zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blob1c9fcc12933417fdb483a41b414fbc3619912d42
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetLoweringObjectFile.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetRegisterInfo.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineJumpTableInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 using namespace llvm;
33 namespace llvm {
34 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35 bool isLocal = GV->hasLocalLinkage();
36 bool isDeclaration = GV->isDeclaration();
37 // FIXME: what should we do for protected and internal visibility?
38 // For variables, is internal different from hidden?
39 bool isHidden = GV->hasHiddenVisibility();
41 if (reloc == Reloc::PIC_) {
42 if (isLocal || isHidden)
43 return TLSModel::LocalDynamic;
44 else
45 return TLSModel::GeneralDynamic;
46 } else {
47 if (!isDeclaration || isHidden)
48 return TLSModel::LocalExec;
49 else
50 return TLSModel::InitialExec;
55 /// InitLibcallNames - Set default libcall names.
56 ///
57 static void InitLibcallNames(const char **Names) {
58 Names[RTLIB::SHL_I16] = "__ashlhi3";
59 Names[RTLIB::SHL_I32] = "__ashlsi3";
60 Names[RTLIB::SHL_I64] = "__ashldi3";
61 Names[RTLIB::SHL_I128] = "__ashlti3";
62 Names[RTLIB::SRL_I16] = "__lshrhi3";
63 Names[RTLIB::SRL_I32] = "__lshrsi3";
64 Names[RTLIB::SRL_I64] = "__lshrdi3";
65 Names[RTLIB::SRL_I128] = "__lshrti3";
66 Names[RTLIB::SRA_I16] = "__ashrhi3";
67 Names[RTLIB::SRA_I32] = "__ashrsi3";
68 Names[RTLIB::SRA_I64] = "__ashrdi3";
69 Names[RTLIB::SRA_I128] = "__ashrti3";
70 Names[RTLIB::MUL_I8] = "__mulqi3";
71 Names[RTLIB::MUL_I16] = "__mulhi3";
72 Names[RTLIB::MUL_I32] = "__mulsi3";
73 Names[RTLIB::MUL_I64] = "__muldi3";
74 Names[RTLIB::MUL_I128] = "__multi3";
75 Names[RTLIB::SDIV_I8] = "__divqi3";
76 Names[RTLIB::SDIV_I16] = "__divhi3";
77 Names[RTLIB::SDIV_I32] = "__divsi3";
78 Names[RTLIB::SDIV_I64] = "__divdi3";
79 Names[RTLIB::SDIV_I128] = "__divti3";
80 Names[RTLIB::UDIV_I8] = "__udivqi3";
81 Names[RTLIB::UDIV_I16] = "__udivhi3";
82 Names[RTLIB::UDIV_I32] = "__udivsi3";
83 Names[RTLIB::UDIV_I64] = "__udivdi3";
84 Names[RTLIB::UDIV_I128] = "__udivti3";
85 Names[RTLIB::SREM_I8] = "__modqi3";
86 Names[RTLIB::SREM_I16] = "__modhi3";
87 Names[RTLIB::SREM_I32] = "__modsi3";
88 Names[RTLIB::SREM_I64] = "__moddi3";
89 Names[RTLIB::SREM_I128] = "__modti3";
90 Names[RTLIB::UREM_I8] = "__umodqi3";
91 Names[RTLIB::UREM_I16] = "__umodhi3";
92 Names[RTLIB::UREM_I32] = "__umodsi3";
93 Names[RTLIB::UREM_I64] = "__umoddi3";
94 Names[RTLIB::UREM_I128] = "__umodti3";
95 Names[RTLIB::NEG_I32] = "__negsi2";
96 Names[RTLIB::NEG_I64] = "__negdi2";
97 Names[RTLIB::ADD_F32] = "__addsf3";
98 Names[RTLIB::ADD_F64] = "__adddf3";
99 Names[RTLIB::ADD_F80] = "__addxf3";
100 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101 Names[RTLIB::SUB_F32] = "__subsf3";
102 Names[RTLIB::SUB_F64] = "__subdf3";
103 Names[RTLIB::SUB_F80] = "__subxf3";
104 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105 Names[RTLIB::MUL_F32] = "__mulsf3";
106 Names[RTLIB::MUL_F64] = "__muldf3";
107 Names[RTLIB::MUL_F80] = "__mulxf3";
108 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109 Names[RTLIB::DIV_F32] = "__divsf3";
110 Names[RTLIB::DIV_F64] = "__divdf3";
111 Names[RTLIB::DIV_F80] = "__divxf3";
112 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113 Names[RTLIB::REM_F32] = "fmodf";
114 Names[RTLIB::REM_F64] = "fmod";
115 Names[RTLIB::REM_F80] = "fmodl";
116 Names[RTLIB::REM_PPCF128] = "fmodl";
117 Names[RTLIB::POWI_F32] = "__powisf2";
118 Names[RTLIB::POWI_F64] = "__powidf2";
119 Names[RTLIB::POWI_F80] = "__powixf2";
120 Names[RTLIB::POWI_PPCF128] = "__powitf2";
121 Names[RTLIB::SQRT_F32] = "sqrtf";
122 Names[RTLIB::SQRT_F64] = "sqrt";
123 Names[RTLIB::SQRT_F80] = "sqrtl";
124 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125 Names[RTLIB::LOG_F32] = "logf";
126 Names[RTLIB::LOG_F64] = "log";
127 Names[RTLIB::LOG_F80] = "logl";
128 Names[RTLIB::LOG_PPCF128] = "logl";
129 Names[RTLIB::LOG2_F32] = "log2f";
130 Names[RTLIB::LOG2_F64] = "log2";
131 Names[RTLIB::LOG2_F80] = "log2l";
132 Names[RTLIB::LOG2_PPCF128] = "log2l";
133 Names[RTLIB::LOG10_F32] = "log10f";
134 Names[RTLIB::LOG10_F64] = "log10";
135 Names[RTLIB::LOG10_F80] = "log10l";
136 Names[RTLIB::LOG10_PPCF128] = "log10l";
137 Names[RTLIB::EXP_F32] = "expf";
138 Names[RTLIB::EXP_F64] = "exp";
139 Names[RTLIB::EXP_F80] = "expl";
140 Names[RTLIB::EXP_PPCF128] = "expl";
141 Names[RTLIB::EXP2_F32] = "exp2f";
142 Names[RTLIB::EXP2_F64] = "exp2";
143 Names[RTLIB::EXP2_F80] = "exp2l";
144 Names[RTLIB::EXP2_PPCF128] = "exp2l";
145 Names[RTLIB::SIN_F32] = "sinf";
146 Names[RTLIB::SIN_F64] = "sin";
147 Names[RTLIB::SIN_F80] = "sinl";
148 Names[RTLIB::SIN_PPCF128] = "sinl";
149 Names[RTLIB::COS_F32] = "cosf";
150 Names[RTLIB::COS_F64] = "cos";
151 Names[RTLIB::COS_F80] = "cosl";
152 Names[RTLIB::COS_PPCF128] = "cosl";
153 Names[RTLIB::POW_F32] = "powf";
154 Names[RTLIB::POW_F64] = "pow";
155 Names[RTLIB::POW_F80] = "powl";
156 Names[RTLIB::POW_PPCF128] = "powl";
157 Names[RTLIB::CEIL_F32] = "ceilf";
158 Names[RTLIB::CEIL_F64] = "ceil";
159 Names[RTLIB::CEIL_F80] = "ceill";
160 Names[RTLIB::CEIL_PPCF128] = "ceill";
161 Names[RTLIB::TRUNC_F32] = "truncf";
162 Names[RTLIB::TRUNC_F64] = "trunc";
163 Names[RTLIB::TRUNC_F80] = "truncl";
164 Names[RTLIB::TRUNC_PPCF128] = "truncl";
165 Names[RTLIB::RINT_F32] = "rintf";
166 Names[RTLIB::RINT_F64] = "rint";
167 Names[RTLIB::RINT_F80] = "rintl";
168 Names[RTLIB::RINT_PPCF128] = "rintl";
169 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173 Names[RTLIB::FLOOR_F32] = "floorf";
174 Names[RTLIB::FLOOR_F64] = "floor";
175 Names[RTLIB::FLOOR_F80] = "floorl";
176 Names[RTLIB::FLOOR_PPCF128] = "floorl";
177 Names[RTLIB::COPYSIGN_F32] = "copysignf";
178 Names[RTLIB::COPYSIGN_F64] = "copysign";
179 Names[RTLIB::COPYSIGN_F80] = "copysignl";
180 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
181 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
182 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
183 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
184 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
185 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
186 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
187 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
188 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
189 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
190 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
191 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
192 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
193 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
194 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
195 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
196 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
197 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
198 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
199 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
200 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
201 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
202 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
203 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
204 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
205 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
206 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
207 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
208 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
209 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
210 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
211 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
212 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
213 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
214 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
215 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
216 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
217 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
218 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
219 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
220 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
221 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
222 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
223 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
224 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
225 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
226 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
227 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
228 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
229 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
230 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
231 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
232 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
233 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
234 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
235 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
236 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
237 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
238 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
239 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
240 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
241 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
242 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
243 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
244 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
245 Names[RTLIB::OEQ_F32] = "__eqsf2";
246 Names[RTLIB::OEQ_F64] = "__eqdf2";
247 Names[RTLIB::UNE_F32] = "__nesf2";
248 Names[RTLIB::UNE_F64] = "__nedf2";
249 Names[RTLIB::OGE_F32] = "__gesf2";
250 Names[RTLIB::OGE_F64] = "__gedf2";
251 Names[RTLIB::OLT_F32] = "__ltsf2";
252 Names[RTLIB::OLT_F64] = "__ltdf2";
253 Names[RTLIB::OLE_F32] = "__lesf2";
254 Names[RTLIB::OLE_F64] = "__ledf2";
255 Names[RTLIB::OGT_F32] = "__gtsf2";
256 Names[RTLIB::OGT_F64] = "__gtdf2";
257 Names[RTLIB::UO_F32] = "__unordsf2";
258 Names[RTLIB::UO_F64] = "__unorddf2";
259 Names[RTLIB::O_F32] = "__unordsf2";
260 Names[RTLIB::O_F64] = "__unorddf2";
261 Names[RTLIB::MEMCPY] = "memcpy";
262 Names[RTLIB::MEMMOVE] = "memmove";
263 Names[RTLIB::MEMSET] = "memset";
264 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
265 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
266 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
267 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
268 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
269 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
270 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
271 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
272 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
273 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
274 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
275 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
276 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
277 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
278 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
279 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
280 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
281 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
282 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
283 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
284 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
285 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
286 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
287 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
288 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
289 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
290 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
291 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
292 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
293 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
294 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
295 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
296 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
299 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
301 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
302 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
303 CCs[i] = CallingConv::C;
307 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
308 /// UNKNOWN_LIBCALL if there is none.
309 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
310 if (OpVT == MVT::f32) {
311 if (RetVT == MVT::f64)
312 return FPEXT_F32_F64;
315 return UNKNOWN_LIBCALL;
318 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
319 /// UNKNOWN_LIBCALL if there is none.
320 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
321 if (RetVT == MVT::f32) {
322 if (OpVT == MVT::f64)
323 return FPROUND_F64_F32;
324 if (OpVT == MVT::f80)
325 return FPROUND_F80_F32;
326 if (OpVT == MVT::ppcf128)
327 return FPROUND_PPCF128_F32;
328 } else if (RetVT == MVT::f64) {
329 if (OpVT == MVT::f80)
330 return FPROUND_F80_F64;
331 if (OpVT == MVT::ppcf128)
332 return FPROUND_PPCF128_F64;
335 return UNKNOWN_LIBCALL;
338 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
339 /// UNKNOWN_LIBCALL if there is none.
340 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
341 if (OpVT == MVT::f32) {
342 if (RetVT == MVT::i8)
343 return FPTOSINT_F32_I8;
344 if (RetVT == MVT::i16)
345 return FPTOSINT_F32_I16;
346 if (RetVT == MVT::i32)
347 return FPTOSINT_F32_I32;
348 if (RetVT == MVT::i64)
349 return FPTOSINT_F32_I64;
350 if (RetVT == MVT::i128)
351 return FPTOSINT_F32_I128;
352 } else if (OpVT == MVT::f64) {
353 if (RetVT == MVT::i8)
354 return FPTOSINT_F64_I8;
355 if (RetVT == MVT::i16)
356 return FPTOSINT_F64_I16;
357 if (RetVT == MVT::i32)
358 return FPTOSINT_F64_I32;
359 if (RetVT == MVT::i64)
360 return FPTOSINT_F64_I64;
361 if (RetVT == MVT::i128)
362 return FPTOSINT_F64_I128;
363 } else if (OpVT == MVT::f80) {
364 if (RetVT == MVT::i32)
365 return FPTOSINT_F80_I32;
366 if (RetVT == MVT::i64)
367 return FPTOSINT_F80_I64;
368 if (RetVT == MVT::i128)
369 return FPTOSINT_F80_I128;
370 } else if (OpVT == MVT::ppcf128) {
371 if (RetVT == MVT::i32)
372 return FPTOSINT_PPCF128_I32;
373 if (RetVT == MVT::i64)
374 return FPTOSINT_PPCF128_I64;
375 if (RetVT == MVT::i128)
376 return FPTOSINT_PPCF128_I128;
378 return UNKNOWN_LIBCALL;
381 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
382 /// UNKNOWN_LIBCALL if there is none.
383 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
384 if (OpVT == MVT::f32) {
385 if (RetVT == MVT::i8)
386 return FPTOUINT_F32_I8;
387 if (RetVT == MVT::i16)
388 return FPTOUINT_F32_I16;
389 if (RetVT == MVT::i32)
390 return FPTOUINT_F32_I32;
391 if (RetVT == MVT::i64)
392 return FPTOUINT_F32_I64;
393 if (RetVT == MVT::i128)
394 return FPTOUINT_F32_I128;
395 } else if (OpVT == MVT::f64) {
396 if (RetVT == MVT::i8)
397 return FPTOUINT_F64_I8;
398 if (RetVT == MVT::i16)
399 return FPTOUINT_F64_I16;
400 if (RetVT == MVT::i32)
401 return FPTOUINT_F64_I32;
402 if (RetVT == MVT::i64)
403 return FPTOUINT_F64_I64;
404 if (RetVT == MVT::i128)
405 return FPTOUINT_F64_I128;
406 } else if (OpVT == MVT::f80) {
407 if (RetVT == MVT::i32)
408 return FPTOUINT_F80_I32;
409 if (RetVT == MVT::i64)
410 return FPTOUINT_F80_I64;
411 if (RetVT == MVT::i128)
412 return FPTOUINT_F80_I128;
413 } else if (OpVT == MVT::ppcf128) {
414 if (RetVT == MVT::i32)
415 return FPTOUINT_PPCF128_I32;
416 if (RetVT == MVT::i64)
417 return FPTOUINT_PPCF128_I64;
418 if (RetVT == MVT::i128)
419 return FPTOUINT_PPCF128_I128;
421 return UNKNOWN_LIBCALL;
424 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
425 /// UNKNOWN_LIBCALL if there is none.
426 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
427 if (OpVT == MVT::i32) {
428 if (RetVT == MVT::f32)
429 return SINTTOFP_I32_F32;
430 else if (RetVT == MVT::f64)
431 return SINTTOFP_I32_F64;
432 else if (RetVT == MVT::f80)
433 return SINTTOFP_I32_F80;
434 else if (RetVT == MVT::ppcf128)
435 return SINTTOFP_I32_PPCF128;
436 } else if (OpVT == MVT::i64) {
437 if (RetVT == MVT::f32)
438 return SINTTOFP_I64_F32;
439 else if (RetVT == MVT::f64)
440 return SINTTOFP_I64_F64;
441 else if (RetVT == MVT::f80)
442 return SINTTOFP_I64_F80;
443 else if (RetVT == MVT::ppcf128)
444 return SINTTOFP_I64_PPCF128;
445 } else if (OpVT == MVT::i128) {
446 if (RetVT == MVT::f32)
447 return SINTTOFP_I128_F32;
448 else if (RetVT == MVT::f64)
449 return SINTTOFP_I128_F64;
450 else if (RetVT == MVT::f80)
451 return SINTTOFP_I128_F80;
452 else if (RetVT == MVT::ppcf128)
453 return SINTTOFP_I128_PPCF128;
455 return UNKNOWN_LIBCALL;
458 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
459 /// UNKNOWN_LIBCALL if there is none.
460 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
461 if (OpVT == MVT::i32) {
462 if (RetVT == MVT::f32)
463 return UINTTOFP_I32_F32;
464 else if (RetVT == MVT::f64)
465 return UINTTOFP_I32_F64;
466 else if (RetVT == MVT::f80)
467 return UINTTOFP_I32_F80;
468 else if (RetVT == MVT::ppcf128)
469 return UINTTOFP_I32_PPCF128;
470 } else if (OpVT == MVT::i64) {
471 if (RetVT == MVT::f32)
472 return UINTTOFP_I64_F32;
473 else if (RetVT == MVT::f64)
474 return UINTTOFP_I64_F64;
475 else if (RetVT == MVT::f80)
476 return UINTTOFP_I64_F80;
477 else if (RetVT == MVT::ppcf128)
478 return UINTTOFP_I64_PPCF128;
479 } else if (OpVT == MVT::i128) {
480 if (RetVT == MVT::f32)
481 return UINTTOFP_I128_F32;
482 else if (RetVT == MVT::f64)
483 return UINTTOFP_I128_F64;
484 else if (RetVT == MVT::f80)
485 return UINTTOFP_I128_F80;
486 else if (RetVT == MVT::ppcf128)
487 return UINTTOFP_I128_PPCF128;
489 return UNKNOWN_LIBCALL;
492 /// InitCmpLibcallCCs - Set default comparison libcall CC.
494 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
495 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
496 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
497 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
498 CCs[RTLIB::UNE_F32] = ISD::SETNE;
499 CCs[RTLIB::UNE_F64] = ISD::SETNE;
500 CCs[RTLIB::OGE_F32] = ISD::SETGE;
501 CCs[RTLIB::OGE_F64] = ISD::SETGE;
502 CCs[RTLIB::OLT_F32] = ISD::SETLT;
503 CCs[RTLIB::OLT_F64] = ISD::SETLT;
504 CCs[RTLIB::OLE_F32] = ISD::SETLE;
505 CCs[RTLIB::OLE_F64] = ISD::SETLE;
506 CCs[RTLIB::OGT_F32] = ISD::SETGT;
507 CCs[RTLIB::OGT_F64] = ISD::SETGT;
508 CCs[RTLIB::UO_F32] = ISD::SETNE;
509 CCs[RTLIB::UO_F64] = ISD::SETNE;
510 CCs[RTLIB::O_F32] = ISD::SETEQ;
511 CCs[RTLIB::O_F64] = ISD::SETEQ;
514 /// NOTE: The constructor takes ownership of TLOF.
515 TargetLowering::TargetLowering(const TargetMachine &tm,
516 const TargetLoweringObjectFile *tlof)
517 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
518 // All operations default to being supported.
519 memset(OpActions, 0, sizeof(OpActions));
520 memset(LoadExtActions, 0, sizeof(LoadExtActions));
521 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
522 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
523 memset(CondCodeActions, 0, sizeof(CondCodeActions));
525 // Set default actions for various operations.
526 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
527 // Default all indexed load / store to expand.
528 for (unsigned IM = (unsigned)ISD::PRE_INC;
529 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
530 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
531 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
534 // These operations default to expand.
535 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
536 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
539 // Most targets ignore the @llvm.prefetch intrinsic.
540 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
542 // ConstantFP nodes default to expand. Targets can either change this to
543 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
544 // to optimize expansions for certain constants.
545 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
546 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
547 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
549 // These library functions default to expand.
550 setOperationAction(ISD::FLOG , MVT::f64, Expand);
551 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
552 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
553 setOperationAction(ISD::FEXP , MVT::f64, Expand);
554 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
555 setOperationAction(ISD::FLOG , MVT::f32, Expand);
556 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
557 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
558 setOperationAction(ISD::FEXP , MVT::f32, Expand);
559 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
561 // Default ISD::TRAP to expand (which turns it into abort).
562 setOperationAction(ISD::TRAP, MVT::Other, Expand);
564 IsLittleEndian = TD->isLittleEndian();
565 ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
566 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
567 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
568 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
569 benefitFromCodePlacementOpt = false;
570 UseUnderscoreSetJmp = false;
571 UseUnderscoreLongJmp = false;
572 SelectIsExpensive = false;
573 IntDivIsCheap = false;
574 Pow2DivIsCheap = false;
575 StackPointerRegisterToSaveRestore = 0;
576 ExceptionPointerRegister = 0;
577 ExceptionSelectorRegister = 0;
578 BooleanContents = UndefinedBooleanContent;
579 SchedPreferenceInfo = Sched::Latency;
580 JumpBufSize = 0;
581 JumpBufAlignment = 0;
582 PrefLoopAlignment = 0;
583 MinStackArgumentAlignment = 1;
584 ShouldFoldAtomicFences = false;
586 InitLibcallNames(LibcallRoutineNames);
587 InitCmpLibcallCCs(CmpLibcallCCs);
588 InitLibcallCallingConvs(LibcallCallingConvs);
591 TargetLowering::~TargetLowering() {
592 delete &TLOF;
595 /// canOpTrap - Returns true if the operation can trap for the value type.
596 /// VT must be a legal type.
597 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
598 assert(isTypeLegal(VT));
599 switch (Op) {
600 default:
601 return false;
602 case ISD::FDIV:
603 case ISD::FREM:
604 case ISD::SDIV:
605 case ISD::UDIV:
606 case ISD::SREM:
607 case ISD::UREM:
608 return true;
613 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
614 unsigned &NumIntermediates,
615 EVT &RegisterVT,
616 TargetLowering *TLI) {
617 // Figure out the right, legal destination reg to copy into.
618 unsigned NumElts = VT.getVectorNumElements();
619 MVT EltTy = VT.getVectorElementType();
621 unsigned NumVectorRegs = 1;
623 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
624 // could break down into LHS/RHS like LegalizeDAG does.
625 if (!isPowerOf2_32(NumElts)) {
626 NumVectorRegs = NumElts;
627 NumElts = 1;
630 // Divide the input until we get to a supported size. This will always
631 // end with a scalar if the target doesn't support vectors.
632 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
633 NumElts >>= 1;
634 NumVectorRegs <<= 1;
637 NumIntermediates = NumVectorRegs;
639 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
640 if (!TLI->isTypeLegal(NewVT))
641 NewVT = EltTy;
642 IntermediateVT = NewVT;
644 EVT DestVT = TLI->getRegisterType(NewVT);
645 RegisterVT = DestVT;
646 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
647 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
649 // Otherwise, promotion or legal types use the same number of registers as
650 // the vector decimated to the appropriate level.
651 return NumVectorRegs;
654 /// isLegalRC - Return true if the value types that can be represented by the
655 /// specified register class are all legal.
656 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
657 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
658 I != E; ++I) {
659 if (isTypeLegal(*I))
660 return true;
662 return false;
665 /// hasLegalSuperRegRegClasses - Return true if the specified register class
666 /// has one or more super-reg register classes that are legal.
667 bool
668 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
669 if (*RC->superregclasses_begin() == 0)
670 return false;
671 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
672 E = RC->superregclasses_end(); I != E; ++I) {
673 const TargetRegisterClass *RRC = *I;
674 if (isLegalRC(RRC))
675 return true;
677 return false;
680 /// findRepresentativeClass - Return the largest legal super-reg register class
681 /// of the register class for the specified type and its associated "cost".
682 std::pair<const TargetRegisterClass*, uint8_t>
683 TargetLowering::findRepresentativeClass(EVT VT) const {
684 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
685 if (!RC)
686 return std::make_pair(RC, 0);
687 const TargetRegisterClass *BestRC = RC;
688 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
689 E = RC->superregclasses_end(); I != E; ++I) {
690 const TargetRegisterClass *RRC = *I;
691 if (RRC->isASubClass() || !isLegalRC(RRC))
692 continue;
693 if (!hasLegalSuperRegRegClasses(RRC))
694 return std::make_pair(RRC, 1);
695 BestRC = RRC;
697 return std::make_pair(BestRC, 1);
701 /// computeRegisterProperties - Once all of the register classes are added,
702 /// this allows us to compute derived properties we expose.
703 void TargetLowering::computeRegisterProperties() {
704 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
705 "Too many value types for ValueTypeActions to hold!");
707 // Everything defaults to needing one register.
708 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
709 NumRegistersForVT[i] = 1;
710 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
712 // ...except isVoid, which doesn't need any registers.
713 NumRegistersForVT[MVT::isVoid] = 0;
715 // Find the largest integer register class.
716 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
717 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
718 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
720 // Every integer value type larger than this largest register takes twice as
721 // many registers to represent as the previous ValueType.
722 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
723 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
724 if (!ExpandedVT.isInteger())
725 break;
726 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
727 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
728 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
729 ValueTypeActions.setTypeAction(ExpandedVT, Expand);
732 // Inspect all of the ValueType's smaller than the largest integer
733 // register to see which ones need promotion.
734 unsigned LegalIntReg = LargestIntReg;
735 for (unsigned IntReg = LargestIntReg - 1;
736 IntReg >= (unsigned)MVT::i1; --IntReg) {
737 EVT IVT = (MVT::SimpleValueType)IntReg;
738 if (isTypeLegal(IVT)) {
739 LegalIntReg = IntReg;
740 } else {
741 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
742 (MVT::SimpleValueType)LegalIntReg;
743 ValueTypeActions.setTypeAction(IVT, Promote);
747 // ppcf128 type is really two f64's.
748 if (!isTypeLegal(MVT::ppcf128)) {
749 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
750 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
751 TransformToType[MVT::ppcf128] = MVT::f64;
752 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
755 // Decide how to handle f64. If the target does not have native f64 support,
756 // expand it to i64 and we will be generating soft float library calls.
757 if (!isTypeLegal(MVT::f64)) {
758 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
759 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
760 TransformToType[MVT::f64] = MVT::i64;
761 ValueTypeActions.setTypeAction(MVT::f64, Expand);
764 // Decide how to handle f32. If the target does not have native support for
765 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
766 if (!isTypeLegal(MVT::f32)) {
767 if (isTypeLegal(MVT::f64)) {
768 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
769 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
770 TransformToType[MVT::f32] = MVT::f64;
771 ValueTypeActions.setTypeAction(MVT::f32, Promote);
772 } else {
773 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
774 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
775 TransformToType[MVT::f32] = MVT::i32;
776 ValueTypeActions.setTypeAction(MVT::f32, Expand);
780 // Loop over all of the vector value types to see which need transformations.
781 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
782 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
783 MVT VT = (MVT::SimpleValueType)i;
784 if (isTypeLegal(VT)) continue;
786 // Determine if there is a legal wider type. If so, we should promote to
787 // that wider vector type.
788 EVT EltVT = VT.getVectorElementType();
789 unsigned NElts = VT.getVectorNumElements();
790 if (NElts != 1) {
791 bool IsLegalWiderType = false;
792 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
793 EVT SVT = (MVT::SimpleValueType)nVT;
794 if (SVT.getVectorElementType() == EltVT &&
795 SVT.getVectorNumElements() > NElts &&
796 isTypeLegal(SVT)) {
797 TransformToType[i] = SVT;
798 RegisterTypeForVT[i] = SVT;
799 NumRegistersForVT[i] = 1;
800 ValueTypeActions.setTypeAction(VT, Promote);
801 IsLegalWiderType = true;
802 break;
805 if (IsLegalWiderType) continue;
808 MVT IntermediateVT;
809 EVT RegisterVT;
810 unsigned NumIntermediates;
811 NumRegistersForVT[i] =
812 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
813 RegisterVT, this);
814 RegisterTypeForVT[i] = RegisterVT;
816 EVT NVT = VT.getPow2VectorType();
817 if (NVT == VT) {
818 // Type is already a power of 2. The default action is to split.
819 TransformToType[i] = MVT::Other;
820 ValueTypeActions.setTypeAction(VT, Expand);
821 } else {
822 TransformToType[i] = NVT;
823 ValueTypeActions.setTypeAction(VT, Promote);
827 // Determine the 'representative' register class for each value type.
828 // An representative register class is the largest (meaning one which is
829 // not a sub-register class / subreg register class) legal register class for
830 // a group of value types. For example, on i386, i8, i16, and i32
831 // representative would be GR32; while on x86_64 it's GR64.
832 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
833 const TargetRegisterClass* RRC;
834 uint8_t Cost;
835 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
836 RepRegClassForVT[i] = RRC;
837 RepRegClassCostForVT[i] = Cost;
841 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
842 return NULL;
846 MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
847 return PointerTy.SimpleTy;
850 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
851 return MVT::i32; // return the default value
854 /// getVectorTypeBreakdown - Vector types are broken down into some number of
855 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
856 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
857 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
859 /// This method returns the number of registers needed, and the VT for each
860 /// register. It also returns the VT and quantity of the intermediate values
861 /// before they are promoted/expanded.
863 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
864 EVT &IntermediateVT,
865 unsigned &NumIntermediates,
866 EVT &RegisterVT) const {
867 unsigned NumElts = VT.getVectorNumElements();
869 // If there is a wider vector type with the same element type as this one,
870 // we should widen to that legal vector type. This handles things like
871 // <2 x float> -> <4 x float>.
872 if (NumElts != 1 && getTypeAction(VT) == Promote) {
873 RegisterVT = getTypeToTransformTo(Context, VT);
874 if (isTypeLegal(RegisterVT)) {
875 IntermediateVT = RegisterVT;
876 NumIntermediates = 1;
877 return 1;
881 // Figure out the right, legal destination reg to copy into.
882 EVT EltTy = VT.getVectorElementType();
884 unsigned NumVectorRegs = 1;
886 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
887 // could break down into LHS/RHS like LegalizeDAG does.
888 if (!isPowerOf2_32(NumElts)) {
889 NumVectorRegs = NumElts;
890 NumElts = 1;
893 // Divide the input until we get to a supported size. This will always
894 // end with a scalar if the target doesn't support vectors.
895 while (NumElts > 1 && !isTypeLegal(
896 EVT::getVectorVT(Context, EltTy, NumElts))) {
897 NumElts >>= 1;
898 NumVectorRegs <<= 1;
901 NumIntermediates = NumVectorRegs;
903 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
904 if (!isTypeLegal(NewVT))
905 NewVT = EltTy;
906 IntermediateVT = NewVT;
908 EVT DestVT = getRegisterType(Context, NewVT);
909 RegisterVT = DestVT;
910 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
911 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
913 // Otherwise, promotion or legal types use the same number of registers as
914 // the vector decimated to the appropriate level.
915 return NumVectorRegs;
918 /// Get the EVTs and ArgFlags collections that represent the legalized return
919 /// type of the given function. This does not require a DAG or a return value,
920 /// and is suitable for use before any DAGs for the function are constructed.
921 /// TODO: Move this out of TargetLowering.cpp.
922 void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
923 SmallVectorImpl<ISD::OutputArg> &Outs,
924 const TargetLowering &TLI,
925 SmallVectorImpl<uint64_t> *Offsets) {
926 SmallVector<EVT, 4> ValueVTs;
927 ComputeValueVTs(TLI, ReturnType, ValueVTs);
928 unsigned NumValues = ValueVTs.size();
929 if (NumValues == 0) return;
930 unsigned Offset = 0;
932 for (unsigned j = 0, f = NumValues; j != f; ++j) {
933 EVT VT = ValueVTs[j];
934 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
936 if (attr & Attribute::SExt)
937 ExtendKind = ISD::SIGN_EXTEND;
938 else if (attr & Attribute::ZExt)
939 ExtendKind = ISD::ZERO_EXTEND;
941 // FIXME: C calling convention requires the return type to be promoted to
942 // at least 32-bit. But this is not necessary for non-C calling
943 // conventions. The frontend should mark functions whose return values
944 // require promoting with signext or zeroext attributes.
945 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
946 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
947 if (VT.bitsLT(MinVT))
948 VT = MinVT;
951 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
952 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
953 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
954 PartVT.getTypeForEVT(ReturnType->getContext()));
956 // 'inreg' on function refers to return value
957 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
958 if (attr & Attribute::InReg)
959 Flags.setInReg();
961 // Propagate extension type if any
962 if (attr & Attribute::SExt)
963 Flags.setSExt();
964 else if (attr & Attribute::ZExt)
965 Flags.setZExt();
967 for (unsigned i = 0; i < NumParts; ++i) {
968 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
969 if (Offsets) {
970 Offsets->push_back(Offset);
971 Offset += PartSize;
977 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
978 /// function arguments in the caller parameter area. This is the actual
979 /// alignment, not its logarithm.
980 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
981 return TD->getCallFrameTypeAlignment(Ty);
984 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
985 /// current function. The returned value is a member of the
986 /// MachineJumpTableInfo::JTEntryKind enum.
987 unsigned TargetLowering::getJumpTableEncoding() const {
988 // In non-pic modes, just use the address of a block.
989 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
990 return MachineJumpTableInfo::EK_BlockAddress;
992 // In PIC mode, if the target supports a GPRel32 directive, use it.
993 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
994 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
996 // Otherwise, use a label difference.
997 return MachineJumpTableInfo::EK_LabelDifference32;
1000 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1001 SelectionDAG &DAG) const {
1002 // If our PIC model is GP relative, use the global offset table as the base.
1003 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1004 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1005 return Table;
1008 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1009 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1010 /// MCExpr.
1011 const MCExpr *
1012 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1013 unsigned JTI,MCContext &Ctx) const{
1014 // The normal PIC reloc base is the label at the start of the jump table.
1015 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1018 bool
1019 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1020 // Assume that everything is safe in static mode.
1021 if (getTargetMachine().getRelocationModel() == Reloc::Static)
1022 return true;
1024 // In dynamic-no-pic mode, assume that known defined values are safe.
1025 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1026 GA &&
1027 !GA->getGlobal()->isDeclaration() &&
1028 !GA->getGlobal()->isWeakForLinker())
1029 return true;
1031 // Otherwise assume nothing is safe.
1032 return false;
1035 //===----------------------------------------------------------------------===//
1036 // Optimization Methods
1037 //===----------------------------------------------------------------------===//
1039 /// ShrinkDemandedConstant - Check to see if the specified operand of the
1040 /// specified instruction is a constant integer. If so, check to see if there
1041 /// are any bits set in the constant that are not demanded. If so, shrink the
1042 /// constant and return true.
1043 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1044 const APInt &Demanded) {
1045 DebugLoc dl = Op.getDebugLoc();
1047 // FIXME: ISD::SELECT, ISD::SELECT_CC
1048 switch (Op.getOpcode()) {
1049 default: break;
1050 case ISD::XOR:
1051 case ISD::AND:
1052 case ISD::OR: {
1053 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1054 if (!C) return false;
1056 if (Op.getOpcode() == ISD::XOR &&
1057 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1058 return false;
1060 // if we can expand it to have all bits set, do it
1061 if (C->getAPIntValue().intersects(~Demanded)) {
1062 EVT VT = Op.getValueType();
1063 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1064 DAG.getConstant(Demanded &
1065 C->getAPIntValue(),
1066 VT));
1067 return CombineTo(Op, New);
1070 break;
1074 return false;
1077 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1078 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
1079 /// cast, but it could be generalized for targets with other types of
1080 /// implicit widening casts.
1081 bool
1082 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1083 unsigned BitWidth,
1084 const APInt &Demanded,
1085 DebugLoc dl) {
1086 assert(Op.getNumOperands() == 2 &&
1087 "ShrinkDemandedOp only supports binary operators!");
1088 assert(Op.getNode()->getNumValues() == 1 &&
1089 "ShrinkDemandedOp only supports nodes with one result!");
1091 // Don't do this if the node has another user, which may require the
1092 // full value.
1093 if (!Op.getNode()->hasOneUse())
1094 return false;
1096 // Search for the smallest integer type with free casts to and from
1097 // Op's type. For expedience, just check power-of-2 integer types.
1098 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1099 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1100 if (!isPowerOf2_32(SmallVTBits))
1101 SmallVTBits = NextPowerOf2(SmallVTBits);
1102 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1103 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1104 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1105 TLI.isZExtFree(SmallVT, Op.getValueType())) {
1106 // We found a type with free casts.
1107 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1108 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1109 Op.getNode()->getOperand(0)),
1110 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1111 Op.getNode()->getOperand(1)));
1112 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1113 return CombineTo(Op, Z);
1116 return false;
1119 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
1120 /// DemandedMask bits of the result of Op are ever used downstream. If we can
1121 /// use this information to simplify Op, create a new simplified DAG node and
1122 /// return true, returning the original and new nodes in Old and New. Otherwise,
1123 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
1124 /// the expression (used to simplify the caller). The KnownZero/One bits may
1125 /// only be accurate for those bits in the DemandedMask.
1126 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1127 const APInt &DemandedMask,
1128 APInt &KnownZero,
1129 APInt &KnownOne,
1130 TargetLoweringOpt &TLO,
1131 unsigned Depth) const {
1132 unsigned BitWidth = DemandedMask.getBitWidth();
1133 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1134 "Mask size mismatches value type size!");
1135 APInt NewMask = DemandedMask;
1136 DebugLoc dl = Op.getDebugLoc();
1138 // Don't know anything.
1139 KnownZero = KnownOne = APInt(BitWidth, 0);
1141 // Other users may use these bits.
1142 if (!Op.getNode()->hasOneUse()) {
1143 if (Depth != 0) {
1144 // If not at the root, Just compute the KnownZero/KnownOne bits to
1145 // simplify things downstream.
1146 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1147 return false;
1149 // If this is the root being simplified, allow it to have multiple uses,
1150 // just set the NewMask to all bits.
1151 NewMask = APInt::getAllOnesValue(BitWidth);
1152 } else if (DemandedMask == 0) {
1153 // Not demanding any bits from Op.
1154 if (Op.getOpcode() != ISD::UNDEF)
1155 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1156 return false;
1157 } else if (Depth == 6) { // Limit search depth.
1158 return false;
1161 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1162 switch (Op.getOpcode()) {
1163 case ISD::Constant:
1164 // We know all of the bits for a constant!
1165 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1166 KnownZero = ~KnownOne & NewMask;
1167 return false; // Don't fall through, will infinitely loop.
1168 case ISD::AND:
1169 // If the RHS is a constant, check to see if the LHS would be zero without
1170 // using the bits from the RHS. Below, we use knowledge about the RHS to
1171 // simplify the LHS, here we're using information from the LHS to simplify
1172 // the RHS.
1173 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1174 APInt LHSZero, LHSOne;
1175 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1176 LHSZero, LHSOne, Depth+1);
1177 // If the LHS already has zeros where RHSC does, this and is dead.
1178 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1179 return TLO.CombineTo(Op, Op.getOperand(0));
1180 // If any of the set bits in the RHS are known zero on the LHS, shrink
1181 // the constant.
1182 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1183 return true;
1186 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1187 KnownOne, TLO, Depth+1))
1188 return true;
1189 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1190 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1191 KnownZero2, KnownOne2, TLO, Depth+1))
1192 return true;
1193 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1195 // If all of the demanded bits are known one on one side, return the other.
1196 // These bits cannot contribute to the result of the 'and'.
1197 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1198 return TLO.CombineTo(Op, Op.getOperand(0));
1199 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1200 return TLO.CombineTo(Op, Op.getOperand(1));
1201 // If all of the demanded bits in the inputs are known zeros, return zero.
1202 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1203 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1204 // If the RHS is a constant, see if we can simplify it.
1205 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1206 return true;
1207 // If the operation can be done in a smaller type, do so.
1208 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1209 return true;
1211 // Output known-1 bits are only known if set in both the LHS & RHS.
1212 KnownOne &= KnownOne2;
1213 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1214 KnownZero |= KnownZero2;
1215 break;
1216 case ISD::OR:
1217 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1218 KnownOne, TLO, Depth+1))
1219 return true;
1220 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1221 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1222 KnownZero2, KnownOne2, TLO, Depth+1))
1223 return true;
1224 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1226 // If all of the demanded bits are known zero on one side, return the other.
1227 // These bits cannot contribute to the result of the 'or'.
1228 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1229 return TLO.CombineTo(Op, Op.getOperand(0));
1230 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1231 return TLO.CombineTo(Op, Op.getOperand(1));
1232 // If all of the potentially set bits on one side are known to be set on
1233 // the other side, just use the 'other' side.
1234 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1235 return TLO.CombineTo(Op, Op.getOperand(0));
1236 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1237 return TLO.CombineTo(Op, Op.getOperand(1));
1238 // If the RHS is a constant, see if we can simplify it.
1239 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1240 return true;
1241 // If the operation can be done in a smaller type, do so.
1242 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1243 return true;
1245 // Output known-0 bits are only known if clear in both the LHS & RHS.
1246 KnownZero &= KnownZero2;
1247 // Output known-1 are known to be set if set in either the LHS | RHS.
1248 KnownOne |= KnownOne2;
1249 break;
1250 case ISD::XOR:
1251 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1252 KnownOne, TLO, Depth+1))
1253 return true;
1254 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1255 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1256 KnownOne2, TLO, Depth+1))
1257 return true;
1258 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1260 // If all of the demanded bits are known zero on one side, return the other.
1261 // These bits cannot contribute to the result of the 'xor'.
1262 if ((KnownZero & NewMask) == NewMask)
1263 return TLO.CombineTo(Op, Op.getOperand(0));
1264 if ((KnownZero2 & NewMask) == NewMask)
1265 return TLO.CombineTo(Op, Op.getOperand(1));
1266 // If the operation can be done in a smaller type, do so.
1267 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1268 return true;
1270 // If all of the unknown bits are known to be zero on one side or the other
1271 // (but not both) turn this into an *inclusive* or.
1272 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1273 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1274 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1275 Op.getOperand(0),
1276 Op.getOperand(1)));
1278 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1279 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1280 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1281 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1283 // If all of the demanded bits on one side are known, and all of the set
1284 // bits on that side are also known to be set on the other side, turn this
1285 // into an AND, as we know the bits will be cleared.
1286 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1287 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1288 if ((KnownOne & KnownOne2) == KnownOne) {
1289 EVT VT = Op.getValueType();
1290 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1291 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1292 Op.getOperand(0), ANDC));
1296 // If the RHS is a constant, see if we can simplify it.
1297 // for XOR, we prefer to force bits to 1 if they will make a -1.
1298 // if we can't force bits, try to shrink constant
1299 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1300 APInt Expanded = C->getAPIntValue() | (~NewMask);
1301 // if we can expand it to have all bits set, do it
1302 if (Expanded.isAllOnesValue()) {
1303 if (Expanded != C->getAPIntValue()) {
1304 EVT VT = Op.getValueType();
1305 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1306 TLO.DAG.getConstant(Expanded, VT));
1307 return TLO.CombineTo(Op, New);
1309 // if it already has all the bits set, nothing to change
1310 // but don't shrink either!
1311 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1312 return true;
1316 KnownZero = KnownZeroOut;
1317 KnownOne = KnownOneOut;
1318 break;
1319 case ISD::SELECT:
1320 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1321 KnownOne, TLO, Depth+1))
1322 return true;
1323 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1324 KnownOne2, TLO, Depth+1))
1325 return true;
1326 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1327 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1329 // If the operands are constants, see if we can simplify them.
1330 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1331 return true;
1333 // Only known if known in both the LHS and RHS.
1334 KnownOne &= KnownOne2;
1335 KnownZero &= KnownZero2;
1336 break;
1337 case ISD::SELECT_CC:
1338 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1339 KnownOne, TLO, Depth+1))
1340 return true;
1341 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1342 KnownOne2, TLO, Depth+1))
1343 return true;
1344 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1345 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1347 // If the operands are constants, see if we can simplify them.
1348 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1349 return true;
1351 // Only known if known in both the LHS and RHS.
1352 KnownOne &= KnownOne2;
1353 KnownZero &= KnownZero2;
1354 break;
1355 case ISD::SHL:
1356 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1357 unsigned ShAmt = SA->getZExtValue();
1358 SDValue InOp = Op.getOperand(0);
1360 // If the shift count is an invalid immediate, don't do anything.
1361 if (ShAmt >= BitWidth)
1362 break;
1364 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1365 // single shift. We can do this if the bottom bits (which are shifted
1366 // out) are never demanded.
1367 if (InOp.getOpcode() == ISD::SRL &&
1368 isa<ConstantSDNode>(InOp.getOperand(1))) {
1369 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1370 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1371 unsigned Opc = ISD::SHL;
1372 int Diff = ShAmt-C1;
1373 if (Diff < 0) {
1374 Diff = -Diff;
1375 Opc = ISD::SRL;
1378 SDValue NewSA =
1379 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1380 EVT VT = Op.getValueType();
1381 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1382 InOp.getOperand(0), NewSA));
1386 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1387 KnownZero, KnownOne, TLO, Depth+1))
1388 return true;
1390 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1391 // are not demanded. This will likely allow the anyext to be folded away.
1392 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1393 SDValue InnerOp = InOp.getNode()->getOperand(0);
1394 EVT InnerVT = InnerOp.getValueType();
1395 if ((APInt::getHighBitsSet(BitWidth,
1396 BitWidth - InnerVT.getSizeInBits()) &
1397 DemandedMask) == 0 &&
1398 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1399 EVT ShTy = getShiftAmountTy();
1400 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1401 ShTy = InnerVT;
1402 SDValue NarrowShl =
1403 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1404 TLO.DAG.getConstant(ShAmt, ShTy));
1405 return
1406 TLO.CombineTo(Op,
1407 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1408 NarrowShl));
1412 KnownZero <<= SA->getZExtValue();
1413 KnownOne <<= SA->getZExtValue();
1414 // low bits known zero.
1415 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1417 break;
1418 case ISD::SRL:
1419 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1420 EVT VT = Op.getValueType();
1421 unsigned ShAmt = SA->getZExtValue();
1422 unsigned VTSize = VT.getSizeInBits();
1423 SDValue InOp = Op.getOperand(0);
1425 // If the shift count is an invalid immediate, don't do anything.
1426 if (ShAmt >= BitWidth)
1427 break;
1429 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1430 // single shift. We can do this if the top bits (which are shifted out)
1431 // are never demanded.
1432 if (InOp.getOpcode() == ISD::SHL &&
1433 isa<ConstantSDNode>(InOp.getOperand(1))) {
1434 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1435 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1436 unsigned Opc = ISD::SRL;
1437 int Diff = ShAmt-C1;
1438 if (Diff < 0) {
1439 Diff = -Diff;
1440 Opc = ISD::SHL;
1443 SDValue NewSA =
1444 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1445 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1446 InOp.getOperand(0), NewSA));
1450 // Compute the new bits that are at the top now.
1451 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1452 KnownZero, KnownOne, TLO, Depth+1))
1453 return true;
1454 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1455 KnownZero = KnownZero.lshr(ShAmt);
1456 KnownOne = KnownOne.lshr(ShAmt);
1458 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1459 KnownZero |= HighBits; // High bits known zero.
1461 break;
1462 case ISD::SRA:
1463 // If this is an arithmetic shift right and only the low-bit is set, we can
1464 // always convert this into a logical shr, even if the shift amount is
1465 // variable. The low bit of the shift cannot be an input sign bit unless
1466 // the shift amount is >= the size of the datatype, which is undefined.
1467 if (DemandedMask == 1)
1468 return TLO.CombineTo(Op,
1469 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1470 Op.getOperand(0), Op.getOperand(1)));
1472 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1473 EVT VT = Op.getValueType();
1474 unsigned ShAmt = SA->getZExtValue();
1476 // If the shift count is an invalid immediate, don't do anything.
1477 if (ShAmt >= BitWidth)
1478 break;
1480 APInt InDemandedMask = (NewMask << ShAmt);
1482 // If any of the demanded bits are produced by the sign extension, we also
1483 // demand the input sign bit.
1484 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1485 if (HighBits.intersects(NewMask))
1486 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1488 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1489 KnownZero, KnownOne, TLO, Depth+1))
1490 return true;
1491 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1492 KnownZero = KnownZero.lshr(ShAmt);
1493 KnownOne = KnownOne.lshr(ShAmt);
1495 // Handle the sign bit, adjusted to where it is now in the mask.
1496 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1498 // If the input sign bit is known to be zero, or if none of the top bits
1499 // are demanded, turn this into an unsigned shift right.
1500 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1501 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1502 Op.getOperand(0),
1503 Op.getOperand(1)));
1504 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1505 KnownOne |= HighBits;
1508 break;
1509 case ISD::SIGN_EXTEND_INREG: {
1510 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1512 // Sign extension. Compute the demanded bits in the result that are not
1513 // present in the input.
1514 APInt NewBits =
1515 APInt::getHighBitsSet(BitWidth,
1516 BitWidth - EVT.getScalarType().getSizeInBits());
1518 // If none of the extended bits are demanded, eliminate the sextinreg.
1519 if ((NewBits & NewMask) == 0)
1520 return TLO.CombineTo(Op, Op.getOperand(0));
1522 APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1523 InSignBit.zext(BitWidth);
1524 APInt InputDemandedBits =
1525 APInt::getLowBitsSet(BitWidth,
1526 EVT.getScalarType().getSizeInBits()) &
1527 NewMask;
1529 // Since the sign extended bits are demanded, we know that the sign
1530 // bit is demanded.
1531 InputDemandedBits |= InSignBit;
1533 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1534 KnownZero, KnownOne, TLO, Depth+1))
1535 return true;
1536 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1538 // If the sign bit of the input is known set or clear, then we know the
1539 // top bits of the result.
1541 // If the input sign bit is known zero, convert this into a zero extension.
1542 if (KnownZero.intersects(InSignBit))
1543 return TLO.CombineTo(Op,
1544 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1546 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1547 KnownOne |= NewBits;
1548 KnownZero &= ~NewBits;
1549 } else { // Input sign bit unknown
1550 KnownZero &= ~NewBits;
1551 KnownOne &= ~NewBits;
1553 break;
1555 case ISD::ZERO_EXTEND: {
1556 unsigned OperandBitWidth =
1557 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1558 APInt InMask = NewMask;
1559 InMask.trunc(OperandBitWidth);
1561 // If none of the top bits are demanded, convert this into an any_extend.
1562 APInt NewBits =
1563 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1564 if (!NewBits.intersects(NewMask))
1565 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1566 Op.getValueType(),
1567 Op.getOperand(0)));
1569 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1570 KnownZero, KnownOne, TLO, Depth+1))
1571 return true;
1572 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573 KnownZero.zext(BitWidth);
1574 KnownOne.zext(BitWidth);
1575 KnownZero |= NewBits;
1576 break;
1578 case ISD::SIGN_EXTEND: {
1579 EVT InVT = Op.getOperand(0).getValueType();
1580 unsigned InBits = InVT.getScalarType().getSizeInBits();
1581 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1582 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1583 APInt NewBits = ~InMask & NewMask;
1585 // If none of the top bits are demanded, convert this into an any_extend.
1586 if (NewBits == 0)
1587 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1588 Op.getValueType(),
1589 Op.getOperand(0)));
1591 // Since some of the sign extended bits are demanded, we know that the sign
1592 // bit is demanded.
1593 APInt InDemandedBits = InMask & NewMask;
1594 InDemandedBits |= InSignBit;
1595 InDemandedBits.trunc(InBits);
1597 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1598 KnownOne, TLO, Depth+1))
1599 return true;
1600 KnownZero.zext(BitWidth);
1601 KnownOne.zext(BitWidth);
1603 // If the sign bit is known zero, convert this to a zero extend.
1604 if (KnownZero.intersects(InSignBit))
1605 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1606 Op.getValueType(),
1607 Op.getOperand(0)));
1609 // If the sign bit is known one, the top bits match.
1610 if (KnownOne.intersects(InSignBit)) {
1611 KnownOne |= NewBits;
1612 KnownZero &= ~NewBits;
1613 } else { // Otherwise, top bits aren't known.
1614 KnownOne &= ~NewBits;
1615 KnownZero &= ~NewBits;
1617 break;
1619 case ISD::ANY_EXTEND: {
1620 unsigned OperandBitWidth =
1621 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1622 APInt InMask = NewMask;
1623 InMask.trunc(OperandBitWidth);
1624 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1625 KnownZero, KnownOne, TLO, Depth+1))
1626 return true;
1627 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1628 KnownZero.zext(BitWidth);
1629 KnownOne.zext(BitWidth);
1630 break;
1632 case ISD::TRUNCATE: {
1633 // Simplify the input, using demanded bit information, and compute the known
1634 // zero/one bits live out.
1635 unsigned OperandBitWidth =
1636 Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1637 APInt TruncMask = NewMask;
1638 TruncMask.zext(OperandBitWidth);
1639 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1640 KnownZero, KnownOne, TLO, Depth+1))
1641 return true;
1642 KnownZero.trunc(BitWidth);
1643 KnownOne.trunc(BitWidth);
1645 // If the input is only used by this truncate, see if we can shrink it based
1646 // on the known demanded bits.
1647 if (Op.getOperand(0).getNode()->hasOneUse()) {
1648 SDValue In = Op.getOperand(0);
1649 switch (In.getOpcode()) {
1650 default: break;
1651 case ISD::SRL:
1652 // Shrink SRL by a constant if none of the high bits shifted in are
1653 // demanded.
1654 if (TLO.LegalTypes() &&
1655 !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1656 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1657 // undesirable.
1658 break;
1659 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1660 if (!ShAmt)
1661 break;
1662 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1663 OperandBitWidth - BitWidth);
1664 HighBits = HighBits.lshr(ShAmt->getZExtValue());
1665 HighBits.trunc(BitWidth);
1667 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1668 // None of the shifted in bits are needed. Add a truncate of the
1669 // shift input, then shift it.
1670 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1671 Op.getValueType(),
1672 In.getOperand(0));
1673 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1674 Op.getValueType(),
1675 NewTrunc,
1676 In.getOperand(1)));
1678 break;
1682 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683 break;
1685 case ISD::AssertZext: {
1686 // Demand all the bits of the input that are demanded in the output.
1687 // The low bits are obvious; the high bits are demanded because we're
1688 // asserting that they're zero here.
1689 if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1690 KnownZero, KnownOne, TLO, Depth+1))
1691 return true;
1692 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1695 APInt InMask = APInt::getLowBitsSet(BitWidth,
1696 VT.getSizeInBits());
1697 KnownZero |= ~InMask & NewMask;
1698 break;
1700 case ISD::BIT_CONVERT:
1701 #if 0
1702 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1703 // is demanded, turn this into a FGETSIGN.
1704 if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1705 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1706 !MVT::isVector(Op.getOperand(0).getValueType())) {
1707 // Only do this xform if FGETSIGN is valid or if before legalize.
1708 if (!TLO.AfterLegalize ||
1709 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1710 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1711 // place. We expect the SHL to be eliminated by other optimizations.
1712 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1713 Op.getOperand(0));
1714 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1715 SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1716 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1717 Sign, ShAmt));
1720 #endif
1721 break;
1722 case ISD::ADD:
1723 case ISD::MUL:
1724 case ISD::SUB: {
1725 // Add, Sub, and Mul don't demand any bits in positions beyond that
1726 // of the highest bit demanded of them.
1727 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1728 BitWidth - NewMask.countLeadingZeros());
1729 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1730 KnownOne2, TLO, Depth+1))
1731 return true;
1732 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1733 KnownOne2, TLO, Depth+1))
1734 return true;
1735 // See if the operation should be performed at a smaller bit width.
1736 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1737 return true;
1739 // FALL THROUGH
1740 default:
1741 // Just use ComputeMaskedBits to compute output bits.
1742 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1743 break;
1746 // If we know the value of all of the demanded bits, return this as a
1747 // constant.
1748 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1749 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1751 return false;
1754 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1755 /// in Mask are known to be either zero or one and return them in the
1756 /// KnownZero/KnownOne bitsets.
1757 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1758 const APInt &Mask,
1759 APInt &KnownZero,
1760 APInt &KnownOne,
1761 const SelectionDAG &DAG,
1762 unsigned Depth) const {
1763 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1764 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1765 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1766 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1767 "Should use MaskedValueIsZero if you don't know whether Op"
1768 " is a target node!");
1769 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1772 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1773 /// targets that want to expose additional information about sign bits to the
1774 /// DAG Combiner.
1775 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1776 unsigned Depth) const {
1777 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1778 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1779 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1780 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1781 "Should use ComputeNumSignBits if you don't know whether Op"
1782 " is a target node!");
1783 return 1;
1786 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1787 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1788 /// determine which bit is set.
1790 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1791 // A left-shift of a constant one will have exactly one bit set, because
1792 // shifting the bit off the end is undefined.
1793 if (Val.getOpcode() == ISD::SHL)
1794 if (ConstantSDNode *C =
1795 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1796 if (C->getAPIntValue() == 1)
1797 return true;
1799 // Similarly, a right-shift of a constant sign-bit will have exactly
1800 // one bit set.
1801 if (Val.getOpcode() == ISD::SRL)
1802 if (ConstantSDNode *C =
1803 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1804 if (C->getAPIntValue().isSignBit())
1805 return true;
1807 // More could be done here, though the above checks are enough
1808 // to handle some common cases.
1810 // Fall back to ComputeMaskedBits to catch other known cases.
1811 EVT OpVT = Val.getValueType();
1812 unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1813 APInt Mask = APInt::getAllOnesValue(BitWidth);
1814 APInt KnownZero, KnownOne;
1815 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1816 return (KnownZero.countPopulation() == BitWidth - 1) &&
1817 (KnownOne.countPopulation() == 1);
1820 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1821 /// and cc. If it is unable to simplify it, return a null SDValue.
1822 SDValue
1823 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1824 ISD::CondCode Cond, bool foldBooleans,
1825 DAGCombinerInfo &DCI, DebugLoc dl) const {
1826 SelectionDAG &DAG = DCI.DAG;
1827 LLVMContext &Context = *DAG.getContext();
1829 // These setcc operations always fold.
1830 switch (Cond) {
1831 default: break;
1832 case ISD::SETFALSE:
1833 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1834 case ISD::SETTRUE:
1835 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1838 if (isa<ConstantSDNode>(N0.getNode())) {
1839 // Ensure that the constant occurs on the RHS, and fold constant
1840 // comparisons.
1841 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1844 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1845 const APInt &C1 = N1C->getAPIntValue();
1847 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1848 // equality comparison, then we're just comparing whether X itself is
1849 // zero.
1850 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1851 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1852 N0.getOperand(1).getOpcode() == ISD::Constant) {
1853 const APInt &ShAmt
1854 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1855 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1856 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1857 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1858 // (srl (ctlz x), 5) == 0 -> X != 0
1859 // (srl (ctlz x), 5) != 1 -> X != 0
1860 Cond = ISD::SETNE;
1861 } else {
1862 // (srl (ctlz x), 5) != 0 -> X == 0
1863 // (srl (ctlz x), 5) == 1 -> X == 0
1864 Cond = ISD::SETEQ;
1866 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1867 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1868 Zero, Cond);
1872 // If the LHS is '(and load, const)', the RHS is 0,
1873 // the test is for equality or unsigned, and all 1 bits of the const are
1874 // in the same partial word, see if we can shorten the load.
1875 if (DCI.isBeforeLegalize() &&
1876 N0.getOpcode() == ISD::AND && C1 == 0 &&
1877 N0.getNode()->hasOneUse() &&
1878 isa<LoadSDNode>(N0.getOperand(0)) &&
1879 N0.getOperand(0).getNode()->hasOneUse() &&
1880 isa<ConstantSDNode>(N0.getOperand(1))) {
1881 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1882 APInt bestMask;
1883 unsigned bestWidth = 0, bestOffset = 0;
1884 if (!Lod->isVolatile() && Lod->isUnindexed()) {
1885 unsigned origWidth = N0.getValueType().getSizeInBits();
1886 unsigned maskWidth = origWidth;
1887 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1888 // 8 bits, but have to be careful...
1889 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1890 origWidth = Lod->getMemoryVT().getSizeInBits();
1891 const APInt &Mask =
1892 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1893 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1894 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1895 for (unsigned offset=0; offset<origWidth/width; offset++) {
1896 if ((newMask & Mask) == Mask) {
1897 if (!TD->isLittleEndian())
1898 bestOffset = (origWidth/width - offset - 1) * (width/8);
1899 else
1900 bestOffset = (uint64_t)offset * (width/8);
1901 bestMask = Mask.lshr(offset * (width/8) * 8);
1902 bestWidth = width;
1903 break;
1905 newMask = newMask << width;
1909 if (bestWidth) {
1910 EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1911 if (newVT.isRound()) {
1912 EVT PtrType = Lod->getOperand(1).getValueType();
1913 SDValue Ptr = Lod->getBasePtr();
1914 if (bestOffset != 0)
1915 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1916 DAG.getConstant(bestOffset, PtrType));
1917 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1918 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1919 Lod->getPointerInfo().getWithOffset(bestOffset),
1920 false, false, NewAlign);
1921 return DAG.getSetCC(dl, VT,
1922 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1923 DAG.getConstant(bestMask.trunc(bestWidth),
1924 newVT)),
1925 DAG.getConstant(0LL, newVT), Cond);
1930 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1931 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1932 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1934 // If the comparison constant has bits in the upper part, the
1935 // zero-extended value could never match.
1936 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1937 C1.getBitWidth() - InSize))) {
1938 switch (Cond) {
1939 case ISD::SETUGT:
1940 case ISD::SETUGE:
1941 case ISD::SETEQ: return DAG.getConstant(0, VT);
1942 case ISD::SETULT:
1943 case ISD::SETULE:
1944 case ISD::SETNE: return DAG.getConstant(1, VT);
1945 case ISD::SETGT:
1946 case ISD::SETGE:
1947 // True if the sign bit of C1 is set.
1948 return DAG.getConstant(C1.isNegative(), VT);
1949 case ISD::SETLT:
1950 case ISD::SETLE:
1951 // True if the sign bit of C1 isn't set.
1952 return DAG.getConstant(C1.isNonNegative(), VT);
1953 default:
1954 break;
1958 // Otherwise, we can perform the comparison with the low bits.
1959 switch (Cond) {
1960 case ISD::SETEQ:
1961 case ISD::SETNE:
1962 case ISD::SETUGT:
1963 case ISD::SETUGE:
1964 case ISD::SETULT:
1965 case ISD::SETULE: {
1966 EVT newVT = N0.getOperand(0).getValueType();
1967 if (DCI.isBeforeLegalizeOps() ||
1968 (isOperationLegal(ISD::SETCC, newVT) &&
1969 getCondCodeAction(Cond, newVT)==Legal))
1970 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1971 DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1972 Cond);
1973 break;
1975 default:
1976 break; // todo, be more careful with signed comparisons
1978 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1979 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1980 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1981 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1982 EVT ExtDstTy = N0.getValueType();
1983 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1985 // If the constant doesn't fit into the number of bits for the source of
1986 // the sign extension, it is impossible for both sides to be equal.
1987 if (C1.getMinSignedBits() > ExtSrcTyBits)
1988 return DAG.getConstant(Cond == ISD::SETNE, VT);
1990 SDValue ZextOp;
1991 EVT Op0Ty = N0.getOperand(0).getValueType();
1992 if (Op0Ty == ExtSrcTy) {
1993 ZextOp = N0.getOperand(0);
1994 } else {
1995 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1996 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1997 DAG.getConstant(Imm, Op0Ty));
1999 if (!DCI.isCalledByLegalizer())
2000 DCI.AddToWorklist(ZextOp.getNode());
2001 // Otherwise, make this a use of a zext.
2002 return DAG.getSetCC(dl, VT, ZextOp,
2003 DAG.getConstant(C1 & APInt::getLowBitsSet(
2004 ExtDstTyBits,
2005 ExtSrcTyBits),
2006 ExtDstTy),
2007 Cond);
2008 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2009 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2010 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2011 if (N0.getOpcode() == ISD::SETCC &&
2012 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2013 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2014 if (TrueWhenTrue)
2015 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2016 // Invert the condition.
2017 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2018 CC = ISD::getSetCCInverse(CC,
2019 N0.getOperand(0).getValueType().isInteger());
2020 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2023 if ((N0.getOpcode() == ISD::XOR ||
2024 (N0.getOpcode() == ISD::AND &&
2025 N0.getOperand(0).getOpcode() == ISD::XOR &&
2026 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2027 isa<ConstantSDNode>(N0.getOperand(1)) &&
2028 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2029 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
2030 // can only do this if the top bits are known zero.
2031 unsigned BitWidth = N0.getValueSizeInBits();
2032 if (DAG.MaskedValueIsZero(N0,
2033 APInt::getHighBitsSet(BitWidth,
2034 BitWidth-1))) {
2035 // Okay, get the un-inverted input value.
2036 SDValue Val;
2037 if (N0.getOpcode() == ISD::XOR)
2038 Val = N0.getOperand(0);
2039 else {
2040 assert(N0.getOpcode() == ISD::AND &&
2041 N0.getOperand(0).getOpcode() == ISD::XOR);
2042 // ((X^1)&1)^1 -> X & 1
2043 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2044 N0.getOperand(0).getOperand(0),
2045 N0.getOperand(1));
2048 return DAG.getSetCC(dl, VT, Val, N1,
2049 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2051 } else if (N1C->getAPIntValue() == 1 &&
2052 (VT == MVT::i1 ||
2053 getBooleanContents() == ZeroOrOneBooleanContent)) {
2054 SDValue Op0 = N0;
2055 if (Op0.getOpcode() == ISD::TRUNCATE)
2056 Op0 = Op0.getOperand(0);
2058 if ((Op0.getOpcode() == ISD::XOR) &&
2059 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2060 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2061 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2062 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2063 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2064 Cond);
2065 } else if (Op0.getOpcode() == ISD::AND &&
2066 isa<ConstantSDNode>(Op0.getOperand(1)) &&
2067 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2068 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2069 if (Op0.getValueType().bitsGT(VT))
2070 Op0 = DAG.getNode(ISD::AND, dl, VT,
2071 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2072 DAG.getConstant(1, VT));
2073 else if (Op0.getValueType().bitsLT(VT))
2074 Op0 = DAG.getNode(ISD::AND, dl, VT,
2075 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2076 DAG.getConstant(1, VT));
2078 return DAG.getSetCC(dl, VT, Op0,
2079 DAG.getConstant(0, Op0.getValueType()),
2080 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2085 APInt MinVal, MaxVal;
2086 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2087 if (ISD::isSignedIntSetCC(Cond)) {
2088 MinVal = APInt::getSignedMinValue(OperandBitSize);
2089 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2090 } else {
2091 MinVal = APInt::getMinValue(OperandBitSize);
2092 MaxVal = APInt::getMaxValue(OperandBitSize);
2095 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2096 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2097 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
2098 // X >= C0 --> X > (C0-1)
2099 return DAG.getSetCC(dl, VT, N0,
2100 DAG.getConstant(C1-1, N1.getValueType()),
2101 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2104 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2105 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
2106 // X <= C0 --> X < (C0+1)
2107 return DAG.getSetCC(dl, VT, N0,
2108 DAG.getConstant(C1+1, N1.getValueType()),
2109 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2112 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2113 return DAG.getConstant(0, VT); // X < MIN --> false
2114 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2115 return DAG.getConstant(1, VT); // X >= MIN --> true
2116 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2117 return DAG.getConstant(0, VT); // X > MAX --> false
2118 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2119 return DAG.getConstant(1, VT); // X <= MAX --> true
2121 // Canonicalize setgt X, Min --> setne X, Min
2122 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2123 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2124 // Canonicalize setlt X, Max --> setne X, Max
2125 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2126 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2128 // If we have setult X, 1, turn it into seteq X, 0
2129 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2130 return DAG.getSetCC(dl, VT, N0,
2131 DAG.getConstant(MinVal, N0.getValueType()),
2132 ISD::SETEQ);
2133 // If we have setugt X, Max-1, turn it into seteq X, Max
2134 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2135 return DAG.getSetCC(dl, VT, N0,
2136 DAG.getConstant(MaxVal, N0.getValueType()),
2137 ISD::SETEQ);
2139 // If we have "setcc X, C0", check to see if we can shrink the immediate
2140 // by changing cc.
2142 // SETUGT X, SINTMAX -> SETLT X, 0
2143 if (Cond == ISD::SETUGT &&
2144 C1 == APInt::getSignedMaxValue(OperandBitSize))
2145 return DAG.getSetCC(dl, VT, N0,
2146 DAG.getConstant(0, N1.getValueType()),
2147 ISD::SETLT);
2149 // SETULT X, SINTMIN -> SETGT X, -1
2150 if (Cond == ISD::SETULT &&
2151 C1 == APInt::getSignedMinValue(OperandBitSize)) {
2152 SDValue ConstMinusOne =
2153 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2154 N1.getValueType());
2155 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2158 // Fold bit comparisons when we can.
2159 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2160 (VT == N0.getValueType() ||
2161 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2162 N0.getOpcode() == ISD::AND)
2163 if (ConstantSDNode *AndRHS =
2164 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2165 EVT ShiftTy = DCI.isBeforeLegalize() ?
2166 getPointerTy() : getShiftAmountTy();
2167 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
2168 // Perform the xform if the AND RHS is a single bit.
2169 if (AndRHS->getAPIntValue().isPowerOf2()) {
2170 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2171 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2172 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2174 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2175 // (X & 8) == 8 --> (X & 8) >> 3
2176 // Perform the xform if C1 is a single bit.
2177 if (C1.isPowerOf2()) {
2178 return DAG.getNode(ISD::TRUNCATE, dl, VT,
2179 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2180 DAG.getConstant(C1.logBase2(), ShiftTy)));
2186 if (isa<ConstantFPSDNode>(N0.getNode())) {
2187 // Constant fold or commute setcc.
2188 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2189 if (O.getNode()) return O;
2190 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2191 // If the RHS of an FP comparison is a constant, simplify it away in
2192 // some cases.
2193 if (CFP->getValueAPF().isNaN()) {
2194 // If an operand is known to be a nan, we can fold it.
2195 switch (ISD::getUnorderedFlavor(Cond)) {
2196 default: llvm_unreachable("Unknown flavor!");
2197 case 0: // Known false.
2198 return DAG.getConstant(0, VT);
2199 case 1: // Known true.
2200 return DAG.getConstant(1, VT);
2201 case 2: // Undefined.
2202 return DAG.getUNDEF(VT);
2206 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
2207 // constant if knowing that the operand is non-nan is enough. We prefer to
2208 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2209 // materialize 0.0.
2210 if (Cond == ISD::SETO || Cond == ISD::SETUO)
2211 return DAG.getSetCC(dl, VT, N0, N0, Cond);
2213 // If the condition is not legal, see if we can find an equivalent one
2214 // which is legal.
2215 if (!isCondCodeLegal(Cond, N0.getValueType())) {
2216 // If the comparison was an awkward floating-point == or != and one of
2217 // the comparison operands is infinity or negative infinity, convert the
2218 // condition to a less-awkward <= or >=.
2219 if (CFP->getValueAPF().isInfinity()) {
2220 if (CFP->getValueAPF().isNegative()) {
2221 if (Cond == ISD::SETOEQ &&
2222 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2223 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2224 if (Cond == ISD::SETUEQ &&
2225 isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2226 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2227 if (Cond == ISD::SETUNE &&
2228 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2229 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2230 if (Cond == ISD::SETONE &&
2231 isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2232 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2233 } else {
2234 if (Cond == ISD::SETOEQ &&
2235 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2236 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2237 if (Cond == ISD::SETUEQ &&
2238 isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2239 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2240 if (Cond == ISD::SETUNE &&
2241 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2242 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2243 if (Cond == ISD::SETONE &&
2244 isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2245 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2251 if (N0 == N1) {
2252 // We can always fold X == X for integer setcc's.
2253 if (N0.getValueType().isInteger())
2254 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2255 unsigned UOF = ISD::getUnorderedFlavor(Cond);
2256 if (UOF == 2) // FP operators that are undefined on NaNs.
2257 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2258 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2259 return DAG.getConstant(UOF, VT);
2260 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
2261 // if it is not already.
2262 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2263 if (NewCond != Cond)
2264 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2267 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2268 N0.getValueType().isInteger()) {
2269 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2270 N0.getOpcode() == ISD::XOR) {
2271 // Simplify (X+Y) == (X+Z) --> Y == Z
2272 if (N0.getOpcode() == N1.getOpcode()) {
2273 if (N0.getOperand(0) == N1.getOperand(0))
2274 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2275 if (N0.getOperand(1) == N1.getOperand(1))
2276 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2277 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2278 // If X op Y == Y op X, try other combinations.
2279 if (N0.getOperand(0) == N1.getOperand(1))
2280 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2281 Cond);
2282 if (N0.getOperand(1) == N1.getOperand(0))
2283 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2284 Cond);
2288 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2289 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2290 // Turn (X+C1) == C2 --> X == C2-C1
2291 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2292 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2293 DAG.getConstant(RHSC->getAPIntValue()-
2294 LHSR->getAPIntValue(),
2295 N0.getValueType()), Cond);
2298 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2299 if (N0.getOpcode() == ISD::XOR)
2300 // If we know that all of the inverted bits are zero, don't bother
2301 // performing the inversion.
2302 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2303 return
2304 DAG.getSetCC(dl, VT, N0.getOperand(0),
2305 DAG.getConstant(LHSR->getAPIntValue() ^
2306 RHSC->getAPIntValue(),
2307 N0.getValueType()),
2308 Cond);
2311 // Turn (C1-X) == C2 --> X == C1-C2
2312 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2313 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2314 return
2315 DAG.getSetCC(dl, VT, N0.getOperand(1),
2316 DAG.getConstant(SUBC->getAPIntValue() -
2317 RHSC->getAPIntValue(),
2318 N0.getValueType()),
2319 Cond);
2324 // Simplify (X+Z) == X --> Z == 0
2325 if (N0.getOperand(0) == N1)
2326 return DAG.getSetCC(dl, VT, N0.getOperand(1),
2327 DAG.getConstant(0, N0.getValueType()), Cond);
2328 if (N0.getOperand(1) == N1) {
2329 if (DAG.isCommutativeBinOp(N0.getOpcode()))
2330 return DAG.getSetCC(dl, VT, N0.getOperand(0),
2331 DAG.getConstant(0, N0.getValueType()), Cond);
2332 else if (N0.getNode()->hasOneUse()) {
2333 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2334 // (Z-X) == X --> Z == X<<1
2335 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2336 N1,
2337 DAG.getConstant(1, getShiftAmountTy()));
2338 if (!DCI.isCalledByLegalizer())
2339 DCI.AddToWorklist(SH.getNode());
2340 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2345 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2346 N1.getOpcode() == ISD::XOR) {
2347 // Simplify X == (X+Z) --> Z == 0
2348 if (N1.getOperand(0) == N0) {
2349 return DAG.getSetCC(dl, VT, N1.getOperand(1),
2350 DAG.getConstant(0, N1.getValueType()), Cond);
2351 } else if (N1.getOperand(1) == N0) {
2352 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2353 return DAG.getSetCC(dl, VT, N1.getOperand(0),
2354 DAG.getConstant(0, N1.getValueType()), Cond);
2355 } else if (N1.getNode()->hasOneUse()) {
2356 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2357 // X == (Z-X) --> X<<1 == Z
2358 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2359 DAG.getConstant(1, getShiftAmountTy()));
2360 if (!DCI.isCalledByLegalizer())
2361 DCI.AddToWorklist(SH.getNode());
2362 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2367 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2368 // Note that where y is variable and is known to have at most
2369 // one bit set (for example, if it is z&1) we cannot do this;
2370 // the expressions are not equivalent when y==0.
2371 if (N0.getOpcode() == ISD::AND)
2372 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2373 if (ValueHasExactlyOneBitSet(N1, DAG)) {
2374 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2375 SDValue Zero = DAG.getConstant(0, N1.getValueType());
2376 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2379 if (N1.getOpcode() == ISD::AND)
2380 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2381 if (ValueHasExactlyOneBitSet(N0, DAG)) {
2382 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2383 SDValue Zero = DAG.getConstant(0, N0.getValueType());
2384 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2389 // Fold away ALL boolean setcc's.
2390 SDValue Temp;
2391 if (N0.getValueType() == MVT::i1 && foldBooleans) {
2392 switch (Cond) {
2393 default: llvm_unreachable("Unknown integer setcc!");
2394 case ISD::SETEQ: // X == Y -> ~(X^Y)
2395 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2396 N0 = DAG.getNOT(dl, Temp, MVT::i1);
2397 if (!DCI.isCalledByLegalizer())
2398 DCI.AddToWorklist(Temp.getNode());
2399 break;
2400 case ISD::SETNE: // X != Y --> (X^Y)
2401 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2402 break;
2403 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2404 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2405 Temp = DAG.getNOT(dl, N0, MVT::i1);
2406 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2407 if (!DCI.isCalledByLegalizer())
2408 DCI.AddToWorklist(Temp.getNode());
2409 break;
2410 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2411 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2412 Temp = DAG.getNOT(dl, N1, MVT::i1);
2413 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2414 if (!DCI.isCalledByLegalizer())
2415 DCI.AddToWorklist(Temp.getNode());
2416 break;
2417 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2418 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2419 Temp = DAG.getNOT(dl, N0, MVT::i1);
2420 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2421 if (!DCI.isCalledByLegalizer())
2422 DCI.AddToWorklist(Temp.getNode());
2423 break;
2424 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2425 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2426 Temp = DAG.getNOT(dl, N1, MVT::i1);
2427 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2428 break;
2430 if (VT != MVT::i1) {
2431 if (!DCI.isCalledByLegalizer())
2432 DCI.AddToWorklist(N0.getNode());
2433 // FIXME: If running after legalize, we probably can't do this.
2434 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2436 return N0;
2439 // Could not fold it.
2440 return SDValue();
2443 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2444 /// node is a GlobalAddress + offset.
2445 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2446 int64_t &Offset) const {
2447 if (isa<GlobalAddressSDNode>(N)) {
2448 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2449 GA = GASD->getGlobal();
2450 Offset += GASD->getOffset();
2451 return true;
2454 if (N->getOpcode() == ISD::ADD) {
2455 SDValue N1 = N->getOperand(0);
2456 SDValue N2 = N->getOperand(1);
2457 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2458 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2459 if (V) {
2460 Offset += V->getSExtValue();
2461 return true;
2463 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2464 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2465 if (V) {
2466 Offset += V->getSExtValue();
2467 return true;
2471 return false;
2475 SDValue TargetLowering::
2476 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2477 // Default implementation: no optimization.
2478 return SDValue();
2481 //===----------------------------------------------------------------------===//
2482 // Inline Assembler Implementation Methods
2483 //===----------------------------------------------------------------------===//
2486 TargetLowering::ConstraintType
2487 TargetLowering::getConstraintType(const std::string &Constraint) const {
2488 // FIXME: lots more standard ones to handle.
2489 if (Constraint.size() == 1) {
2490 switch (Constraint[0]) {
2491 default: break;
2492 case 'r': return C_RegisterClass;
2493 case 'm': // memory
2494 case 'o': // offsetable
2495 case 'V': // not offsetable
2496 return C_Memory;
2497 case 'i': // Simple Integer or Relocatable Constant
2498 case 'n': // Simple Integer
2499 case 'E': // Floating Point Constant
2500 case 'F': // Floating Point Constant
2501 case 's': // Relocatable Constant
2502 case 'p': // Address.
2503 case 'X': // Allow ANY value.
2504 case 'I': // Target registers.
2505 case 'J':
2506 case 'K':
2507 case 'L':
2508 case 'M':
2509 case 'N':
2510 case 'O':
2511 case 'P':
2512 case '<':
2513 case '>':
2514 return C_Other;
2518 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2519 Constraint[Constraint.size()-1] == '}')
2520 return C_Register;
2521 return C_Unknown;
2524 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2525 /// with another that has more specific requirements based on the type of the
2526 /// corresponding operand.
2527 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2528 if (ConstraintVT.isInteger())
2529 return "r";
2530 if (ConstraintVT.isFloatingPoint())
2531 return "f"; // works for many targets
2532 return 0;
2535 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2536 /// vector. If it is invalid, don't add anything to Ops.
2537 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2538 char ConstraintLetter,
2539 std::vector<SDValue> &Ops,
2540 SelectionDAG &DAG) const {
2541 switch (ConstraintLetter) {
2542 default: break;
2543 case 'X': // Allows any operand; labels (basic block) use this.
2544 if (Op.getOpcode() == ISD::BasicBlock) {
2545 Ops.push_back(Op);
2546 return;
2548 // fall through
2549 case 'i': // Simple Integer or Relocatable Constant
2550 case 'n': // Simple Integer
2551 case 's': { // Relocatable Constant
2552 // These operands are interested in values of the form (GV+C), where C may
2553 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2554 // is possible and fine if either GV or C are missing.
2555 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2556 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2558 // If we have "(add GV, C)", pull out GV/C
2559 if (Op.getOpcode() == ISD::ADD) {
2560 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2561 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2562 if (C == 0 || GA == 0) {
2563 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2564 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2566 if (C == 0 || GA == 0)
2567 C = 0, GA = 0;
2570 // If we find a valid operand, map to the TargetXXX version so that the
2571 // value itself doesn't get selected.
2572 if (GA) { // Either &GV or &GV+C
2573 if (ConstraintLetter != 'n') {
2574 int64_t Offs = GA->getOffset();
2575 if (C) Offs += C->getZExtValue();
2576 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2577 C ? C->getDebugLoc() : DebugLoc(),
2578 Op.getValueType(), Offs));
2579 return;
2582 if (C) { // just C, no GV.
2583 // Simple constants are not allowed for 's'.
2584 if (ConstraintLetter != 's') {
2585 // gcc prints these as sign extended. Sign extend value to 64 bits
2586 // now; without this it would get ZExt'd later in
2587 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2588 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2589 MVT::i64));
2590 return;
2593 break;
2598 std::vector<unsigned> TargetLowering::
2599 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2600 EVT VT) const {
2601 return std::vector<unsigned>();
2605 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2606 getRegForInlineAsmConstraint(const std::string &Constraint,
2607 EVT VT) const {
2608 if (Constraint[0] != '{')
2609 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2610 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2612 // Remove the braces from around the name.
2613 StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2615 // Figure out which register class contains this reg.
2616 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2617 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2618 E = RI->regclass_end(); RCI != E; ++RCI) {
2619 const TargetRegisterClass *RC = *RCI;
2621 // If none of the value types for this register class are valid, we
2622 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2623 bool isLegal = false;
2624 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2625 I != E; ++I) {
2626 if (isTypeLegal(*I)) {
2627 isLegal = true;
2628 break;
2632 if (!isLegal) continue;
2634 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2635 I != E; ++I) {
2636 if (RegName.equals_lower(RI->getName(*I)))
2637 return std::make_pair(*I, RC);
2641 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2644 //===----------------------------------------------------------------------===//
2645 // Constraint Selection.
2647 /// isMatchingInputConstraint - Return true of this is an input operand that is
2648 /// a matching constraint like "4".
2649 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2650 assert(!ConstraintCode.empty() && "No known constraint!");
2651 return isdigit(ConstraintCode[0]);
2654 /// getMatchedOperand - If this is an input matching constraint, this method
2655 /// returns the output operand it matches.
2656 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2657 assert(!ConstraintCode.empty() && "No known constraint!");
2658 return atoi(ConstraintCode.c_str());
2662 /// ParseConstraints - Split up the constraint string from the inline
2663 /// assembly value into the specific constraints and their prefixes,
2664 /// and also tie in the associated operand values.
2665 /// If this returns an empty vector, and if the constraint string itself
2666 /// isn't empty, there was an error parsing.
2667 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2668 ImmutableCallSite CS) const {
2669 /// ConstraintOperands - Information about all of the constraints.
2670 AsmOperandInfoVector ConstraintOperands;
2671 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2672 unsigned maCount = 0; // Largest number of multiple alternative constraints.
2674 // Do a prepass over the constraints, canonicalizing them, and building up the
2675 // ConstraintOperands list.
2676 InlineAsm::ConstraintInfoVector
2677 ConstraintInfos = IA->ParseConstraints();
2679 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
2680 unsigned ResNo = 0; // ResNo - The result number of the next output.
2682 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2683 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2684 AsmOperandInfo &OpInfo = ConstraintOperands.back();
2686 // Update multiple alternative constraint count.
2687 if (OpInfo.multipleAlternatives.size() > maCount)
2688 maCount = OpInfo.multipleAlternatives.size();
2690 OpInfo.ConstraintVT = MVT::Other;
2692 // Compute the value type for each operand.
2693 switch (OpInfo.Type) {
2694 case InlineAsm::isOutput:
2695 // Indirect outputs just consume an argument.
2696 if (OpInfo.isIndirect) {
2697 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2698 break;
2701 // The return value of the call is this value. As such, there is no
2702 // corresponding argument.
2703 assert(!CS.getType()->isVoidTy() &&
2704 "Bad inline asm!");
2705 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2706 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2707 } else {
2708 assert(ResNo == 0 && "Asm only has one result!");
2709 OpInfo.ConstraintVT = getValueType(CS.getType());
2711 ++ResNo;
2712 break;
2713 case InlineAsm::isInput:
2714 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2715 break;
2716 case InlineAsm::isClobber:
2717 // Nothing to do.
2718 break;
2721 if (OpInfo.CallOperandVal) {
2722 const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2723 if (OpInfo.isIndirect) {
2724 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2725 if (!PtrTy)
2726 report_fatal_error("Indirect operand for inline asm not a pointer!");
2727 OpTy = PtrTy->getElementType();
2729 // If OpTy is not a single value, it may be a struct/union that we
2730 // can tile with integers.
2731 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2732 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2733 switch (BitSize) {
2734 default: break;
2735 case 1:
2736 case 8:
2737 case 16:
2738 case 32:
2739 case 64:
2740 case 128:
2741 OpTy = IntegerType::get(OpTy->getContext(), BitSize);
2742 break;
2744 } else if (dyn_cast<PointerType>(OpTy)) {
2745 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2746 } else {
2747 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2752 // If we have multiple alternative constraints, select the best alternative.
2753 if (ConstraintInfos.size()) {
2754 if (maCount) {
2755 unsigned bestMAIndex = 0;
2756 int bestWeight = -1;
2757 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
2758 int weight = -1;
2759 unsigned maIndex;
2760 // Compute the sums of the weights for each alternative, keeping track
2761 // of the best (highest weight) one so far.
2762 for (maIndex = 0; maIndex < maCount; ++maIndex) {
2763 int weightSum = 0;
2764 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2765 cIndex != eIndex; ++cIndex) {
2766 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2767 if (OpInfo.Type == InlineAsm::isClobber)
2768 continue;
2770 // If this is an output operand with a matching input operand,
2771 // look up the matching input. If their types mismatch, e.g. one
2772 // is an integer, the other is floating point, or their sizes are
2773 // different, flag it as an maCantMatch.
2774 if (OpInfo.hasMatchingInput()) {
2775 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2776 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2777 if ((OpInfo.ConstraintVT.isInteger() !=
2778 Input.ConstraintVT.isInteger()) ||
2779 (OpInfo.ConstraintVT.getSizeInBits() !=
2780 Input.ConstraintVT.getSizeInBits())) {
2781 weightSum = -1; // Can't match.
2782 break;
2786 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2787 if (weight == -1) {
2788 weightSum = -1;
2789 break;
2791 weightSum += weight;
2793 // Update best.
2794 if (weightSum > bestWeight) {
2795 bestWeight = weightSum;
2796 bestMAIndex = maIndex;
2800 // Now select chosen alternative in each constraint.
2801 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2802 cIndex != eIndex; ++cIndex) {
2803 AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2804 if (cInfo.Type == InlineAsm::isClobber)
2805 continue;
2806 cInfo.selectAlternative(bestMAIndex);
2811 // Check and hook up tied operands, choose constraint code to use.
2812 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2813 cIndex != eIndex; ++cIndex) {
2814 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2816 // If this is an output operand with a matching input operand, look up the
2817 // matching input. If their types mismatch, e.g. one is an integer, the
2818 // other is floating point, or their sizes are different, flag it as an
2819 // error.
2820 if (OpInfo.hasMatchingInput()) {
2821 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2823 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2824 if ((OpInfo.ConstraintVT.isInteger() !=
2825 Input.ConstraintVT.isInteger()) ||
2826 (OpInfo.ConstraintVT.getSizeInBits() !=
2827 Input.ConstraintVT.getSizeInBits())) {
2828 report_fatal_error("Unsupported asm: input constraint"
2829 " with a matching output constraint of"
2830 " incompatible type!");
2837 return ConstraintOperands;
2841 /// getConstraintGenerality - Return an integer indicating how general CT
2842 /// is.
2843 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2844 switch (CT) {
2845 default: llvm_unreachable("Unknown constraint type!");
2846 case TargetLowering::C_Other:
2847 case TargetLowering::C_Unknown:
2848 return 0;
2849 case TargetLowering::C_Register:
2850 return 1;
2851 case TargetLowering::C_RegisterClass:
2852 return 2;
2853 case TargetLowering::C_Memory:
2854 return 3;
2858 /// Examine constraint type and operand type and determine a weight value.
2859 /// This object must already have been set up with the operand type
2860 /// and the current alternative constraint selected.
2861 TargetLowering::ConstraintWeight
2862 TargetLowering::getMultipleConstraintMatchWeight(
2863 AsmOperandInfo &info, int maIndex) const {
2864 InlineAsm::ConstraintCodeVector *rCodes;
2865 if (maIndex >= (int)info.multipleAlternatives.size())
2866 rCodes = &info.Codes;
2867 else
2868 rCodes = &info.multipleAlternatives[maIndex].Codes;
2869 ConstraintWeight BestWeight = CW_Invalid;
2871 // Loop over the options, keeping track of the most general one.
2872 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2873 ConstraintWeight weight =
2874 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2875 if (weight > BestWeight)
2876 BestWeight = weight;
2879 return BestWeight;
2882 /// Examine constraint type and operand type and determine a weight value.
2883 /// This object must already have been set up with the operand type
2884 /// and the current alternative constraint selected.
2885 TargetLowering::ConstraintWeight
2886 TargetLowering::getSingleConstraintMatchWeight(
2887 AsmOperandInfo &info, const char *constraint) const {
2888 ConstraintWeight weight = CW_Invalid;
2889 Value *CallOperandVal = info.CallOperandVal;
2890 // If we don't have a value, we can't do a match,
2891 // but allow it at the lowest weight.
2892 if (CallOperandVal == NULL)
2893 return CW_Default;
2894 // Look at the constraint type.
2895 switch (*constraint) {
2896 case 'i': // immediate integer.
2897 case 'n': // immediate integer with a known value.
2898 if (isa<ConstantInt>(CallOperandVal))
2899 weight = CW_Constant;
2900 break;
2901 case 's': // non-explicit intregal immediate.
2902 if (isa<GlobalValue>(CallOperandVal))
2903 weight = CW_Constant;
2904 break;
2905 case 'E': // immediate float if host format.
2906 case 'F': // immediate float.
2907 if (isa<ConstantFP>(CallOperandVal))
2908 weight = CW_Constant;
2909 break;
2910 case '<': // memory operand with autodecrement.
2911 case '>': // memory operand with autoincrement.
2912 case 'm': // memory operand.
2913 case 'o': // offsettable memory operand
2914 case 'V': // non-offsettable memory operand
2915 weight = CW_Memory;
2916 break;
2917 case 'r': // general register.
2918 case 'g': // general register, memory operand or immediate integer.
2919 // note: Clang converts "g" to "imr".
2920 if (CallOperandVal->getType()->isIntegerTy())
2921 weight = CW_Register;
2922 break;
2923 case 'X': // any operand.
2924 default:
2925 weight = CW_Default;
2926 break;
2928 return weight;
2931 /// ChooseConstraint - If there are multiple different constraints that we
2932 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2933 /// This is somewhat tricky: constraints fall into four classes:
2934 /// Other -> immediates and magic values
2935 /// Register -> one specific register
2936 /// RegisterClass -> a group of regs
2937 /// Memory -> memory
2938 /// Ideally, we would pick the most specific constraint possible: if we have
2939 /// something that fits into a register, we would pick it. The problem here
2940 /// is that if we have something that could either be in a register or in
2941 /// memory that use of the register could cause selection of *other*
2942 /// operands to fail: they might only succeed if we pick memory. Because of
2943 /// this the heuristic we use is:
2945 /// 1) If there is an 'other' constraint, and if the operand is valid for
2946 /// that constraint, use it. This makes us take advantage of 'i'
2947 /// constraints when available.
2948 /// 2) Otherwise, pick the most general constraint present. This prefers
2949 /// 'm' over 'r', for example.
2951 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2952 const TargetLowering &TLI,
2953 SDValue Op, SelectionDAG *DAG) {
2954 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2955 unsigned BestIdx = 0;
2956 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2957 int BestGenerality = -1;
2959 // Loop over the options, keeping track of the most general one.
2960 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2961 TargetLowering::ConstraintType CType =
2962 TLI.getConstraintType(OpInfo.Codes[i]);
2964 // If this is an 'other' constraint, see if the operand is valid for it.
2965 // For example, on X86 we might have an 'rI' constraint. If the operand
2966 // is an integer in the range [0..31] we want to use I (saving a load
2967 // of a register), otherwise we must use 'r'.
2968 if (CType == TargetLowering::C_Other && Op.getNode()) {
2969 assert(OpInfo.Codes[i].size() == 1 &&
2970 "Unhandled multi-letter 'other' constraint");
2971 std::vector<SDValue> ResultOps;
2972 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2973 ResultOps, *DAG);
2974 if (!ResultOps.empty()) {
2975 BestType = CType;
2976 BestIdx = i;
2977 break;
2981 // Things with matching constraints can only be registers, per gcc
2982 // documentation. This mainly affects "g" constraints.
2983 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2984 continue;
2986 // This constraint letter is more general than the previous one, use it.
2987 int Generality = getConstraintGenerality(CType);
2988 if (Generality > BestGenerality) {
2989 BestType = CType;
2990 BestIdx = i;
2991 BestGenerality = Generality;
2995 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2996 OpInfo.ConstraintType = BestType;
2999 /// ComputeConstraintToUse - Determines the constraint code and constraint
3000 /// type to use for the specific AsmOperandInfo, setting
3001 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3002 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3003 SDValue Op,
3004 SelectionDAG *DAG) const {
3005 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3007 // Single-letter constraints ('r') are very common.
3008 if (OpInfo.Codes.size() == 1) {
3009 OpInfo.ConstraintCode = OpInfo.Codes[0];
3010 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3011 } else {
3012 ChooseConstraint(OpInfo, *this, Op, DAG);
3015 // 'X' matches anything.
3016 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3017 // Labels and constants are handled elsewhere ('X' is the only thing
3018 // that matches labels). For Functions, the type here is the type of
3019 // the result, which is not what we want to look at; leave them alone.
3020 Value *v = OpInfo.CallOperandVal;
3021 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3022 OpInfo.CallOperandVal = v;
3023 return;
3026 // Otherwise, try to resolve it to something we know about by looking at
3027 // the actual operand type.
3028 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3029 OpInfo.ConstraintCode = Repl;
3030 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3035 //===----------------------------------------------------------------------===//
3036 // Loop Strength Reduction hooks
3037 //===----------------------------------------------------------------------===//
3039 /// isLegalAddressingMode - Return true if the addressing mode represented
3040 /// by AM is legal for this target, for a load/store of the specified type.
3041 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3042 const Type *Ty) const {
3043 // The default implementation of this implements a conservative RISCy, r+r and
3044 // r+i addr mode.
3046 // Allows a sign-extended 16-bit immediate field.
3047 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3048 return false;
3050 // No global is ever allowed as a base.
3051 if (AM.BaseGV)
3052 return false;
3054 // Only support r+r,
3055 switch (AM.Scale) {
3056 case 0: // "r+i" or just "i", depending on HasBaseReg.
3057 break;
3058 case 1:
3059 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3060 return false;
3061 // Otherwise we have r+r or r+i.
3062 break;
3063 case 2:
3064 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3065 return false;
3066 // Allow 2*r as r+r.
3067 break;
3070 return true;
3073 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3074 /// return a DAG expression to select that will generate the same value by
3075 /// multiplying by a magic number. See:
3076 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3077 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3078 std::vector<SDNode*>* Created) const {
3079 EVT VT = N->getValueType(0);
3080 DebugLoc dl= N->getDebugLoc();
3082 // Check to see if we can do this.
3083 // FIXME: We should be more aggressive here.
3084 if (!isTypeLegal(VT))
3085 return SDValue();
3087 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3088 APInt::ms magics = d.magic();
3090 // Multiply the numerator (operand 0) by the magic value
3091 // FIXME: We should support doing a MUL in a wider type
3092 SDValue Q;
3093 if (isOperationLegalOrCustom(ISD::MULHS, VT))
3094 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3095 DAG.getConstant(magics.m, VT));
3096 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3097 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3098 N->getOperand(0),
3099 DAG.getConstant(magics.m, VT)).getNode(), 1);
3100 else
3101 return SDValue(); // No mulhs or equvialent
3102 // If d > 0 and m < 0, add the numerator
3103 if (d.isStrictlyPositive() && magics.m.isNegative()) {
3104 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3105 if (Created)
3106 Created->push_back(Q.getNode());
3108 // If d < 0 and m > 0, subtract the numerator.
3109 if (d.isNegative() && magics.m.isStrictlyPositive()) {
3110 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3111 if (Created)
3112 Created->push_back(Q.getNode());
3114 // Shift right algebraic if shift value is nonzero
3115 if (magics.s > 0) {
3116 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3117 DAG.getConstant(magics.s, getShiftAmountTy()));
3118 if (Created)
3119 Created->push_back(Q.getNode());
3121 // Extract the sign bit and add it to the quotient
3122 SDValue T =
3123 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3124 getShiftAmountTy()));
3125 if (Created)
3126 Created->push_back(T.getNode());
3127 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3130 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3131 /// return a DAG expression to select that will generate the same value by
3132 /// multiplying by a magic number. See:
3133 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3134 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3135 std::vector<SDNode*>* Created) const {
3136 EVT VT = N->getValueType(0);
3137 DebugLoc dl = N->getDebugLoc();
3139 // Check to see if we can do this.
3140 // FIXME: We should be more aggressive here.
3141 if (!isTypeLegal(VT))
3142 return SDValue();
3144 // FIXME: We should use a narrower constant when the upper
3145 // bits are known to be zero.
3146 ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
3147 APInt::mu magics = N1C->getAPIntValue().magicu();
3149 // Multiply the numerator (operand 0) by the magic value
3150 // FIXME: We should support doing a MUL in a wider type
3151 SDValue Q;
3152 if (isOperationLegalOrCustom(ISD::MULHU, VT))
3153 Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
3154 DAG.getConstant(magics.m, VT));
3155 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3156 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
3157 N->getOperand(0),
3158 DAG.getConstant(magics.m, VT)).getNode(), 1);
3159 else
3160 return SDValue(); // No mulhu or equvialent
3161 if (Created)
3162 Created->push_back(Q.getNode());
3164 if (magics.a == 0) {
3165 assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
3166 "We shouldn't generate an undefined shift!");
3167 return DAG.getNode(ISD::SRL, dl, VT, Q,
3168 DAG.getConstant(magics.s, getShiftAmountTy()));
3169 } else {
3170 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3171 if (Created)
3172 Created->push_back(NPQ.getNode());
3173 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3174 DAG.getConstant(1, getShiftAmountTy()));
3175 if (Created)
3176 Created->push_back(NPQ.getNode());
3177 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3178 if (Created)
3179 Created->push_back(NPQ.getNode());
3180 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3181 DAG.getConstant(magics.s-1, getShiftAmountTy()));