Print a warning when translating subscripted functions
[maxima.git] / src / nummod.lisp
blob7ceace1b79bf870431ca56f95865797daf9fb986
1 ;; Maxima functions for floor, ceiling, and friends
2 ;; Copyright (C) 2004, 2005, 2007 Barton Willis
4 ;; Barton Willis
5 ;; Department of Mathematics
6 ;; University of Nebraska at Kearney
7 ;; Kearney NE 68847
8 ;; willisb@unk.edu
10 ;; This source code is licensed under the terms of the Lisp Lesser
11 ;; GNU Public License (LLGPL). The LLGPL consists of a preamble, published
12 ;; by Franz Inc. (http://opensource.franz.com/preamble.html), and the GNU
13 ;; Library General Public License (LGPL), version 2, or (at your option)
14 ;; any later version. When the preamble conflicts with the LGPL,
15 ;; the preamble takes precedence.
17 ;; This library is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 ;; Library General Public License for details.
22 ;; You should have received a copy of the GNU Library General Public
23 ;; License along with this library; if not, write to the
24 ;; Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
25 ;; Boston, MA 02110-1301, USA.
27 (in-package :maxima)
29 (macsyma-module nummod)
31 ;; Let's have version numbers 1,2,3,...
33 (eval-when (:load-toplevel :execute)
34 ($put '$nummod 3 '$version)
35 ;; Let's remove built-in symbols from list for user-defined properties.
36 (setq $props (remove '$nummod $props)))
38 (defmacro opcons (op &rest args)
39 `(simplify (list (list ,op) ,@args)))
41 ;; charfun(pred) evaluates to 1 when the predicate 'pred' evaluates
42 ;; to true; it evaluates to 0 when 'pred' evaluates to false; otherwise,
43 ;; it evaluates to a noun form.
45 (defprop $charfun simp-charfun operators)
46 (defprop %charfun simp-charfun operators)
48 (defun simp-charfun (e yy z)
49 (declare (ignore yy))
50 (oneargcheck e)
51 (setq e (take '($is) (simplifya (specrepcheck (second e)) z)))
52 (let* (($prederror nil)
53 (bool (mevalp e)))
54 (cond ((eq t bool) 1)
55 ((eq nil bool) 0)
56 ((op-equalp e '$is) `(($charfun simp) ,(second e)))
57 (t `(($charfun simp) ,e)))))
59 (defun integer-part-of-sum (e)
60 (let ((i-sum 0) (n-sum 0) (o-sum 0) (n))
61 (setq e (margs e))
62 (dolist (ei e)
63 (cond ((maxima-integerp ei)
64 (setq i-sum (add ei i-sum)))
65 ((or (ratnump ei) (floatp ei) ($bfloatp ei))
66 (setq n-sum (add ei n-sum)))
68 (setq o-sum (add ei o-sum)))))
69 (setq n (opcons '$floor n-sum))
70 (setq i-sum (add i-sum n))
71 (setq o-sum (add o-sum (sub n-sum n)))
72 (values i-sum o-sum)))
74 (defprop $floor simp-floor operators)
76 (defprop $floor tex-matchfix tex)
77 (defprop $floor (("\\left \\lfloor " ) " \\right \\rfloor") texsym)
79 ;; $floor distributes over lists, matrices, and equations
80 (setf (get '$floor 'distribute_over) '(mlist $matrix mequal))
82 ; These defprops for $entier are copied from orthopoly/orthopoly-init.lisp.
84 (defprop $entier tex-matchfix tex)
85 (defprop $entier (("\\lfloor ") " \\rfloor") texsym)
87 ;; $entier and $fix distributes over lists, matrices, and equations
88 (setf (get '$entier 'distribute_over) '(mlist $matrix mequal))
89 (setf (get '$fix 'distribute_over) '(mlist $matrix mequal))
91 ;; For an example, see pretty-good-floor-or-ceiling. Code courtesy of Stavros Macrakis.
93 (defmacro bind-fpprec (val &body exprs)
94 `(let (fpprec bigfloatzero bigfloatone bfhalf bfmhalf)
95 (let (($fpprec (fpprec1 nil ,val)))
96 ,@exprs)))
98 ;; Return true if the expression can be formed using rational numbers, logs, mplus, mexpt, or mtimes.
100 (defun use-radcan-p (e)
101 (or ($ratnump e) (and (op-equalp e '%log 'mexpt 'mplus 'mtimes) (every 'use-radcan-p (cdr e)))))
103 ;; When constantp(x) is true, we use bfloat evaluation to try to determine
104 ;; the ceiling or floor. If numerical evaluation of e is ill-conditioned, this function
105 ;; can misbehave. I'm somewhat uncomfortable with this, but it is no worse
106 ;; than some other stuff. One safeguard -- the evaluation is done with three
107 ;; values for fpprec. When the floating point evaluations are
108 ;; inconsistent, bailout and return nil. I hope that this function is
109 ;; much more likely to return nil than it is to return a bogus value.
111 (defun pretty-good-floor-or-ceiling (x fn &optional digits)
112 (let (($float2bf t) ($algebraic t) (f1) (f2) (f3) (eps) (lb) (ub) (n))
114 (setq digits (if (and (integerp digits) (> 0 digits)) digits 25))
115 (catch 'done
117 ;; To handle ceiling(%i^%i), we need to apply rectform. If bfloat
118 ;; is improved, it might be possible to remove this call to rectform.
120 (setq x ($rectform x))
121 (if (not ($freeof '$%i '$minf '$inf '$und '$infinity x)) (throw 'done nil))
123 ;; When x doesn't evaluate to a bigfloat, bailout and return nil.
124 ;; This happens when, for example, x = asin(2). For now, bfloatp
125 ;; evaluates to nil for a complex big float. If this ever changes,
126 ;; this code might need to be repaired.
128 (bind-fpprec digits
129 (setq f1 ($bfloat x))
130 (if (not ($bfloatp f1)) (throw 'done nil)))
132 (incf digits 20)
133 (setq f2 (bind-fpprec digits ($bfloat x)))
134 (if (not ($bfloatp f2)) (throw 'done nil))
136 (incf digits 20)
137 (bind-fpprec digits
138 (setq f3 ($bfloat x))
139 (if (not ($bfloatp f3)) (throw 'done nil))
141 ;; Let's say that the true value of x is in the interval
142 ;; [f3 - |f3| * eps, f3 + |f3| * eps], where eps = 10^(20 - digits).
143 ;; Define n to be the number of integers in this interval; we have
145 (setq eps (power ($bfloat 10) (- 20 digits)))
146 (setq lb (sub f3 (mult (take '(mabs) f3) eps)))
147 (setq ub (add f3 (mult (take '(mabs) f3) eps)))
149 ;; If n > 1, we're going to give up. This is true iff ceiling(ub) -
150 ;; ceiling(lb) > 1. However, we don't want to blindly try to calculate
151 ;; that: if ub and lb are enormous, we probably won't have enough
152 ;; precision in the bigfloats to calculate either ceiling. Start by
153 ;; taking the difference: if it's at least 2, then we know that n >= 2.
154 (when (fpgreaterp (cdr (sub ub lb)) (cdr ($bfloat 2)))
155 (throw 'done nil))
157 (setq n (sub (take '($ceiling) ub)
158 (take '($ceiling) lb))))
160 (setq f1 (take (list fn) f1))
161 (setq f2 (take (list fn) f2))
162 (setq f3 (take (list fn) f3))
164 ;; Provided f1 = f2 = f3 and n = 0, return f1.
165 ;; If n = 1 and (use-radcan-p e) and ($radcan e) is a $ratnump, return
166 ;; floor / ceiling of radcan(x).
168 (cond ((and (= f1 f2 f3) (= n 0)) f1)
169 ((and (= f1 f2 f3) (= n 1) (use-radcan-p x))
170 (setq x ($radcan x))
171 (if ($ratnump x) (take (list fn) x) nil))
172 (t nil)))))
175 ;; (a) The function fpentier rounds a bigfloat towards zero--we need to
176 ;; check for that.
178 ;; (b) Since limit(f(x))=(m)inf implies limit(floor(f(x)))=(m)inf,
179 ;; floor(inf/minf) = inf/minf. Since minf<limit(f(x))<inf implies
180 ;; minf<limit(floor(f(x)))<inf, floor(ind)=ind
182 ;; I think floor(complex number) should be undefined too. Some folks
183 ;; might like floor(a + %i b) --> floor(a) + %i floor(b). But
184 ;; this would violate the integer-valuedness of floor.
185 ;; So floor(infinity) remains unsimplified
187 (defun simp-floor (e e1 z)
188 (oneargcheck e)
189 (setq e (simplifya (specrepcheck (nth 1 e)) z))
191 (cond ((numberp e) (floor e))
193 ((ratnump e) (floor (cadr e) (caddr e)))
195 (($bfloatp e)
196 (setq e1 (fpentier e))
197 (if (and (minusp (cadr e)) (not (zerop1 (sub e1 e))))
198 (1- e1)
199 e1))
201 ((maxima-integerp e) e)
203 (($orderlessp e (neg e))
204 (sub 0 (opcons '$ceiling (neg e))))
206 ((and (setq e1 (mget e '$numer)) (floor e1)))
208 ((or (member e infinities) (eq e '$und) (eq e '$ind)) '$und)
209 ;;((member e '($inf $minf $ind $und)) e) ; Proposed code
210 ;; leave floor(infinity) as is
211 ((or (eq e '$zerob)) -1)
212 ((or (eq e '$zeroa)) 0)
214 ((and ($constantp e) (pretty-good-floor-or-ceiling e '$floor)))
216 ((mplusp e)
217 (let ((i-sum) (o-sum))
218 (multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
219 (setq o-sum (if (equal i-sum 0) `(($floor simp) ,o-sum)
220 (opcons '$floor o-sum)))
221 (add i-sum o-sum)))
223 ;; handle 0 <= e < 1 implies floor(e) = 0 and
224 ;; -1 <= e < 0 implies floor(e) = -1.
226 ((and (member ($compare 0 e) '("<" "<=") :test #'equal)
227 (equal ($compare e 1) "<"))
229 ((and (member ($compare -1 e) '("<" "<=") :test #'equal)
230 (equal ($compare e 0) "<"))
232 (t `(($floor simp) ,e))))
234 (defun floor-integral (x)
235 (let ((f (take '($floor) x)))
236 (mul f (div 1 2) (add (mul 2 x) -1 (neg f)))))
238 (defun ceiling-integral (x)
239 (let ((f (take '($ceiling) x)))
240 (mul f (div 1 2) (add 1 (mul 2 x) (neg f)))))
242 (putprop '$floor `((x) ,#'floor-integral) 'integral)
243 (putprop '$ceiling `((x) ,#'ceiling-integral) 'integral)
245 (defprop $ceiling simp-ceiling operators)
247 (defprop $floor simplim%floor simplim%function)
249 (defun simplim%floor (expr var val)
250 (let* ((arg (cadr expr))
251 (b (behavior arg var val))
252 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
253 (arglim (ridofab arglimab)))
254 (cond ((and (= b -1)
255 (maxima-integerp arglim))
256 (m- arglim 1))
257 ((and (= b 1)
258 (maxima-integerp arglim))
259 arglim)
260 ((and ($constantp arglim)
261 (not (maxima-integerp arglim)))
262 (simplify (list '($floor) arglim)))
264 (throw 'limit nil)))))
266 (defprop $ceiling tex-matchfix tex)
267 (defprop $ceiling (("\\left \\lceil " ) " \\right \\rceil") texsym)
269 ;; $ceiling distributes over lists, matrices, and equations.
270 (setf (get '$ceiling 'distribute_over) '(mlist $matrix mequal))
272 (defun simp-ceiling (e e1 z)
273 (oneargcheck e)
274 (setq e (simplifya (specrepcheck (nth 1 e)) z))
275 (cond ((numberp e) (ceiling e))
277 ((ratnump e) (ceiling (cadr e) (caddr e)))
279 (($bfloatp e)
280 (sub 0 (opcons '$floor (sub 0 e))))
282 ((maxima-integerp e) e)
284 (($orderlessp e (neg e))
285 (sub* 0 (opcons '$floor (neg e))))
287 ((and (setq e1 (mget e '$numer)) (ceiling e1)))
289 ((or (member e infinities) (eq e '$und) (eq e '$ind)) '$und)
290 ((or (eq e '$zerob)) 0)
291 ((or (eq e '$zeroa)) 1)
293 ((and ($constantp e) (pretty-good-floor-or-ceiling e '$ceiling)))
295 ((mplusp e)
296 (let ((i-sum) (o-sum))
297 (multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
298 (setq o-sum (if (equal i-sum 0) `(($ceiling simp) ,o-sum)
299 (opcons '$ceiling o-sum)))
300 (add i-sum o-sum)))
302 ;; handle 0 < e <= 1 implies ceiling(e) = 1 and
303 ;; -1 < e <= 0 implies ceiling(e) = 0.
305 ((and (equal ($compare 0 e) "<")
306 (member ($compare e 1) '("<" "<=") :test #'equal))
308 ((and (equal ($compare -1 e) "<")
309 (member ($compare e 0) '("<" "<=") :test #'equal))
311 (t `(($ceiling simp) ,e))))
313 (defprop $ceiling simplim%ceiling simplim%function)
315 (defun simplim%ceiling (expr var val)
316 (let* ((arg (cadr expr))
317 (b (behavior arg var val))
318 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
319 (arglim (ridofab arglimab)))
320 (cond ((and (= b -1)
321 (maxima-integerp arglim))
322 arglim)
323 ((and (= b 1)
324 (maxima-integerp arglim))
325 (m+ arglim 1))
326 ((and ($constantp arglim)
327 (not (maxima-integerp arglim)))
328 (simplify (list '($ceiling) arglim)))
330 (throw 'limit nil)))))
333 (defprop $mod simp-nummod operators)
334 (defprop $mod tex-infix tex)
335 (defprop $mod (" \\rm{mod} ") texsym)
336 (defprop $mod 180. tex-lbp)
337 (defprop $mod 180. tex-rbp)
339 ;; $mod distributes over lists, matrices, and equations
340 (setf (get '$mod 'distribute_over) '(mlist $matrix mequal))
342 ;; See "Concrete Mathematics," Section 3.21.
344 (defun simp-nummod (e e1 z)
345 (twoargcheck e)
346 (let ((x (simplifya (specrepcheck (cadr e)) z))
347 (y (simplifya (specrepcheck (caddr e)) z)))
348 (cond ((or (equal 0 y) (equal 0 x)) x)
349 ((equal 1 y) (sub x (opcons '$floor x)))
350 ((and ($constantp x) ($constantp y))
351 (sub x (mul y (opcons '$floor (div x y)))))
352 ((not (equal 1 (setq e1 ($gcd x y))))
353 (mul e1 (opcons '$mod (div x e1) (div y e1))))
354 (t `(($mod simp) ,x ,y)))))
356 ;; The function 'round' rounds a number to the nearest integer. For a tie, round to the
357 ;; nearest even integer.
359 (defprop %round simp-round operators)
360 (setf (get '%round 'integer-valued) t)
361 (setf (get '%round 'reflection-rule) #'odd-function-reflect)
362 (setf (get '$round 'alias) '%round)
363 (setf (get '$round 'verb) '%round)
364 (setf (get '%round 'noun) '$round)
366 ;; round distributes over lists, matrices, and equations.
367 (setf (get '%round 'distribute_over) '(mlist $matrix mequal))
369 (defun simp-round (e yy z)
370 (oneargcheck e)
371 (setq yy (caar e)) ;; find a use for the otherwise unused YY.
372 (setq e (simplifya (specrepcheck (second e)) z))
373 (cond (($featurep e '$integer) e) ;; takes care of round(round(x)) --> round(x).
374 ((member e '($inf $minf $und $ind) :test #'eq) e)
375 ((eq e '$zerob) 0)
376 ((eq e '$zeroa) 0)
378 (let* ((lb (take '($floor) e))
379 (ub (take '($ceiling) e))
380 (sgn (csign (sub (sub ub e) (sub e lb)))))
381 (cond ((eq sgn t) `((,yy simp) ,e))
382 ((eq sgn '$neg) ub)
383 ((eq sgn '$pos) lb)
384 ((alike lb ub) lb) ;; For floats that are integers, this can happen. Maybe featurep should catch this.
385 ((and (eq sgn '$zero) ($featurep lb '$even)) lb)
386 ((and (eq sgn '$zero) ($featurep ub '$even)) ub)
387 ((apply-reflection-simp yy e t))
388 (t `((,yy simp) ,e)))))))
390 (defprop %round simplim%round simplim%function)
392 (defun simplim%round (expr var val)
393 (let* ((arg (cadr expr))
394 (b (behavior arg var val))
395 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
396 (arglim (ridofab arglimab)))
397 (cond ((and (= b -1)
398 (maxima-integerp (m+ 1//2 arglim)))
399 (m- arglim 1//2))
400 ((and (= b 1)
401 (maxima-integerp (m+ 1//2 arglim)))
402 (m+ arglim 1//2))
403 ((and (mnump arglim)
404 (not (maxima-integerp (m+ 1//2 arglim))))
405 (simplify (list '(%round) arglim)))
407 (throw 'limit nil)))))
409 ;; Round a number towards zero.
411 (defprop %truncate simp-truncate operators)
412 (setf (get '%truncate 'integer-valued) t)
413 (setf (get '%truncate 'reflection-rule) #'odd-function-reflect)
414 (setf (get '$truncate 'alias) '%truncate)
415 (setf (get '$truncate 'verb) '%truncate)
416 (setf (get '%truncate 'noun) '$truncate)
418 ;; truncate distributes over lists, matrices, and equations.
419 (setf (get '%truncate 'distribute_over) '(mlist $matrix mequal))
421 (defun simp-truncate (e yy z)
422 (oneargcheck e)
423 (setq yy (caar e)) ;; find a use for the otherwise unused YY.
424 (setq e (simplifya (specrepcheck (second e)) z))
425 (cond (($featurep e '$integer) e) ;; takes care of truncate(truncate(x)) --> truncate(x).
426 ((member e '($inf $minf $und $ind) :test #'eq) e)
427 ((eq e '$zerob) 0)
428 ((eq e '$zeroa) 0)
430 (let ((sgn (csign e)))
431 (cond ((member sgn '($neg $nz) :test #'eq) (take '($ceiling) e))
432 ((member sgn '($zero $pz $pos) :test #'eq) (take '($floor) e))
433 ((apply-reflection-simp yy e t))
434 (t `((,yy simp) ,e)))))))
436 ;;; integration for signum, unit_step, and mod.
438 ;; integrate(signum(x),x) = |x|
439 (defun signum-integral (x)
440 (take '(mabs) x))
442 ;; integrate(unit_step(x),x) = (x + |x|)/2
443 (defun unit-step-integral (x)
444 (div (add x (take '(mabs) x)) 2))
446 ;; We have mod(x,a) = x-a*floor(x/a). This gives
447 ;; integrate(mod(x,a),x) = (a^2 floor(x/a)^2 + (a^2 - 2 a x) floor(x/a) + x^2)/2
448 ;; In terms of mod(x,a), an antiderivative is
449 ;; integrate(mod(x,a),x) = (mod(x,a)^2-a*mod(x,a)+a*x)/2
450 ;; Before this function is called, Maxima checks if a explicitly depends on x. So
451 ;; this function doesn't need to do that check.
452 (defun mod-integral (x a)
453 (let ((q (take '($mod) x a)))
454 (div (add (mul q q) (mul -1 a q) (mul a x)) 2)))
456 (putprop '%signum (list (list 'x) #'signum-integral) 'integral)
457 (putprop '$unit_step (list (list 'x) #'unit-step-integral) 'integral)
459 ;; integrate(mod(x,a),a) doesn't have representation in terms of functions
460 ;; known to Maxima, I think. (Barton Willis, 2020).
461 (putprop '$mod (list (list 'x 'y) #'mod-integral nil) 'integral)