1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13 (macsyma-module factor
)
15 ;;; This is the FACTOR package.
17 ;;; THIS IS THE NEW FACTORING PACKAGE. THE FUNCTION
18 ;;; FACTOR72 TAKES A PRIMITIVE SQUARE-FREE POLY AS INPUT THE OUTPUT IS A
19 ;;; LIST OF FACTORS THE FUNCTION FACTOR1972 IS ABOVE FACTOR72 AND IT
20 ;;; TAKES CARE OF REPEATED FACTORS OVER THE GAUSSIAN INTEGERS BEFORE
21 ;;; CALLING FACTOR72 THE FUNCTION Z1 TAKES TWO FACTORS IN ONE VARIABLE
22 ;;; AND ONE POLY IN SEVERAL VARIABLES AS INPUT Z1 TAKES THESE FACTORS IN
23 ;;; ONE VARIABLES AND BUILDS OUT OF THEM TWO FACTORS OF THE GIVEN POLY IN
26 (load-macsyma-macros ratmac
)
28 (declare-top (special *stop
* trl
* *xn sharpcont subvar1 anotype invc fctc
29 subval1 var mcflag alcinv
*ab
* monic
* intbs
*
30 *prime
*g
* modulu
* plim listelm many
* *inl3
31 *sharpa
*sharpb limk split
* alc ind p l dosimp
*odr
*
32 *i
* mcflag elm ne res fact1 fact2 subvar
33 subval ovarlist valist dlp nn
* df1 df2 dn
* fcs
* uu
*))
46 (defmvar minpoly
* nil
)
50 ;(defmvar smallprimes '(3 5 7 11. 13. 17. 19. 23. 29. 31. 37. 41. 43. 47. 53. 59. 61.))
54 (defmvar $nalgfac t
"If t use bmt's algebraic factoring algorithm")
57 (let ((*g
* (gensym "PRIMCYCLO-"))
58 (nl (loop for
(c e
) on
(cfactorw n
) by
#'cddr
59 nconc
(make-list e
:initial-element c
))))
60 (setf (symbol-value *g
*) 0)
61 (let ((res (cyclotomic (list n nl
))))
62 (cond ((consp res
) (p-terms res
))
69 (cond ((equal 1 (cadr p
)) (list p
))
70 ((equal (cddr p
) '(1 0 1))
72 ((equal (cddr p
) '(1 0 -
1))
73 (factxn-1 (cadr p
))))))
75 (defun cfactorw (n) (let (($factorflag t
)) (cfactor n
)))
79 (append (factxn-1 (ash n -
1)) (factxn+1 (ash n -
1))))
80 (t (mapcar #'cyclotomic
(divisors (cfactor n
))))))
84 (let* ((gauss nil
) (facl (factxn+1 n
)))
86 (t (let (($gcd
'$subres
)
87 (pfac (list *g
* (ash n -
1) 1 0 alpha
)))
88 (mapcan #'(lambda (q) (subseq (pgcdcofacts q pfac
) 0 2)) facl
))))))
89 (t (let ((m 1) (nl (reverse (cfactor n
))))
90 (when (equal 2 (cadr nl
))
91 (setq m
(expt 2 (car nl
)))
93 (setq m
(list *g
* m -
1))
94 (if (null nl
) (ncons (list *g
* n
1 0 1))
95 (mapcar #'(lambda (p) (pabs (pcsubst p m
(car p
))))
96 (mapcar #'cyclotomic
(divisors (reverse nl
)))))))))
100 (loop for i downfrom
(1- n
) to
0
101 nconc
(list (* ind i
) 1)))
104 (cond ((null l
) nil
) (t (list* (car l
) 1 (csf (cdr l
))))))
107 (cond ((null (cdr l
)) l
)
108 ((eq (car l
) (cadr l
)) (condense (cdr l
)))
109 (t (cons (car l
) (condense (cdr l
))))))
111 (defun cyclotomic (nl)
112 (prog (n dp dpl num den p
)
113 (cond ((equal 1 (car nl
)) (return (list *g
* 1 1 0 -
1)))
114 ((null (cdr (setq p
(condense (cadr nl
)))))
117 (expt (car p
) (1- (length (cadr nl
)))))))))
118 (setq num
1 den
1 n
(car nl
) dpl
(divisors (csf p
)))
119 loop
(cond ((null dpl
) (return (pquotient num den
))))
122 (setq p
(list *g
* (quotient n
(car dp
)) 1 0 -
1))
123 (cond ((or (evenp (length (cadr dp
))) (equal (car dp
) 1))
124 (setq num
(ptimes p num
)))
125 (t (setq den
(ptimes p den
))))
129 (if (equal l
'(1 1)) (setq l nil
))
130 (do ((ans (list '(1 ()) ))
135 (mult (cadr l
) (1- mult
)))
137 (setq u
(mapcar #'(lambda (q) (list (* factor
(car q
))
138 (cons factor
(cadr q
))))
140 (setq ans
(nconc ans u
)))))
143 (defun estcheck2 (d lc c
)
145 loop
(cond ((null d
) (return nil
)))
146 (setq p
(car d
) d
(cdr d
))
147 (cond ((or (and (not (equal (rem c p
) 0))
148 (not (equal (rem lc
(* p p
)) 0)))
149 (and (not (equal (rem lc p
) 0))
150 (not (equal (rem c
(* p p
)) 0))))
156 (cond ((or (atom p
) (null (cddr p
)) (equal (ptterm p
0) 0))
159 (setq p
(nreverse (cdr (oddelm (cdr p
)))))
161 (setq d
(cgcdlist p
))
162 (cond ((equal 1 d
) (return nil
)))
163 (setq d
(oddelm (cfactorw d
)))
164 (return (estcheck2 d lc c
))))
169 ((null (cdr l
)) (abs (car l
)))
170 ((or (member 1 l
) (member -
1 l
)) 1)
171 ((null (cddr l
)) (gcd (car l
) (cadr l
)))
172 (t (cgcdlist (cons (gcd (car l
) (cadr l
)) (cddr l
))))))
176 (cond ((atom p
) (return p
))
177 ((not (eq (car p
) var
)) (return (kterms p dlp
))))
178 (setq ans
(cons (car p
) ans
) p
(cdr p
))
179 loop
(cond ((null p
) (return (cond ((cdr ans
) (nreverse ans
)) (t 0)))))
180 (setq c
(kterms (cadr p
) dlp
))
181 (cond ((not (equal c
0)) (setq ans
(cons c
(cons (car p
) ans
)))))
186 (defun restorelc (l lc
)
187 (prog (h r ans var c d deg
)
189 (cond ((and (not many
*) algfac
* (not (equal intbs
* 1)))
190 (return (mapcar #'intbasehk l
)))
191 (t (return (reverse l
))))))
192 (setq r
(lcprodl l
) h
1)
193 loop
(cond ((null l
) (return ans
)))
194 (setq d
(car l
) l
(cdr l
) var
(car d
) deg
(cadr d
) c
(caddr d
))
195 (setq d
(ptimes (ptimes h
(car r
)) (psimp var
(cdddr d
))))
196 (cond (many* (setq d
(dropterms d
))))
197 (setq d
(pplus (list var deg lc
)d
))
198 (cond ((and (not many
*) algfac
* (not (equal intbs
* 1)))
199 (setq d
(intbasehk d
))))
201 (setq ans
(cons (cadr (oldcontent d
)) ans
)))
202 (setq h
(ptimes h c
) r
(cdr r
))
206 (let ((mm* 1) (algfac*))
207 (cond ((sqfrp p
(car p
))
208 (setq p
(catch 'splt
(cpber1 p
)))
209 (and (null (car p
)) (null (cdadr p
)))))))
214 (defun testdivide (x y
)
219 (defun algtestd (x y
)
220 (and (div-deg-chk (nreverse (pdegreevector x
)) (nreverse (pdegreevector y
))
222 (cond ((setq x
(ignore-rat-err (rquotient x y
)))
223 (setq adn
* (* adn
* (cdr x
)))
226 (defun div-deg-chk (xl yl gl
)
227 (cond ((or (null gl
) (algv (car gl
))) t
)
228 ((> (car yl
) (car xl
)) nil
)
229 (t (div-deg-chk (cdr xl
) (cdr yl
) (cdr gl
)))))
231 ;; FUU is used by systems programmers such as BMT and PAULW while debugging.
233 (setq tellratlist nil varlist nil genvar nil genpairs nil
))
237 (setq y
(list (setq x
(car u
)) 1 1) m modulus
)
239 (cond ((< m
0) (return (list u linfac
)))
240 ((equal (cadr u
) 1) (return (list 1 (cons u linfac
))))
241 ((zerop (pcsubsty (cmod m
) x u
))
244 (cond ((zerop m
) nil
)
245 (t (list 0 (cmod (- m
))))))
247 (setq u
(car (pmodquo u
(car linfac
))))))
251 (if algfac
* (every #'pacoefp
(cdr p
))
252 (every #'numberp
(cdr p
))))
259 (push (cons (car l
) i
) ans
)))
262 (cond ((pacoefp p
) p
)
267 loop
(cond ((null p
) (return 0))
268 ((> (car p
) k
) (setq p
(cddr p
)) (go loop
)))
270 (return (psimp v ans
))))
271 (setq w
(kterms (cadr p
) (- k
(car p
))))
272 (cond ((not (pzerop w
))
273 (setq ans
(nconc ans
(list (car p
) w
)))))
278 (cond ((or (pcoefp p
) (alg p
)) p
)
279 (t (consta (ptterm (cdr p
) 0)))))
281 (defun constacl (p) ;NO LONGER USED?
283 (cond ((equal p
1) (throw 'cnt
1))
285 ((every #'numberp
(cdr p
))
287 (cond ((member 1 p
) (throw 'cnt
1))
289 (t (apply #'append
(mapcar #'constacl
(cdr (oddelm p
)))))))
291 (defun z1 (poly fact1 fact2
)
292 (prog (res hsteps steps kterm a b c d
*ab
* m df1 df2 dlr step
*sharpa
*sharpb
)
295 (setq *sharpb
(fact20 fact1 fact2 limk
)))
296 (setq *sharpa
(car *sharpb
))
297 (setq *sharpb
(cadr *sharpb
))
298 (setq *ab
* (list (list 0 *sharpa
*sharpb
)))
300 hsteps
(ash steps -
1))
301 (setq res
(pdifference (ptimes (pmod fact1
) (pmod fact2
)) (pmod poly
)))
306 loop
(cond ((equal res
0) (go out
)))
308 (cond ((> step steps
) (go out
)))
309 (cond ((eq (car res
) var
) (setq c
(cdr res
)))
310 (t (setq c
(list 0 res
))))
312 nextm
(cond ((null c
) (z2 a b step hsteps
) (go loop
)))
313 (setq m
(car c
) dlr
(cadr c
))
315 (setq kterm
(kterms dlr step
) dlr nil
)
316 (cond ((equal 0 kterm
) (go nextm
)))
317 (setq d
(obtainabm m
))
318 (setq b
(pplus b
(ptimes (car d
) kterm
))
319 a
(pplus a
(ptimes (cadr d
) kterm
))
322 out
(return (list df1 df2
))))
324 (defun z2 (a b step hsteps
)
325 (unless (and (equal a
0) (equal b
0))
328 (pdifference (cond ((not (< step hsteps
))
329 (dropterms (ptimes a b
)))
331 (cond ((not (< step hsteps
))
332 (dropterms (ptimes df1 b
)))
334 (cond ((not (< step hsteps
))
335 (dropterms (ptimes df2 a
)))
336 (t (ptimes df2 a
)))))
337 (setq res
(pplus res step
))
338 (setq df1
(pdifference df1 a
))
339 (setq df2
(pdifference df2 b
))))
343 (cond ((setq ans
(cdr (assoc m
*ab
* :test
#'equal
))) (return ans
)))
344 (setq ans
(obtainab (list var m
1)))
345 (setq *ab
* (cons (cons m ans
) *ab
*))
348 (defun fact20 (f1 g1 limk
)
349 (prog (f g a pk b reml qlp h k b1
)
351 (setq reml
(ppprog (pmod f1
) (pmod g1
)))
354 sharp
(cond ((> k limk
) (return (list a b
))))
356 (set-modulus (* modulus modulus
))
357 (setq f
(pmod f1
) g
(pmod g1
))
358 (setq h
(pquo (pmod (pdifference (pplus (ptimes a f
) (ptimes b g
))
361 (setq qlp
(pmodquo (ptimes a h
) g
))
362 (setq b1
(pplus (ptimes b h
) (ptimes (car qlp
) f
)))
363 (setq a
(pdifference a
(pmod (pctimes pk
(cdr qlp
)))))
364 (setq b
(pdifference b
(pmod (pctimes pk b1
))))
370 (completevector nil
0 n elm
))
373 (cond ((null l
) (setq *inl3 nil
))
374 ((zerop (car l
)) (cons 1 (cdr l
)))
375 ((equal (car l
) 1) (cons -
1 (cdr l
)))
376 (t (cons 0 (inlist3 (cdr l
))))))
380 (if subvar
(pcsubsty (mapcar #'(lambda (a b
) (list a
1 1 0 b
))
388 (if subvar
(pcsubsty (mapcar #'(lambda (a b
) (list a
1 1 0 (- b
)))
394 (defun completevector (l n m v
)
399 ;; special variable *odr* contains order of nesting of variables in c
400 (defun degvector (l n c
)
402 bk
(cond ((numberp c
)
403 (return (list (completevector l n nn
* 0)))))
404 (setq j
(cdr (assoc (car c
) *odr
* :test
#'equal
)))
405 ;;; IN CASE (CAR C) IS ALGEBRAIC
406 (cond ((null j
) (setq c
0)(go bk
)))
408 (setq lf
(completevector l n j
0))
409 loop
(cond ((null c
) (return ans
)))
411 (nconc (degvector (cons (car c
) lf
) (1+ j
) (cadr c
)) ans
))
412 (cond (*mx
* (setq ans
(ncons (maxlist ans
))))
413 (*min
* (setq ans
(ncons (minlist ans
)))))
421 (or (member (car a
) ans
:test
#'equal
)
422 (setq ans
(cons (car a
) ans
)))))
427 (setq ql
(pmodquo (ptimes *sharpa c
) fact2
))
428 (return (list (cdr ql
) (pmod (pplus (ptimes (car ql
) fact1
)
429 (ptimes *sharpb c
)))))))
431 (defun pcdifconc (v j
)
435 (rplacd l
(list 0 j
)))
437 (cond ((= (cadr l
) 0)
440 ((rplaca (cddr l
) j
)))
444 (cond ((null l
) (list a
))
445 (t (cond ((< a
(car l
)) (cons a l
))
446 (t (cons (car l
) (orde a
(cdr l
))))))))
452 ;; maintains order of list x
453 (defun intersect (x y
)
454 (if x
(if (member (car x
) y
:test
#'equal
)
455 (cons (car x
) (intersect (cdr x
) y
))
456 (intersect (cdr x
) y
))))
458 ;; Like APL IOTA function.
461 (if (< k
2) (list 1) (cons k
(index* (f1- k
)))))
463 ; sets plim to a power of p1 likely to be a large enough modulus for polynomial u
464 ; returns limk, where plim = p1^(2^(limk+1))
467 (setq bcoef
(* 5 (maxcoefficient u
)))
468 (when algfac
* (setq bcoef
(* bcoef intbs
*)))
469 (when (< bcoef
10000.
) (setq bcoef
20000.
))
471 test
(setq p1
(* p1 p1
))
478 (declare-top (special b b2
))
482 (setq ql
(catch 'splt
(cpber1 u
)) u
(caddr ql
))
483 (setq d
(car ql
) ql
(cadr ql
))
484 (cond ((null ql
)(return d
))
485 ((null (cdr ql
)) (return (cons u d
))))
487 (cond ((or alpha
(> modulus
70.
))
488 (cpbgzass ql
(pmod u
) (length ql
)))
489 (t (cpbg ql
(pmod u
) (length ql
))))))))
491 ;; Returns a list of monomials in G of degree less than N.
492 (defun powrs (g n
&aux
(ans (ncons 1)))
494 (do ((i 1 (1+ i
))) ((= i n
) ans
)
496 (push (make-poly g i
1) ans
)))
498 ;; Finds polynomials A and B such that A*F+B*G=1 when MODULUS
499 ;; is non-NIL. Same algorithm as INVMOD.
501 (prog (a1 a2 b1 b2 r1 r2 ql ans ap bp g1 f1 s
)
502 (cond ((> (cadr g
) (cadr f
)) (setq g1 g
) (setq f1 f
))
503 (t (setq g1 f
) (setq f1 g
) (setq s t
)))
504 (setq ql
(pmodquo g1 f1
))
507 (setq a2
(pminus (car ql
)))
511 test
(cond ((or (numberp r2
) (and alpha
(alg r2
))) (go end
)))
512 (setq ql
(pmodquo r1 r2
))
513 (setq ap
(pdifference a1
(ptimes (car ql
) a2
)))
514 (setq bp
(pdifference b1
(ptimes (car ql
) b2
)))
522 end
(cond ((pzerop r2
)
523 (cond ((equal 1 (setq ans
(caddr r1
)))
524 (setq ans
(list b1 a1
)))
525 (t (setq ans
(list (car (pmodquo b1 ans
))
526 (car (pmodquo a1 ans
))))))
528 (setq ans
(list (car (pmodquo b2 r2
)) (car (pmodquo a2 r2
))))
529 out
(cond ((not s
) (return (reverse ans
))) (t (return ans
)))))
535 (fact2z v f g limk
)))
537 (defun zfact (u fl limk many
*)
541 (setq dlp
(reduce #'max
(mapcar #'multideg
(cdr (oddelm u
))))))
542 (when (= (length fl
) 1) (return (list u
)))
543 (setq prodl
(fsplit fl
'v
))
547 (defun zfactsplit (fl v
)
549 (cond ((null (cdr fl
)) (return (setq fcs
* (cons v fcs
*))))
552 (return (setq fcs
* (nconc (zff v
(car fl
) (cadr fl
)) fcs
*))))
553 (t (setq fl
(cdr fl
))
554 (setq d
(zff v
(caar fl
) (caadr fl
)))
556 (zfactsplit (car fl
) (car d
))
557 (return (zfactsplit (cadr fl
) (cadr d
)))))))
561 (setq s
(nthcdr (1- (ash (length l
) -
1)) l
))
562 (setq dn
* (copy-list (cdr s
)))
566 (defun fsplit (l ind
)
568 (cond ((null (cdr l
)) (return l
))
570 (return (list (apply #'ptimes l
) l
))))
572 (setq nn
* (fsplit nn
* nil
))
573 (setq dn
* (fsplit dn
* nil
))
574 (return (list (cond (ind ind
) (t (ptimes (car nn
*) (car dn
*))))
578 ;; this page contains routines changed for non-monic hack
580 (defun pexptmod (p n q
)
582 (when (pcoefp p
) (return (cexpt p n
)))
583 (setq q
(cdr q
) x
(car p
))
585 (setq p
(setq u
(pgcd1 (cdr p
) q
)))
589 a
(setq p
(pgcd1 p q
))
590 b
(setq n
(ash n -
1))
591 (when (zerop n
) (return (cons x u
)))
592 (setq p
(ptimes1 p p
))
593 (when (oddp n
) (setq u
(pgcd1 (ptimes1 u p
) q
)))
597 (cond ((and (equal 0 (ptterm (cdr u
) 0)) (equal 0 (ptterm (cdr u
) 1)))
600 (setq u
(pgcd u
(pderivative u var
)))
601 (or (numberp u
) (alg u
)))
602 (t (quick-sqfr-check u var
))))
604 (declare-top (special p
))
606 (defun fixvl0 (l1 l2 ov
)
608 loop
(cond ((null ov
) (setq subvar a subval b valist c
) (return nil
))
609 ((member (car ov
) l1
:test
#'eq
)
610 (setq a
(cons (car ov
) a
)
611 b
(cons (assso (car ov
) l1 l2
) b
)
613 (t (setq c
(cons 0 c
))))
617 (defun assso (a l1 l2
)
619 loop
(cond ((null l1
) (return nil
))
620 ((eq (car l1
) a
) (return (car l2
))))
621 (setq l1
(cdr l1
) l2
(cdr l2
))
626 (when (null l
) (return nil
))
629 loop
(setq l
(cdr l
))
630 (cond ((null l
) (return ans
))
631 ((> (count 0 (car l
)) i
) (go ag
)))
634 (defun multfact (poly)
635 (prog (*inl3
*i
* *min
* *mx
* nn
* *odr
* lc elm listelm plim origenvar ne var valist val1
636 ovarlist p subvar subvar1 subval1 subval dlp
)
637 ;; (declare (special p))
638 (setq var
(car poly
) elm
(listovars poly
)
640 genvar
(intersect genvar
(if algfac
*
641 (delete (car alpha
) elm
:test
#'equal
)
643 ovarlist
(butlast genvar
) ;this depends on the order of the above intersection!
644 nn
* (1+ (length ovarlist
)))
646 (setq lc
(caddr poly
))
647 (setq elm
1 *i
* 1 ne
1)
648 (setq subval
(reverse poly
))
649 (setq *odr
*(putodr (reverse ovarlist
)))
650 (setq val1
(zerohk (nconc (degvector nil
1 lc
)
651 (cond ((or (> (cadr subval
) 0)
652 (> (cadddr subval
) 1))
653 (degvector nil
1 (car subval
)))))))
657 (setq subvar1 ovarlist
)
658 (setq subval1
(polysubst (make-list (length subvar1
) :initial-element
0) subvar1
))
660 (fixvl val1 ovarlist
)
661 (fixvl1 val1 ovarlist
)
662 (when subval1
(setq subval1
(polysubst subval1 subvar1
)))
663 (setq subval
(polysubst (completevector nil
0 (length subval
) 1) subvar
))
664 tag
(fixvl subval1 subvar1
)
665 (setq subval1 nil subvar1 nil
)
666 (fixvl0 subvar subval
(reverse ovarlist
))
667 (when algfac
* (push (car alpha
) genvar
))
668 (setq poly
(cpber3 poly p
))
669 (setq genvar origenvar
)
672 (defun polysubst (a b
)
673 (prog (lc *inl3 d n modulus
)
674 (when modulu
* (setq modulus modulu
*))
675 (setq *inl3 t lc
(caddr p
) n
(length a
))
676 loop
(setq d
(pcsubsty a b lc
))
677 (when (equal 0 d
) (go inl
))
679 (setq d
(pcsubsty a b p
)))
680 (when (sqfrp (pmod d
) (car d
))
681 (setq p d
) (return a
))
682 inl
(setq a
(increaselist a n
))
685 (declare-top (unspecial p
))
690 (setq subval1
(nreverse subval1
) subvar1
(nreverse subvar1
))
693 (setq subval1
(cons (car l
) subval1
))
694 (setq subvar1
(cons (car r
) subvar1
))))
702 (setq subval
(nreverse subval
) subvar
(nreverse subvar
))
704 ((not (zerop (car l
)))
705 (setq subval
(cons (car l
) subval
))
706 (setq subvar
(cons (car r
) subvar
))))
716 (cond (modulu* (setq plim modulu
* *prime modulu
* limk -
1) (return nil
))
717 ((null limk
)(setq plim
*alpha
*prime
*alpha limk -
1)(return nil
)))
718 (setq v
(butlast (pdegreevector p
)))
724 (cond ((equal b
0) 1)
725 (t (max (* (simpbinocoef (list '(%binocoef
)
734 (setq min-plim
(* (max (maxcoef p
) plim
) v
))
735 loop
(cond ((< min-plim plim
) (return nil
)))
737 (setq plim
(* plim plim
))
742 (defun increaselist (l n
)
743 (cond (*inl3
(setq l
(inlist3 l
))))
745 (t (cond ((equal elm
2)
747 (merror (intl:gettext
"factor: not enough choices for substitution.")))
752 (completevector (baselist ne
) ne n listelm
))
753 (t (cond ((equal *i
* n
)
755 (completevector (baselist ne
) ne n listelm
))
757 (butlast (cons listelm l
)))))))))
760 ;; Returns a list of N random numbers. If MODULUS is set, then the
761 ;; numbers will be modulo MODULUS. Otherwise, between 0 and 1000.
762 (defun rand (n modulus
)
764 (do ((i n
(1- i
)) (l))
765 ((= i
0) (cond (modulus (mapcar #'cmod l
))
768 (push (random 1000.
) l
)))
770 (defun trufac (v lp olfact many
* modulus
)
771 (prog (ans olc lc af qnt factor lfunct
)
773 (set-modulus modulus
)
774 (setq lfunct
(setq olfact
(cons nil olfact
)))
776 ((equal v
1) (setq ans factor
) (go out
))
780 (cond ((< (length olfact
) 4) (cons v factor
))
784 (cons (let ((modulus plim
))
785 (ptimes olc
(cadr olfact
)))
788 ((and (null (cdr lp
)) (or (null (cdr olfact
)) (null (cddr olfact
))))
789 (setq ans
(cons v factor
))
792 (cond ((setq qnt
(let ((modulus modulu
*))
794 (setq factor
(cons af factor
))
795 (setq lc
(ptimes lc
(caddr af
)))
797 (let ((modulus plim
))
798 (setq olc
(ptimes (caddr (cadr lfunct
)) olc
)))
799 (rplacd lfunct
(cddr lfunct
)))
800 (t (setq lfunct
(cdr lfunct
))))
807 (cond ((numberp p
) (return 0)) ((onevarp p
) (return (cadr p
))))
808 (setq p
(cdr p
) m
(car p
))
809 loop
(cond ((null p
) (return m
)))
810 (setq d
(+ (car p
) (multideg (cadr p
))) p
(cddr p
) m
(max d m
))
814 "return a list of the first. third etc. elements of list"
815 (loop for el in list by
#'cddr
819 (prog (factz alcinv lc plim monic
* sharpcont limk var vfact
)
821 (cond ((and algfac
* (not (atom (caddr u
))))
823 (setq u
(ptimes u
(car(setq alcinv
(rainv alc
))) ))
824 (setq v
(ptimes v
(car alcinv
)))
825 (setq adn
* (* adn
* (cdr alcinv
)))))
826 (setq u
(oldcontent u
))
827 (setq sharpcont
(car u
) u
(cadr u
))
829 (cond ((equal lc
1) (setq monic
* t
)))
830 (setq factz
(fact5 u
))
831 ;; this is the barry trick
832 (cond (*stop
* (setq *stop
* plim
) (return (cons (car subval
) factz
))))
834 (cond ((null (cdr factz
)) (return (list v
)))
835 ((and algfac
* (not (equal adn
* 1)))
836 (setq v
(pctimes adn
* v
) lc
(pctimes adn
* lc
))))
839 (setq u v v
(newrep v
))
840 (cond ((numberp (car factz
))
841 (setq sharpcont
(ptimes sharpcont
(car factz
)) factz
(cdr factz
))))
842 (cond ((not (equal sharpcont
1))
843 (setq factz
(cons (ptimes sharpcont
(car factz
)) (cdr factz
)))))
844 (setq vfact
(zfact v factz limk t
))
846 (setq factz
(cond (monic* (reverse vfact
))
847 (t (restorelc vfact
(newrep lc
)))))
848 (cond ((and algfac
* (not (equal adn
* 1)))
849 (setq v
(pctimes (crecip adn
*) v
))(setq adn
* 1)))
850 (setq vfact
(trufac v factz
(nreverse vfact
) t modulu
*))
852 (cond ((null (cdr vfact
)) (return (list u
)))
853 (t (return (mapcar #'oldrep vfact
))))))
857 (defun nprod (lc u lfunct
)
858 (prog (stage v d2 af0 r lcindex factor llc ltuple lprod lindex qnt af
859 funct tuple ltemp lpr f l li lf modulus
)
860 (setq lpr
(copy-tree (setq ltemp
(cons nil nil
))))
861 (setq lprod
(cons nil lfunct
))
862 (setq d2
(ash (cadr u
) -
1))
864 (setq lfunct
(cdr lprod
))
865 (setq lindex
(index* (setq r
(length lfunct
))))
867 (setq llc
(mapcar #'caddr lfunct
))
868 (setq lcindex
(copy-list lindex
))
870 (setq v
(ptimes lc
(ptimes (caddr u
) u
))))
872 (setq ltuple
(cons nil
(mapcar #'list lindex
)))
874 (setq lindex
(cons nil lindex
))
875 (setq lfunct
(copy-list lprod
))
877 nextuple
(cond ((or (> stage d2
) (> stage
(1- r
))
878 (null ltuple
) (null (cdr ltuple
)))
879 (return (cons u factor
))))
880 (setq li
(cdr lindex
))
881 (setq lf
(cdr lfunct
))
882 (setq tuple
(cadr ltuple
))
883 (setq funct
(cadr lprod
))
884 (rplacd ltuple
(cddr ltuple
))
885 (rplacd lprod
(cddr lprod
))
886 iloop
(setq l
(car li
))
890 (cond ((and (not (member l tuple
:test
#'equal
))
891 (not (> (+ (cadr f
) (cadr funct
)) d2
))
892 (not (member (setq l
(orde l tuple
)) ltemp
:test
#'equal
)))
894 (setq af0
(setq af
(ptimes(pmod f
) (pmod funct
))))
895 (cond (llc (setq af
(ptimes (pmod (lchk llc lcindex l
)) af
))))
896 (cond (many* (setq af
(dropterms af
)))
897 ((and algfac
* (not (equal intbs
* 1)))(setq af
(intbasehk af
))))
899 (cond ((setq qnt
(testdivide v af
))
900 (cond (llc (setq af
(oldcontent af
))
901 (setq v
(ptimes (car af
) qnt
)af
(cadr af
))
902 (setq u
(cond (algfac*(car (ignore-rat-err
904 (t (pquotient u af
)))))
905 (t (setq u qnt v qnt
)))
906 (setq factor
(cons af factor
))
907 (cond ((equal u
1) (return factor
)))
908 (setq d2
(ash (cadr u
) -
1))
909 (cond ((< d2 stage
) (return (cons u factor
))))
910 (remov1 l ltuple lprod d2
)
911 (remov1 l ltemp lpr d2
)
912 (remov2 l lindex lfunct d2
)
914 (setq li nil
)) ; exit iloop
915 (t (setq ltemp
(nconc ltemp
(list l
)))
916 (setq lpr
(nconc lpr
(list af0
)))))))
917 (cond (li (go iloop
)) ((cdr ltuple
) (go nextuple
)))
918 (setq ltuple ltemp lprod lpr ltemp nil lpr nil
)
921 (defun remov2 (a b c d2
)
923 tag1
(cond ((null (cdr b
)) (return nil
))
924 ((or (member (cadr b
) a
:test
#'equal
) (> (cadadr c
) d2
))
932 (defun remov1 (a lt1 lp1 d2
)
934 tag1
(cond ((null (cdr lt1
)) (return nil
))
935 ((and (not (> (cadadr lp1
) d2
))
936 (null (intersection a
(cadr lt1
) :test
#'equal
)))
940 (rplacd lt1
(cddr lt1
))
941 (rplacd lp1
(cddr lp1
))
944 (defun remov0 (lf d2
)
946 tag
(cond ((null (cdr lf
)) (return nil
))
947 ((> (cadadr lf
) d2
)(setq d2
(caddr (cadr lf
))) (rplacd lf
(cddr lf
))
948 (cond ((equal d2
1) nil
)(t (rplacd d
(cons (ptimes d2
(cadr d
)) (cddr d
)))))
955 loop
(cond ((null (cdr a
)) (return nil
))
958 (rplacd b
(cddr b
))(go loop
)))
959 (setq a
(cdr a
) b
(cdr b
))(go loop
)))
964 loop
(cond ((null a
) (return ans
))
965 ((not (member (car b
) c
:test
#'equal
)) (setq ans
(ptimes ans
(car a
)))))
966 (setq a
(cdr a
) b
(cdr b
))
973 (setq d
1 l
(reverse l
) ans
'(1))
974 loop
(cond ((null (cdr l
)) (return ans
)))
975 (setq d
(ptimes d
(caddar l
)))
977 (setq ans
(cons d ans
))
982 (prog (ql trl
* linfac uu
* lc deg factp factz modulus monic
* split
* var
983 anotype fctc invc
*afixn
* *fctcfixn
* *invcfixn
*)
984 (setq var
(car poly
))
985 (cond ((null (cdddr poly
)) (return (list poly
))))
986 (cond((and algfac
* (not (atom (caddr poly
))))
987 (setq alc
(caddr poly
))
988 (setq poly
(rattimes (cons poly
1) (setq alcinv
(rainv alc
)) t
))
989 (setq adn
*(* adn
* (cdr poly
)))
990 (setq poly
(car poly
))))
991 (cond((and algfac
* minpoly
* (or $nalgfac
(equal (cdr minpoly
*) '(4 1 0 1))))
992 (setq ql
'splitcase
) (go tag0
)))
994 (cond ((equal (setq lc
(caddr uu
*)) 1) (setq monic
* t
)))
995 (setq deg
(cadr poly
))
997 (setq *fctcfixn
* (make-array deg
:initial-element
0)
998 *invcfixn
* (make-array deg
:initial-element
0)
999 *afixn
* (make-array (list deg deg
) :initial-element
0)))
1000 (t (setq fctc
(make-array deg
)
1001 invc
(make-array deg
)
1002 anotype
(make-array (list deg deg
))
1003 *fctcfixn
* (make-array mm
* :initial-element
0)
1004 *invcfixn
* (make-array mm
* :initial-element
0)
1005 *afixn
* (make-array (list mm
* mm
*) :initial-element
0))))
1006 (cond (modulu* (return (fact5mod poly
))))
1007 (cond ((not (atom (setq ql
(choozp uu
*))))
1008 (setq linfac
(car ql
) uu
* (caddr ql
) ql
(cadr ql
))))
1009 (setq *prime modulus
)
1010 tag0
(cond ((eq ql
'splitcase
)
1011 (setq poly
(nalgfac poly
(cons (car alpha
) (cdr minpoly
*))))
1012 (setq plim
*alpha
*prime plim limk -
1)
1014 ((null (cdr (append linfac ql
)))
1015 (setq poly
(list poly
))
1017 ((equal uu
* 1) (setq factp nil
) (go on
)))
1018 (cond (algfac* (setq factp
(cpbgzass ql uu
* (length ql
))))
1019 ((not (equal uu
* 1))
1020 (setq factp
(cpbg ql uu
* (length ql
)))))
1022 on
(setq factp
(nconc factp linfac
)
1024 factp
(cons (pctimes (pmod lc
) (car factp
)) (cdr factp
)))
1025 (setq limk
(klim poly modulus
))
1026 (setq factz
(zfact poly factp limk nil
)factp nil
)
1027 (setq poly
(trufac poly
1028 (let ((modulus plim
))
1029 (restorelc factz lc
))
1038 (setq poly
(copy-list u
))
1039 (set-modulus modulu
*)
1040 (setq poly
(pmod poly
))
1041 (setq lc
(caddr poly
))
1042 (pmonicize (cdr poly
))
1043 (setq poly
(cpberl poly
))
1044 (cond ((null (cdr poly
))
1046 (t (return (if (= lc
1)
1048 (cons lc poly
)))))))
1050 (defun cpbg (qlist v m
)
1051 (declare (fixnum m
))
1052 (prog (y vj factors u w
(j 0)
1053 (p1 (ash modulus -
1))
1056 (declare (fixnum j p1 p2
))
1057 (when (= m
1) (return (list v
)))
1058 (setq p1
(ash modulus -
1))
1060 (setq qlist
(cdr (nreverse qlist
)))
1061 (setq oldfac
(list nil v
))
1063 tag3
(setq vj
(nconc (car qlist
) (list 0 0)))
1064 (setq qlist
(cdr qlist
))
1066 (setq oldfac
(nconc oldfac fnq
))
1068 incrj
(setq factors
(nconc oldfac fnj
))
1071 tag2
(setq u
(cadr factors
))
1072 (setq w
(pgcdu vj u
))
1073 (cond ((or (numberp w
) (= (cadr w
) (cadr u
))) (go agg
)))
1074 (setq y
(car (pmodquo u w
)))
1075 (setq fnq
(cons (copy-list w
) fnq
))
1076 (setq fnj
(cons y fnj
))
1078 (rplacd factors
(cddr factors
))
1079 (cond ((equal p2 m
) (go out
)) (t (go tag1
)))
1080 agg
(setq factors
(cdr factors
))
1081 tag1
(cond ((cdr factors
) (go tag2
))
1082 ((< j p1
) (incf j
) (go incrj
))
1084 out
(return (nconc fnq fnj
(cdr oldfac
)))))
1089 (defun fact2z (u f g limk
)
1090 (prog (a a1 w pk mpk b c r p ql qlp h
(k 0) b1
)
1091 (declare (fixnum k
))
1093 (setq r
(ppprog f g
))
1096 (let ((modulus nil
))
1097 (setq r
(pdifference (ptimes f g
) u
)))
1098 sharp
(cond ((or (equal r
0) (> k limk
)) (go on
)))
1099 (setq pk modulus mpk
(- pk
))
1100 (setq modulus
(* modulus modulus
))
1102 (cond ((equal w
0) (go tag1
)))
1103 (setq c
(npquo w pk
))(setq w nil
)
1104 (setq ql
(pmodquo (ptimes a c
) g
))
1105 (setq a1
(npctimes mpk
1106 (pplus (ptimes (car ql
) f
)
1108 (setq b1
(npctimes mpk
(cdr ql
)))
1109 (let ((modulus plim
))
1110 (setq r
(pplus (pplus r
(ptimes a1 b1
))
1111 (pplus (ptimes a1 g
) (ptimes b1 f
))))
1112 (setq f
(pplus f a1
))
1113 (setq g
(pplus g b1
)))
1114 (setq a1 nil b1 nil
)
1115 tag1
(cond ((or (equal r
0)(> (incf k
) limk
)) (go on
)))
1116 (setq h
(npquo (pplus (pplus (ptimes a f
)
1120 (setq qlp
(pmodquo (ptimes a h
) g
))
1121 (setq b1
(pplus (ptimes b h
) (ptimes (car qlp
) f
)))
1122 (setq a
(pplus a
(npctimes mpk
(cdr qlp
))))
1123 (setq b
(pplus b
(npctimes mpk b1
)))
1124 (setq h nil b1 nil qlp nil
)
1127 (return (list f g
))))
1131 (defun npctimes (c p
)
1132 (setq p
(npctimes1 c p
))
1133 (if (and (not (atom p
)) (null (cdr p
)))
1139 (cond ((equal c
1) (return p
))
1140 ((pcoefp p
) (return (quotient p c
))))
1142 loop
(cond ((null (cdr u
)) (return p
)))
1144 (rplaca u
(cond ((pcoefp (car u
))
1145 (quotient (car u
) c
))
1146 (t (npquo (copy-list (car u
)) c
))))
1149 (defun npctimes1 (c p
)
1151 (cond((equal c
1)(return p
))
1152 ((pcoefp p
)(return (ctimes c p
))))
1154 loop
(cond ((null (cdr u
))(return p
)))
1155 (setq a
(cond ((pcoefp (caddr u
)) (ctimes c
(caddr u
)))
1156 (t (npctimes c
(copy-list (caddr u
))))))
1157 (cond ((equal a
0) (rplacd u
(cdddr u
)))
1158 (t (setq u
(cddr u
))
1162 (defun x**q1
(term u m p
)
1163 (declare (fixnum m
))
1165 (declare (fixnum i
))
1166 (setq trl
* (list term
))
1167 loop
(when (= i m
) (return (pexptmod term p u
)))
1168 (setq term
(pexptmod term p u
))
1169 (setq trl
* (cons term trl
*))
1173 (defun cptomf (p u n
)
1174 (declare (fixnum n p
))
1175 (prog (l s
*xn
(j 0) (i 0) ind
(n-1 (1- n
)) )
1176 (declare (fixnum i j
))
1178 (cond ((= j n
) (return nil
))
1181 (setq *xn
(mapcar #'-
(p2cpol (cddr u
) n-1
))
1184 (setq i
(- (* p j
) n
))
1186 (setq s
(p2cpol (list var
(* p j
) 1) n-1
))
1189 sa1
(cond ((= i
0) (go st
)))
1193 st
(cond ((and (= j
1)
1194 (equal '(1 0) (last s
2))
1195 (= 1 (apply #'+ s
)))
1196 (return (setq split
* t
))))
1199 sharp2
(when (null l
) (go on
))
1200 (setf (aref *afixn
* j i
) (car l
))
1204 on
(decf (aref *afixn
* j j
))
1208 (declare (fixnum n
))
1211 loop
(cond ((= n -
1) (return (nreverse l
)))
1212 ((or (null p
) (> n
(car p
))) (setq l
(cons 0 l
)))
1214 (setq l
(cons (cadr p
) l
))
1221 (setq xn
*xn q p lc
(car p
))
1223 (rplaca q
(cplus (cadr q
) (ctimes lc
(car xn
))))
1224 (setq q
(cdr q
) xn
(cdr xn
)))
1225 (t (rplaca q
(ctimes lc
(car xn
))) (return p
)))
1230 (declare (fixnum n
))
1231 (prog (nullsp mone
(k 1) (j 0) s
(n-1 (1- n
)) nullv vj m aks
)
1232 (declare (fixnum k j n-1
))
1233 (setq mone
(cmod -
1))
1234 (do ((i 0 (1+ i
))) ((> i n-1
))
1235 (setf (aref *fctcfixn
* i
) -
1)
1236 (setf (aref *invcfixn
* i
) -
1))
1237 (setq nullsp
(list 1))
1238 n2
(when (> k n-1
) (return nullsp
))
1240 n3a
(cond ((> j n-1
) (go null
))
1241 ((or (= (aref *afixn
* k j
) 0) (> (aref *fctcfixn
* j
) -
1))
1244 (setf (aref *invcfixn
* k
) j
)
1245 (setf (aref *fctcfixn
* j
) k
)
1246 (setq m
(aref *afixn
* k j
))
1247 (setq m
(crecip (ctimes mone m
)))
1248 (do ((s k
(1+ s
))) ((> s n-1
))
1249 (setf (aref *afixn
* s j
) (ctimes m
(aref *afixn
* s j
))))
1250 ;; go through columns
1252 sharp2
(when (> s n-1
) (go nextk
))
1253 ;; go through rows in each column
1255 (t (setq aks
(aref *afixn
* k s
))
1258 (setf (aref *afixn
* i s
)
1259 (cplus (aref *afixn
* i s
)
1260 (ctimes (aref *afixn
* i j
) aks
))))))
1263 null
(setq nullv nil
)
1264 (do ((s 0 (1+ s
))) ((> s n-1
))
1265 (cond ((= s k
) (setq nullv
(cons s
(cons 1 nullv
))))
1266 ((> (aref *invcfixn
* s
) -
1)
1267 (setq vj
(aref *afixn
* k
(aref *invcfixn
* s
)))
1268 (cond ((= vj
0) nil
)
1269 (t (setq nullv
(cons s
(cons vj nullv
))))))))
1270 (cond ((equal (car nullv
) 0) (setq nullv
(cadr nullv
)))
1271 ((setq nullv
(cons var nullv
))))
1272 (setq nullsp
(cons nullv nullsp
))
1278 (prog (lchar1 u tr n
(ncont 1) bmod b1 b mincont
(lmin 0) (nf 0)
1279 (deg (cadr v
)) (algcont 0))
1280 (declare (special ncont lmin nf deg algcont
))
1281 (setq nf
(integer-length deg
))
1282 (setq lchar1
(if gauss
'(3 7 11.
19.
23.
29.
31.
37.
) (cdr *small-primes
*)))
1283 test
(setq modulus
(car lchar1
))
1285 (cond ((or (zerop (rem sharpcont modulus
))
1290 (cond ((or (null (sqfrp u var
))
1293 (not (iredup (pmod minpoly
*)))))
1297 (setq b1
(catch 'splt
(cpber1 u
)))(setq algcont
0)
1299 (setq n
(+ (length (car b1
)) (length (cadr b1
))))
1300 (cond ((or (zerop lmin
) (< n lmin
))
1301 (setq lmin n mincont
1 bmod modulus b b1
)
1302 (cond (algfac* (setq tr trl
*))))
1303 ((= n lmin
) (incf mincont
)))
1304 (cond ((or (> ncont nf
) (not(> n nf
)) (= mincont
3)) (go out
)))
1305 nextp
(setq lchar1
(cdr lchar1
))
1306 (cond ((null lchar1
)
1307 (cond ((not (zerop lmin
)) (go out
))
1308 (t (merror (intl:gettext
"factor: ran out of primes.")))))
1309 ((and algfac
* minpoly
* (> algcont
6))
1310 (cond ((ziredup minpoly
*)(setq trl
* tr
)(setq modulus nil
)
1311 (return 'splitcase
))
1312 (t (merror (intl:gettext
"factor: the minimal polynomial must be irreducible over the integers."))))))
1314 out
(setq modulus bmod trl
* tr
)
1319 (declare (fixnum n
))
1322 (cond ((not (integerp modulus
)) (*array
'a t n n
)))
1323 (cond ((or algfac
* (not (integerp modulus
)))
1324 (cptom modulus mm
* a n
))
1325 (t (cptomf modulus a n
)))
1327 (return (powrs (car a
) (cadr a
)))))
1328 (return (cond ((or algfac
* (not (integerp modulus
)))
1342 (cond ((equal u
1) (return (list linfac nil u
))))
1343 (return (list linfac
(cpbq1 u
(cadr u
)) u
))))
1346 (defun factor1972 (p)
1347 (let ((modulu* modulus
) many
* *stop
* modulus mcflag
*negflag
*)
1348 (if (or (atom p
) (numberp p
) (and algfac
* (alg p
)))
1353 (let ((sharpcont 1) plim
)
1354 (setq p
(cond ((onevarp p
)
1355 (mapcar #'posize
(fact5 p
)))
1360 (cons (pminus (car p
)) (cdr p
))
1365 (setq *negflag
* (not *negflag
*))