zpu: managed to compile program that writes constant to global variable
[llvm/zpu.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
blobf4cca259c9aa8b23698246035434692637848752
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
14 // A = B op C
16 // to:
18 // A = B
19 // A op= C
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/Target/TargetRegisterInfo.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/ADT/BitVector.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/SmallSet.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/ADT/STLExtras.h"
50 using namespace llvm;
52 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
53 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
54 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
55 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
56 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
57 STATISTIC(NumReMats, "Number of instructions re-materialized");
58 STATISTIC(NumDeletes, "Number of dead instructions deleted");
60 namespace {
61 class TwoAddressInstructionPass : public MachineFunctionPass {
62 const TargetInstrInfo *TII;
63 const TargetRegisterInfo *TRI;
64 MachineRegisterInfo *MRI;
65 LiveVariables *LV;
66 AliasAnalysis *AA;
68 // DistanceMap - Keep track the distance of a MI from the start of the
69 // current basic block.
70 DenseMap<MachineInstr*, unsigned> DistanceMap;
72 // SrcRegMap - A map from virtual registers to physical registers which
73 // are likely targets to be coalesced to due to copies from physical
74 // registers to virtual registers. e.g. v1024 = move r0.
75 DenseMap<unsigned, unsigned> SrcRegMap;
77 // DstRegMap - A map from virtual registers to physical registers which
78 // are likely targets to be coalesced to due to copies to physical
79 // registers from virtual registers. e.g. r1 = move v1024.
80 DenseMap<unsigned, unsigned> DstRegMap;
82 /// RegSequences - Keep track the list of REG_SEQUENCE instructions seen
83 /// during the initial walk of the machine function.
84 SmallVector<MachineInstr*, 16> RegSequences;
86 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
87 unsigned Reg,
88 MachineBasicBlock::iterator OldPos);
90 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
91 MachineInstr *MI, MachineInstr *DefMI,
92 MachineBasicBlock *MBB, unsigned Loc);
94 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
95 unsigned &LastDef);
97 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
98 unsigned Dist);
100 bool isProfitableToCommute(unsigned regB, unsigned regC,
101 MachineInstr *MI, MachineBasicBlock *MBB,
102 unsigned Dist);
104 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
105 MachineFunction::iterator &mbbi,
106 unsigned RegB, unsigned RegC, unsigned Dist);
108 bool isProfitableToConv3Addr(unsigned RegA);
110 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
111 MachineBasicBlock::iterator &nmi,
112 MachineFunction::iterator &mbbi,
113 unsigned RegB, unsigned Dist);
115 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
116 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
117 SmallVector<NewKill, 4> &NewKills,
118 MachineBasicBlock *MBB, unsigned Dist);
119 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
120 MachineBasicBlock::iterator &nmi,
121 MachineFunction::iterator &mbbi, unsigned Dist);
123 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
124 MachineBasicBlock::iterator &nmi,
125 MachineFunction::iterator &mbbi,
126 unsigned SrcIdx, unsigned DstIdx,
127 unsigned Dist);
129 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
130 SmallPtrSet<MachineInstr*, 8> &Processed);
132 void CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs, unsigned DstReg);
134 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
135 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
136 /// sub-register references of the register defined by REG_SEQUENCE.
137 bool EliminateRegSequences();
139 public:
140 static char ID; // Pass identification, replacement for typeid
141 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
142 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
145 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.setPreservesCFG();
147 AU.addRequired<AliasAnalysis>();
148 AU.addPreserved<LiveVariables>();
149 AU.addPreservedID(MachineLoopInfoID);
150 AU.addPreservedID(MachineDominatorsID);
151 if (StrongPHIElim)
152 AU.addPreservedID(StrongPHIEliminationID);
153 else
154 AU.addPreservedID(PHIEliminationID);
155 MachineFunctionPass::getAnalysisUsage(AU);
158 /// runOnMachineFunction - Pass entry point.
159 bool runOnMachineFunction(MachineFunction&);
163 char TwoAddressInstructionPass::ID = 0;
164 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
165 "Two-Address instruction pass", false, false)
166 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
167 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
168 "Two-Address instruction pass", false, false)
170 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
172 /// Sink3AddrInstruction - A two-address instruction has been converted to a
173 /// three-address instruction to avoid clobbering a register. Try to sink it
174 /// past the instruction that would kill the above mentioned register to reduce
175 /// register pressure.
176 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
177 MachineInstr *MI, unsigned SavedReg,
178 MachineBasicBlock::iterator OldPos) {
179 // Check if it's safe to move this instruction.
180 bool SeenStore = true; // Be conservative.
181 if (!MI->isSafeToMove(TII, AA, SeenStore))
182 return false;
184 unsigned DefReg = 0;
185 SmallSet<unsigned, 4> UseRegs;
187 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
188 const MachineOperand &MO = MI->getOperand(i);
189 if (!MO.isReg())
190 continue;
191 unsigned MOReg = MO.getReg();
192 if (!MOReg)
193 continue;
194 if (MO.isUse() && MOReg != SavedReg)
195 UseRegs.insert(MO.getReg());
196 if (!MO.isDef())
197 continue;
198 if (MO.isImplicit())
199 // Don't try to move it if it implicitly defines a register.
200 return false;
201 if (DefReg)
202 // For now, don't move any instructions that define multiple registers.
203 return false;
204 DefReg = MO.getReg();
207 // Find the instruction that kills SavedReg.
208 MachineInstr *KillMI = NULL;
209 for (MachineRegisterInfo::use_nodbg_iterator
210 UI = MRI->use_nodbg_begin(SavedReg),
211 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
212 MachineOperand &UseMO = UI.getOperand();
213 if (!UseMO.isKill())
214 continue;
215 KillMI = UseMO.getParent();
216 break;
219 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
220 return false;
222 // If any of the definitions are used by another instruction between the
223 // position and the kill use, then it's not safe to sink it.
225 // FIXME: This can be sped up if there is an easy way to query whether an
226 // instruction is before or after another instruction. Then we can use
227 // MachineRegisterInfo def / use instead.
228 MachineOperand *KillMO = NULL;
229 MachineBasicBlock::iterator KillPos = KillMI;
230 ++KillPos;
232 unsigned NumVisited = 0;
233 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
234 MachineInstr *OtherMI = I;
235 // DBG_VALUE cannot be counted against the limit.
236 if (OtherMI->isDebugValue())
237 continue;
238 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
239 return false;
240 ++NumVisited;
241 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
242 MachineOperand &MO = OtherMI->getOperand(i);
243 if (!MO.isReg())
244 continue;
245 unsigned MOReg = MO.getReg();
246 if (!MOReg)
247 continue;
248 if (DefReg == MOReg)
249 return false;
251 if (MO.isKill()) {
252 if (OtherMI == KillMI && MOReg == SavedReg)
253 // Save the operand that kills the register. We want to unset the kill
254 // marker if we can sink MI past it.
255 KillMO = &MO;
256 else if (UseRegs.count(MOReg))
257 // One of the uses is killed before the destination.
258 return false;
263 // Update kill and LV information.
264 KillMO->setIsKill(false);
265 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
266 KillMO->setIsKill(true);
268 if (LV)
269 LV->replaceKillInstruction(SavedReg, KillMI, MI);
271 // Move instruction to its destination.
272 MBB->remove(MI);
273 MBB->insert(KillPos, MI);
275 ++Num3AddrSunk;
276 return true;
279 /// isTwoAddrUse - Return true if the specified MI is using the specified
280 /// register as a two-address operand.
281 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
282 const TargetInstrDesc &TID = UseMI->getDesc();
283 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
284 MachineOperand &MO = UseMI->getOperand(i);
285 if (MO.isReg() && MO.getReg() == Reg &&
286 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
287 // Earlier use is a two-address one.
288 return true;
290 return false;
293 /// isProfitableToReMat - Return true if the heuristics determines it is likely
294 /// to be profitable to re-materialize the definition of Reg rather than copy
295 /// the register.
296 bool
297 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
298 const TargetRegisterClass *RC,
299 MachineInstr *MI, MachineInstr *DefMI,
300 MachineBasicBlock *MBB, unsigned Loc) {
301 bool OtherUse = false;
302 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
303 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
304 MachineOperand &UseMO = UI.getOperand();
305 MachineInstr *UseMI = UseMO.getParent();
306 MachineBasicBlock *UseMBB = UseMI->getParent();
307 if (UseMBB == MBB) {
308 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
309 if (DI != DistanceMap.end() && DI->second == Loc)
310 continue; // Current use.
311 OtherUse = true;
312 // There is at least one other use in the MBB that will clobber the
313 // register.
314 if (isTwoAddrUse(UseMI, Reg))
315 return true;
319 // If other uses in MBB are not two-address uses, then don't remat.
320 if (OtherUse)
321 return false;
323 // No other uses in the same block, remat if it's defined in the same
324 // block so it does not unnecessarily extend the live range.
325 return MBB == DefMI->getParent();
328 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
329 /// last instruction in the MBB that defines the specified register and the
330 /// two-address instruction which is being processed. It also returns the last
331 /// def location by reference
332 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
333 MachineBasicBlock *MBB, unsigned Dist,
334 unsigned &LastDef) {
335 LastDef = 0;
336 unsigned LastUse = Dist;
337 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
338 E = MRI->reg_end(); I != E; ++I) {
339 MachineOperand &MO = I.getOperand();
340 MachineInstr *MI = MO.getParent();
341 if (MI->getParent() != MBB || MI->isDebugValue())
342 continue;
343 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
344 if (DI == DistanceMap.end())
345 continue;
346 if (MO.isUse() && DI->second < LastUse)
347 LastUse = DI->second;
348 if (MO.isDef() && DI->second > LastDef)
349 LastDef = DI->second;
352 return !(LastUse > LastDef && LastUse < Dist);
355 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
356 MachineBasicBlock *MBB,
357 unsigned Dist) {
358 unsigned LastUseDist = 0;
359 MachineInstr *LastUse = 0;
360 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
361 E = MRI->reg_end(); I != E; ++I) {
362 MachineOperand &MO = I.getOperand();
363 MachineInstr *MI = MO.getParent();
364 if (MI->getParent() != MBB || MI->isDebugValue())
365 continue;
366 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
367 if (DI == DistanceMap.end())
368 continue;
369 if (DI->second >= Dist)
370 continue;
372 if (MO.isUse() && DI->second > LastUseDist) {
373 LastUse = DI->first;
374 LastUseDist = DI->second;
377 return LastUse;
380 /// isCopyToReg - Return true if the specified MI is a copy instruction or
381 /// a extract_subreg instruction. It also returns the source and destination
382 /// registers and whether they are physical registers by reference.
383 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
384 unsigned &SrcReg, unsigned &DstReg,
385 bool &IsSrcPhys, bool &IsDstPhys) {
386 SrcReg = 0;
387 DstReg = 0;
388 if (MI.isCopy()) {
389 DstReg = MI.getOperand(0).getReg();
390 SrcReg = MI.getOperand(1).getReg();
391 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
392 DstReg = MI.getOperand(0).getReg();
393 SrcReg = MI.getOperand(2).getReg();
394 } else
395 return false;
397 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
398 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
399 return true;
402 /// isKilled - Test if the given register value, which is used by the given
403 /// instruction, is killed by the given instruction. This looks through
404 /// coalescable copies to see if the original value is potentially not killed.
406 /// For example, in this code:
408 /// %reg1034 = copy %reg1024
409 /// %reg1035 = copy %reg1025<kill>
410 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
412 /// %reg1034 is not considered to be killed, since it is copied from a
413 /// register which is not killed. Treating it as not killed lets the
414 /// normal heuristics commute the (two-address) add, which lets
415 /// coalescing eliminate the extra copy.
417 static bool isKilled(MachineInstr &MI, unsigned Reg,
418 const MachineRegisterInfo *MRI,
419 const TargetInstrInfo *TII) {
420 MachineInstr *DefMI = &MI;
421 for (;;) {
422 if (!DefMI->killsRegister(Reg))
423 return false;
424 if (TargetRegisterInfo::isPhysicalRegister(Reg))
425 return true;
426 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
427 // If there are multiple defs, we can't do a simple analysis, so just
428 // go with what the kill flag says.
429 if (llvm::next(Begin) != MRI->def_end())
430 return true;
431 DefMI = &*Begin;
432 bool IsSrcPhys, IsDstPhys;
433 unsigned SrcReg, DstReg;
434 // If the def is something other than a copy, then it isn't going to
435 // be coalesced, so follow the kill flag.
436 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
437 return true;
438 Reg = SrcReg;
442 /// isTwoAddrUse - Return true if the specified MI uses the specified register
443 /// as a two-address use. If so, return the destination register by reference.
444 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
445 const TargetInstrDesc &TID = MI.getDesc();
446 unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
447 for (unsigned i = 0; i != NumOps; ++i) {
448 const MachineOperand &MO = MI.getOperand(i);
449 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
450 continue;
451 unsigned ti;
452 if (MI.isRegTiedToDefOperand(i, &ti)) {
453 DstReg = MI.getOperand(ti).getReg();
454 return true;
457 return false;
460 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
461 /// use, return the use instruction if it's a copy or a two-address use.
462 static
463 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
464 MachineRegisterInfo *MRI,
465 const TargetInstrInfo *TII,
466 bool &IsCopy,
467 unsigned &DstReg, bool &IsDstPhys) {
468 if (!MRI->hasOneNonDBGUse(Reg))
469 // None or more than one use.
470 return 0;
471 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
472 if (UseMI.getParent() != MBB)
473 return 0;
474 unsigned SrcReg;
475 bool IsSrcPhys;
476 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
477 IsCopy = true;
478 return &UseMI;
480 IsDstPhys = false;
481 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
482 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
483 return &UseMI;
485 return 0;
488 /// getMappedReg - Return the physical register the specified virtual register
489 /// might be mapped to.
490 static unsigned
491 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
492 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
493 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
494 if (SI == RegMap.end())
495 return 0;
496 Reg = SI->second;
498 if (TargetRegisterInfo::isPhysicalRegister(Reg))
499 return Reg;
500 return 0;
503 /// regsAreCompatible - Return true if the two registers are equal or aliased.
505 static bool
506 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
507 if (RegA == RegB)
508 return true;
509 if (!RegA || !RegB)
510 return false;
511 return TRI->regsOverlap(RegA, RegB);
515 /// isProfitableToReMat - Return true if it's potentially profitable to commute
516 /// the two-address instruction that's being processed.
517 bool
518 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
519 MachineInstr *MI, MachineBasicBlock *MBB,
520 unsigned Dist) {
521 // Determine if it's profitable to commute this two address instruction. In
522 // general, we want no uses between this instruction and the definition of
523 // the two-address register.
524 // e.g.
525 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
526 // %reg1029<def> = MOV8rr %reg1028
527 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
528 // insert => %reg1030<def> = MOV8rr %reg1028
529 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
530 // In this case, it might not be possible to coalesce the second MOV8rr
531 // instruction if the first one is coalesced. So it would be profitable to
532 // commute it:
533 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
534 // %reg1029<def> = MOV8rr %reg1028
535 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
536 // insert => %reg1030<def> = MOV8rr %reg1029
537 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
539 if (!MI->killsRegister(regC))
540 return false;
542 // Ok, we have something like:
543 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
544 // let's see if it's worth commuting it.
546 // Look for situations like this:
547 // %reg1024<def> = MOV r1
548 // %reg1025<def> = MOV r0
549 // %reg1026<def> = ADD %reg1024, %reg1025
550 // r0 = MOV %reg1026
551 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
552 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
553 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
554 unsigned ToRegB = getMappedReg(regB, DstRegMap);
555 unsigned ToRegC = getMappedReg(regC, DstRegMap);
556 if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
557 (regsAreCompatible(FromRegB, ToRegC, TRI) ||
558 regsAreCompatible(FromRegC, ToRegB, TRI)))
559 return true;
561 // If there is a use of regC between its last def (could be livein) and this
562 // instruction, then bail.
563 unsigned LastDefC = 0;
564 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
565 return false;
567 // If there is a use of regB between its last def (could be livein) and this
568 // instruction, then go ahead and make this transformation.
569 unsigned LastDefB = 0;
570 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
571 return true;
573 // Since there are no intervening uses for both registers, then commute
574 // if the def of regC is closer. Its live interval is shorter.
575 return LastDefB && LastDefC && LastDefC > LastDefB;
578 /// CommuteInstruction - Commute a two-address instruction and update the basic
579 /// block, distance map, and live variables if needed. Return true if it is
580 /// successful.
581 bool
582 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
583 MachineFunction::iterator &mbbi,
584 unsigned RegB, unsigned RegC, unsigned Dist) {
585 MachineInstr *MI = mi;
586 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
587 MachineInstr *NewMI = TII->commuteInstruction(MI);
589 if (NewMI == 0) {
590 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
591 return false;
594 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
595 // If the instruction changed to commute it, update livevar.
596 if (NewMI != MI) {
597 if (LV)
598 // Update live variables
599 LV->replaceKillInstruction(RegC, MI, NewMI);
601 mbbi->insert(mi, NewMI); // Insert the new inst
602 mbbi->erase(mi); // Nuke the old inst.
603 mi = NewMI;
604 DistanceMap.insert(std::make_pair(NewMI, Dist));
607 // Update source register map.
608 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
609 if (FromRegC) {
610 unsigned RegA = MI->getOperand(0).getReg();
611 SrcRegMap[RegA] = FromRegC;
614 return true;
617 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
618 /// given 2-address instruction to a 3-address one.
619 bool
620 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
621 // Look for situations like this:
622 // %reg1024<def> = MOV r1
623 // %reg1025<def> = MOV r0
624 // %reg1026<def> = ADD %reg1024, %reg1025
625 // r2 = MOV %reg1026
626 // Turn ADD into a 3-address instruction to avoid a copy.
627 unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
628 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
629 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
632 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
633 /// three address one. Return true if this transformation was successful.
634 bool
635 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
636 MachineBasicBlock::iterator &nmi,
637 MachineFunction::iterator &mbbi,
638 unsigned RegB, unsigned Dist) {
639 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
640 if (NewMI) {
641 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
642 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
643 bool Sunk = false;
645 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
646 // FIXME: Temporary workaround. If the new instruction doesn't
647 // uses RegB, convertToThreeAddress must have created more
648 // then one instruction.
649 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
651 mbbi->erase(mi); // Nuke the old inst.
653 if (!Sunk) {
654 DistanceMap.insert(std::make_pair(NewMI, Dist));
655 mi = NewMI;
656 nmi = llvm::next(mi);
658 return true;
661 return false;
664 /// ProcessCopy - If the specified instruction is not yet processed, process it
665 /// if it's a copy. For a copy instruction, we find the physical registers the
666 /// source and destination registers might be mapped to. These are kept in
667 /// point-to maps used to determine future optimizations. e.g.
668 /// v1024 = mov r0
669 /// v1025 = mov r1
670 /// v1026 = add v1024, v1025
671 /// r1 = mov r1026
672 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
673 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
674 /// potentially joined with r1 on the output side. It's worthwhile to commute
675 /// 'add' to eliminate a copy.
676 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
677 MachineBasicBlock *MBB,
678 SmallPtrSet<MachineInstr*, 8> &Processed) {
679 if (Processed.count(MI))
680 return;
682 bool IsSrcPhys, IsDstPhys;
683 unsigned SrcReg, DstReg;
684 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
685 return;
687 if (IsDstPhys && !IsSrcPhys)
688 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
689 else if (!IsDstPhys && IsSrcPhys) {
690 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
691 if (!isNew)
692 assert(SrcRegMap[DstReg] == SrcReg &&
693 "Can't map to two src physical registers!");
695 SmallVector<unsigned, 4> VirtRegPairs;
696 bool IsCopy = false;
697 unsigned NewReg = 0;
698 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
699 IsCopy, NewReg, IsDstPhys)) {
700 if (IsCopy) {
701 if (!Processed.insert(UseMI))
702 break;
705 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
706 if (DI != DistanceMap.end())
707 // Earlier in the same MBB.Reached via a back edge.
708 break;
710 if (IsDstPhys) {
711 VirtRegPairs.push_back(NewReg);
712 break;
714 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
715 if (!isNew)
716 assert(SrcRegMap[NewReg] == DstReg &&
717 "Can't map to two src physical registers!");
718 VirtRegPairs.push_back(NewReg);
719 DstReg = NewReg;
722 if (!VirtRegPairs.empty()) {
723 unsigned ToReg = VirtRegPairs.back();
724 VirtRegPairs.pop_back();
725 while (!VirtRegPairs.empty()) {
726 unsigned FromReg = VirtRegPairs.back();
727 VirtRegPairs.pop_back();
728 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
729 if (!isNew)
730 assert(DstRegMap[FromReg] == ToReg &&
731 "Can't map to two dst physical registers!");
732 ToReg = FromReg;
737 Processed.insert(MI);
740 /// isSafeToDelete - If the specified instruction does not produce any side
741 /// effects and all of its defs are dead, then it's safe to delete.
742 static bool isSafeToDelete(MachineInstr *MI,
743 const TargetInstrInfo *TII,
744 SmallVector<unsigned, 4> &Kills) {
745 const TargetInstrDesc &TID = MI->getDesc();
746 if (TID.mayStore() || TID.isCall())
747 return false;
748 if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
749 return false;
751 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
752 MachineOperand &MO = MI->getOperand(i);
753 if (!MO.isReg())
754 continue;
755 if (MO.isDef() && !MO.isDead())
756 return false;
757 if (MO.isUse() && MO.isKill())
758 Kills.push_back(MO.getReg());
760 return true;
763 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
764 /// killed by instructions in MBB preceding the current instruction at
765 /// position Dist. If so, return true and record information about the
766 /// preceding kills in NewKills.
767 bool TwoAddressInstructionPass::
768 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
769 SmallVector<NewKill, 4> &NewKills,
770 MachineBasicBlock *MBB, unsigned Dist) {
771 while (!Kills.empty()) {
772 unsigned Kill = Kills.back();
773 Kills.pop_back();
774 if (TargetRegisterInfo::isPhysicalRegister(Kill))
775 return false;
777 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
778 if (!LastKill)
779 return false;
781 bool isModRef = LastKill->definesRegister(Kill);
782 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
783 LastKill));
785 return true;
788 /// DeleteUnusedInstr - If an instruction with a tied register operand can
789 /// be safely deleted, just delete it.
790 bool
791 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
792 MachineBasicBlock::iterator &nmi,
793 MachineFunction::iterator &mbbi,
794 unsigned Dist) {
795 // Check if the instruction has no side effects and if all its defs are dead.
796 SmallVector<unsigned, 4> Kills;
797 if (!isSafeToDelete(mi, TII, Kills))
798 return false;
800 // If this instruction kills some virtual registers, we need to
801 // update the kill information. If it's not possible to do so,
802 // then bail out.
803 SmallVector<NewKill, 4> NewKills;
804 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
805 return false;
807 if (LV) {
808 while (!NewKills.empty()) {
809 MachineInstr *NewKill = NewKills.back().second;
810 unsigned Kill = NewKills.back().first.first;
811 bool isDead = NewKills.back().first.second;
812 NewKills.pop_back();
813 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
814 if (isDead)
815 LV->addVirtualRegisterDead(Kill, NewKill);
816 else
817 LV->addVirtualRegisterKilled(Kill, NewKill);
822 mbbi->erase(mi); // Nuke the old inst.
823 mi = nmi;
824 return true;
827 /// TryInstructionTransform - For the case where an instruction has a single
828 /// pair of tied register operands, attempt some transformations that may
829 /// either eliminate the tied operands or improve the opportunities for
830 /// coalescing away the register copy. Returns true if the tied operands
831 /// are eliminated altogether.
832 bool TwoAddressInstructionPass::
833 TryInstructionTransform(MachineBasicBlock::iterator &mi,
834 MachineBasicBlock::iterator &nmi,
835 MachineFunction::iterator &mbbi,
836 unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
837 const TargetInstrDesc &TID = mi->getDesc();
838 unsigned regA = mi->getOperand(DstIdx).getReg();
839 unsigned regB = mi->getOperand(SrcIdx).getReg();
841 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
842 "cannot make instruction into two-address form");
844 // If regA is dead and the instruction can be deleted, just delete
845 // it so it doesn't clobber regB.
846 bool regBKilled = isKilled(*mi, regB, MRI, TII);
847 if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
848 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
849 ++NumDeletes;
850 return true; // Done with this instruction.
853 // Check if it is profitable to commute the operands.
854 unsigned SrcOp1, SrcOp2;
855 unsigned regC = 0;
856 unsigned regCIdx = ~0U;
857 bool TryCommute = false;
858 bool AggressiveCommute = false;
859 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
860 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
861 if (SrcIdx == SrcOp1)
862 regCIdx = SrcOp2;
863 else if (SrcIdx == SrcOp2)
864 regCIdx = SrcOp1;
866 if (regCIdx != ~0U) {
867 regC = mi->getOperand(regCIdx).getReg();
868 if (!regBKilled && isKilled(*mi, regC, MRI, TII))
869 // If C dies but B does not, swap the B and C operands.
870 // This makes the live ranges of A and C joinable.
871 TryCommute = true;
872 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
873 TryCommute = true;
874 AggressiveCommute = true;
879 // If it's profitable to commute, try to do so.
880 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
881 ++NumCommuted;
882 if (AggressiveCommute)
883 ++NumAggrCommuted;
884 return false;
887 if (TID.isConvertibleTo3Addr()) {
888 // This instruction is potentially convertible to a true
889 // three-address instruction. Check if it is profitable.
890 if (!regBKilled || isProfitableToConv3Addr(regA)) {
891 // Try to convert it.
892 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
893 ++NumConvertedTo3Addr;
894 return true; // Done with this instruction.
899 // If this is an instruction with a load folded into it, try unfolding
900 // the load, e.g. avoid this:
901 // movq %rdx, %rcx
902 // addq (%rax), %rcx
903 // in favor of this:
904 // movq (%rax), %rcx
905 // addq %rdx, %rcx
906 // because it's preferable to schedule a load than a register copy.
907 if (TID.mayLoad() && !regBKilled) {
908 // Determine if a load can be unfolded.
909 unsigned LoadRegIndex;
910 unsigned NewOpc =
911 TII->getOpcodeAfterMemoryUnfold(mi->getOpcode(),
912 /*UnfoldLoad=*/true,
913 /*UnfoldStore=*/false,
914 &LoadRegIndex);
915 if (NewOpc != 0) {
916 const TargetInstrDesc &UnfoldTID = TII->get(NewOpc);
917 if (UnfoldTID.getNumDefs() == 1) {
918 MachineFunction &MF = *mbbi->getParent();
920 // Unfold the load.
921 DEBUG(dbgs() << "2addr: UNFOLDING: " << *mi);
922 const TargetRegisterClass *RC =
923 UnfoldTID.OpInfo[LoadRegIndex].getRegClass(TRI);
924 unsigned Reg = MRI->createVirtualRegister(RC);
925 SmallVector<MachineInstr *, 2> NewMIs;
926 if (!TII->unfoldMemoryOperand(MF, mi, Reg,
927 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
928 NewMIs)) {
929 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
930 return false;
932 assert(NewMIs.size() == 2 &&
933 "Unfolded a load into multiple instructions!");
934 // The load was previously folded, so this is the only use.
935 NewMIs[1]->addRegisterKilled(Reg, TRI);
937 // Tentatively insert the instructions into the block so that they
938 // look "normal" to the transformation logic.
939 mbbi->insert(mi, NewMIs[0]);
940 mbbi->insert(mi, NewMIs[1]);
942 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
943 << "2addr: NEW INST: " << *NewMIs[1]);
945 // Transform the instruction, now that it no longer has a load.
946 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
947 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
948 MachineBasicBlock::iterator NewMI = NewMIs[1];
949 bool TransformSuccess =
950 TryInstructionTransform(NewMI, mi, mbbi,
951 NewSrcIdx, NewDstIdx, Dist);
952 if (TransformSuccess ||
953 NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
954 // Success, or at least we made an improvement. Keep the unfolded
955 // instructions and discard the original.
956 if (LV) {
957 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
958 MachineOperand &MO = mi->getOperand(i);
959 if (MO.isReg() && MO.getReg() != 0 &&
960 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
961 if (MO.isUse()) {
962 if (MO.isKill()) {
963 if (NewMIs[0]->killsRegister(MO.getReg()))
964 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[0]);
965 else {
966 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
967 "Kill missing after load unfold!");
968 LV->replaceKillInstruction(MO.getReg(), mi, NewMIs[1]);
971 } else if (LV->removeVirtualRegisterDead(MO.getReg(), mi)) {
972 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
973 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
974 else {
975 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
976 "Dead flag missing after load unfold!");
977 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
982 LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
984 mi->eraseFromParent();
985 mi = NewMIs[1];
986 if (TransformSuccess)
987 return true;
988 } else {
989 // Transforming didn't eliminate the tie and didn't lead to an
990 // improvement. Clean up the unfolded instructions and keep the
991 // original.
992 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
993 NewMIs[0]->eraseFromParent();
994 NewMIs[1]->eraseFromParent();
1000 return false;
1003 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1005 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
1006 DEBUG(dbgs() << "Machine Function\n");
1007 const TargetMachine &TM = MF.getTarget();
1008 MRI = &MF.getRegInfo();
1009 TII = TM.getInstrInfo();
1010 TRI = TM.getRegisterInfo();
1011 LV = getAnalysisIfAvailable<LiveVariables>();
1012 AA = &getAnalysis<AliasAnalysis>();
1014 bool MadeChange = false;
1016 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1017 DEBUG(dbgs() << "********** Function: "
1018 << MF.getFunction()->getName() << '\n');
1020 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
1021 BitVector ReMatRegs;
1022 ReMatRegs.resize(MRI->getLastVirtReg()+1);
1024 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
1025 TiedOperandMap;
1026 TiedOperandMap TiedOperands(4);
1028 SmallPtrSet<MachineInstr*, 8> Processed;
1029 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
1030 mbbi != mbbe; ++mbbi) {
1031 unsigned Dist = 0;
1032 DistanceMap.clear();
1033 SrcRegMap.clear();
1034 DstRegMap.clear();
1035 Processed.clear();
1036 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
1037 mi != me; ) {
1038 MachineBasicBlock::iterator nmi = llvm::next(mi);
1039 if (mi->isDebugValue()) {
1040 mi = nmi;
1041 continue;
1044 // Remember REG_SEQUENCE instructions, we'll deal with them later.
1045 if (mi->isRegSequence())
1046 RegSequences.push_back(&*mi);
1048 const TargetInstrDesc &TID = mi->getDesc();
1049 bool FirstTied = true;
1051 DistanceMap.insert(std::make_pair(mi, ++Dist));
1053 ProcessCopy(&*mi, &*mbbi, Processed);
1055 // First scan through all the tied register uses in this instruction
1056 // and record a list of pairs of tied operands for each register.
1057 unsigned NumOps = mi->isInlineAsm()
1058 ? mi->getNumOperands() : TID.getNumOperands();
1059 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1060 unsigned DstIdx = 0;
1061 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1062 continue;
1064 if (FirstTied) {
1065 FirstTied = false;
1066 ++NumTwoAddressInstrs;
1067 DEBUG(dbgs() << '\t' << *mi);
1070 assert(mi->getOperand(SrcIdx).isReg() &&
1071 mi->getOperand(SrcIdx).getReg() &&
1072 mi->getOperand(SrcIdx).isUse() &&
1073 "two address instruction invalid");
1075 unsigned regB = mi->getOperand(SrcIdx).getReg();
1076 TiedOperandMap::iterator OI = TiedOperands.find(regB);
1077 if (OI == TiedOperands.end()) {
1078 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
1079 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
1081 OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
1084 // Now iterate over the information collected above.
1085 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1086 OE = TiedOperands.end(); OI != OE; ++OI) {
1087 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
1089 // If the instruction has a single pair of tied operands, try some
1090 // transformations that may either eliminate the tied operands or
1091 // improve the opportunities for coalescing away the register copy.
1092 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
1093 unsigned SrcIdx = TiedPairs[0].first;
1094 unsigned DstIdx = TiedPairs[0].second;
1096 // If the registers are already equal, nothing needs to be done.
1097 if (mi->getOperand(SrcIdx).getReg() ==
1098 mi->getOperand(DstIdx).getReg())
1099 break; // Done with this instruction.
1101 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
1102 break; // The tied operands have been eliminated.
1105 bool RemovedKillFlag = false;
1106 bool AllUsesCopied = true;
1107 unsigned LastCopiedReg = 0;
1108 unsigned regB = OI->first;
1109 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1110 unsigned SrcIdx = TiedPairs[tpi].first;
1111 unsigned DstIdx = TiedPairs[tpi].second;
1112 unsigned regA = mi->getOperand(DstIdx).getReg();
1113 // Grab regB from the instruction because it may have changed if the
1114 // instruction was commuted.
1115 regB = mi->getOperand(SrcIdx).getReg();
1117 if (regA == regB) {
1118 // The register is tied to multiple destinations (or else we would
1119 // not have continued this far), but this use of the register
1120 // already matches the tied destination. Leave it.
1121 AllUsesCopied = false;
1122 continue;
1124 LastCopiedReg = regA;
1126 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1127 "cannot make instruction into two-address form");
1129 #ifndef NDEBUG
1130 // First, verify that we don't have a use of "a" in the instruction
1131 // (a = b + a for example) because our transformation will not
1132 // work. This should never occur because we are in SSA form.
1133 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1134 assert(i == DstIdx ||
1135 !mi->getOperand(i).isReg() ||
1136 mi->getOperand(i).getReg() != regA);
1137 #endif
1139 // Emit a copy or rematerialize the definition.
1140 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1141 MachineInstr *DefMI = MRI->getVRegDef(regB);
1142 // If it's safe and profitable, remat the definition instead of
1143 // copying it.
1144 if (DefMI &&
1145 DefMI->getDesc().isAsCheapAsAMove() &&
1146 DefMI->isSafeToReMat(TII, AA, regB) &&
1147 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1148 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1149 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1150 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, *TRI);
1151 ReMatRegs.set(regB);
1152 ++NumReMats;
1153 } else {
1154 BuildMI(*mbbi, mi, mi->getDebugLoc(), TII->get(TargetOpcode::COPY),
1155 regA).addReg(regB);
1158 MachineBasicBlock::iterator prevMI = prior(mi);
1159 // Update DistanceMap.
1160 DistanceMap.insert(std::make_pair(prevMI, Dist));
1161 DistanceMap[mi] = ++Dist;
1163 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1165 MachineOperand &MO = mi->getOperand(SrcIdx);
1166 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1167 "inconsistent operand info for 2-reg pass");
1168 if (MO.isKill()) {
1169 MO.setIsKill(false);
1170 RemovedKillFlag = true;
1172 MO.setReg(regA);
1175 if (AllUsesCopied) {
1176 // Replace other (un-tied) uses of regB with LastCopiedReg.
1177 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1178 MachineOperand &MO = mi->getOperand(i);
1179 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1180 if (MO.isKill()) {
1181 MO.setIsKill(false);
1182 RemovedKillFlag = true;
1184 MO.setReg(LastCopiedReg);
1188 // Update live variables for regB.
1189 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1190 LV->addVirtualRegisterKilled(regB, prior(mi));
1192 } else if (RemovedKillFlag) {
1193 // Some tied uses of regB matched their destination registers, so
1194 // regB is still used in this instruction, but a kill flag was
1195 // removed from a different tied use of regB, so now we need to add
1196 // a kill flag to one of the remaining uses of regB.
1197 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1198 MachineOperand &MO = mi->getOperand(i);
1199 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1200 MO.setIsKill(true);
1201 break;
1206 // Schedule the source copy / remat inserted to form two-address
1207 // instruction. FIXME: Does it matter the distance map may not be
1208 // accurate after it's scheduled?
1209 TII->scheduleTwoAddrSource(prior(mi), mi, *TRI);
1211 MadeChange = true;
1213 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1216 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1217 if (mi->isInsertSubreg()) {
1218 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1219 // To %reg:subidx = COPY %subreg
1220 unsigned SubIdx = mi->getOperand(3).getImm();
1221 mi->RemoveOperand(3);
1222 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1223 mi->getOperand(0).setSubReg(SubIdx);
1224 mi->RemoveOperand(1);
1225 mi->setDesc(TII->get(TargetOpcode::COPY));
1226 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1229 // Clear TiedOperands here instead of at the top of the loop
1230 // since most instructions do not have tied operands.
1231 TiedOperands.clear();
1232 mi = nmi;
1236 // Some remat'ed instructions are dead.
1237 int VReg = ReMatRegs.find_first();
1238 while (VReg != -1) {
1239 if (MRI->use_nodbg_empty(VReg)) {
1240 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1241 DefMI->eraseFromParent();
1243 VReg = ReMatRegs.find_next(VReg);
1246 // Eliminate REG_SEQUENCE instructions. Their whole purpose was to preseve
1247 // SSA form. It's now safe to de-SSA.
1248 MadeChange |= EliminateRegSequences();
1250 return MadeChange;
1253 static void UpdateRegSequenceSrcs(unsigned SrcReg,
1254 unsigned DstReg, unsigned SubIdx,
1255 MachineRegisterInfo *MRI,
1256 const TargetRegisterInfo &TRI) {
1257 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
1258 RE = MRI->reg_end(); RI != RE; ) {
1259 MachineOperand &MO = RI.getOperand();
1260 ++RI;
1261 MO.substVirtReg(DstReg, SubIdx, TRI);
1265 /// CoalesceExtSubRegs - If a number of sources of the REG_SEQUENCE are
1266 /// EXTRACT_SUBREG from the same register and to the same virtual register
1267 /// with different sub-register indices, attempt to combine the
1268 /// EXTRACT_SUBREGs and pre-coalesce them. e.g.
1269 /// %reg1026<def> = VLDMQ %reg1025<kill>, 260, pred:14, pred:%reg0
1270 /// %reg1029:6<def> = EXTRACT_SUBREG %reg1026, 6
1271 /// %reg1029:5<def> = EXTRACT_SUBREG %reg1026<kill>, 5
1272 /// Since D subregs 5, 6 can combine to a Q register, we can coalesce
1273 /// reg1026 to reg1029.
1274 void
1275 TwoAddressInstructionPass::CoalesceExtSubRegs(SmallVector<unsigned,4> &Srcs,
1276 unsigned DstReg) {
1277 SmallSet<unsigned, 4> Seen;
1278 for (unsigned i = 0, e = Srcs.size(); i != e; ++i) {
1279 unsigned SrcReg = Srcs[i];
1280 if (!Seen.insert(SrcReg))
1281 continue;
1283 // Check that the instructions are all in the same basic block.
1284 MachineInstr *SrcDefMI = MRI->getVRegDef(SrcReg);
1285 MachineInstr *DstDefMI = MRI->getVRegDef(DstReg);
1286 if (SrcDefMI->getParent() != DstDefMI->getParent())
1287 continue;
1289 // If there are no other uses than copies which feed into
1290 // the reg_sequence, then we might be able to coalesce them.
1291 bool CanCoalesce = true;
1292 SmallVector<unsigned, 4> SrcSubIndices, DstSubIndices;
1293 for (MachineRegisterInfo::use_nodbg_iterator
1294 UI = MRI->use_nodbg_begin(SrcReg),
1295 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1296 MachineInstr *UseMI = &*UI;
1297 if (!UseMI->isCopy() || UseMI->getOperand(0).getReg() != DstReg) {
1298 CanCoalesce = false;
1299 break;
1301 SrcSubIndices.push_back(UseMI->getOperand(1).getSubReg());
1302 DstSubIndices.push_back(UseMI->getOperand(0).getSubReg());
1305 if (!CanCoalesce || SrcSubIndices.size() < 2)
1306 continue;
1308 // Check that the source subregisters can be combined.
1309 std::sort(SrcSubIndices.begin(), SrcSubIndices.end());
1310 unsigned NewSrcSubIdx = 0;
1311 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(SrcReg), SrcSubIndices,
1312 NewSrcSubIdx))
1313 continue;
1315 // Check that the destination subregisters can also be combined.
1316 std::sort(DstSubIndices.begin(), DstSubIndices.end());
1317 unsigned NewDstSubIdx = 0;
1318 if (!TRI->canCombineSubRegIndices(MRI->getRegClass(DstReg), DstSubIndices,
1319 NewDstSubIdx))
1320 continue;
1322 // If neither source nor destination can be combined to the full register,
1323 // just give up. This could be improved if it ever matters.
1324 if (NewSrcSubIdx != 0 && NewDstSubIdx != 0)
1325 continue;
1327 // Now that we know that all the uses are extract_subregs and that those
1328 // subregs can somehow be combined, scan all the extract_subregs again to
1329 // make sure the subregs are in the right order and can be composed.
1330 MachineInstr *SomeMI = 0;
1331 CanCoalesce = true;
1332 for (MachineRegisterInfo::use_nodbg_iterator
1333 UI = MRI->use_nodbg_begin(SrcReg),
1334 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
1335 MachineInstr *UseMI = &*UI;
1336 assert(UseMI->isCopy());
1337 unsigned DstSubIdx = UseMI->getOperand(0).getSubReg();
1338 unsigned SrcSubIdx = UseMI->getOperand(1).getSubReg();
1339 assert(DstSubIdx != 0 && "missing subreg from RegSequence elimination");
1340 if ((NewDstSubIdx == 0 &&
1341 TRI->composeSubRegIndices(NewSrcSubIdx, DstSubIdx) != SrcSubIdx) ||
1342 (NewSrcSubIdx == 0 &&
1343 TRI->composeSubRegIndices(NewDstSubIdx, SrcSubIdx) != DstSubIdx)) {
1344 CanCoalesce = false;
1345 break;
1347 // Keep track of one of the uses.
1348 SomeMI = UseMI;
1350 if (!CanCoalesce)
1351 continue;
1353 // Insert a copy to replace the original.
1354 MachineInstr *CopyMI = BuildMI(*SomeMI->getParent(), SomeMI,
1355 SomeMI->getDebugLoc(),
1356 TII->get(TargetOpcode::COPY))
1357 .addReg(DstReg, RegState::Define, NewDstSubIdx)
1358 .addReg(SrcReg, 0, NewSrcSubIdx);
1360 // Remove all the old extract instructions.
1361 for (MachineRegisterInfo::use_nodbg_iterator
1362 UI = MRI->use_nodbg_begin(SrcReg),
1363 UE = MRI->use_nodbg_end(); UI != UE; ) {
1364 MachineInstr *UseMI = &*UI;
1365 ++UI;
1366 if (UseMI == CopyMI)
1367 continue;
1368 assert(UseMI->isCopy());
1369 // Move any kills to the new copy or extract instruction.
1370 if (UseMI->getOperand(1).isKill()) {
1371 CopyMI->getOperand(1).setIsKill();
1372 if (LV)
1373 // Update live variables
1374 LV->replaceKillInstruction(SrcReg, UseMI, &*CopyMI);
1376 UseMI->eraseFromParent();
1381 static bool HasOtherRegSequenceUses(unsigned Reg, MachineInstr *RegSeq,
1382 MachineRegisterInfo *MRI) {
1383 for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
1384 UE = MRI->use_end(); UI != UE; ++UI) {
1385 MachineInstr *UseMI = &*UI;
1386 if (UseMI != RegSeq && UseMI->isRegSequence())
1387 return true;
1389 return false;
1392 /// EliminateRegSequences - Eliminate REG_SEQUENCE instructions as part
1393 /// of the de-ssa process. This replaces sources of REG_SEQUENCE as
1394 /// sub-register references of the register defined by REG_SEQUENCE. e.g.
1396 /// %reg1029<def>, %reg1030<def> = VLD1q16 %reg1024<kill>, ...
1397 /// %reg1031<def> = REG_SEQUENCE %reg1029<kill>, 5, %reg1030<kill>, 6
1398 /// =>
1399 /// %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
1400 bool TwoAddressInstructionPass::EliminateRegSequences() {
1401 if (RegSequences.empty())
1402 return false;
1404 for (unsigned i = 0, e = RegSequences.size(); i != e; ++i) {
1405 MachineInstr *MI = RegSequences[i];
1406 unsigned DstReg = MI->getOperand(0).getReg();
1407 if (MI->getOperand(0).getSubReg() ||
1408 TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1409 !(MI->getNumOperands() & 1)) {
1410 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1411 llvm_unreachable(0);
1414 bool IsImpDef = true;
1415 SmallVector<unsigned, 4> RealSrcs;
1416 SmallSet<unsigned, 4> Seen;
1417 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1418 unsigned SrcReg = MI->getOperand(i).getReg();
1419 if (MI->getOperand(i).getSubReg() ||
1420 TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
1421 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1422 llvm_unreachable(0);
1425 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
1426 if (DefMI->isImplicitDef()) {
1427 DefMI->eraseFromParent();
1428 continue;
1430 IsImpDef = false;
1432 // Remember COPY sources. These might be candidate for coalescing.
1433 if (DefMI->isCopy() && DefMI->getOperand(1).getSubReg())
1434 RealSrcs.push_back(DefMI->getOperand(1).getReg());
1436 bool isKill = MI->getOperand(i).isKill();
1437 if (!Seen.insert(SrcReg) || MI->getParent() != DefMI->getParent() ||
1438 !isKill || HasOtherRegSequenceUses(SrcReg, MI, MRI)) {
1439 // REG_SEQUENCE cannot have duplicated operands, add a copy.
1440 // Also add an copy if the source is live-in the block. We don't want
1441 // to end up with a partial-redef of a livein, e.g.
1442 // BB0:
1443 // reg1051:10<def> =
1444 // ...
1445 // BB1:
1446 // ... = reg1051:10
1447 // BB2:
1448 // reg1051:9<def> =
1449 // LiveIntervalAnalysis won't like it.
1451 // If the REG_SEQUENCE doesn't kill its source, keeping live variables
1452 // correctly up to date becomes very difficult. Insert a copy.
1454 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1455 // might insert a COPY that uses SrcReg after is was killed.
1456 if (isKill)
1457 for (unsigned j = i + 2; j < e; j += 2)
1458 if (MI->getOperand(j).getReg() == SrcReg) {
1459 MI->getOperand(j).setIsKill();
1460 isKill = false;
1461 break;
1464 MachineBasicBlock::iterator InsertLoc = MI;
1465 MachineInstr *CopyMI = BuildMI(*MI->getParent(), InsertLoc,
1466 MI->getDebugLoc(), TII->get(TargetOpcode::COPY))
1467 .addReg(DstReg, RegState::Define, MI->getOperand(i+1).getImm())
1468 .addReg(SrcReg, getKillRegState(isKill));
1469 MI->getOperand(i).setReg(0);
1470 if (LV && isKill)
1471 LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1472 DEBUG(dbgs() << "Inserted: " << *CopyMI);
1476 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1477 unsigned SrcReg = MI->getOperand(i).getReg();
1478 if (!SrcReg) continue;
1479 unsigned SubIdx = MI->getOperand(i+1).getImm();
1480 UpdateRegSequenceSrcs(SrcReg, DstReg, SubIdx, MRI, *TRI);
1483 if (IsImpDef) {
1484 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1485 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1486 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1487 MI->RemoveOperand(j);
1488 } else {
1489 DEBUG(dbgs() << "Eliminated: " << *MI);
1490 MI->eraseFromParent();
1493 // Try coalescing some EXTRACT_SUBREG instructions. This can create
1494 // INSERT_SUBREG instructions that must have <undef> flags added by
1495 // LiveIntervalAnalysis, so only run it when LiveVariables is available.
1496 if (LV)
1497 CoalesceExtSubRegs(RealSrcs, DstReg);
1500 RegSequences.clear();
1501 return true;