coverity appeasement
[minix.git] / lib / libm / noieee_src / n_jn.c
blobac04f3fdaae7c62ee034470bafe000756ccc3eba
1 /* $NetBSD: n_jn.c,v 1.6 2003/08/07 16:44:51 agc Exp $ */
2 /*-
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
31 #ifndef lint
32 #if 0
33 static char sccsid[] = "@(#)jn.c 8.2 (Berkeley) 11/30/93";
34 #endif
35 #endif /* not lint */
38 * 16 December 1992
39 * Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
43 * ====================================================
44 * Copyright (C) 1992 by Sun Microsystems, Inc.
46 * Developed at SunPro, a Sun Microsystems, Inc. business.
47 * Permission to use, copy, modify, and distribute this
48 * software is freely granted, provided that this notice
49 * is preserved.
50 * ====================================================
52 * ******************* WARNING ********************
53 * This is an alpha version of SunPro's FDLIBM (Freely
54 * Distributable Math Library) for IEEE double precision
55 * arithmetic. FDLIBM is a basic math library written
56 * in C that runs on machines that conform to IEEE
57 * Standard 754/854. This alpha version is distributed
58 * for testing purpose. Those who use this software
59 * should report any bugs to
61 * fdlibm-comments@sunpro.eng.sun.com
63 * -- K.C. Ng, Oct 12, 1992
64 * ************************************************
68 * jn(int n, double x), yn(int n, double x)
69 * floating point Bessel's function of the 1st and 2nd kind
70 * of order n
72 * Special cases:
73 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
74 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
75 * Note 2. About jn(n,x), yn(n,x)
76 * For n=0, j0(x) is called,
77 * for n=1, j1(x) is called,
78 * for n<x, forward recursion us used starting
79 * from values of j0(x) and j1(x).
80 * for n>x, a continued fraction approximation to
81 * j(n,x)/j(n-1,x) is evaluated and then backward
82 * recursion is used starting from a supposed value
83 * for j(n,x). The resulting value of j(0,x) is
84 * compared with the actual value to correct the
85 * supposed value of j(n,x).
87 * yn(n,x) is similar in all respects, except
88 * that forward recursion is used for all
89 * values of n>1.
93 #include "mathimpl.h"
94 #include <float.h>
95 #include <errno.h>
97 #if defined(__vax__) || defined(tahoe)
98 #define _IEEE 0
99 #else
100 #define _IEEE 1
101 #define infnan(x) (0.0)
102 #endif
104 static const double
105 invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
106 two = 2.0,
107 zero = 0.0,
108 one = 1.0;
110 double
111 jn(int n, double x)
113 int i, sgn;
114 double a, b, temp;
115 double z, w;
117 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
118 * Thus, J(-n,x) = J(n,-x)
120 /* if J(n,NaN) is NaN */
121 if (_IEEE && isnan(x)) return x+x;
122 if (n<0){
123 n = -n;
124 x = -x;
126 if (n==0) return(j0(x));
127 if (n==1) return(j1(x));
128 sgn = (n&1)&(x < zero); /* even n -- 0, odd n -- sign(x) */
129 x = fabs(x);
130 if (x == 0 || !finite (x)) /* if x is 0 or inf */
131 b = zero;
132 else if ((double) n <= x) {
133 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
134 if (_IEEE && x >= 8.148143905337944345e+090) {
135 /* x >= 2**302 */
136 /* (x >> n**2)
137 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
138 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
139 * Let s=sin(x), c=cos(x),
140 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
142 * n sin(xn)*sqt2 cos(xn)*sqt2
143 * ----------------------------------
144 * 0 s-c c+s
145 * 1 -s-c -c+s
146 * 2 -s+c -c-s
147 * 3 s+c c-s
149 switch(n&3) {
150 case 0: temp = cos(x)+sin(x); break;
151 case 1: temp = -cos(x)+sin(x); break;
152 case 2: temp = -cos(x)-sin(x); break;
153 case 3: temp = cos(x)-sin(x); break;
155 b = invsqrtpi*temp/sqrt(x);
156 } else {
157 a = j0(x);
158 b = j1(x);
159 for(i=1;i<n;i++){
160 temp = b;
161 b = b*((double)(i+i)/x) - a; /* avoid underflow */
162 a = temp;
165 } else {
166 if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
167 /* x is tiny, return the first Taylor expansion of J(n,x)
168 * J(n,x) = 1/n!*(x/2)^n - ...
170 if (n > 33) /* underflow */
171 b = zero;
172 else {
173 temp = x*0.5; b = temp;
174 for (a=one,i=2;i<=n;i++) {
175 a *= (double)i; /* a = n! */
176 b *= temp; /* b = (x/2)^n */
178 b = b/a;
180 } else {
181 /* use backward recurrence */
182 /* x x^2 x^2
183 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
184 * 2n - 2(n+1) - 2(n+2)
186 * 1 1 1
187 * (for large x) = ---- ------ ------ .....
188 * 2n 2(n+1) 2(n+2)
189 * -- - ------ - ------ -
190 * x x x
192 * Let w = 2n/x and h=2/x, then the above quotient
193 * is equal to the continued fraction:
195 * = -----------------------
197 * w - -----------------
199 * w+h - ---------
200 * w+2h - ...
202 * To determine how many terms needed, let
203 * Q(0) = w, Q(1) = w(w+h) - 1,
204 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
205 * When Q(k) > 1e4 good for single
206 * When Q(k) > 1e9 good for double
207 * When Q(k) > 1e17 good for quadruple
209 /* determine k */
210 double t,v;
211 double q0,q1,h,tmp; int k,m;
212 w = (n+n)/(double)x; h = 2.0/(double)x;
213 q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
214 while (q1<1.0e9) {
215 k += 1; z += h;
216 tmp = z*q1 - q0;
217 q0 = q1;
218 q1 = tmp;
220 m = n+n;
221 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
222 a = t;
223 b = one;
224 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
225 * Hence, if n*(log(2n/x)) > ...
226 * single 8.8722839355e+01
227 * double 7.09782712893383973096e+02
228 * long double 1.1356523406294143949491931077970765006170e+04
229 * then recurrent value may overflow and the result will
230 * likely underflow to zero
232 tmp = n;
233 v = two/x;
234 tmp = tmp*log(fabs(v*tmp));
235 for (i=n-1;i>0;i--){
236 temp = b;
237 b = ((i+i)/x)*b - a;
238 a = temp;
239 /* scale b to avoid spurious overflow */
240 # if defined(__vax__) || defined(tahoe)
241 # define BMAX 1e13
242 # else
243 # define BMAX 1e100
244 # endif /* defined(__vax__) || defined(tahoe) */
245 if (b > BMAX) {
246 a /= b;
247 t /= b;
248 b = one;
251 b = (t*j0(x)/b);
254 return ((sgn == 1) ? -b : b);
257 double
258 yn(int n, double x)
260 int i, sign;
261 double a, b, temp;
263 /* Y(n,NaN), Y(n, x < 0) is NaN */
264 if (x <= 0 || (_IEEE && x != x))
265 if (_IEEE && x < 0) return zero/zero;
266 else if (x < 0) return (infnan(EDOM));
267 else if (_IEEE) return -one/zero;
268 else return(infnan(-ERANGE));
269 else if (!finite(x)) return(0);
270 sign = 1;
271 if (n<0){
272 n = -n;
273 sign = 1 - ((n&1)<<2);
275 if (n == 0) return(y0(x));
276 if (n == 1) return(sign*y1(x));
277 if(_IEEE && x >= 8.148143905337944345e+090) { /* x > 2**302 */
278 /* (x >> n**2)
279 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
280 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
281 * Let s=sin(x), c=cos(x),
282 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
284 * n sin(xn)*sqt2 cos(xn)*sqt2
285 * ----------------------------------
286 * 0 s-c c+s
287 * 1 -s-c -c+s
288 * 2 -s+c -c-s
289 * 3 s+c c-s
291 switch (n&3) {
292 case 0: temp = sin(x)-cos(x); break;
293 case 1: temp = -sin(x)-cos(x); break;
294 case 2: temp = -sin(x)+cos(x); break;
295 case 3: temp = sin(x)+cos(x); break;
297 b = invsqrtpi*temp/sqrt(x);
298 } else {
299 a = y0(x);
300 b = y1(x);
301 /* quit if b is -inf */
302 for (i = 1; i < n && !finite(b); i++){
303 temp = b;
304 b = ((double)(i+i)/x)*b - a;
305 a = temp;
308 if (!_IEEE && !finite(b))
309 return (infnan(-sign * ERANGE));
310 return ((sign > 0) ? b : -b);