VT)
2504 return Operand.getOperand(0);
2505 break;
2506 case ISD::FNEG:
2507 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2508 if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2509 return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2510 Operand.getNode()->getOperand(0));
2511 if (OpOpcode == ISD::FNEG) // --X -> X
2512 return Operand.getNode()->getOperand(0);
2513 break;
2514 case ISD::FABS:
2515 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
2516 return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2517 break;
2520 SDNode *N;
2521 SDVTList VTs = getVTList(VT);
2522 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2523 FoldingSetNodeID ID;
2524 SDValue Ops[1] = { Operand };
2525 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2526 void *IP = 0;
2527 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2528 return SDValue(E, 0);
2530 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2531 CSEMap.InsertNode(N, IP);
2532 } else {
2533 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2536 AllNodes.push_back(N);
2537 #ifndef NDEBUG
2538 VerifyNode(N);
2539 #endif
2540 return SDValue(N, 0);
2543 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2544 EVT VT,
2545 ConstantSDNode *Cst1,
2546 ConstantSDNode *Cst2) {
2547 const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2549 switch (Opcode) {
2550 case ISD::ADD: return getConstant(C1 + C2, VT);
2551 case ISD::SUB: return getConstant(C1 - C2, VT);
2552 case ISD::MUL: return getConstant(C1 * C2, VT);
2553 case ISD::UDIV:
2554 if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2555 break;
2556 case ISD::UREM:
2557 if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2558 break;
2559 case ISD::SDIV:
2560 if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2561 break;
2562 case ISD::SREM:
2563 if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2564 break;
2565 case ISD::AND: return getConstant(C1 & C2, VT);
2566 case ISD::OR: return getConstant(C1 | C2, VT);
2567 case ISD::XOR: return getConstant(C1 ^ C2, VT);
2568 case ISD::SHL: return getConstant(C1 << C2, VT);
2569 case ISD::SRL: return getConstant(C1.lshr(C2), VT);
2570 case ISD::SRA: return getConstant(C1.ashr(C2), VT);
2571 case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2572 case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2573 default: break;
2576 return SDValue();
2579 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2580 SDValue N1, SDValue N2) {
2581 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2582 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2583 switch (Opcode) {
2584 default: break;
2585 case ISD::TokenFactor:
2586 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2587 N2.getValueType() == MVT::Other && "Invalid token factor!");
2588 // Fold trivial token factors.
2589 if (N1.getOpcode() == ISD::EntryToken) return N2;
2590 if (N2.getOpcode() == ISD::EntryToken) return N1;
2591 if (N1 == N2) return N1;
2592 break;
2593 case ISD::CONCAT_VECTORS:
2594 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2595 // one big BUILD_VECTOR.
2596 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2597 N2.getOpcode() == ISD::BUILD_VECTOR) {
2598 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2599 N1.getNode()->op_end());
2600 Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2601 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2603 break;
2604 case ISD::AND:
2605 assert(VT.isInteger() && "This operator does not apply to FP types!");
2606 assert(N1.getValueType() == N2.getValueType() &&
2607 N1.getValueType() == VT && "Binary operator types must match!");
2608 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2609 // worth handling here.
2610 if (N2C && N2C->isNullValue())
2611 return N2;
2612 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
2613 return N1;
2614 break;
2615 case ISD::OR:
2616 case ISD::XOR:
2617 case ISD::ADD:
2618 case ISD::SUB:
2619 assert(VT.isInteger() && "This operator does not apply to FP types!");
2620 assert(N1.getValueType() == N2.getValueType() &&
2621 N1.getValueType() == VT && "Binary operator types must match!");
2622 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2623 // it's worth handling here.
2624 if (N2C && N2C->isNullValue())
2625 return N1;
2626 break;
2627 case ISD::UDIV:
2628 case ISD::UREM:
2629 case ISD::MULHU:
2630 case ISD::MULHS:
2631 case ISD::MUL:
2632 case ISD::SDIV:
2633 case ISD::SREM:
2634 assert(VT.isInteger() && "This operator does not apply to FP types!");
2635 assert(N1.getValueType() == N2.getValueType() &&
2636 N1.getValueType() == VT && "Binary operator types must match!");
2637 break;
2638 case ISD::FADD:
2639 case ISD::FSUB:
2640 case ISD::FMUL:
2641 case ISD::FDIV:
2642 case ISD::FREM:
2643 if (UnsafeFPMath) {
2644 if (Opcode == ISD::FADD) {
2645 // 0+x --> x
2646 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2647 if (CFP->getValueAPF().isZero())
2648 return N2;
2649 // x+0 --> x
2650 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2651 if (CFP->getValueAPF().isZero())
2652 return N1;
2653 } else if (Opcode == ISD::FSUB) {
2654 // x-0 --> x
2655 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2656 if (CFP->getValueAPF().isZero())
2657 return N1;
2660 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2661 assert(N1.getValueType() == N2.getValueType() &&
2662 N1.getValueType() == VT && "Binary operator types must match!");
2663 break;
2664 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
2665 assert(N1.getValueType() == VT &&
2666 N1.getValueType().isFloatingPoint() &&
2667 N2.getValueType().isFloatingPoint() &&
2668 "Invalid FCOPYSIGN!");
2669 break;
2670 case ISD::SHL:
2671 case ISD::SRA:
2672 case ISD::SRL:
2673 case ISD::ROTL:
2674 case ISD::ROTR:
2675 assert(VT == N1.getValueType() &&
2676 "Shift operators return type must be the same as their first arg");
2677 assert(VT.isInteger() && N2.getValueType().isInteger() &&
2678 "Shifts only work on integers");
2680 // Always fold shifts of i1 values so the code generator doesn't need to
2681 // handle them. Since we know the size of the shift has to be less than the
2682 // size of the value, the shift/rotate count is guaranteed to be zero.
2683 if (VT == MVT::i1)
2684 return N1;
2685 if (N2C && N2C->isNullValue())
2686 return N1;
2687 break;
2688 case ISD::FP_ROUND_INREG: {
2689 EVT EVT = cast<VTSDNode>(N2)->getVT();
2690 assert(VT == N1.getValueType() && "Not an inreg round!");
2691 assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2692 "Cannot FP_ROUND_INREG integer types");
2693 assert(EVT.isVector() == VT.isVector() &&
2694 "FP_ROUND_INREG type should be vector iff the operand "
2695 "type is vector!");
2696 assert((!EVT.isVector() ||
2697 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2698 "Vector element counts must match in FP_ROUND_INREG");
2699 assert(EVT.bitsLE(VT) && "Not rounding down!");
2700 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2701 break;
2703 case ISD::FP_ROUND:
2704 assert(VT.isFloatingPoint() &&
2705 N1.getValueType().isFloatingPoint() &&
2706 VT.bitsLE(N1.getValueType()) &&
2707 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2708 if (N1.getValueType() == VT) return N1; // noop conversion.
2709 break;
2710 case ISD::AssertSext:
2711 case ISD::AssertZext: {
2712 EVT EVT = cast<VTSDNode>(N2)->getVT();
2713 assert(VT == N1.getValueType() && "Not an inreg extend!");
2714 assert(VT.isInteger() && EVT.isInteger() &&
2715 "Cannot *_EXTEND_INREG FP types");
2716 assert(!EVT.isVector() &&
2717 "AssertSExt/AssertZExt type should be the vector element type "
2718 "rather than the vector type!");
2719 assert(EVT.bitsLE(VT) && "Not extending!");
2720 if (VT == EVT) return N1; // noop assertion.
2721 break;
2723 case ISD::SIGN_EXTEND_INREG: {
2724 EVT EVT = cast<VTSDNode>(N2)->getVT();
2725 assert(VT == N1.getValueType() && "Not an inreg extend!");
2726 assert(VT.isInteger() && EVT.isInteger() &&
2727 "Cannot *_EXTEND_INREG FP types");
2728 assert(EVT.isVector() == VT.isVector() &&
2729 "SIGN_EXTEND_INREG type should be vector iff the operand "
2730 "type is vector!");
2731 assert((!EVT.isVector() ||
2732 EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2733 "Vector element counts must match in SIGN_EXTEND_INREG");
2734 assert(EVT.bitsLE(VT) && "Not extending!");
2735 if (EVT == VT) return N1; // Not actually extending
2737 if (N1C) {
2738 APInt Val = N1C->getAPIntValue();
2739 unsigned FromBits = EVT.getScalarType().getSizeInBits();
2740 Val <<= Val.getBitWidth()-FromBits;
2741 Val = Val.ashr(Val.getBitWidth()-FromBits);
2742 return getConstant(Val, VT);
2744 break;
2746 case ISD::EXTRACT_VECTOR_ELT:
2747 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2748 if (N1.getOpcode() == ISD::UNDEF)
2749 return getUNDEF(VT);
2751 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2752 // expanding copies of large vectors from registers.
2753 if (N2C &&
2754 N1.getOpcode() == ISD::CONCAT_VECTORS &&
2755 N1.getNumOperands() > 0) {
2756 unsigned Factor =
2757 N1.getOperand(0).getValueType().getVectorNumElements();
2758 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2759 N1.getOperand(N2C->getZExtValue() / Factor),
2760 getConstant(N2C->getZExtValue() % Factor,
2761 N2.getValueType()));
2764 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2765 // expanding large vector constants.
2766 if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2767 SDValue Elt = N1.getOperand(N2C->getZExtValue());
2768 EVT VEltTy = N1.getValueType().getVectorElementType();
2769 if (Elt.getValueType() != VEltTy) {
2770 // If the vector element type is not legal, the BUILD_VECTOR operands
2771 // are promoted and implicitly truncated. Make that explicit here.
2772 Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2774 if (VT != VEltTy) {
2775 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2776 // result is implicitly extended.
2777 Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2779 return Elt;
2782 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2783 // operations are lowered to scalars.
2784 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2785 // If the indices are the same, return the inserted element else
2786 // if the indices are known different, extract the element from
2787 // the original vector.
2788 SDValue N1Op2 = N1.getOperand(2);
2789 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2791 if (N1Op2C && N2C) {
2792 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2793 if (VT == N1.getOperand(1).getValueType())
2794 return N1.getOperand(1);
2795 else
2796 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2799 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2802 break;
2803 case ISD::EXTRACT_ELEMENT:
2804 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2805 assert(!N1.getValueType().isVector() && !VT.isVector() &&
2806 (N1.getValueType().isInteger() == VT.isInteger()) &&
2807 "Wrong types for EXTRACT_ELEMENT!");
2809 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2810 // 64-bit integers into 32-bit parts. Instead of building the extract of
2811 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2812 if (N1.getOpcode() == ISD::BUILD_PAIR)
2813 return N1.getOperand(N2C->getZExtValue());
2815 // EXTRACT_ELEMENT of a constant int is also very common.
2816 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2817 unsigned ElementSize = VT.getSizeInBits();
2818 unsigned Shift = ElementSize * N2C->getZExtValue();
2819 APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2820 return getConstant(ShiftedVal.trunc(ElementSize), VT);
2822 break;
2823 case ISD::EXTRACT_SUBVECTOR:
2824 if (N1.getValueType() == VT) // Trivial extraction.
2825 return N1;
2826 break;
2829 if (N1C) {
2830 if (N2C) {
2831 SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2832 if (SV.getNode()) return SV;
2833 } else { // Cannonicalize constant to RHS if commutative
2834 if (isCommutativeBinOp(Opcode)) {
2835 std::swap(N1C, N2C);
2836 std::swap(N1, N2);
2841 // Constant fold FP operations.
2842 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2843 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2844 if (N1CFP) {
2845 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2846 // Cannonicalize constant to RHS if commutative
2847 std::swap(N1CFP, N2CFP);
2848 std::swap(N1, N2);
2849 } else if (N2CFP && VT != MVT::ppcf128) {
2850 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2851 APFloat::opStatus s;
2852 switch (Opcode) {
2853 case ISD::FADD:
2854 s = V1.add(V2, APFloat::rmNearestTiesToEven);
2855 if (s != APFloat::opInvalidOp)
2856 return getConstantFP(V1, VT);
2857 break;
2858 case ISD::FSUB:
2859 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2860 if (s!=APFloat::opInvalidOp)
2861 return getConstantFP(V1, VT);
2862 break;
2863 case ISD::FMUL:
2864 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2865 if (s!=APFloat::opInvalidOp)
2866 return getConstantFP(V1, VT);
2867 break;
2868 case ISD::FDIV:
2869 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2870 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2871 return getConstantFP(V1, VT);
2872 break;
2873 case ISD::FREM :
2874 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2875 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2876 return getConstantFP(V1, VT);
2877 break;
2878 case ISD::FCOPYSIGN:
2879 V1.copySign(V2);
2880 return getConstantFP(V1, VT);
2881 default: break;
2886 // Canonicalize an UNDEF to the RHS, even over a constant.
2887 if (N1.getOpcode() == ISD::UNDEF) {
2888 if (isCommutativeBinOp(Opcode)) {
2889 std::swap(N1, N2);
2890 } else {
2891 switch (Opcode) {
2892 case ISD::FP_ROUND_INREG:
2893 case ISD::SIGN_EXTEND_INREG:
2894 case ISD::SUB:
2895 case ISD::FSUB:
2896 case ISD::FDIV:
2897 case ISD::FREM:
2898 case ISD::SRA:
2899 return N1; // fold op(undef, arg2) -> undef
2900 case ISD::UDIV:
2901 case ISD::SDIV:
2902 case ISD::UREM:
2903 case ISD::SREM:
2904 case ISD::SRL:
2905 case ISD::SHL:
2906 if (!VT.isVector())
2907 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2908 // For vectors, we can't easily build an all zero vector, just return
2909 // the LHS.
2910 return N2;
2915 // Fold a bunch of operators when the RHS is undef.
2916 if (N2.getOpcode() == ISD::UNDEF) {
2917 switch (Opcode) {
2918 case ISD::XOR:
2919 if (N1.getOpcode() == ISD::UNDEF)
2920 // Handle undef ^ undef -> 0 special case. This is a common
2921 // idiom (misuse).
2922 return getConstant(0, VT);
2923 // fallthrough
2924 case ISD::ADD:
2925 case ISD::ADDC:
2926 case ISD::ADDE:
2927 case ISD::SUB:
2928 case ISD::UDIV:
2929 case ISD::SDIV:
2930 case ISD::UREM:
2931 case ISD::SREM:
2932 return N2; // fold op(arg1, undef) -> undef
2933 case ISD::FADD:
2934 case ISD::FSUB:
2935 case ISD::FMUL:
2936 case ISD::FDIV:
2937 case ISD::FREM:
2938 if (UnsafeFPMath)
2939 return N2;
2940 break;
2941 case ISD::MUL:
2942 case ISD::AND:
2943 case ISD::SRL:
2944 case ISD::SHL:
2945 if (!VT.isVector())
2946 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2947 // For vectors, we can't easily build an all zero vector, just return
2948 // the LHS.
2949 return N1;
2950 case ISD::OR:
2951 if (!VT.isVector())
2952 return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2953 // For vectors, we can't easily build an all one vector, just return
2954 // the LHS.
2955 return N1;
2956 case ISD::SRA:
2957 return N1;
2961 // Memoize this node if possible.
2962 SDNode *N;
2963 SDVTList VTs = getVTList(VT);
2964 if (VT != MVT::Flag) {
2965 SDValue Ops[] = { N1, N2 };
2966 FoldingSetNodeID ID;
2967 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2968 void *IP = 0;
2969 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2970 return SDValue(E, 0);
2972 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2973 CSEMap.InsertNode(N, IP);
2974 } else {
2975 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2978 AllNodes.push_back(N);
2979 #ifndef NDEBUG
2980 VerifyNode(N);
2981 #endif
2982 return SDValue(N, 0);
2985 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2986 SDValue N1, SDValue N2, SDValue N3) {
2987 // Perform various simplifications.
2988 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2989 switch (Opcode) {
2990 case ISD::CONCAT_VECTORS:
2991 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2992 // one big BUILD_VECTOR.
2993 if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2994 N2.getOpcode() == ISD::BUILD_VECTOR &&
2995 N3.getOpcode() == ISD::BUILD_VECTOR) {
2996 SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2997 N1.getNode()->op_end());
2998 Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2999 Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3000 return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3002 break;
3003 case ISD::SETCC: {
3004 // Use FoldSetCC to simplify SETCC's.
3005 SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3006 if (Simp.getNode()) return Simp;
3007 break;
3009 case ISD::SELECT:
3010 if (N1C) {
3011 if (N1C->getZExtValue())
3012 return N2; // select true, X, Y -> X
3013 else
3014 return N3; // select false, X, Y -> Y
3017 if (N2 == N3) return N2; // select C, X, X -> X
3018 break;
3019 case ISD::VECTOR_SHUFFLE:
3020 llvm_unreachable("should use getVectorShuffle constructor!");
3021 break;
3022 case ISD::BIT_CONVERT:
3023 // Fold bit_convert nodes from a type to themselves.
3024 if (N1.getValueType() == VT)
3025 return N1;
3026 break;
3029 // Memoize node if it doesn't produce a flag.
3030 SDNode *N;
3031 SDVTList VTs = getVTList(VT);
3032 if (VT != MVT::Flag) {
3033 SDValue Ops[] = { N1, N2, N3 };
3034 FoldingSetNodeID ID;
3035 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3036 void *IP = 0;
3037 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3038 return SDValue(E, 0);
3040 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3041 CSEMap.InsertNode(N, IP);
3042 } else {
3043 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3046 AllNodes.push_back(N);
3047 #ifndef NDEBUG
3048 VerifyNode(N);
3049 #endif
3050 return SDValue(N, 0);
3053 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3054 SDValue N1, SDValue N2, SDValue N3,
3055 SDValue N4) {
3056 SDValue Ops[] = { N1, N2, N3, N4 };
3057 return getNode(Opcode, DL, VT, Ops, 4);
3060 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3061 SDValue N1, SDValue N2, SDValue N3,
3062 SDValue N4, SDValue N5) {
3063 SDValue Ops[] = { N1, N2, N3, N4, N5 };
3064 return getNode(Opcode, DL, VT, Ops, 5);
3067 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3068 /// the incoming stack arguments to be loaded from the stack.
3069 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3070 SmallVector<SDValue, 8> ArgChains;
3072 // Include the original chain at the beginning of the list. When this is
3073 // used by target LowerCall hooks, this helps legalize find the
3074 // CALLSEQ_BEGIN node.
3075 ArgChains.push_back(Chain);
3077 // Add a chain value for each stack argument.
3078 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3079 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3080 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3081 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3082 if (FI->getIndex() < 0)
3083 ArgChains.push_back(SDValue(L, 1));
3085 // Build a tokenfactor for all the chains.
3086 return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3087 &ArgChains[0], ArgChains.size());
3090 /// getMemsetValue - Vectorized representation of the memset value
3091 /// operand.
3092 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3093 DebugLoc dl) {
3094 assert(Value.getOpcode() != ISD::UNDEF);
3096 unsigned NumBits = VT.getScalarType().getSizeInBits();
3097 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3098 APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3099 unsigned Shift = 8;
3100 for (unsigned i = NumBits; i > 8; i >>= 1) {
3101 Val = (Val << Shift) | Val;
3102 Shift <<= 1;
3104 if (VT.isInteger())
3105 return DAG.getConstant(Val, VT);
3106 return DAG.getConstantFP(APFloat(Val), VT);
3109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3111 unsigned Shift = 8;
3112 for (unsigned i = NumBits; i > 8; i >>= 1) {
3113 Value = DAG.getNode(ISD::OR, dl, VT,
3114 DAG.getNode(ISD::SHL, dl, VT, Value,
3115 DAG.getConstant(Shift,
3116 TLI.getShiftAmountTy())),
3117 Value);
3118 Shift <<= 1;
3121 return Value;
3124 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3125 /// used when a memcpy is turned into a memset when the source is a constant
3126 /// string ptr.
3127 static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3128 const TargetLowering &TLI,
3129 std::string &Str, unsigned Offset) {
3130 // Handle vector with all elements zero.
3131 if (Str.empty()) {
3132 if (VT.isInteger())
3133 return DAG.getConstant(0, VT);
3134 else if (VT == MVT::f32 || VT == MVT::f64)
3135 return DAG.getConstantFP(0.0, VT);
3136 else if (VT.isVector()) {
3137 unsigned NumElts = VT.getVectorNumElements();
3138 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3139 return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3140 DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3141 EltVT, NumElts)));
3142 } else
3143 llvm_unreachable("Expected type!");
3146 assert(!VT.isVector() && "Can't handle vector type here!");
3147 unsigned NumBits = VT.getSizeInBits();
3148 unsigned MSB = NumBits / 8;
3149 uint64_t Val = 0;
3150 if (TLI.isLittleEndian())
3151 Offset = Offset + MSB - 1;
3152 for (unsigned i = 0; i != MSB; ++i) {
3153 Val = (Val << 8) | (unsigned char)Str[Offset];
3154 Offset += TLI.isLittleEndian() ? -1 : 1;
3156 return DAG.getConstant(Val, VT);
3159 /// getMemBasePlusOffset - Returns base and offset node for the
3161 static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3162 SelectionDAG &DAG) {
3163 EVT VT = Base.getValueType();
3164 return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3165 VT, Base, DAG.getConstant(Offset, VT));
3168 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3170 static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3171 unsigned SrcDelta = 0;
3172 GlobalAddressSDNode *G = NULL;
3173 if (Src.getOpcode() == ISD::GlobalAddress)
3174 G = cast<GlobalAddressSDNode>(Src);
3175 else if (Src.getOpcode() == ISD::ADD &&
3176 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3177 Src.getOperand(1).getOpcode() == ISD::Constant) {
3178 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3179 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3181 if (!G)
3182 return false;
3184 const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3185 if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3186 return true;
3188 return false;
3191 /// FindOptimalMemOpLowering - Determines the optimial series memory ops
3192 /// to replace the memset / memcpy. Return true if the number of memory ops
3193 /// is below the threshold. It returns the types of the sequence of
3194 /// memory ops to perform memset / memcpy by reference.
3195 static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3196 unsigned Limit, uint64_t Size,
3197 unsigned DstAlign, unsigned SrcAlign,
3198 bool NonScalarIntSafe,
3199 bool MemcpyStrSrc,
3200 SelectionDAG &DAG,
3201 const TargetLowering &TLI) {
3202 assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3203 "Expecting memcpy / memset source to meet alignment requirement!");
3204 // If 'SrcAlign' is zero, that means the memory operation does not need load
3205 // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3206 // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3207 // specified alignment of the memory operation. If it is zero, that means
3208 // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3209 // indicates whether the memcpy source is constant so it does not need to be
3210 // loaded.
3211 EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3212 NonScalarIntSafe, MemcpyStrSrc,
3213 DAG.getMachineFunction());
3215 if (VT == MVT::Other) {
3216 if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3217 TLI.allowsUnalignedMemoryAccesses(VT)) {
3218 VT = TLI.getPointerTy();
3219 } else {
3220 switch (DstAlign & 7) {
3221 case 0: VT = MVT::i64; break;
3222 case 4: VT = MVT::i32; break;
3223 case 2: VT = MVT::i16; break;
3224 default: VT = MVT::i8; break;
3228 MVT LVT = MVT::i64;
3229 while (!TLI.isTypeLegal(LVT))
3230 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3231 assert(LVT.isInteger());
3233 if (VT.bitsGT(LVT))
3234 VT = LVT;
3237 // If we're optimizing for size, and there is a limit, bump the maximum number
3238 // of operations inserted down to 4. This is a wild guess that approximates
3239 // the size of a call to memcpy or memset (3 arguments + call).
3240 if (Limit != ~0U) {
3241 const Function *F = DAG.getMachineFunction().getFunction();
3242 if (F->hasFnAttr(Attribute::OptimizeForSize))
3243 Limit = 4;
3246 unsigned NumMemOps = 0;
3247 while (Size != 0) {
3248 unsigned VTSize = VT.getSizeInBits() / 8;
3249 while (VTSize > Size) {
3250 // For now, only use non-vector load / store's for the left-over pieces.
3251 if (VT.isVector() || VT.isFloatingPoint()) {
3252 VT = MVT::i64;
3253 while (!TLI.isTypeLegal(VT))
3254 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3255 VTSize = VT.getSizeInBits() / 8;
3256 } else {
3257 // This can result in a type that is not legal on the target, e.g.
3258 // 1 or 2 bytes on PPC.
3259 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3260 VTSize >>= 1;
3264 if (++NumMemOps > Limit)
3265 return false;
3266 MemOps.push_back(VT);
3267 Size -= VTSize;
3270 return true;
3273 static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3274 SDValue Chain, SDValue Dst,
3275 SDValue Src, uint64_t Size,
3276 unsigned Align, bool isVol,
3277 bool AlwaysInline,
3278 MachinePointerInfo DstPtrInfo,
3279 MachinePointerInfo SrcPtrInfo) {
3280 // Turn a memcpy of undef to nop.
3281 if (Src.getOpcode() == ISD::UNDEF)
3282 return Chain;
3284 // Expand memcpy to a series of load and store ops if the size operand falls
3285 // below a certain threshold.
3286 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3287 std::vector<EVT> MemOps;
3288 bool DstAlignCanChange = false;
3289 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3290 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3291 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3292 DstAlignCanChange = true;
3293 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3294 if (Align > SrcAlign)
3295 SrcAlign = Align;
3296 std::string Str;
3297 bool CopyFromStr = isMemSrcFromString(Src, Str);
3298 bool isZeroStr = CopyFromStr && Str.empty();
3299 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3301 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3302 (DstAlignCanChange ? 0 : Align),
3303 (isZeroStr ? 0 : SrcAlign),
3304 true, CopyFromStr, DAG, TLI))
3305 return SDValue();
3307 if (DstAlignCanChange) {
3308 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3309 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3310 if (NewAlign > Align) {
3311 // Give the stack frame object a larger alignment if needed.
3312 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3313 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3314 Align = NewAlign;
3318 SmallVector<SDValue, 8> OutChains;
3319 unsigned NumMemOps = MemOps.size();
3320 uint64_t SrcOff = 0, DstOff = 0;
3321 for (unsigned i = 0; i != NumMemOps; ++i) {
3322 EVT VT = MemOps[i];
3323 unsigned VTSize = VT.getSizeInBits() / 8;
3324 SDValue Value, Store;
3326 if (CopyFromStr &&
3327 (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3328 // It's unlikely a store of a vector immediate can be done in a single
3329 // instruction. It would require a load from a constantpool first.
3330 // We only handle zero vectors here.
3331 // FIXME: Handle other cases where store of vector immediate is done in
3332 // a single instruction.
3333 Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3334 Store = DAG.getStore(Chain, dl, Value,
3335 getMemBasePlusOffset(Dst, DstOff, DAG),
3336 DstPtrInfo.getWithOffset(DstOff), isVol,
3337 false, Align);
3338 } else {
3339 // The type might not be legal for the target. This should only happen
3340 // if the type is smaller than a legal type, as on PPC, so the right
3341 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3342 // to Load/Store if NVT==VT.
3343 // FIXME does the case above also need this?
3344 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3345 assert(NVT.bitsGE(VT));
3346 Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3347 getMemBasePlusOffset(Src, SrcOff, DAG),
3348 SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3349 MinAlign(SrcAlign, SrcOff));
3350 Store = DAG.getTruncStore(Chain, dl, Value,
3351 getMemBasePlusOffset(Dst, DstOff, DAG),
3352 DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3353 false, Align);
3355 OutChains.push_back(Store);
3356 SrcOff += VTSize;
3357 DstOff += VTSize;
3360 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3361 &OutChains[0], OutChains.size());
3364 static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3365 SDValue Chain, SDValue Dst,
3366 SDValue Src, uint64_t Size,
3367 unsigned Align, bool isVol,
3368 bool AlwaysInline,
3369 MachinePointerInfo DstPtrInfo,
3370 MachinePointerInfo SrcPtrInfo) {
3371 // Turn a memmove of undef to nop.
3372 if (Src.getOpcode() == ISD::UNDEF)
3373 return Chain;
3375 // Expand memmove to a series of load and store ops if the size operand falls
3376 // below a certain threshold.
3377 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3378 std::vector<EVT> MemOps;
3379 bool DstAlignCanChange = false;
3380 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3381 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3382 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3383 DstAlignCanChange = true;
3384 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3385 if (Align > SrcAlign)
3386 SrcAlign = Align;
3387 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3389 if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3390 (DstAlignCanChange ? 0 : Align),
3391 SrcAlign, true, false, DAG, TLI))
3392 return SDValue();
3394 if (DstAlignCanChange) {
3395 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3396 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3397 if (NewAlign > Align) {
3398 // Give the stack frame object a larger alignment if needed.
3399 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3400 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3401 Align = NewAlign;
3405 uint64_t SrcOff = 0, DstOff = 0;
3406 SmallVector<SDValue, 8> LoadValues;
3407 SmallVector<SDValue, 8> LoadChains;
3408 SmallVector<SDValue, 8> OutChains;
3409 unsigned NumMemOps = MemOps.size();
3410 for (unsigned i = 0; i < NumMemOps; i++) {
3411 EVT VT = MemOps[i];
3412 unsigned VTSize = VT.getSizeInBits() / 8;
3413 SDValue Value, Store;
3415 Value = DAG.getLoad(VT, dl, Chain,
3416 getMemBasePlusOffset(Src, SrcOff, DAG),
3417 SrcPtrInfo.getWithOffset(SrcOff), isVol,
3418 false, SrcAlign);
3419 LoadValues.push_back(Value);
3420 LoadChains.push_back(Value.getValue(1));
3421 SrcOff += VTSize;
3423 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3424 &LoadChains[0], LoadChains.size());
3425 OutChains.clear();
3426 for (unsigned i = 0; i < NumMemOps; i++) {
3427 EVT VT = MemOps[i];
3428 unsigned VTSize = VT.getSizeInBits() / 8;
3429 SDValue Value, Store;
3431 Store = DAG.getStore(Chain, dl, LoadValues[i],
3432 getMemBasePlusOffset(Dst, DstOff, DAG),
3433 DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3434 OutChains.push_back(Store);
3435 DstOff += VTSize;
3438 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3439 &OutChains[0], OutChains.size());
3442 static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3443 SDValue Chain, SDValue Dst,
3444 SDValue Src, uint64_t Size,
3445 unsigned Align, bool isVol,
3446 MachinePointerInfo DstPtrInfo) {
3447 // Turn a memset of undef to nop.
3448 if (Src.getOpcode() == ISD::UNDEF)
3449 return Chain;
3451 // Expand memset to a series of load/store ops if the size operand
3452 // falls below a certain threshold.
3453 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3454 std::vector<EVT> MemOps;
3455 bool DstAlignCanChange = false;
3456 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3457 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3458 if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3459 DstAlignCanChange = true;
3460 bool NonScalarIntSafe =
3461 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3462 if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3463 Size, (DstAlignCanChange ? 0 : Align), 0,
3464 NonScalarIntSafe, false, DAG, TLI))
3465 return SDValue();
3467 if (DstAlignCanChange) {
3468 const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3469 unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3470 if (NewAlign > Align) {
3471 // Give the stack frame object a larger alignment if needed.
3472 if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3473 MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3474 Align = NewAlign;
3478 SmallVector<SDValue, 8> OutChains;
3479 uint64_t DstOff = 0;
3480 unsigned NumMemOps = MemOps.size();
3481 for (unsigned i = 0; i < NumMemOps; i++) {
3482 EVT VT = MemOps[i];
3483 unsigned VTSize = VT.getSizeInBits() / 8;
3484 SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3485 SDValue Store = DAG.getStore(Chain, dl, Value,
3486 getMemBasePlusOffset(Dst, DstOff, DAG),
3487 DstPtrInfo.getWithOffset(DstOff),
3488 isVol, false, 0);
3489 OutChains.push_back(Store);
3490 DstOff += VTSize;
3493 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3494 &OutChains[0], OutChains.size());
3497 SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3498 SDValue Src, SDValue Size,
3499 unsigned Align, bool isVol, bool AlwaysInline,
3500 MachinePointerInfo DstPtrInfo,
3501 MachinePointerInfo SrcPtrInfo) {
3503 // Check to see if we should lower the memcpy to loads and stores first.
3504 // For cases within the target-specified limits, this is the best choice.
3505 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3506 if (ConstantSize) {
3507 // Memcpy with size zero? Just return the original chain.
3508 if (ConstantSize->isNullValue())
3509 return Chain;
3511 SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3512 ConstantSize->getZExtValue(),Align,
3513 isVol, false, DstPtrInfo, SrcPtrInfo);
3514 if (Result.getNode())
3515 return Result;
3518 // Then check to see if we should lower the memcpy with target-specific
3519 // code. If the target chooses to do this, this is the next best.
3520 SDValue Result =
3521 TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3522 isVol, AlwaysInline,
3523 DstPtrInfo, SrcPtrInfo);
3524 if (Result.getNode())
3525 return Result;
3527 // If we really need inline code and the target declined to provide it,
3528 // use a (potentially long) sequence of loads and stores.
3529 if (AlwaysInline) {
3530 assert(ConstantSize && "AlwaysInline requires a constant size!");
3531 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3532 ConstantSize->getZExtValue(), Align, isVol,
3533 true, DstPtrInfo, SrcPtrInfo);
3536 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3537 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3538 // respect volatile, so they may do things like read or write memory
3539 // beyond the given memory regions. But fixing this isn't easy, and most
3540 // people don't care.
3542 // Emit a library call.
3543 TargetLowering::ArgListTy Args;
3544 TargetLowering::ArgListEntry Entry;
3545 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3546 Entry.Node = Dst; Args.push_back(Entry);
3547 Entry.Node = Src; Args.push_back(Entry);
3548 Entry.Node = Size; Args.push_back(Entry);
3549 // FIXME: pass in DebugLoc
3550 std::pair<SDValue,SDValue> CallResult =
3551 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3552 false, false, false, false, 0,
3553 TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3554 /*isReturnValueUsed=*/false,
3555 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3556 TLI.getPointerTy()),
3557 Args, *this, dl);
3558 return CallResult.second;
3561 SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3562 SDValue Src, SDValue Size,
3563 unsigned Align, bool isVol,
3564 MachinePointerInfo DstPtrInfo,
3565 MachinePointerInfo SrcPtrInfo) {
3567 // Check to see if we should lower the memmove to loads and stores first.
3568 // For cases within the target-specified limits, this is the best choice.
3569 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3570 if (ConstantSize) {
3571 // Memmove with size zero? Just return the original chain.
3572 if (ConstantSize->isNullValue())
3573 return Chain;
3575 SDValue Result =
3576 getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3577 ConstantSize->getZExtValue(), Align, isVol,
3578 false, DstPtrInfo, SrcPtrInfo);
3579 if (Result.getNode())
3580 return Result;
3583 // Then check to see if we should lower the memmove with target-specific
3584 // code. If the target chooses to do this, this is the next best.
3585 SDValue Result =
3586 TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3587 DstPtrInfo, SrcPtrInfo);
3588 if (Result.getNode())
3589 return Result;
3591 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3592 // not be safe. See memcpy above for more details.
3594 // Emit a library call.
3595 TargetLowering::ArgListTy Args;
3596 TargetLowering::ArgListEntry Entry;
3597 Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3598 Entry.Node = Dst; Args.push_back(Entry);
3599 Entry.Node = Src; Args.push_back(Entry);
3600 Entry.Node = Size; Args.push_back(Entry);
3601 // FIXME: pass in DebugLoc
3602 std::pair<SDValue,SDValue> CallResult =
3603 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3604 false, false, false, false, 0,
3605 TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3606 /*isReturnValueUsed=*/false,
3607 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3608 TLI.getPointerTy()),
3609 Args, *this, dl);
3610 return CallResult.second;
3613 SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3614 SDValue Src, SDValue Size,
3615 unsigned Align, bool isVol,
3616 MachinePointerInfo DstPtrInfo) {
3618 // Check to see if we should lower the memset to stores first.
3619 // For cases within the target-specified limits, this is the best choice.
3620 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3621 if (ConstantSize) {
3622 // Memset with size zero? Just return the original chain.
3623 if (ConstantSize->isNullValue())
3624 return Chain;
3626 SDValue Result =
3627 getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3628 Align, isVol, DstPtrInfo);
3630 if (Result.getNode())
3631 return Result;
3634 // Then check to see if we should lower the memset with target-specific
3635 // code. If the target chooses to do this, this is the next best.
3636 SDValue Result =
3637 TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3638 DstPtrInfo);
3639 if (Result.getNode())
3640 return Result;
3642 // Emit a library call.
3643 const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3644 TargetLowering::ArgListTy Args;
3645 TargetLowering::ArgListEntry Entry;
3646 Entry.Node = Dst; Entry.Ty = IntPtrTy;
3647 Args.push_back(Entry);
3648 // Extend or truncate the argument to be an i32 value for the call.
3649 if (Src.getValueType().bitsGT(MVT::i32))
3650 Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3651 else
3652 Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3653 Entry.Node = Src;
3654 Entry.Ty = Type::getInt32Ty(*getContext());
3655 Entry.isSExt = true;
3656 Args.push_back(Entry);
3657 Entry.Node = Size;
3658 Entry.Ty = IntPtrTy;
3659 Entry.isSExt = false;
3660 Args.push_back(Entry);
3661 // FIXME: pass in DebugLoc
3662 std::pair<SDValue,SDValue> CallResult =
3663 TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3664 false, false, false, false, 0,
3665 TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3666 /*isReturnValueUsed=*/false,
3667 getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3668 TLI.getPointerTy()),
3669 Args, *this, dl);
3670 return CallResult.second;
3673 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3674 SDValue Chain, SDValue Ptr, SDValue Cmp,
3675 SDValue Swp, MachinePointerInfo PtrInfo,
3676 unsigned Alignment) {
3677 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3678 Alignment = getEVTAlignment(MemVT);
3680 MachineFunction &MF = getMachineFunction();
3681 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3683 // For now, atomics are considered to be volatile always.
3684 Flags |= MachineMemOperand::MOVolatile;
3686 MachineMemOperand *MMO =
3687 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3689 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3692 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3693 SDValue Chain,
3694 SDValue Ptr, SDValue Cmp,
3695 SDValue Swp, MachineMemOperand *MMO) {
3696 assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3697 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3699 EVT VT = Cmp.getValueType();
3701 SDVTList VTs = getVTList(VT, MVT::Other);
3702 FoldingSetNodeID ID;
3703 ID.AddInteger(MemVT.getRawBits());
3704 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3705 AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3706 void* IP = 0;
3707 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3708 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3709 return SDValue(E, 0);
3711 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3712 Ptr, Cmp, Swp, MMO);
3713 CSEMap.InsertNode(N, IP);
3714 AllNodes.push_back(N);
3715 return SDValue(N, 0);
3718 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3719 SDValue Chain,
3720 SDValue Ptr, SDValue Val,
3721 const Value* PtrVal,
3722 unsigned Alignment) {
3723 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3724 Alignment = getEVTAlignment(MemVT);
3726 MachineFunction &MF = getMachineFunction();
3727 unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3729 // For now, atomics are considered to be volatile always.
3730 Flags |= MachineMemOperand::MOVolatile;
3732 MachineMemOperand *MMO =
3733 MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3734 MemVT.getStoreSize(), Alignment);
3736 return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3739 SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3740 SDValue Chain,
3741 SDValue Ptr, SDValue Val,
3742 MachineMemOperand *MMO) {
3743 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3744 Opcode == ISD::ATOMIC_LOAD_SUB ||
3745 Opcode == ISD::ATOMIC_LOAD_AND ||
3746 Opcode == ISD::ATOMIC_LOAD_OR ||
3747 Opcode == ISD::ATOMIC_LOAD_XOR ||
3748 Opcode == ISD::ATOMIC_LOAD_NAND ||
3749 Opcode == ISD::ATOMIC_LOAD_MIN ||
3750 Opcode == ISD::ATOMIC_LOAD_MAX ||
3751 Opcode == ISD::ATOMIC_LOAD_UMIN ||
3752 Opcode == ISD::ATOMIC_LOAD_UMAX ||
3753 Opcode == ISD::ATOMIC_SWAP) &&
3754 "Invalid Atomic Op");
3756 EVT VT = Val.getValueType();
3758 SDVTList VTs = getVTList(VT, MVT::Other);
3759 FoldingSetNodeID ID;
3760 ID.AddInteger(MemVT.getRawBits());
3761 SDValue Ops[] = {Chain, Ptr, Val};
3762 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3763 void* IP = 0;
3764 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3765 cast<AtomicSDNode>(E)->refineAlignment(MMO);
3766 return SDValue(E, 0);
3768 SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3769 Ptr, Val, MMO);
3770 CSEMap.InsertNode(N, IP);
3771 AllNodes.push_back(N);
3772 return SDValue(N, 0);
3775 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3776 /// Allowed to return something different (and simpler) if Simplify is true.
3777 SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3778 DebugLoc dl) {
3779 if (NumOps == 1)
3780 return Ops[0];
3782 SmallVector<EVT, 4> VTs;
3783 VTs.reserve(NumOps);
3784 for (unsigned i = 0; i < NumOps; ++i)
3785 VTs.push_back(Ops[i].getValueType());
3786 return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3787 Ops, NumOps);
3790 SDValue
3791 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3792 const EVT *VTs, unsigned NumVTs,
3793 const SDValue *Ops, unsigned NumOps,
3794 EVT MemVT, MachinePointerInfo PtrInfo,
3795 unsigned Align, bool Vol,
3796 bool ReadMem, bool WriteMem) {
3797 return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3798 MemVT, PtrInfo, Align, Vol,
3799 ReadMem, WriteMem);
3802 SDValue
3803 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3804 const SDValue *Ops, unsigned NumOps,
3805 EVT MemVT, MachinePointerInfo PtrInfo,
3806 unsigned Align, bool Vol,
3807 bool ReadMem, bool WriteMem) {
3808 if (Align == 0) // Ensure that codegen never sees alignment 0
3809 Align = getEVTAlignment(MemVT);
3811 MachineFunction &MF = getMachineFunction();
3812 unsigned Flags = 0;
3813 if (WriteMem)
3814 Flags |= MachineMemOperand::MOStore;
3815 if (ReadMem)
3816 Flags |= MachineMemOperand::MOLoad;
3817 if (Vol)
3818 Flags |= MachineMemOperand::MOVolatile;
3819 MachineMemOperand *MMO =
3820 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3822 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3825 SDValue
3826 SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3827 const SDValue *Ops, unsigned NumOps,
3828 EVT MemVT, MachineMemOperand *MMO) {
3829 assert((Opcode == ISD::INTRINSIC_VOID ||
3830 Opcode == ISD::INTRINSIC_W_CHAIN ||
3831 Opcode == ISD::PREFETCH ||
3832 (Opcode <= INT_MAX &&
3833 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3834 "Opcode is not a memory-accessing opcode!");
3836 // Memoize the node unless it returns a flag.
3837 MemIntrinsicSDNode *N;
3838 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3839 FoldingSetNodeID ID;
3840 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3841 void *IP = 0;
3842 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3843 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3844 return SDValue(E, 0);
3847 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3848 MemVT, MMO);
3849 CSEMap.InsertNode(N, IP);
3850 } else {
3851 N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3852 MemVT, MMO);
3854 AllNodes.push_back(N);
3855 return SDValue(N, 0);
3858 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3859 /// MachinePointerInfo record from it. This is particularly useful because the
3860 /// code generator has many cases where it doesn't bother passing in a
3861 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3862 static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3863 // If this is FI+Offset, we can model it.
3864 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
3865 return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
3867 // If this is (FI+Offset1)+Offset2, we can model it.
3868 if (Ptr.getOpcode() != ISD::ADD ||
3869 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
3870 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
3871 return MachinePointerInfo();
3873 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3874 return MachinePointerInfo::getFixedStack(FI, Offset+
3875 cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
3878 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3879 /// MachinePointerInfo record from it. This is particularly useful because the
3880 /// code generator has many cases where it doesn't bother passing in a
3881 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3882 static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
3883 // If the 'Offset' value isn't a constant, we can't handle this.
3884 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
3885 return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
3886 if (OffsetOp.getOpcode() == ISD::UNDEF)
3887 return InferPointerInfo(Ptr);
3888 return MachinePointerInfo();
3892 SDValue
3893 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3894 EVT VT, DebugLoc dl, SDValue Chain,
3895 SDValue Ptr, SDValue Offset,
3896 MachinePointerInfo PtrInfo, EVT MemVT,
3897 bool isVolatile, bool isNonTemporal,
3898 unsigned Alignment, const MDNode *TBAAInfo) {
3899 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3900 Alignment = getEVTAlignment(VT);
3902 unsigned Flags = MachineMemOperand::MOLoad;
3903 if (isVolatile)
3904 Flags |= MachineMemOperand::MOVolatile;
3905 if (isNonTemporal)
3906 Flags |= MachineMemOperand::MONonTemporal;
3908 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
3909 // clients.
3910 if (PtrInfo.V == 0)
3911 PtrInfo = InferPointerInfo(Ptr, Offset);
3913 MachineFunction &MF = getMachineFunction();
3914 MachineMemOperand *MMO =
3915 MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
3916 TBAAInfo);
3917 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
3920 SDValue
3921 SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3922 EVT VT, DebugLoc dl, SDValue Chain,
3923 SDValue Ptr, SDValue Offset, EVT MemVT,
3924 MachineMemOperand *MMO) {
3925 if (VT == MemVT) {
3926 ExtType = ISD::NON_EXTLOAD;
3927 } else if (ExtType == ISD::NON_EXTLOAD) {
3928 assert(VT == MemVT && "Non-extending load from different memory type!");
3929 } else {
3930 // Extending load.
3931 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3932 "Should only be an extending load, not truncating!");
3933 assert(VT.isInteger() == MemVT.isInteger() &&
3934 "Cannot convert from FP to Int or Int -> FP!");
3935 assert(VT.isVector() == MemVT.isVector() &&
3936 "Cannot use trunc store to convert to or from a vector!");
3937 assert((!VT.isVector() ||
3938 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3939 "Cannot use trunc store to change the number of vector elements!");
3942 bool Indexed = AM != ISD::UNINDEXED;
3943 assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3944 "Unindexed load with an offset!");
3946 SDVTList VTs = Indexed ?
3947 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3948 SDValue Ops[] = { Chain, Ptr, Offset };
3949 FoldingSetNodeID ID;
3950 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3951 ID.AddInteger(MemVT.getRawBits());
3952 ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3953 MMO->isNonTemporal()));
3954 void *IP = 0;
3955 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3956 cast<LoadSDNode>(E)->refineAlignment(MMO);
3957 return SDValue(E, 0);
3959 SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3960 MemVT, MMO);
3961 CSEMap.InsertNode(N, IP);
3962 AllNodes.push_back(N);
3963 return SDValue(N, 0);
3966 SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3967 SDValue Chain, SDValue Ptr,
3968 MachinePointerInfo PtrInfo,
3969 bool isVolatile, bool isNonTemporal,
3970 unsigned Alignment, const MDNode *TBAAInfo) {
3971 SDValue Undef = getUNDEF(Ptr.getValueType());
3972 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
3973 PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
3976 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
3977 SDValue Chain, SDValue Ptr,
3978 MachinePointerInfo PtrInfo, EVT MemVT,
3979 bool isVolatile, bool isNonTemporal,
3980 unsigned Alignment, const MDNode *TBAAInfo) {
3981 SDValue Undef = getUNDEF(Ptr.getValueType());
3982 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
3983 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
3984 TBAAInfo);
3988 SDValue
3989 SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3990 SDValue Offset, ISD::MemIndexedMode AM) {
3991 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3992 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3993 "Load is already a indexed load!");
3994 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
3995 LD->getChain(), Base, Offset, LD->getPointerInfo(),
3996 LD->getMemoryVT(),
3997 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
4000 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4001 SDValue Ptr, MachinePointerInfo PtrInfo,
4002 bool isVolatile, bool isNonTemporal,
4003 unsigned Alignment, const MDNode *TBAAInfo) {
4004 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4005 Alignment = getEVTAlignment(Val.getValueType());
4007 unsigned Flags = MachineMemOperand::MOStore;
4008 if (isVolatile)
4009 Flags |= MachineMemOperand::MOVolatile;
4010 if (isNonTemporal)
4011 Flags |= MachineMemOperand::MONonTemporal;
4013 if (PtrInfo.V == 0)
4014 PtrInfo = InferPointerInfo(Ptr);
4016 MachineFunction &MF = getMachineFunction();
4017 MachineMemOperand *MMO =
4018 MF.getMachineMemOperand(PtrInfo, Flags,
4019 Val.getValueType().getStoreSize(), Alignment,
4020 TBAAInfo);
4022 return getStore(Chain, dl, Val, Ptr, MMO);
4025 SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4026 SDValue Ptr, MachineMemOperand *MMO) {
4027 EVT VT = Val.getValueType();
4028 SDVTList VTs = getVTList(MVT::Other);
4029 SDValue Undef = getUNDEF(Ptr.getValueType());
4030 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4031 FoldingSetNodeID ID;
4032 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4033 ID.AddInteger(VT.getRawBits());
4034 ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4035 MMO->isNonTemporal()));
4036 void *IP = 0;
4037 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4038 cast<StoreSDNode>(E)->refineAlignment(MMO);
4039 return SDValue(E, 0);
4041 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4042 false, VT, MMO);
4043 CSEMap.InsertNode(N, IP);
4044 AllNodes.push_back(N);
4045 return SDValue(N, 0);
4048 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4049 SDValue Ptr, MachinePointerInfo PtrInfo,
4050 EVT SVT,bool isVolatile, bool isNonTemporal,
4051 unsigned Alignment,
4052 const MDNode *TBAAInfo) {
4053 if (Alignment == 0) // Ensure that codegen never sees alignment 0
4054 Alignment = getEVTAlignment(SVT);
4056 unsigned Flags = MachineMemOperand::MOStore;
4057 if (isVolatile)
4058 Flags |= MachineMemOperand::MOVolatile;
4059 if (isNonTemporal)
4060 Flags |= MachineMemOperand::MONonTemporal;
4062 if (PtrInfo.V == 0)
4063 PtrInfo = InferPointerInfo(Ptr);
4065 MachineFunction &MF = getMachineFunction();
4066 MachineMemOperand *MMO =
4067 MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4068 TBAAInfo);
4070 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4073 SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4074 SDValue Ptr, EVT SVT,
4075 MachineMemOperand *MMO) {
4076 EVT VT = Val.getValueType();
4078 if (VT == SVT)
4079 return getStore(Chain, dl, Val, Ptr, MMO);
4081 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4082 "Should only be a truncating store, not extending!");
4083 assert(VT.isInteger() == SVT.isInteger() &&
4084 "Can't do FP-INT conversion!");
4085 assert(VT.isVector() == SVT.isVector() &&
4086 "Cannot use trunc store to convert to or from a vector!");
4087 assert((!VT.isVector() ||
4088 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4089 "Cannot use trunc store to change the number of vector elements!");
4091 SDVTList VTs = getVTList(MVT::Other);
4092 SDValue Undef = getUNDEF(Ptr.getValueType());
4093 SDValue Ops[] = { Chain, Val, Ptr, Undef };
4094 FoldingSetNodeID ID;
4095 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4096 ID.AddInteger(SVT.getRawBits());
4097 ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4098 MMO->isNonTemporal()));
4099 void *IP = 0;
4100 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4101 cast<StoreSDNode>(E)->refineAlignment(MMO);
4102 return SDValue(E, 0);
4104 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4105 true, SVT, MMO);
4106 CSEMap.InsertNode(N, IP);
4107 AllNodes.push_back(N);
4108 return SDValue(N, 0);
4111 SDValue
4112 SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4113 SDValue Offset, ISD::MemIndexedMode AM) {
4114 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4115 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4116 "Store is already a indexed store!");
4117 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4118 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4119 FoldingSetNodeID ID;
4120 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4121 ID.AddInteger(ST->getMemoryVT().getRawBits());
4122 ID.AddInteger(ST->getRawSubclassData());
4123 void *IP = 0;
4124 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4125 return SDValue(E, 0);
4127 SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4128 ST->isTruncatingStore(),
4129 ST->getMemoryVT(),
4130 ST->getMemOperand());
4131 CSEMap.InsertNode(N, IP);
4132 AllNodes.push_back(N);
4133 return SDValue(N, 0);
4136 SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4137 SDValue Chain, SDValue Ptr,
4138 SDValue SV,
4139 unsigned Align) {
4140 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4141 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4144 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4145 const SDUse *Ops, unsigned NumOps) {
4146 switch (NumOps) {
4147 case 0: return getNode(Opcode, DL, VT);
4148 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4149 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4150 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4151 default: break;
4154 // Copy from an SDUse array into an SDValue array for use with
4155 // the regular getNode logic.
4156 SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4157 return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4160 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4161 const SDValue *Ops, unsigned NumOps) {
4162 switch (NumOps) {
4163 case 0: return getNode(Opcode, DL, VT);
4164 case 1: return getNode(Opcode, DL, VT, Ops[0]);
4165 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4166 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4167 default: break;
4170 switch (Opcode) {
4171 default: break;
4172 case ISD::SELECT_CC: {
4173 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4174 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4175 "LHS and RHS of condition must have same type!");
4176 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4177 "True and False arms of SelectCC must have same type!");
4178 assert(Ops[2].getValueType() == VT &&
4179 "select_cc node must be of same type as true and false value!");
4180 break;
4182 case ISD::BR_CC: {
4183 assert(NumOps == 5 && "BR_CC takes 5 operands!");
4184 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4185 "LHS/RHS of comparison should match types!");
4186 break;
4190 // Memoize nodes.
4191 SDNode *N;
4192 SDVTList VTs = getVTList(VT);
4194 if (VT != MVT::Flag) {
4195 FoldingSetNodeID ID;
4196 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4197 void *IP = 0;
4199 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4200 return SDValue(E, 0);
4202 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4203 CSEMap.InsertNode(N, IP);
4204 } else {
4205 N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4208 AllNodes.push_back(N);
4209 #ifndef NDEBUG
4210 VerifyNode(N);
4211 #endif
4212 return SDValue(N, 0);
4215 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4216 const std::vector<EVT> &ResultTys,
4217 const SDValue *Ops, unsigned NumOps) {
4218 return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4219 Ops, NumOps);
4222 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4223 const EVT *VTs, unsigned NumVTs,
4224 const SDValue *Ops, unsigned NumOps) {
4225 if (NumVTs == 1)
4226 return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4227 return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4230 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4231 const SDValue *Ops, unsigned NumOps) {
4232 if (VTList.NumVTs == 1)
4233 return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4235 #if 0
4236 switch (Opcode) {
4237 // FIXME: figure out how to safely handle things like
4238 // int foo(int x) { return 1 << (x & 255); }
4239 // int bar() { return foo(256); }
4240 case ISD::SRA_PARTS:
4241 case ISD::SRL_PARTS:
4242 case ISD::SHL_PARTS:
4243 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4244 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4245 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4246 else if (N3.getOpcode() == ISD::AND)
4247 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4248 // If the and is only masking out bits that cannot effect the shift,
4249 // eliminate the and.
4250 unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4251 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4252 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4254 break;
4256 #endif
4258 // Memoize the node unless it returns a flag.
4259 SDNode *N;
4260 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4261 FoldingSetNodeID ID;
4262 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4263 void *IP = 0;
4264 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4265 return SDValue(E, 0);
4267 if (NumOps == 1) {
4268 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4269 } else if (NumOps == 2) {
4270 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4271 } else if (NumOps == 3) {
4272 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4273 Ops[2]);
4274 } else {
4275 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4277 CSEMap.InsertNode(N, IP);
4278 } else {
4279 if (NumOps == 1) {
4280 N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4281 } else if (NumOps == 2) {
4282 N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4283 } else if (NumOps == 3) {
4284 N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4285 Ops[2]);
4286 } else {
4287 N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4290 AllNodes.push_back(N);
4291 #ifndef NDEBUG
4292 VerifyNode(N);
4293 #endif
4294 return SDValue(N, 0);
4297 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4298 return getNode(Opcode, DL, VTList, 0, 0);
4301 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4302 SDValue N1) {
4303 SDValue Ops[] = { N1 };
4304 return getNode(Opcode, DL, VTList, Ops, 1);
4307 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4308 SDValue N1, SDValue N2) {
4309 SDValue Ops[] = { N1, N2 };
4310 return getNode(Opcode, DL, VTList, Ops, 2);
4313 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4314 SDValue N1, SDValue N2, SDValue N3) {
4315 SDValue Ops[] = { N1, N2, N3 };
4316 return getNode(Opcode, DL, VTList, Ops, 3);
4319 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4320 SDValue N1, SDValue N2, SDValue N3,
4321 SDValue N4) {
4322 SDValue Ops[] = { N1, N2, N3, N4 };
4323 return getNode(Opcode, DL, VTList, Ops, 4);
4326 SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4327 SDValue N1, SDValue N2, SDValue N3,
4328 SDValue N4, SDValue N5) {
4329 SDValue Ops[] = { N1, N2, N3, N4, N5 };
4330 return getNode(Opcode, DL, VTList, Ops, 5);
4333 SDVTList SelectionDAG::getVTList(EVT VT) {
4334 return makeVTList(SDNode::getValueTypeList(VT), 1);
4337 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4338 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4339 E = VTList.rend(); I != E; ++I)
4340 if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4341 return *I;
4343 EVT *Array = Allocator.Allocate<EVT>(2);
4344 Array[0] = VT1;
4345 Array[1] = VT2;
4346 SDVTList Result = makeVTList(Array, 2);
4347 VTList.push_back(Result);
4348 return Result;
4351 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4352 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4353 E = VTList.rend(); I != E; ++I)
4354 if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4355 I->VTs[2] == VT3)
4356 return *I;
4358 EVT *Array = Allocator.Allocate<EVT>(3);
4359 Array[0] = VT1;
4360 Array[1] = VT2;
4361 Array[2] = VT3;
4362 SDVTList Result = makeVTList(Array, 3);
4363 VTList.push_back(Result);
4364 return Result;
4367 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4368 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4369 E = VTList.rend(); I != E; ++I)
4370 if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4371 I->VTs[2] == VT3 && I->VTs[3] == VT4)
4372 return *I;
4374 EVT *Array = Allocator.Allocate<EVT>(4);
4375 Array[0] = VT1;
4376 Array[1] = VT2;
4377 Array[2] = VT3;
4378 Array[3] = VT4;
4379 SDVTList Result = makeVTList(Array, 4);
4380 VTList.push_back(Result);
4381 return Result;
4384 SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4385 switch (NumVTs) {
4386 case 0: llvm_unreachable("Cannot have nodes without results!");
4387 case 1: return getVTList(VTs[0]);
4388 case 2: return getVTList(VTs[0], VTs[1]);
4389 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4390 case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4391 default: break;
4394 for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4395 E = VTList.rend(); I != E; ++I) {
4396 if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4397 continue;
4399 bool NoMatch = false;
4400 for (unsigned i = 2; i != NumVTs; ++i)
4401 if (VTs[i] != I->VTs[i]) {
4402 NoMatch = true;
4403 break;
4405 if (!NoMatch)
4406 return *I;
4409 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4410 std::copy(VTs, VTs+NumVTs, Array);
4411 SDVTList Result = makeVTList(Array, NumVTs);
4412 VTList.push_back(Result);
4413 return Result;
4417 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4418 /// specified operands. If the resultant node already exists in the DAG,
4419 /// this does not modify the specified node, instead it returns the node that
4420 /// already exists. If the resultant node does not exist in the DAG, the
4421 /// input node is returned. As a degenerate case, if you specify the same
4422 /// input operands as the node already has, the input node is returned.
4423 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4424 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4426 // Check to see if there is no change.
4427 if (Op == N->getOperand(0)) return N;
4429 // See if the modified node already exists.
4430 void *InsertPos = 0;
4431 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4432 return Existing;
4434 // Nope it doesn't. Remove the node from its current place in the maps.
4435 if (InsertPos)
4436 if (!RemoveNodeFromCSEMaps(N))
4437 InsertPos = 0;
4439 // Now we update the operands.
4440 N->OperandList[0].set(Op);
4442 // If this gets put into a CSE map, add it.
4443 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4444 return N;
4447 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4448 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4450 // Check to see if there is no change.
4451 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4452 return N; // No operands changed, just return the input node.
4454 // See if the modified node already exists.
4455 void *InsertPos = 0;
4456 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4457 return Existing;
4459 // Nope it doesn't. Remove the node from its current place in the maps.
4460 if (InsertPos)
4461 if (!RemoveNodeFromCSEMaps(N))
4462 InsertPos = 0;
4464 // Now we update the operands.
4465 if (N->OperandList[0] != Op1)
4466 N->OperandList[0].set(Op1);
4467 if (N->OperandList[1] != Op2)
4468 N->OperandList[1].set(Op2);
4470 // If this gets put into a CSE map, add it.
4471 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4472 return N;
4475 SDNode *SelectionDAG::
4476 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4477 SDValue Ops[] = { Op1, Op2, Op3 };
4478 return UpdateNodeOperands(N, Ops, 3);
4481 SDNode *SelectionDAG::
4482 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4483 SDValue Op3, SDValue Op4) {
4484 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4485 return UpdateNodeOperands(N, Ops, 4);
4488 SDNode *SelectionDAG::
4489 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4490 SDValue Op3, SDValue Op4, SDValue Op5) {
4491 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4492 return UpdateNodeOperands(N, Ops, 5);
4495 SDNode *SelectionDAG::
4496 UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4497 assert(N->getNumOperands() == NumOps &&
4498 "Update with wrong number of operands");
4500 // Check to see if there is no change.
4501 bool AnyChange = false;
4502 for (unsigned i = 0; i != NumOps; ++i) {
4503 if (Ops[i] != N->getOperand(i)) {
4504 AnyChange = true;
4505 break;
4509 // No operands changed, just return the input node.
4510 if (!AnyChange) return N;
4512 // See if the modified node already exists.
4513 void *InsertPos = 0;
4514 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4515 return Existing;
4517 // Nope it doesn't. Remove the node from its current place in the maps.
4518 if (InsertPos)
4519 if (!RemoveNodeFromCSEMaps(N))
4520 InsertPos = 0;
4522 // Now we update the operands.
4523 for (unsigned i = 0; i != NumOps; ++i)
4524 if (N->OperandList[i] != Ops[i])
4525 N->OperandList[i].set(Ops[i]);
4527 // If this gets put into a CSE map, add it.
4528 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4529 return N;
4532 /// DropOperands - Release the operands and set this node to have
4533 /// zero operands.
4534 void SDNode::DropOperands() {
4535 // Unlike the code in MorphNodeTo that does this, we don't need to
4536 // watch for dead nodes here.
4537 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4538 SDUse &Use = *I++;
4539 Use.set(SDValue());
4543 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4544 /// machine opcode.
4546 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4547 EVT VT) {
4548 SDVTList VTs = getVTList(VT);
4549 return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4552 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4553 EVT VT, SDValue Op1) {
4554 SDVTList VTs = getVTList(VT);
4555 SDValue Ops[] = { Op1 };
4556 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4559 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560 EVT VT, SDValue Op1,
4561 SDValue Op2) {
4562 SDVTList VTs = getVTList(VT);
4563 SDValue Ops[] = { Op1, Op2 };
4564 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4567 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4568 EVT VT, SDValue Op1,
4569 SDValue Op2, SDValue Op3) {
4570 SDVTList VTs = getVTList(VT);
4571 SDValue Ops[] = { Op1, Op2, Op3 };
4572 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4575 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4576 EVT VT, const SDValue *Ops,
4577 unsigned NumOps) {
4578 SDVTList VTs = getVTList(VT);
4579 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4582 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4583 EVT VT1, EVT VT2, const SDValue *Ops,
4584 unsigned NumOps) {
4585 SDVTList VTs = getVTList(VT1, VT2);
4586 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4589 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4590 EVT VT1, EVT VT2) {
4591 SDVTList VTs = getVTList(VT1, VT2);
4592 return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4595 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4596 EVT VT1, EVT VT2, EVT VT3,
4597 const SDValue *Ops, unsigned NumOps) {
4598 SDVTList VTs = getVTList(VT1, VT2, VT3);
4599 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4602 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4603 EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4604 const SDValue *Ops, unsigned NumOps) {
4605 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4606 return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4609 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4610 EVT VT1, EVT VT2,
4611 SDValue Op1) {
4612 SDVTList VTs = getVTList(VT1, VT2);
4613 SDValue Ops[] = { Op1 };
4614 return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4617 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4618 EVT VT1, EVT VT2,
4619 SDValue Op1, SDValue Op2) {
4620 SDVTList VTs = getVTList(VT1, VT2);
4621 SDValue Ops[] = { Op1, Op2 };
4622 return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4625 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4626 EVT VT1, EVT VT2,
4627 SDValue Op1, SDValue Op2,
4628 SDValue Op3) {
4629 SDVTList VTs = getVTList(VT1, VT2);
4630 SDValue Ops[] = { Op1, Op2, Op3 };
4631 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4634 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4635 EVT VT1, EVT VT2, EVT VT3,
4636 SDValue Op1, SDValue Op2,
4637 SDValue Op3) {
4638 SDVTList VTs = getVTList(VT1, VT2, VT3);
4639 SDValue Ops[] = { Op1, Op2, Op3 };
4640 return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4643 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4644 SDVTList VTs, const SDValue *Ops,
4645 unsigned NumOps) {
4646 N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4647 // Reset the NodeID to -1.
4648 N->setNodeId(-1);
4649 return N;
4652 /// MorphNodeTo - This *mutates* the specified node to have the specified
4653 /// return type, opcode, and operands.
4655 /// Note that MorphNodeTo returns the resultant node. If there is already a
4656 /// node of the specified opcode and operands, it returns that node instead of
4657 /// the current one. Note that the DebugLoc need not be the same.
4659 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4660 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4661 /// node, and because it doesn't require CSE recalculation for any of
4662 /// the node's users.
4664 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4665 SDVTList VTs, const SDValue *Ops,
4666 unsigned NumOps) {
4667 // If an identical node already exists, use it.
4668 void *IP = 0;
4669 if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4670 FoldingSetNodeID ID;
4671 AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4672 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4673 return ON;
4676 if (!RemoveNodeFromCSEMaps(N))
4677 IP = 0;
4679 // Start the morphing.
4680 N->NodeType = Opc;
4681 N->ValueList = VTs.VTs;
4682 N->NumValues = VTs.NumVTs;
4684 // Clear the operands list, updating used nodes to remove this from their
4685 // use list. Keep track of any operands that become dead as a result.
4686 SmallPtrSet<SDNode*, 16> DeadNodeSet;
4687 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4688 SDUse &Use = *I++;
4689 SDNode *Used = Use.getNode();
4690 Use.set(SDValue());
4691 if (Used->use_empty())
4692 DeadNodeSet.insert(Used);
4695 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4696 // Initialize the memory references information.
4697 MN->setMemRefs(0, 0);
4698 // If NumOps is larger than the # of operands we can have in a
4699 // MachineSDNode, reallocate the operand list.
4700 if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4701 if (MN->OperandsNeedDelete)
4702 delete[] MN->OperandList;
4703 if (NumOps > array_lengthof(MN->LocalOperands))
4704 // We're creating a final node that will live unmorphed for the
4705 // remainder of the current SelectionDAG iteration, so we can allocate
4706 // the operands directly out of a pool with no recycling metadata.
4707 MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4708 Ops, NumOps);
4709 else
4710 MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4711 MN->OperandsNeedDelete = false;
4712 } else
4713 MN->InitOperands(MN->OperandList, Ops, NumOps);
4714 } else {
4715 // If NumOps is larger than the # of operands we currently have, reallocate
4716 // the operand list.
4717 if (NumOps > N->NumOperands) {
4718 if (N->OperandsNeedDelete)
4719 delete[] N->OperandList;
4720 N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4721 N->OperandsNeedDelete = true;
4722 } else
4723 N->InitOperands(N->OperandList, Ops, NumOps);
4726 // Delete any nodes that are still dead after adding the uses for the
4727 // new operands.
4728 if (!DeadNodeSet.empty()) {
4729 SmallVector<SDNode *, 16> DeadNodes;
4730 for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4731 E = DeadNodeSet.end(); I != E; ++I)
4732 if ((*I)->use_empty())
4733 DeadNodes.push_back(*I);
4734 RemoveDeadNodes(DeadNodes);
4737 if (IP)
4738 CSEMap.InsertNode(N, IP); // Memoize the new node.
4739 return N;
4743 /// getMachineNode - These are used for target selectors to create a new node
4744 /// with specified return type(s), MachineInstr opcode, and operands.
4746 /// Note that getMachineNode returns the resultant node. If there is already a
4747 /// node of the specified opcode and operands, it returns that node instead of
4748 /// the current one.
4749 MachineSDNode *
4750 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4751 SDVTList VTs = getVTList(VT);
4752 return getMachineNode(Opcode, dl, VTs, 0, 0);
4755 MachineSDNode *
4756 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4757 SDVTList VTs = getVTList(VT);
4758 SDValue Ops[] = { Op1 };
4759 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4762 MachineSDNode *
4763 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4764 SDValue Op1, SDValue Op2) {
4765 SDVTList VTs = getVTList(VT);
4766 SDValue Ops[] = { Op1, Op2 };
4767 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4770 MachineSDNode *
4771 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4772 SDValue Op1, SDValue Op2, SDValue Op3) {
4773 SDVTList VTs = getVTList(VT);
4774 SDValue Ops[] = { Op1, Op2, Op3 };
4775 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4778 MachineSDNode *
4779 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4780 const SDValue *Ops, unsigned NumOps) {
4781 SDVTList VTs = getVTList(VT);
4782 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4785 MachineSDNode *
4786 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4787 SDVTList VTs = getVTList(VT1, VT2);
4788 return getMachineNode(Opcode, dl, VTs, 0, 0);
4791 MachineSDNode *
4792 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4793 EVT VT1, EVT VT2, SDValue Op1) {
4794 SDVTList VTs = getVTList(VT1, VT2);
4795 SDValue Ops[] = { Op1 };
4796 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4799 MachineSDNode *
4800 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4801 EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4802 SDVTList VTs = getVTList(VT1, VT2);
4803 SDValue Ops[] = { Op1, Op2 };
4804 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4807 MachineSDNode *
4808 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4809 EVT VT1, EVT VT2, SDValue Op1,
4810 SDValue Op2, SDValue Op3) {
4811 SDVTList VTs = getVTList(VT1, VT2);
4812 SDValue Ops[] = { Op1, Op2, Op3 };
4813 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4816 MachineSDNode *
4817 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4818 EVT VT1, EVT VT2,
4819 const SDValue *Ops, unsigned NumOps) {
4820 SDVTList VTs = getVTList(VT1, VT2);
4821 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4824 MachineSDNode *
4825 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4826 EVT VT1, EVT VT2, EVT VT3,
4827 SDValue Op1, SDValue Op2) {
4828 SDVTList VTs = getVTList(VT1, VT2, VT3);
4829 SDValue Ops[] = { Op1, Op2 };
4830 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4833 MachineSDNode *
4834 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4835 EVT VT1, EVT VT2, EVT VT3,
4836 SDValue Op1, SDValue Op2, SDValue Op3) {
4837 SDVTList VTs = getVTList(VT1, VT2, VT3);
4838 SDValue Ops[] = { Op1, Op2, Op3 };
4839 return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4842 MachineSDNode *
4843 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4844 EVT VT1, EVT VT2, EVT VT3,
4845 const SDValue *Ops, unsigned NumOps) {
4846 SDVTList VTs = getVTList(VT1, VT2, VT3);
4847 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4850 MachineSDNode *
4851 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4852 EVT VT2, EVT VT3, EVT VT4,
4853 const SDValue *Ops, unsigned NumOps) {
4854 SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4855 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4858 MachineSDNode *
4859 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4860 const std::vector<EVT> &ResultTys,
4861 const SDValue *Ops, unsigned NumOps) {
4862 SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4863 return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4866 MachineSDNode *
4867 SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4868 const SDValue *Ops, unsigned NumOps) {
4869 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4870 MachineSDNode *N;
4871 void *IP;
4873 if (DoCSE) {
4874 FoldingSetNodeID ID;
4875 AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4876 IP = 0;
4877 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4878 return cast<MachineSDNode>(E);
4881 // Allocate a new MachineSDNode.
4882 N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4884 // Initialize the operands list.
4885 if (NumOps > array_lengthof(N->LocalOperands))
4886 // We're creating a final node that will live unmorphed for the
4887 // remainder of the current SelectionDAG iteration, so we can allocate
4888 // the operands directly out of a pool with no recycling metadata.
4889 N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4890 Ops, NumOps);
4891 else
4892 N->InitOperands(N->LocalOperands, Ops, NumOps);
4893 N->OperandsNeedDelete = false;
4895 if (DoCSE)
4896 CSEMap.InsertNode(N, IP);
4898 AllNodes.push_back(N);
4899 #ifndef NDEBUG
4900 VerifyNode(N);
4901 #endif
4902 return N;
4905 /// getTargetExtractSubreg - A convenience function for creating
4906 /// TargetOpcode::EXTRACT_SUBREG nodes.
4907 SDValue
4908 SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4909 SDValue Operand) {
4910 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4911 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4912 VT, Operand, SRIdxVal);
4913 return SDValue(Subreg, 0);
4916 /// getTargetInsertSubreg - A convenience function for creating
4917 /// TargetOpcode::INSERT_SUBREG nodes.
4918 SDValue
4919 SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4920 SDValue Operand, SDValue Subreg) {
4921 SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4922 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4923 VT, Operand, Subreg, SRIdxVal);
4924 return SDValue(Result, 0);
4927 /// getNodeIfExists - Get the specified node if it's already available, or
4928 /// else return NULL.
4929 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4930 const SDValue *Ops, unsigned NumOps) {
4931 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4932 FoldingSetNodeID ID;
4933 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4934 void *IP = 0;
4935 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4936 return E;
4938 return NULL;
4941 /// getDbgValue - Creates a SDDbgValue node.
4943 SDDbgValue *
4944 SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4945 DebugLoc DL, unsigned O) {
4946 return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4949 SDDbgValue *
4950 SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4951 DebugLoc DL, unsigned O) {
4952 return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4955 SDDbgValue *
4956 SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4957 DebugLoc DL, unsigned O) {
4958 return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4961 namespace {
4963 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4964 /// pointed to by a use iterator is deleted, increment the use iterator
4965 /// so that it doesn't dangle.
4967 /// This class also manages a "downlink" DAGUpdateListener, to forward
4968 /// messages to ReplaceAllUsesWith's callers.
4970 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4971 SelectionDAG::DAGUpdateListener *DownLink;
4972 SDNode::use_iterator &UI;
4973 SDNode::use_iterator &UE;
4975 virtual void NodeDeleted(SDNode *N, SDNode *E) {
4976 // Increment the iterator as needed.
4977 while (UI != UE && N == *UI)
4978 ++UI;
4980 // Then forward the message.
4981 if (DownLink) DownLink->NodeDeleted(N, E);
4984 virtual void NodeUpdated(SDNode *N) {
4985 // Just forward the message.
4986 if (DownLink) DownLink->NodeUpdated(N);
4989 public:
4990 RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4991 SDNode::use_iterator &ui,
4992 SDNode::use_iterator &ue)
4993 : DownLink(dl), UI(ui), UE(ue) {}
4998 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4999 /// This can cause recursive merging of nodes in the DAG.
5001 /// This version assumes From has a single result value.
5003 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5004 DAGUpdateListener *UpdateListener) {
5005 SDNode *From = FromN.getNode();
5006 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5007 "Cannot replace with this method!");
5008 assert(From != To.getNode() && "Cannot replace uses of with self");
5010 // Iterate over all the existing uses of From. New uses will be added
5011 // to the beginning of the use list, which we avoid visiting.
5012 // This specifically avoids visiting uses of From that arise while the
5013 // replacement is happening, because any such uses would be the result
5014 // of CSE: If an existing node looks like From after one of its operands
5015 // is replaced by To, we don't want to replace of all its users with To
5016 // too. See PR3018 for more info.
5017 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5018 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5019 while (UI != UE) {
5020 SDNode *User = *UI;
5022 // This node is about to morph, remove its old self from the CSE maps.
5023 RemoveNodeFromCSEMaps(User);
5025 // A user can appear in a use list multiple times, and when this
5026 // happens the uses are usually next to each other in the list.
5027 // To help reduce the number of CSE recomputations, process all
5028 // the uses of this user that we can find this way.
5029 do {
5030 SDUse &Use = UI.getUse();
5031 ++UI;
5032 Use.set(To);
5033 } while (UI != UE && *UI == User);
5035 // Now that we have modified User, add it back to the CSE maps. If it
5036 // already exists there, recursively merge the results together.
5037 AddModifiedNodeToCSEMaps(User, &Listener);
5041 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5042 /// This can cause recursive merging of nodes in the DAG.
5044 /// This version assumes that for each value of From, there is a
5045 /// corresponding value in To in the same position with the same type.
5047 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5048 DAGUpdateListener *UpdateListener) {
5049 #ifndef NDEBUG
5050 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5051 assert((!From->hasAnyUseOfValue(i) ||
5052 From->getValueType(i) == To->getValueType(i)) &&
5053 "Cannot use this version of ReplaceAllUsesWith!");
5054 #endif
5056 // Handle the trivial case.
5057 if (From == To)
5058 return;
5060 // Iterate over just the existing users of From. See the comments in
5061 // the ReplaceAllUsesWith above.
5062 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5063 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5064 while (UI != UE) {
5065 SDNode *User = *UI;
5067 // This node is about to morph, remove its old self from the CSE maps.
5068 RemoveNodeFromCSEMaps(User);
5070 // A user can appear in a use list multiple times, and when this
5071 // happens the uses are usually next to each other in the list.
5072 // To help reduce the number of CSE recomputations, process all
5073 // the uses of this user that we can find this way.
5074 do {
5075 SDUse &Use = UI.getUse();
5076 ++UI;
5077 Use.setNode(To);
5078 } while (UI != UE && *UI == User);
5080 // Now that we have modified User, add it back to the CSE maps. If it
5081 // already exists there, recursively merge the results together.
5082 AddModifiedNodeToCSEMaps(User, &Listener);
5086 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5087 /// This can cause recursive merging of nodes in the DAG.
5089 /// This version can replace From with any result values. To must match the
5090 /// number and types of values returned by From.
5091 void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5092 const SDValue *To,
5093 DAGUpdateListener *UpdateListener) {
5094 if (From->getNumValues() == 1) // Handle the simple case efficiently.
5095 return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5097 // Iterate over just the existing users of From. See the comments in
5098 // the ReplaceAllUsesWith above.
5099 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5100 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5101 while (UI != UE) {
5102 SDNode *User = *UI;
5104 // This node is about to morph, remove its old self from the CSE maps.
5105 RemoveNodeFromCSEMaps(User);
5107 // A user can appear in a use list multiple times, and when this
5108 // happens the uses are usually next to each other in the list.
5109 // To help reduce the number of CSE recomputations, process all
5110 // the uses of this user that we can find this way.
5111 do {
5112 SDUse &Use = UI.getUse();
5113 const SDValue &ToOp = To[Use.getResNo()];
5114 ++UI;
5115 Use.set(ToOp);
5116 } while (UI != UE && *UI == User);
5118 // Now that we have modified User, add it back to the CSE maps. If it
5119 // already exists there, recursively merge the results together.
5120 AddModifiedNodeToCSEMaps(User, &Listener);
5124 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5125 /// uses of other values produced by From.getNode() alone. The Deleted
5126 /// vector is handled the same way as for ReplaceAllUsesWith.
5127 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5128 DAGUpdateListener *UpdateListener){
5129 // Handle the really simple, really trivial case efficiently.
5130 if (From == To) return;
5132 // Handle the simple, trivial, case efficiently.
5133 if (From.getNode()->getNumValues() == 1) {
5134 ReplaceAllUsesWith(From, To, UpdateListener);
5135 return;
5138 // Iterate over just the existing users of From. See the comments in
5139 // the ReplaceAllUsesWith above.
5140 SDNode::use_iterator UI = From.getNode()->use_begin(),
5141 UE = From.getNode()->use_end();
5142 RAUWUpdateListener Listener(UpdateListener, UI, UE);
5143 while (UI != UE) {
5144 SDNode *User = *UI;
5145 bool UserRemovedFromCSEMaps = false;
5147 // A user can appear in a use list multiple times, and when this
5148 // happens the uses are usually next to each other in the list.
5149 // To help reduce the number of CSE recomputations, process all
5150 // the uses of this user that we can find this way.
5151 do {
5152 SDUse &Use = UI.getUse();
5154 // Skip uses of different values from the same node.
5155 if (Use.getResNo() != From.getResNo()) {
5156 ++UI;
5157 continue;
5160 // If this node hasn't been modified yet, it's still in the CSE maps,
5161 // so remove its old self from the CSE maps.
5162 if (!UserRemovedFromCSEMaps) {
5163 RemoveNodeFromCSEMaps(User);
5164 UserRemovedFromCSEMaps = true;
5167 ++UI;
5168 Use.set(To);
5169 } while (UI != UE && *UI == User);
5171 // We are iterating over all uses of the From node, so if a use
5172 // doesn't use the specific value, no changes are made.
5173 if (!UserRemovedFromCSEMaps)
5174 continue;
5176 // Now that we have modified User, add it back to the CSE maps. If it
5177 // already exists there, recursively merge the results together.
5178 AddModifiedNodeToCSEMaps(User, &Listener);
5182 namespace {
5183 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5184 /// to record information about a use.
5185 struct UseMemo {
5186 SDNode *User;
5187 unsigned Index;
5188 SDUse *Use;
5191 /// operator< - Sort Memos by User.
5192 bool operator<(const UseMemo &L, const UseMemo &R) {
5193 return (intptr_t)L.User < (intptr_t)R.User;
5197 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5198 /// uses of other values produced by From.getNode() alone. The same value
5199 /// may appear in both the From and To list. The Deleted vector is
5200 /// handled the same way as for ReplaceAllUsesWith.
5201 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5202 const SDValue *To,
5203 unsigned Num,
5204 DAGUpdateListener *UpdateListener){
5205 // Handle the simple, trivial case efficiently.
5206 if (Num == 1)
5207 return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5209 // Read up all the uses and make records of them. This helps
5210 // processing new uses that are introduced during the
5211 // replacement process.
5212 SmallVector<UseMemo, 4> Uses;
5213 for (unsigned i = 0; i != Num; ++i) {
5214 unsigned FromResNo = From[i].getResNo();
5215 SDNode *FromNode = From[i].getNode();
5216 for (SDNode::use_iterator UI = FromNode->use_begin(),
5217 E = FromNode->use_end(); UI != E; ++UI) {
5218 SDUse &Use = UI.getUse();
5219 if (Use.getResNo() == FromResNo) {
5220 UseMemo Memo = { *UI, i, &Use };
5221 Uses.push_back(Memo);
5226 // Sort the uses, so that all the uses from a given User are together.
5227 std::sort(Uses.begin(), Uses.end());
5229 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5230 UseIndex != UseIndexEnd; ) {
5231 // We know that this user uses some value of From. If it is the right
5232 // value, update it.
5233 SDNode *User = Uses[UseIndex].User;
5235 // This node is about to morph, remove its old self from the CSE maps.
5236 RemoveNodeFromCSEMaps(User);
5238 // The Uses array is sorted, so all the uses for a given User
5239 // are next to each other in the list.
5240 // To help reduce the number of CSE recomputations, process all
5241 // the uses of this user that we can find this way.
5242 do {
5243 unsigned i = Uses[UseIndex].Index;
5244 SDUse &Use = *Uses[UseIndex].Use;
5245 ++UseIndex;
5247 Use.set(To[i]);
5248 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5250 // Now that we have modified User, add it back to the CSE maps. If it
5251 // already exists there, recursively merge the results together.
5252 AddModifiedNodeToCSEMaps(User, UpdateListener);
5256 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5257 /// based on their topological order. It returns the maximum id and a vector
5258 /// of the SDNodes* in assigned order by reference.
5259 unsigned SelectionDAG::AssignTopologicalOrder() {
5261 unsigned DAGSize = 0;
5263 // SortedPos tracks the progress of the algorithm. Nodes before it are
5264 // sorted, nodes after it are unsorted. When the algorithm completes
5265 // it is at the end of the list.
5266 allnodes_iterator SortedPos = allnodes_begin();
5268 // Visit all the nodes. Move nodes with no operands to the front of
5269 // the list immediately. Annotate nodes that do have operands with their
5270 // operand count. Before we do this, the Node Id fields of the nodes
5271 // may contain arbitrary values. After, the Node Id fields for nodes
5272 // before SortedPos will contain the topological sort index, and the
5273 // Node Id fields for nodes At SortedPos and after will contain the
5274 // count of outstanding operands.
5275 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5276 SDNode *N = I++;
5277 checkForCycles(N);
5278 unsigned Degree = N->getNumOperands();
5279 if (Degree == 0) {
5280 // A node with no uses, add it to the result array immediately.
5281 N->setNodeId(DAGSize++);
5282 allnodes_iterator Q = N;
5283 if (Q != SortedPos)
5284 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5285 assert(SortedPos != AllNodes.end() && "Overran node list");
5286 ++SortedPos;
5287 } else {
5288 // Temporarily use the Node Id as scratch space for the degree count.
5289 N->setNodeId(Degree);
5293 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5294 // such that by the time the end is reached all nodes will be sorted.
5295 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5296 SDNode *N = I;
5297 checkForCycles(N);
5298 // N is in sorted position, so all its uses have one less operand
5299 // that needs to be sorted.
5300 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5301 UI != UE; ++UI) {
5302 SDNode *P = *UI;
5303 unsigned Degree = P->getNodeId();
5304 assert(Degree != 0 && "Invalid node degree");
5305 --Degree;
5306 if (Degree == 0) {
5307 // All of P's operands are sorted, so P may sorted now.
5308 P->setNodeId(DAGSize++);
5309 if (P != SortedPos)
5310 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5311 assert(SortedPos != AllNodes.end() && "Overran node list");
5312 ++SortedPos;
5313 } else {
5314 // Update P's outstanding operand count.
5315 P->setNodeId(Degree);
5318 if (I == SortedPos) {
5319 #ifndef NDEBUG
5320 SDNode *S = ++I;
5321 dbgs() << "Overran sorted position:\n";
5322 S->dumprFull();
5323 #endif
5324 llvm_unreachable(0);
5328 assert(SortedPos == AllNodes.end() &&
5329 "Topological sort incomplete!");
5330 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5331 "First node in topological sort is not the entry token!");
5332 assert(AllNodes.front().getNodeId() == 0 &&
5333 "First node in topological sort has non-zero id!");
5334 assert(AllNodes.front().getNumOperands() == 0 &&
5335 "First node in topological sort has operands!");
5336 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5337 "Last node in topologic sort has unexpected id!");
5338 assert(AllNodes.back().use_empty() &&
5339 "Last node in topologic sort has users!");
5340 assert(DAGSize == allnodes_size() && "Node count mismatch!");
5341 return DAGSize;
5344 /// AssignOrdering - Assign an order to the SDNode.
5345 void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5346 assert(SD && "Trying to assign an order to a null node!");
5347 Ordering->add(SD, Order);
5350 /// GetOrdering - Get the order for the SDNode.
5351 unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5352 assert(SD && "Trying to get the order of a null node!");
5353 return Ordering->getOrder(SD);
5356 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5357 /// value is produced by SD.
5358 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5359 DbgInfo->add(DB, SD, isParameter);
5360 if (SD)
5361 SD->setHasDebugValue(true);
5364 //===----------------------------------------------------------------------===//
5365 // SDNode Class
5366 //===----------------------------------------------------------------------===//
5368 HandleSDNode::~HandleSDNode() {
5369 DropOperands();
5372 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5373 const GlobalValue *GA,
5374 EVT VT, int64_t o, unsigned char TF)
5375 : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5376 TheGlobal = GA;
5379 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5380 MachineMemOperand *mmo)
5381 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5382 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5383 MMO->isNonTemporal());
5384 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5385 assert(isNonTemporal() == MMO->isNonTemporal() &&
5386 "Non-temporal encoding error!");
5387 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5390 MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5391 const SDValue *Ops, unsigned NumOps, EVT memvt,
5392 MachineMemOperand *mmo)
5393 : SDNode(Opc, dl, VTs, Ops, NumOps),
5394 MemoryVT(memvt), MMO(mmo) {
5395 SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5396 MMO->isNonTemporal());
5397 assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5398 assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5401 /// Profile - Gather unique data for the node.
5403 void SDNode::Profile(FoldingSetNodeID &ID) const {
5404 AddNodeIDNode(ID, this);
5407 namespace {
5408 struct EVTArray {
5409 std::vector<EVT> VTs;
5411 EVTArray() {
5412 VTs.reserve(MVT::LAST_VALUETYPE);
5413 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5414 VTs.push_back(MVT((MVT::SimpleValueType)i));
5419 static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5420 static ManagedStatic<EVTArray> SimpleVTArray;
5421 static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5423 /// getValueTypeList - Return a pointer to the specified value type.
5425 const EVT *SDNode::getValueTypeList(EVT VT) {
5426 if (VT.isExtended()) {
5427 sys::SmartScopedLock<true> Lock(*VTMutex);
5428 return &(*EVTs->insert(VT).first);
5429 } else {
5430 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5431 "Value type out of range!");
5432 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5436 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5437 /// indicated value. This method ignores uses of other values defined by this
5438 /// operation.
5439 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5440 assert(Value < getNumValues() && "Bad value!");
5442 // TODO: Only iterate over uses of a given value of the node
5443 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5444 if (UI.getUse().getResNo() == Value) {
5445 if (NUses == 0)
5446 return false;
5447 --NUses;
5451 // Found exactly the right number of uses?
5452 return NUses == 0;
5456 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5457 /// value. This method ignores uses of other values defined by this operation.
5458 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5459 assert(Value < getNumValues() && "Bad value!");
5461 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5462 if (UI.getUse().getResNo() == Value)
5463 return true;
5465 return false;
5469 /// isOnlyUserOf - Return true if this node is the only use of N.
5471 bool SDNode::isOnlyUserOf(SDNode *N) const {
5472 bool Seen = false;
5473 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5474 SDNode *User = *I;
5475 if (User == this)
5476 Seen = true;
5477 else
5478 return false;
5481 return Seen;
5484 /// isOperand - Return true if this node is an operand of N.
5486 bool SDValue::isOperandOf(SDNode *N) const {
5487 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5488 if (*this == N->getOperand(i))
5489 return true;
5490 return false;
5493 bool SDNode::isOperandOf(SDNode *N) const {
5494 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5495 if (this == N->OperandList[i].getNode())
5496 return true;
5497 return false;
5500 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5501 /// be a chain) reaches the specified operand without crossing any
5502 /// side-effecting instructions on any chain path. In practice, this looks
5503 /// through token factors and non-volatile loads. In order to remain efficient,
5504 /// this only looks a couple of nodes in, it does not do an exhaustive search.
5505 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5506 unsigned Depth) const {
5507 if (*this == Dest) return true;
5509 // Don't search too deeply, we just want to be able to see through
5510 // TokenFactor's etc.
5511 if (Depth == 0) return false;
5513 // If this is a token factor, all inputs to the TF happen in parallel. If any
5514 // of the operands of the TF does not reach dest, then we cannot do the xform.
5515 if (getOpcode() == ISD::TokenFactor) {
5516 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5517 if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5518 return false;
5519 return true;
5522 // Loads don't have side effects, look through them.
5523 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5524 if (!Ld->isVolatile())
5525 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5527 return false;
5530 /// isPredecessorOf - Return true if this node is a predecessor of N. This node
5531 /// is either an operand of N or it can be reached by traversing up the operands.
5532 /// NOTE: this is an expensive method. Use it carefully.
5533 bool SDNode::isPredecessorOf(SDNode *N) const {
5534 SmallPtrSet<SDNode *, 32> Visited;
5535 SmallVector<SDNode *, 16> Worklist;
5536 Worklist.push_back(N);
5538 do {
5539 N = Worklist.pop_back_val();
5540 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5541 SDNode *Op = N->getOperand(i).getNode();
5542 if (Op == this)
5543 return true;
5544 if (Visited.insert(Op))
5545 Worklist.push_back(Op);
5547 } while (!Worklist.empty());
5549 return false;
5552 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5553 assert(Num < NumOperands && "Invalid child # of SDNode!");
5554 return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5557 std::string SDNode::getOperationName(const SelectionDAG *G) const {
5558 switch (getOpcode()) {
5559 default:
5560 if (getOpcode() < ISD::BUILTIN_OP_END)
5561 return "<<Unknown DAG Node>>";
5562 if (isMachineOpcode()) {
5563 if (G)
5564 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5565 if (getMachineOpcode() < TII->getNumOpcodes())
5566 return TII->get(getMachineOpcode()).getName();
5567 return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5569 if (G) {
5570 const TargetLowering &TLI = G->getTargetLoweringInfo();
5571 const char *Name = TLI.getTargetNodeName(getOpcode());
5572 if (Name) return Name;
5573 return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5575 return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5577 #ifndef NDEBUG
5578 case ISD::DELETED_NODE:
5579 return "<<Deleted Node!>>";
5580 #endif
5581 case ISD::PREFETCH: return "Prefetch";
5582 case ISD::MEMBARRIER: return "MemBarrier";
5583 case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
5584 case ISD::ATOMIC_SWAP: return "AtomicSwap";
5585 case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
5586 case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
5587 case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
5588 case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
5589 case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
5590 case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
5591 case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
5592 case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
5593 case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
5594 case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
5595 case ISD::PCMARKER: return "PCMarker";
5596 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5597 case ISD::SRCVALUE: return "SrcValue";
5598 case ISD::MDNODE_SDNODE: return "MDNode";
5599 case ISD::EntryToken: return "EntryToken";
5600 case ISD::TokenFactor: return "TokenFactor";
5601 case ISD::AssertSext: return "AssertSext";
5602 case ISD::AssertZext: return "AssertZext";
5604 case ISD::BasicBlock: return "BasicBlock";
5605 case ISD::VALUETYPE: return "ValueType";
5606 case ISD::Register: return "Register";
5608 case ISD::Constant: return "Constant";
5609 case ISD::ConstantFP: return "ConstantFP";
5610 case ISD::GlobalAddress: return "GlobalAddress";
5611 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5612 case ISD::FrameIndex: return "FrameIndex";
5613 case ISD::JumpTable: return "JumpTable";
5614 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5615 case ISD::RETURNADDR: return "RETURNADDR";
5616 case ISD::FRAMEADDR: return "FRAMEADDR";
5617 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5618 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5619 case ISD::LSDAADDR: return "LSDAADDR";
5620 case ISD::EHSELECTION: return "EHSELECTION";
5621 case ISD::EH_RETURN: return "EH_RETURN";
5622 case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5623 case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5624 case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
5625 case ISD::ConstantPool: return "ConstantPool";
5626 case ISD::ExternalSymbol: return "ExternalSymbol";
5627 case ISD::BlockAddress: return "BlockAddress";
5628 case ISD::INTRINSIC_WO_CHAIN:
5629 case ISD::INTRINSIC_VOID:
5630 case ISD::INTRINSIC_W_CHAIN: {
5631 unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5632 unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5633 if (IID < Intrinsic::num_intrinsics)
5634 return Intrinsic::getName((Intrinsic::ID)IID);
5635 else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5636 return TII->getName(IID);
5637 llvm_unreachable("Invalid intrinsic ID");
5640 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
5641 case ISD::TargetConstant: return "TargetConstant";
5642 case ISD::TargetConstantFP:return "TargetConstantFP";
5643 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5644 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5645 case ISD::TargetFrameIndex: return "TargetFrameIndex";
5646 case ISD::TargetJumpTable: return "TargetJumpTable";
5647 case ISD::TargetConstantPool: return "TargetConstantPool";
5648 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5649 case ISD::TargetBlockAddress: return "TargetBlockAddress";
5651 case ISD::CopyToReg: return "CopyToReg";
5652 case ISD::CopyFromReg: return "CopyFromReg";
5653 case ISD::UNDEF: return "undef";
5654 case ISD::MERGE_VALUES: return "merge_values";
5655 case ISD::INLINEASM: return "inlineasm";
5656 case ISD::EH_LABEL: return "eh_label";
5657 case ISD::HANDLENODE: return "handlenode";
5659 // Unary operators
5660 case ISD::FABS: return "fabs";
5661 case ISD::FNEG: return "fneg";
5662 case ISD::FSQRT: return "fsqrt";
5663 case ISD::FSIN: return "fsin";
5664 case ISD::FCOS: return "fcos";
5665 case ISD::FTRUNC: return "ftrunc";
5666 case ISD::FFLOOR: return "ffloor";
5667 case ISD::FCEIL: return "fceil";
5668 case ISD::FRINT: return "frint";
5669 case ISD::FNEARBYINT: return "fnearbyint";
5670 case ISD::FEXP: return "fexp";
5671 case ISD::FEXP2: return "fexp2";
5672 case ISD::FLOG: return "flog";
5673 case ISD::FLOG2: return "flog2";
5674 case ISD::FLOG10: return "flog10";
5676 // Binary operators
5677 case ISD::ADD: return "add";
5678 case ISD::SUB: return "sub";
5679 case ISD::MUL: return "mul";
5680 case ISD::MULHU: return "mulhu";
5681 case ISD::MULHS: return "mulhs";
5682 case ISD::SDIV: return "sdiv";
5683 case ISD::UDIV: return "udiv";
5684 case ISD::SREM: return "srem";
5685 case ISD::UREM: return "urem";
5686 case ISD::SMUL_LOHI: return "smul_lohi";
5687 case ISD::UMUL_LOHI: return "umul_lohi";
5688 case ISD::SDIVREM: return "sdivrem";
5689 case ISD::UDIVREM: return "udivrem";
5690 case ISD::AND: return "and";
5691 case ISD::OR: return "or";
5692 case ISD::XOR: return "xor";
5693 case ISD::SHL: return "shl";
5694 case ISD::SRA: return "sra";
5695 case ISD::SRL: return "srl";
5696 case ISD::ROTL: return "rotl";
5697 case ISD::ROTR: return "rotr";
5698 case ISD::FADD: return "fadd";
5699 case ISD::FSUB: return "fsub";
5700 case ISD::FMUL: return "fmul";
5701 case ISD::FDIV: return "fdiv";
5702 case ISD::FREM: return "frem";
5703 case ISD::FCOPYSIGN: return "fcopysign";
5704 case ISD::FGETSIGN: return "fgetsign";
5705 case ISD::FPOW: return "fpow";
5707 case ISD::FPOWI: return "fpowi";
5708 case ISD::SETCC: return "setcc";
5709 case ISD::VSETCC: return "vsetcc";
5710 case ISD::SELECT: return "select";
5711 case ISD::SELECT_CC: return "select_cc";
5712 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
5713 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
5714 case ISD::CONCAT_VECTORS: return "concat_vectors";
5715 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
5716 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
5717 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
5718 case ISD::CARRY_FALSE: return "carry_false";
5719 case ISD::ADDC: return "addc";
5720 case ISD::ADDE: return "adde";
5721 case ISD::SADDO: return "saddo";
5722 case ISD::UADDO: return "uaddo";
5723 case ISD::SSUBO: return "ssubo";
5724 case ISD::USUBO: return "usubo";
5725 case ISD::SMULO: return "smulo";
5726 case ISD::UMULO: return "umulo";
5727 case ISD::SUBC: return "subc";
5728 case ISD::SUBE: return "sube";
5729 case ISD::SHL_PARTS: return "shl_parts";
5730 case ISD::SRA_PARTS: return "sra_parts";
5731 case ISD::SRL_PARTS: return "srl_parts";
5733 // Conversion operators.
5734 case ISD::SIGN_EXTEND: return "sign_extend";
5735 case ISD::ZERO_EXTEND: return "zero_extend";
5736 case ISD::ANY_EXTEND: return "any_extend";
5737 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5738 case ISD::TRUNCATE: return "truncate";
5739 case ISD::FP_ROUND: return "fp_round";
5740 case ISD::FLT_ROUNDS_: return "flt_rounds";
5741 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5742 case ISD::FP_EXTEND: return "fp_extend";
5744 case ISD::SINT_TO_FP: return "sint_to_fp";
5745 case ISD::UINT_TO_FP: return "uint_to_fp";
5746 case ISD::FP_TO_SINT: return "fp_to_sint";
5747 case ISD::FP_TO_UINT: return "fp_to_uint";
5748 case ISD::BIT_CONVERT: return "bit_convert";
5749 case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5750 case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5752 case ISD::CONVERT_RNDSAT: {
5753 switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5754 default: llvm_unreachable("Unknown cvt code!");
5755 case ISD::CVT_FF: return "cvt_ff";
5756 case ISD::CVT_FS: return "cvt_fs";
5757 case ISD::CVT_FU: return "cvt_fu";
5758 case ISD::CVT_SF: return "cvt_sf";
5759 case ISD::CVT_UF: return "cvt_uf";
5760 case ISD::CVT_SS: return "cvt_ss";
5761 case ISD::CVT_SU: return "cvt_su";
5762 case ISD::CVT_US: return "cvt_us";
5763 case ISD::CVT_UU: return "cvt_uu";
5767 // Control flow instructions
5768 case ISD::BR: return "br";
5769 case ISD::BRIND: return "brind";
5770 case ISD::BR_JT: return "br_jt";
5771 case ISD::BRCOND: return "brcond";
5772 case ISD::BR_CC: return "br_cc";
5773 case ISD::CALLSEQ_START: return "callseq_start";
5774 case ISD::CALLSEQ_END: return "callseq_end";
5776 // Other operators
5777 case ISD::LOAD: return "load";
5778 case ISD::STORE: return "store";
5779 case ISD::VAARG: return "vaarg";
5780 case ISD::VACOPY: return "vacopy";
5781 case ISD::VAEND: return "vaend";
5782 case ISD::VASTART: return "vastart";
5783 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5784 case ISD::EXTRACT_ELEMENT: return "extract_element";
5785 case ISD::BUILD_PAIR: return "build_pair";
5786 case ISD::STACKSAVE: return "stacksave";
5787 case ISD::STACKRESTORE: return "stackrestore";
5788 case ISD::TRAP: return "trap";
5790 // Bit manipulation
5791 case ISD::BSWAP: return "bswap";
5792 case ISD::CTPOP: return "ctpop";
5793 case ISD::CTTZ: return "cttz";
5794 case ISD::CTLZ: return "ctlz";
5796 // Trampolines
5797 case ISD::TRAMPOLINE: return "trampoline";
5799 case ISD::CONDCODE:
5800 switch (cast<CondCodeSDNode>(this)->get()) {
5801 default: llvm_unreachable("Unknown setcc condition!");
5802 case ISD::SETOEQ: return "setoeq";
5803 case ISD::SETOGT: return "setogt";
5804 case ISD::SETOGE: return "setoge";
5805 case ISD::SETOLT: return "setolt";
5806 case ISD::SETOLE: return "setole";
5807 case ISD::SETONE: return "setone";
5809 case ISD::SETO: return "seto";
5810 case ISD::SETUO: return "setuo";
5811 case ISD::SETUEQ: return "setue";
5812 case ISD::SETUGT: return "setugt";
5813 case ISD::SETUGE: return "setuge";
5814 case ISD::SETULT: return "setult";
5815 case ISD::SETULE: return "setule";
5816 case ISD::SETUNE: return "setune";
5818 case ISD::SETEQ: return "seteq";
5819 case ISD::SETGT: return "setgt";
5820 case ISD::SETGE: return "setge";
5821 case ISD::SETLT: return "setlt";
5822 case ISD::SETLE: return "setle";
5823 case ISD::SETNE: return "setne";
5828 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5829 switch (AM) {
5830 default:
5831 return "";
5832 case ISD::PRE_INC:
5833 return "<pre-inc>";
5834 case ISD::PRE_DEC:
5835 return "<pre-dec>";
5836 case ISD::POST_INC:
5837 return "<post-inc>";
5838 case ISD::POST_DEC:
5839 return "<post-dec>";
5843 std::string ISD::ArgFlagsTy::getArgFlagsString() {
5844 std::string S = "< ";
5846 if (isZExt())
5847 S += "zext ";
5848 if (isSExt())
5849 S += "sext ";
5850 if (isInReg())
5851 S += "inreg ";
5852 if (isSRet())
5853 S += "sret ";
5854 if (isByVal())
5855 S += "byval ";
5856 if (isNest())
5857 S += "nest ";
5858 if (getByValAlign())
5859 S += "byval-align:" + utostr(getByValAlign()) + " ";
5860 if (getOrigAlign())
5861 S += "orig-align:" + utostr(getOrigAlign()) + " ";
5862 if (getByValSize())
5863 S += "byval-size:" + utostr(getByValSize()) + " ";
5864 return S + ">";
5867 void SDNode::dump() const { dump(0); }
5868 void SDNode::dump(const SelectionDAG *G) const {
5869 print(dbgs(), G);
5870 dbgs() << '\n';
5873 void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5874 OS << (void*)this << ": ";
5876 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5877 if (i) OS << ",";
5878 if (getValueType(i) == MVT::Other)
5879 OS << "ch";
5880 else
5881 OS << getValueType(i).getEVTString();
5883 OS << " = " << getOperationName(G);
5886 void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5887 if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5888 if (!MN->memoperands_empty()) {
5889 OS << "<";
5890 OS << "Mem:";
5891 for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5892 e = MN->memoperands_end(); i != e; ++i) {
5893 OS << **i;
5894 if (llvm::next(i) != e)
5895 OS << " ";
5897 OS << ">";
5899 } else if (const ShuffleVectorSDNode *SVN =
5900 dyn_cast<ShuffleVectorSDNode>(this)) {
5901 OS << "<";
5902 for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5903 int Idx = SVN->getMaskElt(i);
5904 if (i) OS << ",";
5905 if (Idx < 0)
5906 OS << "u";
5907 else
5908 OS << Idx;
5910 OS << ">";
5911 } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5912 OS << '<' << CSDN->getAPIntValue() << '>';
5913 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5914 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5915 OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5916 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5917 OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5918 else {
5919 OS << "<APFloat(";
5920 CSDN->getValueAPF().bitcastToAPInt().dump();
5921 OS << ")>";
5923 } else if (const GlobalAddressSDNode *GADN =
5924 dyn_cast<GlobalAddressSDNode>(this)) {
5925 int64_t offset = GADN->getOffset();
5926 OS << '<';
5927 WriteAsOperand(OS, GADN->getGlobal());
5928 OS << '>';
5929 if (offset > 0)
5930 OS << " + " << offset;
5931 else
5932 OS << " " << offset;
5933 if (unsigned int TF = GADN->getTargetFlags())
5934 OS << " [TF=" << TF << ']';
5935 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5936 OS << "<" << FIDN->getIndex() << ">";
5937 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5938 OS << "<" << JTDN->getIndex() << ">";
5939 if (unsigned int TF = JTDN->getTargetFlags())
5940 OS << " [TF=" << TF << ']';
5941 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5942 int offset = CP->getOffset();
5943 if (CP->isMachineConstantPoolEntry())
5944 OS << "<" << *CP->getMachineCPVal() << ">";
5945 else
5946 OS << "<" << *CP->getConstVal() << ">";
5947 if (offset > 0)
5948 OS << " + " << offset;
5949 else
5950 OS << " " << offset;
5951 if (unsigned int TF = CP->getTargetFlags())
5952 OS << " [TF=" << TF << ']';
5953 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5954 OS << "<";
5955 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5956 if (LBB)
5957 OS << LBB->getName() << " ";
5958 OS << (const void*)BBDN->getBasicBlock() << ">";
5959 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5960 if (G && R->getReg() &&
5961 TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5962 OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5963 } else {
5964 OS << " %reg" << R->getReg();
5966 } else if (const ExternalSymbolSDNode *ES =
5967 dyn_cast<ExternalSymbolSDNode>(this)) {
5968 OS << "'" << ES->getSymbol() << "'";
5969 if (unsigned int TF = ES->getTargetFlags())
5970 OS << " [TF=" << TF << ']';
5971 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5972 if (M->getValue())
5973 OS << "<" << M->getValue() << ">";
5974 else
5975 OS << "<null>";
5976 } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5977 if (MD->getMD())
5978 OS << "<" << MD->getMD() << ">";
5979 else
5980 OS << "<null>";
5981 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5982 OS << ":" << N->getVT().getEVTString();
5984 else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5985 OS << "<" << *LD->getMemOperand();
5987 bool doExt = true;
5988 switch (LD->getExtensionType()) {
5989 default: doExt = false; break;
5990 case ISD::EXTLOAD: OS << ", anyext"; break;
5991 case ISD::SEXTLOAD: OS << ", sext"; break;
5992 case ISD::ZEXTLOAD: OS << ", zext"; break;
5994 if (doExt)
5995 OS << " from " << LD->getMemoryVT().getEVTString();
5997 const char *AM = getIndexedModeName(LD->getAddressingMode());
5998 if (*AM)
5999 OS << ", " << AM;
6001 OS << ">";
6002 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6003 OS << "<" << *ST->getMemOperand();
6005 if (ST->isTruncatingStore())
6006 OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6008 const char *AM = getIndexedModeName(ST->getAddressingMode());
6009 if (*AM)
6010 OS << ", " << AM;
6012 OS << ">";
6013 } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6014 OS << "<" << *M->getMemOperand() << ">";
6015 } else if (const BlockAddressSDNode *BA =
6016 dyn_cast<BlockAddressSDNode>(this)) {
6017 OS << "<";
6018 WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6019 OS << ", ";
6020 WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6021 OS << ">";
6022 if (unsigned int TF = BA->getTargetFlags())
6023 OS << " [TF=" << TF << ']';
6026 if (G)
6027 if (unsigned Order = G->GetOrdering(this))
6028 OS << " [ORD=" << Order << ']';
6030 if (getNodeId() != -1)
6031 OS << " [ID=" << getNodeId() << ']';
6033 DebugLoc dl = getDebugLoc();
6034 if (G && !dl.isUnknown()) {
6035 DIScope
6036 Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6037 OS << " dbg:";
6038 // Omit the directory, since it's usually long and uninteresting.
6039 if (Scope.Verify())
6040 OS << Scope.getFilename();
6041 else
6042 OS << "<unknown>";
6043 OS << ':' << dl.getLine();
6044 if (dl.getCol() != 0)
6045 OS << ':' << dl.getCol();
6049 void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6050 print_types(OS, G);
6051 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6052 if (i) OS << ", "; else OS << " ";
6053 OS << (void*)getOperand(i).getNode();
6054 if (unsigned RN = getOperand(i).getResNo())
6055 OS << ":" << RN;
6057 print_details(OS, G);
6060 static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6061 const SelectionDAG *G, unsigned depth,
6062 unsigned indent)
6064 if (depth == 0)
6065 return;
6067 OS.indent(indent);
6069 N->print(OS, G);
6071 if (depth < 1)
6072 return;
6074 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6075 OS << '\n';
6076 printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6080 void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6081 unsigned depth) const {
6082 printrWithDepthHelper(OS, this, G, depth, 0);
6085 void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6086 // Don't print impossibly deep things.
6087 printrWithDepth(OS, G, 100);
6090 void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6091 printrWithDepth(dbgs(), G, depth);
6094 void SDNode::dumprFull(const SelectionDAG *G) const {
6095 // Don't print impossibly deep things.
6096 dumprWithDepth(G, 100);
6099 static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6100 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6101 if (N->getOperand(i).getNode()->hasOneUse())
6102 DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6103 else
6104 dbgs() << "\n" << std::string(indent+2, ' ')
6105 << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6108 dbgs() << "\n";
6109 dbgs().indent(indent);
6110 N->dump(G);
6113 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6114 assert(N->getNumValues() == 1 &&
6115 "Can't unroll a vector with multiple results!");
6117 EVT VT = N->getValueType(0);
6118 unsigned NE = VT.getVectorNumElements();
6119 EVT EltVT = VT.getVectorElementType();
6120 DebugLoc dl = N->getDebugLoc();
6122 SmallVector<SDValue, 8> Scalars;
6123 SmallVector<SDValue, 4> Operands(N->getNumOperands());
6125 // If ResNE is 0, fully unroll the vector op.
6126 if (ResNE == 0)
6127 ResNE = NE;
6128 else if (NE > ResNE)
6129 NE = ResNE;
6131 unsigned i;
6132 for (i= 0; i != NE; ++i) {
6133 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6134 SDValue Operand = N->getOperand(j);
6135 EVT OperandVT = Operand.getValueType();
6136 if (OperandVT.isVector()) {
6137 // A vector operand; extract a single element.
6138 EVT OperandEltVT = OperandVT.getVectorElementType();
6139 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6140 OperandEltVT,
6141 Operand,
6142 getConstant(i, MVT::i32));
6143 } else {
6144 // A scalar operand; just use it as is.
6145 Operands[j] = Operand;
6149 switch (N->getOpcode()) {
6150 default:
6151 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6152 &Operands[0], Operands.size()));
6153 break;
6154 case ISD::SHL:
6155 case ISD::SRA:
6156 case ISD::SRL:
6157 case ISD::ROTL:
6158 case ISD::ROTR:
6159 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6160 getShiftAmountOperand(Operands[1])));
6161 break;
6162 case ISD::SIGN_EXTEND_INREG:
6163 case ISD::FP_ROUND_INREG: {
6164 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6165 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6166 Operands[0],
6167 getValueType(ExtVT)));
6172 for (; i < ResNE; ++i)
6173 Scalars.push_back(getUNDEF(EltVT));
6175 return getNode(ISD::BUILD_VECTOR, dl,
6176 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6177 &Scalars[0], Scalars.size());
6181 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6182 /// location that is 'Dist' units away from the location that the 'Base' load
6183 /// is loading from.
6184 bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6185 unsigned Bytes, int Dist) const {
6186 if (LD->getChain() != Base->getChain())
6187 return false;
6188 EVT VT = LD->getValueType(0);
6189 if (VT.getSizeInBits() / 8 != Bytes)
6190 return false;
6192 SDValue Loc = LD->getOperand(1);
6193 SDValue BaseLoc = Base->getOperand(1);
6194 if (Loc.getOpcode() == ISD::FrameIndex) {
6195 if (BaseLoc.getOpcode() != ISD::FrameIndex)
6196 return false;
6197 const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6198 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
6199 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6200 int FS = MFI->getObjectSize(FI);
6201 int BFS = MFI->getObjectSize(BFI);
6202 if (FS != BFS || FS != (int)Bytes) return false;
6203 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6205 if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6206 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6207 if (V && (V->getSExtValue() == Dist*Bytes))
6208 return true;
6211 const GlobalValue *GV1 = NULL;
6212 const GlobalValue *GV2 = NULL;
6213 int64_t Offset1 = 0;
6214 int64_t Offset2 = 0;
6215 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6216 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6217 if (isGA1 && isGA2 && GV1 == GV2)
6218 return Offset1 == (Offset2 + Dist*Bytes);
6219 return false;
6223 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6224 /// it cannot be inferred.
6225 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6226 // If this is a GlobalAddress + cst, return the alignment.
6227 const GlobalValue *GV;
6228 int64_t GVOffset = 0;
6229 if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6230 // If GV has specified alignment, then use it. Otherwise, use the preferred
6231 // alignment.
6232 unsigned Align = GV->getAlignment();
6233 if (!Align) {
6234 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6235 if (GVar->hasInitializer()) {
6236 const TargetData *TD = TLI.getTargetData();
6237 Align = TD->getPreferredAlignment(GVar);
6241 return MinAlign(Align, GVOffset);
6244 // If this is a direct reference to a stack slot, use information about the
6245 // stack slot's alignment.
6246 int FrameIdx = 1 << 31;
6247 int64_t FrameOffset = 0;
6248 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6249 FrameIdx = FI->getIndex();
6250 } else if (Ptr.getOpcode() == ISD::ADD &&
6251 isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6252 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6253 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6254 FrameOffset = Ptr.getConstantOperandVal(1);
6257 if (FrameIdx != (1 << 31)) {
6258 // FIXME: Handle FI+CST.
6259 const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6260 unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6261 FrameOffset);
6262 return FIInfoAlign;
6265 return 0;
6268 void SelectionDAG::dump() const {
6269 dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6271 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6272 I != E; ++I) {
6273 const SDNode *N = I;
6274 if (!N->hasOneUse() && N != getRoot().getNode())
6275 DumpNodes(N, 2, this);
6278 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6280 dbgs() << "\n\n";
6283 void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6284 print_types(OS, G);
6285 print_details(OS, G);
6288 typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6289 static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6290 const SelectionDAG *G, VisitedSDNodeSet &once) {
6291 if (!once.insert(N)) // If we've been here before, return now.
6292 return;
6294 // Dump the current SDNode, but don't end the line yet.
6295 OS << std::string(indent, ' ');
6296 N->printr(OS, G);
6298 // Having printed this SDNode, walk the children:
6299 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6300 const SDNode *child = N->getOperand(i).getNode();
6302 if (i) OS << ",";
6303 OS << " ";
6305 if (child->getNumOperands() == 0) {
6306 // This child has no grandchildren; print it inline right here.
6307 child->printr(OS, G);
6308 once.insert(child);
6309 } else { // Just the address. FIXME: also print the child's opcode.
6310 OS << (void*)child;
6311 if (unsigned RN = N->getOperand(i).getResNo())
6312 OS << ":" << RN;
6316 OS << "\n";
6318 // Dump children that have grandchildren on their own line(s).
6319 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6320 const SDNode *child = N->getOperand(i).getNode();
6321 DumpNodesr(OS, child, indent+2, G, once);
6325 void SDNode::dumpr() const {
6326 VisitedSDNodeSet once;
6327 DumpNodesr(dbgs(), this, 0, 0, once);
6330 void SDNode::dumpr(const SelectionDAG *G) const {
6331 VisitedSDNodeSet once;
6332 DumpNodesr(dbgs(), this, 0, G, once);
6336 // getAddressSpace - Return the address space this GlobalAddress belongs to.
6337 unsigned GlobalAddressSDNode::getAddressSpace() const {
6338 return getGlobal()->getType()->getAddressSpace();
6342 const Type *ConstantPoolSDNode::getType() const {
6343 if (isMachineConstantPoolEntry())
6344 return Val.MachineCPVal->getType();
6345 return Val.ConstVal->getType();
6348 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6349 APInt &SplatUndef,
6350 unsigned &SplatBitSize,
6351 bool &HasAnyUndefs,
6352 unsigned MinSplatBits,
6353 bool isBigEndian) {
6354 EVT VT = getValueType(0);
6355 assert(VT.isVector() && "Expected a vector type");
6356 unsigned sz = VT.getSizeInBits();
6357 if (MinSplatBits > sz)
6358 return false;
6360 SplatValue = APInt(sz, 0);
6361 SplatUndef = APInt(sz, 0);
6363 // Get the bits. Bits with undefined values (when the corresponding element
6364 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6365 // in SplatValue. If any of the values are not constant, give up and return
6366 // false.
6367 unsigned int nOps = getNumOperands();
6368 assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6369 unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6371 for (unsigned j = 0; j < nOps; ++j) {
6372 unsigned i = isBigEndian ? nOps-1-j : j;
6373 SDValue OpVal = getOperand(i);
6374 unsigned BitPos = j * EltBitSize;
6376 if (OpVal.getOpcode() == ISD::UNDEF)
6377 SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6378 else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6379 SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6380 zextOrTrunc(sz) << BitPos;
6381 else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6382 SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6383 else
6384 return false;
6387 // The build_vector is all constants or undefs. Find the smallest element
6388 // size that splats the vector.
6390 HasAnyUndefs = (SplatUndef != 0);
6391 while (sz > 8) {
6393 unsigned HalfSize = sz / 2;
6394 APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6395 APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6396 APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6397 APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6399 // If the two halves do not match (ignoring undef bits), stop here.
6400 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6401 MinSplatBits > HalfSize)
6402 break;
6404 SplatValue = HighValue | LowValue;
6405 SplatUndef = HighUndef & LowUndef;
6407 sz = HalfSize;
6410 SplatBitSize = sz;
6411 return true;
6414 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6415 // Find the first non-undef value in the shuffle mask.
6416 unsigned i, e;
6417 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6418 /* search */;
6420 assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6422 // Make sure all remaining elements are either undef or the same as the first
6423 // non-undef value.
6424 for (int Idx = Mask[i]; i != e; ++i)
6425 if (Mask[i] >= 0 && Mask[i] != Idx)
6426 return false;
6427 return true;
6430 #ifdef XDEBUG
6431 static void checkForCyclesHelper(const SDNode *N,
6432 SmallPtrSet<const SDNode*, 32> &Visited,
6433 SmallPtrSet<const SDNode*, 32> &Checked) {
6434 // If this node has already been checked, don't check it again.
6435 if (Checked.count(N))
6436 return;
6438 // If a node has already been visited on this depth-first walk, reject it as
6439 // a cycle.
6440 if (!Visited.insert(N)) {
6441 dbgs() << "Offending node:\n";
6442 N->dumprFull();
6443 errs() << "Detected cycle in SelectionDAG\n";
6444 abort();
6447 for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6448 checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6450 Checked.insert(N);
6451 Visited.erase(N);
6453 #endif
6455 void llvm::checkForCycles(const llvm::SDNode *N) {
6456 #ifdef XDEBUG
6457 assert(N && "Checking nonexistant SDNode");
6458 SmallPtrSet<const SDNode*, 32> visited;
6459 SmallPtrSet<const SDNode*, 32> checked;
6460 checkForCyclesHelper(N, visited, checked);
6461 #endif
6464 void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6465 checkForCycles(DAG->getRoot().getNode());