1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
36 // TODO: More sophistication in the way Formulae are generated and filtered.
38 // TODO: Handle multiple loops at a time.
40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41 // instead of a GlobalValue?
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
54 //===----------------------------------------------------------------------===//
56 #define DEBUG_TYPE "loop-reduce"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Constants.h"
59 #include "llvm/Instructions.h"
60 #include "llvm/IntrinsicInst.h"
61 #include "llvm/DerivedTypes.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/Dominators.h"
64 #include "llvm/Analysis/LoopPass.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/ADT/SmallBitVector.h"
69 #include "llvm/ADT/SetVector.h"
70 #include "llvm/ADT/DenseSet.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ValueHandle.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetLowering.h"
80 /// RegSortData - This class holds data which is used to order reuse candidates.
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices
;
89 void print(raw_ostream
&OS
) const;
95 void RegSortData::print(raw_ostream
&OS
) const {
96 OS
<< "[NumUses=" << UsedByIndices
.count() << ']';
99 void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
105 /// RegUseTracker - Map register candidates to information about how they are
107 class RegUseTracker
{
108 typedef DenseMap
<const SCEV
*, RegSortData
> RegUsesTy
;
110 RegUsesTy RegUsesMap
;
111 SmallVector
<const SCEV
*, 16> RegSequence
;
114 void CountRegister(const SCEV
*Reg
, size_t LUIdx
);
115 void DropRegister(const SCEV
*Reg
, size_t LUIdx
);
116 void SwapAndDropUse(size_t LUIdx
, size_t LastLUIdx
);
118 bool isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const;
120 const SmallBitVector
&getUsedByIndices(const SCEV
*Reg
) const;
124 typedef SmallVectorImpl
<const SCEV
*>::iterator iterator
;
125 typedef SmallVectorImpl
<const SCEV
*>::const_iterator const_iterator
;
126 iterator
begin() { return RegSequence
.begin(); }
127 iterator
end() { return RegSequence
.end(); }
128 const_iterator
begin() const { return RegSequence
.begin(); }
129 const_iterator
end() const { return RegSequence
.end(); }
135 RegUseTracker::CountRegister(const SCEV
*Reg
, size_t LUIdx
) {
136 std::pair
<RegUsesTy::iterator
, bool> Pair
=
137 RegUsesMap
.insert(std::make_pair(Reg
, RegSortData()));
138 RegSortData
&RSD
= Pair
.first
->second
;
140 RegSequence
.push_back(Reg
);
141 RSD
.UsedByIndices
.resize(std::max(RSD
.UsedByIndices
.size(), LUIdx
+ 1));
142 RSD
.UsedByIndices
.set(LUIdx
);
146 RegUseTracker::DropRegister(const SCEV
*Reg
, size_t LUIdx
) {
147 RegUsesTy::iterator It
= RegUsesMap
.find(Reg
);
148 assert(It
!= RegUsesMap
.end());
149 RegSortData
&RSD
= It
->second
;
150 assert(RSD
.UsedByIndices
.size() > LUIdx
);
151 RSD
.UsedByIndices
.reset(LUIdx
);
155 RegUseTracker::SwapAndDropUse(size_t LUIdx
, size_t LastLUIdx
) {
156 assert(LUIdx
<= LastLUIdx
);
158 // Update RegUses. The data structure is not optimized for this purpose;
159 // we must iterate through it and update each of the bit vectors.
160 for (RegUsesTy::iterator I
= RegUsesMap
.begin(), E
= RegUsesMap
.end();
162 SmallBitVector
&UsedByIndices
= I
->second
.UsedByIndices
;
163 if (LUIdx
< UsedByIndices
.size())
164 UsedByIndices
[LUIdx
] =
165 LastLUIdx
< UsedByIndices
.size() ? UsedByIndices
[LastLUIdx
] : 0;
166 UsedByIndices
.resize(std::min(UsedByIndices
.size(), LastLUIdx
));
171 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV
*Reg
, size_t LUIdx
) const {
172 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
173 if (I
== RegUsesMap
.end())
175 const SmallBitVector
&UsedByIndices
= I
->second
.UsedByIndices
;
176 int i
= UsedByIndices
.find_first();
177 if (i
== -1) return false;
178 if ((size_t)i
!= LUIdx
) return true;
179 return UsedByIndices
.find_next(i
) != -1;
182 const SmallBitVector
&RegUseTracker::getUsedByIndices(const SCEV
*Reg
) const {
183 RegUsesTy::const_iterator I
= RegUsesMap
.find(Reg
);
184 assert(I
!= RegUsesMap
.end() && "Unknown register!");
185 return I
->second
.UsedByIndices
;
188 void RegUseTracker::clear() {
195 /// Formula - This class holds information that describes a formula for
196 /// computing satisfying a use. It may include broken-out immediates and scaled
199 /// AM - This is used to represent complex addressing, as well as other kinds
200 /// of interesting uses.
201 TargetLowering::AddrMode AM
;
203 /// BaseRegs - The list of "base" registers for this use. When this is
204 /// non-empty, AM.HasBaseReg should be set to true.
205 SmallVector
<const SCEV
*, 2> BaseRegs
;
207 /// ScaledReg - The 'scaled' register for this use. This should be non-null
208 /// when AM.Scale is not zero.
209 const SCEV
*ScaledReg
;
211 Formula() : ScaledReg(0) {}
213 void InitialMatch(const SCEV
*S
, Loop
*L
,
214 ScalarEvolution
&SE
, DominatorTree
&DT
);
216 unsigned getNumRegs() const;
217 const Type
*getType() const;
219 void DeleteBaseReg(const SCEV
*&S
);
221 bool referencesReg(const SCEV
*S
) const;
222 bool hasRegsUsedByUsesOtherThan(size_t LUIdx
,
223 const RegUseTracker
&RegUses
) const;
225 void print(raw_ostream
&OS
) const;
231 /// DoInitialMatch - Recursion helper for InitialMatch.
232 static void DoInitialMatch(const SCEV
*S
, Loop
*L
,
233 SmallVectorImpl
<const SCEV
*> &Good
,
234 SmallVectorImpl
<const SCEV
*> &Bad
,
235 ScalarEvolution
&SE
, DominatorTree
&DT
) {
236 // Collect expressions which properly dominate the loop header.
237 if (S
->properlyDominates(L
->getHeader(), &DT
)) {
242 // Look at add operands.
243 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
244 for (SCEVAddExpr::op_iterator I
= Add
->op_begin(), E
= Add
->op_end();
246 DoInitialMatch(*I
, L
, Good
, Bad
, SE
, DT
);
250 // Look at addrec operands.
251 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
252 if (!AR
->getStart()->isZero()) {
253 DoInitialMatch(AR
->getStart(), L
, Good
, Bad
, SE
, DT
);
254 DoInitialMatch(SE
.getAddRecExpr(SE
.getConstant(AR
->getType(), 0),
255 AR
->getStepRecurrence(SE
),
257 L
, Good
, Bad
, SE
, DT
);
261 // Handle a multiplication by -1 (negation) if it didn't fold.
262 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
))
263 if (Mul
->getOperand(0)->isAllOnesValue()) {
264 SmallVector
<const SCEV
*, 4> Ops(Mul
->op_begin()+1, Mul
->op_end());
265 const SCEV
*NewMul
= SE
.getMulExpr(Ops
);
267 SmallVector
<const SCEV
*, 4> MyGood
;
268 SmallVector
<const SCEV
*, 4> MyBad
;
269 DoInitialMatch(NewMul
, L
, MyGood
, MyBad
, SE
, DT
);
270 const SCEV
*NegOne
= SE
.getSCEV(ConstantInt::getAllOnesValue(
271 SE
.getEffectiveSCEVType(NewMul
->getType())));
272 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= MyGood
.begin(),
273 E
= MyGood
.end(); I
!= E
; ++I
)
274 Good
.push_back(SE
.getMulExpr(NegOne
, *I
));
275 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= MyBad
.begin(),
276 E
= MyBad
.end(); I
!= E
; ++I
)
277 Bad
.push_back(SE
.getMulExpr(NegOne
, *I
));
281 // Ok, we can't do anything interesting. Just stuff the whole thing into a
282 // register and hope for the best.
286 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
287 /// attempting to keep all loop-invariant and loop-computable values in a
288 /// single base register.
289 void Formula::InitialMatch(const SCEV
*S
, Loop
*L
,
290 ScalarEvolution
&SE
, DominatorTree
&DT
) {
291 SmallVector
<const SCEV
*, 4> Good
;
292 SmallVector
<const SCEV
*, 4> Bad
;
293 DoInitialMatch(S
, L
, Good
, Bad
, SE
, DT
);
295 const SCEV
*Sum
= SE
.getAddExpr(Good
);
297 BaseRegs
.push_back(Sum
);
298 AM
.HasBaseReg
= true;
301 const SCEV
*Sum
= SE
.getAddExpr(Bad
);
303 BaseRegs
.push_back(Sum
);
304 AM
.HasBaseReg
= true;
308 /// getNumRegs - Return the total number of register operands used by this
309 /// formula. This does not include register uses implied by non-constant
311 unsigned Formula::getNumRegs() const {
312 return !!ScaledReg
+ BaseRegs
.size();
315 /// getType - Return the type of this formula, if it has one, or null
316 /// otherwise. This type is meaningless except for the bit size.
317 const Type
*Formula::getType() const {
318 return !BaseRegs
.empty() ? BaseRegs
.front()->getType() :
319 ScaledReg
? ScaledReg
->getType() :
320 AM
.BaseGV
? AM
.BaseGV
->getType() :
324 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
325 void Formula::DeleteBaseReg(const SCEV
*&S
) {
326 if (&S
!= &BaseRegs
.back())
327 std::swap(S
, BaseRegs
.back());
331 /// referencesReg - Test if this formula references the given register.
332 bool Formula::referencesReg(const SCEV
*S
) const {
333 return S
== ScaledReg
||
334 std::find(BaseRegs
.begin(), BaseRegs
.end(), S
) != BaseRegs
.end();
337 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
338 /// which are used by uses other than the use with the given index.
339 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx
,
340 const RegUseTracker
&RegUses
) const {
342 if (RegUses
.isRegUsedByUsesOtherThan(ScaledReg
, LUIdx
))
344 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= BaseRegs
.begin(),
345 E
= BaseRegs
.end(); I
!= E
; ++I
)
346 if (RegUses
.isRegUsedByUsesOtherThan(*I
, LUIdx
))
351 void Formula::print(raw_ostream
&OS
) const {
354 if (!First
) OS
<< " + "; else First
= false;
355 WriteAsOperand(OS
, AM
.BaseGV
, /*PrintType=*/false);
357 if (AM
.BaseOffs
!= 0) {
358 if (!First
) OS
<< " + "; else First
= false;
361 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= BaseRegs
.begin(),
362 E
= BaseRegs
.end(); I
!= E
; ++I
) {
363 if (!First
) OS
<< " + "; else First
= false;
364 OS
<< "reg(" << **I
<< ')';
366 if (AM
.HasBaseReg
&& BaseRegs
.empty()) {
367 if (!First
) OS
<< " + "; else First
= false;
368 OS
<< "**error: HasBaseReg**";
369 } else if (!AM
.HasBaseReg
&& !BaseRegs
.empty()) {
370 if (!First
) OS
<< " + "; else First
= false;
371 OS
<< "**error: !HasBaseReg**";
374 if (!First
) OS
<< " + "; else First
= false;
375 OS
<< AM
.Scale
<< "*reg(";
384 void Formula::dump() const {
385 print(errs()); errs() << '\n';
388 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
389 /// without changing its value.
390 static bool isAddRecSExtable(const SCEVAddRecExpr
*AR
, ScalarEvolution
&SE
) {
392 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(AR
->getType()) + 1);
393 return isa
<SCEVAddRecExpr
>(SE
.getSignExtendExpr(AR
, WideTy
));
396 /// isAddSExtable - Return true if the given add can be sign-extended
397 /// without changing its value.
398 static bool isAddSExtable(const SCEVAddExpr
*A
, ScalarEvolution
&SE
) {
400 IntegerType::get(SE
.getContext(), SE
.getTypeSizeInBits(A
->getType()) + 1);
401 return isa
<SCEVAddExpr
>(SE
.getSignExtendExpr(A
, WideTy
));
404 /// isMulSExtable - Return true if the given mul can be sign-extended
405 /// without changing its value.
406 static bool isMulSExtable(const SCEVMulExpr
*M
, ScalarEvolution
&SE
) {
408 IntegerType::get(SE
.getContext(),
409 SE
.getTypeSizeInBits(M
->getType()) * M
->getNumOperands());
410 return isa
<SCEVMulExpr
>(SE
.getSignExtendExpr(M
, WideTy
));
413 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
414 /// and if the remainder is known to be zero, or null otherwise. If
415 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
416 /// to Y, ignoring that the multiplication may overflow, which is useful when
417 /// the result will be used in a context where the most significant bits are
419 static const SCEV
*getExactSDiv(const SCEV
*LHS
, const SCEV
*RHS
,
421 bool IgnoreSignificantBits
= false) {
422 // Handle the trivial case, which works for any SCEV type.
424 return SE
.getConstant(LHS
->getType(), 1);
426 // Handle a few RHS special cases.
427 const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
);
429 const APInt
&RA
= RC
->getValue()->getValue();
430 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
432 if (RA
.isAllOnesValue())
433 return SE
.getMulExpr(LHS
, RC
);
434 // Handle x /s 1 as x.
439 // Check for a division of a constant by a constant.
440 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(LHS
)) {
443 const APInt
&LA
= C
->getValue()->getValue();
444 const APInt
&RA
= RC
->getValue()->getValue();
445 if (LA
.srem(RA
) != 0)
447 return SE
.getConstant(LA
.sdiv(RA
));
450 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
451 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
)) {
452 if (IgnoreSignificantBits
|| isAddRecSExtable(AR
, SE
)) {
453 const SCEV
*Step
= getExactSDiv(AR
->getStepRecurrence(SE
), RHS
, SE
,
454 IgnoreSignificantBits
);
456 const SCEV
*Start
= getExactSDiv(AR
->getStart(), RHS
, SE
,
457 IgnoreSignificantBits
);
458 if (!Start
) return 0;
459 return SE
.getAddRecExpr(Start
, Step
, AR
->getLoop());
464 // Distribute the sdiv over add operands, if the add doesn't overflow.
465 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
466 if (IgnoreSignificantBits
|| isAddSExtable(Add
, SE
)) {
467 SmallVector
<const SCEV
*, 8> Ops
;
468 for (SCEVAddExpr::op_iterator I
= Add
->op_begin(), E
= Add
->op_end();
470 const SCEV
*Op
= getExactSDiv(*I
, RHS
, SE
,
471 IgnoreSignificantBits
);
475 return SE
.getAddExpr(Ops
);
480 // Check for a multiply operand that we can pull RHS out of.
481 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
482 if (IgnoreSignificantBits
|| isMulSExtable(Mul
, SE
)) {
483 SmallVector
<const SCEV
*, 4> Ops
;
485 for (SCEVMulExpr::op_iterator I
= Mul
->op_begin(), E
= Mul
->op_end();
489 if (const SCEV
*Q
= getExactSDiv(S
, RHS
, SE
,
490 IgnoreSignificantBits
)) {
496 return Found
? SE
.getMulExpr(Ops
) : 0;
501 // Otherwise we don't know.
505 /// ExtractImmediate - If S involves the addition of a constant integer value,
506 /// return that integer value, and mutate S to point to a new SCEV with that
508 static int64_t ExtractImmediate(const SCEV
*&S
, ScalarEvolution
&SE
) {
509 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
)) {
510 if (C
->getValue()->getValue().getMinSignedBits() <= 64) {
511 S
= SE
.getConstant(C
->getType(), 0);
512 return C
->getValue()->getSExtValue();
514 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
515 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
516 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
518 S
= SE
.getAddExpr(NewOps
);
520 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
521 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
522 int64_t Result
= ExtractImmediate(NewOps
.front(), SE
);
524 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop());
530 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
531 /// return that symbol, and mutate S to point to a new SCEV with that
533 static GlobalValue
*ExtractSymbol(const SCEV
*&S
, ScalarEvolution
&SE
) {
534 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
535 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue())) {
536 S
= SE
.getConstant(GV
->getType(), 0);
539 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
540 SmallVector
<const SCEV
*, 8> NewOps(Add
->op_begin(), Add
->op_end());
541 GlobalValue
*Result
= ExtractSymbol(NewOps
.back(), SE
);
543 S
= SE
.getAddExpr(NewOps
);
545 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
546 SmallVector
<const SCEV
*, 8> NewOps(AR
->op_begin(), AR
->op_end());
547 GlobalValue
*Result
= ExtractSymbol(NewOps
.front(), SE
);
549 S
= SE
.getAddRecExpr(NewOps
, AR
->getLoop());
555 /// isAddressUse - Returns true if the specified instruction is using the
556 /// specified value as an address.
557 static bool isAddressUse(Instruction
*Inst
, Value
*OperandVal
) {
558 bool isAddress
= isa
<LoadInst
>(Inst
);
559 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
560 if (SI
->getOperand(1) == OperandVal
)
562 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
563 // Addressing modes can also be folded into prefetches and a variety
565 switch (II
->getIntrinsicID()) {
567 case Intrinsic::prefetch
:
568 case Intrinsic::x86_sse2_loadu_dq
:
569 case Intrinsic::x86_sse2_loadu_pd
:
570 case Intrinsic::x86_sse_loadu_ps
:
571 case Intrinsic::x86_sse_storeu_ps
:
572 case Intrinsic::x86_sse2_storeu_pd
:
573 case Intrinsic::x86_sse2_storeu_dq
:
574 case Intrinsic::x86_sse2_storel_dq
:
575 if (II
->getArgOperand(0) == OperandVal
)
583 /// getAccessType - Return the type of the memory being accessed.
584 static const Type
*getAccessType(const Instruction
*Inst
) {
585 const Type
*AccessTy
= Inst
->getType();
586 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
587 AccessTy
= SI
->getOperand(0)->getType();
588 else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
589 // Addressing modes can also be folded into prefetches and a variety
591 switch (II
->getIntrinsicID()) {
593 case Intrinsic::x86_sse_storeu_ps
:
594 case Intrinsic::x86_sse2_storeu_pd
:
595 case Intrinsic::x86_sse2_storeu_dq
:
596 case Intrinsic::x86_sse2_storel_dq
:
597 AccessTy
= II
->getArgOperand(0)->getType();
602 // All pointers have the same requirements, so canonicalize them to an
603 // arbitrary pointer type to minimize variation.
604 if (const PointerType
*PTy
= dyn_cast
<PointerType
>(AccessTy
))
605 AccessTy
= PointerType::get(IntegerType::get(PTy
->getContext(), 1),
606 PTy
->getAddressSpace());
611 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
612 /// specified set are trivially dead, delete them and see if this makes any of
613 /// their operands subsequently dead.
615 DeleteTriviallyDeadInstructions(SmallVectorImpl
<WeakVH
> &DeadInsts
) {
616 bool Changed
= false;
618 while (!DeadInsts
.empty()) {
619 Instruction
*I
= dyn_cast_or_null
<Instruction
>(&*DeadInsts
.pop_back_val());
621 if (I
== 0 || !isInstructionTriviallyDead(I
))
624 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
)
625 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
628 DeadInsts
.push_back(U
);
631 I
->eraseFromParent();
640 /// Cost - This class is used to measure and compare candidate formulae.
642 /// TODO: Some of these could be merged. Also, a lexical ordering
643 /// isn't always optimal.
647 unsigned NumBaseAdds
;
653 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
656 bool operator<(const Cost
&Other
) const;
660 void RateFormula(const Formula
&F
,
661 SmallPtrSet
<const SCEV
*, 16> &Regs
,
662 const DenseSet
<const SCEV
*> &VisitedRegs
,
664 const SmallVectorImpl
<int64_t> &Offsets
,
665 ScalarEvolution
&SE
, DominatorTree
&DT
);
667 void print(raw_ostream
&OS
) const;
671 void RateRegister(const SCEV
*Reg
,
672 SmallPtrSet
<const SCEV
*, 16> &Regs
,
674 ScalarEvolution
&SE
, DominatorTree
&DT
);
675 void RatePrimaryRegister(const SCEV
*Reg
,
676 SmallPtrSet
<const SCEV
*, 16> &Regs
,
678 ScalarEvolution
&SE
, DominatorTree
&DT
);
683 /// RateRegister - Tally up interesting quantities from the given register.
684 void Cost::RateRegister(const SCEV
*Reg
,
685 SmallPtrSet
<const SCEV
*, 16> &Regs
,
687 ScalarEvolution
&SE
, DominatorTree
&DT
) {
688 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Reg
)) {
689 if (AR
->getLoop() == L
)
690 AddRecCost
+= 1; /// TODO: This should be a function of the stride.
692 // If this is an addrec for a loop that's already been visited by LSR,
693 // don't second-guess its addrec phi nodes. LSR isn't currently smart
694 // enough to reason about more than one loop at a time. Consider these
695 // registers free and leave them alone.
696 else if (L
->contains(AR
->getLoop()) ||
697 (!AR
->getLoop()->contains(L
) &&
698 DT
.dominates(L
->getHeader(), AR
->getLoop()->getHeader()))) {
699 for (BasicBlock::iterator I
= AR
->getLoop()->getHeader()->begin();
700 PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
)
701 if (SE
.isSCEVable(PN
->getType()) &&
702 (SE
.getEffectiveSCEVType(PN
->getType()) ==
703 SE
.getEffectiveSCEVType(AR
->getType())) &&
704 SE
.getSCEV(PN
) == AR
)
707 // If this isn't one of the addrecs that the loop already has, it
708 // would require a costly new phi and add. TODO: This isn't
709 // precisely modeled right now.
711 if (!Regs
.count(AR
->getStart()))
712 RateRegister(AR
->getStart(), Regs
, L
, SE
, DT
);
715 // Add the step value register, if it needs one.
716 // TODO: The non-affine case isn't precisely modeled here.
717 if (!AR
->isAffine() || !isa
<SCEVConstant
>(AR
->getOperand(1)))
718 if (!Regs
.count(AR
->getStart()))
719 RateRegister(AR
->getOperand(1), Regs
, L
, SE
, DT
);
723 // Rough heuristic; favor registers which don't require extra setup
724 // instructions in the preheader.
725 if (!isa
<SCEVUnknown
>(Reg
) &&
726 !isa
<SCEVConstant
>(Reg
) &&
727 !(isa
<SCEVAddRecExpr
>(Reg
) &&
728 (isa
<SCEVUnknown
>(cast
<SCEVAddRecExpr
>(Reg
)->getStart()) ||
729 isa
<SCEVConstant
>(cast
<SCEVAddRecExpr
>(Reg
)->getStart()))))
732 NumIVMuls
+= isa
<SCEVMulExpr
>(Reg
) &&
733 Reg
->hasComputableLoopEvolution(L
);
736 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
738 void Cost::RatePrimaryRegister(const SCEV
*Reg
,
739 SmallPtrSet
<const SCEV
*, 16> &Regs
,
741 ScalarEvolution
&SE
, DominatorTree
&DT
) {
742 if (Regs
.insert(Reg
))
743 RateRegister(Reg
, Regs
, L
, SE
, DT
);
746 void Cost::RateFormula(const Formula
&F
,
747 SmallPtrSet
<const SCEV
*, 16> &Regs
,
748 const DenseSet
<const SCEV
*> &VisitedRegs
,
750 const SmallVectorImpl
<int64_t> &Offsets
,
751 ScalarEvolution
&SE
, DominatorTree
&DT
) {
752 // Tally up the registers.
753 if (const SCEV
*ScaledReg
= F
.ScaledReg
) {
754 if (VisitedRegs
.count(ScaledReg
)) {
758 RatePrimaryRegister(ScaledReg
, Regs
, L
, SE
, DT
);
760 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= F
.BaseRegs
.begin(),
761 E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
762 const SCEV
*BaseReg
= *I
;
763 if (VisitedRegs
.count(BaseReg
)) {
767 RatePrimaryRegister(BaseReg
, Regs
, L
, SE
, DT
);
770 if (F
.BaseRegs
.size() > 1)
771 NumBaseAdds
+= F
.BaseRegs
.size() - 1;
773 // Tally up the non-zero immediates.
774 for (SmallVectorImpl
<int64_t>::const_iterator I
= Offsets
.begin(),
775 E
= Offsets
.end(); I
!= E
; ++I
) {
776 int64_t Offset
= (uint64_t)*I
+ F
.AM
.BaseOffs
;
778 ImmCost
+= 64; // Handle symbolic values conservatively.
779 // TODO: This should probably be the pointer size.
780 else if (Offset
!= 0)
781 ImmCost
+= APInt(64, Offset
, true).getMinSignedBits();
785 /// Loose - Set this cost to a loosing value.
795 /// operator< - Choose the lower cost.
796 bool Cost::operator<(const Cost
&Other
) const {
797 if (NumRegs
!= Other
.NumRegs
)
798 return NumRegs
< Other
.NumRegs
;
799 if (AddRecCost
!= Other
.AddRecCost
)
800 return AddRecCost
< Other
.AddRecCost
;
801 if (NumIVMuls
!= Other
.NumIVMuls
)
802 return NumIVMuls
< Other
.NumIVMuls
;
803 if (NumBaseAdds
!= Other
.NumBaseAdds
)
804 return NumBaseAdds
< Other
.NumBaseAdds
;
805 if (ImmCost
!= Other
.ImmCost
)
806 return ImmCost
< Other
.ImmCost
;
807 if (SetupCost
!= Other
.SetupCost
)
808 return SetupCost
< Other
.SetupCost
;
812 void Cost::print(raw_ostream
&OS
) const {
813 OS
<< NumRegs
<< " reg" << (NumRegs
== 1 ? "" : "s");
815 OS
<< ", with addrec cost " << AddRecCost
;
817 OS
<< ", plus " << NumIVMuls
<< " IV mul" << (NumIVMuls
== 1 ? "" : "s");
818 if (NumBaseAdds
!= 0)
819 OS
<< ", plus " << NumBaseAdds
<< " base add"
820 << (NumBaseAdds
== 1 ? "" : "s");
822 OS
<< ", plus " << ImmCost
<< " imm cost";
824 OS
<< ", plus " << SetupCost
<< " setup cost";
827 void Cost::dump() const {
828 print(errs()); errs() << '\n';
833 /// LSRFixup - An operand value in an instruction which is to be replaced
834 /// with some equivalent, possibly strength-reduced, replacement.
836 /// UserInst - The instruction which will be updated.
837 Instruction
*UserInst
;
839 /// OperandValToReplace - The operand of the instruction which will
840 /// be replaced. The operand may be used more than once; every instance
841 /// will be replaced.
842 Value
*OperandValToReplace
;
844 /// PostIncLoops - If this user is to use the post-incremented value of an
845 /// induction variable, this variable is non-null and holds the loop
846 /// associated with the induction variable.
847 PostIncLoopSet PostIncLoops
;
849 /// LUIdx - The index of the LSRUse describing the expression which
850 /// this fixup needs, minus an offset (below).
853 /// Offset - A constant offset to be added to the LSRUse expression.
854 /// This allows multiple fixups to share the same LSRUse with different
855 /// offsets, for example in an unrolled loop.
858 bool isUseFullyOutsideLoop(const Loop
*L
) const;
862 void print(raw_ostream
&OS
) const;
869 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
871 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
872 /// value outside of the given loop.
873 bool LSRFixup::isUseFullyOutsideLoop(const Loop
*L
) const {
874 // PHI nodes use their value in their incoming blocks.
875 if (const PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
)) {
876 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
877 if (PN
->getIncomingValue(i
) == OperandValToReplace
&&
878 L
->contains(PN
->getIncomingBlock(i
)))
883 return !L
->contains(UserInst
);
886 void LSRFixup::print(raw_ostream
&OS
) const {
888 // Store is common and interesting enough to be worth special-casing.
889 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(UserInst
)) {
891 WriteAsOperand(OS
, Store
->getOperand(0), /*PrintType=*/false);
892 } else if (UserInst
->getType()->isVoidTy())
893 OS
<< UserInst
->getOpcodeName();
895 WriteAsOperand(OS
, UserInst
, /*PrintType=*/false);
897 OS
<< ", OperandValToReplace=";
898 WriteAsOperand(OS
, OperandValToReplace
, /*PrintType=*/false);
900 for (PostIncLoopSet::const_iterator I
= PostIncLoops
.begin(),
901 E
= PostIncLoops
.end(); I
!= E
; ++I
) {
902 OS
<< ", PostIncLoop=";
903 WriteAsOperand(OS
, (*I
)->getHeader(), /*PrintType=*/false);
906 if (LUIdx
!= ~size_t(0))
907 OS
<< ", LUIdx=" << LUIdx
;
910 OS
<< ", Offset=" << Offset
;
913 void LSRFixup::dump() const {
914 print(errs()); errs() << '\n';
919 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
920 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
921 struct UniquifierDenseMapInfo
{
922 static SmallVector
<const SCEV
*, 2> getEmptyKey() {
923 SmallVector
<const SCEV
*, 2> V
;
924 V
.push_back(reinterpret_cast<const SCEV
*>(-1));
928 static SmallVector
<const SCEV
*, 2> getTombstoneKey() {
929 SmallVector
<const SCEV
*, 2> V
;
930 V
.push_back(reinterpret_cast<const SCEV
*>(-2));
934 static unsigned getHashValue(const SmallVector
<const SCEV
*, 2> &V
) {
936 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= V
.begin(),
937 E
= V
.end(); I
!= E
; ++I
)
938 Result
^= DenseMapInfo
<const SCEV
*>::getHashValue(*I
);
942 static bool isEqual(const SmallVector
<const SCEV
*, 2> &LHS
,
943 const SmallVector
<const SCEV
*, 2> &RHS
) {
948 /// LSRUse - This class holds the state that LSR keeps for each use in
949 /// IVUsers, as well as uses invented by LSR itself. It includes information
950 /// about what kinds of things can be folded into the user, information about
951 /// the user itself, and information about how the use may be satisfied.
952 /// TODO: Represent multiple users of the same expression in common?
954 DenseSet
<SmallVector
<const SCEV
*, 2>, UniquifierDenseMapInfo
> Uniquifier
;
957 /// KindType - An enum for a kind of use, indicating what types of
958 /// scaled and immediate operands it might support.
960 Basic
, ///< A normal use, with no folding.
961 Special
, ///< A special case of basic, allowing -1 scales.
962 Address
, ///< An address use; folding according to TargetLowering
963 ICmpZero
///< An equality icmp with both operands folded into one.
964 // TODO: Add a generic icmp too?
968 const Type
*AccessTy
;
970 SmallVector
<int64_t, 8> Offsets
;
974 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
975 /// LSRUse are outside of the loop, in which case some special-case heuristics
977 bool AllFixupsOutsideLoop
;
979 /// WidestFixupType - This records the widest use type for any fixup using
980 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
981 /// max fixup widths to be equivalent, because the narrower one may be relying
982 /// on the implicit truncation to truncate away bogus bits.
983 const Type
*WidestFixupType
;
985 /// Formulae - A list of ways to build a value that can satisfy this user.
986 /// After the list is populated, one of these is selected heuristically and
987 /// used to formulate a replacement for OperandValToReplace in UserInst.
988 SmallVector
<Formula
, 12> Formulae
;
990 /// Regs - The set of register candidates used by all formulae in this LSRUse.
991 SmallPtrSet
<const SCEV
*, 4> Regs
;
993 LSRUse(KindType K
, const Type
*T
) : Kind(K
), AccessTy(T
),
994 MinOffset(INT64_MAX
),
995 MaxOffset(INT64_MIN
),
996 AllFixupsOutsideLoop(true),
997 WidestFixupType(0) {}
999 bool HasFormulaWithSameRegs(const Formula
&F
) const;
1000 bool InsertFormula(const Formula
&F
);
1001 void DeleteFormula(Formula
&F
);
1002 void RecomputeRegs(size_t LUIdx
, RegUseTracker
&Reguses
);
1004 void print(raw_ostream
&OS
) const;
1010 /// HasFormula - Test whether this use as a formula which has the same
1011 /// registers as the given formula.
1012 bool LSRUse::HasFormulaWithSameRegs(const Formula
&F
) const {
1013 SmallVector
<const SCEV
*, 2> Key
= F
.BaseRegs
;
1014 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1015 // Unstable sort by host order ok, because this is only used for uniquifying.
1016 std::sort(Key
.begin(), Key
.end());
1017 return Uniquifier
.count(Key
);
1020 /// InsertFormula - If the given formula has not yet been inserted, add it to
1021 /// the list, and return true. Return false otherwise.
1022 bool LSRUse::InsertFormula(const Formula
&F
) {
1023 SmallVector
<const SCEV
*, 2> Key
= F
.BaseRegs
;
1024 if (F
.ScaledReg
) Key
.push_back(F
.ScaledReg
);
1025 // Unstable sort by host order ok, because this is only used for uniquifying.
1026 std::sort(Key
.begin(), Key
.end());
1028 if (!Uniquifier
.insert(Key
).second
)
1031 // Using a register to hold the value of 0 is not profitable.
1032 assert((!F
.ScaledReg
|| !F
.ScaledReg
->isZero()) &&
1033 "Zero allocated in a scaled register!");
1035 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
=
1036 F
.BaseRegs
.begin(), E
= F
.BaseRegs
.end(); I
!= E
; ++I
)
1037 assert(!(*I
)->isZero() && "Zero allocated in a base register!");
1040 // Add the formula to the list.
1041 Formulae
.push_back(F
);
1043 // Record registers now being used by this use.
1044 if (F
.ScaledReg
) Regs
.insert(F
.ScaledReg
);
1045 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1050 /// DeleteFormula - Remove the given formula from this use's list.
1051 void LSRUse::DeleteFormula(Formula
&F
) {
1052 if (&F
!= &Formulae
.back())
1053 std::swap(F
, Formulae
.back());
1054 Formulae
.pop_back();
1055 assert(!Formulae
.empty() && "LSRUse has no formulae left!");
1058 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
1059 void LSRUse::RecomputeRegs(size_t LUIdx
, RegUseTracker
&RegUses
) {
1060 // Now that we've filtered out some formulae, recompute the Regs set.
1061 SmallPtrSet
<const SCEV
*, 4> OldRegs
= Regs
;
1063 for (SmallVectorImpl
<Formula
>::const_iterator I
= Formulae
.begin(),
1064 E
= Formulae
.end(); I
!= E
; ++I
) {
1065 const Formula
&F
= *I
;
1066 if (F
.ScaledReg
) Regs
.insert(F
.ScaledReg
);
1067 Regs
.insert(F
.BaseRegs
.begin(), F
.BaseRegs
.end());
1070 // Update the RegTracker.
1071 for (SmallPtrSet
<const SCEV
*, 4>::iterator I
= OldRegs
.begin(),
1072 E
= OldRegs
.end(); I
!= E
; ++I
)
1073 if (!Regs
.count(*I
))
1074 RegUses
.DropRegister(*I
, LUIdx
);
1077 void LSRUse::print(raw_ostream
&OS
) const {
1078 OS
<< "LSR Use: Kind=";
1080 case Basic
: OS
<< "Basic"; break;
1081 case Special
: OS
<< "Special"; break;
1082 case ICmpZero
: OS
<< "ICmpZero"; break;
1084 OS
<< "Address of ";
1085 if (AccessTy
->isPointerTy())
1086 OS
<< "pointer"; // the full pointer type could be really verbose
1091 OS
<< ", Offsets={";
1092 for (SmallVectorImpl
<int64_t>::const_iterator I
= Offsets
.begin(),
1093 E
= Offsets
.end(); I
!= E
; ++I
) {
1095 if (llvm::next(I
) != E
)
1100 if (AllFixupsOutsideLoop
)
1101 OS
<< ", all-fixups-outside-loop";
1103 if (WidestFixupType
)
1104 OS
<< ", widest fixup type: " << *WidestFixupType
;
1107 void LSRUse::dump() const {
1108 print(errs()); errs() << '\n';
1111 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1112 /// be completely folded into the user instruction at isel time. This includes
1113 /// address-mode folding and special icmp tricks.
1114 static bool isLegalUse(const TargetLowering::AddrMode
&AM
,
1115 LSRUse::KindType Kind
, const Type
*AccessTy
,
1116 const TargetLowering
*TLI
) {
1118 case LSRUse::Address
:
1119 // If we have low-level target information, ask the target if it can
1120 // completely fold this address.
1121 if (TLI
) return TLI
->isLegalAddressingMode(AM
, AccessTy
);
1123 // Otherwise, just guess that reg+reg addressing is legal.
1124 return !AM
.BaseGV
&& AM
.BaseOffs
== 0 && AM
.Scale
<= 1;
1126 case LSRUse::ICmpZero
:
1127 // There's not even a target hook for querying whether it would be legal to
1128 // fold a GV into an ICmp.
1132 // ICmp only has two operands; don't allow more than two non-trivial parts.
1133 if (AM
.Scale
!= 0 && AM
.HasBaseReg
&& AM
.BaseOffs
!= 0)
1136 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1137 // putting the scaled register in the other operand of the icmp.
1138 if (AM
.Scale
!= 0 && AM
.Scale
!= -1)
1141 // If we have low-level target information, ask the target if it can fold an
1142 // integer immediate on an icmp.
1143 if (AM
.BaseOffs
!= 0) {
1144 if (TLI
) return TLI
->isLegalICmpImmediate(-AM
.BaseOffs
);
1151 // Only handle single-register values.
1152 return !AM
.BaseGV
&& AM
.Scale
== 0 && AM
.BaseOffs
== 0;
1154 case LSRUse::Special
:
1155 // Only handle -1 scales, or no scale.
1156 return AM
.Scale
== 0 || AM
.Scale
== -1;
1162 static bool isLegalUse(TargetLowering::AddrMode AM
,
1163 int64_t MinOffset
, int64_t MaxOffset
,
1164 LSRUse::KindType Kind
, const Type
*AccessTy
,
1165 const TargetLowering
*TLI
) {
1166 // Check for overflow.
1167 if (((int64_t)((uint64_t)AM
.BaseOffs
+ MinOffset
) > AM
.BaseOffs
) !=
1170 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
+ MinOffset
;
1171 if (isLegalUse(AM
, Kind
, AccessTy
, TLI
)) {
1172 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
- MinOffset
;
1173 // Check for overflow.
1174 if (((int64_t)((uint64_t)AM
.BaseOffs
+ MaxOffset
) > AM
.BaseOffs
) !=
1177 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
+ MaxOffset
;
1178 return isLegalUse(AM
, Kind
, AccessTy
, TLI
);
1183 static bool isAlwaysFoldable(int64_t BaseOffs
,
1184 GlobalValue
*BaseGV
,
1186 LSRUse::KindType Kind
, const Type
*AccessTy
,
1187 const TargetLowering
*TLI
) {
1188 // Fast-path: zero is always foldable.
1189 if (BaseOffs
== 0 && !BaseGV
) return true;
1191 // Conservatively, create an address with an immediate and a
1192 // base and a scale.
1193 TargetLowering::AddrMode AM
;
1194 AM
.BaseOffs
= BaseOffs
;
1196 AM
.HasBaseReg
= HasBaseReg
;
1197 AM
.Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1199 // Canonicalize a scale of 1 to a base register if the formula doesn't
1200 // already have a base register.
1201 if (!AM
.HasBaseReg
&& AM
.Scale
== 1) {
1203 AM
.HasBaseReg
= true;
1206 return isLegalUse(AM
, Kind
, AccessTy
, TLI
);
1209 static bool isAlwaysFoldable(const SCEV
*S
,
1210 int64_t MinOffset
, int64_t MaxOffset
,
1212 LSRUse::KindType Kind
, const Type
*AccessTy
,
1213 const TargetLowering
*TLI
,
1214 ScalarEvolution
&SE
) {
1215 // Fast-path: zero is always foldable.
1216 if (S
->isZero()) return true;
1218 // Conservatively, create an address with an immediate and a
1219 // base and a scale.
1220 int64_t BaseOffs
= ExtractImmediate(S
, SE
);
1221 GlobalValue
*BaseGV
= ExtractSymbol(S
, SE
);
1223 // If there's anything else involved, it's not foldable.
1224 if (!S
->isZero()) return false;
1226 // Fast-path: zero is always foldable.
1227 if (BaseOffs
== 0 && !BaseGV
) return true;
1229 // Conservatively, create an address with an immediate and a
1230 // base and a scale.
1231 TargetLowering::AddrMode AM
;
1232 AM
.BaseOffs
= BaseOffs
;
1234 AM
.HasBaseReg
= HasBaseReg
;
1235 AM
.Scale
= Kind
== LSRUse::ICmpZero
? -1 : 1;
1237 return isLegalUse(AM
, MinOffset
, MaxOffset
, Kind
, AccessTy
, TLI
);
1242 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1243 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1244 struct UseMapDenseMapInfo
{
1245 static std::pair
<const SCEV
*, LSRUse::KindType
> getEmptyKey() {
1246 return std::make_pair(reinterpret_cast<const SCEV
*>(-1), LSRUse::Basic
);
1249 static std::pair
<const SCEV
*, LSRUse::KindType
> getTombstoneKey() {
1250 return std::make_pair(reinterpret_cast<const SCEV
*>(-2), LSRUse::Basic
);
1254 getHashValue(const std::pair
<const SCEV
*, LSRUse::KindType
> &V
) {
1255 unsigned Result
= DenseMapInfo
<const SCEV
*>::getHashValue(V
.first
);
1256 Result
^= DenseMapInfo
<unsigned>::getHashValue(unsigned(V
.second
));
1260 static bool isEqual(const std::pair
<const SCEV
*, LSRUse::KindType
> &LHS
,
1261 const std::pair
<const SCEV
*, LSRUse::KindType
> &RHS
) {
1266 /// LSRInstance - This class holds state for the main loop strength reduction
1270 ScalarEvolution
&SE
;
1273 const TargetLowering
*const TLI
;
1277 /// IVIncInsertPos - This is the insert position that the current loop's
1278 /// induction variable increment should be placed. In simple loops, this is
1279 /// the latch block's terminator. But in more complicated cases, this is a
1280 /// position which will dominate all the in-loop post-increment users.
1281 Instruction
*IVIncInsertPos
;
1283 /// Factors - Interesting factors between use strides.
1284 SmallSetVector
<int64_t, 8> Factors
;
1286 /// Types - Interesting use types, to facilitate truncation reuse.
1287 SmallSetVector
<const Type
*, 4> Types
;
1289 /// Fixups - The list of operands which are to be replaced.
1290 SmallVector
<LSRFixup
, 16> Fixups
;
1292 /// Uses - The list of interesting uses.
1293 SmallVector
<LSRUse
, 16> Uses
;
1295 /// RegUses - Track which uses use which register candidates.
1296 RegUseTracker RegUses
;
1298 void OptimizeShadowIV();
1299 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
);
1300 ICmpInst
*OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
);
1301 void OptimizeLoopTermCond();
1303 void CollectInterestingTypesAndFactors();
1304 void CollectFixupsAndInitialFormulae();
1306 LSRFixup
&getNewFixup() {
1307 Fixups
.push_back(LSRFixup());
1308 return Fixups
.back();
1311 // Support for sharing of LSRUses between LSRFixups.
1312 typedef DenseMap
<std::pair
<const SCEV
*, LSRUse::KindType
>,
1314 UseMapDenseMapInfo
> UseMapTy
;
1317 bool reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
, bool HasBaseReg
,
1318 LSRUse::KindType Kind
, const Type
*AccessTy
);
1320 std::pair
<size_t, int64_t> getUse(const SCEV
*&Expr
,
1321 LSRUse::KindType Kind
,
1322 const Type
*AccessTy
);
1324 void DeleteUse(LSRUse
&LU
, size_t LUIdx
);
1326 LSRUse
*FindUseWithSimilarFormula(const Formula
&F
, const LSRUse
&OrigLU
);
1329 void InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1330 void InsertSupplementalFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
);
1331 void CountRegisters(const Formula
&F
, size_t LUIdx
);
1332 bool InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
);
1334 void CollectLoopInvariantFixupsAndFormulae();
1336 void GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
,
1337 unsigned Depth
= 0);
1338 void GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1339 void GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1340 void GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1341 void GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1342 void GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1343 void GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
);
1344 void GenerateCrossUseConstantOffsets();
1345 void GenerateAllReuseFormulae();
1347 void FilterOutUndesirableDedicatedRegisters();
1349 size_t EstimateSearchSpaceComplexity() const;
1350 void NarrowSearchSpaceByDetectingSupersets();
1351 void NarrowSearchSpaceByCollapsingUnrolledCode();
1352 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1353 void NarrowSearchSpaceByPickingWinnerRegs();
1354 void NarrowSearchSpaceUsingHeuristics();
1356 void SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
1358 SmallVectorImpl
<const Formula
*> &Workspace
,
1359 const Cost
&CurCost
,
1360 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
1361 DenseSet
<const SCEV
*> &VisitedRegs
) const;
1362 void Solve(SmallVectorImpl
<const Formula
*> &Solution
) const;
1364 BasicBlock::iterator
1365 HoistInsertPosition(BasicBlock::iterator IP
,
1366 const SmallVectorImpl
<Instruction
*> &Inputs
) const;
1367 BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator IP
,
1369 const LSRUse
&LU
) const;
1371 Value
*Expand(const LSRFixup
&LF
,
1373 BasicBlock::iterator IP
,
1374 SCEVExpander
&Rewriter
,
1375 SmallVectorImpl
<WeakVH
> &DeadInsts
) const;
1376 void RewriteForPHI(PHINode
*PN
, const LSRFixup
&LF
,
1378 SCEVExpander
&Rewriter
,
1379 SmallVectorImpl
<WeakVH
> &DeadInsts
,
1381 void Rewrite(const LSRFixup
&LF
,
1383 SCEVExpander
&Rewriter
,
1384 SmallVectorImpl
<WeakVH
> &DeadInsts
,
1386 void ImplementSolution(const SmallVectorImpl
<const Formula
*> &Solution
,
1389 LSRInstance(const TargetLowering
*tli
, Loop
*l
, Pass
*P
);
1391 bool getChanged() const { return Changed
; }
1393 void print_factors_and_types(raw_ostream
&OS
) const;
1394 void print_fixups(raw_ostream
&OS
) const;
1395 void print_uses(raw_ostream
&OS
) const;
1396 void print(raw_ostream
&OS
) const;
1402 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1403 /// inside the loop then try to eliminate the cast operation.
1404 void LSRInstance::OptimizeShadowIV() {
1405 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
1406 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
1409 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end();
1410 UI
!= E
; /* empty */) {
1411 IVUsers::const_iterator CandidateUI
= UI
;
1413 Instruction
*ShadowUse
= CandidateUI
->getUser();
1414 const Type
*DestTy
= NULL
;
1416 /* If shadow use is a int->float cast then insert a second IV
1417 to eliminate this cast.
1419 for (unsigned i = 0; i < n; ++i)
1425 for (unsigned i = 0; i < n; ++i, ++d)
1428 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser()))
1429 DestTy
= UCast
->getDestTy();
1430 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser()))
1431 DestTy
= SCast
->getDestTy();
1432 if (!DestTy
) continue;
1435 // If target does not support DestTy natively then do not apply
1436 // this transformation.
1437 EVT DVT
= TLI
->getValueType(DestTy
);
1438 if (!TLI
->isTypeLegal(DVT
)) continue;
1441 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
1443 if (PH
->getNumIncomingValues() != 2) continue;
1445 const Type
*SrcTy
= PH
->getType();
1446 int Mantissa
= DestTy
->getFPMantissaWidth();
1447 if (Mantissa
== -1) continue;
1448 if ((int)SE
.getTypeSizeInBits(SrcTy
) > Mantissa
)
1451 unsigned Entry
, Latch
;
1452 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
1460 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
1461 if (!Init
) continue;
1462 Constant
*NewInit
= ConstantFP::get(DestTy
, Init
->getZExtValue());
1464 BinaryOperator
*Incr
=
1465 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
1466 if (!Incr
) continue;
1467 if (Incr
->getOpcode() != Instruction::Add
1468 && Incr
->getOpcode() != Instruction::Sub
)
1471 /* Initialize new IV, double d = 0.0 in above example. */
1472 ConstantInt
*C
= NULL
;
1473 if (Incr
->getOperand(0) == PH
)
1474 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
1475 else if (Incr
->getOperand(1) == PH
)
1476 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
1482 // Ignore negative constants, as the code below doesn't handle them
1483 // correctly. TODO: Remove this restriction.
1484 if (!C
->getValue().isStrictlyPositive()) continue;
1486 /* Add new PHINode. */
1487 PHINode
*NewPH
= PHINode::Create(DestTy
, "IV.S.", PH
);
1489 /* create new increment. '++d' in above example. */
1490 Constant
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
1491 BinaryOperator
*NewIncr
=
1492 BinaryOperator::Create(Incr
->getOpcode() == Instruction::Add
?
1493 Instruction::FAdd
: Instruction::FSub
,
1494 NewPH
, CFP
, "IV.S.next.", Incr
);
1496 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
1497 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
1499 /* Remove cast operation */
1500 ShadowUse
->replaceAllUsesWith(NewPH
);
1501 ShadowUse
->eraseFromParent();
1507 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1508 /// set the IV user and stride information and return true, otherwise return
1510 bool LSRInstance::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
) {
1511 for (IVUsers::iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
)
1512 if (UI
->getUser() == Cond
) {
1513 // NOTE: we could handle setcc instructions with multiple uses here, but
1514 // InstCombine does it as well for simple uses, it's not clear that it
1515 // occurs enough in real life to handle.
1522 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1523 /// a max computation.
1525 /// This is a narrow solution to a specific, but acute, problem. For loops
1531 /// } while (++i < n);
1533 /// the trip count isn't just 'n', because 'n' might not be positive. And
1534 /// unfortunately this can come up even for loops where the user didn't use
1535 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1536 /// will commonly be lowered like this:
1542 /// } while (++i < n);
1545 /// and then it's possible for subsequent optimization to obscure the if
1546 /// test in such a way that indvars can't find it.
1548 /// When indvars can't find the if test in loops like this, it creates a
1549 /// max expression, which allows it to give the loop a canonical
1550 /// induction variable:
1553 /// max = n < 1 ? 1 : n;
1556 /// } while (++i != max);
1558 /// Canonical induction variables are necessary because the loop passes
1559 /// are designed around them. The most obvious example of this is the
1560 /// LoopInfo analysis, which doesn't remember trip count values. It
1561 /// expects to be able to rediscover the trip count each time it is
1562 /// needed, and it does this using a simple analysis that only succeeds if
1563 /// the loop has a canonical induction variable.
1565 /// However, when it comes time to generate code, the maximum operation
1566 /// can be quite costly, especially if it's inside of an outer loop.
1568 /// This function solves this problem by detecting this type of loop and
1569 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1570 /// the instructions for the maximum computation.
1572 ICmpInst
*LSRInstance::OptimizeMax(ICmpInst
*Cond
, IVStrideUse
* &CondUse
) {
1573 // Check that the loop matches the pattern we're looking for.
1574 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
1575 Cond
->getPredicate() != CmpInst::ICMP_NE
)
1578 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
1579 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
1581 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
1582 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
1584 const SCEV
*One
= SE
.getConstant(BackedgeTakenCount
->getType(), 1);
1586 // Add one to the backedge-taken count to get the trip count.
1587 const SCEV
*IterationCount
= SE
.getAddExpr(One
, BackedgeTakenCount
);
1588 if (IterationCount
!= SE
.getSCEV(Sel
)) return Cond
;
1590 // Check for a max calculation that matches the pattern. There's no check
1591 // for ICMP_ULE here because the comparison would be with zero, which
1592 // isn't interesting.
1593 CmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
1594 const SCEVNAryExpr
*Max
= 0;
1595 if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(BackedgeTakenCount
)) {
1596 Pred
= ICmpInst::ICMP_SLE
;
1598 } else if (const SCEVSMaxExpr
*S
= dyn_cast
<SCEVSMaxExpr
>(IterationCount
)) {
1599 Pred
= ICmpInst::ICMP_SLT
;
1601 } else if (const SCEVUMaxExpr
*U
= dyn_cast
<SCEVUMaxExpr
>(IterationCount
)) {
1602 Pred
= ICmpInst::ICMP_ULT
;
1609 // To handle a max with more than two operands, this optimization would
1610 // require additional checking and setup.
1611 if (Max
->getNumOperands() != 2)
1614 const SCEV
*MaxLHS
= Max
->getOperand(0);
1615 const SCEV
*MaxRHS
= Max
->getOperand(1);
1617 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1618 // for a comparison with 1. For <= and >=, a comparison with zero.
1620 (ICmpInst::isTrueWhenEqual(Pred
) ? !MaxLHS
->isZero() : (MaxLHS
!= One
)))
1623 // Check the relevant induction variable for conformance to
1625 const SCEV
*IV
= SE
.getSCEV(Cond
->getOperand(0));
1626 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
1627 if (!AR
|| !AR
->isAffine() ||
1628 AR
->getStart() != One
||
1629 AR
->getStepRecurrence(SE
) != One
)
1632 assert(AR
->getLoop() == L
&&
1633 "Loop condition operand is an addrec in a different loop!");
1635 // Check the right operand of the select, and remember it, as it will
1636 // be used in the new comparison instruction.
1638 if (ICmpInst::isTrueWhenEqual(Pred
)) {
1639 // Look for n+1, and grab n.
1640 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(1)))
1641 if (isa
<ConstantInt
>(BO
->getOperand(1)) &&
1642 cast
<ConstantInt
>(BO
->getOperand(1))->isOne() &&
1643 SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
1644 NewRHS
= BO
->getOperand(0);
1645 if (AddOperator
*BO
= dyn_cast
<AddOperator
>(Sel
->getOperand(2)))
1646 if (isa
<ConstantInt
>(BO
->getOperand(1)) &&
1647 cast
<ConstantInt
>(BO
->getOperand(1))->isOne() &&
1648 SE
.getSCEV(BO
->getOperand(0)) == MaxRHS
)
1649 NewRHS
= BO
->getOperand(0);
1652 } else if (SE
.getSCEV(Sel
->getOperand(1)) == MaxRHS
)
1653 NewRHS
= Sel
->getOperand(1);
1654 else if (SE
.getSCEV(Sel
->getOperand(2)) == MaxRHS
)
1655 NewRHS
= Sel
->getOperand(2);
1656 else if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(MaxRHS
))
1657 NewRHS
= SU
->getValue();
1659 // Max doesn't match expected pattern.
1662 // Determine the new comparison opcode. It may be signed or unsigned,
1663 // and the original comparison may be either equality or inequality.
1664 if (Cond
->getPredicate() == CmpInst::ICMP_EQ
)
1665 Pred
= CmpInst::getInversePredicate(Pred
);
1667 // Ok, everything looks ok to change the condition into an SLT or SGE and
1668 // delete the max calculation.
1670 new ICmpInst(Cond
, Pred
, Cond
->getOperand(0), NewRHS
, "scmp");
1672 // Delete the max calculation instructions.
1673 Cond
->replaceAllUsesWith(NewCond
);
1674 CondUse
->setUser(NewCond
);
1675 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
1676 Cond
->eraseFromParent();
1677 Sel
->eraseFromParent();
1678 if (Cmp
->use_empty())
1679 Cmp
->eraseFromParent();
1683 /// OptimizeLoopTermCond - Change loop terminating condition to use the
1684 /// postinc iv when possible.
1686 LSRInstance::OptimizeLoopTermCond() {
1687 SmallPtrSet
<Instruction
*, 4> PostIncs
;
1689 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1690 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
1691 L
->getExitingBlocks(ExitingBlocks
);
1693 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
1694 BasicBlock
*ExitingBlock
= ExitingBlocks
[i
];
1696 // Get the terminating condition for the loop if possible. If we
1697 // can, we want to change it to use a post-incremented version of its
1698 // induction variable, to allow coalescing the live ranges for the IV into
1699 // one register value.
1701 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
1704 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1705 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
1708 // Search IVUsesByStride to find Cond's IVUse if there is one.
1709 IVStrideUse
*CondUse
= 0;
1710 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
1711 if (!FindIVUserForCond(Cond
, CondUse
))
1714 // If the trip count is computed in terms of a max (due to ScalarEvolution
1715 // being unable to find a sufficient guard, for example), change the loop
1716 // comparison to use SLT or ULT instead of NE.
1717 // One consequence of doing this now is that it disrupts the count-down
1718 // optimization. That's not always a bad thing though, because in such
1719 // cases it may still be worthwhile to avoid a max.
1720 Cond
= OptimizeMax(Cond
, CondUse
);
1722 // If this exiting block dominates the latch block, it may also use
1723 // the post-inc value if it won't be shared with other uses.
1724 // Check for dominance.
1725 if (!DT
.dominates(ExitingBlock
, LatchBlock
))
1728 // Conservatively avoid trying to use the post-inc value in non-latch
1729 // exits if there may be pre-inc users in intervening blocks.
1730 if (LatchBlock
!= ExitingBlock
)
1731 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
)
1732 // Test if the use is reachable from the exiting block. This dominator
1733 // query is a conservative approximation of reachability.
1734 if (&*UI
!= CondUse
&&
1735 !DT
.properlyDominates(UI
->getUser()->getParent(), ExitingBlock
)) {
1736 // Conservatively assume there may be reuse if the quotient of their
1737 // strides could be a legal scale.
1738 const SCEV
*A
= IU
.getStride(*CondUse
, L
);
1739 const SCEV
*B
= IU
.getStride(*UI
, L
);
1740 if (!A
|| !B
) continue;
1741 if (SE
.getTypeSizeInBits(A
->getType()) !=
1742 SE
.getTypeSizeInBits(B
->getType())) {
1743 if (SE
.getTypeSizeInBits(A
->getType()) >
1744 SE
.getTypeSizeInBits(B
->getType()))
1745 B
= SE
.getSignExtendExpr(B
, A
->getType());
1747 A
= SE
.getSignExtendExpr(A
, B
->getType());
1749 if (const SCEVConstant
*D
=
1750 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(B
, A
, SE
))) {
1751 const ConstantInt
*C
= D
->getValue();
1752 // Stride of one or negative one can have reuse with non-addresses.
1753 if (C
->isOne() || C
->isAllOnesValue())
1754 goto decline_post_inc
;
1755 // Avoid weird situations.
1756 if (C
->getValue().getMinSignedBits() >= 64 ||
1757 C
->getValue().isMinSignedValue())
1758 goto decline_post_inc
;
1759 // Without TLI, assume that any stride might be valid, and so any
1760 // use might be shared.
1762 goto decline_post_inc
;
1763 // Check for possible scaled-address reuse.
1764 const Type
*AccessTy
= getAccessType(UI
->getUser());
1765 TargetLowering::AddrMode AM
;
1766 AM
.Scale
= C
->getSExtValue();
1767 if (TLI
->isLegalAddressingMode(AM
, AccessTy
))
1768 goto decline_post_inc
;
1769 AM
.Scale
= -AM
.Scale
;
1770 if (TLI
->isLegalAddressingMode(AM
, AccessTy
))
1771 goto decline_post_inc
;
1775 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
1778 // It's possible for the setcc instruction to be anywhere in the loop, and
1779 // possible for it to have multiple users. If it is not immediately before
1780 // the exiting block branch, move it.
1781 if (&*++BasicBlock::iterator(Cond
) != TermBr
) {
1782 if (Cond
->hasOneUse()) {
1783 Cond
->moveBefore(TermBr
);
1785 // Clone the terminating condition and insert into the loopend.
1786 ICmpInst
*OldCond
= Cond
;
1787 Cond
= cast
<ICmpInst
>(Cond
->clone());
1788 Cond
->setName(L
->getHeader()->getName() + ".termcond");
1789 ExitingBlock
->getInstList().insert(TermBr
, Cond
);
1791 // Clone the IVUse, as the old use still exists!
1792 CondUse
= &IU
.AddUser(Cond
, CondUse
->getOperandValToReplace());
1793 TermBr
->replaceUsesOfWith(OldCond
, Cond
);
1797 // If we get to here, we know that we can transform the setcc instruction to
1798 // use the post-incremented version of the IV, allowing us to coalesce the
1799 // live ranges for the IV correctly.
1800 CondUse
->transformToPostInc(L
);
1803 PostIncs
.insert(Cond
);
1807 // Determine an insertion point for the loop induction variable increment. It
1808 // must dominate all the post-inc comparisons we just set up, and it must
1809 // dominate the loop latch edge.
1810 IVIncInsertPos
= L
->getLoopLatch()->getTerminator();
1811 for (SmallPtrSet
<Instruction
*, 4>::const_iterator I
= PostIncs
.begin(),
1812 E
= PostIncs
.end(); I
!= E
; ++I
) {
1814 DT
.findNearestCommonDominator(IVIncInsertPos
->getParent(),
1816 if (BB
== (*I
)->getParent())
1817 IVIncInsertPos
= *I
;
1818 else if (BB
!= IVIncInsertPos
->getParent())
1819 IVIncInsertPos
= BB
->getTerminator();
1823 /// reconcileNewOffset - Determine if the given use can accomodate a fixup
1824 /// at the given offset and other details. If so, update the use and
1827 LSRInstance::reconcileNewOffset(LSRUse
&LU
, int64_t NewOffset
, bool HasBaseReg
,
1828 LSRUse::KindType Kind
, const Type
*AccessTy
) {
1829 int64_t NewMinOffset
= LU
.MinOffset
;
1830 int64_t NewMaxOffset
= LU
.MaxOffset
;
1831 const Type
*NewAccessTy
= AccessTy
;
1833 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1834 // something conservative, however this can pessimize in the case that one of
1835 // the uses will have all its uses outside the loop, for example.
1836 if (LU
.Kind
!= Kind
)
1838 // Conservatively assume HasBaseReg is true for now.
1839 if (NewOffset
< LU
.MinOffset
) {
1840 if (!isAlwaysFoldable(LU
.MaxOffset
- NewOffset
, 0, HasBaseReg
,
1841 Kind
, AccessTy
, TLI
))
1843 NewMinOffset
= NewOffset
;
1844 } else if (NewOffset
> LU
.MaxOffset
) {
1845 if (!isAlwaysFoldable(NewOffset
- LU
.MinOffset
, 0, HasBaseReg
,
1846 Kind
, AccessTy
, TLI
))
1848 NewMaxOffset
= NewOffset
;
1850 // Check for a mismatched access type, and fall back conservatively as needed.
1851 // TODO: Be less conservative when the type is similar and can use the same
1852 // addressing modes.
1853 if (Kind
== LSRUse::Address
&& AccessTy
!= LU
.AccessTy
)
1854 NewAccessTy
= Type::getVoidTy(AccessTy
->getContext());
1857 LU
.MinOffset
= NewMinOffset
;
1858 LU
.MaxOffset
= NewMaxOffset
;
1859 LU
.AccessTy
= NewAccessTy
;
1860 if (NewOffset
!= LU
.Offsets
.back())
1861 LU
.Offsets
.push_back(NewOffset
);
1865 /// getUse - Return an LSRUse index and an offset value for a fixup which
1866 /// needs the given expression, with the given kind and optional access type.
1867 /// Either reuse an existing use or create a new one, as needed.
1868 std::pair
<size_t, int64_t>
1869 LSRInstance::getUse(const SCEV
*&Expr
,
1870 LSRUse::KindType Kind
, const Type
*AccessTy
) {
1871 const SCEV
*Copy
= Expr
;
1872 int64_t Offset
= ExtractImmediate(Expr
, SE
);
1874 // Basic uses can't accept any offset, for example.
1875 if (!isAlwaysFoldable(Offset
, 0, /*HasBaseReg=*/true, Kind
, AccessTy
, TLI
)) {
1880 std::pair
<UseMapTy::iterator
, bool> P
=
1881 UseMap
.insert(std::make_pair(std::make_pair(Expr
, Kind
), 0));
1883 // A use already existed with this base.
1884 size_t LUIdx
= P
.first
->second
;
1885 LSRUse
&LU
= Uses
[LUIdx
];
1886 if (reconcileNewOffset(LU
, Offset
, /*HasBaseReg=*/true, Kind
, AccessTy
))
1888 return std::make_pair(LUIdx
, Offset
);
1891 // Create a new use.
1892 size_t LUIdx
= Uses
.size();
1893 P
.first
->second
= LUIdx
;
1894 Uses
.push_back(LSRUse(Kind
, AccessTy
));
1895 LSRUse
&LU
= Uses
[LUIdx
];
1897 // We don't need to track redundant offsets, but we don't need to go out
1898 // of our way here to avoid them.
1899 if (LU
.Offsets
.empty() || Offset
!= LU
.Offsets
.back())
1900 LU
.Offsets
.push_back(Offset
);
1902 LU
.MinOffset
= Offset
;
1903 LU
.MaxOffset
= Offset
;
1904 return std::make_pair(LUIdx
, Offset
);
1907 /// DeleteUse - Delete the given use from the Uses list.
1908 void LSRInstance::DeleteUse(LSRUse
&LU
, size_t LUIdx
) {
1909 if (&LU
!= &Uses
.back())
1910 std::swap(LU
, Uses
.back());
1914 RegUses
.SwapAndDropUse(LUIdx
, Uses
.size());
1917 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
1918 /// a formula that has the same registers as the given formula.
1920 LSRInstance::FindUseWithSimilarFormula(const Formula
&OrigF
,
1921 const LSRUse
&OrigLU
) {
1922 // Search all uses for the formula. This could be more clever.
1923 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
1924 LSRUse
&LU
= Uses
[LUIdx
];
1925 // Check whether this use is close enough to OrigLU, to see whether it's
1926 // worthwhile looking through its formulae.
1927 // Ignore ICmpZero uses because they may contain formulae generated by
1928 // GenerateICmpZeroScales, in which case adding fixup offsets may
1930 if (&LU
!= &OrigLU
&&
1931 LU
.Kind
!= LSRUse::ICmpZero
&&
1932 LU
.Kind
== OrigLU
.Kind
&& OrigLU
.AccessTy
== LU
.AccessTy
&&
1933 LU
.WidestFixupType
== OrigLU
.WidestFixupType
&&
1934 LU
.HasFormulaWithSameRegs(OrigF
)) {
1935 // Scan through this use's formulae.
1936 for (SmallVectorImpl
<Formula
>::const_iterator I
= LU
.Formulae
.begin(),
1937 E
= LU
.Formulae
.end(); I
!= E
; ++I
) {
1938 const Formula
&F
= *I
;
1939 // Check to see if this formula has the same registers and symbols
1941 if (F
.BaseRegs
== OrigF
.BaseRegs
&&
1942 F
.ScaledReg
== OrigF
.ScaledReg
&&
1943 F
.AM
.BaseGV
== OrigF
.AM
.BaseGV
&&
1944 F
.AM
.Scale
== OrigF
.AM
.Scale
) {
1945 if (F
.AM
.BaseOffs
== 0)
1947 // This is the formula where all the registers and symbols matched;
1948 // there aren't going to be any others. Since we declined it, we
1949 // can skip the rest of the formulae and procede to the next LSRUse.
1956 // Nothing looked good.
1960 void LSRInstance::CollectInterestingTypesAndFactors() {
1961 SmallSetVector
<const SCEV
*, 4> Strides
;
1963 // Collect interesting types and strides.
1964 SmallVector
<const SCEV
*, 4> Worklist
;
1965 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
) {
1966 const SCEV
*Expr
= IU
.getExpr(*UI
);
1968 // Collect interesting types.
1969 Types
.insert(SE
.getEffectiveSCEVType(Expr
->getType()));
1971 // Add strides for mentioned loops.
1972 Worklist
.push_back(Expr
);
1974 const SCEV
*S
= Worklist
.pop_back_val();
1975 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
1976 Strides
.insert(AR
->getStepRecurrence(SE
));
1977 Worklist
.push_back(AR
->getStart());
1978 } else if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
1979 Worklist
.append(Add
->op_begin(), Add
->op_end());
1981 } while (!Worklist
.empty());
1984 // Compute interesting factors from the set of interesting strides.
1985 for (SmallSetVector
<const SCEV
*, 4>::const_iterator
1986 I
= Strides
.begin(), E
= Strides
.end(); I
!= E
; ++I
)
1987 for (SmallSetVector
<const SCEV
*, 4>::const_iterator NewStrideIter
=
1988 llvm::next(I
); NewStrideIter
!= E
; ++NewStrideIter
) {
1989 const SCEV
*OldStride
= *I
;
1990 const SCEV
*NewStride
= *NewStrideIter
;
1992 if (SE
.getTypeSizeInBits(OldStride
->getType()) !=
1993 SE
.getTypeSizeInBits(NewStride
->getType())) {
1994 if (SE
.getTypeSizeInBits(OldStride
->getType()) >
1995 SE
.getTypeSizeInBits(NewStride
->getType()))
1996 NewStride
= SE
.getSignExtendExpr(NewStride
, OldStride
->getType());
1998 OldStride
= SE
.getSignExtendExpr(OldStride
, NewStride
->getType());
2000 if (const SCEVConstant
*Factor
=
2001 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(NewStride
, OldStride
,
2003 if (Factor
->getValue()->getValue().getMinSignedBits() <= 64)
2004 Factors
.insert(Factor
->getValue()->getValue().getSExtValue());
2005 } else if (const SCEVConstant
*Factor
=
2006 dyn_cast_or_null
<SCEVConstant
>(getExactSDiv(OldStride
,
2009 if (Factor
->getValue()->getValue().getMinSignedBits() <= 64)
2010 Factors
.insert(Factor
->getValue()->getValue().getSExtValue());
2014 // If all uses use the same type, don't bother looking for truncation-based
2016 if (Types
.size() == 1)
2019 DEBUG(print_factors_and_types(dbgs()));
2022 void LSRInstance::CollectFixupsAndInitialFormulae() {
2023 for (IVUsers::const_iterator UI
= IU
.begin(), E
= IU
.end(); UI
!= E
; ++UI
) {
2025 LSRFixup
&LF
= getNewFixup();
2026 LF
.UserInst
= UI
->getUser();
2027 LF
.OperandValToReplace
= UI
->getOperandValToReplace();
2028 LF
.PostIncLoops
= UI
->getPostIncLoops();
2030 LSRUse::KindType Kind
= LSRUse::Basic
;
2031 const Type
*AccessTy
= 0;
2032 if (isAddressUse(LF
.UserInst
, LF
.OperandValToReplace
)) {
2033 Kind
= LSRUse::Address
;
2034 AccessTy
= getAccessType(LF
.UserInst
);
2037 const SCEV
*S
= IU
.getExpr(*UI
);
2039 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2040 // (N - i == 0), and this allows (N - i) to be the expression that we work
2041 // with rather than just N or i, so we can consider the register
2042 // requirements for both N and i at the same time. Limiting this code to
2043 // equality icmps is not a problem because all interesting loops use
2044 // equality icmps, thanks to IndVarSimplify.
2045 if (ICmpInst
*CI
= dyn_cast
<ICmpInst
>(LF
.UserInst
))
2046 if (CI
->isEquality()) {
2047 // Swap the operands if needed to put the OperandValToReplace on the
2048 // left, for consistency.
2049 Value
*NV
= CI
->getOperand(1);
2050 if (NV
== LF
.OperandValToReplace
) {
2051 CI
->setOperand(1, CI
->getOperand(0));
2052 CI
->setOperand(0, NV
);
2053 NV
= CI
->getOperand(1);
2057 // x == y --> x - y == 0
2058 const SCEV
*N
= SE
.getSCEV(NV
);
2059 if (N
->isLoopInvariant(L
)) {
2060 Kind
= LSRUse::ICmpZero
;
2061 S
= SE
.getMinusSCEV(N
, S
);
2064 // -1 and the negations of all interesting strides (except the negation
2065 // of -1) are now also interesting.
2066 for (size_t i
= 0, e
= Factors
.size(); i
!= e
; ++i
)
2067 if (Factors
[i
] != -1)
2068 Factors
.insert(-(uint64_t)Factors
[i
]);
2072 // Set up the initial formula for this use.
2073 std::pair
<size_t, int64_t> P
= getUse(S
, Kind
, AccessTy
);
2075 LF
.Offset
= P
.second
;
2076 LSRUse
&LU
= Uses
[LF
.LUIdx
];
2077 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
2078 if (!LU
.WidestFixupType
||
2079 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
2080 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
2081 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
2083 // If this is the first use of this LSRUse, give it a formula.
2084 if (LU
.Formulae
.empty()) {
2085 InsertInitialFormula(S
, LU
, LF
.LUIdx
);
2086 CountRegisters(LU
.Formulae
.back(), LF
.LUIdx
);
2090 DEBUG(print_fixups(dbgs()));
2093 /// InsertInitialFormula - Insert a formula for the given expression into
2094 /// the given use, separating out loop-variant portions from loop-invariant
2095 /// and loop-computable portions.
2097 LSRInstance::InsertInitialFormula(const SCEV
*S
, LSRUse
&LU
, size_t LUIdx
) {
2099 F
.InitialMatch(S
, L
, SE
, DT
);
2100 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
2101 assert(Inserted
&& "Initial formula already exists!"); (void)Inserted
;
2104 /// InsertSupplementalFormula - Insert a simple single-register formula for
2105 /// the given expression into the given use.
2107 LSRInstance::InsertSupplementalFormula(const SCEV
*S
,
2108 LSRUse
&LU
, size_t LUIdx
) {
2110 F
.BaseRegs
.push_back(S
);
2111 F
.AM
.HasBaseReg
= true;
2112 bool Inserted
= InsertFormula(LU
, LUIdx
, F
);
2113 assert(Inserted
&& "Supplemental formula already exists!"); (void)Inserted
;
2116 /// CountRegisters - Note which registers are used by the given formula,
2117 /// updating RegUses.
2118 void LSRInstance::CountRegisters(const Formula
&F
, size_t LUIdx
) {
2120 RegUses
.CountRegister(F
.ScaledReg
, LUIdx
);
2121 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= F
.BaseRegs
.begin(),
2122 E
= F
.BaseRegs
.end(); I
!= E
; ++I
)
2123 RegUses
.CountRegister(*I
, LUIdx
);
2126 /// InsertFormula - If the given formula has not yet been inserted, add it to
2127 /// the list, and return true. Return false otherwise.
2128 bool LSRInstance::InsertFormula(LSRUse
&LU
, unsigned LUIdx
, const Formula
&F
) {
2129 if (!LU
.InsertFormula(F
))
2132 CountRegisters(F
, LUIdx
);
2136 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2137 /// loop-invariant values which we're tracking. These other uses will pin these
2138 /// values in registers, making them less profitable for elimination.
2139 /// TODO: This currently misses non-constant addrec step registers.
2140 /// TODO: Should this give more weight to users inside the loop?
2142 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2143 SmallVector
<const SCEV
*, 8> Worklist(RegUses
.begin(), RegUses
.end());
2144 SmallPtrSet
<const SCEV
*, 8> Inserted
;
2146 while (!Worklist
.empty()) {
2147 const SCEV
*S
= Worklist
.pop_back_val();
2149 if (const SCEVNAryExpr
*N
= dyn_cast
<SCEVNAryExpr
>(S
))
2150 Worklist
.append(N
->op_begin(), N
->op_end());
2151 else if (const SCEVCastExpr
*C
= dyn_cast
<SCEVCastExpr
>(S
))
2152 Worklist
.push_back(C
->getOperand());
2153 else if (const SCEVUDivExpr
*D
= dyn_cast
<SCEVUDivExpr
>(S
)) {
2154 Worklist
.push_back(D
->getLHS());
2155 Worklist
.push_back(D
->getRHS());
2156 } else if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
2157 if (!Inserted
.insert(U
)) continue;
2158 const Value
*V
= U
->getValue();
2159 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
2160 // Look for instructions defined outside the loop.
2161 if (L
->contains(Inst
)) continue;
2162 } else if (isa
<UndefValue
>(V
))
2163 // Undef doesn't have a live range, so it doesn't matter.
2165 for (Value::const_use_iterator UI
= V
->use_begin(), UE
= V
->use_end();
2167 const Instruction
*UserInst
= dyn_cast
<Instruction
>(*UI
);
2168 // Ignore non-instructions.
2171 // Ignore instructions in other functions (as can happen with
2173 if (UserInst
->getParent()->getParent() != L
->getHeader()->getParent())
2175 // Ignore instructions not dominated by the loop.
2176 const BasicBlock
*UseBB
= !isa
<PHINode
>(UserInst
) ?
2177 UserInst
->getParent() :
2178 cast
<PHINode
>(UserInst
)->getIncomingBlock(
2179 PHINode::getIncomingValueNumForOperand(UI
.getOperandNo()));
2180 if (!DT
.dominates(L
->getHeader(), UseBB
))
2182 // Ignore uses which are part of other SCEV expressions, to avoid
2183 // analyzing them multiple times.
2184 if (SE
.isSCEVable(UserInst
->getType())) {
2185 const SCEV
*UserS
= SE
.getSCEV(const_cast<Instruction
*>(UserInst
));
2186 // If the user is a no-op, look through to its uses.
2187 if (!isa
<SCEVUnknown
>(UserS
))
2191 SE
.getUnknown(const_cast<Instruction
*>(UserInst
)));
2195 // Ignore icmp instructions which are already being analyzed.
2196 if (const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(UserInst
)) {
2197 unsigned OtherIdx
= !UI
.getOperandNo();
2198 Value
*OtherOp
= const_cast<Value
*>(ICI
->getOperand(OtherIdx
));
2199 if (SE
.getSCEV(OtherOp
)->hasComputableLoopEvolution(L
))
2203 LSRFixup
&LF
= getNewFixup();
2204 LF
.UserInst
= const_cast<Instruction
*>(UserInst
);
2205 LF
.OperandValToReplace
= UI
.getUse();
2206 std::pair
<size_t, int64_t> P
= getUse(S
, LSRUse::Basic
, 0);
2208 LF
.Offset
= P
.second
;
2209 LSRUse
&LU
= Uses
[LF
.LUIdx
];
2210 LU
.AllFixupsOutsideLoop
&= LF
.isUseFullyOutsideLoop(L
);
2211 if (!LU
.WidestFixupType
||
2212 SE
.getTypeSizeInBits(LU
.WidestFixupType
) <
2213 SE
.getTypeSizeInBits(LF
.OperandValToReplace
->getType()))
2214 LU
.WidestFixupType
= LF
.OperandValToReplace
->getType();
2215 InsertSupplementalFormula(U
, LU
, LF
.LUIdx
);
2216 CountRegisters(LU
.Formulae
.back(), Uses
.size() - 1);
2223 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
2224 /// separate registers. If C is non-null, multiply each subexpression by C.
2225 static void CollectSubexprs(const SCEV
*S
, const SCEVConstant
*C
,
2226 SmallVectorImpl
<const SCEV
*> &Ops
,
2228 ScalarEvolution
&SE
) {
2229 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
2230 // Break out add operands.
2231 for (SCEVAddExpr::op_iterator I
= Add
->op_begin(), E
= Add
->op_end();
2233 CollectSubexprs(*I
, C
, Ops
, L
, SE
);
2235 } else if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
2236 // Split a non-zero base out of an addrec.
2237 if (!AR
->getStart()->isZero()) {
2238 CollectSubexprs(SE
.getAddRecExpr(SE
.getConstant(AR
->getType(), 0),
2239 AR
->getStepRecurrence(SE
),
2242 CollectSubexprs(AR
->getStart(), C
, Ops
, L
, SE
);
2245 } else if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
2246 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2247 if (Mul
->getNumOperands() == 2)
2248 if (const SCEVConstant
*Op0
=
2249 dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
2250 CollectSubexprs(Mul
->getOperand(1),
2251 C
? cast
<SCEVConstant
>(SE
.getMulExpr(C
, Op0
)) : Op0
,
2257 // Otherwise use the value itself, optionally with a scale applied.
2258 Ops
.push_back(C
? SE
.getMulExpr(C
, S
) : S
);
2261 /// GenerateReassociations - Split out subexpressions from adds and the bases of
2263 void LSRInstance::GenerateReassociations(LSRUse
&LU
, unsigned LUIdx
,
2266 // Arbitrarily cap recursion to protect compile time.
2267 if (Depth
>= 3) return;
2269 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
2270 const SCEV
*BaseReg
= Base
.BaseRegs
[i
];
2272 SmallVector
<const SCEV
*, 8> AddOps
;
2273 CollectSubexprs(BaseReg
, 0, AddOps
, L
, SE
);
2275 if (AddOps
.size() == 1) continue;
2277 for (SmallVectorImpl
<const SCEV
*>::const_iterator J
= AddOps
.begin(),
2278 JE
= AddOps
.end(); J
!= JE
; ++J
) {
2280 // Loop-variant "unknown" values are uninteresting; we won't be able to
2281 // do anything meaningful with them.
2282 if (isa
<SCEVUnknown
>(*J
) && !(*J
)->isLoopInvariant(L
))
2285 // Don't pull a constant into a register if the constant could be folded
2286 // into an immediate field.
2287 if (isAlwaysFoldable(*J
, LU
.MinOffset
, LU
.MaxOffset
,
2288 Base
.getNumRegs() > 1,
2289 LU
.Kind
, LU
.AccessTy
, TLI
, SE
))
2292 // Collect all operands except *J.
2293 SmallVector
<const SCEV
*, 8> InnerAddOps
2294 (((const SmallVector
<const SCEV
*, 8> &)AddOps
).begin(), J
);
2296 (llvm::next(J
), ((const SmallVector
<const SCEV
*, 8> &)AddOps
).end());
2298 // Don't leave just a constant behind in a register if the constant could
2299 // be folded into an immediate field.
2300 if (InnerAddOps
.size() == 1 &&
2301 isAlwaysFoldable(InnerAddOps
[0], LU
.MinOffset
, LU
.MaxOffset
,
2302 Base
.getNumRegs() > 1,
2303 LU
.Kind
, LU
.AccessTy
, TLI
, SE
))
2306 const SCEV
*InnerSum
= SE
.getAddExpr(InnerAddOps
);
2307 if (InnerSum
->isZero())
2310 F
.BaseRegs
[i
] = InnerSum
;
2311 F
.BaseRegs
.push_back(*J
);
2312 if (InsertFormula(LU
, LUIdx
, F
))
2313 // If that formula hadn't been seen before, recurse to find more like
2315 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
.back(), Depth
+1);
2320 /// GenerateCombinations - Generate a formula consisting of all of the
2321 /// loop-dominating registers added into a single register.
2322 void LSRInstance::GenerateCombinations(LSRUse
&LU
, unsigned LUIdx
,
2324 // This method is only interesting on a plurality of registers.
2325 if (Base
.BaseRegs
.size() <= 1) return;
2329 SmallVector
<const SCEV
*, 4> Ops
;
2330 for (SmallVectorImpl
<const SCEV
*>::const_iterator
2331 I
= Base
.BaseRegs
.begin(), E
= Base
.BaseRegs
.end(); I
!= E
; ++I
) {
2332 const SCEV
*BaseReg
= *I
;
2333 if (BaseReg
->properlyDominates(L
->getHeader(), &DT
) &&
2334 !BaseReg
->hasComputableLoopEvolution(L
))
2335 Ops
.push_back(BaseReg
);
2337 F
.BaseRegs
.push_back(BaseReg
);
2339 if (Ops
.size() > 1) {
2340 const SCEV
*Sum
= SE
.getAddExpr(Ops
);
2341 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2342 // opportunity to fold something. For now, just ignore such cases
2343 // rather than proceed with zero in a register.
2344 if (!Sum
->isZero()) {
2345 F
.BaseRegs
.push_back(Sum
);
2346 (void)InsertFormula(LU
, LUIdx
, F
);
2351 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2352 void LSRInstance::GenerateSymbolicOffsets(LSRUse
&LU
, unsigned LUIdx
,
2354 // We can't add a symbolic offset if the address already contains one.
2355 if (Base
.AM
.BaseGV
) return;
2357 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
2358 const SCEV
*G
= Base
.BaseRegs
[i
];
2359 GlobalValue
*GV
= ExtractSymbol(G
, SE
);
2360 if (G
->isZero() || !GV
)
2364 if (!isLegalUse(F
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2365 LU
.Kind
, LU
.AccessTy
, TLI
))
2368 (void)InsertFormula(LU
, LUIdx
, F
);
2372 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2373 void LSRInstance::GenerateConstantOffsets(LSRUse
&LU
, unsigned LUIdx
,
2375 // TODO: For now, just add the min and max offset, because it usually isn't
2376 // worthwhile looking at everything inbetween.
2377 SmallVector
<int64_t, 2> Worklist
;
2378 Worklist
.push_back(LU
.MinOffset
);
2379 if (LU
.MaxOffset
!= LU
.MinOffset
)
2380 Worklist
.push_back(LU
.MaxOffset
);
2382 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
) {
2383 const SCEV
*G
= Base
.BaseRegs
[i
];
2385 for (SmallVectorImpl
<int64_t>::const_iterator I
= Worklist
.begin(),
2386 E
= Worklist
.end(); I
!= E
; ++I
) {
2388 F
.AM
.BaseOffs
= (uint64_t)Base
.AM
.BaseOffs
- *I
;
2389 if (isLegalUse(F
.AM
, LU
.MinOffset
- *I
, LU
.MaxOffset
- *I
,
2390 LU
.Kind
, LU
.AccessTy
, TLI
)) {
2391 // Add the offset to the base register.
2392 const SCEV
*NewG
= SE
.getAddExpr(SE
.getConstant(G
->getType(), *I
), G
);
2393 // If it cancelled out, drop the base register, otherwise update it.
2394 if (NewG
->isZero()) {
2395 std::swap(F
.BaseRegs
[i
], F
.BaseRegs
.back());
2396 F
.BaseRegs
.pop_back();
2398 F
.BaseRegs
[i
] = NewG
;
2400 (void)InsertFormula(LU
, LUIdx
, F
);
2404 int64_t Imm
= ExtractImmediate(G
, SE
);
2405 if (G
->isZero() || Imm
== 0)
2408 F
.AM
.BaseOffs
= (uint64_t)F
.AM
.BaseOffs
+ Imm
;
2409 if (!isLegalUse(F
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2410 LU
.Kind
, LU
.AccessTy
, TLI
))
2413 (void)InsertFormula(LU
, LUIdx
, F
);
2417 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2418 /// the comparison. For example, x == y -> x*c == y*c.
2419 void LSRInstance::GenerateICmpZeroScales(LSRUse
&LU
, unsigned LUIdx
,
2421 if (LU
.Kind
!= LSRUse::ICmpZero
) return;
2423 // Determine the integer type for the base formula.
2424 const Type
*IntTy
= Base
.getType();
2426 if (SE
.getTypeSizeInBits(IntTy
) > 64) return;
2428 // Don't do this if there is more than one offset.
2429 if (LU
.MinOffset
!= LU
.MaxOffset
) return;
2431 assert(!Base
.AM
.BaseGV
&& "ICmpZero use is not legal!");
2433 // Check each interesting stride.
2434 for (SmallSetVector
<int64_t, 8>::const_iterator
2435 I
= Factors
.begin(), E
= Factors
.end(); I
!= E
; ++I
) {
2436 int64_t Factor
= *I
;
2438 // Check that the multiplication doesn't overflow.
2439 if (Base
.AM
.BaseOffs
== INT64_MIN
&& Factor
== -1)
2441 int64_t NewBaseOffs
= (uint64_t)Base
.AM
.BaseOffs
* Factor
;
2442 if (NewBaseOffs
/ Factor
!= Base
.AM
.BaseOffs
)
2445 // Check that multiplying with the use offset doesn't overflow.
2446 int64_t Offset
= LU
.MinOffset
;
2447 if (Offset
== INT64_MIN
&& Factor
== -1)
2449 Offset
= (uint64_t)Offset
* Factor
;
2450 if (Offset
/ Factor
!= LU
.MinOffset
)
2454 F
.AM
.BaseOffs
= NewBaseOffs
;
2456 // Check that this scale is legal.
2457 if (!isLegalUse(F
.AM
, Offset
, Offset
, LU
.Kind
, LU
.AccessTy
, TLI
))
2460 // Compensate for the use having MinOffset built into it.
2461 F
.AM
.BaseOffs
= (uint64_t)F
.AM
.BaseOffs
+ Offset
- LU
.MinOffset
;
2463 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
2465 // Check that multiplying with each base register doesn't overflow.
2466 for (size_t i
= 0, e
= F
.BaseRegs
.size(); i
!= e
; ++i
) {
2467 F
.BaseRegs
[i
] = SE
.getMulExpr(F
.BaseRegs
[i
], FactorS
);
2468 if (getExactSDiv(F
.BaseRegs
[i
], FactorS
, SE
) != Base
.BaseRegs
[i
])
2472 // Check that multiplying with the scaled register doesn't overflow.
2474 F
.ScaledReg
= SE
.getMulExpr(F
.ScaledReg
, FactorS
);
2475 if (getExactSDiv(F
.ScaledReg
, FactorS
, SE
) != Base
.ScaledReg
)
2479 // If we make it here and it's legal, add it.
2480 (void)InsertFormula(LU
, LUIdx
, F
);
2485 /// GenerateScales - Generate stride factor reuse formulae by making use of
2486 /// scaled-offset address modes, for example.
2487 void LSRInstance::GenerateScales(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
2488 // Determine the integer type for the base formula.
2489 const Type
*IntTy
= Base
.getType();
2492 // If this Formula already has a scaled register, we can't add another one.
2493 if (Base
.AM
.Scale
!= 0) return;
2495 // Check each interesting stride.
2496 for (SmallSetVector
<int64_t, 8>::const_iterator
2497 I
= Factors
.begin(), E
= Factors
.end(); I
!= E
; ++I
) {
2498 int64_t Factor
= *I
;
2500 Base
.AM
.Scale
= Factor
;
2501 Base
.AM
.HasBaseReg
= Base
.BaseRegs
.size() > 1;
2502 // Check whether this scale is going to be legal.
2503 if (!isLegalUse(Base
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2504 LU
.Kind
, LU
.AccessTy
, TLI
)) {
2505 // As a special-case, handle special out-of-loop Basic users specially.
2506 // TODO: Reconsider this special case.
2507 if (LU
.Kind
== LSRUse::Basic
&&
2508 isLegalUse(Base
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2509 LSRUse::Special
, LU
.AccessTy
, TLI
) &&
2510 LU
.AllFixupsOutsideLoop
)
2511 LU
.Kind
= LSRUse::Special
;
2515 // For an ICmpZero, negating a solitary base register won't lead to
2517 if (LU
.Kind
== LSRUse::ICmpZero
&&
2518 !Base
.AM
.HasBaseReg
&& Base
.AM
.BaseOffs
== 0 && !Base
.AM
.BaseGV
)
2520 // For each addrec base reg, apply the scale, if possible.
2521 for (size_t i
= 0, e
= Base
.BaseRegs
.size(); i
!= e
; ++i
)
2522 if (const SCEVAddRecExpr
*AR
=
2523 dyn_cast
<SCEVAddRecExpr
>(Base
.BaseRegs
[i
])) {
2524 const SCEV
*FactorS
= SE
.getConstant(IntTy
, Factor
);
2525 if (FactorS
->isZero())
2527 // Divide out the factor, ignoring high bits, since we'll be
2528 // scaling the value back up in the end.
2529 if (const SCEV
*Quotient
= getExactSDiv(AR
, FactorS
, SE
, true)) {
2530 // TODO: This could be optimized to avoid all the copying.
2532 F
.ScaledReg
= Quotient
;
2533 F
.DeleteBaseReg(F
.BaseRegs
[i
]);
2534 (void)InsertFormula(LU
, LUIdx
, F
);
2540 /// GenerateTruncates - Generate reuse formulae from different IV types.
2541 void LSRInstance::GenerateTruncates(LSRUse
&LU
, unsigned LUIdx
, Formula Base
) {
2542 // This requires TargetLowering to tell us which truncates are free.
2545 // Don't bother truncating symbolic values.
2546 if (Base
.AM
.BaseGV
) return;
2548 // Determine the integer type for the base formula.
2549 const Type
*DstTy
= Base
.getType();
2551 DstTy
= SE
.getEffectiveSCEVType(DstTy
);
2553 for (SmallSetVector
<const Type
*, 4>::const_iterator
2554 I
= Types
.begin(), E
= Types
.end(); I
!= E
; ++I
) {
2555 const Type
*SrcTy
= *I
;
2556 if (SrcTy
!= DstTy
&& TLI
->isTruncateFree(SrcTy
, DstTy
)) {
2559 if (F
.ScaledReg
) F
.ScaledReg
= SE
.getAnyExtendExpr(F
.ScaledReg
, *I
);
2560 for (SmallVectorImpl
<const SCEV
*>::iterator J
= F
.BaseRegs
.begin(),
2561 JE
= F
.BaseRegs
.end(); J
!= JE
; ++J
)
2562 *J
= SE
.getAnyExtendExpr(*J
, SrcTy
);
2564 // TODO: This assumes we've done basic processing on all uses and
2565 // have an idea what the register usage is.
2566 if (!F
.hasRegsUsedByUsesOtherThan(LUIdx
, RegUses
))
2569 (void)InsertFormula(LU
, LUIdx
, F
);
2576 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
2577 /// defer modifications so that the search phase doesn't have to worry about
2578 /// the data structures moving underneath it.
2582 const SCEV
*OrigReg
;
2584 WorkItem(size_t LI
, int64_t I
, const SCEV
*R
)
2585 : LUIdx(LI
), Imm(I
), OrigReg(R
) {}
2587 void print(raw_ostream
&OS
) const;
2593 void WorkItem::print(raw_ostream
&OS
) const {
2594 OS
<< "in formulae referencing " << *OrigReg
<< " in use " << LUIdx
2595 << " , add offset " << Imm
;
2598 void WorkItem::dump() const {
2599 print(errs()); errs() << '\n';
2602 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2603 /// distance apart and try to form reuse opportunities between them.
2604 void LSRInstance::GenerateCrossUseConstantOffsets() {
2605 // Group the registers by their value without any added constant offset.
2606 typedef std::map
<int64_t, const SCEV
*> ImmMapTy
;
2607 typedef DenseMap
<const SCEV
*, ImmMapTy
> RegMapTy
;
2609 DenseMap
<const SCEV
*, SmallBitVector
> UsedByIndicesMap
;
2610 SmallVector
<const SCEV
*, 8> Sequence
;
2611 for (RegUseTracker::const_iterator I
= RegUses
.begin(), E
= RegUses
.end();
2613 const SCEV
*Reg
= *I
;
2614 int64_t Imm
= ExtractImmediate(Reg
, SE
);
2615 std::pair
<RegMapTy::iterator
, bool> Pair
=
2616 Map
.insert(std::make_pair(Reg
, ImmMapTy()));
2618 Sequence
.push_back(Reg
);
2619 Pair
.first
->second
.insert(std::make_pair(Imm
, *I
));
2620 UsedByIndicesMap
[Reg
] |= RegUses
.getUsedByIndices(*I
);
2623 // Now examine each set of registers with the same base value. Build up
2624 // a list of work to do and do the work in a separate step so that we're
2625 // not adding formulae and register counts while we're searching.
2626 SmallVector
<WorkItem
, 32> WorkItems
;
2627 SmallSet
<std::pair
<size_t, int64_t>, 32> UniqueItems
;
2628 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= Sequence
.begin(),
2629 E
= Sequence
.end(); I
!= E
; ++I
) {
2630 const SCEV
*Reg
= *I
;
2631 const ImmMapTy
&Imms
= Map
.find(Reg
)->second
;
2633 // It's not worthwhile looking for reuse if there's only one offset.
2634 if (Imms
.size() == 1)
2637 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg
<< ':';
2638 for (ImmMapTy::const_iterator J
= Imms
.begin(), JE
= Imms
.end();
2640 dbgs() << ' ' << J
->first
;
2643 // Examine each offset.
2644 for (ImmMapTy::const_iterator J
= Imms
.begin(), JE
= Imms
.end();
2646 const SCEV
*OrigReg
= J
->second
;
2648 int64_t JImm
= J
->first
;
2649 const SmallBitVector
&UsedByIndices
= RegUses
.getUsedByIndices(OrigReg
);
2651 if (!isa
<SCEVConstant
>(OrigReg
) &&
2652 UsedByIndicesMap
[Reg
].count() == 1) {
2653 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
<< '\n');
2657 // Conservatively examine offsets between this orig reg a few selected
2659 ImmMapTy::const_iterator OtherImms
[] = {
2660 Imms
.begin(), prior(Imms
.end()),
2661 Imms
.upper_bound((Imms
.begin()->first
+ prior(Imms
.end())->first
) / 2)
2663 for (size_t i
= 0, e
= array_lengthof(OtherImms
); i
!= e
; ++i
) {
2664 ImmMapTy::const_iterator M
= OtherImms
[i
];
2665 if (M
== J
|| M
== JE
) continue;
2667 // Compute the difference between the two.
2668 int64_t Imm
= (uint64_t)JImm
- M
->first
;
2669 for (int LUIdx
= UsedByIndices
.find_first(); LUIdx
!= -1;
2670 LUIdx
= UsedByIndices
.find_next(LUIdx
))
2671 // Make a memo of this use, offset, and register tuple.
2672 if (UniqueItems
.insert(std::make_pair(LUIdx
, Imm
)))
2673 WorkItems
.push_back(WorkItem(LUIdx
, Imm
, OrigReg
));
2680 UsedByIndicesMap
.clear();
2681 UniqueItems
.clear();
2683 // Now iterate through the worklist and add new formulae.
2684 for (SmallVectorImpl
<WorkItem
>::const_iterator I
= WorkItems
.begin(),
2685 E
= WorkItems
.end(); I
!= E
; ++I
) {
2686 const WorkItem
&WI
= *I
;
2687 size_t LUIdx
= WI
.LUIdx
;
2688 LSRUse
&LU
= Uses
[LUIdx
];
2689 int64_t Imm
= WI
.Imm
;
2690 const SCEV
*OrigReg
= WI
.OrigReg
;
2692 const Type
*IntTy
= SE
.getEffectiveSCEVType(OrigReg
->getType());
2693 const SCEV
*NegImmS
= SE
.getSCEV(ConstantInt::get(IntTy
, -(uint64_t)Imm
));
2694 unsigned BitWidth
= SE
.getTypeSizeInBits(IntTy
);
2696 // TODO: Use a more targeted data structure.
2697 for (size_t L
= 0, LE
= LU
.Formulae
.size(); L
!= LE
; ++L
) {
2698 const Formula
&F
= LU
.Formulae
[L
];
2699 // Use the immediate in the scaled register.
2700 if (F
.ScaledReg
== OrigReg
) {
2701 int64_t Offs
= (uint64_t)F
.AM
.BaseOffs
+
2702 Imm
* (uint64_t)F
.AM
.Scale
;
2703 // Don't create 50 + reg(-50).
2704 if (F
.referencesReg(SE
.getSCEV(
2705 ConstantInt::get(IntTy
, -(uint64_t)Offs
))))
2708 NewF
.AM
.BaseOffs
= Offs
;
2709 if (!isLegalUse(NewF
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2710 LU
.Kind
, LU
.AccessTy
, TLI
))
2712 NewF
.ScaledReg
= SE
.getAddExpr(NegImmS
, NewF
.ScaledReg
);
2714 // If the new scale is a constant in a register, and adding the constant
2715 // value to the immediate would produce a value closer to zero than the
2716 // immediate itself, then the formula isn't worthwhile.
2717 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(NewF
.ScaledReg
))
2718 if (C
->getValue()->getValue().isNegative() !=
2719 (NewF
.AM
.BaseOffs
< 0) &&
2720 (C
->getValue()->getValue().abs() * APInt(BitWidth
, F
.AM
.Scale
))
2721 .ule(abs64(NewF
.AM
.BaseOffs
)))
2725 (void)InsertFormula(LU
, LUIdx
, NewF
);
2727 // Use the immediate in a base register.
2728 for (size_t N
= 0, NE
= F
.BaseRegs
.size(); N
!= NE
; ++N
) {
2729 const SCEV
*BaseReg
= F
.BaseRegs
[N
];
2730 if (BaseReg
!= OrigReg
)
2733 NewF
.AM
.BaseOffs
= (uint64_t)NewF
.AM
.BaseOffs
+ Imm
;
2734 if (!isLegalUse(NewF
.AM
, LU
.MinOffset
, LU
.MaxOffset
,
2735 LU
.Kind
, LU
.AccessTy
, TLI
))
2737 NewF
.BaseRegs
[N
] = SE
.getAddExpr(NegImmS
, BaseReg
);
2739 // If the new formula has a constant in a register, and adding the
2740 // constant value to the immediate would produce a value closer to
2741 // zero than the immediate itself, then the formula isn't worthwhile.
2742 for (SmallVectorImpl
<const SCEV
*>::const_iterator
2743 J
= NewF
.BaseRegs
.begin(), JE
= NewF
.BaseRegs
.end();
2745 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(*J
))
2746 if ((C
->getValue()->getValue() + NewF
.AM
.BaseOffs
).abs().slt(
2747 abs64(NewF
.AM
.BaseOffs
)) &&
2748 (C
->getValue()->getValue() +
2749 NewF
.AM
.BaseOffs
).countTrailingZeros() >=
2750 CountTrailingZeros_64(NewF
.AM
.BaseOffs
))
2754 (void)InsertFormula(LU
, LUIdx
, NewF
);
2763 /// GenerateAllReuseFormulae - Generate formulae for each use.
2765 LSRInstance::GenerateAllReuseFormulae() {
2766 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
2767 // queries are more precise.
2768 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2769 LSRUse
&LU
= Uses
[LUIdx
];
2770 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2771 GenerateReassociations(LU
, LUIdx
, LU
.Formulae
[i
]);
2772 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2773 GenerateCombinations(LU
, LUIdx
, LU
.Formulae
[i
]);
2775 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2776 LSRUse
&LU
= Uses
[LUIdx
];
2777 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2778 GenerateSymbolicOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
2779 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2780 GenerateConstantOffsets(LU
, LUIdx
, LU
.Formulae
[i
]);
2781 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2782 GenerateICmpZeroScales(LU
, LUIdx
, LU
.Formulae
[i
]);
2783 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2784 GenerateScales(LU
, LUIdx
, LU
.Formulae
[i
]);
2786 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2787 LSRUse
&LU
= Uses
[LUIdx
];
2788 for (size_t i
= 0, f
= LU
.Formulae
.size(); i
!= f
; ++i
)
2789 GenerateTruncates(LU
, LUIdx
, LU
.Formulae
[i
]);
2792 GenerateCrossUseConstantOffsets();
2794 DEBUG(dbgs() << "\n"
2795 "After generating reuse formulae:\n";
2796 print_uses(dbgs()));
2799 /// If there are multiple formulae with the same set of registers used
2800 /// by other uses, pick the best one and delete the others.
2801 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2802 DenseSet
<const SCEV
*> VisitedRegs
;
2803 SmallPtrSet
<const SCEV
*, 16> Regs
;
2805 bool ChangedFormulae
= false;
2808 // Collect the best formula for each unique set of shared registers. This
2809 // is reset for each use.
2810 typedef DenseMap
<SmallVector
<const SCEV
*, 2>, size_t, UniquifierDenseMapInfo
>
2812 BestFormulaeTy BestFormulae
;
2814 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2815 LSRUse
&LU
= Uses
[LUIdx
];
2816 DEBUG(dbgs() << "Filtering for use "; LU
.print(dbgs()); dbgs() << '\n');
2819 for (size_t FIdx
= 0, NumForms
= LU
.Formulae
.size();
2820 FIdx
!= NumForms
; ++FIdx
) {
2821 Formula
&F
= LU
.Formulae
[FIdx
];
2823 SmallVector
<const SCEV
*, 2> Key
;
2824 for (SmallVectorImpl
<const SCEV
*>::const_iterator J
= F
.BaseRegs
.begin(),
2825 JE
= F
.BaseRegs
.end(); J
!= JE
; ++J
) {
2826 const SCEV
*Reg
= *J
;
2827 if (RegUses
.isRegUsedByUsesOtherThan(Reg
, LUIdx
))
2831 RegUses
.isRegUsedByUsesOtherThan(F
.ScaledReg
, LUIdx
))
2832 Key
.push_back(F
.ScaledReg
);
2833 // Unstable sort by host order ok, because this is only used for
2835 std::sort(Key
.begin(), Key
.end());
2837 std::pair
<BestFormulaeTy::const_iterator
, bool> P
=
2838 BestFormulae
.insert(std::make_pair(Key
, FIdx
));
2840 Formula
&Best
= LU
.Formulae
[P
.first
->second
];
2843 CostF
.RateFormula(F
, Regs
, VisitedRegs
, L
, LU
.Offsets
, SE
, DT
);
2846 CostBest
.RateFormula(Best
, Regs
, VisitedRegs
, L
, LU
.Offsets
, SE
, DT
);
2848 if (CostF
< CostBest
)
2850 DEBUG(dbgs() << " Filtering out formula "; F
.print(dbgs());
2852 " in favor of formula "; Best
.print(dbgs());
2855 ChangedFormulae
= true;
2857 LU
.DeleteFormula(F
);
2865 // Now that we've filtered out some formulae, recompute the Regs set.
2867 LU
.RecomputeRegs(LUIdx
, RegUses
);
2869 // Reset this to prepare for the next use.
2870 BestFormulae
.clear();
2873 DEBUG(if (ChangedFormulae
) {
2875 "After filtering out undesirable candidates:\n";
2880 // This is a rough guess that seems to work fairly well.
2881 static const size_t ComplexityLimit
= UINT16_MAX
;
2883 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
2884 /// solutions the solver might have to consider. It almost never considers
2885 /// this many solutions because it prune the search space, but the pruning
2886 /// isn't always sufficient.
2887 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
2889 for (SmallVectorImpl
<LSRUse
>::const_iterator I
= Uses
.begin(),
2890 E
= Uses
.end(); I
!= E
; ++I
) {
2891 size_t FSize
= I
->Formulae
.size();
2892 if (FSize
>= ComplexityLimit
) {
2893 Power
= ComplexityLimit
;
2897 if (Power
>= ComplexityLimit
)
2903 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
2904 /// of the registers of another formula, it won't help reduce register
2905 /// pressure (though it may not necessarily hurt register pressure); remove
2906 /// it to simplify the system.
2907 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
2908 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
2909 DEBUG(dbgs() << "The search space is too complex.\n");
2911 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
2912 "which use a superset of registers used by other "
2915 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2916 LSRUse
&LU
= Uses
[LUIdx
];
2918 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
2919 Formula
&F
= LU
.Formulae
[i
];
2920 // Look for a formula with a constant or GV in a register. If the use
2921 // also has a formula with that same value in an immediate field,
2922 // delete the one that uses a register.
2923 for (SmallVectorImpl
<const SCEV
*>::const_iterator
2924 I
= F
.BaseRegs
.begin(), E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
2925 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(*I
)) {
2927 NewF
.AM
.BaseOffs
+= C
->getValue()->getSExtValue();
2928 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
2929 (I
- F
.BaseRegs
.begin()));
2930 if (LU
.HasFormulaWithSameRegs(NewF
)) {
2931 DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
2932 LU
.DeleteFormula(F
);
2938 } else if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(*I
)) {
2939 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(U
->getValue()))
2942 NewF
.AM
.BaseGV
= GV
;
2943 NewF
.BaseRegs
.erase(NewF
.BaseRegs
.begin() +
2944 (I
- F
.BaseRegs
.begin()));
2945 if (LU
.HasFormulaWithSameRegs(NewF
)) {
2946 DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
2948 LU
.DeleteFormula(F
);
2959 LU
.RecomputeRegs(LUIdx
, RegUses
);
2962 DEBUG(dbgs() << "After pre-selection:\n";
2963 print_uses(dbgs()));
2967 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
2968 /// for expressions like A, A+1, A+2, etc., allocate a single register for
2970 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
2971 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
2972 DEBUG(dbgs() << "The search space is too complex.\n");
2974 DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
2975 "separated by a constant offset will use the same "
2978 // This is especially useful for unrolled loops.
2980 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
2981 LSRUse
&LU
= Uses
[LUIdx
];
2982 for (SmallVectorImpl
<Formula
>::const_iterator I
= LU
.Formulae
.begin(),
2983 E
= LU
.Formulae
.end(); I
!= E
; ++I
) {
2984 const Formula
&F
= *I
;
2985 if (F
.AM
.BaseOffs
!= 0 && F
.AM
.Scale
== 0) {
2986 if (LSRUse
*LUThatHas
= FindUseWithSimilarFormula(F
, LU
)) {
2987 if (reconcileNewOffset(*LUThatHas
, F
.AM
.BaseOffs
,
2988 /*HasBaseReg=*/false,
2989 LU
.Kind
, LU
.AccessTy
)) {
2990 DEBUG(dbgs() << " Deleting use "; LU
.print(dbgs());
2993 LUThatHas
->AllFixupsOutsideLoop
&= LU
.AllFixupsOutsideLoop
;
2995 // Update the relocs to reference the new use.
2996 for (SmallVectorImpl
<LSRFixup
>::iterator I
= Fixups
.begin(),
2997 E
= Fixups
.end(); I
!= E
; ++I
) {
2998 LSRFixup
&Fixup
= *I
;
2999 if (Fixup
.LUIdx
== LUIdx
) {
3000 Fixup
.LUIdx
= LUThatHas
- &Uses
.front();
3001 Fixup
.Offset
+= F
.AM
.BaseOffs
;
3002 // Add the new offset to LUThatHas' offset list.
3003 if (LUThatHas
->Offsets
.back() != Fixup
.Offset
) {
3004 LUThatHas
->Offsets
.push_back(Fixup
.Offset
);
3005 if (Fixup
.Offset
> LUThatHas
->MaxOffset
)
3006 LUThatHas
->MaxOffset
= Fixup
.Offset
;
3007 if (Fixup
.Offset
< LUThatHas
->MinOffset
)
3008 LUThatHas
->MinOffset
= Fixup
.Offset
;
3010 DEBUG(dbgs() << "New fixup has offset "
3011 << Fixup
.Offset
<< '\n');
3013 if (Fixup
.LUIdx
== NumUses
-1)
3014 Fixup
.LUIdx
= LUIdx
;
3017 // Delete formulae from the new use which are no longer legal.
3019 for (size_t i
= 0, e
= LUThatHas
->Formulae
.size(); i
!= e
; ++i
) {
3020 Formula
&F
= LUThatHas
->Formulae
[i
];
3021 if (!isLegalUse(F
.AM
,
3022 LUThatHas
->MinOffset
, LUThatHas
->MaxOffset
,
3023 LUThatHas
->Kind
, LUThatHas
->AccessTy
, TLI
)) {
3024 DEBUG(dbgs() << " Deleting "; F
.print(dbgs());
3026 LUThatHas
->DeleteFormula(F
);
3033 LUThatHas
->RecomputeRegs(LUThatHas
- &Uses
.front(), RegUses
);
3035 // Delete the old use.
3036 DeleteUse(LU
, LUIdx
);
3046 DEBUG(dbgs() << "After pre-selection:\n";
3047 print_uses(dbgs()));
3051 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3052 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3053 /// we've done more filtering, as it may be able to find more formulae to
3055 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3056 if (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
3057 DEBUG(dbgs() << "The search space is too complex.\n");
3059 DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3060 "undesirable dedicated registers.\n");
3062 FilterOutUndesirableDedicatedRegisters();
3064 DEBUG(dbgs() << "After pre-selection:\n";
3065 print_uses(dbgs()));
3069 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3070 /// to be profitable, and then in any use which has any reference to that
3071 /// register, delete all formulae which do not reference that register.
3072 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3073 // With all other options exhausted, loop until the system is simple
3074 // enough to handle.
3075 SmallPtrSet
<const SCEV
*, 4> Taken
;
3076 while (EstimateSearchSpaceComplexity() >= ComplexityLimit
) {
3077 // Ok, we have too many of formulae on our hands to conveniently handle.
3078 // Use a rough heuristic to thin out the list.
3079 DEBUG(dbgs() << "The search space is too complex.\n");
3081 // Pick the register which is used by the most LSRUses, which is likely
3082 // to be a good reuse register candidate.
3083 const SCEV
*Best
= 0;
3084 unsigned BestNum
= 0;
3085 for (RegUseTracker::const_iterator I
= RegUses
.begin(), E
= RegUses
.end();
3087 const SCEV
*Reg
= *I
;
3088 if (Taken
.count(Reg
))
3093 unsigned Count
= RegUses
.getUsedByIndices(Reg
).count();
3094 if (Count
> BestNum
) {
3101 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3102 << " will yield profitable reuse.\n");
3105 // In any use with formulae which references this register, delete formulae
3106 // which don't reference it.
3107 for (size_t LUIdx
= 0, NumUses
= Uses
.size(); LUIdx
!= NumUses
; ++LUIdx
) {
3108 LSRUse
&LU
= Uses
[LUIdx
];
3109 if (!LU
.Regs
.count(Best
)) continue;
3112 for (size_t i
= 0, e
= LU
.Formulae
.size(); i
!= e
; ++i
) {
3113 Formula
&F
= LU
.Formulae
[i
];
3114 if (!F
.referencesReg(Best
)) {
3115 DEBUG(dbgs() << " Deleting "; F
.print(dbgs()); dbgs() << '\n');
3116 LU
.DeleteFormula(F
);
3120 assert(e
!= 0 && "Use has no formulae left! Is Regs inconsistent?");
3126 LU
.RecomputeRegs(LUIdx
, RegUses
);
3129 DEBUG(dbgs() << "After pre-selection:\n";
3130 print_uses(dbgs()));
3134 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
3135 /// formulae to choose from, use some rough heuristics to prune down the number
3136 /// of formulae. This keeps the main solver from taking an extraordinary amount
3137 /// of time in some worst-case scenarios.
3138 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
3139 NarrowSearchSpaceByDetectingSupersets();
3140 NarrowSearchSpaceByCollapsingUnrolledCode();
3141 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
3142 NarrowSearchSpaceByPickingWinnerRegs();
3145 /// SolveRecurse - This is the recursive solver.
3146 void LSRInstance::SolveRecurse(SmallVectorImpl
<const Formula
*> &Solution
,
3148 SmallVectorImpl
<const Formula
*> &Workspace
,
3149 const Cost
&CurCost
,
3150 const SmallPtrSet
<const SCEV
*, 16> &CurRegs
,
3151 DenseSet
<const SCEV
*> &VisitedRegs
) const {
3154 // - use more aggressive filtering
3155 // - sort the formula so that the most profitable solutions are found first
3156 // - sort the uses too
3158 // - don't compute a cost, and then compare. compare while computing a cost
3160 // - track register sets with SmallBitVector
3162 const LSRUse
&LU
= Uses
[Workspace
.size()];
3164 // If this use references any register that's already a part of the
3165 // in-progress solution, consider it a requirement that a formula must
3166 // reference that register in order to be considered. This prunes out
3167 // unprofitable searching.
3168 SmallSetVector
<const SCEV
*, 4> ReqRegs
;
3169 for (SmallPtrSet
<const SCEV
*, 16>::const_iterator I
= CurRegs
.begin(),
3170 E
= CurRegs
.end(); I
!= E
; ++I
)
3171 if (LU
.Regs
.count(*I
))
3174 bool AnySatisfiedReqRegs
= false;
3175 SmallPtrSet
<const SCEV
*, 16> NewRegs
;
3178 for (SmallVectorImpl
<Formula
>::const_iterator I
= LU
.Formulae
.begin(),
3179 E
= LU
.Formulae
.end(); I
!= E
; ++I
) {
3180 const Formula
&F
= *I
;
3182 // Ignore formulae which do not use any of the required registers.
3183 for (SmallSetVector
<const SCEV
*, 4>::const_iterator J
= ReqRegs
.begin(),
3184 JE
= ReqRegs
.end(); J
!= JE
; ++J
) {
3185 const SCEV
*Reg
= *J
;
3186 if ((!F
.ScaledReg
|| F
.ScaledReg
!= Reg
) &&
3187 std::find(F
.BaseRegs
.begin(), F
.BaseRegs
.end(), Reg
) ==
3191 AnySatisfiedReqRegs
= true;
3193 // Evaluate the cost of the current formula. If it's already worse than
3194 // the current best, prune the search at that point.
3197 NewCost
.RateFormula(F
, NewRegs
, VisitedRegs
, L
, LU
.Offsets
, SE
, DT
);
3198 if (NewCost
< SolutionCost
) {
3199 Workspace
.push_back(&F
);
3200 if (Workspace
.size() != Uses
.size()) {
3201 SolveRecurse(Solution
, SolutionCost
, Workspace
, NewCost
,
3202 NewRegs
, VisitedRegs
);
3203 if (F
.getNumRegs() == 1 && Workspace
.size() == 1)
3204 VisitedRegs
.insert(F
.ScaledReg
? F
.ScaledReg
: F
.BaseRegs
[0]);
3206 DEBUG(dbgs() << "New best at "; NewCost
.print(dbgs());
3207 dbgs() << ". Regs:";
3208 for (SmallPtrSet
<const SCEV
*, 16>::const_iterator
3209 I
= NewRegs
.begin(), E
= NewRegs
.end(); I
!= E
; ++I
)
3210 dbgs() << ' ' << **I
;
3213 SolutionCost
= NewCost
;
3214 Solution
= Workspace
;
3216 Workspace
.pop_back();
3221 // If none of the formulae had all of the required registers, relax the
3222 // constraint so that we don't exclude all formulae.
3223 if (!AnySatisfiedReqRegs
) {
3224 assert(!ReqRegs
.empty() && "Solver failed even without required registers");
3230 /// Solve - Choose one formula from each use. Return the results in the given
3231 /// Solution vector.
3232 void LSRInstance::Solve(SmallVectorImpl
<const Formula
*> &Solution
) const {
3233 SmallVector
<const Formula
*, 8> Workspace
;
3235 SolutionCost
.Loose();
3237 SmallPtrSet
<const SCEV
*, 16> CurRegs
;
3238 DenseSet
<const SCEV
*> VisitedRegs
;
3239 Workspace
.reserve(Uses
.size());
3241 // SolveRecurse does all the work.
3242 SolveRecurse(Solution
, SolutionCost
, Workspace
, CurCost
,
3243 CurRegs
, VisitedRegs
);
3245 // Ok, we've now made all our decisions.
3246 DEBUG(dbgs() << "\n"
3247 "The chosen solution requires "; SolutionCost
.print(dbgs());
3249 for (size_t i
= 0, e
= Uses
.size(); i
!= e
; ++i
) {
3251 Uses
[i
].print(dbgs());
3254 Solution
[i
]->print(dbgs());
3258 assert(Solution
.size() == Uses
.size() && "Malformed solution!");
3261 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
3262 /// the dominator tree far as we can go while still being dominated by the
3263 /// input positions. This helps canonicalize the insert position, which
3264 /// encourages sharing.
3265 BasicBlock::iterator
3266 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP
,
3267 const SmallVectorImpl
<Instruction
*> &Inputs
)
3270 const Loop
*IPLoop
= LI
.getLoopFor(IP
->getParent());
3271 unsigned IPLoopDepth
= IPLoop
? IPLoop
->getLoopDepth() : 0;
3274 for (DomTreeNode
*Rung
= DT
.getNode(IP
->getParent()); ; ) {
3275 if (!Rung
) return IP
;
3276 Rung
= Rung
->getIDom();
3277 if (!Rung
) return IP
;
3278 IDom
= Rung
->getBlock();
3280 // Don't climb into a loop though.
3281 const Loop
*IDomLoop
= LI
.getLoopFor(IDom
);
3282 unsigned IDomDepth
= IDomLoop
? IDomLoop
->getLoopDepth() : 0;
3283 if (IDomDepth
<= IPLoopDepth
&&
3284 (IDomDepth
!= IPLoopDepth
|| IDomLoop
== IPLoop
))
3288 bool AllDominate
= true;
3289 Instruction
*BetterPos
= 0;
3290 Instruction
*Tentative
= IDom
->getTerminator();
3291 for (SmallVectorImpl
<Instruction
*>::const_iterator I
= Inputs
.begin(),
3292 E
= Inputs
.end(); I
!= E
; ++I
) {
3293 Instruction
*Inst
= *I
;
3294 if (Inst
== Tentative
|| !DT
.dominates(Inst
, Tentative
)) {
3295 AllDominate
= false;
3298 // Attempt to find an insert position in the middle of the block,
3299 // instead of at the end, so that it can be used for other expansions.
3300 if (IDom
== Inst
->getParent() &&
3301 (!BetterPos
|| DT
.dominates(BetterPos
, Inst
)))
3302 BetterPos
= llvm::next(BasicBlock::iterator(Inst
));
3315 /// AdjustInsertPositionForExpand - Determine an input position which will be
3316 /// dominated by the operands and which will dominate the result.
3317 BasicBlock::iterator
3318 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP
,
3320 const LSRUse
&LU
) const {
3321 // Collect some instructions which must be dominated by the
3322 // expanding replacement. These must be dominated by any operands that
3323 // will be required in the expansion.
3324 SmallVector
<Instruction
*, 4> Inputs
;
3325 if (Instruction
*I
= dyn_cast
<Instruction
>(LF
.OperandValToReplace
))
3326 Inputs
.push_back(I
);
3327 if (LU
.Kind
== LSRUse::ICmpZero
)
3328 if (Instruction
*I
=
3329 dyn_cast
<Instruction
>(cast
<ICmpInst
>(LF
.UserInst
)->getOperand(1)))
3330 Inputs
.push_back(I
);
3331 if (LF
.PostIncLoops
.count(L
)) {
3332 if (LF
.isUseFullyOutsideLoop(L
))
3333 Inputs
.push_back(L
->getLoopLatch()->getTerminator());
3335 Inputs
.push_back(IVIncInsertPos
);
3337 // The expansion must also be dominated by the increment positions of any
3338 // loops it for which it is using post-inc mode.
3339 for (PostIncLoopSet::const_iterator I
= LF
.PostIncLoops
.begin(),
3340 E
= LF
.PostIncLoops
.end(); I
!= E
; ++I
) {
3341 const Loop
*PIL
= *I
;
3342 if (PIL
== L
) continue;
3344 // Be dominated by the loop exit.
3345 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
3346 PIL
->getExitingBlocks(ExitingBlocks
);
3347 if (!ExitingBlocks
.empty()) {
3348 BasicBlock
*BB
= ExitingBlocks
[0];
3349 for (unsigned i
= 1, e
= ExitingBlocks
.size(); i
!= e
; ++i
)
3350 BB
= DT
.findNearestCommonDominator(BB
, ExitingBlocks
[i
]);
3351 Inputs
.push_back(BB
->getTerminator());
3355 // Then, climb up the immediate dominator tree as far as we can go while
3356 // still being dominated by the input positions.
3357 IP
= HoistInsertPosition(IP
, Inputs
);
3359 // Don't insert instructions before PHI nodes.
3360 while (isa
<PHINode
>(IP
)) ++IP
;
3362 // Ignore debug intrinsics.
3363 while (isa
<DbgInfoIntrinsic
>(IP
)) ++IP
;
3368 /// Expand - Emit instructions for the leading candidate expression for this
3369 /// LSRUse (this is called "expanding").
3370 Value
*LSRInstance::Expand(const LSRFixup
&LF
,
3372 BasicBlock::iterator IP
,
3373 SCEVExpander
&Rewriter
,
3374 SmallVectorImpl
<WeakVH
> &DeadInsts
) const {
3375 const LSRUse
&LU
= Uses
[LF
.LUIdx
];
3377 // Determine an input position which will be dominated by the operands and
3378 // which will dominate the result.
3379 IP
= AdjustInsertPositionForExpand(IP
, LF
, LU
);
3381 // Inform the Rewriter if we have a post-increment use, so that it can
3382 // perform an advantageous expansion.
3383 Rewriter
.setPostInc(LF
.PostIncLoops
);
3385 // This is the type that the user actually needs.
3386 const Type
*OpTy
= LF
.OperandValToReplace
->getType();
3387 // This will be the type that we'll initially expand to.
3388 const Type
*Ty
= F
.getType();
3390 // No type known; just expand directly to the ultimate type.
3392 else if (SE
.getEffectiveSCEVType(Ty
) == SE
.getEffectiveSCEVType(OpTy
))
3393 // Expand directly to the ultimate type if it's the right size.
3395 // This is the type to do integer arithmetic in.
3396 const Type
*IntTy
= SE
.getEffectiveSCEVType(Ty
);
3398 // Build up a list of operands to add together to form the full base.
3399 SmallVector
<const SCEV
*, 8> Ops
;
3401 // Expand the BaseRegs portion.
3402 for (SmallVectorImpl
<const SCEV
*>::const_iterator I
= F
.BaseRegs
.begin(),
3403 E
= F
.BaseRegs
.end(); I
!= E
; ++I
) {
3404 const SCEV
*Reg
= *I
;
3405 assert(!Reg
->isZero() && "Zero allocated in a base register!");
3407 // If we're expanding for a post-inc user, make the post-inc adjustment.
3408 PostIncLoopSet
&Loops
= const_cast<PostIncLoopSet
&>(LF
.PostIncLoops
);
3409 Reg
= TransformForPostIncUse(Denormalize
, Reg
,
3410 LF
.UserInst
, LF
.OperandValToReplace
,
3413 Ops
.push_back(SE
.getUnknown(Rewriter
.expandCodeFor(Reg
, 0, IP
)));
3416 // Flush the operand list to suppress SCEVExpander hoisting.
3418 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
, IP
);
3420 Ops
.push_back(SE
.getUnknown(FullV
));
3423 // Expand the ScaledReg portion.
3424 Value
*ICmpScaledV
= 0;
3425 if (F
.AM
.Scale
!= 0) {
3426 const SCEV
*ScaledS
= F
.ScaledReg
;
3428 // If we're expanding for a post-inc user, make the post-inc adjustment.
3429 PostIncLoopSet
&Loops
= const_cast<PostIncLoopSet
&>(LF
.PostIncLoops
);
3430 ScaledS
= TransformForPostIncUse(Denormalize
, ScaledS
,
3431 LF
.UserInst
, LF
.OperandValToReplace
,
3434 if (LU
.Kind
== LSRUse::ICmpZero
) {
3435 // An interesting way of "folding" with an icmp is to use a negated
3436 // scale, which we'll implement by inserting it into the other operand
3438 assert(F
.AM
.Scale
== -1 &&
3439 "The only scale supported by ICmpZero uses is -1!");
3440 ICmpScaledV
= Rewriter
.expandCodeFor(ScaledS
, 0, IP
);
3442 // Otherwise just expand the scaled register and an explicit scale,
3443 // which is expected to be matched as part of the address.
3444 ScaledS
= SE
.getUnknown(Rewriter
.expandCodeFor(ScaledS
, 0, IP
));
3445 ScaledS
= SE
.getMulExpr(ScaledS
,
3446 SE
.getConstant(ScaledS
->getType(), F
.AM
.Scale
));
3447 Ops
.push_back(ScaledS
);
3449 // Flush the operand list to suppress SCEVExpander hoisting.
3450 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
, IP
);
3452 Ops
.push_back(SE
.getUnknown(FullV
));
3456 // Expand the GV portion.
3458 Ops
.push_back(SE
.getUnknown(F
.AM
.BaseGV
));
3460 // Flush the operand list to suppress SCEVExpander hoisting.
3461 Value
*FullV
= Rewriter
.expandCodeFor(SE
.getAddExpr(Ops
), Ty
, IP
);
3463 Ops
.push_back(SE
.getUnknown(FullV
));
3466 // Expand the immediate portion.
3467 int64_t Offset
= (uint64_t)F
.AM
.BaseOffs
+ LF
.Offset
;
3469 if (LU
.Kind
== LSRUse::ICmpZero
) {
3470 // The other interesting way of "folding" with an ICmpZero is to use a
3471 // negated immediate.
3473 ICmpScaledV
= ConstantInt::get(IntTy
, -Offset
);
3475 Ops
.push_back(SE
.getUnknown(ICmpScaledV
));
3476 ICmpScaledV
= ConstantInt::get(IntTy
, Offset
);
3479 // Just add the immediate values. These again are expected to be matched
3480 // as part of the address.
3481 Ops
.push_back(SE
.getUnknown(ConstantInt::getSigned(IntTy
, Offset
)));
3485 // Emit instructions summing all the operands.
3486 const SCEV
*FullS
= Ops
.empty() ?
3487 SE
.getConstant(IntTy
, 0) :
3489 Value
*FullV
= Rewriter
.expandCodeFor(FullS
, Ty
, IP
);
3491 // We're done expanding now, so reset the rewriter.
3492 Rewriter
.clearPostInc();
3494 // An ICmpZero Formula represents an ICmp which we're handling as a
3495 // comparison against zero. Now that we've expanded an expression for that
3496 // form, update the ICmp's other operand.
3497 if (LU
.Kind
== LSRUse::ICmpZero
) {
3498 ICmpInst
*CI
= cast
<ICmpInst
>(LF
.UserInst
);
3499 DeadInsts
.push_back(CI
->getOperand(1));
3500 assert(!F
.AM
.BaseGV
&& "ICmp does not support folding a global value and "
3501 "a scale at the same time!");
3502 if (F
.AM
.Scale
== -1) {
3503 if (ICmpScaledV
->getType() != OpTy
) {
3505 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV
, false,
3507 ICmpScaledV
, OpTy
, "tmp", CI
);
3510 CI
->setOperand(1, ICmpScaledV
);
3512 assert(F
.AM
.Scale
== 0 &&
3513 "ICmp does not support folding a global value and "
3514 "a scale at the same time!");
3515 Constant
*C
= ConstantInt::getSigned(SE
.getEffectiveSCEVType(OpTy
),
3517 if (C
->getType() != OpTy
)
3518 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
3522 CI
->setOperand(1, C
);
3529 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3530 /// of their operands effectively happens in their predecessor blocks, so the
3531 /// expression may need to be expanded in multiple places.
3532 void LSRInstance::RewriteForPHI(PHINode
*PN
,
3535 SCEVExpander
&Rewriter
,
3536 SmallVectorImpl
<WeakVH
> &DeadInsts
,
3538 DenseMap
<BasicBlock
*, Value
*> Inserted
;
3539 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
3540 if (PN
->getIncomingValue(i
) == LF
.OperandValToReplace
) {
3541 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
3543 // If this is a critical edge, split the edge so that we do not insert
3544 // the code on all predecessor/successor paths. We do this unless this
3545 // is the canonical backedge for this loop, which complicates post-inc
3547 if (e
!= 1 && BB
->getTerminator()->getNumSuccessors() > 1 &&
3548 !isa
<IndirectBrInst
>(BB
->getTerminator()) &&
3549 (PN
->getParent() != L
->getHeader() || !L
->contains(BB
))) {
3550 // Split the critical edge.
3551 BasicBlock
*NewBB
= SplitCriticalEdge(BB
, PN
->getParent(), P
);
3553 // If PN is outside of the loop and BB is in the loop, we want to
3554 // move the block to be immediately before the PHI block, not
3555 // immediately after BB.
3556 if (L
->contains(BB
) && !L
->contains(PN
))
3557 NewBB
->moveBefore(PN
->getParent());
3559 // Splitting the edge can reduce the number of PHI entries we have.
3560 e
= PN
->getNumIncomingValues();
3562 i
= PN
->getBasicBlockIndex(BB
);
3565 std::pair
<DenseMap
<BasicBlock
*, Value
*>::iterator
, bool> Pair
=
3566 Inserted
.insert(std::make_pair(BB
, static_cast<Value
*>(0)));
3568 PN
->setIncomingValue(i
, Pair
.first
->second
);
3570 Value
*FullV
= Expand(LF
, F
, BB
->getTerminator(), Rewriter
, DeadInsts
);
3572 // If this is reuse-by-noop-cast, insert the noop cast.
3573 const Type
*OpTy
= LF
.OperandValToReplace
->getType();
3574 if (FullV
->getType() != OpTy
)
3576 CastInst::Create(CastInst::getCastOpcode(FullV
, false,
3578 FullV
, LF
.OperandValToReplace
->getType(),
3579 "tmp", BB
->getTerminator());
3581 PN
->setIncomingValue(i
, FullV
);
3582 Pair
.first
->second
= FullV
;
3587 /// Rewrite - Emit instructions for the leading candidate expression for this
3588 /// LSRUse (this is called "expanding"), and update the UserInst to reference
3589 /// the newly expanded value.
3590 void LSRInstance::Rewrite(const LSRFixup
&LF
,
3592 SCEVExpander
&Rewriter
,
3593 SmallVectorImpl
<WeakVH
> &DeadInsts
,
3595 // First, find an insertion point that dominates UserInst. For PHI nodes,
3596 // find the nearest block which dominates all the relevant uses.
3597 if (PHINode
*PN
= dyn_cast
<PHINode
>(LF
.UserInst
)) {
3598 RewriteForPHI(PN
, LF
, F
, Rewriter
, DeadInsts
, P
);
3600 Value
*FullV
= Expand(LF
, F
, LF
.UserInst
, Rewriter
, DeadInsts
);
3602 // If this is reuse-by-noop-cast, insert the noop cast.
3603 const Type
*OpTy
= LF
.OperandValToReplace
->getType();
3604 if (FullV
->getType() != OpTy
) {
3606 CastInst::Create(CastInst::getCastOpcode(FullV
, false, OpTy
, false),
3607 FullV
, OpTy
, "tmp", LF
.UserInst
);
3611 // Update the user. ICmpZero is handled specially here (for now) because
3612 // Expand may have updated one of the operands of the icmp already, and
3613 // its new value may happen to be equal to LF.OperandValToReplace, in
3614 // which case doing replaceUsesOfWith leads to replacing both operands
3615 // with the same value. TODO: Reorganize this.
3616 if (Uses
[LF
.LUIdx
].Kind
== LSRUse::ICmpZero
)
3617 LF
.UserInst
->setOperand(0, FullV
);
3619 LF
.UserInst
->replaceUsesOfWith(LF
.OperandValToReplace
, FullV
);
3622 DeadInsts
.push_back(LF
.OperandValToReplace
);
3625 /// ImplementSolution - Rewrite all the fixup locations with new values,
3626 /// following the chosen solution.
3628 LSRInstance::ImplementSolution(const SmallVectorImpl
<const Formula
*> &Solution
,
3630 // Keep track of instructions we may have made dead, so that
3631 // we can remove them after we are done working.
3632 SmallVector
<WeakVH
, 16> DeadInsts
;
3634 SCEVExpander
Rewriter(SE
);
3635 Rewriter
.disableCanonicalMode();
3636 Rewriter
.setIVIncInsertPos(L
, IVIncInsertPos
);
3638 // Expand the new value definitions and update the users.
3639 for (SmallVectorImpl
<LSRFixup
>::const_iterator I
= Fixups
.begin(),
3640 E
= Fixups
.end(); I
!= E
; ++I
) {
3641 const LSRFixup
&Fixup
= *I
;
3643 Rewrite(Fixup
, *Solution
[Fixup
.LUIdx
], Rewriter
, DeadInsts
, P
);
3648 // Clean up after ourselves. This must be done before deleting any
3652 Changed
|= DeleteTriviallyDeadInstructions(DeadInsts
);
3655 LSRInstance::LSRInstance(const TargetLowering
*tli
, Loop
*l
, Pass
*P
)
3656 : IU(P
->getAnalysis
<IVUsers
>()),
3657 SE(P
->getAnalysis
<ScalarEvolution
>()),
3658 DT(P
->getAnalysis
<DominatorTree
>()),
3659 LI(P
->getAnalysis
<LoopInfo
>()),
3660 TLI(tli
), L(l
), Changed(false), IVIncInsertPos(0) {
3662 // If LoopSimplify form is not available, stay out of trouble.
3663 if (!L
->isLoopSimplifyForm()) return;
3665 // If there's no interesting work to be done, bail early.
3666 if (IU
.empty()) return;
3668 DEBUG(dbgs() << "\nLSR on loop ";
3669 WriteAsOperand(dbgs(), L
->getHeader(), /*PrintType=*/false);
3672 // First, perform some low-level loop optimizations.
3674 OptimizeLoopTermCond();
3676 // Start collecting data and preparing for the solver.
3677 CollectInterestingTypesAndFactors();
3678 CollectFixupsAndInitialFormulae();
3679 CollectLoopInvariantFixupsAndFormulae();
3681 DEBUG(dbgs() << "LSR found " << Uses
.size() << " uses:\n";
3682 print_uses(dbgs()));
3684 // Now use the reuse data to generate a bunch of interesting ways
3685 // to formulate the values needed for the uses.
3686 GenerateAllReuseFormulae();
3688 FilterOutUndesirableDedicatedRegisters();
3689 NarrowSearchSpaceUsingHeuristics();
3691 SmallVector
<const Formula
*, 8> Solution
;
3694 // Release memory that is no longer needed.
3700 // Formulae should be legal.
3701 for (SmallVectorImpl
<LSRUse
>::const_iterator I
= Uses
.begin(),
3702 E
= Uses
.end(); I
!= E
; ++I
) {
3703 const LSRUse
&LU
= *I
;
3704 for (SmallVectorImpl
<Formula
>::const_iterator J
= LU
.Formulae
.begin(),
3705 JE
= LU
.Formulae
.end(); J
!= JE
; ++J
)
3706 assert(isLegalUse(J
->AM
, LU
.MinOffset
, LU
.MaxOffset
,
3707 LU
.Kind
, LU
.AccessTy
, TLI
) &&
3708 "Illegal formula generated!");
3712 // Now that we've decided what we want, make it so.
3713 ImplementSolution(Solution
, P
);
3716 void LSRInstance::print_factors_and_types(raw_ostream
&OS
) const {
3717 if (Factors
.empty() && Types
.empty()) return;
3719 OS
<< "LSR has identified the following interesting factors and types: ";
3722 for (SmallSetVector
<int64_t, 8>::const_iterator
3723 I
= Factors
.begin(), E
= Factors
.end(); I
!= E
; ++I
) {
3724 if (!First
) OS
<< ", ";
3729 for (SmallSetVector
<const Type
*, 4>::const_iterator
3730 I
= Types
.begin(), E
= Types
.end(); I
!= E
; ++I
) {
3731 if (!First
) OS
<< ", ";
3733 OS
<< '(' << **I
<< ')';
3738 void LSRInstance::print_fixups(raw_ostream
&OS
) const {
3739 OS
<< "LSR is examining the following fixup sites:\n";
3740 for (SmallVectorImpl
<LSRFixup
>::const_iterator I
= Fixups
.begin(),
3741 E
= Fixups
.end(); I
!= E
; ++I
) {
3748 void LSRInstance::print_uses(raw_ostream
&OS
) const {
3749 OS
<< "LSR is examining the following uses:\n";
3750 for (SmallVectorImpl
<LSRUse
>::const_iterator I
= Uses
.begin(),
3751 E
= Uses
.end(); I
!= E
; ++I
) {
3752 const LSRUse
&LU
= *I
;
3756 for (SmallVectorImpl
<Formula
>::const_iterator J
= LU
.Formulae
.begin(),
3757 JE
= LU
.Formulae
.end(); J
!= JE
; ++J
) {
3765 void LSRInstance::print(raw_ostream
&OS
) const {
3766 print_factors_and_types(OS
);
3771 void LSRInstance::dump() const {
3772 print(errs()); errs() << '\n';
3777 class LoopStrengthReduce
: public LoopPass
{
3778 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3779 /// transformation profitability.
3780 const TargetLowering
*const TLI
;
3783 static char ID
; // Pass ID, replacement for typeid
3784 explicit LoopStrengthReduce(const TargetLowering
*tli
= 0);
3787 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
3788 void getAnalysisUsage(AnalysisUsage
&AU
) const;
3793 char LoopStrengthReduce::ID
= 0;
3794 INITIALIZE_PASS_BEGIN(LoopStrengthReduce
, "loop-reduce",
3795 "Loop Strength Reduction", false, false)
3796 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
3797 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution
)
3798 INITIALIZE_PASS_DEPENDENCY(IVUsers
)
3799 INITIALIZE_PASS_DEPENDENCY(LoopInfo
)
3800 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
3801 INITIALIZE_PASS_END(LoopStrengthReduce
, "loop-reduce",
3802 "Loop Strength Reduction", false, false)
3805 Pass
*llvm::createLoopStrengthReducePass(const TargetLowering
*TLI
) {
3806 return new LoopStrengthReduce(TLI
);
3809 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering
*tli
)
3810 : LoopPass(ID
), TLI(tli
) {
3811 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
3814 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage
&AU
) const {
3815 // We split critical edges, so we change the CFG. However, we do update
3816 // many analyses if they are around.
3817 AU
.addPreservedID(LoopSimplifyID
);
3818 AU
.addPreserved("domfrontier");
3820 AU
.addRequired
<LoopInfo
>();
3821 AU
.addPreserved
<LoopInfo
>();
3822 AU
.addRequiredID(LoopSimplifyID
);
3823 AU
.addRequired
<DominatorTree
>();
3824 AU
.addPreserved
<DominatorTree
>();
3825 AU
.addRequired
<ScalarEvolution
>();
3826 AU
.addPreserved
<ScalarEvolution
>();
3827 AU
.addRequired
<IVUsers
>();
3828 AU
.addPreserved
<IVUsers
>();
3831 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
& /*LPM*/) {
3832 bool Changed
= false;
3834 // Run the main LSR transformation.
3835 Changed
|= LSRInstance(TLI
, L
, this).getChanged();
3837 // At this point, it is worth checking to see if any recurrence PHIs are also
3838 // dead, so that we can remove them as well.
3839 Changed
|= DeleteDeadPHIs(L
->getHeader());