mkfs: drop support for zone != block
[minix.git] / libexec / ld.elf_so / arch / sparc64 / mdreloc.c
blob0dc7e821db3dd9e9a723602ea16fcd50d0bbd427
1 /* $NetBSD: mdreloc.c,v 1.50 2010/09/24 12:00:10 skrll Exp $ */
3 /*-
4 * Copyright (c) 2000 Eduardo Horvath.
5 * Copyright (c) 1999, 2002 The NetBSD Foundation, Inc.
6 * All rights reserved.
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg and by Charles M. Hannum.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
33 #include <sys/cdefs.h>
34 #ifndef lint
35 __RCSID("$NetBSD: mdreloc.c,v 1.50 2010/09/24 12:00:10 skrll Exp $");
36 #endif /* not lint */
38 #include <errno.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <unistd.h>
44 #include "rtldenv.h"
45 #include "debug.h"
46 #include "rtld.h"
49 * The following table holds for each relocation type:
50 * - the width in bits of the memory location the relocation
51 * applies to (not currently used)
52 * - the number of bits the relocation value must be shifted to the
53 * right (i.e. discard least significant bits) to fit into
54 * the appropriate field in the instruction word.
55 * - flags indicating whether
56 * * the relocation involves a symbol
57 * * the relocation is relative to the current position
58 * * the relocation is for a GOT entry
59 * * the relocation is relative to the load address
62 #define _RF_S 0x80000000 /* Resolve symbol */
63 #define _RF_A 0x40000000 /* Use addend */
64 #define _RF_P 0x20000000 /* Location relative */
65 #define _RF_G 0x10000000 /* GOT offset */
66 #define _RF_B 0x08000000 /* Load address relative */
67 #define _RF_U 0x04000000 /* Unaligned */
68 #define _RF_SZ(s) (((s) & 0xff) << 8) /* memory target size */
69 #define _RF_RS(s) ( (s) & 0xff) /* right shift */
70 static const int reloc_target_flags[] = {
71 0, /* NONE */
72 _RF_S|_RF_A| _RF_SZ(8) | _RF_RS(0), /* RELOC_8 */
73 _RF_S|_RF_A| _RF_SZ(16) | _RF_RS(0), /* RELOC_16 */
74 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* RELOC_32 */
75 _RF_S|_RF_A|_RF_P| _RF_SZ(8) | _RF_RS(0), /* DISP_8 */
76 _RF_S|_RF_A|_RF_P| _RF_SZ(16) | _RF_RS(0), /* DISP_16 */
77 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* DISP_32 */
78 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_30 */
79 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP_22 */
80 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HI22 */
81 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 22 */
82 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 13 */
83 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LO10 */
84 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT10 */
85 _RF_G| _RF_SZ(32) | _RF_RS(0), /* GOT13 */
86 _RF_G| _RF_SZ(32) | _RF_RS(10), /* GOT22 */
87 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PC10 */
88 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC22 */
89 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WPLT30 */
90 _RF_SZ(32) | _RF_RS(0), /* COPY */
91 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* GLOB_DAT */
92 _RF_SZ(32) | _RF_RS(0), /* JMP_SLOT */
93 _RF_A| _RF_B| _RF_SZ(64) | _RF_RS(0), /* RELATIVE */
94 _RF_S|_RF_A| _RF_U| _RF_SZ(32) | _RF_RS(0), /* UA_32 */
96 _RF_A| _RF_SZ(32) | _RF_RS(0), /* PLT32 */
97 _RF_A| _RF_SZ(32) | _RF_RS(10), /* HIPLT22 */
98 _RF_A| _RF_SZ(32) | _RF_RS(0), /* LOPLT10 */
99 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT32 */
100 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PCPLT22 */
101 _RF_A|_RF_P| _RF_SZ(32) | _RF_RS(0), /* PCPLT10 */
102 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 10 */
103 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 11 */
104 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* 64 */
105 _RF_S|_RF_A|/*extra*/ _RF_SZ(32) | _RF_RS(0), /* OLO10 */
106 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(42), /* HH22 */
107 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(32), /* HM10 */
108 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* LM22 */
109 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(42), /* PC_HH22 */
110 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(32), /* PC_HM10 */
111 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(10), /* PC_LM22 */
112 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP16 */
113 _RF_S|_RF_A|_RF_P| _RF_SZ(32) | _RF_RS(2), /* WDISP19 */
114 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* GLOB_JMP */
115 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 7 */
116 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 5 */
117 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* 6 */
118 _RF_S|_RF_A|_RF_P| _RF_SZ(64) | _RF_RS(0), /* DISP64 */
119 _RF_A| _RF_SZ(64) | _RF_RS(0), /* PLT64 */
120 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(10), /* HIX22 */
121 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* LOX10 */
122 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(22), /* H44 */
123 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(12), /* M44 */
124 _RF_S|_RF_A| _RF_SZ(32) | _RF_RS(0), /* L44 */
125 _RF_S|_RF_A| _RF_SZ(64) | _RF_RS(0), /* REGISTER */
126 _RF_S|_RF_A| _RF_U| _RF_SZ(64) | _RF_RS(0), /* UA64 */
127 _RF_S|_RF_A| _RF_U| _RF_SZ(16) | _RF_RS(0), /* UA16 */
130 #ifdef RTLD_DEBUG_RELOC
131 static const char *reloc_names[] = {
132 "NONE", "RELOC_8", "RELOC_16", "RELOC_32", "DISP_8",
133 "DISP_16", "DISP_32", "WDISP_30", "WDISP_22", "HI22",
134 "22", "13", "LO10", "GOT10", "GOT13",
135 "GOT22", "PC10", "PC22", "WPLT30", "COPY",
136 "GLOB_DAT", "JMP_SLOT", "RELATIVE", "UA_32", "PLT32",
137 "HIPLT22", "LOPLT10", "LOPLT10", "PCPLT22", "PCPLT32",
138 "10", "11", "64", "OLO10", "HH22",
139 "HM10", "LM22", "PC_HH22", "PC_HM10", "PC_LM22",
140 "WDISP16", "WDISP19", "GLOB_JMP", "7", "5", "6",
141 "DISP64", "PLT64", "HIX22", "LOX10", "H44", "M44",
142 "L44", "REGISTER", "UA64", "UA16"
144 #endif
146 #define RELOC_RESOLVE_SYMBOL(t) ((reloc_target_flags[t] & _RF_S) != 0)
147 #define RELOC_PC_RELATIVE(t) ((reloc_target_flags[t] & _RF_P) != 0)
148 #define RELOC_BASE_RELATIVE(t) ((reloc_target_flags[t] & _RF_B) != 0)
149 #define RELOC_UNALIGNED(t) ((reloc_target_flags[t] & _RF_U) != 0)
150 #define RELOC_USE_ADDEND(t) ((reloc_target_flags[t] & _RF_A) != 0)
151 #define RELOC_TARGET_SIZE(t) ((reloc_target_flags[t] >> 8) & 0xff)
152 #define RELOC_VALUE_RIGHTSHIFT(t) (reloc_target_flags[t] & 0xff)
154 static const long reloc_target_bitmask[] = {
155 #define _BM(x) (~(-(1ULL << (x))))
156 0, /* NONE */
157 _BM(8), _BM(16), _BM(32), /* RELOC_8, _16, _32 */
158 _BM(8), _BM(16), _BM(32), /* DISP8, DISP16, DISP32 */
159 _BM(30), _BM(22), /* WDISP30, WDISP22 */
160 _BM(22), _BM(22), /* HI22, _22 */
161 _BM(13), _BM(10), /* RELOC_13, _LO10 */
162 _BM(10), _BM(13), _BM(22), /* GOT10, GOT13, GOT22 */
163 _BM(10), _BM(22), /* _PC10, _PC22 */
164 _BM(30), 0, /* _WPLT30, _COPY */
165 _BM(32), _BM(32), _BM(32), /* _GLOB_DAT, JMP_SLOT, _RELATIVE */
166 _BM(32), _BM(32), /* _UA32, PLT32 */
167 _BM(22), _BM(10), /* _HIPLT22, LOPLT10 */
168 _BM(32), _BM(22), _BM(10), /* _PCPLT32, _PCPLT22, _PCPLT10 */
169 _BM(10), _BM(11), -1, /* _10, _11, _64 */
170 _BM(10), _BM(22), /* _OLO10, _HH22 */
171 _BM(10), _BM(22), /* _HM10, _LM22 */
172 _BM(22), _BM(10), _BM(22), /* _PC_HH22, _PC_HM10, _PC_LM22 */
173 _BM(16), _BM(19), /* _WDISP16, _WDISP19 */
174 -1, /* GLOB_JMP */
175 _BM(7), _BM(5), _BM(6) /* _7, _5, _6 */
176 -1, -1, /* DISP64, PLT64 */
177 _BM(22), _BM(13), /* HIX22, LOX10 */
178 _BM(22), _BM(10), _BM(13), /* H44, M44, L44 */
179 -1, -1, _BM(16), /* REGISTER, UA64, UA16 */
180 #undef _BM
182 #define RELOC_VALUE_BITMASK(t) (reloc_target_bitmask[t])
185 * Instruction templates:
187 #define BAA 0x10400000 /* ba,a %xcc, 0 */
188 #define SETHI 0x03000000 /* sethi %hi(0), %g1 */
189 #define JMP 0x81c06000 /* jmpl %g1+%lo(0), %g0 */
190 #define NOP 0x01000000 /* sethi %hi(0), %g0 */
191 #define OR 0x82806000 /* or %g1, 0, %g1 */
192 #define XOR 0x82c06000 /* xor %g1, 0, %g1 */
193 #define MOV71 0x8283a000 /* or %o7, 0, %g1 */
194 #define MOV17 0x9c806000 /* or %g1, 0, %o7 */
195 #define CALL 0x40000000 /* call 0 */
196 #define SLLX 0x8b407000 /* sllx %g1, 0, %g1 */
197 #define SETHIG5 0x0b000000 /* sethi %hi(0), %g5 */
198 #define ORG5 0x82804005 /* or %g1, %g5, %g1 */
201 /* %hi(v)/%lo(v) with variable shift */
202 #define HIVAL(v, s) (((v) >> (s)) & 0x003fffff)
203 #define LOVAL(v, s) (((v) >> (s)) & 0x000003ff)
205 void _rtld_bind_start_0(long, long);
206 void _rtld_bind_start_1(long, long);
207 void _rtld_relocate_nonplt_self(Elf_Dyn *, Elf_Addr);
208 caddr_t _rtld_bind(const Obj_Entry *, Elf_Word);
211 * Install rtld function call into this PLT slot.
213 #define SAVE 0x9de3bf50 /* i.e. `save %sp,-176,%sp' */
214 #define SETHI_l0 0x21000000
215 #define SETHI_l1 0x23000000
216 #define OR_l0_l0 0xa0142000
217 #define SLLX_l0_32_l0 0xa12c3020
218 #define OR_l0_l1_l0 0xa0140011
219 #define JMPL_l0_o0 0x91c42000
220 #define MOV_g1_o1 0x92100001
222 void _rtld_install_plt(Elf_Word *, Elf_Addr);
223 static inline int _rtld_relocate_plt_object(const Obj_Entry *,
224 const Elf_Rela *, Elf_Addr *);
226 void
227 _rtld_install_plt(Elf_Word *pltgot, Elf_Addr proc)
229 pltgot[0] = SAVE;
230 pltgot[1] = SETHI_l0 | HIVAL(proc, 42);
231 pltgot[2] = SETHI_l1 | HIVAL(proc, 10);
232 pltgot[3] = OR_l0_l0 | LOVAL(proc, 32);
233 pltgot[4] = SLLX_l0_32_l0;
234 pltgot[5] = OR_l0_l1_l0;
235 pltgot[6] = JMPL_l0_o0 | LOVAL(proc, 0);
236 pltgot[7] = MOV_g1_o1;
239 void
240 _rtld_setup_pltgot(const Obj_Entry *obj)
243 * On sparc64 we got troubles.
245 * Instructions are 4 bytes long.
246 * Elf[64]_Addr is 8 bytes long, so are our pltglot[]
247 * array entries.
248 * Each PLT entry jumps to PLT0 to enter the dynamic
249 * linker.
250 * Loading an arbitrary 64-bit pointer takes 6
251 * instructions and 2 registers.
253 * Somehow we need to issue a save to get a new stack
254 * frame, load the address of the dynamic linker, and
255 * jump there, in 8 instructions or less.
257 * Oh, we need to fill out both PLT0 and PLT1.
260 Elf_Word *entry = (Elf_Word *)obj->pltgot;
262 /* Install in entries 0 and 1 */
263 _rtld_install_plt(&entry[0], (Elf_Addr) &_rtld_bind_start_0);
264 _rtld_install_plt(&entry[8], (Elf_Addr) &_rtld_bind_start_1);
267 * Install the object reference in first slot
268 * of entry 2.
270 obj->pltgot[8] = (Elf_Addr) obj;
274 void
275 _rtld_relocate_nonplt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
277 const Elf_Rela *rela = 0, *relalim;
278 Elf_Addr relasz = 0;
279 Elf_Addr *where;
281 for (; dynp->d_tag != DT_NULL; dynp++) {
282 switch (dynp->d_tag) {
283 case DT_RELA:
284 rela = (const Elf_Rela *)(relocbase + dynp->d_un.d_ptr);
285 break;
286 case DT_RELASZ:
287 relasz = dynp->d_un.d_val;
288 break;
291 relalim = (const Elf_Rela *)((const uint8_t *)rela + relasz);
292 for (; rela < relalim; rela++) {
293 where = (Elf_Addr *)(relocbase + rela->r_offset);
294 *where = (Elf_Addr)(relocbase + rela->r_addend);
299 _rtld_relocate_nonplt_objects(Obj_Entry *obj)
301 const Elf_Rela *rela;
302 const Elf_Sym *def = NULL;
303 const Obj_Entry *defobj = NULL;
305 for (rela = obj->rela; rela < obj->relalim; rela++) {
306 Elf_Addr *where;
307 Elf_Word type;
308 Elf_Addr value = 0, mask;
309 unsigned long symnum;
311 where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
312 symnum = ELF_R_SYM(rela->r_info);
314 type = ELF_R_TYPE(rela->r_info);
315 if (type == R_TYPE(NONE))
316 continue;
318 /* We do JMP_SLOTs in _rtld_bind() below */
319 if (type == R_TYPE(JMP_SLOT))
320 continue;
322 /* COPY relocs are also handled elsewhere */
323 if (type == R_TYPE(COPY))
324 continue;
327 * We use the fact that relocation types are an `enum'
328 * Note: R_SPARC_UA16 is currently numerically largest.
330 if (type > R_TYPE(UA16))
331 return (-1);
333 value = rela->r_addend;
336 * Handle relative relocs here, as an optimization.
338 if (type == R_TYPE(RELATIVE)) {
339 *where = (Elf_Addr)(obj->relocbase + value);
340 rdbg(("RELATIVE in %s --> %p", obj->path,
341 (void *)*where));
342 continue;
345 if (RELOC_RESOLVE_SYMBOL(type)) {
347 /* Find the symbol */
348 def = _rtld_find_symdef(symnum, obj, &defobj,
349 false);
350 if (def == NULL)
351 return -1;
353 /* Add in the symbol's absolute address */
354 value += (Elf_Addr)(defobj->relocbase + def->st_value);
357 if (RELOC_PC_RELATIVE(type)) {
358 value -= (Elf_Addr)where;
361 if (RELOC_BASE_RELATIVE(type)) {
363 * Note that even though sparcs use `Elf_rela'
364 * exclusively we still need the implicit memory addend
365 * in relocations referring to GOT entries.
366 * Undoubtedly, someone f*cked this up in the distant
367 * past, and now we're stuck with it in the name of
368 * compatibility for all eternity..
370 * In any case, the implicit and explicit should be
371 * mutually exclusive. We provide a check for that
372 * here.
374 #ifdef DIAGNOSTIC
375 if (value != 0 && *where != 0) {
376 xprintf("BASE_REL(%s): where=%p, *where 0x%lx, "
377 "addend=0x%lx, base %p\n",
378 obj->path, where, *where,
379 rela->r_addend, obj->relocbase);
381 #endif
382 /* XXXX -- apparently we ignore the preexisting value */
383 value += (Elf_Addr)(obj->relocbase);
386 mask = RELOC_VALUE_BITMASK(type);
387 value >>= RELOC_VALUE_RIGHTSHIFT(type);
388 value &= mask;
390 if (RELOC_UNALIGNED(type)) {
391 /* Handle unaligned relocations. */
392 Elf_Addr tmp = 0;
393 char *ptr = (char *)where;
394 int i, size = RELOC_TARGET_SIZE(type)/8;
396 /* Read it in one byte at a time. */
397 for (i=0; i<size; i++)
398 tmp = (tmp << 8) | ptr[i];
400 tmp &= ~mask;
401 tmp |= value;
403 /* Write it back out. */
404 for (i=0; i<size; i++)
405 ptr[i] = ((tmp >> (8*i)) & 0xff);
406 #ifdef RTLD_DEBUG_RELOC
407 value = (Elf_Addr)tmp;
408 #endif
410 } else if (RELOC_TARGET_SIZE(type) > 32) {
411 *where &= ~mask;
412 *where |= value;
413 #ifdef RTLD_DEBUG_RELOC
414 value = (Elf_Addr)*where;
415 #endif
416 } else {
417 Elf32_Addr *where32 = (Elf32_Addr *)where;
419 *where32 &= ~mask;
420 *where32 |= value;
421 #ifdef RTLD_DEBUG_RELOC
422 value = (Elf_Addr)*where32;
423 #endif
426 #ifdef RTLD_DEBUG_RELOC
427 if (RELOC_RESOLVE_SYMBOL(type)) {
428 rdbg(("%s %s in %s --> %p in %s", reloc_names[type],
429 obj->strtab + obj->symtab[symnum].st_name,
430 obj->path, (void *)value, defobj->path));
431 } else {
432 rdbg(("%s in %s --> %p", reloc_names[type],
433 obj->path, (void *)value));
435 #endif
437 return (0);
441 _rtld_relocate_plt_lazy(const Obj_Entry *obj)
443 return (0);
446 caddr_t
447 _rtld_bind(const Obj_Entry *obj, Elf_Word reloff)
449 const Elf_Rela *rela = obj->pltrela + reloff;
450 Elf_Addr result;
451 int err;
453 result = 0; /* XXX gcc */
455 if (ELF_R_TYPE(obj->pltrela->r_info) == R_TYPE(JMP_SLOT)) {
457 * XXXX
459 * The first four PLT entries are reserved. There is some
460 * disagreement whether they should have associated relocation
461 * entries. Both the SPARC 32-bit and 64-bit ELF
462 * specifications say that they should have relocation entries,
463 * but the 32-bit SPARC binutils do not generate them, and now
464 * the 64-bit SPARC binutils have stopped generating them too.
466 * So, to provide binary compatibility, we will check the first
467 * entry, if it is reserved it should not be of the type
468 * JMP_SLOT. If it is JMP_SLOT, then the 4 reserved entries
469 * were not generated and our index is 4 entries too far.
471 rela -= 4;
474 err = _rtld_relocate_plt_object(obj, rela, &result);
475 if (err)
476 _rtld_die();
478 return (caddr_t)result;
482 _rtld_relocate_plt_objects(const Obj_Entry *obj)
484 const Elf_Rela *rela;
486 rela = obj->pltrela;
489 * Check for first four reserved entries - and skip them.
490 * See above for details.
492 if (ELF_R_TYPE(obj->pltrela->r_info) != R_TYPE(JMP_SLOT))
493 rela += 4;
495 for (; rela < obj->pltrelalim; rela++)
496 if (_rtld_relocate_plt_object(obj, rela, NULL) < 0)
497 return -1;
499 return 0;
503 * New inline function that is called by _rtld_relocate_plt_object and
504 * _rtld_bind
506 static inline int
507 _rtld_relocate_plt_object(const Obj_Entry *obj, const Elf_Rela *rela,
508 Elf_Addr *tp)
510 Elf_Word *where = (Elf_Word *)(obj->relocbase + rela->r_offset);
511 const Elf_Sym *def;
512 const Obj_Entry *defobj;
513 Elf_Addr value, offset;
514 unsigned long info = rela->r_info;
516 assert(ELF_R_TYPE(info) == R_TYPE(JMP_SLOT));
518 def = _rtld_find_plt_symdef(ELF_R_SYM(info), obj, &defobj, tp != NULL);
519 if (__predict_false(def == NULL))
520 return -1;
521 if (__predict_false(def == &_rtld_sym_zero))
522 return 0;
524 value = (Elf_Addr)(defobj->relocbase + def->st_value);
525 rdbg(("bind now/fixup in %s --> new=%p",
526 defobj->strtab + def->st_name, (void *)value));
529 * At the PLT entry pointed at by `where', we now construct a direct
530 * transfer to the now fully resolved function address.
532 * A PLT entry is supposed to start by looking like this:
534 * sethi %hi(. - .PLT0), %g1
535 * ba,a %xcc, .PLT1
536 * nop
537 * nop
538 * nop
539 * nop
540 * nop
541 * nop
543 * When we replace these entries we start from the last instruction
544 * and do it in reverse order so the last thing we do is replace the
545 * branch. That allows us to change this atomically.
547 * We now need to find out how far we need to jump. We have a choice
548 * of several different relocation techniques which are increasingly
549 * expensive.
552 offset = ((Elf_Addr)where) - value;
553 if (rela->r_addend) {
554 Elf_Addr *ptr = (Elf_Addr *)where;
556 * This entry is >= 32768. The relocations points to a
557 * PC-relative pointer to the bind_0 stub at the top of the
558 * PLT section. Update it to point to the target function.
560 ptr[0] += value - (Elf_Addr)obj->pltgot;
562 } else if (offset <= (1L<<20) && (Elf_SOff)offset >= -(1L<<20)) {
564 * We're within 1MB -- we can use a direct branch insn.
566 * We can generate this pattern:
568 * sethi %hi(. - .PLT0), %g1
569 * ba,a %xcc, addr
570 * nop
571 * nop
572 * nop
573 * nop
574 * nop
575 * nop
578 where[1] = BAA | ((offset >> 2) & 0x3fffff);
579 __asm volatile("iflush %0+4" : : "r" (where));
580 } else if (value < (1L<<32)) {
582 * We're within 32-bits of address zero.
584 * The resulting code in the jump slot is:
586 * sethi %hi(. - .PLT0), %g1
587 * sethi %hi(addr), %g1
588 * jmp %g1+%lo(addr)
589 * nop
590 * nop
591 * nop
592 * nop
593 * nop
596 where[2] = JMP | LOVAL(value, 0);
597 where[1] = SETHI | HIVAL(value, 10);
598 __asm volatile("iflush %0+8" : : "r" (where));
599 __asm volatile("iflush %0+4" : : "r" (where));
601 } else if ((Elf_SOff)value <= 0 && (Elf_SOff)value > -(1L<<32)) {
603 * We're within 32-bits of address -1.
605 * The resulting code in the jump slot is:
607 * sethi %hi(. - .PLT0), %g1
608 * sethi %hix(addr), %g1
609 * xor %g1, %lox(addr), %g1
610 * jmp %g1
611 * nop
612 * nop
613 * nop
614 * nop
617 where[3] = JMP;
618 where[2] = XOR | ((~value) & 0x00001fff);
619 where[1] = SETHI | HIVAL(~value, 10);
620 __asm volatile("iflush %0+12" : : "r" (where));
621 __asm volatile("iflush %0+8" : : "r" (where));
622 __asm volatile("iflush %0+4" : : "r" (where));
624 } else if (offset <= (1L<<32) && (Elf_SOff)offset >= -((1L<<32) - 4)) {
626 * We're within 32-bits -- we can use a direct call insn
628 * The resulting code in the jump slot is:
630 * sethi %hi(. - .PLT0), %g1
631 * mov %o7, %g1
632 * call (.+offset)
633 * mov %g1, %o7
634 * nop
635 * nop
636 * nop
637 * nop
640 where[3] = MOV17;
641 where[2] = CALL | ((offset >> 4) & 0x3fffffff);
642 where[1] = MOV71;
643 __asm volatile("iflush %0+12" : : "r" (where));
644 __asm volatile("iflush %0+8" : : "r" (where));
645 __asm volatile("iflush %0+4" : : "r" (where));
647 } else if (offset < (1L<<44)) {
649 * We're within 44 bits. We can generate this pattern:
651 * The resulting code in the jump slot is:
653 * sethi %hi(. - .PLT0), %g1
654 * sethi %h44(addr), %g1
655 * or %g1, %m44(addr), %g1
656 * sllx %g1, 12, %g1
657 * jmp %g1+%l44(addr)
658 * nop
659 * nop
660 * nop
663 where[4] = JMP | LOVAL(offset, 0);
664 where[3] = SLLX | 12;
665 where[2] = OR | (((offset) >> 12) & 0x00001fff);
666 where[1] = SETHI | HIVAL(offset, 22);
667 __asm volatile("iflush %0+16" : : "r" (where));
668 __asm volatile("iflush %0+12" : : "r" (where));
669 __asm volatile("iflush %0+8" : : "r" (where));
670 __asm volatile("iflush %0+4" : : "r" (where));
672 } else if ((Elf_SOff)offset < 0 && (Elf_SOff)offset > -(1L<<44)) {
674 * We're within 44 bits. We can generate this pattern:
676 * The resulting code in the jump slot is:
678 * sethi %hi(. - .PLT0), %g1
679 * sethi %h44(-addr), %g1
680 * xor %g1, %m44(-addr), %g1
681 * sllx %g1, 12, %g1
682 * jmp %g1+%l44(addr)
683 * nop
684 * nop
685 * nop
688 where[4] = JMP | LOVAL(offset, 0);
689 where[3] = SLLX | 12;
690 where[2] = XOR | (((~offset) >> 12) & 0x00001fff);
691 where[1] = SETHI | HIVAL(~offset, 22);
692 __asm volatile("iflush %0+16" : : "r" (where));
693 __asm volatile("iflush %0+12" : : "r" (where));
694 __asm volatile("iflush %0+8" : : "r" (where));
695 __asm volatile("iflush %0+4" : : "r" (where));
697 } else {
699 * We need to load all 64-bits
701 * The resulting code in the jump slot is:
703 * sethi %hi(. - .PLT0), %g1
704 * sethi %hh(addr), %g1
705 * sethi %lm(addr), %g5
706 * or %g1, %hm(addr), %g1
707 * sllx %g1, 32, %g1
708 * or %g1, %g5, %g1
709 * jmp %g1+%lo(addr)
710 * nop
713 where[6] = JMP | LOVAL(value, 0);
714 where[5] = ORG5;
715 where[4] = SLLX | 32;
716 where[3] = OR | LOVAL(value, 32);
717 where[2] = SETHIG5 | HIVAL(value, 10);
718 where[1] = SETHI | HIVAL(value, 42);
719 __asm volatile("iflush %0+24" : : "r" (where));
720 __asm volatile("iflush %0+20" : : "r" (where));
721 __asm volatile("iflush %0+16" : : "r" (where));
722 __asm volatile("iflush %0+12" : : "r" (where));
723 __asm volatile("iflush %0+8" : : "r" (where));
724 __asm volatile("iflush %0+4" : : "r" (where));
728 if (tp)
729 *tp = value;
731 return 0;