On Tue, Nov 06, 2007 at 02:33:53AM -0800, akpm@linux-foundation.org wrote:
[mmotm.git] / mm / page_alloc.c
blobb9304a2adee33fe086283e3edaebad78a3916f5a
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 #include "internal.h"
59 * Array of node states.
61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 [N_POSSIBLE] = NODE_MASK_ALL,
63 [N_ONLINE] = { { [0] = 1UL } },
64 #ifndef CONFIG_NUMA
65 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
66 #ifdef CONFIG_HIGHMEM
67 [N_HIGH_MEMORY] = { { [0] = 1UL } },
68 #endif
69 [N_CPU] = { { [0] = 1UL } },
70 #endif /* NUMA */
72 EXPORT_SYMBOL(node_states);
74 unsigned long totalram_pages __read_mostly;
75 unsigned long totalreserve_pages __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80 int pageblock_order __read_mostly;
81 #endif
83 static void __free_pages_ok(struct page *page, unsigned int order);
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
96 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
97 #ifdef CONFIG_ZONE_DMA
98 256,
99 #endif
100 #ifdef CONFIG_ZONE_DMA32
101 256,
102 #endif
103 #ifdef CONFIG_HIGHMEM
105 #endif
109 EXPORT_SYMBOL(totalram_pages);
111 static char * const zone_names[MAX_NR_ZONES] = {
112 #ifdef CONFIG_ZONE_DMA
113 "DMA",
114 #endif
115 #ifdef CONFIG_ZONE_DMA32
116 "DMA32",
117 #endif
118 "Normal",
119 #ifdef CONFIG_HIGHMEM
120 "HighMem",
121 #endif
122 "Movable",
125 int min_free_kbytes = 1024;
127 static unsigned long __meminitdata nr_kernel_pages;
128 static unsigned long __meminitdata nr_all_pages;
129 static unsigned long __meminitdata dma_reserve;
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 int nr_online_nodes __read_mostly = 1;
168 EXPORT_SYMBOL(nr_node_ids);
169 EXPORT_SYMBOL(nr_online_nodes);
170 #endif
172 int page_group_by_mobility_disabled __read_mostly;
174 static void set_pageblock_migratetype(struct page *page, int migratetype)
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
184 bool oom_killer_disabled __read_mostly;
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
201 return ret;
204 static int page_is_consistent(struct zone *zone, struct page *page)
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
211 return 1;
214 * Temporary debugging check for pages not lying within a given zone.
216 static int bad_range(struct zone *zone, struct page *page)
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
223 return 0;
225 #else
226 static inline int bad_range(struct zone *zone, struct page *page)
228 return 0;
230 #endif
232 static void bad_page(struct page *page)
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page)) {
240 __ClearPageBuddy(page);
241 return;
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
248 if (nr_shown == 60) {
249 if (time_before(jiffies, resume)) {
250 nr_unshown++;
251 goto out;
253 if (nr_unshown) {
254 printk(KERN_ALERT
255 "BUG: Bad page state: %lu messages suppressed\n",
256 nr_unshown);
257 nr_unshown = 0;
259 nr_shown = 0;
261 if (nr_shown++ == 0)
262 resume = jiffies + 60 * HZ;
264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 printk(KERN_ALERT
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page, (void *)page->flags, page_count(page),
269 page_mapcount(page), page->mapping, page->index);
271 dump_stack();
272 out:
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page);
275 add_taint(TAINT_BAD_PAGE);
279 * Higher-order pages are called "compound pages". They are structured thusly:
281 * The first PAGE_SIZE page is called the "head page".
283 * The remaining PAGE_SIZE pages are called "tail pages".
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
293 static void free_compound_page(struct page *page)
295 __free_pages_ok(page, compound_order(page));
298 void prep_compound_page(struct page *page, unsigned long order)
300 int i;
301 int nr_pages = 1 << order;
303 set_compound_page_dtor(page, free_compound_page);
304 set_compound_order(page, order);
305 __SetPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
309 __SetPageTail(p);
310 p->first_page = page;
314 static int destroy_compound_page(struct page *page, unsigned long order)
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
326 __ClearPageHead(page);
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
335 __ClearPageTail(p);
338 return bad;
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 int i;
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
354 static inline void set_page_order(struct page *page, int order)
356 set_page_private(page, order);
357 __SetPageBuddy(page);
360 static inline void rmv_page_order(struct page *page)
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 unsigned long buddy_idx = page_idx ^ (1 << order);
388 return page + (buddy_idx - page_idx);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
394 return (page_idx & ~(1 << order));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 VM_BUG_ON(page_count(buddy) != 0);
421 return 1;
423 return 0;
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
447 * -- wli
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order,
452 int migratetype)
454 unsigned long page_idx;
456 if (unlikely(PageCompound(page)))
457 if (unlikely(destroy_compound_page(page, order)))
458 return;
460 VM_BUG_ON(migratetype == -1);
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
464 VM_BUG_ON(page_idx & ((1 << order) - 1));
465 VM_BUG_ON(bad_range(zone, page));
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
490 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
492 * free_page_mlock() -- clean up attempts to free and mlocked() page.
493 * Page should not be on lru, so no need to fix that up.
494 * free_pages_check() will verify...
496 static inline void free_page_mlock(struct page *page)
498 WARN_ONCE(1, KERN_WARNING
499 "Page flag mlocked set for process %s at pfn:%05lx\n"
500 "page:%p flags:%#lx\n",
501 current->comm, page_to_pfn(page),
502 page, page->flags|__PG_MLOCKED);
503 __dec_zone_page_state(page, NR_MLOCK);
504 __count_vm_event(UNEVICTABLE_MLOCKFREED);
506 #else
507 static void free_page_mlock(struct page *page) { }
508 #endif
510 static inline int free_pages_check(struct page *page)
512 if (unlikely(page_mapcount(page) |
513 (page->mapping != NULL) |
514 (atomic_read(&page->_count) != 0) |
515 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
516 bad_page(page);
517 return 1;
519 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
520 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
521 return 0;
525 * Frees a number of pages from the PCP lists
526 * Assumes all pages on list are in same zone, and of same order.
527 * count is the number of pages to free.
529 * If the zone was previously in an "all pages pinned" state then look to
530 * see if this freeing clears that state.
532 * And clear the zone's pages_scanned counter, to hold off the "all pages are
533 * pinned" detection logic.
535 static void free_pcppages_bulk(struct zone *zone, int count,
536 struct per_cpu_pages *pcp)
538 int migratetype = 0;
539 int batch_free = 0;
541 spin_lock(&zone->lock);
542 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
543 zone->pages_scanned = 0;
545 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
546 while (count) {
547 struct page *page;
548 struct list_head *list;
551 * Remove pages from lists in a round-robin fashion. A
552 * batch_free count is maintained that is incremented when an
553 * empty list is encountered. This is so more pages are freed
554 * off fuller lists instead of spinning excessively around empty
555 * lists
557 do {
558 batch_free++;
559 if (++migratetype == MIGRATE_PCPTYPES)
560 migratetype = 0;
561 list = &pcp->lists[migratetype];
562 } while (list_empty(list));
564 do {
565 page = list_entry(list->prev, struct page, lru);
566 /* must delete as __free_one_page list manipulates */
567 list_del(&page->lru);
568 __free_one_page(page, zone, 0, migratetype);
569 trace_mm_page_pcpu_drain(page, 0, migratetype);
570 } while (--count && --batch_free && !list_empty(list));
572 spin_unlock(&zone->lock);
575 static void free_one_page(struct zone *zone, struct page *page, int order,
576 int migratetype)
578 spin_lock(&zone->lock);
579 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
580 zone->pages_scanned = 0;
582 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
583 __free_one_page(page, zone, order, migratetype);
584 spin_unlock(&zone->lock);
587 static void __free_pages_ok(struct page *page, unsigned int order)
589 unsigned long flags;
590 int i;
591 int bad = 0;
592 int wasMlocked = __TestClearPageMlocked(page);
594 kmemcheck_free_shadow(page, order);
596 for (i = 0 ; i < (1 << order) ; ++i)
597 bad += free_pages_check(page + i);
598 if (bad)
599 return;
601 if (!PageHighMem(page)) {
602 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
603 debug_check_no_obj_freed(page_address(page),
604 PAGE_SIZE << order);
606 arch_free_page(page, order);
607 kernel_map_pages(page, 1 << order, 0);
609 local_irq_save(flags);
610 if (unlikely(wasMlocked))
611 free_page_mlock(page);
612 __count_vm_events(PGFREE, 1 << order);
613 free_one_page(page_zone(page), page, order,
614 get_pageblock_migratetype(page));
615 local_irq_restore(flags);
619 * permit the bootmem allocator to evade page validation on high-order frees
621 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
623 if (order == 0) {
624 __ClearPageReserved(page);
625 set_page_count(page, 0);
626 set_page_refcounted(page);
627 __free_page(page);
628 } else {
629 int loop;
631 prefetchw(page);
632 for (loop = 0; loop < BITS_PER_LONG; loop++) {
633 struct page *p = &page[loop];
635 if (loop + 1 < BITS_PER_LONG)
636 prefetchw(p + 1);
637 __ClearPageReserved(p);
638 set_page_count(p, 0);
641 set_page_refcounted(page);
642 __free_pages(page, order);
648 * The order of subdivision here is critical for the IO subsystem.
649 * Please do not alter this order without good reasons and regression
650 * testing. Specifically, as large blocks of memory are subdivided,
651 * the order in which smaller blocks are delivered depends on the order
652 * they're subdivided in this function. This is the primary factor
653 * influencing the order in which pages are delivered to the IO
654 * subsystem according to empirical testing, and this is also justified
655 * by considering the behavior of a buddy system containing a single
656 * large block of memory acted on by a series of small allocations.
657 * This behavior is a critical factor in sglist merging's success.
659 * -- wli
661 static inline void expand(struct zone *zone, struct page *page,
662 int low, int high, struct free_area *area,
663 int migratetype)
665 unsigned long size = 1 << high;
667 while (high > low) {
668 area--;
669 high--;
670 size >>= 1;
671 VM_BUG_ON(bad_range(zone, &page[size]));
672 list_add(&page[size].lru, &area->free_list[migratetype]);
673 area->nr_free++;
674 set_page_order(&page[size], high);
679 * This page is about to be returned from the page allocator
681 static inline int check_new_page(struct page *page)
683 if (unlikely(page_mapcount(page) |
684 (page->mapping != NULL) |
685 (atomic_read(&page->_count) != 0) |
686 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
687 bad_page(page);
688 return 1;
690 return 0;
693 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
695 int i;
697 for (i = 0; i < (1 << order); i++) {
698 struct page *p = page + i;
699 if (unlikely(check_new_page(p)))
700 return 1;
703 set_page_private(page, 0);
704 set_page_refcounted(page);
706 arch_alloc_page(page, order);
707 kernel_map_pages(page, 1 << order, 1);
709 if (gfp_flags & __GFP_ZERO)
710 prep_zero_page(page, order, gfp_flags);
712 if (order && (gfp_flags & __GFP_COMP))
713 prep_compound_page(page, order);
715 return 0;
719 * Go through the free lists for the given migratetype and remove
720 * the smallest available page from the freelists
722 static inline
723 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
724 int migratetype)
726 unsigned int current_order;
727 struct free_area * area;
728 struct page *page;
730 /* Find a page of the appropriate size in the preferred list */
731 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
732 area = &(zone->free_area[current_order]);
733 if (list_empty(&area->free_list[migratetype]))
734 continue;
736 page = list_entry(area->free_list[migratetype].next,
737 struct page, lru);
738 list_del(&page->lru);
739 rmv_page_order(page);
740 area->nr_free--;
741 expand(zone, page, order, current_order, area, migratetype);
742 return page;
745 return NULL;
750 * This array describes the order lists are fallen back to when
751 * the free lists for the desirable migrate type are depleted
753 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
754 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
755 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
756 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
757 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
761 * Move the free pages in a range to the free lists of the requested type.
762 * Note that start_page and end_pages are not aligned on a pageblock
763 * boundary. If alignment is required, use move_freepages_block()
765 static int move_freepages(struct zone *zone,
766 struct page *start_page, struct page *end_page,
767 int migratetype)
769 struct page *page;
770 unsigned long order;
771 int pages_moved = 0;
773 #ifndef CONFIG_HOLES_IN_ZONE
775 * page_zone is not safe to call in this context when
776 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
777 * anyway as we check zone boundaries in move_freepages_block().
778 * Remove at a later date when no bug reports exist related to
779 * grouping pages by mobility
781 BUG_ON(page_zone(start_page) != page_zone(end_page));
782 #endif
784 for (page = start_page; page <= end_page;) {
785 /* Make sure we are not inadvertently changing nodes */
786 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
788 if (!pfn_valid_within(page_to_pfn(page))) {
789 page++;
790 continue;
793 if (!PageBuddy(page)) {
794 page++;
795 continue;
798 order = page_order(page);
799 list_del(&page->lru);
800 list_add(&page->lru,
801 &zone->free_area[order].free_list[migratetype]);
802 page += 1 << order;
803 pages_moved += 1 << order;
806 return pages_moved;
809 static int move_freepages_block(struct zone *zone, struct page *page,
810 int migratetype)
812 unsigned long start_pfn, end_pfn;
813 struct page *start_page, *end_page;
815 start_pfn = page_to_pfn(page);
816 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
817 start_page = pfn_to_page(start_pfn);
818 end_page = start_page + pageblock_nr_pages - 1;
819 end_pfn = start_pfn + pageblock_nr_pages - 1;
821 /* Do not cross zone boundaries */
822 if (start_pfn < zone->zone_start_pfn)
823 start_page = page;
824 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
825 return 0;
827 return move_freepages(zone, start_page, end_page, migratetype);
830 static void change_pageblock_range(struct page *pageblock_page,
831 int start_order, int migratetype)
833 int nr_pageblocks = 1 << (start_order - pageblock_order);
835 while (nr_pageblocks--) {
836 set_pageblock_migratetype(pageblock_page, migratetype);
837 pageblock_page += pageblock_nr_pages;
841 /* Remove an element from the buddy allocator from the fallback list */
842 static inline struct page *
843 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
845 struct free_area * area;
846 int current_order;
847 struct page *page;
848 int migratetype, i;
850 /* Find the largest possible block of pages in the other list */
851 for (current_order = MAX_ORDER-1; current_order >= order;
852 --current_order) {
853 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
854 migratetype = fallbacks[start_migratetype][i];
856 /* MIGRATE_RESERVE handled later if necessary */
857 if (migratetype == MIGRATE_RESERVE)
858 continue;
860 area = &(zone->free_area[current_order]);
861 if (list_empty(&area->free_list[migratetype]))
862 continue;
864 page = list_entry(area->free_list[migratetype].next,
865 struct page, lru);
866 area->nr_free--;
869 * If breaking a large block of pages, move all free
870 * pages to the preferred allocation list. If falling
871 * back for a reclaimable kernel allocation, be more
872 * agressive about taking ownership of free pages
874 if (unlikely(current_order >= (pageblock_order >> 1)) ||
875 start_migratetype == MIGRATE_RECLAIMABLE ||
876 page_group_by_mobility_disabled) {
877 unsigned long pages;
878 pages = move_freepages_block(zone, page,
879 start_migratetype);
881 /* Claim the whole block if over half of it is free */
882 if (pages >= (1 << (pageblock_order-1)) ||
883 page_group_by_mobility_disabled)
884 set_pageblock_migratetype(page,
885 start_migratetype);
887 migratetype = start_migratetype;
890 /* Remove the page from the freelists */
891 list_del(&page->lru);
892 rmv_page_order(page);
894 /* Take ownership for orders >= pageblock_order */
895 if (current_order >= pageblock_order)
896 change_pageblock_range(page, current_order,
897 start_migratetype);
899 expand(zone, page, order, current_order, area, migratetype);
901 trace_mm_page_alloc_extfrag(page, order, current_order,
902 start_migratetype, migratetype);
904 return page;
908 return NULL;
912 * Do the hard work of removing an element from the buddy allocator.
913 * Call me with the zone->lock already held.
915 static struct page *__rmqueue(struct zone *zone, unsigned int order,
916 int migratetype)
918 struct page *page;
920 retry_reserve:
921 page = __rmqueue_smallest(zone, order, migratetype);
923 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
924 page = __rmqueue_fallback(zone, order, migratetype);
927 * Use MIGRATE_RESERVE rather than fail an allocation. goto
928 * is used because __rmqueue_smallest is an inline function
929 * and we want just one call site
931 if (!page) {
932 migratetype = MIGRATE_RESERVE;
933 goto retry_reserve;
937 trace_mm_page_alloc_zone_locked(page, order, migratetype);
938 return page;
942 * Obtain a specified number of elements from the buddy allocator, all under
943 * a single hold of the lock, for efficiency. Add them to the supplied list.
944 * Returns the number of new pages which were placed at *list.
946 static int rmqueue_bulk(struct zone *zone, unsigned int order,
947 unsigned long count, struct list_head *list,
948 int migratetype, int cold)
950 int i;
952 spin_lock(&zone->lock);
953 for (i = 0; i < count; ++i) {
954 struct page *page = __rmqueue(zone, order, migratetype);
955 if (unlikely(page == NULL))
956 break;
959 * Split buddy pages returned by expand() are received here
960 * in physical page order. The page is added to the callers and
961 * list and the list head then moves forward. From the callers
962 * perspective, the linked list is ordered by page number in
963 * some conditions. This is useful for IO devices that can
964 * merge IO requests if the physical pages are ordered
965 * properly.
967 if (likely(cold == 0))
968 list_add(&page->lru, list);
969 else
970 list_add_tail(&page->lru, list);
971 set_page_private(page, migratetype);
972 list = &page->lru;
974 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
975 spin_unlock(&zone->lock);
976 return i;
979 #ifdef CONFIG_NUMA
981 * Called from the vmstat counter updater to drain pagesets of this
982 * currently executing processor on remote nodes after they have
983 * expired.
985 * Note that this function must be called with the thread pinned to
986 * a single processor.
988 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
990 unsigned long flags;
991 int to_drain;
993 local_irq_save(flags);
994 if (pcp->count >= pcp->batch)
995 to_drain = pcp->batch;
996 else
997 to_drain = pcp->count;
998 free_pcppages_bulk(zone, to_drain, pcp);
999 pcp->count -= to_drain;
1000 local_irq_restore(flags);
1002 #endif
1005 * Drain pages of the indicated processor.
1007 * The processor must either be the current processor and the
1008 * thread pinned to the current processor or a processor that
1009 * is not online.
1011 static void drain_pages(unsigned int cpu)
1013 unsigned long flags;
1014 struct zone *zone;
1016 for_each_populated_zone(zone) {
1017 struct per_cpu_pageset *pset;
1018 struct per_cpu_pages *pcp;
1020 pset = zone_pcp(zone, cpu);
1022 pcp = &pset->pcp;
1023 local_irq_save(flags);
1024 free_pcppages_bulk(zone, pcp->count, pcp);
1025 pcp->count = 0;
1026 local_irq_restore(flags);
1031 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1033 void drain_local_pages(void *arg)
1035 drain_pages(smp_processor_id());
1039 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1041 void drain_all_pages(void)
1043 on_each_cpu(drain_local_pages, NULL, 1);
1046 #ifdef CONFIG_HIBERNATION
1048 void mark_free_pages(struct zone *zone)
1050 unsigned long pfn, max_zone_pfn;
1051 unsigned long flags;
1052 int order, t;
1053 struct list_head *curr;
1055 if (!zone->spanned_pages)
1056 return;
1058 spin_lock_irqsave(&zone->lock, flags);
1060 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1061 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1062 if (pfn_valid(pfn)) {
1063 struct page *page = pfn_to_page(pfn);
1065 if (!swsusp_page_is_forbidden(page))
1066 swsusp_unset_page_free(page);
1069 for_each_migratetype_order(order, t) {
1070 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1071 unsigned long i;
1073 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1074 for (i = 0; i < (1UL << order); i++)
1075 swsusp_set_page_free(pfn_to_page(pfn + i));
1078 spin_unlock_irqrestore(&zone->lock, flags);
1080 #endif /* CONFIG_PM */
1083 * Free a 0-order page
1085 static void free_hot_cold_page(struct page *page, int cold)
1087 struct zone *zone = page_zone(page);
1088 struct per_cpu_pages *pcp;
1089 unsigned long flags;
1090 int migratetype;
1091 int wasMlocked = __TestClearPageMlocked(page);
1093 kmemcheck_free_shadow(page, 0);
1095 if (PageAnon(page))
1096 page->mapping = NULL;
1097 if (free_pages_check(page))
1098 return;
1100 if (!PageHighMem(page)) {
1101 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1102 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1104 arch_free_page(page, 0);
1105 kernel_map_pages(page, 1, 0);
1107 pcp = &zone_pcp(zone, get_cpu())->pcp;
1108 migratetype = get_pageblock_migratetype(page);
1109 set_page_private(page, migratetype);
1110 local_irq_save(flags);
1111 if (unlikely(wasMlocked))
1112 free_page_mlock(page);
1113 __count_vm_event(PGFREE);
1116 * We only track unmovable, reclaimable and movable on pcp lists.
1117 * Free ISOLATE pages back to the allocator because they are being
1118 * offlined but treat RESERVE as movable pages so we can get those
1119 * areas back if necessary. Otherwise, we may have to free
1120 * excessively into the page allocator
1122 if (migratetype >= MIGRATE_PCPTYPES) {
1123 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1124 free_one_page(zone, page, 0, migratetype);
1125 goto out;
1127 migratetype = MIGRATE_MOVABLE;
1130 if (cold)
1131 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1132 else
1133 list_add(&page->lru, &pcp->lists[migratetype]);
1134 pcp->count++;
1135 if (pcp->count >= pcp->high) {
1136 free_pcppages_bulk(zone, pcp->batch, pcp);
1137 pcp->count -= pcp->batch;
1140 out:
1141 local_irq_restore(flags);
1142 put_cpu();
1145 void free_hot_page(struct page *page)
1147 trace_mm_page_free_direct(page, 0);
1148 free_hot_cold_page(page, 0);
1152 * split_page takes a non-compound higher-order page, and splits it into
1153 * n (1<<order) sub-pages: page[0..n]
1154 * Each sub-page must be freed individually.
1156 * Note: this is probably too low level an operation for use in drivers.
1157 * Please consult with lkml before using this in your driver.
1159 void split_page(struct page *page, unsigned int order)
1161 int i;
1163 VM_BUG_ON(PageCompound(page));
1164 VM_BUG_ON(!page_count(page));
1166 #ifdef CONFIG_KMEMCHECK
1168 * Split shadow pages too, because free(page[0]) would
1169 * otherwise free the whole shadow.
1171 if (kmemcheck_page_is_tracked(page))
1172 split_page(virt_to_page(page[0].shadow), order);
1173 #endif
1175 for (i = 1; i < (1 << order); i++)
1176 set_page_refcounted(page + i);
1180 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1181 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1182 * or two.
1184 static inline
1185 struct page *buffered_rmqueue(struct zone *preferred_zone,
1186 struct zone *zone, int order, gfp_t gfp_flags,
1187 int migratetype)
1189 unsigned long flags;
1190 struct page *page;
1191 int cold = !!(gfp_flags & __GFP_COLD);
1192 int cpu;
1194 again:
1195 cpu = get_cpu();
1196 if (likely(order == 0)) {
1197 struct per_cpu_pages *pcp;
1198 struct list_head *list;
1200 pcp = &zone_pcp(zone, cpu)->pcp;
1201 list = &pcp->lists[migratetype];
1202 local_irq_save(flags);
1203 if (list_empty(list)) {
1204 pcp->count += rmqueue_bulk(zone, 0,
1205 pcp->batch, list,
1206 migratetype, cold);
1207 if (unlikely(list_empty(list)))
1208 goto failed;
1211 if (cold)
1212 page = list_entry(list->prev, struct page, lru);
1213 else
1214 page = list_entry(list->next, struct page, lru);
1216 list_del(&page->lru);
1217 pcp->count--;
1218 } else {
1219 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1221 * __GFP_NOFAIL is not to be used in new code.
1223 * All __GFP_NOFAIL callers should be fixed so that they
1224 * properly detect and handle allocation failures.
1226 * We most definitely don't want callers attempting to
1227 * allocate greater than order-1 page units with
1228 * __GFP_NOFAIL.
1230 WARN_ON_ONCE(order > 1);
1232 spin_lock_irqsave(&zone->lock, flags);
1233 page = __rmqueue(zone, order, migratetype);
1234 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1235 spin_unlock(&zone->lock);
1236 if (!page)
1237 goto failed;
1240 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1241 zone_statistics(preferred_zone, zone);
1242 local_irq_restore(flags);
1243 put_cpu();
1245 VM_BUG_ON(bad_range(zone, page));
1246 if (prep_new_page(page, order, gfp_flags))
1247 goto again;
1248 return page;
1250 failed:
1251 local_irq_restore(flags);
1252 put_cpu();
1253 return NULL;
1256 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1257 #define ALLOC_WMARK_MIN WMARK_MIN
1258 #define ALLOC_WMARK_LOW WMARK_LOW
1259 #define ALLOC_WMARK_HIGH WMARK_HIGH
1260 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1262 /* Mask to get the watermark bits */
1263 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1265 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1266 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1267 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1269 #ifdef CONFIG_FAIL_PAGE_ALLOC
1271 static struct fail_page_alloc_attr {
1272 struct fault_attr attr;
1274 u32 ignore_gfp_highmem;
1275 u32 ignore_gfp_wait;
1276 u32 min_order;
1278 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1280 struct dentry *ignore_gfp_highmem_file;
1281 struct dentry *ignore_gfp_wait_file;
1282 struct dentry *min_order_file;
1284 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1286 } fail_page_alloc = {
1287 .attr = FAULT_ATTR_INITIALIZER,
1288 .ignore_gfp_wait = 1,
1289 .ignore_gfp_highmem = 1,
1290 .min_order = 1,
1293 static int __init setup_fail_page_alloc(char *str)
1295 return setup_fault_attr(&fail_page_alloc.attr, str);
1297 __setup("fail_page_alloc=", setup_fail_page_alloc);
1299 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1301 if (order < fail_page_alloc.min_order)
1302 return 0;
1303 if (gfp_mask & __GFP_NOFAIL)
1304 return 0;
1305 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1306 return 0;
1307 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1308 return 0;
1310 return should_fail(&fail_page_alloc.attr, 1 << order);
1313 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1315 static int __init fail_page_alloc_debugfs(void)
1317 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1318 struct dentry *dir;
1319 int err;
1321 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1322 "fail_page_alloc");
1323 if (err)
1324 return err;
1325 dir = fail_page_alloc.attr.dentries.dir;
1327 fail_page_alloc.ignore_gfp_wait_file =
1328 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1329 &fail_page_alloc.ignore_gfp_wait);
1331 fail_page_alloc.ignore_gfp_highmem_file =
1332 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1333 &fail_page_alloc.ignore_gfp_highmem);
1334 fail_page_alloc.min_order_file =
1335 debugfs_create_u32("min-order", mode, dir,
1336 &fail_page_alloc.min_order);
1338 if (!fail_page_alloc.ignore_gfp_wait_file ||
1339 !fail_page_alloc.ignore_gfp_highmem_file ||
1340 !fail_page_alloc.min_order_file) {
1341 err = -ENOMEM;
1342 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1343 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1344 debugfs_remove(fail_page_alloc.min_order_file);
1345 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1348 return err;
1351 late_initcall(fail_page_alloc_debugfs);
1353 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1355 #else /* CONFIG_FAIL_PAGE_ALLOC */
1357 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1359 return 0;
1362 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1365 * Return 1 if free pages are above 'mark'. This takes into account the order
1366 * of the allocation.
1368 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1369 int classzone_idx, int alloc_flags)
1371 /* free_pages my go negative - that's OK */
1372 long min = mark;
1373 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1374 int o;
1376 if (alloc_flags & ALLOC_HIGH)
1377 min -= min / 2;
1378 if (alloc_flags & ALLOC_HARDER)
1379 min -= min / 4;
1381 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1382 return 0;
1383 for (o = 0; o < order; o++) {
1384 /* At the next order, this order's pages become unavailable */
1385 free_pages -= z->free_area[o].nr_free << o;
1387 /* Require fewer higher order pages to be free */
1388 min >>= 1;
1390 if (free_pages <= min)
1391 return 0;
1393 return 1;
1396 #ifdef CONFIG_NUMA
1398 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1399 * skip over zones that are not allowed by the cpuset, or that have
1400 * been recently (in last second) found to be nearly full. See further
1401 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1402 * that have to skip over a lot of full or unallowed zones.
1404 * If the zonelist cache is present in the passed in zonelist, then
1405 * returns a pointer to the allowed node mask (either the current
1406 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1408 * If the zonelist cache is not available for this zonelist, does
1409 * nothing and returns NULL.
1411 * If the fullzones BITMAP in the zonelist cache is stale (more than
1412 * a second since last zap'd) then we zap it out (clear its bits.)
1414 * We hold off even calling zlc_setup, until after we've checked the
1415 * first zone in the zonelist, on the theory that most allocations will
1416 * be satisfied from that first zone, so best to examine that zone as
1417 * quickly as we can.
1419 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1421 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1422 nodemask_t *allowednodes; /* zonelist_cache approximation */
1424 zlc = zonelist->zlcache_ptr;
1425 if (!zlc)
1426 return NULL;
1428 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1429 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1430 zlc->last_full_zap = jiffies;
1433 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1434 &cpuset_current_mems_allowed :
1435 &node_states[N_HIGH_MEMORY];
1436 return allowednodes;
1440 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1441 * if it is worth looking at further for free memory:
1442 * 1) Check that the zone isn't thought to be full (doesn't have its
1443 * bit set in the zonelist_cache fullzones BITMAP).
1444 * 2) Check that the zones node (obtained from the zonelist_cache
1445 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1446 * Return true (non-zero) if zone is worth looking at further, or
1447 * else return false (zero) if it is not.
1449 * This check -ignores- the distinction between various watermarks,
1450 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1451 * found to be full for any variation of these watermarks, it will
1452 * be considered full for up to one second by all requests, unless
1453 * we are so low on memory on all allowed nodes that we are forced
1454 * into the second scan of the zonelist.
1456 * In the second scan we ignore this zonelist cache and exactly
1457 * apply the watermarks to all zones, even it is slower to do so.
1458 * We are low on memory in the second scan, and should leave no stone
1459 * unturned looking for a free page.
1461 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1462 nodemask_t *allowednodes)
1464 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1465 int i; /* index of *z in zonelist zones */
1466 int n; /* node that zone *z is on */
1468 zlc = zonelist->zlcache_ptr;
1469 if (!zlc)
1470 return 1;
1472 i = z - zonelist->_zonerefs;
1473 n = zlc->z_to_n[i];
1475 /* This zone is worth trying if it is allowed but not full */
1476 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1480 * Given 'z' scanning a zonelist, set the corresponding bit in
1481 * zlc->fullzones, so that subsequent attempts to allocate a page
1482 * from that zone don't waste time re-examining it.
1484 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1486 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1487 int i; /* index of *z in zonelist zones */
1489 zlc = zonelist->zlcache_ptr;
1490 if (!zlc)
1491 return;
1493 i = z - zonelist->_zonerefs;
1495 set_bit(i, zlc->fullzones);
1498 #else /* CONFIG_NUMA */
1500 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1502 return NULL;
1505 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1506 nodemask_t *allowednodes)
1508 return 1;
1511 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1514 #endif /* CONFIG_NUMA */
1517 * get_page_from_freelist goes through the zonelist trying to allocate
1518 * a page.
1520 static struct page *
1521 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1522 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1523 struct zone *preferred_zone, int migratetype)
1525 struct zoneref *z;
1526 struct page *page = NULL;
1527 int classzone_idx;
1528 struct zone *zone;
1529 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1530 int zlc_active = 0; /* set if using zonelist_cache */
1531 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1533 classzone_idx = zone_idx(preferred_zone);
1534 zonelist_scan:
1536 * Scan zonelist, looking for a zone with enough free.
1537 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1539 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1540 high_zoneidx, nodemask) {
1541 if (NUMA_BUILD && zlc_active &&
1542 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1543 continue;
1544 if ((alloc_flags & ALLOC_CPUSET) &&
1545 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1546 goto try_next_zone;
1548 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1549 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1550 unsigned long mark;
1551 int ret;
1553 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1554 if (zone_watermark_ok(zone, order, mark,
1555 classzone_idx, alloc_flags))
1556 goto try_this_zone;
1558 if (zone_reclaim_mode == 0)
1559 goto this_zone_full;
1561 ret = zone_reclaim(zone, gfp_mask, order);
1562 switch (ret) {
1563 case ZONE_RECLAIM_NOSCAN:
1564 /* did not scan */
1565 goto try_next_zone;
1566 case ZONE_RECLAIM_FULL:
1567 /* scanned but unreclaimable */
1568 goto this_zone_full;
1569 default:
1570 /* did we reclaim enough */
1571 if (!zone_watermark_ok(zone, order, mark,
1572 classzone_idx, alloc_flags))
1573 goto this_zone_full;
1577 try_this_zone:
1578 page = buffered_rmqueue(preferred_zone, zone, order,
1579 gfp_mask, migratetype);
1580 if (page)
1581 break;
1582 this_zone_full:
1583 if (NUMA_BUILD)
1584 zlc_mark_zone_full(zonelist, z);
1585 try_next_zone:
1586 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1588 * we do zlc_setup after the first zone is tried but only
1589 * if there are multiple nodes make it worthwhile
1591 allowednodes = zlc_setup(zonelist, alloc_flags);
1592 zlc_active = 1;
1593 did_zlc_setup = 1;
1597 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1598 /* Disable zlc cache for second zonelist scan */
1599 zlc_active = 0;
1600 goto zonelist_scan;
1602 return page;
1605 static inline int
1606 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1607 unsigned long pages_reclaimed)
1609 /* Do not loop if specifically requested */
1610 if (gfp_mask & __GFP_NORETRY)
1611 return 0;
1614 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1615 * means __GFP_NOFAIL, but that may not be true in other
1616 * implementations.
1618 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1619 return 1;
1622 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1623 * specified, then we retry until we no longer reclaim any pages
1624 * (above), or we've reclaimed an order of pages at least as
1625 * large as the allocation's order. In both cases, if the
1626 * allocation still fails, we stop retrying.
1628 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1629 return 1;
1632 * Don't let big-order allocations loop unless the caller
1633 * explicitly requests that.
1635 if (gfp_mask & __GFP_NOFAIL)
1636 return 1;
1638 return 0;
1641 static inline struct page *
1642 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1643 struct zonelist *zonelist, enum zone_type high_zoneidx,
1644 nodemask_t *nodemask, struct zone *preferred_zone,
1645 int migratetype)
1647 struct page *page;
1649 /* Acquire the OOM killer lock for the zones in zonelist */
1650 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1651 schedule_timeout_uninterruptible(1);
1652 return NULL;
1656 * Go through the zonelist yet one more time, keep very high watermark
1657 * here, this is only to catch a parallel oom killing, we must fail if
1658 * we're still under heavy pressure.
1660 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1661 order, zonelist, high_zoneidx,
1662 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1663 preferred_zone, migratetype);
1664 if (page)
1665 goto out;
1667 /* The OOM killer will not help higher order allocs */
1668 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1669 goto out;
1671 /* Exhausted what can be done so it's blamo time */
1672 out_of_memory(zonelist, gfp_mask, order);
1674 out:
1675 clear_zonelist_oom(zonelist, gfp_mask);
1676 return page;
1679 /* The really slow allocator path where we enter direct reclaim */
1680 static inline struct page *
1681 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1682 struct zonelist *zonelist, enum zone_type high_zoneidx,
1683 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1684 int migratetype, unsigned long *did_some_progress)
1686 struct page *page = NULL;
1687 struct reclaim_state reclaim_state;
1688 struct task_struct *p = current;
1690 cond_resched();
1692 /* We now go into synchronous reclaim */
1693 cpuset_memory_pressure_bump();
1694 p->flags |= PF_MEMALLOC;
1695 lockdep_set_current_reclaim_state(gfp_mask);
1696 reclaim_state.reclaimed_slab = 0;
1697 p->reclaim_state = &reclaim_state;
1699 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1701 p->reclaim_state = NULL;
1702 lockdep_clear_current_reclaim_state();
1703 p->flags &= ~PF_MEMALLOC;
1705 cond_resched();
1707 if (order != 0)
1708 drain_all_pages();
1710 if (likely(*did_some_progress))
1711 page = get_page_from_freelist(gfp_mask, nodemask, order,
1712 zonelist, high_zoneidx,
1713 alloc_flags, preferred_zone,
1714 migratetype);
1715 return page;
1719 * This is called in the allocator slow-path if the allocation request is of
1720 * sufficient urgency to ignore watermarks and take other desperate measures
1722 static inline struct page *
1723 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1724 struct zonelist *zonelist, enum zone_type high_zoneidx,
1725 nodemask_t *nodemask, struct zone *preferred_zone,
1726 int migratetype)
1728 struct page *page;
1730 do {
1731 page = get_page_from_freelist(gfp_mask, nodemask, order,
1732 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1733 preferred_zone, migratetype);
1735 if (!page && gfp_mask & __GFP_NOFAIL)
1736 congestion_wait(BLK_RW_ASYNC, HZ/50);
1737 } while (!page && (gfp_mask & __GFP_NOFAIL));
1739 return page;
1742 static inline
1743 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1744 enum zone_type high_zoneidx)
1746 struct zoneref *z;
1747 struct zone *zone;
1749 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1750 wakeup_kswapd(zone, order);
1753 static inline int
1754 gfp_to_alloc_flags(gfp_t gfp_mask)
1756 struct task_struct *p = current;
1757 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1758 const gfp_t wait = gfp_mask & __GFP_WAIT;
1760 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1761 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1764 * The caller may dip into page reserves a bit more if the caller
1765 * cannot run direct reclaim, or if the caller has realtime scheduling
1766 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1767 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1769 alloc_flags |= (gfp_mask & __GFP_HIGH);
1771 if (!wait) {
1772 alloc_flags |= ALLOC_HARDER;
1774 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1775 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1777 alloc_flags &= ~ALLOC_CPUSET;
1778 } else if (unlikely(rt_task(p)))
1779 alloc_flags |= ALLOC_HARDER;
1781 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1782 if (!in_interrupt() &&
1783 ((p->flags & PF_MEMALLOC) ||
1784 unlikely(test_thread_flag(TIF_MEMDIE))))
1785 alloc_flags |= ALLOC_NO_WATERMARKS;
1788 return alloc_flags;
1791 static inline struct page *
1792 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1793 struct zonelist *zonelist, enum zone_type high_zoneidx,
1794 nodemask_t *nodemask, struct zone *preferred_zone,
1795 int migratetype)
1797 const gfp_t wait = gfp_mask & __GFP_WAIT;
1798 struct page *page = NULL;
1799 int alloc_flags;
1800 unsigned long pages_reclaimed = 0;
1801 unsigned long did_some_progress;
1802 struct task_struct *p = current;
1805 * In the slowpath, we sanity check order to avoid ever trying to
1806 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1807 * be using allocators in order of preference for an area that is
1808 * too large.
1810 if (order >= MAX_ORDER) {
1811 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1812 return NULL;
1816 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1817 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1818 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1819 * using a larger set of nodes after it has established that the
1820 * allowed per node queues are empty and that nodes are
1821 * over allocated.
1823 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1824 goto nopage;
1826 wake_all_kswapd(order, zonelist, high_zoneidx);
1828 restart:
1830 * OK, we're below the kswapd watermark and have kicked background
1831 * reclaim. Now things get more complex, so set up alloc_flags according
1832 * to how we want to proceed.
1834 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1836 /* This is the last chance, in general, before the goto nopage. */
1837 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1838 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1839 preferred_zone, migratetype);
1840 if (page)
1841 goto got_pg;
1843 rebalance:
1844 /* Allocate without watermarks if the context allows */
1845 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1846 page = __alloc_pages_high_priority(gfp_mask, order,
1847 zonelist, high_zoneidx, nodemask,
1848 preferred_zone, migratetype);
1849 if (page)
1850 goto got_pg;
1853 /* Atomic allocations - we can't balance anything */
1854 if (!wait)
1855 goto nopage;
1857 /* Avoid recursion of direct reclaim */
1858 if (p->flags & PF_MEMALLOC)
1859 goto nopage;
1861 /* Avoid allocations with no watermarks from looping endlessly */
1862 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1863 goto nopage;
1865 /* Try direct reclaim and then allocating */
1866 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1867 zonelist, high_zoneidx,
1868 nodemask,
1869 alloc_flags, preferred_zone,
1870 migratetype, &did_some_progress);
1871 if (page)
1872 goto got_pg;
1875 * If we failed to make any progress reclaiming, then we are
1876 * running out of options and have to consider going OOM
1878 if (!did_some_progress) {
1879 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1880 if (oom_killer_disabled)
1881 goto nopage;
1882 page = __alloc_pages_may_oom(gfp_mask, order,
1883 zonelist, high_zoneidx,
1884 nodemask, preferred_zone,
1885 migratetype);
1886 if (page)
1887 goto got_pg;
1890 * The OOM killer does not trigger for high-order
1891 * ~__GFP_NOFAIL allocations so if no progress is being
1892 * made, there are no other options and retrying is
1893 * unlikely to help.
1895 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1896 !(gfp_mask & __GFP_NOFAIL))
1897 goto nopage;
1899 goto restart;
1903 /* Check if we should retry the allocation */
1904 pages_reclaimed += did_some_progress;
1905 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1906 /* Wait for some write requests to complete then retry */
1907 congestion_wait(BLK_RW_ASYNC, HZ/50);
1908 goto rebalance;
1911 nopage:
1912 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1913 printk(KERN_WARNING "%s: page allocation failure."
1914 " order:%d, mode:0x%x\n",
1915 p->comm, order, gfp_mask);
1916 dump_stack();
1917 show_mem();
1919 return page;
1920 got_pg:
1921 if (kmemcheck_enabled)
1922 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1923 return page;
1928 * This is the 'heart' of the zoned buddy allocator.
1930 struct page *
1931 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1932 struct zonelist *zonelist, nodemask_t *nodemask)
1934 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1935 struct zone *preferred_zone;
1936 struct page *page;
1937 int migratetype = allocflags_to_migratetype(gfp_mask);
1939 gfp_mask &= gfp_allowed_mask;
1941 lockdep_trace_alloc(gfp_mask);
1943 might_sleep_if(gfp_mask & __GFP_WAIT);
1945 if (should_fail_alloc_page(gfp_mask, order))
1946 return NULL;
1949 * Check the zones suitable for the gfp_mask contain at least one
1950 * valid zone. It's possible to have an empty zonelist as a result
1951 * of GFP_THISNODE and a memoryless node
1953 if (unlikely(!zonelist->_zonerefs->zone))
1954 return NULL;
1956 /* The preferred zone is used for statistics later */
1957 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1958 if (!preferred_zone)
1959 return NULL;
1961 /* First allocation attempt */
1962 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1963 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1964 preferred_zone, migratetype);
1965 if (unlikely(!page))
1966 page = __alloc_pages_slowpath(gfp_mask, order,
1967 zonelist, high_zoneidx, nodemask,
1968 preferred_zone, migratetype);
1970 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1971 return page;
1973 EXPORT_SYMBOL(__alloc_pages_nodemask);
1976 * Common helper functions.
1978 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1980 struct page *page;
1983 * __get_free_pages() returns a 32-bit address, which cannot represent
1984 * a highmem page
1986 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1988 page = alloc_pages(gfp_mask, order);
1989 if (!page)
1990 return 0;
1991 return (unsigned long) page_address(page);
1993 EXPORT_SYMBOL(__get_free_pages);
1995 unsigned long get_zeroed_page(gfp_t gfp_mask)
1997 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1999 EXPORT_SYMBOL(get_zeroed_page);
2001 void __pagevec_free(struct pagevec *pvec)
2003 int i = pagevec_count(pvec);
2005 while (--i >= 0) {
2006 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2007 free_hot_cold_page(pvec->pages[i], pvec->cold);
2011 void __free_pages(struct page *page, unsigned int order)
2013 if (put_page_testzero(page)) {
2014 trace_mm_page_free_direct(page, order);
2015 if (order == 0)
2016 free_hot_page(page);
2017 else
2018 __free_pages_ok(page, order);
2022 EXPORT_SYMBOL(__free_pages);
2024 void free_pages(unsigned long addr, unsigned int order)
2026 if (addr != 0) {
2027 VM_BUG_ON(!virt_addr_valid((void *)addr));
2028 __free_pages(virt_to_page((void *)addr), order);
2032 EXPORT_SYMBOL(free_pages);
2035 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2036 * @size: the number of bytes to allocate
2037 * @gfp_mask: GFP flags for the allocation
2039 * This function is similar to alloc_pages(), except that it allocates the
2040 * minimum number of pages to satisfy the request. alloc_pages() can only
2041 * allocate memory in power-of-two pages.
2043 * This function is also limited by MAX_ORDER.
2045 * Memory allocated by this function must be released by free_pages_exact().
2047 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2049 unsigned int order = get_order(size);
2050 unsigned long addr;
2052 addr = __get_free_pages(gfp_mask, order);
2053 if (addr) {
2054 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2055 unsigned long used = addr + PAGE_ALIGN(size);
2057 split_page(virt_to_page((void *)addr), order);
2058 while (used < alloc_end) {
2059 free_page(used);
2060 used += PAGE_SIZE;
2064 return (void *)addr;
2066 EXPORT_SYMBOL(alloc_pages_exact);
2069 * free_pages_exact - release memory allocated via alloc_pages_exact()
2070 * @virt: the value returned by alloc_pages_exact.
2071 * @size: size of allocation, same value as passed to alloc_pages_exact().
2073 * Release the memory allocated by a previous call to alloc_pages_exact.
2075 void free_pages_exact(void *virt, size_t size)
2077 unsigned long addr = (unsigned long)virt;
2078 unsigned long end = addr + PAGE_ALIGN(size);
2080 while (addr < end) {
2081 free_page(addr);
2082 addr += PAGE_SIZE;
2085 EXPORT_SYMBOL(free_pages_exact);
2087 static unsigned int nr_free_zone_pages(int offset)
2089 struct zoneref *z;
2090 struct zone *zone;
2092 /* Just pick one node, since fallback list is circular */
2093 unsigned int sum = 0;
2095 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2097 for_each_zone_zonelist(zone, z, zonelist, offset) {
2098 unsigned long size = zone->present_pages;
2099 unsigned long high = high_wmark_pages(zone);
2100 if (size > high)
2101 sum += size - high;
2104 return sum;
2108 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2110 unsigned int nr_free_buffer_pages(void)
2112 return nr_free_zone_pages(gfp_zone(GFP_USER));
2114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2117 * Amount of free RAM allocatable within all zones
2119 unsigned int nr_free_pagecache_pages(void)
2121 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2124 static inline void show_node(struct zone *zone)
2126 if (NUMA_BUILD)
2127 printk("Node %d ", zone_to_nid(zone));
2130 void si_meminfo(struct sysinfo *val)
2132 val->totalram = totalram_pages;
2133 val->sharedram = 0;
2134 val->freeram = global_page_state(NR_FREE_PAGES);
2135 val->bufferram = nr_blockdev_pages();
2136 val->totalhigh = totalhigh_pages;
2137 val->freehigh = nr_free_highpages();
2138 val->mem_unit = PAGE_SIZE;
2141 EXPORT_SYMBOL(si_meminfo);
2143 #ifdef CONFIG_NUMA
2144 void si_meminfo_node(struct sysinfo *val, int nid)
2146 pg_data_t *pgdat = NODE_DATA(nid);
2148 val->totalram = pgdat->node_present_pages;
2149 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2150 #ifdef CONFIG_HIGHMEM
2151 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2152 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2153 NR_FREE_PAGES);
2154 #else
2155 val->totalhigh = 0;
2156 val->freehigh = 0;
2157 #endif
2158 val->mem_unit = PAGE_SIZE;
2160 #endif
2162 #define K(x) ((x) << (PAGE_SHIFT-10))
2165 * Show free area list (used inside shift_scroll-lock stuff)
2166 * We also calculate the percentage fragmentation. We do this by counting the
2167 * memory on each free list with the exception of the first item on the list.
2169 void show_free_areas(void)
2171 int cpu;
2172 struct zone *zone;
2174 for_each_populated_zone(zone) {
2175 show_node(zone);
2176 printk("%s per-cpu:\n", zone->name);
2178 for_each_online_cpu(cpu) {
2179 struct per_cpu_pageset *pageset;
2181 pageset = zone_pcp(zone, cpu);
2183 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2184 cpu, pageset->pcp.high,
2185 pageset->pcp.batch, pageset->pcp.count);
2189 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2190 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2191 " unevictable:%lu"
2192 " dirty:%lu writeback:%lu unstable:%lu\n"
2193 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2194 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2195 global_page_state(NR_ACTIVE_ANON),
2196 global_page_state(NR_INACTIVE_ANON),
2197 global_page_state(NR_ISOLATED_ANON),
2198 global_page_state(NR_ACTIVE_FILE),
2199 global_page_state(NR_INACTIVE_FILE),
2200 global_page_state(NR_ISOLATED_FILE),
2201 global_page_state(NR_UNEVICTABLE),
2202 global_page_state(NR_FILE_DIRTY),
2203 global_page_state(NR_WRITEBACK),
2204 global_page_state(NR_UNSTABLE_NFS),
2205 global_page_state(NR_FREE_PAGES),
2206 global_page_state(NR_SLAB_RECLAIMABLE),
2207 global_page_state(NR_SLAB_UNRECLAIMABLE),
2208 global_page_state(NR_FILE_MAPPED),
2209 global_page_state(NR_SHMEM),
2210 global_page_state(NR_PAGETABLE),
2211 global_page_state(NR_BOUNCE));
2213 for_each_populated_zone(zone) {
2214 int i;
2216 show_node(zone);
2217 printk("%s"
2218 " free:%lukB"
2219 " min:%lukB"
2220 " low:%lukB"
2221 " high:%lukB"
2222 " active_anon:%lukB"
2223 " inactive_anon:%lukB"
2224 " active_file:%lukB"
2225 " inactive_file:%lukB"
2226 " unevictable:%lukB"
2227 " isolated(anon):%lukB"
2228 " isolated(file):%lukB"
2229 " present:%lukB"
2230 " mlocked:%lukB"
2231 " dirty:%lukB"
2232 " writeback:%lukB"
2233 " mapped:%lukB"
2234 " shmem:%lukB"
2235 " slab_reclaimable:%lukB"
2236 " slab_unreclaimable:%lukB"
2237 " kernel_stack:%lukB"
2238 " pagetables:%lukB"
2239 " unstable:%lukB"
2240 " bounce:%lukB"
2241 " writeback_tmp:%lukB"
2242 " pages_scanned:%lu"
2243 " all_unreclaimable? %s"
2244 "\n",
2245 zone->name,
2246 K(zone_page_state(zone, NR_FREE_PAGES)),
2247 K(min_wmark_pages(zone)),
2248 K(low_wmark_pages(zone)),
2249 K(high_wmark_pages(zone)),
2250 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2251 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2252 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2253 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2254 K(zone_page_state(zone, NR_UNEVICTABLE)),
2255 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2256 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2257 K(zone->present_pages),
2258 K(zone_page_state(zone, NR_MLOCK)),
2259 K(zone_page_state(zone, NR_FILE_DIRTY)),
2260 K(zone_page_state(zone, NR_WRITEBACK)),
2261 K(zone_page_state(zone, NR_FILE_MAPPED)),
2262 K(zone_page_state(zone, NR_SHMEM)),
2263 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2264 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2265 zone_page_state(zone, NR_KERNEL_STACK) *
2266 THREAD_SIZE / 1024,
2267 K(zone_page_state(zone, NR_PAGETABLE)),
2268 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2269 K(zone_page_state(zone, NR_BOUNCE)),
2270 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2271 zone->pages_scanned,
2272 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2274 printk("lowmem_reserve[]:");
2275 for (i = 0; i < MAX_NR_ZONES; i++)
2276 printk(" %lu", zone->lowmem_reserve[i]);
2277 printk("\n");
2280 for_each_populated_zone(zone) {
2281 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2283 show_node(zone);
2284 printk("%s: ", zone->name);
2286 spin_lock_irqsave(&zone->lock, flags);
2287 for (order = 0; order < MAX_ORDER; order++) {
2288 nr[order] = zone->free_area[order].nr_free;
2289 total += nr[order] << order;
2291 spin_unlock_irqrestore(&zone->lock, flags);
2292 for (order = 0; order < MAX_ORDER; order++)
2293 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2294 printk("= %lukB\n", K(total));
2297 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2299 show_swap_cache_info();
2302 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2304 zoneref->zone = zone;
2305 zoneref->zone_idx = zone_idx(zone);
2309 * Builds allocation fallback zone lists.
2311 * Add all populated zones of a node to the zonelist.
2313 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2314 int nr_zones, enum zone_type zone_type)
2316 struct zone *zone;
2318 BUG_ON(zone_type >= MAX_NR_ZONES);
2319 zone_type++;
2321 do {
2322 zone_type--;
2323 zone = pgdat->node_zones + zone_type;
2324 if (populated_zone(zone)) {
2325 zoneref_set_zone(zone,
2326 &zonelist->_zonerefs[nr_zones++]);
2327 check_highest_zone(zone_type);
2330 } while (zone_type);
2331 return nr_zones;
2336 * zonelist_order:
2337 * 0 = automatic detection of better ordering.
2338 * 1 = order by ([node] distance, -zonetype)
2339 * 2 = order by (-zonetype, [node] distance)
2341 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2342 * the same zonelist. So only NUMA can configure this param.
2344 #define ZONELIST_ORDER_DEFAULT 0
2345 #define ZONELIST_ORDER_NODE 1
2346 #define ZONELIST_ORDER_ZONE 2
2348 /* zonelist order in the kernel.
2349 * set_zonelist_order() will set this to NODE or ZONE.
2351 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2352 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2355 #ifdef CONFIG_NUMA
2356 /* The value user specified ....changed by config */
2357 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2358 /* string for sysctl */
2359 #define NUMA_ZONELIST_ORDER_LEN 16
2360 char numa_zonelist_order[16] = "default";
2363 * interface for configure zonelist ordering.
2364 * command line option "numa_zonelist_order"
2365 * = "[dD]efault - default, automatic configuration.
2366 * = "[nN]ode - order by node locality, then by zone within node
2367 * = "[zZ]one - order by zone, then by locality within zone
2370 static int __parse_numa_zonelist_order(char *s)
2372 if (*s == 'd' || *s == 'D') {
2373 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2374 } else if (*s == 'n' || *s == 'N') {
2375 user_zonelist_order = ZONELIST_ORDER_NODE;
2376 } else if (*s == 'z' || *s == 'Z') {
2377 user_zonelist_order = ZONELIST_ORDER_ZONE;
2378 } else {
2379 printk(KERN_WARNING
2380 "Ignoring invalid numa_zonelist_order value: "
2381 "%s\n", s);
2382 return -EINVAL;
2384 return 0;
2387 static __init int setup_numa_zonelist_order(char *s)
2389 if (s)
2390 return __parse_numa_zonelist_order(s);
2391 return 0;
2393 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2396 * sysctl handler for numa_zonelist_order
2398 int numa_zonelist_order_handler(ctl_table *table, int write,
2399 void __user *buffer, size_t *length,
2400 loff_t *ppos)
2402 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2403 int ret;
2405 if (write)
2406 strncpy(saved_string, (char*)table->data,
2407 NUMA_ZONELIST_ORDER_LEN);
2408 ret = proc_dostring(table, write, buffer, length, ppos);
2409 if (ret)
2410 return ret;
2411 if (write) {
2412 int oldval = user_zonelist_order;
2413 if (__parse_numa_zonelist_order((char*)table->data)) {
2415 * bogus value. restore saved string
2417 strncpy((char*)table->data, saved_string,
2418 NUMA_ZONELIST_ORDER_LEN);
2419 user_zonelist_order = oldval;
2420 } else if (oldval != user_zonelist_order)
2421 build_all_zonelists();
2423 return 0;
2427 #define MAX_NODE_LOAD (nr_online_nodes)
2428 static int node_load[MAX_NUMNODES];
2431 * find_next_best_node - find the next node that should appear in a given node's fallback list
2432 * @node: node whose fallback list we're appending
2433 * @used_node_mask: nodemask_t of already used nodes
2435 * We use a number of factors to determine which is the next node that should
2436 * appear on a given node's fallback list. The node should not have appeared
2437 * already in @node's fallback list, and it should be the next closest node
2438 * according to the distance array (which contains arbitrary distance values
2439 * from each node to each node in the system), and should also prefer nodes
2440 * with no CPUs, since presumably they'll have very little allocation pressure
2441 * on them otherwise.
2442 * It returns -1 if no node is found.
2444 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2446 int n, val;
2447 int min_val = INT_MAX;
2448 int best_node = -1;
2449 const struct cpumask *tmp = cpumask_of_node(0);
2451 /* Use the local node if we haven't already */
2452 if (!node_isset(node, *used_node_mask)) {
2453 node_set(node, *used_node_mask);
2454 return node;
2457 for_each_node_state(n, N_HIGH_MEMORY) {
2459 /* Don't want a node to appear more than once */
2460 if (node_isset(n, *used_node_mask))
2461 continue;
2463 /* Use the distance array to find the distance */
2464 val = node_distance(node, n);
2466 /* Penalize nodes under us ("prefer the next node") */
2467 val += (n < node);
2469 /* Give preference to headless and unused nodes */
2470 tmp = cpumask_of_node(n);
2471 if (!cpumask_empty(tmp))
2472 val += PENALTY_FOR_NODE_WITH_CPUS;
2474 /* Slight preference for less loaded node */
2475 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2476 val += node_load[n];
2478 if (val < min_val) {
2479 min_val = val;
2480 best_node = n;
2484 if (best_node >= 0)
2485 node_set(best_node, *used_node_mask);
2487 return best_node;
2492 * Build zonelists ordered by node and zones within node.
2493 * This results in maximum locality--normal zone overflows into local
2494 * DMA zone, if any--but risks exhausting DMA zone.
2496 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2498 int j;
2499 struct zonelist *zonelist;
2501 zonelist = &pgdat->node_zonelists[0];
2502 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2504 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2505 MAX_NR_ZONES - 1);
2506 zonelist->_zonerefs[j].zone = NULL;
2507 zonelist->_zonerefs[j].zone_idx = 0;
2511 * Build gfp_thisnode zonelists
2513 static void build_thisnode_zonelists(pg_data_t *pgdat)
2515 int j;
2516 struct zonelist *zonelist;
2518 zonelist = &pgdat->node_zonelists[1];
2519 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2520 zonelist->_zonerefs[j].zone = NULL;
2521 zonelist->_zonerefs[j].zone_idx = 0;
2525 * Build zonelists ordered by zone and nodes within zones.
2526 * This results in conserving DMA zone[s] until all Normal memory is
2527 * exhausted, but results in overflowing to remote node while memory
2528 * may still exist in local DMA zone.
2530 static int node_order[MAX_NUMNODES];
2532 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2534 int pos, j, node;
2535 int zone_type; /* needs to be signed */
2536 struct zone *z;
2537 struct zonelist *zonelist;
2539 zonelist = &pgdat->node_zonelists[0];
2540 pos = 0;
2541 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2542 for (j = 0; j < nr_nodes; j++) {
2543 node = node_order[j];
2544 z = &NODE_DATA(node)->node_zones[zone_type];
2545 if (populated_zone(z)) {
2546 zoneref_set_zone(z,
2547 &zonelist->_zonerefs[pos++]);
2548 check_highest_zone(zone_type);
2552 zonelist->_zonerefs[pos].zone = NULL;
2553 zonelist->_zonerefs[pos].zone_idx = 0;
2556 static int default_zonelist_order(void)
2558 int nid, zone_type;
2559 unsigned long low_kmem_size,total_size;
2560 struct zone *z;
2561 int average_size;
2563 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2564 * If they are really small and used heavily, the system can fall
2565 * into OOM very easily.
2566 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2568 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2569 low_kmem_size = 0;
2570 total_size = 0;
2571 for_each_online_node(nid) {
2572 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2573 z = &NODE_DATA(nid)->node_zones[zone_type];
2574 if (populated_zone(z)) {
2575 if (zone_type < ZONE_NORMAL)
2576 low_kmem_size += z->present_pages;
2577 total_size += z->present_pages;
2581 if (!low_kmem_size || /* there are no DMA area. */
2582 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2583 return ZONELIST_ORDER_NODE;
2585 * look into each node's config.
2586 * If there is a node whose DMA/DMA32 memory is very big area on
2587 * local memory, NODE_ORDER may be suitable.
2589 average_size = total_size /
2590 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2591 for_each_online_node(nid) {
2592 low_kmem_size = 0;
2593 total_size = 0;
2594 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2595 z = &NODE_DATA(nid)->node_zones[zone_type];
2596 if (populated_zone(z)) {
2597 if (zone_type < ZONE_NORMAL)
2598 low_kmem_size += z->present_pages;
2599 total_size += z->present_pages;
2602 if (low_kmem_size &&
2603 total_size > average_size && /* ignore small node */
2604 low_kmem_size > total_size * 70/100)
2605 return ZONELIST_ORDER_NODE;
2607 return ZONELIST_ORDER_ZONE;
2610 static void set_zonelist_order(void)
2612 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2613 current_zonelist_order = default_zonelist_order();
2614 else
2615 current_zonelist_order = user_zonelist_order;
2618 static void build_zonelists(pg_data_t *pgdat)
2620 int j, node, load;
2621 enum zone_type i;
2622 nodemask_t used_mask;
2623 int local_node, prev_node;
2624 struct zonelist *zonelist;
2625 int order = current_zonelist_order;
2627 /* initialize zonelists */
2628 for (i = 0; i < MAX_ZONELISTS; i++) {
2629 zonelist = pgdat->node_zonelists + i;
2630 zonelist->_zonerefs[0].zone = NULL;
2631 zonelist->_zonerefs[0].zone_idx = 0;
2634 /* NUMA-aware ordering of nodes */
2635 local_node = pgdat->node_id;
2636 load = nr_online_nodes;
2637 prev_node = local_node;
2638 nodes_clear(used_mask);
2640 memset(node_order, 0, sizeof(node_order));
2641 j = 0;
2643 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2644 int distance = node_distance(local_node, node);
2647 * If another node is sufficiently far away then it is better
2648 * to reclaim pages in a zone before going off node.
2650 if (distance > RECLAIM_DISTANCE)
2651 zone_reclaim_mode = 1;
2654 * We don't want to pressure a particular node.
2655 * So adding penalty to the first node in same
2656 * distance group to make it round-robin.
2658 if (distance != node_distance(local_node, prev_node))
2659 node_load[node] = load;
2661 prev_node = node;
2662 load--;
2663 if (order == ZONELIST_ORDER_NODE)
2664 build_zonelists_in_node_order(pgdat, node);
2665 else
2666 node_order[j++] = node; /* remember order */
2669 if (order == ZONELIST_ORDER_ZONE) {
2670 /* calculate node order -- i.e., DMA last! */
2671 build_zonelists_in_zone_order(pgdat, j);
2674 build_thisnode_zonelists(pgdat);
2677 /* Construct the zonelist performance cache - see further mmzone.h */
2678 static void build_zonelist_cache(pg_data_t *pgdat)
2680 struct zonelist *zonelist;
2681 struct zonelist_cache *zlc;
2682 struct zoneref *z;
2684 zonelist = &pgdat->node_zonelists[0];
2685 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2686 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2687 for (z = zonelist->_zonerefs; z->zone; z++)
2688 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2692 #else /* CONFIG_NUMA */
2694 static void set_zonelist_order(void)
2696 current_zonelist_order = ZONELIST_ORDER_ZONE;
2699 static void build_zonelists(pg_data_t *pgdat)
2701 int node, local_node;
2702 enum zone_type j;
2703 struct zonelist *zonelist;
2705 local_node = pgdat->node_id;
2707 zonelist = &pgdat->node_zonelists[0];
2708 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2711 * Now we build the zonelist so that it contains the zones
2712 * of all the other nodes.
2713 * We don't want to pressure a particular node, so when
2714 * building the zones for node N, we make sure that the
2715 * zones coming right after the local ones are those from
2716 * node N+1 (modulo N)
2718 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2719 if (!node_online(node))
2720 continue;
2721 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2722 MAX_NR_ZONES - 1);
2724 for (node = 0; node < local_node; node++) {
2725 if (!node_online(node))
2726 continue;
2727 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2728 MAX_NR_ZONES - 1);
2731 zonelist->_zonerefs[j].zone = NULL;
2732 zonelist->_zonerefs[j].zone_idx = 0;
2735 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2736 static void build_zonelist_cache(pg_data_t *pgdat)
2738 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2741 #endif /* CONFIG_NUMA */
2743 /* return values int ....just for stop_machine() */
2744 static int __build_all_zonelists(void *dummy)
2746 int nid;
2748 #ifdef CONFIG_NUMA
2749 memset(node_load, 0, sizeof(node_load));
2750 #endif
2751 for_each_online_node(nid) {
2752 pg_data_t *pgdat = NODE_DATA(nid);
2754 build_zonelists(pgdat);
2755 build_zonelist_cache(pgdat);
2757 return 0;
2760 void build_all_zonelists(void)
2762 set_zonelist_order();
2764 if (system_state == SYSTEM_BOOTING) {
2765 __build_all_zonelists(NULL);
2766 mminit_verify_zonelist();
2767 cpuset_init_current_mems_allowed();
2768 } else {
2769 /* we have to stop all cpus to guarantee there is no user
2770 of zonelist */
2771 stop_machine(__build_all_zonelists, NULL, NULL);
2772 /* cpuset refresh routine should be here */
2774 vm_total_pages = nr_free_pagecache_pages();
2776 * Disable grouping by mobility if the number of pages in the
2777 * system is too low to allow the mechanism to work. It would be
2778 * more accurate, but expensive to check per-zone. This check is
2779 * made on memory-hotadd so a system can start with mobility
2780 * disabled and enable it later
2782 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2783 page_group_by_mobility_disabled = 1;
2784 else
2785 page_group_by_mobility_disabled = 0;
2787 printk("Built %i zonelists in %s order, mobility grouping %s. "
2788 "Total pages: %ld\n",
2789 nr_online_nodes,
2790 zonelist_order_name[current_zonelist_order],
2791 page_group_by_mobility_disabled ? "off" : "on",
2792 vm_total_pages);
2793 #ifdef CONFIG_NUMA
2794 printk("Policy zone: %s\n", zone_names[policy_zone]);
2795 #endif
2799 * Helper functions to size the waitqueue hash table.
2800 * Essentially these want to choose hash table sizes sufficiently
2801 * large so that collisions trying to wait on pages are rare.
2802 * But in fact, the number of active page waitqueues on typical
2803 * systems is ridiculously low, less than 200. So this is even
2804 * conservative, even though it seems large.
2806 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2807 * waitqueues, i.e. the size of the waitq table given the number of pages.
2809 #define PAGES_PER_WAITQUEUE 256
2811 #ifndef CONFIG_MEMORY_HOTPLUG
2812 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2814 unsigned long size = 1;
2816 pages /= PAGES_PER_WAITQUEUE;
2818 while (size < pages)
2819 size <<= 1;
2822 * Once we have dozens or even hundreds of threads sleeping
2823 * on IO we've got bigger problems than wait queue collision.
2824 * Limit the size of the wait table to a reasonable size.
2826 size = min(size, 4096UL);
2828 return max(size, 4UL);
2830 #else
2832 * A zone's size might be changed by hot-add, so it is not possible to determine
2833 * a suitable size for its wait_table. So we use the maximum size now.
2835 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2837 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2838 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2839 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2841 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2842 * or more by the traditional way. (See above). It equals:
2844 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2845 * ia64(16K page size) : = ( 8G + 4M)byte.
2846 * powerpc (64K page size) : = (32G +16M)byte.
2848 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2850 return 4096UL;
2852 #endif
2855 * This is an integer logarithm so that shifts can be used later
2856 * to extract the more random high bits from the multiplicative
2857 * hash function before the remainder is taken.
2859 static inline unsigned long wait_table_bits(unsigned long size)
2861 return ffz(~size);
2864 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2867 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2868 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2869 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2870 * higher will lead to a bigger reserve which will get freed as contiguous
2871 * blocks as reclaim kicks in
2873 static void setup_zone_migrate_reserve(struct zone *zone)
2875 unsigned long start_pfn, pfn, end_pfn;
2876 struct page *page;
2877 unsigned long block_migratetype;
2878 int reserve;
2880 /* Get the start pfn, end pfn and the number of blocks to reserve */
2881 start_pfn = zone->zone_start_pfn;
2882 end_pfn = start_pfn + zone->spanned_pages;
2883 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2884 pageblock_order;
2887 * Reserve blocks are generally in place to help high-order atomic
2888 * allocations that are short-lived. A min_free_kbytes value that
2889 * would result in more than 2 reserve blocks for atomic allocations
2890 * is assumed to be in place to help anti-fragmentation for the
2891 * future allocation of hugepages at runtime.
2893 reserve = min(2, reserve);
2895 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2896 if (!pfn_valid(pfn))
2897 continue;
2898 page = pfn_to_page(pfn);
2900 /* Watch out for overlapping nodes */
2901 if (page_to_nid(page) != zone_to_nid(zone))
2902 continue;
2904 /* Blocks with reserved pages will never free, skip them. */
2905 if (PageReserved(page))
2906 continue;
2908 block_migratetype = get_pageblock_migratetype(page);
2910 /* If this block is reserved, account for it */
2911 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2912 reserve--;
2913 continue;
2916 /* Suitable for reserving if this block is movable */
2917 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2918 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2919 move_freepages_block(zone, page, MIGRATE_RESERVE);
2920 reserve--;
2921 continue;
2925 * If the reserve is met and this is a previous reserved block,
2926 * take it back
2928 if (block_migratetype == MIGRATE_RESERVE) {
2929 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2930 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2936 * Initially all pages are reserved - free ones are freed
2937 * up by free_all_bootmem() once the early boot process is
2938 * done. Non-atomic initialization, single-pass.
2940 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2941 unsigned long start_pfn, enum memmap_context context)
2943 struct page *page;
2944 unsigned long end_pfn = start_pfn + size;
2945 unsigned long pfn;
2946 struct zone *z;
2948 if (highest_memmap_pfn < end_pfn - 1)
2949 highest_memmap_pfn = end_pfn - 1;
2951 z = &NODE_DATA(nid)->node_zones[zone];
2952 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2954 * There can be holes in boot-time mem_map[]s
2955 * handed to this function. They do not
2956 * exist on hotplugged memory.
2958 if (context == MEMMAP_EARLY) {
2959 if (!early_pfn_valid(pfn))
2960 continue;
2961 if (!early_pfn_in_nid(pfn, nid))
2962 continue;
2964 page = pfn_to_page(pfn);
2965 set_page_links(page, zone, nid, pfn);
2966 mminit_verify_page_links(page, zone, nid, pfn);
2967 init_page_count(page);
2968 reset_page_mapcount(page);
2969 SetPageReserved(page);
2971 * Mark the block movable so that blocks are reserved for
2972 * movable at startup. This will force kernel allocations
2973 * to reserve their blocks rather than leaking throughout
2974 * the address space during boot when many long-lived
2975 * kernel allocations are made. Later some blocks near
2976 * the start are marked MIGRATE_RESERVE by
2977 * setup_zone_migrate_reserve()
2979 * bitmap is created for zone's valid pfn range. but memmap
2980 * can be created for invalid pages (for alignment)
2981 * check here not to call set_pageblock_migratetype() against
2982 * pfn out of zone.
2984 if ((z->zone_start_pfn <= pfn)
2985 && (pfn < z->zone_start_pfn + z->spanned_pages)
2986 && !(pfn & (pageblock_nr_pages - 1)))
2987 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2989 INIT_LIST_HEAD(&page->lru);
2990 #ifdef WANT_PAGE_VIRTUAL
2991 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2992 if (!is_highmem_idx(zone))
2993 set_page_address(page, __va(pfn << PAGE_SHIFT));
2994 #endif
2998 static void __meminit zone_init_free_lists(struct zone *zone)
3000 int order, t;
3001 for_each_migratetype_order(order, t) {
3002 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3003 zone->free_area[order].nr_free = 0;
3007 #ifndef __HAVE_ARCH_MEMMAP_INIT
3008 #define memmap_init(size, nid, zone, start_pfn) \
3009 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3010 #endif
3012 static int zone_batchsize(struct zone *zone)
3014 #ifdef CONFIG_MMU
3015 int batch;
3018 * The per-cpu-pages pools are set to around 1000th of the
3019 * size of the zone. But no more than 1/2 of a meg.
3021 * OK, so we don't know how big the cache is. So guess.
3023 batch = zone->present_pages / 1024;
3024 if (batch * PAGE_SIZE > 512 * 1024)
3025 batch = (512 * 1024) / PAGE_SIZE;
3026 batch /= 4; /* We effectively *= 4 below */
3027 if (batch < 1)
3028 batch = 1;
3031 * Clamp the batch to a 2^n - 1 value. Having a power
3032 * of 2 value was found to be more likely to have
3033 * suboptimal cache aliasing properties in some cases.
3035 * For example if 2 tasks are alternately allocating
3036 * batches of pages, one task can end up with a lot
3037 * of pages of one half of the possible page colors
3038 * and the other with pages of the other colors.
3040 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3042 return batch;
3044 #else
3045 /* The deferral and batching of frees should be suppressed under NOMMU
3046 * conditions.
3048 * The problem is that NOMMU needs to be able to allocate large chunks
3049 * of contiguous memory as there's no hardware page translation to
3050 * assemble apparent contiguous memory from discontiguous pages.
3052 * Queueing large contiguous runs of pages for batching, however,
3053 * causes the pages to actually be freed in smaller chunks. As there
3054 * can be a significant delay between the individual batches being
3055 * recycled, this leads to the once large chunks of space being
3056 * fragmented and becoming unavailable for high-order allocations.
3058 return 0;
3059 #endif
3062 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3064 struct per_cpu_pages *pcp;
3065 int migratetype;
3067 memset(p, 0, sizeof(*p));
3069 pcp = &p->pcp;
3070 pcp->count = 0;
3071 pcp->high = 6 * batch;
3072 pcp->batch = max(1UL, 1 * batch);
3073 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3074 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3078 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3079 * to the value high for the pageset p.
3082 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3083 unsigned long high)
3085 struct per_cpu_pages *pcp;
3087 pcp = &p->pcp;
3088 pcp->high = high;
3089 pcp->batch = max(1UL, high/4);
3090 if ((high/4) > (PAGE_SHIFT * 8))
3091 pcp->batch = PAGE_SHIFT * 8;
3095 #ifdef CONFIG_NUMA
3097 * Boot pageset table. One per cpu which is going to be used for all
3098 * zones and all nodes. The parameters will be set in such a way
3099 * that an item put on a list will immediately be handed over to
3100 * the buddy list. This is safe since pageset manipulation is done
3101 * with interrupts disabled.
3103 * Some NUMA counter updates may also be caught by the boot pagesets.
3105 * The boot_pagesets must be kept even after bootup is complete for
3106 * unused processors and/or zones. They do play a role for bootstrapping
3107 * hotplugged processors.
3109 * zoneinfo_show() and maybe other functions do
3110 * not check if the processor is online before following the pageset pointer.
3111 * Other parts of the kernel may not check if the zone is available.
3113 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3116 * Dynamically allocate memory for the
3117 * per cpu pageset array in struct zone.
3119 static int __cpuinit process_zones(int cpu)
3121 struct zone *zone, *dzone;
3122 int node = cpu_to_node(cpu);
3124 node_set_state(node, N_CPU); /* this node has a cpu */
3126 for_each_populated_zone(zone) {
3127 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3128 GFP_KERNEL, node);
3129 if (!zone_pcp(zone, cpu))
3130 goto bad;
3132 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3134 if (percpu_pagelist_fraction)
3135 setup_pagelist_highmark(zone_pcp(zone, cpu),
3136 (zone->present_pages / percpu_pagelist_fraction));
3139 return 0;
3140 bad:
3141 for_each_zone(dzone) {
3142 if (!populated_zone(dzone))
3143 continue;
3144 if (dzone == zone)
3145 break;
3146 kfree(zone_pcp(dzone, cpu));
3147 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3149 return -ENOMEM;
3152 static inline void free_zone_pagesets(int cpu)
3154 struct zone *zone;
3156 for_each_zone(zone) {
3157 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3159 /* Free per_cpu_pageset if it is slab allocated */
3160 if (pset != &boot_pageset[cpu])
3161 kfree(pset);
3162 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3166 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3167 unsigned long action,
3168 void *hcpu)
3170 int cpu = (long)hcpu;
3171 int ret = NOTIFY_OK;
3173 switch (action) {
3174 case CPU_UP_PREPARE:
3175 case CPU_UP_PREPARE_FROZEN:
3176 if (process_zones(cpu))
3177 ret = NOTIFY_BAD;
3178 break;
3179 case CPU_UP_CANCELED:
3180 case CPU_UP_CANCELED_FROZEN:
3181 case CPU_DEAD:
3182 case CPU_DEAD_FROZEN:
3183 free_zone_pagesets(cpu);
3184 break;
3185 default:
3186 break;
3188 return ret;
3191 static struct notifier_block __cpuinitdata pageset_notifier =
3192 { &pageset_cpuup_callback, NULL, 0 };
3194 void __init setup_per_cpu_pageset(void)
3196 int err;
3198 /* Initialize per_cpu_pageset for cpu 0.
3199 * A cpuup callback will do this for every cpu
3200 * as it comes online
3202 err = process_zones(smp_processor_id());
3203 BUG_ON(err);
3204 register_cpu_notifier(&pageset_notifier);
3207 #endif
3209 static noinline __init_refok
3210 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3212 int i;
3213 struct pglist_data *pgdat = zone->zone_pgdat;
3214 size_t alloc_size;
3217 * The per-page waitqueue mechanism uses hashed waitqueues
3218 * per zone.
3220 zone->wait_table_hash_nr_entries =
3221 wait_table_hash_nr_entries(zone_size_pages);
3222 zone->wait_table_bits =
3223 wait_table_bits(zone->wait_table_hash_nr_entries);
3224 alloc_size = zone->wait_table_hash_nr_entries
3225 * sizeof(wait_queue_head_t);
3227 if (!slab_is_available()) {
3228 zone->wait_table = (wait_queue_head_t *)
3229 alloc_bootmem_node(pgdat, alloc_size);
3230 } else {
3232 * This case means that a zone whose size was 0 gets new memory
3233 * via memory hot-add.
3234 * But it may be the case that a new node was hot-added. In
3235 * this case vmalloc() will not be able to use this new node's
3236 * memory - this wait_table must be initialized to use this new
3237 * node itself as well.
3238 * To use this new node's memory, further consideration will be
3239 * necessary.
3241 zone->wait_table = vmalloc(alloc_size);
3243 if (!zone->wait_table)
3244 return -ENOMEM;
3246 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3247 init_waitqueue_head(zone->wait_table + i);
3249 return 0;
3252 static int __zone_pcp_update(void *data)
3254 struct zone *zone = data;
3255 int cpu;
3256 unsigned long batch = zone_batchsize(zone), flags;
3258 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3259 struct per_cpu_pageset *pset;
3260 struct per_cpu_pages *pcp;
3262 pset = zone_pcp(zone, cpu);
3263 pcp = &pset->pcp;
3265 local_irq_save(flags);
3266 free_pcppages_bulk(zone, pcp->count, pcp);
3267 setup_pageset(pset, batch);
3268 local_irq_restore(flags);
3270 return 0;
3273 void zone_pcp_update(struct zone *zone)
3275 stop_machine(__zone_pcp_update, zone, NULL);
3278 static __meminit void zone_pcp_init(struct zone *zone)
3280 int cpu;
3281 unsigned long batch = zone_batchsize(zone);
3283 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3284 #ifdef CONFIG_NUMA
3285 /* Early boot. Slab allocator not functional yet */
3286 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3287 setup_pageset(&boot_pageset[cpu],0);
3288 #else
3289 setup_pageset(zone_pcp(zone,cpu), batch);
3290 #endif
3292 if (zone->present_pages)
3293 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3294 zone->name, zone->present_pages, batch);
3297 __meminit int init_currently_empty_zone(struct zone *zone,
3298 unsigned long zone_start_pfn,
3299 unsigned long size,
3300 enum memmap_context context)
3302 struct pglist_data *pgdat = zone->zone_pgdat;
3303 int ret;
3304 ret = zone_wait_table_init(zone, size);
3305 if (ret)
3306 return ret;
3307 pgdat->nr_zones = zone_idx(zone) + 1;
3309 zone->zone_start_pfn = zone_start_pfn;
3311 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3312 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3313 pgdat->node_id,
3314 (unsigned long)zone_idx(zone),
3315 zone_start_pfn, (zone_start_pfn + size));
3317 zone_init_free_lists(zone);
3319 return 0;
3322 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3324 * Basic iterator support. Return the first range of PFNs for a node
3325 * Note: nid == MAX_NUMNODES returns first region regardless of node
3327 static int __meminit first_active_region_index_in_nid(int nid)
3329 int i;
3331 for (i = 0; i < nr_nodemap_entries; i++)
3332 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3333 return i;
3335 return -1;
3339 * Basic iterator support. Return the next active range of PFNs for a node
3340 * Note: nid == MAX_NUMNODES returns next region regardless of node
3342 static int __meminit next_active_region_index_in_nid(int index, int nid)
3344 for (index = index + 1; index < nr_nodemap_entries; index++)
3345 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3346 return index;
3348 return -1;
3351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3353 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3354 * Architectures may implement their own version but if add_active_range()
3355 * was used and there are no special requirements, this is a convenient
3356 * alternative
3358 int __meminit __early_pfn_to_nid(unsigned long pfn)
3360 int i;
3362 for (i = 0; i < nr_nodemap_entries; i++) {
3363 unsigned long start_pfn = early_node_map[i].start_pfn;
3364 unsigned long end_pfn = early_node_map[i].end_pfn;
3366 if (start_pfn <= pfn && pfn < end_pfn)
3367 return early_node_map[i].nid;
3369 /* This is a memory hole */
3370 return -1;
3372 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3374 int __meminit early_pfn_to_nid(unsigned long pfn)
3376 int nid;
3378 nid = __early_pfn_to_nid(pfn);
3379 if (nid >= 0)
3380 return nid;
3381 /* just returns 0 */
3382 return 0;
3385 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3386 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3388 int nid;
3390 nid = __early_pfn_to_nid(pfn);
3391 if (nid >= 0 && nid != node)
3392 return false;
3393 return true;
3395 #endif
3397 /* Basic iterator support to walk early_node_map[] */
3398 #define for_each_active_range_index_in_nid(i, nid) \
3399 for (i = first_active_region_index_in_nid(nid); i != -1; \
3400 i = next_active_region_index_in_nid(i, nid))
3403 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3404 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3405 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3407 * If an architecture guarantees that all ranges registered with
3408 * add_active_ranges() contain no holes and may be freed, this
3409 * this function may be used instead of calling free_bootmem() manually.
3411 void __init free_bootmem_with_active_regions(int nid,
3412 unsigned long max_low_pfn)
3414 int i;
3416 for_each_active_range_index_in_nid(i, nid) {
3417 unsigned long size_pages = 0;
3418 unsigned long end_pfn = early_node_map[i].end_pfn;
3420 if (early_node_map[i].start_pfn >= max_low_pfn)
3421 continue;
3423 if (end_pfn > max_low_pfn)
3424 end_pfn = max_low_pfn;
3426 size_pages = end_pfn - early_node_map[i].start_pfn;
3427 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3428 PFN_PHYS(early_node_map[i].start_pfn),
3429 size_pages << PAGE_SHIFT);
3433 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3435 int i;
3436 int ret;
3438 for_each_active_range_index_in_nid(i, nid) {
3439 ret = work_fn(early_node_map[i].start_pfn,
3440 early_node_map[i].end_pfn, data);
3441 if (ret)
3442 break;
3446 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3447 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3449 * If an architecture guarantees that all ranges registered with
3450 * add_active_ranges() contain no holes and may be freed, this
3451 * function may be used instead of calling memory_present() manually.
3453 void __init sparse_memory_present_with_active_regions(int nid)
3455 int i;
3457 for_each_active_range_index_in_nid(i, nid)
3458 memory_present(early_node_map[i].nid,
3459 early_node_map[i].start_pfn,
3460 early_node_map[i].end_pfn);
3464 * get_pfn_range_for_nid - Return the start and end page frames for a node
3465 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3466 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3467 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3469 * It returns the start and end page frame of a node based on information
3470 * provided by an arch calling add_active_range(). If called for a node
3471 * with no available memory, a warning is printed and the start and end
3472 * PFNs will be 0.
3474 void __meminit get_pfn_range_for_nid(unsigned int nid,
3475 unsigned long *start_pfn, unsigned long *end_pfn)
3477 int i;
3478 *start_pfn = -1UL;
3479 *end_pfn = 0;
3481 for_each_active_range_index_in_nid(i, nid) {
3482 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3483 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3486 if (*start_pfn == -1UL)
3487 *start_pfn = 0;
3491 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3492 * assumption is made that zones within a node are ordered in monotonic
3493 * increasing memory addresses so that the "highest" populated zone is used
3495 static void __init find_usable_zone_for_movable(void)
3497 int zone_index;
3498 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3499 if (zone_index == ZONE_MOVABLE)
3500 continue;
3502 if (arch_zone_highest_possible_pfn[zone_index] >
3503 arch_zone_lowest_possible_pfn[zone_index])
3504 break;
3507 VM_BUG_ON(zone_index == -1);
3508 movable_zone = zone_index;
3512 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3513 * because it is sized independant of architecture. Unlike the other zones,
3514 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3515 * in each node depending on the size of each node and how evenly kernelcore
3516 * is distributed. This helper function adjusts the zone ranges
3517 * provided by the architecture for a given node by using the end of the
3518 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3519 * zones within a node are in order of monotonic increases memory addresses
3521 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3522 unsigned long zone_type,
3523 unsigned long node_start_pfn,
3524 unsigned long node_end_pfn,
3525 unsigned long *zone_start_pfn,
3526 unsigned long *zone_end_pfn)
3528 /* Only adjust if ZONE_MOVABLE is on this node */
3529 if (zone_movable_pfn[nid]) {
3530 /* Size ZONE_MOVABLE */
3531 if (zone_type == ZONE_MOVABLE) {
3532 *zone_start_pfn = zone_movable_pfn[nid];
3533 *zone_end_pfn = min(node_end_pfn,
3534 arch_zone_highest_possible_pfn[movable_zone]);
3536 /* Adjust for ZONE_MOVABLE starting within this range */
3537 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3538 *zone_end_pfn > zone_movable_pfn[nid]) {
3539 *zone_end_pfn = zone_movable_pfn[nid];
3541 /* Check if this whole range is within ZONE_MOVABLE */
3542 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3543 *zone_start_pfn = *zone_end_pfn;
3548 * Return the number of pages a zone spans in a node, including holes
3549 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3551 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3552 unsigned long zone_type,
3553 unsigned long *ignored)
3555 unsigned long node_start_pfn, node_end_pfn;
3556 unsigned long zone_start_pfn, zone_end_pfn;
3558 /* Get the start and end of the node and zone */
3559 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3560 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3561 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3562 adjust_zone_range_for_zone_movable(nid, zone_type,
3563 node_start_pfn, node_end_pfn,
3564 &zone_start_pfn, &zone_end_pfn);
3566 /* Check that this node has pages within the zone's required range */
3567 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3568 return 0;
3570 /* Move the zone boundaries inside the node if necessary */
3571 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3572 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3574 /* Return the spanned pages */
3575 return zone_end_pfn - zone_start_pfn;
3579 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3580 * then all holes in the requested range will be accounted for.
3582 static unsigned long __meminit __absent_pages_in_range(int nid,
3583 unsigned long range_start_pfn,
3584 unsigned long range_end_pfn)
3586 int i = 0;
3587 unsigned long prev_end_pfn = 0, hole_pages = 0;
3588 unsigned long start_pfn;
3590 /* Find the end_pfn of the first active range of pfns in the node */
3591 i = first_active_region_index_in_nid(nid);
3592 if (i == -1)
3593 return 0;
3595 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3597 /* Account for ranges before physical memory on this node */
3598 if (early_node_map[i].start_pfn > range_start_pfn)
3599 hole_pages = prev_end_pfn - range_start_pfn;
3601 /* Find all holes for the zone within the node */
3602 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3604 /* No need to continue if prev_end_pfn is outside the zone */
3605 if (prev_end_pfn >= range_end_pfn)
3606 break;
3608 /* Make sure the end of the zone is not within the hole */
3609 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3610 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3612 /* Update the hole size cound and move on */
3613 if (start_pfn > range_start_pfn) {
3614 BUG_ON(prev_end_pfn > start_pfn);
3615 hole_pages += start_pfn - prev_end_pfn;
3617 prev_end_pfn = early_node_map[i].end_pfn;
3620 /* Account for ranges past physical memory on this node */
3621 if (range_end_pfn > prev_end_pfn)
3622 hole_pages += range_end_pfn -
3623 max(range_start_pfn, prev_end_pfn);
3625 return hole_pages;
3629 * absent_pages_in_range - Return number of page frames in holes within a range
3630 * @start_pfn: The start PFN to start searching for holes
3631 * @end_pfn: The end PFN to stop searching for holes
3633 * It returns the number of pages frames in memory holes within a range.
3635 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3636 unsigned long end_pfn)
3638 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3641 /* Return the number of page frames in holes in a zone on a node */
3642 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3643 unsigned long zone_type,
3644 unsigned long *ignored)
3646 unsigned long node_start_pfn, node_end_pfn;
3647 unsigned long zone_start_pfn, zone_end_pfn;
3649 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3650 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3651 node_start_pfn);
3652 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3653 node_end_pfn);
3655 adjust_zone_range_for_zone_movable(nid, zone_type,
3656 node_start_pfn, node_end_pfn,
3657 &zone_start_pfn, &zone_end_pfn);
3658 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3661 #else
3662 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3663 unsigned long zone_type,
3664 unsigned long *zones_size)
3666 return zones_size[zone_type];
3669 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3670 unsigned long zone_type,
3671 unsigned long *zholes_size)
3673 if (!zholes_size)
3674 return 0;
3676 return zholes_size[zone_type];
3679 #endif
3681 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3682 unsigned long *zones_size, unsigned long *zholes_size)
3684 unsigned long realtotalpages, totalpages = 0;
3685 enum zone_type i;
3687 for (i = 0; i < MAX_NR_ZONES; i++)
3688 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3689 zones_size);
3690 pgdat->node_spanned_pages = totalpages;
3692 realtotalpages = totalpages;
3693 for (i = 0; i < MAX_NR_ZONES; i++)
3694 realtotalpages -=
3695 zone_absent_pages_in_node(pgdat->node_id, i,
3696 zholes_size);
3697 pgdat->node_present_pages = realtotalpages;
3698 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3699 realtotalpages);
3702 #ifndef CONFIG_SPARSEMEM
3704 * Calculate the size of the zone->blockflags rounded to an unsigned long
3705 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3706 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3707 * round what is now in bits to nearest long in bits, then return it in
3708 * bytes.
3710 static unsigned long __init usemap_size(unsigned long zonesize)
3712 unsigned long usemapsize;
3714 usemapsize = roundup(zonesize, pageblock_nr_pages);
3715 usemapsize = usemapsize >> pageblock_order;
3716 usemapsize *= NR_PAGEBLOCK_BITS;
3717 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3719 return usemapsize / 8;
3722 static void __init setup_usemap(struct pglist_data *pgdat,
3723 struct zone *zone, unsigned long zonesize)
3725 unsigned long usemapsize = usemap_size(zonesize);
3726 zone->pageblock_flags = NULL;
3727 if (usemapsize)
3728 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3730 #else
3731 static void inline setup_usemap(struct pglist_data *pgdat,
3732 struct zone *zone, unsigned long zonesize) {}
3733 #endif /* CONFIG_SPARSEMEM */
3735 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3737 /* Return a sensible default order for the pageblock size. */
3738 static inline int pageblock_default_order(void)
3740 if (HPAGE_SHIFT > PAGE_SHIFT)
3741 return HUGETLB_PAGE_ORDER;
3743 return MAX_ORDER-1;
3746 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3747 static inline void __init set_pageblock_order(unsigned int order)
3749 /* Check that pageblock_nr_pages has not already been setup */
3750 if (pageblock_order)
3751 return;
3754 * Assume the largest contiguous order of interest is a huge page.
3755 * This value may be variable depending on boot parameters on IA64
3757 pageblock_order = order;
3759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3762 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3763 * and pageblock_default_order() are unused as pageblock_order is set
3764 * at compile-time. See include/linux/pageblock-flags.h for the values of
3765 * pageblock_order based on the kernel config
3767 static inline int pageblock_default_order(unsigned int order)
3769 return MAX_ORDER-1;
3771 #define set_pageblock_order(x) do {} while (0)
3773 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3776 * Set up the zone data structures:
3777 * - mark all pages reserved
3778 * - mark all memory queues empty
3779 * - clear the memory bitmaps
3781 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3782 unsigned long *zones_size, unsigned long *zholes_size)
3784 enum zone_type j;
3785 int nid = pgdat->node_id;
3786 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3787 int ret;
3789 pgdat_resize_init(pgdat);
3790 pgdat->nr_zones = 0;
3791 init_waitqueue_head(&pgdat->kswapd_wait);
3792 pgdat->kswapd_max_order = 0;
3793 pgdat_page_cgroup_init(pgdat);
3795 for (j = 0; j < MAX_NR_ZONES; j++) {
3796 struct zone *zone = pgdat->node_zones + j;
3797 unsigned long size, realsize, memmap_pages;
3798 enum lru_list l;
3800 size = zone_spanned_pages_in_node(nid, j, zones_size);
3801 realsize = size - zone_absent_pages_in_node(nid, j,
3802 zholes_size);
3805 * Adjust realsize so that it accounts for how much memory
3806 * is used by this zone for memmap. This affects the watermark
3807 * and per-cpu initialisations
3809 memmap_pages =
3810 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3811 if (realsize >= memmap_pages) {
3812 realsize -= memmap_pages;
3813 if (memmap_pages)
3814 printk(KERN_DEBUG
3815 " %s zone: %lu pages used for memmap\n",
3816 zone_names[j], memmap_pages);
3817 } else
3818 printk(KERN_WARNING
3819 " %s zone: %lu pages exceeds realsize %lu\n",
3820 zone_names[j], memmap_pages, realsize);
3822 /* Account for reserved pages */
3823 if (j == 0 && realsize > dma_reserve) {
3824 realsize -= dma_reserve;
3825 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3826 zone_names[0], dma_reserve);
3829 if (!is_highmem_idx(j))
3830 nr_kernel_pages += realsize;
3831 nr_all_pages += realsize;
3833 zone->spanned_pages = size;
3834 zone->present_pages = realsize;
3835 #ifdef CONFIG_NUMA
3836 zone->node = nid;
3837 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3838 / 100;
3839 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3840 #endif
3841 zone->name = zone_names[j];
3842 spin_lock_init(&zone->lock);
3843 spin_lock_init(&zone->lru_lock);
3844 zone_seqlock_init(zone);
3845 zone->zone_pgdat = pgdat;
3847 zone->prev_priority = DEF_PRIORITY;
3849 zone_pcp_init(zone);
3850 for_each_lru(l) {
3851 INIT_LIST_HEAD(&zone->lru[l].list);
3852 zone->reclaim_stat.nr_saved_scan[l] = 0;
3854 zone->reclaim_stat.recent_rotated[0] = 0;
3855 zone->reclaim_stat.recent_rotated[1] = 0;
3856 zone->reclaim_stat.recent_scanned[0] = 0;
3857 zone->reclaim_stat.recent_scanned[1] = 0;
3858 zap_zone_vm_stats(zone);
3859 zone->flags = 0;
3860 if (!size)
3861 continue;
3863 set_pageblock_order(pageblock_default_order());
3864 setup_usemap(pgdat, zone, size);
3865 ret = init_currently_empty_zone(zone, zone_start_pfn,
3866 size, MEMMAP_EARLY);
3867 BUG_ON(ret);
3868 memmap_init(size, nid, j, zone_start_pfn);
3869 zone_start_pfn += size;
3873 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3875 /* Skip empty nodes */
3876 if (!pgdat->node_spanned_pages)
3877 return;
3879 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3880 /* ia64 gets its own node_mem_map, before this, without bootmem */
3881 if (!pgdat->node_mem_map) {
3882 unsigned long size, start, end;
3883 struct page *map;
3886 * The zone's endpoints aren't required to be MAX_ORDER
3887 * aligned but the node_mem_map endpoints must be in order
3888 * for the buddy allocator to function correctly.
3890 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3891 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3892 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3893 size = (end - start) * sizeof(struct page);
3894 map = alloc_remap(pgdat->node_id, size);
3895 if (!map)
3896 map = alloc_bootmem_node(pgdat, size);
3897 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3898 printk(KERN_DEBUG
3899 "Node %d memmap at 0x%p size %lu first pfn 0x%p\n",
3900 pgdat->node_id, map, size, pgdat->node_mem_map);
3902 #ifndef CONFIG_NEED_MULTIPLE_NODES
3904 * With no DISCONTIG, the global mem_map is just set as node 0's
3906 if (pgdat == NODE_DATA(0)) {
3907 mem_map = NODE_DATA(0)->node_mem_map;
3908 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3909 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3910 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3911 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3913 #endif
3914 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3917 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3918 unsigned long node_start_pfn, unsigned long *zholes_size)
3920 pg_data_t *pgdat = NODE_DATA(nid);
3922 pgdat->node_id = nid;
3923 pgdat->node_start_pfn = node_start_pfn;
3924 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3926 alloc_node_mem_map(pgdat);
3927 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3928 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3929 nid, (unsigned long)pgdat,
3930 (unsigned long)pgdat->node_mem_map);
3931 #endif
3933 free_area_init_core(pgdat, zones_size, zholes_size);
3936 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3938 #if MAX_NUMNODES > 1
3940 * Figure out the number of possible node ids.
3942 static void __init setup_nr_node_ids(void)
3944 unsigned int node;
3945 unsigned int highest = 0;
3947 for_each_node_mask(node, node_possible_map)
3948 highest = node;
3949 nr_node_ids = highest + 1;
3951 #else
3952 static inline void setup_nr_node_ids(void)
3955 #endif
3958 * add_active_range - Register a range of PFNs backed by physical memory
3959 * @nid: The node ID the range resides on
3960 * @start_pfn: The start PFN of the available physical memory
3961 * @end_pfn: The end PFN of the available physical memory
3963 * These ranges are stored in an early_node_map[] and later used by
3964 * free_area_init_nodes() to calculate zone sizes and holes. If the
3965 * range spans a memory hole, it is up to the architecture to ensure
3966 * the memory is not freed by the bootmem allocator. If possible
3967 * the range being registered will be merged with existing ranges.
3969 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3970 unsigned long end_pfn)
3972 int i;
3974 mminit_dprintk(MMINIT_TRACE, "memory_register",
3975 "Entering add_active_range(%d, %#lx, %#lx) "
3976 "%d entries of %d used\n",
3977 nid, start_pfn, end_pfn,
3978 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3980 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3982 /* Merge with existing active regions if possible */
3983 for (i = 0; i < nr_nodemap_entries; i++) {
3984 if (early_node_map[i].nid != nid)
3985 continue;
3987 /* Skip if an existing region covers this new one */
3988 if (start_pfn >= early_node_map[i].start_pfn &&
3989 end_pfn <= early_node_map[i].end_pfn)
3990 return;
3992 /* Merge forward if suitable */
3993 if (start_pfn <= early_node_map[i].end_pfn &&
3994 end_pfn > early_node_map[i].end_pfn) {
3995 early_node_map[i].end_pfn = end_pfn;
3996 return;
3999 /* Merge backward if suitable */
4000 if (start_pfn < early_node_map[i].end_pfn &&
4001 end_pfn >= early_node_map[i].start_pfn) {
4002 early_node_map[i].start_pfn = start_pfn;
4003 return;
4007 /* Check that early_node_map is large enough */
4008 if (i >= MAX_ACTIVE_REGIONS) {
4009 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4010 MAX_ACTIVE_REGIONS);
4011 return;
4014 early_node_map[i].nid = nid;
4015 early_node_map[i].start_pfn = start_pfn;
4016 early_node_map[i].end_pfn = end_pfn;
4017 nr_nodemap_entries = i + 1;
4021 * remove_active_range - Shrink an existing registered range of PFNs
4022 * @nid: The node id the range is on that should be shrunk
4023 * @start_pfn: The new PFN of the range
4024 * @end_pfn: The new PFN of the range
4026 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4027 * The map is kept near the end physical page range that has already been
4028 * registered. This function allows an arch to shrink an existing registered
4029 * range.
4031 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4032 unsigned long end_pfn)
4034 int i, j;
4035 int removed = 0;
4037 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4038 nid, start_pfn, end_pfn);
4040 /* Find the old active region end and shrink */
4041 for_each_active_range_index_in_nid(i, nid) {
4042 if (early_node_map[i].start_pfn >= start_pfn &&
4043 early_node_map[i].end_pfn <= end_pfn) {
4044 /* clear it */
4045 early_node_map[i].start_pfn = 0;
4046 early_node_map[i].end_pfn = 0;
4047 removed = 1;
4048 continue;
4050 if (early_node_map[i].start_pfn < start_pfn &&
4051 early_node_map[i].end_pfn > start_pfn) {
4052 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4053 early_node_map[i].end_pfn = start_pfn;
4054 if (temp_end_pfn > end_pfn)
4055 add_active_range(nid, end_pfn, temp_end_pfn);
4056 continue;
4058 if (early_node_map[i].start_pfn >= start_pfn &&
4059 early_node_map[i].end_pfn > end_pfn &&
4060 early_node_map[i].start_pfn < end_pfn) {
4061 early_node_map[i].start_pfn = end_pfn;
4062 continue;
4066 if (!removed)
4067 return;
4069 /* remove the blank ones */
4070 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4071 if (early_node_map[i].nid != nid)
4072 continue;
4073 if (early_node_map[i].end_pfn)
4074 continue;
4075 /* we found it, get rid of it */
4076 for (j = i; j < nr_nodemap_entries - 1; j++)
4077 memcpy(&early_node_map[j], &early_node_map[j+1],
4078 sizeof(early_node_map[j]));
4079 j = nr_nodemap_entries - 1;
4080 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4081 nr_nodemap_entries--;
4086 * remove_all_active_ranges - Remove all currently registered regions
4088 * During discovery, it may be found that a table like SRAT is invalid
4089 * and an alternative discovery method must be used. This function removes
4090 * all currently registered regions.
4092 void __init remove_all_active_ranges(void)
4094 memset(early_node_map, 0, sizeof(early_node_map));
4095 nr_nodemap_entries = 0;
4098 /* Compare two active node_active_regions */
4099 static int __init cmp_node_active_region(const void *a, const void *b)
4101 struct node_active_region *arange = (struct node_active_region *)a;
4102 struct node_active_region *brange = (struct node_active_region *)b;
4104 /* Done this way to avoid overflows */
4105 if (arange->start_pfn > brange->start_pfn)
4106 return 1;
4107 if (arange->start_pfn < brange->start_pfn)
4108 return -1;
4110 return 0;
4113 /* sort the node_map by start_pfn */
4114 static void __init sort_node_map(void)
4116 sort(early_node_map, (size_t)nr_nodemap_entries,
4117 sizeof(struct node_active_region),
4118 cmp_node_active_region, NULL);
4121 /* Find the lowest pfn for a node */
4122 static unsigned long __init find_min_pfn_for_node(int nid)
4124 int i;
4125 unsigned long min_pfn = ULONG_MAX;
4127 /* Assuming a sorted map, the first range found has the starting pfn */
4128 for_each_active_range_index_in_nid(i, nid)
4129 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4131 if (min_pfn == ULONG_MAX) {
4132 printk(KERN_WARNING
4133 "Could not find start_pfn for node %d\n", nid);
4134 return 0;
4137 return min_pfn;
4141 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4143 * It returns the minimum PFN based on information provided via
4144 * add_active_range().
4146 unsigned long __init find_min_pfn_with_active_regions(void)
4148 return find_min_pfn_for_node(MAX_NUMNODES);
4152 * early_calculate_totalpages()
4153 * Sum pages in active regions for movable zone.
4154 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4156 static unsigned long __init early_calculate_totalpages(void)
4158 int i;
4159 unsigned long totalpages = 0;
4161 for (i = 0; i < nr_nodemap_entries; i++) {
4162 unsigned long pages = early_node_map[i].end_pfn -
4163 early_node_map[i].start_pfn;
4164 totalpages += pages;
4165 if (pages)
4166 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4168 return totalpages;
4172 * Find the PFN the Movable zone begins in each node. Kernel memory
4173 * is spread evenly between nodes as long as the nodes have enough
4174 * memory. When they don't, some nodes will have more kernelcore than
4175 * others
4177 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4179 int i, nid;
4180 unsigned long usable_startpfn;
4181 unsigned long kernelcore_node, kernelcore_remaining;
4182 /* save the state before borrow the nodemask */
4183 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4184 unsigned long totalpages = early_calculate_totalpages();
4185 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4188 * If movablecore was specified, calculate what size of
4189 * kernelcore that corresponds so that memory usable for
4190 * any allocation type is evenly spread. If both kernelcore
4191 * and movablecore are specified, then the value of kernelcore
4192 * will be used for required_kernelcore if it's greater than
4193 * what movablecore would have allowed.
4195 if (required_movablecore) {
4196 unsigned long corepages;
4199 * Round-up so that ZONE_MOVABLE is at least as large as what
4200 * was requested by the user
4202 required_movablecore =
4203 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4204 corepages = totalpages - required_movablecore;
4206 required_kernelcore = max(required_kernelcore, corepages);
4209 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4210 if (!required_kernelcore)
4211 goto out;
4213 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4214 find_usable_zone_for_movable();
4215 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4217 restart:
4218 /* Spread kernelcore memory as evenly as possible throughout nodes */
4219 kernelcore_node = required_kernelcore / usable_nodes;
4220 for_each_node_state(nid, N_HIGH_MEMORY) {
4222 * Recalculate kernelcore_node if the division per node
4223 * now exceeds what is necessary to satisfy the requested
4224 * amount of memory for the kernel
4226 if (required_kernelcore < kernelcore_node)
4227 kernelcore_node = required_kernelcore / usable_nodes;
4230 * As the map is walked, we track how much memory is usable
4231 * by the kernel using kernelcore_remaining. When it is
4232 * 0, the rest of the node is usable by ZONE_MOVABLE
4234 kernelcore_remaining = kernelcore_node;
4236 /* Go through each range of PFNs within this node */
4237 for_each_active_range_index_in_nid(i, nid) {
4238 unsigned long start_pfn, end_pfn;
4239 unsigned long size_pages;
4241 start_pfn = max(early_node_map[i].start_pfn,
4242 zone_movable_pfn[nid]);
4243 end_pfn = early_node_map[i].end_pfn;
4244 if (start_pfn >= end_pfn)
4245 continue;
4247 /* Account for what is only usable for kernelcore */
4248 if (start_pfn < usable_startpfn) {
4249 unsigned long kernel_pages;
4250 kernel_pages = min(end_pfn, usable_startpfn)
4251 - start_pfn;
4253 kernelcore_remaining -= min(kernel_pages,
4254 kernelcore_remaining);
4255 required_kernelcore -= min(kernel_pages,
4256 required_kernelcore);
4258 /* Continue if range is now fully accounted */
4259 if (end_pfn <= usable_startpfn) {
4262 * Push zone_movable_pfn to the end so
4263 * that if we have to rebalance
4264 * kernelcore across nodes, we will
4265 * not double account here
4267 zone_movable_pfn[nid] = end_pfn;
4268 continue;
4270 start_pfn = usable_startpfn;
4274 * The usable PFN range for ZONE_MOVABLE is from
4275 * start_pfn->end_pfn. Calculate size_pages as the
4276 * number of pages used as kernelcore
4278 size_pages = end_pfn - start_pfn;
4279 if (size_pages > kernelcore_remaining)
4280 size_pages = kernelcore_remaining;
4281 zone_movable_pfn[nid] = start_pfn + size_pages;
4284 * Some kernelcore has been met, update counts and
4285 * break if the kernelcore for this node has been
4286 * satisified
4288 required_kernelcore -= min(required_kernelcore,
4289 size_pages);
4290 kernelcore_remaining -= size_pages;
4291 if (!kernelcore_remaining)
4292 break;
4297 * If there is still required_kernelcore, we do another pass with one
4298 * less node in the count. This will push zone_movable_pfn[nid] further
4299 * along on the nodes that still have memory until kernelcore is
4300 * satisified
4302 usable_nodes--;
4303 if (usable_nodes && required_kernelcore > usable_nodes)
4304 goto restart;
4306 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4307 for (nid = 0; nid < MAX_NUMNODES; nid++)
4308 zone_movable_pfn[nid] =
4309 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4311 out:
4312 /* restore the node_state */
4313 node_states[N_HIGH_MEMORY] = saved_node_state;
4316 /* Any regular memory on that node ? */
4317 static void check_for_regular_memory(pg_data_t *pgdat)
4319 #ifdef CONFIG_HIGHMEM
4320 enum zone_type zone_type;
4322 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4323 struct zone *zone = &pgdat->node_zones[zone_type];
4324 if (zone->present_pages)
4325 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4327 #endif
4331 * free_area_init_nodes - Initialise all pg_data_t and zone data
4332 * @max_zone_pfn: an array of max PFNs for each zone
4334 * This will call free_area_init_node() for each active node in the system.
4335 * Using the page ranges provided by add_active_range(), the size of each
4336 * zone in each node and their holes is calculated. If the maximum PFN
4337 * between two adjacent zones match, it is assumed that the zone is empty.
4338 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4339 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4340 * starts where the previous one ended. For example, ZONE_DMA32 starts
4341 * at arch_max_dma_pfn.
4343 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4345 unsigned long nid;
4346 int i;
4348 /* Sort early_node_map as initialisation assumes it is sorted */
4349 sort_node_map();
4351 /* Record where the zone boundaries are */
4352 memset(arch_zone_lowest_possible_pfn, 0,
4353 sizeof(arch_zone_lowest_possible_pfn));
4354 memset(arch_zone_highest_possible_pfn, 0,
4355 sizeof(arch_zone_highest_possible_pfn));
4356 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4357 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4358 for (i = 1; i < MAX_NR_ZONES; i++) {
4359 if (i == ZONE_MOVABLE)
4360 continue;
4361 arch_zone_lowest_possible_pfn[i] =
4362 arch_zone_highest_possible_pfn[i-1];
4363 arch_zone_highest_possible_pfn[i] =
4364 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4366 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4367 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4369 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4370 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4371 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4373 /* Print out the page size for debugging meminit problems */
4374 printk(KERN_DEBUG "sizeof(struct page) = %zd\n", sizeof(struct page));
4376 /* Print out the zone ranges */
4377 printk("Zone PFN ranges:\n");
4378 for (i = 0; i < MAX_NR_ZONES; i++) {
4379 if (i == ZONE_MOVABLE)
4380 continue;
4381 printk(" %-8s %0#10lx -> %0#10lx\n",
4382 zone_names[i],
4383 arch_zone_lowest_possible_pfn[i],
4384 arch_zone_highest_possible_pfn[i]);
4387 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4388 printk("Movable zone start PFN for each node\n");
4389 for (i = 0; i < MAX_NUMNODES; i++) {
4390 if (zone_movable_pfn[i])
4391 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4394 /* Print out the early_node_map[] */
4395 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4396 for (i = 0; i < nr_nodemap_entries; i++)
4397 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4398 early_node_map[i].start_pfn,
4399 early_node_map[i].end_pfn);
4401 /* Initialise every node */
4402 mminit_verify_pageflags_layout();
4403 setup_nr_node_ids();
4404 for_each_online_node(nid) {
4405 pg_data_t *pgdat = NODE_DATA(nid);
4406 free_area_init_node(nid, NULL,
4407 find_min_pfn_for_node(nid), NULL);
4409 /* Any memory on that node */
4410 if (pgdat->node_present_pages)
4411 node_set_state(nid, N_HIGH_MEMORY);
4412 check_for_regular_memory(pgdat);
4416 static int __init cmdline_parse_core(char *p, unsigned long *core)
4418 unsigned long long coremem;
4419 if (!p)
4420 return -EINVAL;
4422 coremem = memparse(p, &p);
4423 *core = coremem >> PAGE_SHIFT;
4425 /* Paranoid check that UL is enough for the coremem value */
4426 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4428 return 0;
4432 * kernelcore=size sets the amount of memory for use for allocations that
4433 * cannot be reclaimed or migrated.
4435 static int __init cmdline_parse_kernelcore(char *p)
4437 return cmdline_parse_core(p, &required_kernelcore);
4441 * movablecore=size sets the amount of memory for use for allocations that
4442 * can be reclaimed or migrated.
4444 static int __init cmdline_parse_movablecore(char *p)
4446 return cmdline_parse_core(p, &required_movablecore);
4449 early_param("kernelcore", cmdline_parse_kernelcore);
4450 early_param("movablecore", cmdline_parse_movablecore);
4452 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4455 * set_dma_reserve - set the specified number of pages reserved in the first zone
4456 * @new_dma_reserve: The number of pages to mark reserved
4458 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4459 * In the DMA zone, a significant percentage may be consumed by kernel image
4460 * and other unfreeable allocations which can skew the watermarks badly. This
4461 * function may optionally be used to account for unfreeable pages in the
4462 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4463 * smaller per-cpu batchsize.
4465 void __init set_dma_reserve(unsigned long new_dma_reserve)
4467 dma_reserve = new_dma_reserve;
4470 #ifndef CONFIG_NEED_MULTIPLE_NODES
4471 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4472 EXPORT_SYMBOL(contig_page_data);
4473 #endif
4475 void __init free_area_init(unsigned long *zones_size)
4477 free_area_init_node(0, zones_size,
4478 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4481 static int page_alloc_cpu_notify(struct notifier_block *self,
4482 unsigned long action, void *hcpu)
4484 int cpu = (unsigned long)hcpu;
4486 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4487 drain_pages(cpu);
4490 * Spill the event counters of the dead processor
4491 * into the current processors event counters.
4492 * This artificially elevates the count of the current
4493 * processor.
4495 vm_events_fold_cpu(cpu);
4498 * Zero the differential counters of the dead processor
4499 * so that the vm statistics are consistent.
4501 * This is only okay since the processor is dead and cannot
4502 * race with what we are doing.
4504 refresh_cpu_vm_stats(cpu);
4506 return NOTIFY_OK;
4509 void __init page_alloc_init(void)
4511 hotcpu_notifier(page_alloc_cpu_notify, 0);
4515 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4516 * or min_free_kbytes changes.
4518 static void calculate_totalreserve_pages(void)
4520 struct pglist_data *pgdat;
4521 unsigned long reserve_pages = 0;
4522 enum zone_type i, j;
4524 for_each_online_pgdat(pgdat) {
4525 for (i = 0; i < MAX_NR_ZONES; i++) {
4526 struct zone *zone = pgdat->node_zones + i;
4527 unsigned long max = 0;
4529 /* Find valid and maximum lowmem_reserve in the zone */
4530 for (j = i; j < MAX_NR_ZONES; j++) {
4531 if (zone->lowmem_reserve[j] > max)
4532 max = zone->lowmem_reserve[j];
4535 /* we treat the high watermark as reserved pages. */
4536 max += high_wmark_pages(zone);
4538 if (max > zone->present_pages)
4539 max = zone->present_pages;
4540 reserve_pages += max;
4543 totalreserve_pages = reserve_pages;
4547 * setup_per_zone_lowmem_reserve - called whenever
4548 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4549 * has a correct pages reserved value, so an adequate number of
4550 * pages are left in the zone after a successful __alloc_pages().
4552 static void setup_per_zone_lowmem_reserve(void)
4554 struct pglist_data *pgdat;
4555 enum zone_type j, idx;
4557 for_each_online_pgdat(pgdat) {
4558 for (j = 0; j < MAX_NR_ZONES; j++) {
4559 struct zone *zone = pgdat->node_zones + j;
4560 unsigned long present_pages = zone->present_pages;
4562 zone->lowmem_reserve[j] = 0;
4564 idx = j;
4565 while (idx) {
4566 struct zone *lower_zone;
4568 idx--;
4570 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4571 sysctl_lowmem_reserve_ratio[idx] = 1;
4573 lower_zone = pgdat->node_zones + idx;
4574 lower_zone->lowmem_reserve[j] = present_pages /
4575 sysctl_lowmem_reserve_ratio[idx];
4576 present_pages += lower_zone->present_pages;
4581 /* update totalreserve_pages */
4582 calculate_totalreserve_pages();
4586 * setup_per_zone_wmarks - called when min_free_kbytes changes
4587 * or when memory is hot-{added|removed}
4589 * Ensures that the watermark[min,low,high] values for each zone are set
4590 * correctly with respect to min_free_kbytes.
4592 void setup_per_zone_wmarks(void)
4594 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4595 unsigned long lowmem_pages = 0;
4596 struct zone *zone;
4597 unsigned long flags;
4599 /* Calculate total number of !ZONE_HIGHMEM pages */
4600 for_each_zone(zone) {
4601 if (!is_highmem(zone))
4602 lowmem_pages += zone->present_pages;
4605 for_each_zone(zone) {
4606 u64 tmp;
4608 spin_lock_irqsave(&zone->lock, flags);
4609 tmp = (u64)pages_min * zone->present_pages;
4610 do_div(tmp, lowmem_pages);
4611 if (is_highmem(zone)) {
4613 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4614 * need highmem pages, so cap pages_min to a small
4615 * value here.
4617 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4618 * deltas controls asynch page reclaim, and so should
4619 * not be capped for highmem.
4621 int min_pages;
4623 min_pages = zone->present_pages / 1024;
4624 if (min_pages < SWAP_CLUSTER_MAX)
4625 min_pages = SWAP_CLUSTER_MAX;
4626 if (min_pages > 128)
4627 min_pages = 128;
4628 zone->watermark[WMARK_MIN] = min_pages;
4629 } else {
4631 * If it's a lowmem zone, reserve a number of pages
4632 * proportionate to the zone's size.
4634 zone->watermark[WMARK_MIN] = tmp;
4637 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4638 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4639 setup_zone_migrate_reserve(zone);
4640 spin_unlock_irqrestore(&zone->lock, flags);
4643 /* update totalreserve_pages */
4644 calculate_totalreserve_pages();
4648 * The inactive anon list should be small enough that the VM never has to
4649 * do too much work, but large enough that each inactive page has a chance
4650 * to be referenced again before it is swapped out.
4652 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4653 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4654 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4655 * the anonymous pages are kept on the inactive list.
4657 * total target max
4658 * memory ratio inactive anon
4659 * -------------------------------------
4660 * 10MB 1 5MB
4661 * 100MB 1 50MB
4662 * 1GB 3 250MB
4663 * 10GB 10 0.9GB
4664 * 100GB 31 3GB
4665 * 1TB 101 10GB
4666 * 10TB 320 32GB
4668 void calculate_zone_inactive_ratio(struct zone *zone)
4670 unsigned int gb, ratio;
4672 /* Zone size in gigabytes */
4673 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4674 if (gb)
4675 ratio = int_sqrt(10 * gb);
4676 else
4677 ratio = 1;
4679 zone->inactive_ratio = ratio;
4682 static void __init setup_per_zone_inactive_ratio(void)
4684 struct zone *zone;
4686 for_each_zone(zone)
4687 calculate_zone_inactive_ratio(zone);
4691 * Initialise min_free_kbytes.
4693 * For small machines we want it small (128k min). For large machines
4694 * we want it large (64MB max). But it is not linear, because network
4695 * bandwidth does not increase linearly with machine size. We use
4697 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4698 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4700 * which yields
4702 * 16MB: 512k
4703 * 32MB: 724k
4704 * 64MB: 1024k
4705 * 128MB: 1448k
4706 * 256MB: 2048k
4707 * 512MB: 2896k
4708 * 1024MB: 4096k
4709 * 2048MB: 5792k
4710 * 4096MB: 8192k
4711 * 8192MB: 11584k
4712 * 16384MB: 16384k
4714 static int __init init_per_zone_wmark_min(void)
4716 unsigned long lowmem_kbytes;
4718 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4720 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4721 if (min_free_kbytes < 128)
4722 min_free_kbytes = 128;
4723 if (min_free_kbytes > 65536)
4724 min_free_kbytes = 65536;
4725 setup_per_zone_wmarks();
4726 setup_per_zone_lowmem_reserve();
4727 setup_per_zone_inactive_ratio();
4728 return 0;
4730 module_init(init_per_zone_wmark_min)
4733 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4734 * that we can call two helper functions whenever min_free_kbytes
4735 * changes.
4737 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4738 void __user *buffer, size_t *length, loff_t *ppos)
4740 proc_dointvec(table, write, buffer, length, ppos);
4741 if (write)
4742 setup_per_zone_wmarks();
4743 return 0;
4746 #ifdef CONFIG_NUMA
4747 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4748 void __user *buffer, size_t *length, loff_t *ppos)
4750 struct zone *zone;
4751 int rc;
4753 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4754 if (rc)
4755 return rc;
4757 for_each_zone(zone)
4758 zone->min_unmapped_pages = (zone->present_pages *
4759 sysctl_min_unmapped_ratio) / 100;
4760 return 0;
4763 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4764 void __user *buffer, size_t *length, loff_t *ppos)
4766 struct zone *zone;
4767 int rc;
4769 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4770 if (rc)
4771 return rc;
4773 for_each_zone(zone)
4774 zone->min_slab_pages = (zone->present_pages *
4775 sysctl_min_slab_ratio) / 100;
4776 return 0;
4778 #endif
4781 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4782 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4783 * whenever sysctl_lowmem_reserve_ratio changes.
4785 * The reserve ratio obviously has absolutely no relation with the
4786 * minimum watermarks. The lowmem reserve ratio can only make sense
4787 * if in function of the boot time zone sizes.
4789 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4790 void __user *buffer, size_t *length, loff_t *ppos)
4792 proc_dointvec_minmax(table, write, buffer, length, ppos);
4793 setup_per_zone_lowmem_reserve();
4794 return 0;
4798 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4799 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4800 * can have before it gets flushed back to buddy allocator.
4803 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4804 void __user *buffer, size_t *length, loff_t *ppos)
4806 struct zone *zone;
4807 unsigned int cpu;
4808 int ret;
4810 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4811 if (!write || (ret == -EINVAL))
4812 return ret;
4813 for_each_populated_zone(zone) {
4814 for_each_online_cpu(cpu) {
4815 unsigned long high;
4816 high = zone->present_pages / percpu_pagelist_fraction;
4817 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4820 return 0;
4823 int hashdist = HASHDIST_DEFAULT;
4825 #ifdef CONFIG_NUMA
4826 static int __init set_hashdist(char *str)
4828 if (!str)
4829 return 0;
4830 hashdist = simple_strtoul(str, &str, 0);
4831 return 1;
4833 __setup("hashdist=", set_hashdist);
4834 #endif
4837 * allocate a large system hash table from bootmem
4838 * - it is assumed that the hash table must contain an exact power-of-2
4839 * quantity of entries
4840 * - limit is the number of hash buckets, not the total allocation size
4842 void *__init alloc_large_system_hash(const char *tablename,
4843 unsigned long bucketsize,
4844 unsigned long numentries,
4845 int scale,
4846 int flags,
4847 unsigned int *_hash_shift,
4848 unsigned int *_hash_mask,
4849 unsigned long limit)
4851 unsigned long long max = limit;
4852 unsigned long log2qty, size;
4853 void *table = NULL;
4855 /* allow the kernel cmdline to have a say */
4856 if (!numentries) {
4857 /* round applicable memory size up to nearest megabyte */
4858 numentries = nr_kernel_pages;
4859 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4860 numentries >>= 20 - PAGE_SHIFT;
4861 numentries <<= 20 - PAGE_SHIFT;
4863 /* limit to 1 bucket per 2^scale bytes of low memory */
4864 if (scale > PAGE_SHIFT)
4865 numentries >>= (scale - PAGE_SHIFT);
4866 else
4867 numentries <<= (PAGE_SHIFT - scale);
4869 /* Make sure we've got at least a 0-order allocation.. */
4870 if (unlikely(flags & HASH_SMALL)) {
4871 /* Makes no sense without HASH_EARLY */
4872 WARN_ON(!(flags & HASH_EARLY));
4873 if (!(numentries >> *_hash_shift)) {
4874 numentries = 1UL << *_hash_shift;
4875 BUG_ON(!numentries);
4877 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4878 numentries = PAGE_SIZE / bucketsize;
4880 numentries = roundup_pow_of_two(numentries);
4882 /* limit allocation size to 1/16 total memory by default */
4883 if (max == 0) {
4884 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4885 do_div(max, bucketsize);
4888 if (numentries > max)
4889 numentries = max;
4891 log2qty = ilog2(numentries);
4893 do {
4894 size = bucketsize << log2qty;
4895 if (flags & HASH_EARLY)
4896 table = alloc_bootmem_nopanic(size);
4897 else if (hashdist)
4898 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4899 else {
4901 * If bucketsize is not a power-of-two, we may free
4902 * some pages at the end of hash table which
4903 * alloc_pages_exact() automatically does
4905 if (get_order(size) < MAX_ORDER) {
4906 table = alloc_pages_exact(size, GFP_ATOMIC);
4907 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4910 } while (!table && size > PAGE_SIZE && --log2qty);
4912 if (!table)
4913 panic("Failed to allocate %s hash table\n", tablename);
4915 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4916 tablename,
4917 (1U << log2qty),
4918 ilog2(size) - PAGE_SHIFT,
4919 size);
4921 if (_hash_shift)
4922 *_hash_shift = log2qty;
4923 if (_hash_mask)
4924 *_hash_mask = (1 << log2qty) - 1;
4926 return table;
4929 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4930 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4931 unsigned long pfn)
4933 #ifdef CONFIG_SPARSEMEM
4934 return __pfn_to_section(pfn)->pageblock_flags;
4935 #else
4936 return zone->pageblock_flags;
4937 #endif /* CONFIG_SPARSEMEM */
4940 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4942 #ifdef CONFIG_SPARSEMEM
4943 pfn &= (PAGES_PER_SECTION-1);
4944 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4945 #else
4946 pfn = pfn - zone->zone_start_pfn;
4947 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4948 #endif /* CONFIG_SPARSEMEM */
4952 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4953 * @page: The page within the block of interest
4954 * @start_bitidx: The first bit of interest to retrieve
4955 * @end_bitidx: The last bit of interest
4956 * returns pageblock_bits flags
4958 unsigned long get_pageblock_flags_group(struct page *page,
4959 int start_bitidx, int end_bitidx)
4961 struct zone *zone;
4962 unsigned long *bitmap;
4963 unsigned long pfn, bitidx;
4964 unsigned long flags = 0;
4965 unsigned long value = 1;
4967 zone = page_zone(page);
4968 pfn = page_to_pfn(page);
4969 bitmap = get_pageblock_bitmap(zone, pfn);
4970 bitidx = pfn_to_bitidx(zone, pfn);
4972 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4973 if (test_bit(bitidx + start_bitidx, bitmap))
4974 flags |= value;
4976 return flags;
4980 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4981 * @page: The page within the block of interest
4982 * @start_bitidx: The first bit of interest
4983 * @end_bitidx: The last bit of interest
4984 * @flags: The flags to set
4986 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4987 int start_bitidx, int end_bitidx)
4989 struct zone *zone;
4990 unsigned long *bitmap;
4991 unsigned long pfn, bitidx;
4992 unsigned long value = 1;
4994 zone = page_zone(page);
4995 pfn = page_to_pfn(page);
4996 bitmap = get_pageblock_bitmap(zone, pfn);
4997 bitidx = pfn_to_bitidx(zone, pfn);
4998 VM_BUG_ON(pfn < zone->zone_start_pfn);
4999 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5001 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5002 if (flags & value)
5003 __set_bit(bitidx + start_bitidx, bitmap);
5004 else
5005 __clear_bit(bitidx + start_bitidx, bitmap);
5009 * This is designed as sub function...plz see page_isolation.c also.
5010 * set/clear page block's type to be ISOLATE.
5011 * page allocater never alloc memory from ISOLATE block.
5014 int set_migratetype_isolate(struct page *page)
5016 struct zone *zone;
5017 struct page *curr_page;
5018 unsigned long flags, pfn, iter;
5019 unsigned long immobile = 0;
5020 struct memory_isolate_notify arg;
5021 int notifier_ret;
5022 int ret = -EBUSY;
5023 int zone_idx;
5025 zone = page_zone(page);
5026 zone_idx = zone_idx(zone);
5028 spin_lock_irqsave(&zone->lock, flags);
5029 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5030 zone_idx == ZONE_MOVABLE) {
5031 ret = 0;
5032 goto out;
5035 pfn = page_to_pfn(page);
5036 arg.start_pfn = pfn;
5037 arg.nr_pages = pageblock_nr_pages;
5038 arg.pages_found = 0;
5041 * It may be possible to isolate a pageblock even if the
5042 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5043 * notifier chain is used by balloon drivers to return the
5044 * number of pages in a range that are held by the balloon
5045 * driver to shrink memory. If all the pages are accounted for
5046 * by balloons, are free, or on the LRU, isolation can continue.
5047 * Later, for example, when memory hotplug notifier runs, these
5048 * pages reported as "can be isolated" should be isolated(freed)
5049 * by the balloon driver through the memory notifier chain.
5051 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5052 notifier_ret = notifier_to_errno(notifier_ret);
5053 if (notifier_ret || !arg.pages_found)
5054 goto out;
5056 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5057 if (!pfn_valid_within(pfn))
5058 continue;
5060 curr_page = pfn_to_page(iter);
5061 if (!page_count(curr_page) || PageLRU(curr_page))
5062 continue;
5064 immobile++;
5067 if (arg.pages_found == immobile)
5068 ret = 0;
5070 out:
5071 if (!ret) {
5072 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5073 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5076 spin_unlock_irqrestore(&zone->lock, flags);
5077 if (!ret)
5078 drain_all_pages();
5079 return ret;
5082 void unset_migratetype_isolate(struct page *page)
5084 struct zone *zone;
5085 unsigned long flags;
5086 zone = page_zone(page);
5087 spin_lock_irqsave(&zone->lock, flags);
5088 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5089 goto out;
5090 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5091 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5092 out:
5093 spin_unlock_irqrestore(&zone->lock, flags);
5096 #ifdef CONFIG_MEMORY_HOTREMOVE
5098 * All pages in the range must be isolated before calling this.
5100 void
5101 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5103 struct page *page;
5104 struct zone *zone;
5105 int order, i;
5106 unsigned long pfn;
5107 unsigned long flags;
5108 /* find the first valid pfn */
5109 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5110 if (pfn_valid(pfn))
5111 break;
5112 if (pfn == end_pfn)
5113 return;
5114 zone = page_zone(pfn_to_page(pfn));
5115 spin_lock_irqsave(&zone->lock, flags);
5116 pfn = start_pfn;
5117 while (pfn < end_pfn) {
5118 if (!pfn_valid(pfn)) {
5119 pfn++;
5120 continue;
5122 page = pfn_to_page(pfn);
5123 BUG_ON(page_count(page));
5124 BUG_ON(!PageBuddy(page));
5125 order = page_order(page);
5126 #ifdef CONFIG_DEBUG_VM
5127 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5128 pfn, 1 << order, end_pfn);
5129 #endif
5130 list_del(&page->lru);
5131 rmv_page_order(page);
5132 zone->free_area[order].nr_free--;
5133 __mod_zone_page_state(zone, NR_FREE_PAGES,
5134 - (1UL << order));
5135 for (i = 0; i < (1 << order); i++)
5136 SetPageReserved((page+i));
5137 pfn += (1 << order);
5139 spin_unlock_irqrestore(&zone->lock, flags);
5141 #endif