tools/llvm: Do not build with symbols
[minix3.git] / minix / servers / pm / signal.c
blob6c18f3f1864084f0a66ed854917d3b65bff748d8
1 /* This file handles signals, which are asynchronous events and are generally
2 * a messy and unpleasant business. Signals can be generated by the KILL
3 * system call, or from the keyboard (SIGINT) or from the clock (SIGALRM).
4 * In all cases control eventually passes to check_sig() to see which processes
5 * can be signaled. The actual signaling is done by sig_proc().
7 * The entry points into this file are:
8 * do_sigaction: perform the SIGACTION system call
9 * do_sigpending: perform the SIGPENDING system call
10 * do_sigprocmask: perform the SIGPROCMASK system call
11 * do_sigreturn: perform the SIGRETURN system call
12 * do_sigsuspend: perform the SIGSUSPEND system call
13 * do_kill: perform the KILL system call
14 * process_ksig: process a signal an behalf of the kernel
15 * sig_proc: interrupt or terminate a signaled process
16 * check_sig: check which processes to signal with sig_proc()
17 * check_pending: check if a pending signal can now be delivered
18 * restart_sigs: restart signal work after finishing a VFS call
21 #include "pm.h"
22 #include <sys/stat.h>
23 #include <sys/ptrace.h>
24 #include <minix/callnr.h>
25 #include <minix/endpoint.h>
26 #include <minix/com.h>
27 #include <minix/vm.h>
28 #include <signal.h>
29 #include <sys/resource.h>
30 #include <assert.h>
31 #include "mproc.h"
33 static int unpause(struct mproc *rmp);
34 static int sig_send(struct mproc *rmp, int signo);
35 static void sig_proc_exit(struct mproc *rmp, int signo);
37 /*===========================================================================*
38 * do_sigaction *
39 *===========================================================================*/
40 int do_sigaction(void)
42 int r, sig_nr;
43 struct sigaction svec;
44 struct sigaction *svp;
46 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
48 sig_nr = m_in.m_lc_pm_sig.nr;
49 if (sig_nr == SIGKILL) return(OK);
50 if (sig_nr < 1 || sig_nr >= _NSIG) return(EINVAL);
52 svp = &mp->mp_sigact[sig_nr];
53 if (m_in.m_lc_pm_sig.oact != 0) {
54 r = sys_datacopy(PM_PROC_NR,(vir_bytes) svp, who_e,
55 m_in.m_lc_pm_sig.oact, (phys_bytes) sizeof(svec));
56 if (r != OK) return(r);
59 if (m_in.m_lc_pm_sig.act == 0)
60 return(OK);
62 /* Read in the sigaction structure. */
63 r = sys_datacopy(who_e, m_in.m_lc_pm_sig.act, PM_PROC_NR, (vir_bytes) &svec,
64 (phys_bytes) sizeof(svec));
65 if (r != OK) return(r);
67 if (svec.sa_handler == SIG_IGN) {
68 sigaddset(&mp->mp_ignore, sig_nr);
69 sigdelset(&mp->mp_sigpending, sig_nr);
70 sigdelset(&mp->mp_ksigpending, sig_nr);
71 sigdelset(&mp->mp_catch, sig_nr);
72 } else if (svec.sa_handler == SIG_DFL) {
73 sigdelset(&mp->mp_ignore, sig_nr);
74 sigdelset(&mp->mp_catch, sig_nr);
75 } else {
76 sigdelset(&mp->mp_ignore, sig_nr);
77 sigaddset(&mp->mp_catch, sig_nr);
79 mp->mp_sigact[sig_nr].sa_handler = svec.sa_handler;
80 sigdelset(&svec.sa_mask, SIGKILL);
81 sigdelset(&svec.sa_mask, SIGSTOP);
82 mp->mp_sigact[sig_nr].sa_mask = svec.sa_mask;
83 mp->mp_sigact[sig_nr].sa_flags = svec.sa_flags;
84 mp->mp_sigreturn = m_in.m_lc_pm_sig.ret;
85 return(OK);
88 /*===========================================================================*
89 * do_sigpending *
90 *===========================================================================*/
91 int do_sigpending(void)
93 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
95 mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigpending;
96 return OK;
99 /*===========================================================================*
100 * do_sigprocmask *
101 *===========================================================================*/
102 int do_sigprocmask(void)
104 /* Note that the library interface passes the actual mask in sigmask_set,
105 * not a pointer to the mask, in order to save a copy. Similarly,
106 * the old mask is placed in the return message which the library
107 * interface copies (if requested) to the user specified address.
109 * The library interface must set SIG_INQUIRE if the 'act' argument
110 * is NULL.
112 * KILL and STOP can't be masked.
114 sigset_t set;
115 int i;
117 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
119 set = m_in.m_lc_pm_sigset.set;
120 mp->mp_reply.m_pm_lc_sigset.set = mp->mp_sigmask;
122 switch (m_in.m_lc_pm_sigset.how) {
123 case SIG_BLOCK:
124 sigdelset(&set, SIGKILL);
125 sigdelset(&set, SIGSTOP);
126 for (i = 1; i < _NSIG; i++) {
127 if (sigismember(&set, i))
128 sigaddset(&mp->mp_sigmask, i);
130 break;
132 case SIG_UNBLOCK:
133 for (i = 1; i < _NSIG; i++) {
134 if (sigismember(&set, i))
135 sigdelset(&mp->mp_sigmask, i);
137 check_pending(mp);
138 break;
140 case SIG_SETMASK:
141 sigdelset(&set, SIGKILL);
142 sigdelset(&set, SIGSTOP);
143 mp->mp_sigmask = set;
144 check_pending(mp);
145 break;
147 case SIG_INQUIRE:
148 break;
150 default:
151 return(EINVAL);
152 break;
154 return OK;
157 /*===========================================================================*
158 * do_sigsuspend *
159 *===========================================================================*/
160 int do_sigsuspend(void)
162 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
164 mp->mp_sigmask2 = mp->mp_sigmask; /* save the old mask */
165 mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
166 sigdelset(&mp->mp_sigmask, SIGKILL);
167 sigdelset(&mp->mp_sigmask, SIGSTOP);
168 mp->mp_flags |= SIGSUSPENDED;
169 check_pending(mp);
170 return(SUSPEND);
173 /*===========================================================================*
174 * do_sigreturn *
175 *===========================================================================*/
176 int do_sigreturn(void)
178 /* A user signal handler is done. Restore context and check for
179 * pending unblocked signals.
181 int r;
183 assert(!(mp->mp_flags & (PROC_STOPPED | VFS_CALL | UNPAUSED)));
185 mp->mp_sigmask = m_in.m_lc_pm_sigset.set;
186 sigdelset(&mp->mp_sigmask, SIGKILL);
187 sigdelset(&mp->mp_sigmask, SIGSTOP);
189 r = sys_sigreturn(who_e, (struct sigmsg *)m_in.m_lc_pm_sigset.ctx);
190 check_pending(mp);
191 return(r);
194 /*===========================================================================*
195 * do_kill *
196 *===========================================================================*/
197 int do_kill(void)
199 /* Perform the kill(pid, signo) system call. */
201 return check_sig(m_in.m_lc_pm_sig.pid, m_in.m_lc_pm_sig.nr, FALSE /* ksig */);
204 /*===========================================================================*
205 * do_srv_kill *
206 *===========================================================================*/
207 int do_srv_kill(void)
209 /* Perform the srv_kill(pid, signo) system call. */
211 /* Only RS is allowed to use srv_kill. */
212 if (mp->mp_endpoint != RS_PROC_NR)
213 return EPERM;
215 /* Pretend the signal comes from the kernel when RS wants to deliver a signal
216 * to a system process. RS sends a SIGKILL when it wants to perform cleanup.
217 * In that case, ksig == TRUE forces PM to exit the process immediately.
219 return check_sig(m_in.m_rs_pm_srv_kill.pid, m_in.m_rs_pm_srv_kill.nr,
220 TRUE /* ksig */);
223 /*===========================================================================*
224 * stop_proc *
225 *===========================================================================*/
226 static int stop_proc(struct mproc *rmp, int may_delay)
228 /* Try to stop the given process in the kernel. If successful, mark the process
229 * as stopped and return TRUE. If the process is still busy sending a message,
230 * the behavior depends on the 'may_delay' parameter. If set, the process will
231 * be marked as having a delay call pending, and the function returns FALSE. If
232 * not set, the caller already knows that the process has no delay call, and PM
233 * will panic.
235 int r;
237 assert(!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL | UNPAUSED)));
239 r = sys_delay_stop(rmp->mp_endpoint);
241 /* If the process is still busy sending a message, the kernel will give us
242 * EBUSY now and send a SIGSNDELAY to the process as soon as sending is done.
244 switch (r) {
245 case OK:
246 rmp->mp_flags |= PROC_STOPPED;
248 return TRUE;
250 case EBUSY:
251 if (!may_delay)
252 panic("stop_proc: unexpected delay call");
254 rmp->mp_flags |= DELAY_CALL;
256 return FALSE;
258 default:
259 panic("sys_delay_stop failed: %d", r);
263 /*===========================================================================*
264 * try_resume_proc *
265 *===========================================================================*/
266 static void try_resume_proc(struct mproc *rmp)
268 /* Resume the given process if possible. */
269 int r;
271 assert(rmp->mp_flags & PROC_STOPPED);
273 /* If the process is blocked on a VFS call, do not resume it now. Most likely * it will be unpausing, in which case the process must remain stopped.
274 * Otherwise, it will still be resumed once the VFS call returns. If the
275 * process has died, do not resume it either.
277 if (rmp->mp_flags & (VFS_CALL | EXITING))
278 return;
280 if ((r = sys_resume(rmp->mp_endpoint)) != OK)
281 panic("sys_resume failed: %d", r);
283 /* Also unset the unpaused flag. We can safely assume that a stopped process
284 * need only be unpaused once, but once it is resumed, all bets are off.
286 rmp->mp_flags &= ~(PROC_STOPPED | UNPAUSED);
289 /*===========================================================================*
290 * process_ksig *
291 *===========================================================================*/
292 int process_ksig(endpoint_t proc_nr_e, int signo)
294 register struct mproc *rmp;
295 int proc_nr;
296 pid_t proc_id, id;
298 if(pm_isokendpt(proc_nr_e, &proc_nr) != OK) {
299 printf("PM: process_ksig: %d?? not ok\n", proc_nr_e);
300 return EDEADEPT; /* process is gone. */
302 rmp = &mproc[proc_nr];
303 if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
304 #if 0
305 printf("PM: process_ksig: %d?? exiting / not in use\n", proc_nr_e);
306 #endif
307 return EDEADEPT; /* process is gone. */
309 proc_id = rmp->mp_pid;
310 mp = &mproc[0]; /* pretend signals are from PM */
311 mp->mp_procgrp = rmp->mp_procgrp; /* get process group right */
313 /* For SIGVTALRM and SIGPROF, see if we need to restart a
314 * virtual timer. For SIGINT, SIGINFO, SIGWINCH and SIGQUIT, use proc_id 0
315 * to indicate a broadcast to the recipient's process group. For
316 * SIGKILL, use proc_id -1 to indicate a systemwide broadcast.
318 switch (signo) {
319 case SIGINT:
320 case SIGQUIT:
321 case SIGWINCH:
322 case SIGINFO:
323 id = 0; break; /* broadcast to process group */
324 case SIGVTALRM:
325 case SIGPROF:
326 check_vtimer(proc_nr, signo);
327 /* fall-through */
328 default:
329 id = proc_id;
330 break;
332 check_sig(id, signo, TRUE /* ksig */);
334 /* If SIGSNDELAY is set, an earlier sys_stop() failed because the process was
335 * still sending, and the kernel hereby tells us that the process is now done
336 * with that. We can now try to resume what we planned to do in the first
337 * place: set up a signal handler. However, the process's message may have
338 * been a call to PM, in which case the process may have changed any of its
339 * signal settings. The process may also have forked, exited etcetera.
341 if (signo == SIGSNDELAY && (rmp->mp_flags & DELAY_CALL)) {
342 /* When getting SIGSNDELAY, the process is stopped at least until the
343 * receipt of the SIGSNDELAY signal is acknowledged to the kernel. The
344 * process is not stopped on PROC_STOP in the kernel. However, now that
345 * there is no longer a delay call, stop_proc() is guaranteed to
346 * succeed immediately.
348 rmp->mp_flags &= ~DELAY_CALL;
350 assert(!(rmp->mp_flags & PROC_STOPPED));
352 /* If the delay call was to PM, it may have resulted in a VFS call. In
353 * that case, we must wait with further signal processing until VFS has
354 * replied. Stop the process.
356 if (rmp->mp_flags & VFS_CALL) {
357 stop_proc(rmp, FALSE /*may_delay*/);
359 return OK;
362 /* Process as many normal signals as possible. */
363 check_pending(rmp);
365 assert(!(rmp->mp_flags & DELAY_CALL));
368 /* See if the process is still alive */
369 if ((mproc[proc_nr].mp_flags & (IN_USE | EXITING)) == IN_USE) {
370 return OK; /* signal has been delivered */
372 else {
373 return EDEADEPT; /* process is gone */
377 /*===========================================================================*
378 * sig_proc *
379 *===========================================================================*/
380 void sig_proc(rmp, signo, trace, ksig)
381 register struct mproc *rmp; /* pointer to the process to be signaled */
382 int signo; /* signal to send to process (1 to _NSIG-1) */
383 int trace; /* pass signal to tracer first? */
384 int ksig; /* non-zero means signal comes from kernel */
386 /* Send a signal to a process. Check to see if the signal is to be caught,
387 * ignored, tranformed into a message (for system processes) or blocked.
388 * - If the signal is to be transformed into a message, request the KERNEL to
389 * send the target process a system notification with the pending signal as an
390 * argument.
391 * - If the signal is to be caught, request the KERNEL to push a sigcontext
392 * structure and a sigframe structure onto the catcher's stack. Also, KERNEL
393 * will reset the program counter and stack pointer, so that when the process
394 * next runs, it will be executing the signal handler. When the signal handler
395 * returns, sigreturn(2) will be called. Then KERNEL will restore the signal
396 * context from the sigcontext structure.
397 * If there is insufficient stack space, kill the process.
399 int slot, badignore;
401 slot = (int) (rmp - mproc);
402 if ((rmp->mp_flags & (IN_USE | EXITING)) != IN_USE) {
403 panic("PM: signal %d sent to exiting process %d\n", signo, slot);
406 if (trace == TRUE && rmp->mp_tracer != NO_TRACER && signo != SIGKILL) {
407 /* Signal should be passed to the debugger first.
408 * This happens before any checks on block/ignore masks; otherwise,
409 * the process itself could block/ignore debugger signals.
412 sigaddset(&rmp->mp_sigtrace, signo);
414 if (!(rmp->mp_flags & TRACE_STOPPED))
415 trace_stop(rmp, signo); /* a signal causes it to stop */
417 return;
420 if (rmp->mp_flags & VFS_CALL) {
421 sigaddset(&rmp->mp_sigpending, signo);
422 if(ksig)
423 sigaddset(&rmp->mp_ksigpending, signo);
425 /* Process the signal once VFS replies. Stop the process in the
426 * meantime, so that it cannot make another call after the VFS reply
427 * comes in but before we look at its signals again. Since we always
428 * stop the process to deliver signals during a VFS call, the
429 * PROC_STOPPED flag doubles as an indicator in restart_sigs() that
430 * signals must be rechecked after a VFS reply comes in.
432 if (!(rmp->mp_flags & (PROC_STOPPED | DELAY_CALL))) {
433 /* If a VFS call is ongoing and the process is not yet stopped,
434 * the process must have made a call to PM. Therefore, there
435 * can be no delay calls in this case.
437 stop_proc(rmp, FALSE /*delay_call*/);
439 return;
442 /* Handle system signals for system processes first. */
443 if(rmp->mp_flags & PRIV_PROC) {
444 /* Always skip signals for PM (only necessary when broadcasting). */
445 if(rmp->mp_endpoint == PM_PROC_NR) {
446 return;
449 /* System signals have always to go through the kernel first to let it
450 * pick the right signal manager. If PM is the assigned signal manager,
451 * the signal will come back and will actually be processed.
453 if(!ksig) {
454 sys_kill(rmp->mp_endpoint, signo);
455 return;
458 /* Print stacktrace if necessary. */
459 if(SIGS_IS_STACKTRACE(signo)) {
460 sys_diagctl_stacktrace(rmp->mp_endpoint);
463 if(!SIGS_IS_TERMINATION(signo)) {
464 /* Translate every non-termination sys signal into a message. */
465 message m;
466 m.m_type = SIGS_SIGNAL_RECEIVED;
467 m.m_pm_lsys_sigs_signal.num = signo;
468 asynsend3(rmp->mp_endpoint, &m, AMF_NOREPLY);
470 else {
471 /* Exit the process in case of termination system signal. */
472 sig_proc_exit(rmp, signo);
474 return;
477 /* Handle user processes now. See if the signal cannot be safely ignored. */
478 badignore = ksig && sigismember(&noign_sset, signo) && (
479 sigismember(&rmp->mp_ignore, signo) ||
480 sigismember(&rmp->mp_sigmask, signo));
482 if (!badignore && sigismember(&rmp->mp_ignore, signo)) {
483 /* Signal should be ignored. */
484 return;
486 if (!badignore && sigismember(&rmp->mp_sigmask, signo)) {
487 /* Signal should be blocked. */
488 sigaddset(&rmp->mp_sigpending, signo);
489 if(ksig)
490 sigaddset(&rmp->mp_ksigpending, signo);
491 return;
494 if ((rmp->mp_flags & TRACE_STOPPED) && signo != SIGKILL) {
495 /* If the process is stopped for a debugger, do not deliver any signals
496 * (except SIGKILL) in order not to confuse the debugger. The signals
497 * will be delivered using the check_pending() calls in do_trace().
499 sigaddset(&rmp->mp_sigpending, signo);
500 if(ksig)
501 sigaddset(&rmp->mp_ksigpending, signo);
502 return;
504 if (!badignore && sigismember(&rmp->mp_catch, signo)) {
505 /* Signal is caught. First interrupt the process's current call, if
506 * applicable. This may involve a roundtrip to VFS, in which case we'll
507 * have to check back later.
509 if (!unpause(rmp)) {
510 /* not yet unpaused; continue later */
511 sigaddset(&rmp->mp_sigpending, signo);
512 if(ksig)
513 sigaddset(&rmp->mp_ksigpending, signo);
515 return;
518 /* Then send the actual signal to the process, by setting up a signal
519 * handler.
521 if (sig_send(rmp, signo))
522 return;
524 /* We were unable to spawn a signal handler. Kill the process. */
525 printf("PM: %d can't catch signal %d - killing\n",
526 rmp->mp_pid, signo);
528 else if (!badignore && sigismember(&ign_sset, signo)) {
529 /* Signal defaults to being ignored. */
530 return;
533 /* Terminate process */
534 sig_proc_exit(rmp, signo);
537 /*===========================================================================*
538 * sig_proc_exit *
539 *===========================================================================*/
540 static void sig_proc_exit(rmp, signo)
541 struct mproc *rmp; /* process that must exit */
542 int signo; /* signal that caused termination */
544 rmp->mp_sigstatus = (char) signo;
545 if (sigismember(&core_sset, signo)) {
546 if(!(rmp->mp_flags & PRIV_PROC)) {
547 printf("PM: coredump signal %d for %d / %s\n", signo,
548 rmp->mp_pid, rmp->mp_name);
549 sys_diagctl_stacktrace(rmp->mp_endpoint);
551 exit_proc(rmp, 0, TRUE /*dump_core*/);
553 else {
554 exit_proc(rmp, 0, FALSE /*dump_core*/);
558 /*===========================================================================*
559 * check_sig *
560 *===========================================================================*/
561 int check_sig(proc_id, signo, ksig)
562 pid_t proc_id; /* pid of proc to sig, or 0 or -1, or -pgrp */
563 int signo; /* signal to send to process (0 to _NSIG-1) */
564 int ksig; /* non-zero means signal comes from kernel */
566 /* Check to see if it is possible to send a signal. The signal may have to be
567 * sent to a group of processes. This routine is invoked by the KILL system
568 * call, and also when the kernel catches a DEL or other signal.
571 register struct mproc *rmp;
572 int count; /* count # of signals sent */
573 int error_code;
575 if (signo < 0 || signo >= _NSIG) return(EINVAL);
577 /* Return EINVAL for attempts to send SIGKILL to INIT alone. */
578 if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL);
580 /* Signal RS first when broadcasting SIGTERM. */
581 if (proc_id == -1 && signo == SIGTERM)
582 sys_kill(RS_PROC_NR, signo);
584 /* Search the proc table for processes to signal. Start from the end of the
585 * table to analyze core system processes at the end when broadcasting.
586 * (See forkexit.c about pid magic.)
588 count = 0;
589 error_code = ESRCH;
590 for (rmp = &mproc[NR_PROCS-1]; rmp >= &mproc[0]; rmp--) {
591 if (!(rmp->mp_flags & IN_USE)) continue;
593 /* Check for selection. */
594 if (proc_id > 0 && proc_id != rmp->mp_pid) continue;
595 if (proc_id == 0 && mp->mp_procgrp != rmp->mp_procgrp) continue;
596 if (proc_id == -1 && rmp->mp_pid <= INIT_PID) continue;
597 if (proc_id < -1 && rmp->mp_procgrp != -proc_id) continue;
599 /* Do not kill servers and drivers when broadcasting SIGKILL. */
600 if (proc_id == -1 && signo == SIGKILL &&
601 (rmp->mp_flags & PRIV_PROC)) continue;
603 /* Skip VM entirely as it might lead to a deadlock with its signal
604 * manager if the manager page faults at the same time.
606 if (rmp->mp_endpoint == VM_PROC_NR) continue;
608 /* Disallow lethal signals sent by user processes to sys processes. */
609 if (!ksig && SIGS_IS_LETHAL(signo) && (rmp->mp_flags & PRIV_PROC)) {
610 error_code = EPERM;
611 continue;
614 /* Check for permission. */
615 if (mp->mp_effuid != SUPER_USER
616 && mp->mp_realuid != rmp->mp_realuid
617 && mp->mp_effuid != rmp->mp_realuid
618 && mp->mp_realuid != rmp->mp_effuid
619 && mp->mp_effuid != rmp->mp_effuid) {
620 error_code = EPERM;
621 continue;
624 count++;
625 if (signo == 0 || (rmp->mp_flags & EXITING)) continue;
627 /* 'sig_proc' will handle the disposition of the signal. The
628 * signal may be caught, blocked, ignored, or cause process
629 * termination, possibly with core dump.
631 sig_proc(rmp, signo, TRUE /*trace*/, ksig);
633 if (proc_id > 0) break; /* only one process being signaled */
636 /* If the calling process has killed itself, don't reply. */
637 if ((mp->mp_flags & (IN_USE | EXITING)) != IN_USE) return(SUSPEND);
638 return(count > 0 ? OK : error_code);
641 /*===========================================================================*
642 * check_pending *
643 *===========================================================================*/
644 void check_pending(rmp)
645 register struct mproc *rmp;
647 /* Check to see if any pending signals have been unblocked. Deliver as many
648 * of them as we can, until we have to wait for a reply from VFS first.
650 * There are several places in this file where the signal mask is
651 * changed. At each such place, check_pending() should be called to
652 * check for newly unblocked signals.
654 int i;
655 int ksig;
657 for (i = 1; i < _NSIG; i++) {
658 if (sigismember(&rmp->mp_sigpending, i) &&
659 !sigismember(&rmp->mp_sigmask, i)) {
660 ksig = sigismember(&rmp->mp_ksigpending, i);
661 sigdelset(&rmp->mp_sigpending, i);
662 sigdelset(&rmp->mp_ksigpending, i);
663 sig_proc(rmp, i, FALSE /*trace*/, ksig);
665 if (rmp->mp_flags & VFS_CALL) {
666 /* Signals must be rechecked upon return from the new
667 * VFS call, unless the process was killed. In both
668 * cases, the process is stopped.
670 assert(rmp->mp_flags & PROC_STOPPED);
671 break;
677 /*===========================================================================*
678 * restart_sigs *
679 *===========================================================================*/
680 void restart_sigs(rmp)
681 struct mproc *rmp;
683 /* VFS has replied to a request from us; do signal-related work.
686 if (rmp->mp_flags & (VFS_CALL | EXITING)) return;
688 if (rmp->mp_flags & TRACE_EXIT) {
689 /* Tracer requested exit with specific exit value */
690 exit_proc(rmp, rmp->mp_exitstatus, FALSE /*dump_core*/);
692 else if (rmp->mp_flags & PROC_STOPPED) {
693 /* If a signal arrives while we are performing a VFS call, the process
694 * will always be stopped immediately. Thus, if the process is stopped
695 * once the reply from VFS arrives, we might have to check signals.
697 assert(!(rmp->mp_flags & DELAY_CALL));
699 /* We saved signal(s) for after finishing a VFS call. Deal with this.
700 * PROC_STOPPED remains set to indicate the process is still stopped.
702 check_pending(rmp);
704 /* Resume the process now, unless there is a reason not to. */
705 try_resume_proc(rmp);
709 /*===========================================================================*
710 * unpause *
711 *===========================================================================*/
712 static int unpause(rmp)
713 struct mproc *rmp; /* which process */
715 /* A signal is to be sent to a process. If that process is hanging on a
716 * system call, the system call must be terminated with EINTR. First check if
717 * the process is hanging on an PM call. If not, tell VFS, so it can check for
718 * interruptible calls such as READs and WRITEs from pipes, ttys and the like.
720 message m;
722 assert(!(rmp->mp_flags & VFS_CALL));
724 /* If the UNPAUSED flag is set, VFS replied to an earlier unpause request. */
725 if (rmp->mp_flags & UNPAUSED) {
726 assert((rmp->mp_flags & (DELAY_CALL | PROC_STOPPED)) == PROC_STOPPED);
728 return TRUE;
731 /* If the process is already stopping, don't do anything now. */
732 if (rmp->mp_flags & DELAY_CALL)
733 return FALSE;
735 /* Check to see if process is hanging on a WAIT or SIGSUSPEND call. */
736 if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
737 /* Stop the process from running. Do not interrupt the actual call yet.
738 * sig_send() will interrupt the call and resume the process afterward.
739 * No delay calls: we know for a fact that the process called us.
741 stop_proc(rmp, FALSE /*may_delay*/);
743 return TRUE;
746 /* Not paused in PM. Let VFS try to unpause the process. The process needs to
747 * be stopped for this. If it is not already stopped, try to stop it now. If
748 * that does not succeed immediately, postpone signal delivery.
750 if (!(rmp->mp_flags & PROC_STOPPED) && !stop_proc(rmp, TRUE /*may_delay*/))
751 return FALSE;
753 memset(&m, 0, sizeof(m));
754 m.m_type = VFS_PM_UNPAUSE;
755 m.VFS_PM_ENDPT = rmp->mp_endpoint;
757 tell_vfs(rmp, &m);
759 /* Also tell VM. */
760 vm_notify_sig_wrapper(rmp->mp_endpoint);
762 return FALSE;
765 /*===========================================================================*
766 * sig_send *
767 *===========================================================================*/
768 static int sig_send(rmp, signo)
769 struct mproc *rmp; /* what process to spawn a signal handler in */
770 int signo; /* signal to send to process (1 to _NSIG-1) */
772 /* The process is supposed to catch this signal. Spawn a signal handler.
773 * Return TRUE if this succeeded, FALSE otherwise.
775 struct sigmsg sigmsg;
776 int i, r, sigflags, slot;
778 assert(rmp->mp_flags & PROC_STOPPED);
780 sigflags = rmp->mp_sigact[signo].sa_flags;
781 slot = (int) (rmp - mproc);
783 if (rmp->mp_flags & SIGSUSPENDED)
784 sigmsg.sm_mask = rmp->mp_sigmask2;
785 else
786 sigmsg.sm_mask = rmp->mp_sigmask;
787 sigmsg.sm_signo = signo;
788 sigmsg.sm_sighandler =
789 (vir_bytes) rmp->mp_sigact[signo].sa_handler;
790 sigmsg.sm_sigreturn = rmp->mp_sigreturn;
791 for (i = 1; i < _NSIG; i++) {
792 if (sigismember(&rmp->mp_sigact[signo].sa_mask, i))
793 sigaddset(&rmp->mp_sigmask, i);
796 if (sigflags & SA_NODEFER)
797 sigdelset(&rmp->mp_sigmask, signo);
798 else
799 sigaddset(&rmp->mp_sigmask, signo);
801 if (sigflags & SA_RESETHAND) {
802 sigdelset(&rmp->mp_catch, signo);
803 rmp->mp_sigact[signo].sa_handler = SIG_DFL;
805 sigdelset(&rmp->mp_sigpending, signo);
806 sigdelset(&rmp->mp_ksigpending, signo);
808 /* Ask the kernel to deliver the signal */
809 r = sys_sigsend(rmp->mp_endpoint, &sigmsg);
810 /* sys_sigsend can fail legitimately with EFAULT or ENOMEM if the process
811 * memory can't accommodate the signal handler. The target process will be
812 * killed in that case, so do not bother interrupting or resuming it.
814 if(r == EFAULT || r == ENOMEM) {
815 return(FALSE);
817 /* Other errors are unexpected pm/kernel discrepancies. */
818 if (r != OK) {
819 panic("sys_sigsend failed: %d", r);
822 /* Was the process suspended in PM? Then interrupt the blocking call. */
823 if (rmp->mp_flags & (WAITING | SIGSUSPENDED)) {
824 rmp->mp_flags &= ~(WAITING | SIGSUSPENDED);
826 reply(slot, EINTR);
828 /* The process must just have been stopped by unpause(), which means
829 * that the UNPAUSE flag is not set.
831 assert(!(rmp->mp_flags & UNPAUSED));
833 try_resume_proc(rmp);
835 assert(!(rmp->mp_flags & PROC_STOPPED));
836 } else {
837 /* If the process was not suspended in PM, VFS must first have
838 * confirmed that it has tried to unsuspend any blocking call. Thus, we
839 * got here from restart_sigs() as part of handling PM_UNPAUSE_REPLY,
840 * and restart_sigs() will resume the process later.
842 assert(rmp->mp_flags & UNPAUSED);
845 return(TRUE);
848 /*===========================================================================*
849 * vm_notify_sig_wrapper *
850 *===========================================================================*/
851 void vm_notify_sig_wrapper(endpoint_t ep)
853 /* get IPC's endpoint,
854 * the reason that we directly get the endpoint
855 * instead of from DS server is that otherwise
856 * it will cause deadlock between PM, VM and DS.
858 struct mproc *rmp;
859 endpoint_t ipc_ep = 0;
861 for (rmp = &mproc[0]; rmp < &mproc[NR_PROCS]; rmp++) {
862 if (!(rmp->mp_flags & IN_USE))
863 continue;
864 if (!strcmp(rmp->mp_name, "ipc")) {
865 ipc_ep = rmp->mp_endpoint;
866 vm_notify_sig(ep, ipc_ep);
868 return;