Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / ic / adwlib.c
blobeb35f3d08be1c61f701559ff8cb7d468cf47d213
1 /* $NetBSD: adwlib.c,v 1.38 2007/10/19 11:59:45 ad Exp $ */
3 /*
4 * Low level routines for the Advanced Systems Inc. SCSI controllers chips
6 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 * All rights reserved.
9 * Author: Baldassare Dante Profeta <dante@mclink.it>
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
40 * Ported from:
43 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
45 * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 * All Rights Reserved.
48 * Redistribution and use in source and binary forms, with or without
49 * modification, are permitted provided that redistributions of source
50 * code retain the above copyright notice and this comment without
51 * modification.
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.38 2007/10/19 11:59:45 ad Exp $");
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
64 #include <sys/bus.h>
65 #include <sys/intr.h>
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
71 #include <dev/pci/pcidevs.h>
73 #include <uvm/uvm_extern.h>
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
80 /* Static Functions */
82 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
83 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
84 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
85 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
86 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
88 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
89 ADW_EEPROM *);
90 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
91 ADW_EEPROM *);
92 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
93 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
95 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
97 static void AdwSleepMilliSecond(u_int32_t);
98 static void AdwDelayMicroSecond(u_int32_t);
102 * EEPROM Configuration.
104 * All drivers should use this structure to set the default EEPROM
105 * configuration. The BIOS now uses this structure when it is built.
106 * Additional structure information can be found in adwlib.h where
107 * the structure is defined.
109 static const ADW_EEPROM adw_3550_Default_EEPROM = {
110 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
111 0x0000, /* 01 cfg_msw */
112 0xFFFF, /* 02 disc_enable */
113 0xFFFF, /* 03 wdtr_able */
114 { 0xFFFF }, /* 04 sdtr_able */
115 0xFFFF, /* 05 start_motor */
116 0xFFFF, /* 06 tagqng_able */
117 0xFFFF, /* 07 bios_scan */
118 0, /* 08 scam_tolerant */
119 7, /* 09 adapter_scsi_id */
120 0, /* bios_boot_delay */
121 3, /* 10 scsi_reset_delay */
122 0, /* bios_id_lun */
123 0, /* 11 termination */
124 0, /* reserved1 */
125 0xFFE7, /* 12 bios_ctrl */
126 { 0xFFFF }, /* 13 ultra_able */
127 { 0 }, /* 14 reserved2 */
128 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
129 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
130 0, /* 16 dvc_cntl */
131 { 0 }, /* 17 bug_fix */
132 { 0,0,0 }, /* 18-20 serial_number[3] */
133 0, /* 21 check_sum */
134 { /* 22-29 oem_name[16] */
135 0,0,0,0,0,0,0,0,
136 0,0,0,0,0,0,0,0
138 0, /* 30 dvc_err_code */
139 0, /* 31 adv_err_code */
140 0, /* 32 adv_err_addr */
141 0, /* 33 saved_dvc_err_code */
142 0, /* 34 saved_adv_err_code */
143 0, /* 35 saved_adv_err_addr */
144 { /* 36-55 reserved1[16] */
145 0,0,0,0,0,0,0,0,0,0,
146 0,0,0,0,0,0,0,0,0,0
148 0, /* 56 cisptr_lsw */
149 0, /* 57 cisprt_msw */
150 0, /* 58 subsysvid */
151 0, /* 59 subsysid */
152 { 0,0,0,0 } /* 60-63 reserved2[4] */
155 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
156 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
157 0x0000, /* 01 cfg_msw */
158 0xFFFF, /* 02 disc_enable */
159 0xFFFF, /* 03 wdtr_able */
160 { 0x4444 }, /* 04 sdtr_speed1 */
161 0xFFFF, /* 05 start_motor */
162 0xFFFF, /* 06 tagqng_able */
163 0xFFFF, /* 07 bios_scan */
164 0, /* 08 scam_tolerant */
165 7, /* 09 adapter_scsi_id */
166 0, /* bios_boot_delay */
167 3, /* 10 scsi_reset_delay */
168 0, /* bios_id_lun */
169 0, /* 11 termination_se */
170 0, /* termination_lvd */
171 0xFFE7, /* 12 bios_ctrl */
172 { 0x4444 }, /* 13 sdtr_speed2 */
173 { 0x4444 }, /* 14 sdtr_speed3 */
174 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
175 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
176 0, /* 16 dvc_cntl */
177 { 0x4444 }, /* 17 sdtr_speed4 */
178 { 0,0,0 }, /* 18-20 serial_number[3] */
179 0, /* 21 check_sum */
180 { /* 22-29 oem_name[16] */
181 0,0,0,0,0,0,0,0,
182 0,0,0,0,0,0,0,0
184 0, /* 30 dvc_err_code */
185 0, /* 31 adv_err_code */
186 0, /* 32 adv_err_addr */
187 0, /* 33 saved_dvc_err_code */
188 0, /* 34 saved_adv_err_code */
189 0, /* 35 saved_adv_err_addr */
190 { /* 36-55 reserved1[16] */
191 0,0,0,0,0,0,0,0,0,0,
192 0,0,0,0,0,0,0,0,0,0
194 0, /* 56 cisptr_lsw */
195 0, /* 57 cisprt_msw */
196 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
197 PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
198 { 0,0,0,0 } /* 60-63 reserved2[4] */
201 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
202 ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
203 0x0000, /* 01 cfg_msw */
204 0xFFFF, /* 02 disc_enable */
205 0xFFFF, /* 03 wdtr_able */
206 { 0x5555 }, /* 04 sdtr_speed1 */
207 0xFFFF, /* 05 start_motor */
208 0xFFFF, /* 06 tagqng_able */
209 0xFFFF, /* 07 bios_scan */
210 0, /* 08 scam_tolerant */
211 7, /* 09 adapter_scsi_id */
212 0, /* bios_boot_delay */
213 3, /* 10 scsi_reset_delay */
214 0, /* bios_id_lun */
215 0, /* 11 termination_se */
216 0, /* termination_lvd */
217 0xFFE7, /* 12 bios_ctrl */
218 { 0x5555 }, /* 13 sdtr_speed2 */
219 { 0x5555 }, /* 14 sdtr_speed3 */
220 ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
221 ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
222 0, /* 16 dvc_cntl */
223 { 0x5555 }, /* 17 sdtr_speed4 */
224 { 0,0,0 }, /* 18-20 serial_number[3] */
225 0, /* 21 check_sum */
226 { /* 22-29 oem_name[16] */
227 0,0,0,0,0,0,0,0,
228 0,0,0,0,0,0,0,0
230 0, /* 30 dvc_err_code */
231 0, /* 31 adv_err_code */
232 0, /* 32 adv_err_addr */
233 0, /* 33 saved_dvc_err_code */
234 0, /* 34 saved_adv_err_code */
235 0, /* 35 saved_adv_err_addr */
236 { /* 36-55 reserved1[16] */
237 0,0,0,0,0,0,0,0,0,0,
238 0,0,0,0,0,0,0,0,0,0
240 0, /* 56 cisptr_lsw */
241 0, /* 57 cisprt_msw */
242 PCI_VENDOR_ADVSYS, /* 58 subsysvid */
243 PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
244 { 0,0,0,0 } /* 60-63 reserved2[4] */
249 * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
250 * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
251 * all of this is done.
253 * For a non-fatal error return a warning code. If there are no warnings
254 * then 0 is returned.
256 * Note: Chip is stopped on entry.
259 AdwInitFromEEPROM(ADW_SOFTC *sc)
261 bus_space_tag_t iot = sc->sc_iot;
262 bus_space_handle_t ioh = sc->sc_ioh;
263 ADW_EEPROM eep_config;
264 u_int16_t warn_code;
265 u_int16_t sdtr_speed = 0;
266 u_int8_t tid, termination;
267 int i, j;
270 warn_code = 0;
273 * Read the board's EEPROM configuration.
275 * Set default values if a bad checksum is found.
277 * XXX - Don't handle big-endian access to EEPROM yet.
279 if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
280 warn_code |= ADW_WARN_EEPROM_CHKSUM;
283 * Set EEPROM default values.
285 switch(sc->chip_type) {
286 case ADW_CHIP_ASC3550:
287 eep_config = adw_3550_Default_EEPROM;
288 break;
289 case ADW_CHIP_ASC38C0800:
290 eep_config = adw_38C0800_Default_EEPROM;
291 break;
292 case ADW_CHIP_ASC38C1600:
293 eep_config = adw_38C1600_Default_EEPROM;
295 #if 0
296 XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
297 #endif
298 if (sc->cfg.pci_slot_info != 0) {
299 u_int8_t lsw_msb;
301 lsw_msb = eep_config.cfg_lsw >> 8;
303 * Set Function 1 EEPROM Word 0 MSB
305 * Clear the BIOS_ENABLE (bit 14) and
306 * INTAB (bit 11) EEPROM bits.
308 * Disable Bit 14 (BIOS_ENABLE) to fix
309 * SPARC Ultra 60 and old Mac system booting
310 * problem. The Expansion ROM must
311 * be disabled in Function 1 for these systems.
313 lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
314 ADW_EEPROM_INTAB) >> 8) & 0xFF);
316 * Set the INTAB (bit 11) if the GPIO 0 input
317 * indicates the Function 1 interrupt line is
318 * wired to INTA.
320 * Set/Clear Bit 11 (INTAB) from
321 * the GPIO bit 0 input:
322 * 1 - Function 1 intr line wired to INT A.
323 * 0 - Function 1 intr line wired to INT B.
325 * Note: Adapter boards always have Function 0
326 * wired to INTA.
327 * Put all 5 GPIO bits in input mode and then
328 * read their input values.
330 ADW_WRITE_BYTE_REGISTER(iot, ioh,
331 IOPB_GPIO_CNTL, 0);
332 if (ADW_READ_BYTE_REGISTER(iot, ioh,
333 IOPB_GPIO_DATA) & 0x01) {
335 * Function 1 interrupt wired to INTA;
336 * Set EEPROM bit.
338 lsw_msb |= (ADW_EEPROM_INTAB >> 8)
339 & 0xFF;
341 eep_config.cfg_lsw &= 0x00FF;
342 eep_config.cfg_lsw |= lsw_msb << 8;
344 break;
348 * Assume the 6 byte board serial number that was read
349 * from EEPROM is correct even if the EEPROM checksum
350 * failed.
352 for (i=2, j=1; i>=0; i--, j++) {
353 eep_config.serial_number[i] =
354 AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
357 AdwSetEEPROMConfig(iot, ioh, &eep_config);
360 * Set sc and sc->cfg variables from the EEPROM configuration
361 * that was read.
363 * This is the mapping of EEPROM fields to Adw Library fields.
365 sc->wdtr_able = eep_config.wdtr_able;
366 if (sc->chip_type == ADW_CHIP_ASC3550) {
367 sc->sdtr_able = eep_config.sdtr1.sdtr_able;
368 sc->ultra_able = eep_config.sdtr2.ultra_able;
369 } else {
370 sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
371 sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
372 sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
373 sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
375 sc->ppr_able = 0;
376 sc->tagqng_able = eep_config.tagqng_able;
377 sc->cfg.disc_enable = eep_config.disc_enable;
378 sc->max_host_qng = eep_config.max_host_qng;
379 sc->max_dvc_qng = eep_config.max_dvc_qng;
380 sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
381 sc->start_motor = eep_config.start_motor;
382 sc->scsi_reset_wait = eep_config.scsi_reset_delay;
383 sc->bios_ctrl = eep_config.bios_ctrl;
384 sc->no_scam = eep_config.scam_tolerant;
385 sc->cfg.serial1 = eep_config.serial_number[0];
386 sc->cfg.serial2 = eep_config.serial_number[1];
387 sc->cfg.serial3 = eep_config.serial_number[2];
389 if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
390 sc->chip_type == ADW_CHIP_ASC38C1600) {
391 sc->sdtr_able = 0;
392 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
393 if (tid == 0) {
394 sdtr_speed = sc->sdtr_speed1;
395 } else if (tid == 4) {
396 sdtr_speed = sc->sdtr_speed2;
397 } else if (tid == 8) {
398 sdtr_speed = sc->sdtr_speed3;
399 } else if (tid == 12) {
400 sdtr_speed = sc->sdtr_speed4;
402 if (sdtr_speed & ADW_MAX_TID) {
403 sc->sdtr_able |= (1 << tid);
405 sdtr_speed >>= 4;
410 * Set the host maximum queuing (max. 253, min. 16) and the per device
411 * maximum queuing (max. 63, min. 4).
413 if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
414 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
415 } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
417 /* If the value is zero, assume it is uninitialized. */
418 if (eep_config.max_host_qng == 0) {
419 eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
420 } else {
421 eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
425 if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
426 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
427 } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
428 /* If the value is zero, assume it is uninitialized. */
429 if (eep_config.max_dvc_qng == 0) {
430 eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
431 } else {
432 eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
437 * If 'max_dvc_qng' is greater than 'max_host_qng', then
438 * set 'max_dvc_qng' to 'max_host_qng'.
440 if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
441 eep_config.max_dvc_qng = eep_config.max_host_qng;
445 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
446 * values based on possibly adjusted EEPROM values.
448 sc->max_host_qng = eep_config.max_host_qng;
449 sc->max_dvc_qng = eep_config.max_dvc_qng;
453 * If the EEPROM 'termination' field is set to automatic (0), then set
454 * the ADV_DVC_CFG 'termination' field to automatic also.
456 * If the termination is specified with a non-zero 'termination'
457 * value check that a legal value is set and set the ADV_DVC_CFG
458 * 'termination' field appropriately.
461 switch(sc->chip_type) {
462 case ADW_CHIP_ASC3550:
463 sc->cfg.termination = 0; /* auto termination */
464 switch(eep_config.termination_se) {
465 case 3:
466 /* Enable manual control with low on / high on. */
467 sc->cfg.termination |= ADW_TERM_CTL_L;
468 case 2:
469 /* Enable manual control with low off / high on. */
470 sc->cfg.termination |= ADW_TERM_CTL_H;
471 case 1:
472 /* Enable manual control with low off / high off. */
473 sc->cfg.termination |= ADW_TERM_CTL_SEL;
474 case 0:
475 break;
476 default:
477 warn_code |= ADW_WARN_EEPROM_TERMINATION;
479 break;
481 case ADW_CHIP_ASC38C0800:
482 case ADW_CHIP_ASC38C1600:
483 switch(eep_config.termination_se) {
484 case 0:
485 /* auto termination for SE */
486 termination = 0;
487 break;
488 case 1:
489 /* Enable manual control with low off / high off. */
490 termination = 0;
491 break;
492 case 2:
493 /* Enable manual control with low off / high on. */
494 termination = ADW_TERM_SE_HI;
495 break;
496 case 3:
497 /* Enable manual control with low on / high on. */
498 termination = ADW_TERM_SE;
499 break;
500 default:
502 * The EEPROM 'termination_se' field contains a
503 * bad value. Use automatic termination instead.
505 termination = 0;
506 warn_code |= ADW_WARN_EEPROM_TERMINATION;
509 switch(eep_config.termination_lvd) {
510 case 0:
511 /* auto termination for LVD */
512 sc->cfg.termination = termination;
513 break;
514 case 1:
515 /* Enable manual control with low off / high off. */
516 sc->cfg.termination = termination;
517 break;
518 case 2:
519 /* Enable manual control with low off / high on. */
520 sc->cfg.termination = termination | ADW_TERM_LVD_HI;
521 break;
522 case 3:
523 /* Enable manual control with low on / high on. */
524 sc->cfg.termination = termination | ADW_TERM_LVD;
525 break;
526 default:
528 * The EEPROM 'termination_lvd' field contains a
529 * bad value. Use automatic termination instead.
531 sc->cfg.termination = termination;
532 warn_code |= ADW_WARN_EEPROM_TERMINATION;
534 break;
537 return warn_code;
542 * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
544 * On failure return the error code.
547 AdwInitDriver(ADW_SOFTC *sc)
549 bus_space_tag_t iot = sc->sc_iot;
550 bus_space_handle_t ioh = sc->sc_ioh;
551 u_int16_t error_code;
552 int word;
553 int i;
554 u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
555 0x40-0x8F. */
556 u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
557 u_int8_t max_cmd[ADW_MAX_TID + 1];
558 u_int8_t tid;
561 error_code = 0;
564 * Save the RISC memory BIOS region before writing the microcode.
565 * The BIOS may already be loaded and using its RISC LRAM region
566 * so its region must be saved and restored.
568 * Note: This code makes the assumption, which is currently true,
569 * that a chip reset does not clear RISC LRAM.
571 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
572 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
576 * Save current per TID negotiated values.
578 switch (sc->chip_type) {
579 case ADW_CHIP_ASC3550:
580 if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
582 u_int16_t bios_version, major, minor;
584 bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
585 ADW_MC_BIOSMEM) / 2];
586 major = (bios_version >> 12) & 0xF;
587 minor = (bios_version >> 8) & 0xF;
588 if (major < 3 || (major == 3 && minor == 1)) {
590 * BIOS 3.1 and earlier location of
591 * 'wdtr_able' variable.
593 ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
594 } else {
595 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
596 wdtr_able);
599 break;
601 case ADW_CHIP_ASC38C1600:
602 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
603 /* FALLTHROUGH */
604 case ADW_CHIP_ASC38C0800:
605 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
606 break;
608 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
609 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
610 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
611 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
612 max_cmd[tid]);
616 * Perform a RAM Built-In Self Test
618 if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
619 return error_code;
623 * Load the Microcode
626 if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
627 return error_code;
631 * Read microcode version and date.
633 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
634 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
637 * If the PCI Configuration Command Register "Parity Error Response
638 * Control" Bit was clear (0), then set the microcode variable
639 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
640 * to ignore DMA parity errors.
642 if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
643 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
644 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
645 word | CONTROL_FLAG_IGNORE_PERR);
648 switch (sc->chip_type) {
649 case ADW_CHIP_ASC3550:
651 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
652 * FIFO threshold of 128 bytes.
653 * This register is only accessible to the host.
655 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
656 START_CTL_EMFU | READ_CMD_MRM);
657 break;
659 case ADW_CHIP_ASC38C0800:
661 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
662 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
663 * cable detection and then we are able to read C_DET[3:0].
665 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
666 * Microcode Default Value' section below.
668 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
669 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
670 | ADW_DIS_TERM_DRV);
673 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
674 * START_CTL_TH [3:2] bits for the default FIFO threshold.
676 * Note: ASC-38C0800 FIFO threshold has been changed to
677 * 256 bytes.
679 * For DMA Errata #4 set the BC_THRESH_ENB bit.
681 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
682 BC_THRESH_ENB | FIFO_THRESH_80B
683 | START_CTL_TH | READ_CMD_MRM);
684 break;
686 case ADW_CHIP_ASC38C1600:
688 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
689 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
690 * cable detection and then we are able to read C_DET[3:0].
692 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
693 * Microcode Default Value' section below.
695 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
696 ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
697 | ADW_DIS_TERM_DRV);
700 * If the BIOS control flag AIPP (Asynchronous Information
701 * Phase Protection) disable bit is not set, then set the
702 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
703 * enable AIPP checking and encoding.
705 if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
706 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
707 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
708 word | CONTROL_FLAG_ENABLE_AIPP);
712 * For ASC-38C1600 use DMA_CFG0 default values:
713 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
715 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
716 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
717 break;
721 * Microcode operating variables for WDTR, SDTR, and command tag
722 * queuing will be set in AdvInquiryHandling() based on what a
723 * device reports it is capable of in Inquiry byte 7.
725 * If SCSI Bus Resets have been disabled, then directly set
726 * SDTR and WDTR from the EEPROM configuration. This will allow
727 * the BIOS and warm boot to work without a SCSI bus hang on
728 * the Inquiry caused by host and target mismatched DTR values.
729 * Without the SCSI Bus Reset, before an Inquiry a device can't
730 * be assumed to be in Asynchronous, Narrow mode.
732 if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
733 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
734 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
738 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
739 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
740 * bitmask. These values determine the maximum SDTR speed negotiated
741 * with a device.
743 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
744 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
745 * without determining here whether the device supports SDTR.
747 switch (sc->chip_type) {
748 case ADW_CHIP_ASC3550:
749 word = 0;
750 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
751 if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
752 /* Set Ultra speed for TID 'tid'. */
753 word |= (0x3 << (4 * (tid % 4)));
754 } else {
755 /* Set Fast speed for TID 'tid'. */
756 word |= (0x2 << (4 * (tid % 4)));
758 /* Check if done with sdtr_speed1. */
759 if (tid == 3) {
760 ADW_WRITE_WORD_LRAM(iot, ioh,
761 ADW_MC_SDTR_SPEED1, word);
762 word = 0;
763 /* Check if done with sdtr_speed2. */
764 } else if (tid == 7) {
765 ADW_WRITE_WORD_LRAM(iot, ioh,
766 ADW_MC_SDTR_SPEED2, word);
767 word = 0;
768 /* Check if done with sdtr_speed3. */
769 } else if (tid == 11) {
770 ADW_WRITE_WORD_LRAM(iot, ioh,
771 ADW_MC_SDTR_SPEED3, word);
772 word = 0;
773 /* Check if done with sdtr_speed4. */
774 } else if (tid == 15) {
775 ADW_WRITE_WORD_LRAM(iot, ioh,
776 ADW_MC_SDTR_SPEED4, word);
777 /* End of loop. */
782 * Set microcode operating variable for the
783 * disconnect per TID bitmask.
785 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
786 sc->cfg.disc_enable);
787 break;
789 case ADW_CHIP_ASC38C0800:
790 /* FALLTHROUGH */
791 case ADW_CHIP_ASC38C1600:
792 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
793 sc->cfg.disc_enable);
794 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
795 sc->sdtr_speed1);
796 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
797 sc->sdtr_speed2);
798 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
799 sc->sdtr_speed3);
800 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
801 sc->sdtr_speed4);
802 break;
807 * Set SCSI_CFG0 Microcode Default Value.
809 * The microcode will set the SCSI_CFG0 register using this value
810 * after it is started below.
812 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
813 ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
814 ADW_OUR_ID_EN | sc->chip_scsi_id);
817 switch(sc->chip_type) {
818 case ADW_CHIP_ASC3550:
819 error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
820 break;
822 case ADW_CHIP_ASC38C0800:
823 error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
824 break;
826 case ADW_CHIP_ASC38C1600:
827 error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
828 break;
830 if(error_code) {
831 return error_code;
835 * Set SEL_MASK Microcode Default Value
837 * The microcode will set the SEL_MASK register using this value
838 * after it is started below.
840 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
841 ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
844 * Create and Initialize Host->RISC Carrier lists
846 sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
847 sc->sc_control->carriers);
850 * Set-up the Host->RISC Initiator Command Queue (ICQ).
853 if ((sc->icq_sp = sc->carr_freelist) == NULL) {
854 return ADW_IERR_NO_CARRIER;
856 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
857 ASC_GET_CARRP(sc->icq_sp->next_ba));
860 * The first command issued will be placed in the stopper carrier.
862 sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
865 * Set RISC ICQ physical address start value.
867 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
870 * Initialize the COMMA register to the same value otherwise
871 * the RISC will prematurely detect a command is available.
873 if(sc->chip_type == ADW_CHIP_ASC38C1600) {
874 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
875 le32toh(sc->icq_sp->carr_ba));
879 * Set-up the RISC->Host Initiator Response Queue (IRQ).
881 if ((sc->irq_sp = sc->carr_freelist) == NULL) {
882 return ADW_IERR_NO_CARRIER;
884 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
885 ASC_GET_CARRP(sc->irq_sp->next_ba));
888 * The first command completed by the RISC will be placed in
889 * the stopper.
891 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
892 * completed the RISC will set the ASC_RQ_DONE bit.
894 sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
897 * Set RISC IRQ physical address start value.
899 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
900 sc->carr_pending_cnt = 0;
902 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
903 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
904 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
905 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
907 /* finally, finally, gentlemen, start your engine */
908 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
911 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
912 * Resets should be performed. The RISC has to be running
913 * to issue a SCSI Bus Reset.
915 if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
918 * If the BIOS Signature is present in memory, restore the
919 * BIOS Handshake Configuration Table and do not perform
920 * a SCSI Bus Reset.
922 if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
923 0x55AA) {
925 * Restore per TID negotiated values.
927 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
928 wdtr_able);
929 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
930 sdtr_able);
931 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
932 tagqng_able);
933 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
934 ADW_WRITE_BYTE_LRAM(iot, ioh,
935 ADW_MC_NUMBER_OF_MAX_CMD + tid,
936 max_cmd[tid]);
938 } else {
939 if (AdwResetCCB(sc) != ADW_TRUE) {
940 error_code = ADW_WARN_BUSRESET_ERROR;
945 return error_code;
950 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
952 int i;
953 u_int8_t byte;
956 if ((chip_type == ADW_CHIP_ASC38C0800) ||
957 (chip_type == ADW_CHIP_ASC38C1600)) {
959 * RAM BIST (RAM Built-In Self Test)
961 * Address : I/O base + offset 0x38h register (byte).
962 * Function: Bit 7-6(RW) : RAM mode
963 * Normal Mode : 0x00
964 * Pre-test Mode : 0x40
965 * RAM Test Mode : 0x80
966 * Bit 5 : unused
967 * Bit 4(RO) : Done bit
968 * Bit 3-0(RO) : Status
969 * Host Error : 0x08
970 * Int_RAM Error : 0x04
971 * RISC Error : 0x02
972 * SCSI Error : 0x01
973 * No Error : 0x00
975 * Note: RAM BIST code should be put right here, before loading
976 * the microcode and after saving the RISC memory BIOS region.
980 * LRAM Pre-test
982 * Write PRE_TEST_MODE (0x40) to register and wait for
983 * 10 milliseconds.
984 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
985 * return an error. Reset to NORMAL_MODE (0x00) and do again.
986 * If cannot reset to NORMAL_MODE, return an error too.
988 for (i = 0; i < 2; i++) {
989 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
990 PRE_TEST_MODE);
991 /* Wait for 10ms before reading back. */
992 AdwSleepMilliSecond(10);
993 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
994 if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
995 PRE_TEST_VALUE) {
996 return ADW_IERR_BIST_PRE_TEST;
999 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
1000 NORMAL_MODE);
1001 /* Wait for 10ms before reading back. */
1002 AdwSleepMilliSecond(10);
1003 if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1004 != NORMAL_VALUE) {
1005 return ADW_IERR_BIST_PRE_TEST;
1010 * LRAM Test - It takes about 1.5 ms to run through the test.
1012 * Write RAM_TEST_MODE (0x80) to register and wait for
1013 * 10 milliseconds.
1014 * If Done bit not set or Status not 0, save register byte,
1015 * set the err_code, and return an error.
1017 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1018 /* Wait for 10ms before checking status. */
1019 AdwSleepMilliSecond(10);
1021 byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1022 if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1023 /* Get here if Done bit not set or Status not 0. */
1024 return ADW_IERR_BIST_RAM_TEST;
1027 /* We need to reset back to normal mode after LRAM test passes*/
1028 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1031 return 0;
1036 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
1038 const u_int8_t *mcode_data;
1039 u_int32_t mcode_chksum;
1040 u_int16_t mcode_size;
1041 u_int32_t sum;
1042 u_int16_t code_sum;
1043 int begin_addr;
1044 int end_addr;
1045 int word;
1046 int adw_memsize;
1047 int adw_mcode_expanded_size;
1048 int i, j;
1051 switch(chip_type) {
1052 case ADW_CHIP_ASC3550:
1053 mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1054 mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1055 mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1056 adw_memsize = ADW_3550_MEMSIZE;
1057 break;
1059 case ADW_CHIP_ASC38C0800:
1060 mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1061 mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1062 mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1063 adw_memsize = ADW_38C0800_MEMSIZE;
1064 break;
1066 case ADW_CHIP_ASC38C1600:
1067 mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1068 mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1069 mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1070 adw_memsize = ADW_38C1600_MEMSIZE;
1071 break;
1073 default:
1074 return (EINVAL);
1078 * Write the microcode image to RISC memory starting at address 0.
1080 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1082 /* Assume the following compressed format of the microcode buffer:
1084 * 254 word (508 byte) table indexed by byte code followed
1085 * by the following byte codes:
1087 * 1-Byte Code:
1088 * 00: Emit word 0 in table.
1089 * 01: Emit word 1 in table.
1091 * FD: Emit word 253 in table.
1093 * Multi-Byte Code:
1094 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1095 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1097 word = 0;
1098 for (i = 253 * 2; i < mcode_size; i++) {
1099 if (mcode_data[i] == 0xff) {
1100 for (j = 0; j < mcode_data[i + 1]; j++) {
1101 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1102 (((u_int16_t)mcode_data[i + 3] << 8) |
1103 mcode_data[i + 2]));
1104 word++;
1106 i += 3;
1107 } else if (mcode_data[i] == 0xfe) {
1108 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1109 (((u_int16_t)mcode_data[i + 2] << 8) |
1110 mcode_data[i + 1]));
1111 i += 2;
1112 word++;
1113 } else {
1114 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1115 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1116 mcode_data[mcode_data[i] * 2]));
1117 word++;
1122 * Set 'word' for later use to clear the rest of memory and save
1123 * the expanded mcode size.
1125 word *= 2;
1126 adw_mcode_expanded_size = word;
1129 * Clear the rest of the Internal RAM.
1131 for (; word < adw_memsize; word += 2) {
1132 ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1136 * Verify the microcode checksum.
1138 sum = 0;
1139 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1141 for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1142 sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1145 if (sum != mcode_chksum) {
1146 return ADW_IERR_MCODE_CHKSUM;
1150 * Restore the RISC memory BIOS region.
1152 for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1153 if(chip_type == ADW_CHIP_ASC3550) {
1154 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1155 bios_mem[i]);
1156 } else {
1157 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1158 bios_mem[i]);
1163 * Calculate and write the microcode code checksum to the microcode
1164 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1166 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1167 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1168 code_sum = 0;
1169 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1170 for (word = begin_addr; word < end_addr; word += 2) {
1171 code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1173 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1176 * Set the chip type.
1178 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1180 return 0;
1185 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1187 u_int16_t scsi_cfg1;
1191 * Determine SCSI_CFG1 Microcode Default Value.
1193 * The microcode will set the SCSI_CFG1 register using this value
1194 * after it is started below.
1197 /* Read current SCSI_CFG1 Register value. */
1198 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1201 * If all three connectors are in use in ASC3550, return an error.
1203 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1204 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1205 return ADW_IERR_ILLEGAL_CONNECTION;
1209 * If the cable is reversed all of the SCSI_CTRL register signals
1210 * will be set. Check for and return an error if this condition is
1211 * found.
1213 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1214 return ADW_IERR_REVERSED_CABLE;
1218 * If this is a differential board and a single-ended device
1219 * is attached to one of the connectors, return an error.
1221 if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1222 (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1223 return ADW_IERR_SINGLE_END_DEVICE;
1227 * If automatic termination control is enabled, then set the
1228 * termination value based on a table listed in a_condor.h.
1230 * If manual termination was specified with an EEPROM setting
1231 * then 'termination' was set-up in AdwInitFromEEPROM() and
1232 * is ready to be 'ored' into SCSI_CFG1.
1234 if (cfg->termination == 0) {
1236 * The software always controls termination by setting
1237 * TERM_CTL_SEL.
1238 * If TERM_CTL_SEL were set to 0, the hardware would set
1239 * termination.
1241 cfg->termination |= ADW_TERM_CTL_SEL;
1243 switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1244 /* TERM_CTL_H: on, TERM_CTL_L: on */
1245 case 0x3: case 0x7: case 0xB:
1246 case 0xD: case 0xE: case 0xF:
1247 cfg->termination |=
1248 (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1249 break;
1251 /* TERM_CTL_H: on, TERM_CTL_L: off */
1252 case 0x1: case 0x5: case 0x9:
1253 case 0xA: case 0xC:
1254 cfg->termination |= ADW_TERM_CTL_H;
1255 break;
1257 /* TERM_CTL_H: off, TERM_CTL_L: off */
1258 case 0x2: case 0x6:
1259 break;
1264 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1266 scsi_cfg1 &= ~ADW_TERM_CTL;
1269 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1270 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1271 * referenced, because the hardware internally inverts
1272 * the Termination High and Low bits if TERM_POL is set.
1274 scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1277 * Set SCSI_CFG1 Microcode Default Value
1279 * Set filter value and possibly modified termination control
1280 * bits in the Microcode SCSI_CFG1 Register Value.
1282 * The microcode will set the SCSI_CFG1 register using this value
1283 * after it is started below.
1285 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1286 ADW_FLTR_DISABLE | scsi_cfg1);
1289 * Set MEM_CFG Microcode Default Value
1291 * The microcode will set the MEM_CFG register using this value
1292 * after it is started below.
1294 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1295 * are defined.
1297 * ASC-3550 has 8KB internal memory.
1299 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1300 ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1302 return 0;
1307 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1309 u_int16_t scsi_cfg1;
1313 * Determine SCSI_CFG1 Microcode Default Value.
1315 * The microcode will set the SCSI_CFG1 register using this value
1316 * after it is started below.
1319 /* Read current SCSI_CFG1 Register value. */
1320 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1323 * If the cable is reversed all of the SCSI_CTRL register signals
1324 * will be set. Check for and return an error if this condition is
1325 * found.
1327 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1328 return ADW_IERR_REVERSED_CABLE;
1332 * All kind of combinations of devices attached to one of four
1333 * connectors are acceptable except HVD device attached.
1334 * For example, LVD device can be attached to SE connector while
1335 * SE device attached to LVD connector.
1336 * If LVD device attached to SE connector, it only runs up to
1337 * Ultra speed.
1339 * If an HVD device is attached to one of LVD connectors, return
1340 * an error.
1341 * However, there is no way to detect HVD device attached to
1342 * SE connectors.
1344 if (scsi_cfg1 & ADW_HVD) {
1345 return ADW_IERR_HVD_DEVICE;
1349 * If either SE or LVD automatic termination control is enabled, then
1350 * set the termination value based on a table listed in a_condor.h.
1352 * If manual termination was specified with an EEPROM setting then
1353 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1354 * to be 'ored' into SCSI_CFG1.
1356 if ((cfg->termination & ADW_TERM_SE) == 0) {
1357 /* SE automatic termination control is enabled. */
1358 switch(scsi_cfg1 & ADW_C_DET_SE) {
1359 /* TERM_SE_HI: on, TERM_SE_LO: on */
1360 case 0x1: case 0x2: case 0x3:
1361 cfg->termination |= ADW_TERM_SE;
1362 break;
1364 /* TERM_SE_HI: on, TERM_SE_LO: off */
1365 case 0x0:
1366 cfg->termination |= ADW_TERM_SE_HI;
1367 break;
1371 if ((cfg->termination & ADW_TERM_LVD) == 0) {
1372 /* LVD automatic termination control is enabled. */
1373 switch(scsi_cfg1 & ADW_C_DET_LVD) {
1374 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1375 case 0x4: case 0x8: case 0xC:
1376 cfg->termination |= ADW_TERM_LVD;
1377 break;
1379 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1380 case 0x0:
1381 break;
1386 * Clear any set TERM_SE and TERM_LVD bits.
1388 scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1391 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1393 scsi_cfg1 |= (~cfg->termination & 0xF0);
1396 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1397 * HVD/LVD/SE bits and set possibly modified termination control bits
1398 * in the Microcode SCSI_CFG1 Register Value.
1400 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1401 ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1404 * Set SCSI_CFG1 Microcode Default Value
1406 * Set possibly modified termination control and reset DIS_TERM_DRV
1407 * bits in the Microcode SCSI_CFG1 Register Value.
1409 * The microcode will set the SCSI_CFG1 register using this value
1410 * after it is started below.
1412 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1415 * Set MEM_CFG Microcode Default Value
1417 * The microcode will set the MEM_CFG register using this value
1418 * after it is started below.
1420 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1421 * are defined.
1423 * ASC-38C0800 has 16KB internal memory.
1425 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1426 ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1428 return 0;
1433 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1435 u_int16_t scsi_cfg1;
1439 * Determine SCSI_CFG1 Microcode Default Value.
1441 * The microcode will set the SCSI_CFG1 register using this value
1442 * after it is started below.
1443 * Each ASC-38C1600 function has only two cable detect bits.
1444 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1447 /* Read current SCSI_CFG1 Register value. */
1448 scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1451 * If the cable is reversed all of the SCSI_CTRL register signals
1452 * will be set. Check for and return an error if this condition is
1453 * found.
1455 if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1456 return ADW_IERR_REVERSED_CABLE;
1460 * Each ASC-38C1600 function has two connectors. Only an HVD device
1461 * cannot be connected to either connector. An LVD device or SE device
1462 * may be connected to either connector. If an SE device is connected,
1463 * then at most Ultra speed (20 MHz) can be used on both connectors.
1465 * If an HVD device is attached, return an error.
1467 if (scsi_cfg1 & ADW_HVD) {
1468 return ADW_IERR_HVD_DEVICE;
1472 * Each function in the ASC-38C1600 uses only the SE cable detect and
1473 * termination because there are two connectors for each function.
1474 * Each function may use either LVD or SE mode.
1475 * Corresponding the SE automatic termination control EEPROM bits are
1476 * used for each function.
1477 * Each function has its own EEPROM. If SE automatic control is enabled
1478 * for the function, then set the termination value based on a table
1479 * listed in adwlib.h.
1481 * If manual termination is specified in the EEPROM for the function,
1482 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1483 * ready to be 'ored' into SCSI_CFG1.
1485 if ((cfg->termination & ADW_TERM_SE) == 0) {
1486 /* SE automatic termination control is enabled. */
1487 switch(scsi_cfg1 & ADW_C_DET_SE) {
1488 /* TERM_SE_HI: on, TERM_SE_LO: on */
1489 case 0x1: case 0x2: case 0x3:
1490 cfg->termination |= ADW_TERM_SE;
1491 break;
1493 case 0x0:
1494 #if 0
1495 /* !!!!TODO!!!! */
1496 if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1497 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1499 else
1500 #endif
1502 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1503 cfg->termination |= ADW_TERM_SE_HI;
1505 break;
1510 * Clear any set TERM_SE bits.
1512 scsi_cfg1 &= ~ADW_TERM_SE;
1515 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1517 scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1520 * Clear Big Endian and Terminator Polarity bits and set possibly
1521 * modified termination control bits in the Microcode SCSI_CFG1
1522 * Register Value.
1524 scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1527 * Set SCSI_CFG1 Microcode Default Value
1529 * Set possibly modified termination control bits in the Microcode
1530 * SCSI_CFG1 Register Value.
1532 * The microcode will set the SCSI_CFG1 register using this value
1533 * after it is started below.
1535 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1538 * Set MEM_CFG Microcode Default Value
1540 * The microcode will set the MEM_CFG register using this value
1541 * after it is started below.
1543 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1544 * are defined.
1546 * ASC-38C1600 has 32KB internal memory.
1548 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1549 ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1551 return 0;
1556 * Read EEPROM configuration into the specified buffer.
1558 * Return a checksum based on the EEPROM configuration read.
1560 static u_int16_t
1561 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1563 u_int16_t wval, chksum;
1564 u_int16_t *wbuf;
1565 int eep_addr;
1568 wbuf = (u_int16_t *) cfg_buf;
1569 chksum = 0;
1571 for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1572 eep_addr < ASC_EEP_DVC_CFG_END;
1573 eep_addr++, wbuf++) {
1574 wval = AdwReadEEPWord(iot, ioh, eep_addr);
1575 chksum += wval;
1576 *wbuf = wval;
1579 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1580 wbuf++;
1581 for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1582 eep_addr < ASC_EEP_MAX_WORD_ADDR;
1583 eep_addr++, wbuf++) {
1584 *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1587 return chksum;
1592 * Read the EEPROM from specified location
1594 static u_int16_t
1595 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
1597 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1598 ASC_EEP_CMD_READ | eep_word_addr);
1599 AdwWaitEEPCmd(iot, ioh);
1601 return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1606 * Wait for EEPROM command to complete
1608 static void
1609 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
1611 int eep_delay_ms;
1614 for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1615 if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1616 ASC_EEP_CMD_DONE) {
1617 break;
1619 AdwSleepMilliSecond(1);
1622 (void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1627 * Write the EEPROM from 'cfg_buf'.
1629 static void
1630 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1632 u_int16_t *wbuf;
1633 u_int16_t addr, chksum;
1636 wbuf = (u_int16_t *) cfg_buf;
1637 chksum = 0;
1639 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1640 AdwWaitEEPCmd(iot, ioh);
1643 * Write EEPROM from word 0 to word 20
1645 for (addr = ASC_EEP_DVC_CFG_BEGIN;
1646 addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1647 chksum += *wbuf;
1648 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1649 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1650 ASC_EEP_CMD_WRITE | addr);
1651 AdwWaitEEPCmd(iot, ioh);
1652 AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1656 * Write EEPROM checksum at word 21
1658 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1659 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1660 ASC_EEP_CMD_WRITE | addr);
1661 AdwWaitEEPCmd(iot, ioh);
1662 wbuf++; /* skip over check_sum */
1665 * Write EEPROM OEM name at words 22 to 29
1667 for (addr = ASC_EEP_DVC_CTL_BEGIN;
1668 addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1669 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1670 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1671 ASC_EEP_CMD_WRITE | addr);
1672 AdwWaitEEPCmd(iot, ioh);
1675 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1676 ASC_EEP_CMD_WRITE_DISABLE);
1677 AdwWaitEEPCmd(iot, ioh);
1679 return;
1684 * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1686 * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1687 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1688 * RISC to notify it a new command is ready to be executed.
1690 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1691 * set to SCSI_MAX_RETRY.
1693 * Return:
1694 * ADW_SUCCESS(1) - The request was successfully queued.
1695 * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1696 * request completes.
1697 * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1698 * host IC error.
1701 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
1703 bus_space_tag_t iot = sc->sc_iot;
1704 bus_space_handle_t ioh = sc->sc_ioh;
1705 ADW_CCB *ccb;
1706 u_int32_t req_paddr;
1707 ADW_CARRIER *new_carrp;
1710 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1712 if (scsiq->target_id > ADW_MAX_TID) {
1713 scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1714 scsiq->done_status = QD_WITH_ERROR;
1715 return ADW_ERROR;
1719 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1722 ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1725 * Allocate a carrier and initialize fields.
1727 if ((new_carrp = sc->carr_freelist) == NULL) {
1728 return ADW_BUSY;
1730 sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1731 ASC_GET_CARRP(new_carrp->next_ba));
1732 sc->carr_pending_cnt++;
1735 * Set the carrier to be a stopper by setting 'next_ba'
1736 * to the stopper value. The current stopper will be changed
1737 * below to point to the new stopper.
1739 new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1741 req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1742 ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1744 /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1745 scsiq->scsiq_rptr = htole32(req_paddr);
1748 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1749 * order during initialization.
1751 scsiq->carr_ba = sc->icq_sp->carr_ba;
1752 scsiq->carr_va = sc->icq_sp->carr_ba;
1755 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1756 * the microcode. The newly allocated stopper will become the new
1757 * stopper.
1759 sc->icq_sp->areq_ba = htole32(req_paddr);
1762 * Set the 'next_ba' pointer for the old stopper to be the
1763 * physical address of the new stopper. The RISC can only
1764 * follow physical addresses.
1766 sc->icq_sp->next_ba = new_carrp->carr_ba;
1768 #if ADW_DEBUG
1769 printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1770 sc->icq_sp->carr_id,
1771 sc->icq_sp->carr_ba,
1772 sc->icq_sp->areq_ba,
1773 sc->icq_sp->next_ba);
1774 #endif
1776 * Set the host adapter stopper pointer to point to the new carrier.
1778 sc->icq_sp = new_carrp;
1780 if (sc->chip_type == ADW_CHIP_ASC3550 ||
1781 sc->chip_type == ADW_CHIP_ASC38C0800) {
1783 * Tickle the RISC to tell it to read its Command Queue Head
1784 * pointer.
1786 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1787 if (sc->chip_type == ADW_CHIP_ASC3550) {
1789 * Clear the tickle value. In the ASC-3550 the RISC flag
1790 * command 'clr_tickle_a' does not work unless the host
1791 * value is cleared.
1793 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1794 ADW_TICKLE_NOP);
1796 } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1798 * Notify the RISC a carrier is ready by writing the physical
1799 * address of the new carrier stopper to the COMMA register.
1801 ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1802 le32toh(new_carrp->carr_ba));
1806 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1809 return ADW_SUCCESS;
1813 void
1814 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
1818 * Reset Chip.
1820 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1821 ADW_CTRL_REG_CMD_RESET);
1822 AdwSleepMilliSecond(100);
1823 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1824 ADW_CTRL_REG_CMD_WR_IO_REG);
1829 * Reset SCSI Bus and purge all outstanding requests.
1831 * Return Value:
1832 * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1833 * ADW_FALSE(0) - Microcode command failed.
1834 * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1835 * may be hung which requires driver recovery.
1838 AdwResetCCB(ADW_SOFTC *sc)
1840 int status;
1843 * Send the SCSI Bus Reset idle start idle command which asserts
1844 * the SCSI Bus Reset signal.
1846 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1847 if (status != ADW_TRUE) {
1848 return status;
1852 * Delay for the specified SCSI Bus Reset hold time.
1854 * The hold time delay is done on the host because the RISC has no
1855 * microsecond accurate timer.
1857 AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1860 * Send the SCSI Bus Reset end idle command which de-asserts
1861 * the SCSI Bus Reset signal and purges any pending requests.
1863 status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1864 if (status != ADW_TRUE) {
1865 return status;
1868 AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1870 return status;
1875 * Reset chip and SCSI Bus.
1877 * Return Value:
1878 * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1879 * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1882 AdwResetSCSIBus(ADW_SOFTC *sc)
1884 bus_space_tag_t iot = sc->sc_iot;
1885 bus_space_handle_t ioh = sc->sc_ioh;
1886 int status;
1887 u_int16_t wdtr_able, sdtr_able, tagqng_able;
1888 u_int16_t ppr_able = 0; /* XXX: gcc */
1889 u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1890 u_int16_t bios_sig;
1894 * Save current per TID negotiated values.
1896 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1897 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1898 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1899 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1901 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1902 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1903 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1904 max_cmd[tid]);
1908 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1909 * by clearing the BIOS signature word.
1910 * The initialization functions assumes a SCSI Bus Reset is not
1911 * needed if the BIOS signature word is present.
1913 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1914 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1917 * Stop chip and reset it.
1919 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1920 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1921 ADW_CTRL_REG_CMD_RESET);
1922 AdwSleepMilliSecond(100);
1923 ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1924 ADW_CTRL_REG_CMD_WR_IO_REG);
1927 * Reset Adv Library error code, if any, and try
1928 * re-initializing the chip.
1929 * Then translate initialization return value to status value.
1931 status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1934 * Restore the BIOS signature word.
1936 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1939 * Restore per TID negotiated values.
1941 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1942 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1943 if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1944 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1946 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1947 for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1948 ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1949 max_cmd[tid]);
1952 return status;
1957 * Adv Library Interrupt Service Routine
1959 * This function is called by a driver's interrupt service routine.
1960 * The function disables and re-enables interrupts.
1962 * When a microcode idle command is completed, the ADV_DVC_VAR
1963 * 'idle_cmd_done' field is set to ADW_TRUE.
1965 * Note: AdwISR() can be called when interrupts are disabled or even
1966 * when there is no hardware interrupt condition present. It will
1967 * always check for completed idle commands and microcode requests.
1968 * This is an important feature that shouldn't be changed because it
1969 * allows commands to be completed from polling mode loops.
1971 * Return:
1972 * ADW_TRUE(1) - interrupt was pending
1973 * ADW_FALSE(0) - no interrupt was pending
1976 AdwISR(ADW_SOFTC *sc)
1978 bus_space_tag_t iot = sc->sc_iot;
1979 bus_space_handle_t ioh = sc->sc_ioh;
1980 u_int8_t int_stat;
1981 ADW_CARRIER *free_carrp/*, *ccb_carr*/;
1982 u_int32_t irq_next_pa;
1983 ADW_SCSI_REQ_Q *scsiq;
1984 ADW_CCB *ccb;
1985 int s;
1988 s = splbio();
1990 /* Reading the register clears the interrupt. */
1991 int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
1993 if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
1994 ADW_INTR_STATUS_INTRC)) == 0) {
1995 splx(s);
1996 return ADW_FALSE;
2000 * Notify the driver of an asynchronous microcode condition by
2001 * calling the ADV_DVC_VAR.async_callback function. The function
2002 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2004 if (int_stat & ADW_INTR_STATUS_INTRB) {
2005 u_int8_t intrb_code;
2007 ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2009 if (sc->chip_type == ADW_CHIP_ASC3550 ||
2010 sc->chip_type == ADW_CHIP_ASC38C0800) {
2011 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2012 sc->carr_pending_cnt != 0) {
2013 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2014 IOPB_TICKLE, ADW_TICKLE_A);
2015 if (sc->chip_type == ADW_CHIP_ASC3550) {
2016 ADW_WRITE_BYTE_REGISTER(iot, ioh,
2017 IOPB_TICKLE, ADW_TICKLE_NOP);
2022 if (sc->async_callback != 0) {
2023 (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2028 * Check if the IRQ stopper carrier contains a completed request.
2030 while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2032 #if ADW_DEBUG
2033 printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2034 sc->irq_sp->carr_id,
2035 sc->irq_sp->carr_ba,
2036 sc->irq_sp->areq_ba,
2037 sc->irq_sp->next_ba);
2038 #endif
2040 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2041 * structure.
2042 * The RISC will have set 'areq_ba' to a virtual address.
2044 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2045 * field to the carrier ADV_CARR_T.areq_ba field.
2046 * The conversion below complements the conversion of
2047 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2049 ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2050 scsiq = &ccb->scsiq;
2051 scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2054 * Request finished with good status and the queue was not
2055 * DMAed to host memory by the firmware. Set all status fields
2056 * to indicate good status.
2058 if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2059 scsiq->done_status = QD_NO_ERROR;
2060 scsiq->host_status = scsiq->scsi_status = 0;
2061 scsiq->data_cnt = 0L;
2065 * Advance the stopper pointer to the next carrier
2066 * ignoring the lower four bits. Free the previous
2067 * stopper carrier.
2069 free_carrp = sc->irq_sp;
2070 sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2072 free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2073 : sc->carr_freelist->carr_ba;
2074 sc->carr_freelist = free_carrp;
2075 sc->carr_pending_cnt--;
2078 * Clear request microcode control flag.
2080 scsiq->cntl = 0;
2083 * Check Condition handling
2086 * If the command that completed was a SCSI INQUIRY and
2087 * LUN 0 was sent the command, then process the INQUIRY
2088 * command information for the device.
2090 if (scsiq->done_status == QD_NO_ERROR &&
2091 scsiq->cdb[0] == INQUIRY &&
2092 scsiq->target_lun == 0) {
2093 AdwInquiryHandling(sc, scsiq);
2097 * Notify the driver of the completed request by passing
2098 * the ADW_SCSI_REQ_Q pointer to its callback function.
2100 (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2102 * Note: After the driver callback function is called, 'scsiq'
2103 * can no longer be referenced.
2105 * Fall through and continue processing other completed
2106 * requests...
2110 splx(s);
2112 return ADW_TRUE;
2117 * Send an idle command to the chip and wait for completion.
2119 * Command completion is polled for once per microsecond.
2121 * The function can be called from anywhere including an interrupt handler.
2122 * But the function is not re-entrant, so it uses the splbio/splx()
2123 * functions to prevent reentrancy.
2125 * Return Values:
2126 * ADW_TRUE - command completed successfully
2127 * ADW_FALSE - command failed
2128 * ADW_ERROR - command timed out
2131 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
2133 bus_space_tag_t iot = sc->sc_iot;
2134 bus_space_handle_t ioh = sc->sc_ioh;
2135 u_int16_t result;
2136 u_int32_t i, j, s;
2138 s = splbio();
2141 * Clear the idle command status which is set by the microcode
2142 * to a non-zero value to indicate when the command is completed.
2144 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2147 * Write the idle command value after the idle command parameter
2148 * has been written to avoid a race condition. If the order is not
2149 * followed, the microcode may process the idle command before the
2150 * parameters have been written to LRAM.
2152 ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2153 idle_cmd_parameter);
2154 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2157 * Tickle the RISC to tell it to process the idle command.
2159 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2160 if (sc->chip_type == ADW_CHIP_ASC3550) {
2162 * Clear the tickle value. In the ASC-3550 the RISC flag
2163 * command 'clr_tickle_b' does not work unless the host
2164 * value is cleared.
2166 ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2169 /* Wait for up to 100 millisecond for the idle command to timeout. */
2170 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2171 /* Poll once each microsecond for command completion. */
2172 for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2173 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2174 result);
2175 if (result != 0) {
2176 splx(s);
2177 return result;
2179 AdwDelayMicroSecond(1);
2183 splx(s);
2184 return ADW_ERROR;
2189 * Inquiry Information Byte 7 Handling
2191 * Handle SCSI Inquiry Command information for a device by setting
2192 * microcode operating variables that affect WDTR, SDTR, and Tag
2193 * Queuing.
2195 static void
2196 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
2198 #ifndef FAILSAFE
2199 bus_space_tag_t iot = sc->sc_iot;
2200 bus_space_handle_t ioh = sc->sc_ioh;
2201 u_int8_t tid;
2202 struct scsipi_inquiry_data *inq;
2203 u_int16_t tidmask;
2204 u_int16_t cfg_word;
2208 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2209 * to be available.
2211 * If less than 8 bytes of INQUIRY information were requested or less
2212 * than 8 bytes were transferred, then return. cdb[4] is the request
2213 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2214 * microcode to the transfer residual count.
2217 if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2218 return;
2221 tid = scsiq->target_id;
2223 inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2226 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2228 if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2229 ((inq->version & SID_ANSII) < 2)) {
2230 return;
2231 } else {
2233 * INQUIRY Byte 7 Handling
2235 * Use a device's INQUIRY byte 7 to determine whether it
2236 * supports WDTR, SDTR, and Tag Queuing. If the feature
2237 * is enabled in the EEPROM and the device supports the
2238 * feature, then enable it in the microcode.
2241 tidmask = ADW_TID_TO_TIDMASK(tid);
2244 * Wide Transfers
2246 * If the EEPROM enabled WDTR for the device and the device
2247 * supports wide bus (16 bit) transfers, then turn on the
2248 * device's 'wdtr_able' bit and write the new value to the
2249 * microcode.
2251 #ifdef SCSI_ADW_WDTR_DISABLE
2252 if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2253 #endif /* SCSI_ADW_WDTR_DISABLE */
2254 if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2255 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2256 cfg_word);
2257 if ((cfg_word & tidmask) == 0) {
2258 cfg_word |= tidmask;
2259 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2260 cfg_word);
2263 * Clear the microcode "SDTR negotiation" and
2264 * "WDTR negotiation" done indicators for the
2265 * target to cause it to negotiate with the new
2266 * setting set above.
2267 * WDTR when accepted causes the target to enter
2268 * asynchronous mode, so SDTR must be negotiated
2270 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2271 cfg_word);
2272 cfg_word &= ~tidmask;
2273 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2274 cfg_word);
2275 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2276 cfg_word);
2277 cfg_word &= ~tidmask;
2278 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2279 cfg_word);
2284 * Synchronous Transfers
2286 * If the EEPROM enabled SDTR for the device and the device
2287 * supports synchronous transfers, then turn on the device's
2288 * 'sdtr_able' bit. Write the new value to the microcode.
2290 #ifdef SCSI_ADW_SDTR_DISABLE
2291 if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2292 #endif /* SCSI_ADW_SDTR_DISABLE */
2293 if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2294 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2295 if ((cfg_word & tidmask) == 0) {
2296 cfg_word |= tidmask;
2297 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2298 cfg_word);
2301 * Clear the microcode "SDTR negotiation"
2302 * done indicator for the target to cause it
2303 * to negotiate with the new setting set above.
2305 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2306 cfg_word);
2307 cfg_word &= ~tidmask;
2308 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2309 cfg_word);
2313 * If the Inquiry data included enough space for the SPI-3
2314 * Clocking field, then check if DT mode is supported.
2316 if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2317 (scsiq->cdb[4] >= 57 ||
2318 (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2320 * PPR (Parallel Protocol Request) Capable
2322 * If the device supports DT mode, then it must be
2323 * PPR capable.
2324 * The PPR message will be used in place of the SDTR
2325 * and WDTR messages to negotiate synchronous speed
2326 * and offset, transfer width, and protocol options.
2328 if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2329 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2330 sc->ppr_able);
2331 sc->ppr_able |= tidmask;
2332 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2333 sc->ppr_able);
2338 * If the EEPROM enabled Tag Queuing for the device and the
2339 * device supports Tag Queueing, then turn on the device's
2340 * 'tagqng_enable' bit in the microcode and set the microcode
2341 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2342 * value.
2344 * Tag Queuing is disabled for the BIOS which runs in polled
2345 * mode and would see no benefit from Tag Queuing. Also by
2346 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2347 * bugs will at least work with the BIOS.
2349 #ifdef SCSI_ADW_TAGQ_DISABLE
2350 if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2351 #endif /* SCSI_ADW_TAGQ_DISABLE */
2352 if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2353 ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2354 cfg_word);
2355 cfg_word |= tidmask;
2356 ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2357 cfg_word);
2359 ADW_WRITE_BYTE_LRAM(iot, ioh,
2360 ADW_MC_NUMBER_OF_MAX_CMD + tid,
2361 sc->max_dvc_qng);
2364 #endif /* FAILSAFE */
2368 static void
2369 AdwSleepMilliSecond(u_int32_t n)
2372 DELAY(n * 1000);
2376 static void
2377 AdwDelayMicroSecond(u_int32_t n)
2380 DELAY(n);