On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / include / linux / skbuff.h
blob8c866b5cb97b2d7ffdc0ab5fcc081f2f6c063c8a
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <asm/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
33 /* Don't change this without changing skb_csum_unnecessary! */
34 #define CHECKSUM_NONE 0
35 #define CHECKSUM_UNNECESSARY 1
36 #define CHECKSUM_COMPLETE 2
37 #define CHECKSUM_PARTIAL 3
39 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
40 ~(SMP_CACHE_BYTES - 1))
41 #define SKB_WITH_OVERHEAD(X) \
42 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
43 #define SKB_MAX_ORDER(X, ORDER) \
44 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
45 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48 /* A. Checksumming of received packets by device.
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
59 * COMPLETE: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use COMPLETE,
63 * not UNNECESSARY.
65 * PARTIAL: identical to the case for output below. This may occur
66 * on a packet received directly from another Linux OS, e.g.,
67 * a virtualised Linux kernel on the same host. The packet can
68 * be treated in the same way as UNNECESSARY except that on
69 * output (i.e., forwarding) the checksum must be filled in
70 * by the OS or the hardware.
72 * B. Checksumming on output.
74 * NONE: skb is checksummed by protocol or csum is not required.
76 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
77 * from skb->csum_start to the end and to record the checksum
78 * at skb->csum_start + skb->csum_offset.
80 * Device must show its capabilities in dev->features, set
81 * at device setup time.
82 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
83 * everything.
84 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
85 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
86 * TCP/UDP over IPv4. Sigh. Vendors like this
87 * way by an unknown reason. Though, see comment above
88 * about CHECKSUM_UNNECESSARY. 8)
89 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
91 * Any questions? No questions, good. --ANK
94 struct net_device;
95 struct scatterlist;
96 struct pipe_inode_info;
98 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
99 struct nf_conntrack {
100 atomic_t use;
102 #endif
104 #ifdef CONFIG_BRIDGE_NETFILTER
105 struct nf_bridge_info {
106 atomic_t use;
107 struct net_device *physindev;
108 struct net_device *physoutdev;
109 unsigned int mask;
110 unsigned long data[32 / sizeof(unsigned long)];
112 #endif
114 struct sk_buff_head {
115 /* These two members must be first. */
116 struct sk_buff *next;
117 struct sk_buff *prev;
119 __u32 qlen;
120 spinlock_t lock;
123 struct sk_buff;
125 /* To allow 64K frame to be packed as single skb without frag_list */
126 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
128 typedef struct skb_frag_struct skb_frag_t;
130 struct skb_frag_struct {
131 struct page *page;
132 __u32 page_offset;
133 __u32 size;
136 #define HAVE_HW_TIME_STAMP
139 * struct skb_shared_hwtstamps - hardware time stamps
140 * @hwtstamp: hardware time stamp transformed into duration
141 * since arbitrary point in time
142 * @syststamp: hwtstamp transformed to system time base
144 * Software time stamps generated by ktime_get_real() are stored in
145 * skb->tstamp. The relation between the different kinds of time
146 * stamps is as follows:
148 * syststamp and tstamp can be compared against each other in
149 * arbitrary combinations. The accuracy of a
150 * syststamp/tstamp/"syststamp from other device" comparison is
151 * limited by the accuracy of the transformation into system time
152 * base. This depends on the device driver and its underlying
153 * hardware.
155 * hwtstamps can only be compared against other hwtstamps from
156 * the same device.
158 * This structure is attached to packets as part of the
159 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
161 struct skb_shared_hwtstamps {
162 ktime_t hwtstamp;
163 ktime_t syststamp;
167 * struct skb_shared_tx - instructions for time stamping of outgoing packets
168 * @hardware: generate hardware time stamp
169 * @software: generate software time stamp
170 * @in_progress: device driver is going to provide
171 * hardware time stamp
172 * @flags: all shared_tx flags
174 * These flags are attached to packets as part of the
175 * &skb_shared_info. Use skb_tx() to get a pointer.
177 union skb_shared_tx {
178 struct {
179 __u8 hardware:1,
180 software:1,
181 in_progress:1;
183 __u8 flags;
186 /* This data is invariant across clones and lives at
187 * the end of the header data, ie. at skb->end.
189 struct skb_shared_info {
190 atomic_t dataref;
191 unsigned short nr_frags;
192 unsigned short gso_size;
193 #ifdef CONFIG_HAS_DMA
194 dma_addr_t dma_head;
195 #endif
196 /* Warning: this field is not always filled in (UFO)! */
197 unsigned short gso_segs;
198 unsigned short gso_type;
199 __be32 ip6_frag_id;
200 union skb_shared_tx tx_flags;
201 struct sk_buff *frag_list;
202 struct skb_shared_hwtstamps hwtstamps;
203 skb_frag_t frags[MAX_SKB_FRAGS];
204 #ifdef CONFIG_HAS_DMA
205 dma_addr_t dma_maps[MAX_SKB_FRAGS];
206 #endif
207 /* Intermediate layers must ensure that destructor_arg
208 * remains valid until skb destructor */
209 void * destructor_arg;
212 /* We divide dataref into two halves. The higher 16 bits hold references
213 * to the payload part of skb->data. The lower 16 bits hold references to
214 * the entire skb->data. A clone of a headerless skb holds the length of
215 * the header in skb->hdr_len.
217 * All users must obey the rule that the skb->data reference count must be
218 * greater than or equal to the payload reference count.
220 * Holding a reference to the payload part means that the user does not
221 * care about modifications to the header part of skb->data.
223 #define SKB_DATAREF_SHIFT 16
224 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
227 enum {
228 SKB_FCLONE_UNAVAILABLE,
229 SKB_FCLONE_ORIG,
230 SKB_FCLONE_CLONE,
233 enum {
234 SKB_GSO_TCPV4 = 1 << 0,
235 SKB_GSO_UDP = 1 << 1,
237 /* This indicates the skb is from an untrusted source. */
238 SKB_GSO_DODGY = 1 << 2,
240 /* This indicates the tcp segment has CWR set. */
241 SKB_GSO_TCP_ECN = 1 << 3,
243 SKB_GSO_TCPV6 = 1 << 4,
245 SKB_GSO_FCOE = 1 << 5,
248 #if BITS_PER_LONG > 32
249 #define NET_SKBUFF_DATA_USES_OFFSET 1
250 #endif
252 #ifdef NET_SKBUFF_DATA_USES_OFFSET
253 typedef unsigned int sk_buff_data_t;
254 #else
255 typedef unsigned char *sk_buff_data_t;
256 #endif
258 /**
259 * struct sk_buff - socket buffer
260 * @next: Next buffer in list
261 * @prev: Previous buffer in list
262 * @sk: Socket we are owned by
263 * @tstamp: Time we arrived
264 * @dev: Device we arrived on/are leaving by
265 * @transport_header: Transport layer header
266 * @network_header: Network layer header
267 * @mac_header: Link layer header
268 * @_skb_dst: destination entry
269 * @sp: the security path, used for xfrm
270 * @cb: Control buffer. Free for use by every layer. Put private vars here
271 * @len: Length of actual data
272 * @data_len: Data length
273 * @mac_len: Length of link layer header
274 * @hdr_len: writable header length of cloned skb
275 * @csum: Checksum (must include start/offset pair)
276 * @csum_start: Offset from skb->head where checksumming should start
277 * @csum_offset: Offset from csum_start where checksum should be stored
278 * @local_df: allow local fragmentation
279 * @cloned: Head may be cloned (check refcnt to be sure)
280 * @nohdr: Payload reference only, must not modify header
281 * @pkt_type: Packet class
282 * @fclone: skbuff clone status
283 * @ip_summed: Driver fed us an IP checksum
284 * @priority: Packet queueing priority
285 * @users: User count - see {datagram,tcp}.c
286 * @protocol: Packet protocol from driver
287 * @truesize: Buffer size
288 * @head: Head of buffer
289 * @data: Data head pointer
290 * @tail: Tail pointer
291 * @end: End pointer
292 * @destructor: Destruct function
293 * @mark: Generic packet mark
294 * @nfct: Associated connection, if any
295 * @ipvs_property: skbuff is owned by ipvs
296 * @peeked: this packet has been seen already, so stats have been
297 * done for it, don't do them again
298 * @nf_trace: netfilter packet trace flag
299 * @nfctinfo: Relationship of this skb to the connection
300 * @nfct_reasm: netfilter conntrack re-assembly pointer
301 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
302 * @iif: ifindex of device we arrived on
303 * @queue_mapping: Queue mapping for multiqueue devices
304 * @tc_index: Traffic control index
305 * @tc_verd: traffic control verdict
306 * @ndisc_nodetype: router type (from link layer)
307 * @dma_cookie: a cookie to one of several possible DMA operations
308 * done by skb DMA functions
309 * @secmark: security marking
310 * @vlan_tci: vlan tag control information
313 struct sk_buff {
314 /* These two members must be first. */
315 struct sk_buff *next;
316 struct sk_buff *prev;
318 struct sock *sk;
319 ktime_t tstamp;
320 struct net_device *dev;
322 unsigned long _skb_dst;
323 #ifdef CONFIG_XFRM
324 struct sec_path *sp;
325 #endif
327 * This is the control buffer. It is free to use for every
328 * layer. Please put your private variables there. If you
329 * want to keep them across layers you have to do a skb_clone()
330 * first. This is owned by whoever has the skb queued ATM.
332 char cb[48];
334 unsigned int len,
335 data_len;
336 __u16 mac_len,
337 hdr_len;
338 union {
339 __wsum csum;
340 struct {
341 __u16 csum_start;
342 __u16 csum_offset;
345 __u32 priority;
346 kmemcheck_bitfield_begin(flags1);
347 __u8 local_df:1,
348 cloned:1,
349 ip_summed:2,
350 nohdr:1,
351 nfctinfo:3;
352 __u8 pkt_type:3,
353 fclone:2,
354 ipvs_property:1,
355 peeked:1,
356 nf_trace:1;
357 kmemcheck_bitfield_end(flags1);
358 __be16 protocol;
360 void (*destructor)(struct sk_buff *skb);
361 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
362 struct nf_conntrack *nfct;
363 struct sk_buff *nfct_reasm;
364 #endif
365 #ifdef CONFIG_BRIDGE_NETFILTER
366 struct nf_bridge_info *nf_bridge;
367 #endif
369 int iif;
370 __u16 queue_mapping;
371 #ifdef CONFIG_NET_SCHED
372 __u16 tc_index; /* traffic control index */
373 #ifdef CONFIG_NET_CLS_ACT
374 __u16 tc_verd; /* traffic control verdict */
375 #endif
376 #endif
378 kmemcheck_bitfield_begin(flags2);
379 #ifdef CONFIG_IPV6_NDISC_NODETYPE
380 __u8 ndisc_nodetype:2;
381 #endif
382 kmemcheck_bitfield_end(flags2);
384 /* 0/14 bit hole */
386 #ifdef CONFIG_NET_DMA
387 dma_cookie_t dma_cookie;
388 #endif
389 #ifdef CONFIG_NETWORK_SECMARK
390 __u32 secmark;
391 #endif
392 union {
393 __u32 mark;
394 __u32 dropcount;
397 __u16 vlan_tci;
399 sk_buff_data_t transport_header;
400 sk_buff_data_t network_header;
401 sk_buff_data_t mac_header;
402 /* These elements must be at the end, see alloc_skb() for details. */
403 sk_buff_data_t tail;
404 sk_buff_data_t end;
405 unsigned char *head,
406 *data;
407 unsigned int truesize;
408 atomic_t users;
411 #ifdef __KERNEL__
413 * Handling routines are only of interest to the kernel
415 #include <linux/slab.h>
417 #include <asm/system.h>
419 #ifdef CONFIG_HAS_DMA
420 #include <linux/dma-mapping.h>
421 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
422 enum dma_data_direction dir);
423 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
424 enum dma_data_direction dir);
425 #endif
427 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
429 return (struct dst_entry *)skb->_skb_dst;
432 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
434 skb->_skb_dst = (unsigned long)dst;
437 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
439 return (struct rtable *)skb_dst(skb);
442 extern void kfree_skb(struct sk_buff *skb);
443 extern void consume_skb(struct sk_buff *skb);
444 extern void __kfree_skb(struct sk_buff *skb);
445 extern struct sk_buff *__alloc_skb(unsigned int size,
446 gfp_t priority, int fclone, int node);
447 static inline struct sk_buff *alloc_skb(unsigned int size,
448 gfp_t priority)
450 return __alloc_skb(size, priority, 0, -1);
453 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
454 gfp_t priority)
456 return __alloc_skb(size, priority, 1, -1);
459 extern int skb_recycle_check(struct sk_buff *skb, int skb_size);
461 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
462 extern struct sk_buff *skb_clone(struct sk_buff *skb,
463 gfp_t priority);
464 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
465 gfp_t priority);
466 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
467 gfp_t gfp_mask);
468 extern int pskb_expand_head(struct sk_buff *skb,
469 int nhead, int ntail,
470 gfp_t gfp_mask);
471 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
472 unsigned int headroom);
473 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
474 int newheadroom, int newtailroom,
475 gfp_t priority);
476 extern int skb_to_sgvec(struct sk_buff *skb,
477 struct scatterlist *sg, int offset,
478 int len);
479 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
480 struct sk_buff **trailer);
481 extern int skb_pad(struct sk_buff *skb, int pad);
482 #define dev_kfree_skb(a) consume_skb(a)
483 #define dev_consume_skb(a) kfree_skb_clean(a)
484 extern void skb_over_panic(struct sk_buff *skb, int len,
485 void *here);
486 extern void skb_under_panic(struct sk_buff *skb, int len,
487 void *here);
489 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
490 int getfrag(void *from, char *to, int offset,
491 int len,int odd, struct sk_buff *skb),
492 void *from, int length);
494 struct skb_seq_state
496 __u32 lower_offset;
497 __u32 upper_offset;
498 __u32 frag_idx;
499 __u32 stepped_offset;
500 struct sk_buff *root_skb;
501 struct sk_buff *cur_skb;
502 __u8 *frag_data;
505 extern void skb_prepare_seq_read(struct sk_buff *skb,
506 unsigned int from, unsigned int to,
507 struct skb_seq_state *st);
508 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
509 struct skb_seq_state *st);
510 extern void skb_abort_seq_read(struct skb_seq_state *st);
512 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
513 unsigned int to, struct ts_config *config,
514 struct ts_state *state);
516 #ifdef NET_SKBUFF_DATA_USES_OFFSET
517 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
519 return skb->head + skb->end;
521 #else
522 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
524 return skb->end;
526 #endif
528 /* Internal */
529 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
531 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
533 return &skb_shinfo(skb)->hwtstamps;
536 static inline union skb_shared_tx *skb_tx(struct sk_buff *skb)
538 return &skb_shinfo(skb)->tx_flags;
542 * skb_queue_empty - check if a queue is empty
543 * @list: queue head
545 * Returns true if the queue is empty, false otherwise.
547 static inline int skb_queue_empty(const struct sk_buff_head *list)
549 return list->next == (struct sk_buff *)list;
553 * skb_queue_is_last - check if skb is the last entry in the queue
554 * @list: queue head
555 * @skb: buffer
557 * Returns true if @skb is the last buffer on the list.
559 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
560 const struct sk_buff *skb)
562 return (skb->next == (struct sk_buff *) list);
566 * skb_queue_is_first - check if skb is the first entry in the queue
567 * @list: queue head
568 * @skb: buffer
570 * Returns true if @skb is the first buffer on the list.
572 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
573 const struct sk_buff *skb)
575 return (skb->prev == (struct sk_buff *) list);
579 * skb_queue_next - return the next packet in the queue
580 * @list: queue head
581 * @skb: current buffer
583 * Return the next packet in @list after @skb. It is only valid to
584 * call this if skb_queue_is_last() evaluates to false.
586 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
587 const struct sk_buff *skb)
589 /* This BUG_ON may seem severe, but if we just return then we
590 * are going to dereference garbage.
592 BUG_ON(skb_queue_is_last(list, skb));
593 return skb->next;
597 * skb_queue_prev - return the prev packet in the queue
598 * @list: queue head
599 * @skb: current buffer
601 * Return the prev packet in @list before @skb. It is only valid to
602 * call this if skb_queue_is_first() evaluates to false.
604 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
605 const struct sk_buff *skb)
607 /* This BUG_ON may seem severe, but if we just return then we
608 * are going to dereference garbage.
610 BUG_ON(skb_queue_is_first(list, skb));
611 return skb->prev;
615 * skb_get - reference buffer
616 * @skb: buffer to reference
618 * Makes another reference to a socket buffer and returns a pointer
619 * to the buffer.
621 static inline struct sk_buff *skb_get(struct sk_buff *skb)
623 atomic_inc(&skb->users);
624 return skb;
628 * If users == 1, we are the only owner and are can avoid redundant
629 * atomic change.
633 * skb_cloned - is the buffer a clone
634 * @skb: buffer to check
636 * Returns true if the buffer was generated with skb_clone() and is
637 * one of multiple shared copies of the buffer. Cloned buffers are
638 * shared data so must not be written to under normal circumstances.
640 static inline int skb_cloned(const struct sk_buff *skb)
642 return skb->cloned &&
643 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
647 * skb_header_cloned - is the header a clone
648 * @skb: buffer to check
650 * Returns true if modifying the header part of the buffer requires
651 * the data to be copied.
653 static inline int skb_header_cloned(const struct sk_buff *skb)
655 int dataref;
657 if (!skb->cloned)
658 return 0;
660 dataref = atomic_read(&skb_shinfo(skb)->dataref);
661 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
662 return dataref != 1;
666 * skb_header_release - release reference to header
667 * @skb: buffer to operate on
669 * Drop a reference to the header part of the buffer. This is done
670 * by acquiring a payload reference. You must not read from the header
671 * part of skb->data after this.
673 static inline void skb_header_release(struct sk_buff *skb)
675 BUG_ON(skb->nohdr);
676 skb->nohdr = 1;
677 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
681 * skb_shared - is the buffer shared
682 * @skb: buffer to check
684 * Returns true if more than one person has a reference to this
685 * buffer.
687 static inline int skb_shared(const struct sk_buff *skb)
689 return atomic_read(&skb->users) != 1;
693 * skb_share_check - check if buffer is shared and if so clone it
694 * @skb: buffer to check
695 * @pri: priority for memory allocation
697 * If the buffer is shared the buffer is cloned and the old copy
698 * drops a reference. A new clone with a single reference is returned.
699 * If the buffer is not shared the original buffer is returned. When
700 * being called from interrupt status or with spinlocks held pri must
701 * be GFP_ATOMIC.
703 * NULL is returned on a memory allocation failure.
705 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
706 gfp_t pri)
708 might_sleep_if(pri & __GFP_WAIT);
709 if (skb_shared(skb)) {
710 struct sk_buff *nskb = skb_clone(skb, pri);
711 kfree_skb(skb);
712 skb = nskb;
714 return skb;
718 * Copy shared buffers into a new sk_buff. We effectively do COW on
719 * packets to handle cases where we have a local reader and forward
720 * and a couple of other messy ones. The normal one is tcpdumping
721 * a packet thats being forwarded.
725 * skb_unshare - make a copy of a shared buffer
726 * @skb: buffer to check
727 * @pri: priority for memory allocation
729 * If the socket buffer is a clone then this function creates a new
730 * copy of the data, drops a reference count on the old copy and returns
731 * the new copy with the reference count at 1. If the buffer is not a clone
732 * the original buffer is returned. When called with a spinlock held or
733 * from interrupt state @pri must be %GFP_ATOMIC
735 * %NULL is returned on a memory allocation failure.
737 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
738 gfp_t pri)
740 might_sleep_if(pri & __GFP_WAIT);
741 if (skb_cloned(skb)) {
742 struct sk_buff *nskb = skb_copy(skb, pri);
743 kfree_skb(skb); /* Free our shared copy */
744 skb = nskb;
746 return skb;
750 * skb_peek
751 * @list_: list to peek at
753 * Peek an &sk_buff. Unlike most other operations you _MUST_
754 * be careful with this one. A peek leaves the buffer on the
755 * list and someone else may run off with it. You must hold
756 * the appropriate locks or have a private queue to do this.
758 * Returns %NULL for an empty list or a pointer to the head element.
759 * The reference count is not incremented and the reference is therefore
760 * volatile. Use with caution.
762 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
764 struct sk_buff *list = ((struct sk_buff *)list_)->next;
765 if (list == (struct sk_buff *)list_)
766 list = NULL;
767 return list;
771 * skb_peek_tail
772 * @list_: list to peek at
774 * Peek an &sk_buff. Unlike most other operations you _MUST_
775 * be careful with this one. A peek leaves the buffer on the
776 * list and someone else may run off with it. You must hold
777 * the appropriate locks or have a private queue to do this.
779 * Returns %NULL for an empty list or a pointer to the tail element.
780 * The reference count is not incremented and the reference is therefore
781 * volatile. Use with caution.
783 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
785 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
786 if (list == (struct sk_buff *)list_)
787 list = NULL;
788 return list;
792 * skb_queue_len - get queue length
793 * @list_: list to measure
795 * Return the length of an &sk_buff queue.
797 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
799 return list_->qlen;
803 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
804 * @list: queue to initialize
806 * This initializes only the list and queue length aspects of
807 * an sk_buff_head object. This allows to initialize the list
808 * aspects of an sk_buff_head without reinitializing things like
809 * the spinlock. It can also be used for on-stack sk_buff_head
810 * objects where the spinlock is known to not be used.
812 static inline void __skb_queue_head_init(struct sk_buff_head *list)
814 list->prev = list->next = (struct sk_buff *)list;
815 list->qlen = 0;
819 * This function creates a split out lock class for each invocation;
820 * this is needed for now since a whole lot of users of the skb-queue
821 * infrastructure in drivers have different locking usage (in hardirq)
822 * than the networking core (in softirq only). In the long run either the
823 * network layer or drivers should need annotation to consolidate the
824 * main types of usage into 3 classes.
826 static inline void skb_queue_head_init(struct sk_buff_head *list)
828 spin_lock_init(&list->lock);
829 __skb_queue_head_init(list);
832 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
833 struct lock_class_key *class)
835 skb_queue_head_init(list);
836 lockdep_set_class(&list->lock, class);
840 * Insert an sk_buff on a list.
842 * The "__skb_xxxx()" functions are the non-atomic ones that
843 * can only be called with interrupts disabled.
845 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
846 static inline void __skb_insert(struct sk_buff *newsk,
847 struct sk_buff *prev, struct sk_buff *next,
848 struct sk_buff_head *list)
850 newsk->next = next;
851 newsk->prev = prev;
852 next->prev = prev->next = newsk;
853 list->qlen++;
856 static inline void __skb_queue_splice(const struct sk_buff_head *list,
857 struct sk_buff *prev,
858 struct sk_buff *next)
860 struct sk_buff *first = list->next;
861 struct sk_buff *last = list->prev;
863 first->prev = prev;
864 prev->next = first;
866 last->next = next;
867 next->prev = last;
871 * skb_queue_splice - join two skb lists, this is designed for stacks
872 * @list: the new list to add
873 * @head: the place to add it in the first list
875 static inline void skb_queue_splice(const struct sk_buff_head *list,
876 struct sk_buff_head *head)
878 if (!skb_queue_empty(list)) {
879 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
880 head->qlen += list->qlen;
885 * skb_queue_splice - join two skb lists and reinitialise the emptied list
886 * @list: the new list to add
887 * @head: the place to add it in the first list
889 * The list at @list is reinitialised
891 static inline void skb_queue_splice_init(struct sk_buff_head *list,
892 struct sk_buff_head *head)
894 if (!skb_queue_empty(list)) {
895 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
896 head->qlen += list->qlen;
897 __skb_queue_head_init(list);
902 * skb_queue_splice_tail - join two skb lists, each list being a queue
903 * @list: the new list to add
904 * @head: the place to add it in the first list
906 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
907 struct sk_buff_head *head)
909 if (!skb_queue_empty(list)) {
910 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
911 head->qlen += list->qlen;
916 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
917 * @list: the new list to add
918 * @head: the place to add it in the first list
920 * Each of the lists is a queue.
921 * The list at @list is reinitialised
923 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
924 struct sk_buff_head *head)
926 if (!skb_queue_empty(list)) {
927 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
928 head->qlen += list->qlen;
929 __skb_queue_head_init(list);
934 * __skb_queue_after - queue a buffer at the list head
935 * @list: list to use
936 * @prev: place after this buffer
937 * @newsk: buffer to queue
939 * Queue a buffer int the middle of a list. This function takes no locks
940 * and you must therefore hold required locks before calling it.
942 * A buffer cannot be placed on two lists at the same time.
944 static inline void __skb_queue_after(struct sk_buff_head *list,
945 struct sk_buff *prev,
946 struct sk_buff *newsk)
948 __skb_insert(newsk, prev, prev->next, list);
951 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
952 struct sk_buff_head *list);
954 static inline void __skb_queue_before(struct sk_buff_head *list,
955 struct sk_buff *next,
956 struct sk_buff *newsk)
958 __skb_insert(newsk, next->prev, next, list);
962 * __skb_queue_head - queue a buffer at the list head
963 * @list: list to use
964 * @newsk: buffer to queue
966 * Queue a buffer at the start of a list. This function takes no locks
967 * and you must therefore hold required locks before calling it.
969 * A buffer cannot be placed on two lists at the same time.
971 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
972 static inline void __skb_queue_head(struct sk_buff_head *list,
973 struct sk_buff *newsk)
975 __skb_queue_after(list, (struct sk_buff *)list, newsk);
979 * __skb_queue_tail - queue a buffer at the list tail
980 * @list: list to use
981 * @newsk: buffer to queue
983 * Queue a buffer at the end of a list. This function takes no locks
984 * and you must therefore hold required locks before calling it.
986 * A buffer cannot be placed on two lists at the same time.
988 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
989 static inline void __skb_queue_tail(struct sk_buff_head *list,
990 struct sk_buff *newsk)
992 __skb_queue_before(list, (struct sk_buff *)list, newsk);
996 * remove sk_buff from list. _Must_ be called atomically, and with
997 * the list known..
999 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1000 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1002 struct sk_buff *next, *prev;
1004 list->qlen--;
1005 next = skb->next;
1006 prev = skb->prev;
1007 skb->next = skb->prev = NULL;
1008 next->prev = prev;
1009 prev->next = next;
1013 * __skb_dequeue - remove from the head of the queue
1014 * @list: list to dequeue from
1016 * Remove the head of the list. This function does not take any locks
1017 * so must be used with appropriate locks held only. The head item is
1018 * returned or %NULL if the list is empty.
1020 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1021 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1023 struct sk_buff *skb = skb_peek(list);
1024 if (skb)
1025 __skb_unlink(skb, list);
1026 return skb;
1030 * __skb_dequeue_tail - remove from the tail of the queue
1031 * @list: list to dequeue from
1033 * Remove the tail of the list. This function does not take any locks
1034 * so must be used with appropriate locks held only. The tail item is
1035 * returned or %NULL if the list is empty.
1037 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1038 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1040 struct sk_buff *skb = skb_peek_tail(list);
1041 if (skb)
1042 __skb_unlink(skb, list);
1043 return skb;
1047 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1049 return skb->data_len;
1052 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1054 return skb->len - skb->data_len;
1057 static inline int skb_pagelen(const struct sk_buff *skb)
1059 int i, len = 0;
1061 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1062 len += skb_shinfo(skb)->frags[i].size;
1063 return len + skb_headlen(skb);
1066 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1067 struct page *page, int off, int size)
1069 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1071 frag->page = page;
1072 frag->page_offset = off;
1073 frag->size = size;
1074 skb_shinfo(skb)->nr_frags = i + 1;
1077 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1078 int off, int size);
1080 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1081 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frags(skb))
1082 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1084 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1085 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1087 return skb->head + skb->tail;
1090 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1092 skb->tail = skb->data - skb->head;
1095 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1097 skb_reset_tail_pointer(skb);
1098 skb->tail += offset;
1100 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1101 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1103 return skb->tail;
1106 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1108 skb->tail = skb->data;
1111 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1113 skb->tail = skb->data + offset;
1116 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1119 * Add data to an sk_buff
1121 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1122 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1124 unsigned char *tmp = skb_tail_pointer(skb);
1125 SKB_LINEAR_ASSERT(skb);
1126 skb->tail += len;
1127 skb->len += len;
1128 return tmp;
1131 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1132 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1134 skb->data -= len;
1135 skb->len += len;
1136 return skb->data;
1139 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1140 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1142 skb->len -= len;
1143 BUG_ON(skb->len < skb->data_len);
1144 return skb->data += len;
1147 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1149 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1151 if (len > skb_headlen(skb) &&
1152 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1153 return NULL;
1154 skb->len -= len;
1155 return skb->data += len;
1158 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1160 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1163 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1165 if (likely(len <= skb_headlen(skb)))
1166 return 1;
1167 if (unlikely(len > skb->len))
1168 return 0;
1169 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1173 * skb_headroom - bytes at buffer head
1174 * @skb: buffer to check
1176 * Return the number of bytes of free space at the head of an &sk_buff.
1178 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1180 return skb->data - skb->head;
1184 * skb_tailroom - bytes at buffer end
1185 * @skb: buffer to check
1187 * Return the number of bytes of free space at the tail of an sk_buff
1189 static inline int skb_tailroom(const struct sk_buff *skb)
1191 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1195 * skb_reserve - adjust headroom
1196 * @skb: buffer to alter
1197 * @len: bytes to move
1199 * Increase the headroom of an empty &sk_buff by reducing the tail
1200 * room. This is only allowed for an empty buffer.
1202 static inline void skb_reserve(struct sk_buff *skb, int len)
1204 skb->data += len;
1205 skb->tail += len;
1208 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1209 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1211 return skb->head + skb->transport_header;
1214 static inline void skb_reset_transport_header(struct sk_buff *skb)
1216 skb->transport_header = skb->data - skb->head;
1219 static inline void skb_set_transport_header(struct sk_buff *skb,
1220 const int offset)
1222 skb_reset_transport_header(skb);
1223 skb->transport_header += offset;
1226 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1228 return skb->head + skb->network_header;
1231 static inline void skb_reset_network_header(struct sk_buff *skb)
1233 skb->network_header = skb->data - skb->head;
1236 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1238 skb_reset_network_header(skb);
1239 skb->network_header += offset;
1242 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1244 return skb->head + skb->mac_header;
1247 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1249 return skb->mac_header != ~0U;
1252 static inline void skb_reset_mac_header(struct sk_buff *skb)
1254 skb->mac_header = skb->data - skb->head;
1257 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1259 skb_reset_mac_header(skb);
1260 skb->mac_header += offset;
1263 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1265 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1267 return skb->transport_header;
1270 static inline void skb_reset_transport_header(struct sk_buff *skb)
1272 skb->transport_header = skb->data;
1275 static inline void skb_set_transport_header(struct sk_buff *skb,
1276 const int offset)
1278 skb->transport_header = skb->data + offset;
1281 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1283 return skb->network_header;
1286 static inline void skb_reset_network_header(struct sk_buff *skb)
1288 skb->network_header = skb->data;
1291 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1293 skb->network_header = skb->data + offset;
1296 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1298 return skb->mac_header;
1301 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1303 return skb->mac_header != NULL;
1306 static inline void skb_reset_mac_header(struct sk_buff *skb)
1308 skb->mac_header = skb->data;
1311 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1313 skb->mac_header = skb->data + offset;
1315 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1317 static inline int skb_transport_offset(const struct sk_buff *skb)
1319 return skb_transport_header(skb) - skb->data;
1322 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1324 return skb->transport_header - skb->network_header;
1327 static inline int skb_network_offset(const struct sk_buff *skb)
1329 return skb_network_header(skb) - skb->data;
1333 * CPUs often take a performance hit when accessing unaligned memory
1334 * locations. The actual performance hit varies, it can be small if the
1335 * hardware handles it or large if we have to take an exception and fix it
1336 * in software.
1338 * Since an ethernet header is 14 bytes network drivers often end up with
1339 * the IP header at an unaligned offset. The IP header can be aligned by
1340 * shifting the start of the packet by 2 bytes. Drivers should do this
1341 * with:
1343 * skb_reserve(skb, NET_IP_ALIGN);
1345 * The downside to this alignment of the IP header is that the DMA is now
1346 * unaligned. On some architectures the cost of an unaligned DMA is high
1347 * and this cost outweighs the gains made by aligning the IP header.
1349 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1350 * to be overridden.
1352 #ifndef NET_IP_ALIGN
1353 #define NET_IP_ALIGN 2
1354 #endif
1357 * The networking layer reserves some headroom in skb data (via
1358 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1359 * the header has to grow. In the default case, if the header has to grow
1360 * 32 bytes or less we avoid the reallocation.
1362 * Unfortunately this headroom changes the DMA alignment of the resulting
1363 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1364 * on some architectures. An architecture can override this value,
1365 * perhaps setting it to a cacheline in size (since that will maintain
1366 * cacheline alignment of the DMA). It must be a power of 2.
1368 * Various parts of the networking layer expect at least 32 bytes of
1369 * headroom, you should not reduce this.
1371 #ifndef NET_SKB_PAD
1372 #define NET_SKB_PAD 32
1373 #endif
1375 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1377 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1379 if (unlikely(skb->data_len)) {
1380 WARN_ON(1);
1381 return;
1383 skb->len = len;
1384 skb_set_tail_pointer(skb, len);
1387 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1389 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1391 if (skb->data_len)
1392 return ___pskb_trim(skb, len);
1393 __skb_trim(skb, len);
1394 return 0;
1397 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1399 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1403 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1404 * @skb: buffer to alter
1405 * @len: new length
1407 * This is identical to pskb_trim except that the caller knows that
1408 * the skb is not cloned so we should never get an error due to out-
1409 * of-memory.
1411 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1413 int err = pskb_trim(skb, len);
1414 BUG_ON(err);
1418 * skb_orphan - orphan a buffer
1419 * @skb: buffer to orphan
1421 * If a buffer currently has an owner then we call the owner's
1422 * destructor function and make the @skb unowned. The buffer continues
1423 * to exist but is no longer charged to its former owner.
1425 static inline void skb_orphan(struct sk_buff *skb)
1427 if (skb->destructor)
1428 skb->destructor(skb);
1429 skb->destructor = NULL;
1430 skb->sk = NULL;
1434 * __skb_queue_purge - empty a list
1435 * @list: list to empty
1437 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1438 * the list and one reference dropped. This function does not take the
1439 * list lock and the caller must hold the relevant locks to use it.
1441 extern void skb_queue_purge(struct sk_buff_head *list);
1442 static inline void __skb_queue_purge(struct sk_buff_head *list)
1444 struct sk_buff *skb;
1445 while ((skb = __skb_dequeue(list)) != NULL)
1446 kfree_skb(skb);
1450 * __dev_alloc_skb - allocate an skbuff for receiving
1451 * @length: length to allocate
1452 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1454 * Allocate a new &sk_buff and assign it a usage count of one. The
1455 * buffer has unspecified headroom built in. Users should allocate
1456 * the headroom they think they need without accounting for the
1457 * built in space. The built in space is used for optimisations.
1459 * %NULL is returned if there is no free memory.
1461 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1462 gfp_t gfp_mask)
1464 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1465 if (likely(skb))
1466 skb_reserve(skb, NET_SKB_PAD);
1467 return skb;
1470 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1472 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1473 unsigned int length, gfp_t gfp_mask);
1476 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1477 * @dev: network device to receive on
1478 * @length: length to allocate
1480 * Allocate a new &sk_buff and assign it a usage count of one. The
1481 * buffer has unspecified headroom built in. Users should allocate
1482 * the headroom they think they need without accounting for the
1483 * built in space. The built in space is used for optimisations.
1485 * %NULL is returned if there is no free memory. Although this function
1486 * allocates memory it can be called from an interrupt.
1488 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1489 unsigned int length)
1491 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1494 extern struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask);
1497 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1498 * @dev: network device to receive on
1500 * Allocate a new page node local to the specified device.
1502 * %NULL is returned if there is no free memory.
1504 static inline struct page *netdev_alloc_page(struct net_device *dev)
1506 return __netdev_alloc_page(dev, GFP_ATOMIC);
1509 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1511 __free_page(page);
1515 * skb_clone_writable - is the header of a clone writable
1516 * @skb: buffer to check
1517 * @len: length up to which to write
1519 * Returns true if modifying the header part of the cloned buffer
1520 * does not requires the data to be copied.
1522 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1524 return !skb_header_cloned(skb) &&
1525 skb_headroom(skb) + len <= skb->hdr_len;
1528 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1529 int cloned)
1531 int delta = 0;
1533 if (headroom < NET_SKB_PAD)
1534 headroom = NET_SKB_PAD;
1535 if (headroom > skb_headroom(skb))
1536 delta = headroom - skb_headroom(skb);
1538 if (delta || cloned)
1539 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1540 GFP_ATOMIC);
1541 return 0;
1545 * skb_cow - copy header of skb when it is required
1546 * @skb: buffer to cow
1547 * @headroom: needed headroom
1549 * If the skb passed lacks sufficient headroom or its data part
1550 * is shared, data is reallocated. If reallocation fails, an error
1551 * is returned and original skb is not changed.
1553 * The result is skb with writable area skb->head...skb->tail
1554 * and at least @headroom of space at head.
1556 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1558 return __skb_cow(skb, headroom, skb_cloned(skb));
1562 * skb_cow_head - skb_cow but only making the head writable
1563 * @skb: buffer to cow
1564 * @headroom: needed headroom
1566 * This function is identical to skb_cow except that we replace the
1567 * skb_cloned check by skb_header_cloned. It should be used when
1568 * you only need to push on some header and do not need to modify
1569 * the data.
1571 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1573 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1577 * skb_padto - pad an skbuff up to a minimal size
1578 * @skb: buffer to pad
1579 * @len: minimal length
1581 * Pads up a buffer to ensure the trailing bytes exist and are
1582 * blanked. If the buffer already contains sufficient data it
1583 * is untouched. Otherwise it is extended. Returns zero on
1584 * success. The skb is freed on error.
1587 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1589 unsigned int size = skb->len;
1590 if (likely(size >= len))
1591 return 0;
1592 return skb_pad(skb, len - size);
1595 static inline int skb_add_data(struct sk_buff *skb,
1596 char __user *from, int copy)
1598 const int off = skb->len;
1600 if (skb->ip_summed == CHECKSUM_NONE) {
1601 int err = 0;
1602 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1603 copy, 0, &err);
1604 if (!err) {
1605 skb->csum = csum_block_add(skb->csum, csum, off);
1606 return 0;
1608 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1609 return 0;
1611 __skb_trim(skb, off);
1612 return -EFAULT;
1615 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1616 struct page *page, int off)
1618 if (i) {
1619 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1621 return page == frag->page &&
1622 off == frag->page_offset + frag->size;
1624 return 0;
1627 static inline int __skb_linearize(struct sk_buff *skb)
1629 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1633 * skb_linearize - convert paged skb to linear one
1634 * @skb: buffer to linarize
1636 * If there is no free memory -ENOMEM is returned, otherwise zero
1637 * is returned and the old skb data released.
1639 static inline int skb_linearize(struct sk_buff *skb)
1641 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1645 * skb_linearize_cow - make sure skb is linear and writable
1646 * @skb: buffer to process
1648 * If there is no free memory -ENOMEM is returned, otherwise zero
1649 * is returned and the old skb data released.
1651 static inline int skb_linearize_cow(struct sk_buff *skb)
1653 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1654 __skb_linearize(skb) : 0;
1658 * skb_postpull_rcsum - update checksum for received skb after pull
1659 * @skb: buffer to update
1660 * @start: start of data before pull
1661 * @len: length of data pulled
1663 * After doing a pull on a received packet, you need to call this to
1664 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1665 * CHECKSUM_NONE so that it can be recomputed from scratch.
1668 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1669 const void *start, unsigned int len)
1671 if (skb->ip_summed == CHECKSUM_COMPLETE)
1672 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1675 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1678 * pskb_trim_rcsum - trim received skb and update checksum
1679 * @skb: buffer to trim
1680 * @len: new length
1682 * This is exactly the same as pskb_trim except that it ensures the
1683 * checksum of received packets are still valid after the operation.
1686 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1688 if (likely(len >= skb->len))
1689 return 0;
1690 if (skb->ip_summed == CHECKSUM_COMPLETE)
1691 skb->ip_summed = CHECKSUM_NONE;
1692 return __pskb_trim(skb, len);
1695 #define skb_queue_walk(queue, skb) \
1696 for (skb = (queue)->next; \
1697 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1698 skb = skb->next)
1700 #define skb_queue_walk_safe(queue, skb, tmp) \
1701 for (skb = (queue)->next, tmp = skb->next; \
1702 skb != (struct sk_buff *)(queue); \
1703 skb = tmp, tmp = skb->next)
1705 #define skb_queue_walk_from(queue, skb) \
1706 for (; prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1707 skb = skb->next)
1709 #define skb_queue_walk_from_safe(queue, skb, tmp) \
1710 for (tmp = skb->next; \
1711 skb != (struct sk_buff *)(queue); \
1712 skb = tmp, tmp = skb->next)
1714 #define skb_queue_reverse_walk(queue, skb) \
1715 for (skb = (queue)->prev; \
1716 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1717 skb = skb->prev)
1720 static inline bool skb_has_frags(const struct sk_buff *skb)
1722 return skb_shinfo(skb)->frag_list != NULL;
1725 static inline void skb_frag_list_init(struct sk_buff *skb)
1727 skb_shinfo(skb)->frag_list = NULL;
1730 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1732 frag->next = skb_shinfo(skb)->frag_list;
1733 skb_shinfo(skb)->frag_list = frag;
1736 #define skb_walk_frags(skb, iter) \
1737 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1739 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1740 int *peeked, int *err);
1741 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1742 int noblock, int *err);
1743 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1744 struct poll_table_struct *wait);
1745 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1746 int offset, struct iovec *to,
1747 int size);
1748 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1749 int hlen,
1750 struct iovec *iov);
1751 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1752 int offset,
1753 const struct iovec *from,
1754 int from_offset,
1755 int len);
1756 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
1757 int offset,
1758 const struct iovec *to,
1759 int to_offset,
1760 int size);
1761 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1762 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1763 unsigned int flags);
1764 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1765 int len, __wsum csum);
1766 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1767 void *to, int len);
1768 extern int skb_store_bits(struct sk_buff *skb, int offset,
1769 const void *from, int len);
1770 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1771 int offset, u8 *to, int len,
1772 __wsum csum);
1773 extern int skb_splice_bits(struct sk_buff *skb,
1774 unsigned int offset,
1775 struct pipe_inode_info *pipe,
1776 unsigned int len,
1777 unsigned int flags);
1778 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1779 extern void skb_split(struct sk_buff *skb,
1780 struct sk_buff *skb1, const u32 len);
1781 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1782 int shiftlen);
1784 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1786 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1787 int len, void *buffer)
1789 int hlen = skb_headlen(skb);
1791 if (hlen - offset >= len)
1792 return skb->data + offset;
1794 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1795 return NULL;
1797 return buffer;
1800 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1801 void *to,
1802 const unsigned int len)
1804 memcpy(to, skb->data, len);
1807 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1808 const int offset, void *to,
1809 const unsigned int len)
1811 memcpy(to, skb->data + offset, len);
1814 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1815 const void *from,
1816 const unsigned int len)
1818 memcpy(skb->data, from, len);
1821 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1822 const int offset,
1823 const void *from,
1824 const unsigned int len)
1826 memcpy(skb->data + offset, from, len);
1829 extern void skb_init(void);
1831 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1833 return skb->tstamp;
1837 * skb_get_timestamp - get timestamp from a skb
1838 * @skb: skb to get stamp from
1839 * @stamp: pointer to struct timeval to store stamp in
1841 * Timestamps are stored in the skb as offsets to a base timestamp.
1842 * This function converts the offset back to a struct timeval and stores
1843 * it in stamp.
1845 static inline void skb_get_timestamp(const struct sk_buff *skb,
1846 struct timeval *stamp)
1848 *stamp = ktime_to_timeval(skb->tstamp);
1851 static inline void skb_get_timestampns(const struct sk_buff *skb,
1852 struct timespec *stamp)
1854 *stamp = ktime_to_timespec(skb->tstamp);
1857 static inline void __net_timestamp(struct sk_buff *skb)
1859 skb->tstamp = ktime_get_real();
1862 static inline ktime_t net_timedelta(ktime_t t)
1864 return ktime_sub(ktime_get_real(), t);
1867 static inline ktime_t net_invalid_timestamp(void)
1869 return ktime_set(0, 0);
1873 * skb_tstamp_tx - queue clone of skb with send time stamps
1874 * @orig_skb: the original outgoing packet
1875 * @hwtstamps: hardware time stamps, may be NULL if not available
1877 * If the skb has a socket associated, then this function clones the
1878 * skb (thus sharing the actual data and optional structures), stores
1879 * the optional hardware time stamping information (if non NULL) or
1880 * generates a software time stamp (otherwise), then queues the clone
1881 * to the error queue of the socket. Errors are silently ignored.
1883 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
1884 struct skb_shared_hwtstamps *hwtstamps);
1886 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1887 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1889 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1891 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1895 * skb_checksum_complete - Calculate checksum of an entire packet
1896 * @skb: packet to process
1898 * This function calculates the checksum over the entire packet plus
1899 * the value of skb->csum. The latter can be used to supply the
1900 * checksum of a pseudo header as used by TCP/UDP. It returns the
1901 * checksum.
1903 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1904 * this function can be used to verify that checksum on received
1905 * packets. In that case the function should return zero if the
1906 * checksum is correct. In particular, this function will return zero
1907 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1908 * hardware has already verified the correctness of the checksum.
1910 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1912 return skb_csum_unnecessary(skb) ?
1913 0 : __skb_checksum_complete(skb);
1916 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1917 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1918 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1920 if (nfct && atomic_dec_and_test(&nfct->use))
1921 nf_conntrack_destroy(nfct);
1923 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1925 if (nfct)
1926 atomic_inc(&nfct->use);
1928 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1930 if (skb)
1931 atomic_inc(&skb->users);
1933 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1935 if (skb)
1936 kfree_skb(skb);
1938 #endif
1939 #ifdef CONFIG_BRIDGE_NETFILTER
1940 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1942 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1943 kfree(nf_bridge);
1945 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1947 if (nf_bridge)
1948 atomic_inc(&nf_bridge->use);
1950 #endif /* CONFIG_BRIDGE_NETFILTER */
1951 static inline void nf_reset(struct sk_buff *skb)
1953 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1954 nf_conntrack_put(skb->nfct);
1955 skb->nfct = NULL;
1956 nf_conntrack_put_reasm(skb->nfct_reasm);
1957 skb->nfct_reasm = NULL;
1958 #endif
1959 #ifdef CONFIG_BRIDGE_NETFILTER
1960 nf_bridge_put(skb->nf_bridge);
1961 skb->nf_bridge = NULL;
1962 #endif
1965 /* Note: This doesn't put any conntrack and bridge info in dst. */
1966 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1968 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1969 dst->nfct = src->nfct;
1970 nf_conntrack_get(src->nfct);
1971 dst->nfctinfo = src->nfctinfo;
1972 dst->nfct_reasm = src->nfct_reasm;
1973 nf_conntrack_get_reasm(src->nfct_reasm);
1974 #endif
1975 #ifdef CONFIG_BRIDGE_NETFILTER
1976 dst->nf_bridge = src->nf_bridge;
1977 nf_bridge_get(src->nf_bridge);
1978 #endif
1981 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1983 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1984 nf_conntrack_put(dst->nfct);
1985 nf_conntrack_put_reasm(dst->nfct_reasm);
1986 #endif
1987 #ifdef CONFIG_BRIDGE_NETFILTER
1988 nf_bridge_put(dst->nf_bridge);
1989 #endif
1990 __nf_copy(dst, src);
1993 #ifdef CONFIG_NETWORK_SECMARK
1994 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1996 to->secmark = from->secmark;
1999 static inline void skb_init_secmark(struct sk_buff *skb)
2001 skb->secmark = 0;
2003 #else
2004 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2007 static inline void skb_init_secmark(struct sk_buff *skb)
2009 #endif
2011 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2013 skb->queue_mapping = queue_mapping;
2016 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2018 return skb->queue_mapping;
2021 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2023 to->queue_mapping = from->queue_mapping;
2026 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2028 skb->queue_mapping = rx_queue + 1;
2031 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2033 return skb->queue_mapping - 1;
2036 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2038 return (skb->queue_mapping != 0);
2041 extern u16 skb_tx_hash(const struct net_device *dev,
2042 const struct sk_buff *skb);
2044 #ifdef CONFIG_XFRM
2045 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2047 return skb->sp;
2049 #else
2050 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2052 return NULL;
2054 #endif
2056 static inline int skb_is_gso(const struct sk_buff *skb)
2058 return skb_shinfo(skb)->gso_size;
2061 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2063 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2066 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2068 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2070 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2071 * wanted then gso_type will be set. */
2072 struct skb_shared_info *shinfo = skb_shinfo(skb);
2073 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
2074 __skb_warn_lro_forwarding(skb);
2075 return true;
2077 return false;
2080 static inline void skb_forward_csum(struct sk_buff *skb)
2082 /* Unfortunately we don't support this one. Any brave souls? */
2083 if (skb->ip_summed == CHECKSUM_COMPLETE)
2084 skb->ip_summed = CHECKSUM_NONE;
2087 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2088 #endif /* __KERNEL__ */
2089 #endif /* _LINUX_SKBUFF_H */