Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / ic / hme.c
blob5179db0d8e881d606f6d50e763ce320bd60dd246
1 /* $NetBSD: hme.c,v 1.83 2009/09/19 04:55:45 tsutsui Exp $ */
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * HME Ethernet module driver.
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.83 2009/09/19 04:55:45 tsutsui Exp $");
39 /* #define HMEDEBUG */
41 #include "opt_inet.h"
42 #include "bpfilter.h"
43 #include "rnd.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/socket.h>
51 #include <sys/device.h>
52 #include <sys/malloc.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #if NRND > 0
56 #include <sys/rnd.h>
57 #endif
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
64 #ifdef INET
65 #include <net/if_vlanvar.h>
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
81 #include <dev/mii/mii.h>
82 #include <dev/mii/miivar.h>
84 #include <sys/bus.h>
86 #include <dev/ic/hmereg.h>
87 #include <dev/ic/hmevar.h>
89 static void hme_start(struct ifnet *);
90 static void hme_stop(struct ifnet *, int);
91 static int hme_ioctl(struct ifnet *, u_long, void *);
92 static void hme_tick(void *);
93 static void hme_watchdog(struct ifnet *);
94 static bool hme_shutdown(device_t, int);
95 static int hme_init(struct ifnet *);
96 static void hme_meminit(struct hme_softc *);
97 static void hme_mifinit(struct hme_softc *);
98 static void hme_reset(struct hme_softc *);
99 static void hme_chipreset(struct hme_softc *);
100 static void hme_setladrf(struct hme_softc *);
102 /* MII methods & callbacks */
103 static int hme_mii_readreg(device_t, int, int);
104 static void hme_mii_writereg(device_t, int, int, int);
105 static void hme_mii_statchg(device_t);
107 static int hme_mediachange(struct ifnet *);
109 static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
110 static int hme_put(struct hme_softc *, int, struct mbuf *);
111 static void hme_read(struct hme_softc *, int, uint32_t);
112 static int hme_eint(struct hme_softc *, u_int);
113 static int hme_rint(struct hme_softc *);
114 static int hme_tint(struct hme_softc *);
116 #if 0
117 /* Default buffer copy routines */
118 static void hme_copytobuf_contig(struct hme_softc *, void *, int, int);
119 static void hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
120 #endif
122 void
123 hme_config(struct hme_softc *sc)
125 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
126 struct mii_data *mii = &sc->sc_mii;
127 struct mii_softc *child;
128 bus_dma_tag_t dmatag = sc->sc_dmatag;
129 bus_dma_segment_t seg;
130 bus_size_t size;
131 int rseg, error;
134 * HME common initialization.
136 * hme_softc fields that must be initialized by the front-end:
138 * the bus tag:
139 * sc_bustag
141 * the DMA bus tag:
142 * sc_dmatag
144 * the bus handles:
145 * sc_seb (Shared Ethernet Block registers)
146 * sc_erx (Receiver Unit registers)
147 * sc_etx (Transmitter Unit registers)
148 * sc_mac (MAC registers)
149 * sc_mif (Management Interface registers)
151 * the maximum bus burst size:
152 * sc_burst
154 * (notyet:DMA capable memory for the ring descriptors & packet buffers:
155 * rb_membase, rb_dmabase)
157 * the local Ethernet address:
158 * sc_enaddr
162 /* Make sure the chip is stopped. */
163 hme_chipreset(sc);
166 * Allocate descriptors and buffers
167 * XXX - do all this differently.. and more configurably,
168 * eg. use things as `dma_load_mbuf()' on transmit,
169 * and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
170 * all the time) on the receiver side.
172 * Note: receive buffers must be 64-byte aligned.
173 * Also, apparently, the buffers must extend to a DMA burst
174 * boundary beyond the maximum packet size.
176 #define _HME_NDESC 128
177 #define _HME_BUFSZ 1600
179 /* Note: the # of descriptors must be a multiple of 16 */
180 sc->sc_rb.rb_ntbuf = _HME_NDESC;
181 sc->sc_rb.rb_nrbuf = _HME_NDESC;
184 * Allocate DMA capable memory
185 * Buffer descriptors must be aligned on a 2048 byte boundary;
186 * take this into account when calculating the size. Note that
187 * the maximum number of descriptors (256) occupies 2048 bytes,
188 * so we allocate that much regardless of _HME_NDESC.
190 size = 2048 + /* TX descriptors */
191 2048 + /* RX descriptors */
192 sc->sc_rb.rb_ntbuf * _HME_BUFSZ + /* TX buffers */
193 sc->sc_rb.rb_nrbuf * _HME_BUFSZ; /* RX buffers */
195 /* Allocate DMA buffer */
196 if ((error = bus_dmamem_alloc(dmatag, size,
197 2048, 0,
198 &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
199 aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
200 error);
201 return;
204 /* Map DMA memory in CPU addressable space */
205 if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
206 &sc->sc_rb.rb_membase,
207 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
208 aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
209 error);
210 bus_dmamap_unload(dmatag, sc->sc_dmamap);
211 bus_dmamem_free(dmatag, &seg, rseg);
212 return;
215 if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
216 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
217 aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
218 error);
219 return;
222 /* Load the buffer */
223 if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
224 sc->sc_rb.rb_membase, size, NULL,
225 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
226 aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
227 error);
228 bus_dmamem_free(dmatag, &seg, rseg);
229 return;
231 sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;
233 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
234 ether_sprintf(sc->sc_enaddr));
236 /* Initialize ifnet structure. */
237 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
238 ifp->if_softc = sc;
239 ifp->if_start = hme_start;
240 ifp->if_stop = hme_stop;
241 ifp->if_ioctl = hme_ioctl;
242 ifp->if_init = hme_init;
243 ifp->if_watchdog = hme_watchdog;
244 ifp->if_flags =
245 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
246 sc->sc_if_flags = ifp->if_flags;
247 ifp->if_capabilities |=
248 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
249 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
250 IFQ_SET_READY(&ifp->if_snd);
252 /* Initialize ifmedia structures and MII info */
253 mii->mii_ifp = ifp;
254 mii->mii_readreg = hme_mii_readreg;
255 mii->mii_writereg = hme_mii_writereg;
256 mii->mii_statchg = hme_mii_statchg;
258 sc->sc_ethercom.ec_mii = mii;
259 ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);
261 hme_mifinit(sc);
264 * Some HME's have an MII connector, as well as RJ45. Try attaching
265 * the RJ45 (internal) PHY first, so that the MII PHY is always
266 * instance 1.
268 mii_attach(sc->sc_dev, mii, 0xffffffff,
269 HME_PHYAD_INTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
270 mii_attach(sc->sc_dev, mii, 0xffffffff,
271 HME_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_FORCEANEG);
273 child = LIST_FIRST(&mii->mii_phys);
274 if (child == NULL) {
275 /* No PHY attached */
276 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
277 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
278 } else {
280 * Walk along the list of attached MII devices and
281 * establish an `MII instance' to `phy number'
282 * mapping. We'll use this mapping in media change
283 * requests to determine which phy to use to program
284 * the MIF configuration register.
286 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
288 * Note: we support just two PHYs: the built-in
289 * internal device and an external on the MII
290 * connector.
292 if (child->mii_phy > 1 || child->mii_inst > 1) {
293 aprint_error_dev(sc->sc_dev,
294 "cannot accommodate MII device %s"
295 " at phy %d, instance %d\n",
296 device_xname(child->mii_dev),
297 child->mii_phy, child->mii_inst);
298 continue;
301 sc->sc_phys[child->mii_inst] = child->mii_phy;
305 * Set the default media to auto negotiation if the phy has
306 * the auto negotiation capability.
307 * XXX; What to do otherwise?
309 if (ifmedia_match(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0))
310 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
312 else
313 ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
317 /* claim 802.1q capability */
318 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
320 /* Attach the interface. */
321 if_attach(ifp);
322 ether_ifattach(ifp, sc->sc_enaddr);
324 if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
325 pmf_class_network_register(sc->sc_dev, ifp);
326 else
327 aprint_error_dev(sc->sc_dev,
328 "couldn't establish power handler\n");
330 #if NRND > 0
331 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
332 RND_TYPE_NET, 0);
333 #endif
335 callout_init(&sc->sc_tick_ch, 0);
338 void
339 hme_tick(void *arg)
341 struct hme_softc *sc = arg;
342 int s;
344 s = splnet();
345 mii_tick(&sc->sc_mii);
346 splx(s);
348 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
351 void
352 hme_reset(struct hme_softc *sc)
354 int s;
356 s = splnet();
357 (void)hme_init(&sc->sc_ethercom.ec_if);
358 splx(s);
361 void
362 hme_chipreset(struct hme_softc *sc)
364 bus_space_tag_t t = sc->sc_bustag;
365 bus_space_handle_t seb = sc->sc_seb;
366 int n;
368 /* Mask all interrupts */
369 bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);
371 /* Reset transmitter and receiver */
372 bus_space_write_4(t, seb, HME_SEBI_RESET,
373 (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));
375 for (n = 0; n < 20; n++) {
376 uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
377 if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
378 return;
379 DELAY(20);
382 printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
385 void
386 hme_stop(struct ifnet *ifp, int disable)
388 struct hme_softc *sc;
390 sc = ifp->if_softc;
392 ifp->if_timer = 0;
393 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
395 callout_stop(&sc->sc_tick_ch);
396 mii_down(&sc->sc_mii);
398 hme_chipreset(sc);
401 void
402 hme_meminit(struct hme_softc *sc)
404 bus_addr_t txbufdma, rxbufdma;
405 bus_addr_t dma;
406 char *p;
407 unsigned int ntbuf, nrbuf, i;
408 struct hme_ring *hr = &sc->sc_rb;
410 p = hr->rb_membase;
411 dma = hr->rb_dmabase;
413 ntbuf = hr->rb_ntbuf;
414 nrbuf = hr->rb_nrbuf;
417 * Allocate transmit descriptors
419 hr->rb_txd = p;
420 hr->rb_txddma = dma;
421 p += ntbuf * HME_XD_SIZE;
422 dma += ntbuf * HME_XD_SIZE;
423 /* We have reserved descriptor space until the next 2048 byte boundary.*/
424 dma = (bus_addr_t)roundup((u_long)dma, 2048);
425 p = (void *)roundup((u_long)p, 2048);
428 * Allocate receive descriptors
430 hr->rb_rxd = p;
431 hr->rb_rxddma = dma;
432 p += nrbuf * HME_XD_SIZE;
433 dma += nrbuf * HME_XD_SIZE;
434 /* Again move forward to the next 2048 byte boundary.*/
435 dma = (bus_addr_t)roundup((u_long)dma, 2048);
436 p = (void *)roundup((u_long)p, 2048);
440 * Allocate transmit buffers
442 hr->rb_txbuf = p;
443 txbufdma = dma;
444 p += ntbuf * _HME_BUFSZ;
445 dma += ntbuf * _HME_BUFSZ;
448 * Allocate receive buffers
450 hr->rb_rxbuf = p;
451 rxbufdma = dma;
452 p += nrbuf * _HME_BUFSZ;
453 dma += nrbuf * _HME_BUFSZ;
456 * Initialize transmit buffer descriptors
458 for (i = 0; i < ntbuf; i++) {
459 HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
460 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
464 * Initialize receive buffer descriptors
466 for (i = 0; i < nrbuf; i++) {
467 HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
468 HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
469 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
472 hr->rb_tdhead = hr->rb_tdtail = 0;
473 hr->rb_td_nbusy = 0;
474 hr->rb_rdtail = 0;
478 * Initialization of interface; set up initialization block
479 * and transmit/receive descriptor rings.
482 hme_init(struct ifnet *ifp)
484 struct hme_softc *sc = ifp->if_softc;
485 bus_space_tag_t t = sc->sc_bustag;
486 bus_space_handle_t seb = sc->sc_seb;
487 bus_space_handle_t etx = sc->sc_etx;
488 bus_space_handle_t erx = sc->sc_erx;
489 bus_space_handle_t mac = sc->sc_mac;
490 uint8_t *ea;
491 uint32_t v;
492 int rc;
495 * Initialization sequence. The numbered steps below correspond
496 * to the sequence outlined in section 6.3.5.1 in the Ethernet
497 * Channel Engine manual (part of the PCIO manual).
498 * See also the STP2002-STQ document from Sun Microsystems.
501 /* step 1 & 2. Reset the Ethernet Channel */
502 hme_stop(ifp, 0);
504 /* Re-initialize the MIF */
505 hme_mifinit(sc);
507 /* Call MI reset function if any */
508 if (sc->sc_hwreset)
509 (*sc->sc_hwreset)(sc);
511 #if 0
512 /* Mask all MIF interrupts, just in case */
513 bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
514 #endif
516 /* step 3. Setup data structures in host memory */
517 hme_meminit(sc);
519 /* step 4. TX MAC registers & counters */
520 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
521 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
522 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
523 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
524 bus_space_write_4(t, mac, HME_MACI_TXSIZE,
525 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
526 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
527 sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;
529 /* Load station MAC address */
530 ea = sc->sc_enaddr;
531 bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
532 bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
533 bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
536 * Init seed for backoff
537 * (source suggested by manual: low 10 bits of MAC address)
539 v = ((ea[4] << 8) | ea[5]) & 0x3fff;
540 bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);
543 /* Note: Accepting power-on default for other MAC registers here.. */
546 /* step 5. RX MAC registers & counters */
547 hme_setladrf(sc);
549 /* step 6 & 7. Program Descriptor Ring Base Addresses */
550 bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
551 bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);
553 bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
554 bus_space_write_4(t, mac, HME_MACI_RXSIZE,
555 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
556 ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
558 /* step 8. Global Configuration & Interrupt Mask */
559 bus_space_write_4(t, seb, HME_SEBI_IMASK,
561 /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
562 HME_SEB_STAT_HOSTTOTX |
563 HME_SEB_STAT_RXTOHOST |
564 HME_SEB_STAT_TXALL |
565 HME_SEB_STAT_TXPERR |
566 HME_SEB_STAT_RCNTEXP |
567 HME_SEB_STAT_MIFIRQ |
568 HME_SEB_STAT_ALL_ERRORS ));
570 switch (sc->sc_burst) {
571 default:
572 v = 0;
573 break;
574 case 16:
575 v = HME_SEB_CFG_BURST16;
576 break;
577 case 32:
578 v = HME_SEB_CFG_BURST32;
579 break;
580 case 64:
581 v = HME_SEB_CFG_BURST64;
582 break;
584 bus_space_write_4(t, seb, HME_SEBI_CFG, v);
586 /* step 9. ETX Configuration: use mostly default values */
588 /* Enable DMA */
589 v = bus_space_read_4(t, etx, HME_ETXI_CFG);
590 v |= HME_ETX_CFG_DMAENABLE;
591 bus_space_write_4(t, etx, HME_ETXI_CFG, v);
593 /* Transmit Descriptor ring size: in increments of 16 */
594 bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);
597 /* step 10. ERX Configuration */
598 v = bus_space_read_4(t, erx, HME_ERXI_CFG);
600 /* Encode Receive Descriptor ring size: four possible values */
601 switch (_HME_NDESC /*XXX*/) {
602 case 32:
603 v |= HME_ERX_CFG_RINGSIZE32;
604 break;
605 case 64:
606 v |= HME_ERX_CFG_RINGSIZE64;
607 break;
608 case 128:
609 v |= HME_ERX_CFG_RINGSIZE128;
610 break;
611 case 256:
612 v |= HME_ERX_CFG_RINGSIZE256;
613 break;
614 default:
615 printf("hme: invalid Receive Descriptor ring size\n");
616 break;
619 /* Enable DMA */
620 v |= HME_ERX_CFG_DMAENABLE;
622 /* set h/w rx checksum start offset (# of half-words) */
623 #ifdef INET
624 v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
625 << HME_ERX_CFG_CSUMSHIFT) &
626 HME_ERX_CFG_CSUMSTART;
627 #endif
628 bus_space_write_4(t, erx, HME_ERXI_CFG, v);
630 /* step 11. XIF Configuration */
631 v = bus_space_read_4(t, mac, HME_MACI_XIF);
632 v |= HME_MAC_XIF_OE;
633 bus_space_write_4(t, mac, HME_MACI_XIF, v);
635 /* step 12. RX_MAC Configuration Register */
636 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
637 v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
638 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
640 /* step 13. TX_MAC Configuration Register */
641 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
642 v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
643 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
645 /* step 14. Issue Transmit Pending command */
647 /* Call MI initialization function if any */
648 if (sc->sc_hwinit)
649 (*sc->sc_hwinit)(sc);
651 /* Set the current media. */
652 if ((rc = hme_mediachange(ifp)) != 0)
653 return rc;
655 /* Start the one second timer. */
656 callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
658 ifp->if_flags |= IFF_RUNNING;
659 ifp->if_flags &= ~IFF_OACTIVE;
660 sc->sc_if_flags = ifp->if_flags;
661 ifp->if_timer = 0;
662 hme_start(ifp);
663 return 0;
667 * Routine to copy from mbuf chain to transmit buffer in
668 * network buffer memory.
669 * Returns the amount of data copied.
672 hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
673 /* ri: Ring index */
675 struct mbuf *n;
676 int len, tlen = 0;
677 char *bp;
679 bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
680 for (; m; m = n) {
681 len = m->m_len;
682 if (len == 0) {
683 MFREE(m, n);
684 continue;
686 memcpy(bp, mtod(m, void *), len);
687 bp += len;
688 tlen += len;
689 MFREE(m, n);
691 return (tlen);
695 * Pull data off an interface.
696 * Len is length of data, with local net header stripped.
697 * We copy the data into mbufs. When full cluster sized units are present
698 * we copy into clusters.
700 struct mbuf *
701 hme_get(struct hme_softc *sc, int ri, uint32_t flags)
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 struct mbuf *m, *m0, *newm;
705 char *bp;
706 int len, totlen;
707 #ifdef INET
708 int csum_flags;
709 #endif
711 totlen = HME_XD_DECODE_RSIZE(flags);
712 MGETHDR(m0, M_DONTWAIT, MT_DATA);
713 if (m0 == 0)
714 return (0);
715 m0->m_pkthdr.rcvif = ifp;
716 m0->m_pkthdr.len = totlen;
717 len = MHLEN;
718 m = m0;
720 bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;
722 while (totlen > 0) {
723 if (totlen >= MINCLSIZE) {
724 MCLGET(m, M_DONTWAIT);
725 if ((m->m_flags & M_EXT) == 0)
726 goto bad;
727 len = MCLBYTES;
730 if (m == m0) {
731 char *newdata = (char *)
732 ALIGN(m->m_data + sizeof(struct ether_header)) -
733 sizeof(struct ether_header);
734 len -= newdata - m->m_data;
735 m->m_data = newdata;
738 m->m_len = len = min(totlen, len);
739 memcpy(mtod(m, void *), bp, len);
740 bp += len;
742 totlen -= len;
743 if (totlen > 0) {
744 MGET(newm, M_DONTWAIT, MT_DATA);
745 if (newm == 0)
746 goto bad;
747 len = MLEN;
748 m = m->m_next = newm;
752 #ifdef INET
753 /* hardware checksum */
754 csum_flags = 0;
755 if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
756 struct ether_header *eh;
757 struct ether_vlan_header *evh;
758 struct ip *ip;
759 struct udphdr *uh;
760 uint16_t *opts;
761 int32_t hlen, pktlen;
762 uint32_t csum_data;
764 eh = mtod(m0, struct ether_header *);
765 if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
766 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
767 pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
768 } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
769 evh = (struct ether_vlan_header *)eh;
770 if (ntohs(evh->evl_proto != ETHERTYPE_IP))
771 goto swcsum;
772 ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
773 ETHER_VLAN_ENCAP_LEN);
774 pktlen = m0->m_pkthdr.len -
775 ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
776 } else
777 goto swcsum;
779 /* IPv4 only */
780 if (ip->ip_v != IPVERSION)
781 goto swcsum;
783 hlen = ip->ip_hl << 2;
784 if (hlen < sizeof(struct ip))
785 goto swcsum;
788 * bail if too short, has random trailing garbage, truncated,
789 * fragment, or has ethernet pad.
791 if (ntohs(ip->ip_len) < hlen ||
792 ntohs(ip->ip_len) != pktlen ||
793 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
794 goto swcsum;
796 switch (ip->ip_p) {
797 case IPPROTO_TCP:
798 if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
799 goto swcsum;
800 if (pktlen < (hlen + sizeof(struct tcphdr)))
801 goto swcsum;
802 csum_flags =
803 M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
804 break;
805 case IPPROTO_UDP:
806 if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
807 goto swcsum;
808 if (pktlen < (hlen + sizeof(struct udphdr)))
809 goto swcsum;
810 uh = (struct udphdr *)((char *)ip + hlen);
811 /* no checksum */
812 if (uh->uh_sum == 0)
813 goto swcsum;
814 csum_flags =
815 M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
816 break;
817 default:
818 goto swcsum;
821 /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
822 csum_data = ~flags & HME_XD_RXCKSUM;
825 * If data offset is different from RX cksum start offset,
826 * we have to deduct them.
828 hlen = ((char *)ip + hlen) -
829 ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
830 if (hlen > 1) {
831 uint32_t optsum;
833 optsum = 0;
834 opts = (uint16_t *)((char *)eh +
835 ETHER_HDR_LEN + sizeof(struct ip));
837 while (hlen > 1) {
838 optsum += ntohs(*opts++);
839 hlen -= 2;
841 while (optsum >> 16)
842 optsum = (optsum >> 16) + (optsum & 0xffff);
844 /* Deduct the ip opts sum from the hwsum. */
845 csum_data += (uint16_t)~optsum;
847 while (csum_data >> 16)
848 csum_data =
849 (csum_data >> 16) + (csum_data & 0xffff);
851 m0->m_pkthdr.csum_data = csum_data;
853 swcsum:
854 m0->m_pkthdr.csum_flags = csum_flags;
855 #endif
857 return (m0);
859 bad:
860 m_freem(m0);
861 return (0);
865 * Pass a packet to the higher levels.
867 void
868 hme_read(struct hme_softc *sc, int ix, uint32_t flags)
870 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
871 struct mbuf *m;
872 int len;
874 len = HME_XD_DECODE_RSIZE(flags);
875 if (len <= sizeof(struct ether_header) ||
876 len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
877 ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
878 ETHERMTU + sizeof(struct ether_header))) {
879 #ifdef HMEDEBUG
880 printf("%s: invalid packet size %d; dropping\n",
881 device_xname(sc->sc_dev), len);
882 #endif
883 ifp->if_ierrors++;
884 return;
887 /* Pull packet off interface. */
888 m = hme_get(sc, ix, flags);
889 if (m == 0) {
890 ifp->if_ierrors++;
891 return;
894 ifp->if_ipackets++;
896 #if NBPFILTER > 0
898 * Check if there's a BPF listener on this interface.
899 * If so, hand off the raw packet to BPF.
901 if (ifp->if_bpf)
902 bpf_mtap(ifp->if_bpf, m);
903 #endif
905 /* Pass the packet up. */
906 (*ifp->if_input)(ifp, m);
909 void
910 hme_start(struct ifnet *ifp)
912 struct hme_softc *sc = ifp->if_softc;
913 void *txd = sc->sc_rb.rb_txd;
914 struct mbuf *m;
915 unsigned int txflags;
916 unsigned int ri, len, obusy;
917 unsigned int ntbuf = sc->sc_rb.rb_ntbuf;
919 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
920 return;
922 ri = sc->sc_rb.rb_tdhead;
923 obusy = sc->sc_rb.rb_td_nbusy;
925 for (;;) {
926 IFQ_DEQUEUE(&ifp->if_snd, m);
927 if (m == 0)
928 break;
930 #if NBPFILTER > 0
932 * If BPF is listening on this interface, let it see the
933 * packet before we commit it to the wire.
935 if (ifp->if_bpf)
936 bpf_mtap(ifp->if_bpf, m);
937 #endif
939 #ifdef INET
940 /* collect bits for h/w csum, before hme_put frees the mbuf */
941 if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
942 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
943 struct ether_header *eh;
944 uint16_t offset, start;
946 eh = mtod(m, struct ether_header *);
947 switch (ntohs(eh->ether_type)) {
948 case ETHERTYPE_IP:
949 start = ETHER_HDR_LEN;
950 break;
951 case ETHERTYPE_VLAN:
952 start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
953 break;
954 default:
955 /* unsupported, drop it */
956 m_free(m);
957 continue;
959 start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
960 offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
961 + start;
962 txflags = HME_XD_TXCKSUM |
963 (offset << HME_XD_TXCSSTUFFSHIFT) |
964 (start << HME_XD_TXCSSTARTSHIFT);
965 } else
966 #endif
967 txflags = 0;
970 * Copy the mbuf chain into the transmit buffer.
972 len = hme_put(sc, ri, m);
975 * Initialize transmit registers and start transmission
977 HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
978 HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
979 HME_XD_ENCODE_TSIZE(len) | txflags);
981 /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
982 bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
983 HME_ETX_TP_DMAWAKEUP);
985 if (++ri == ntbuf)
986 ri = 0;
988 if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
989 ifp->if_flags |= IFF_OACTIVE;
990 break;
994 if (obusy != sc->sc_rb.rb_td_nbusy) {
995 sc->sc_rb.rb_tdhead = ri;
996 ifp->if_timer = 5;
1001 * Transmit interrupt.
1004 hme_tint(struct hme_softc *sc)
1006 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1007 bus_space_tag_t t = sc->sc_bustag;
1008 bus_space_handle_t mac = sc->sc_mac;
1009 unsigned int ri, txflags;
1012 * Unload collision counters
1014 ifp->if_collisions +=
1015 bus_space_read_4(t, mac, HME_MACI_NCCNT) +
1016 bus_space_read_4(t, mac, HME_MACI_FCCNT);
1017 ifp->if_oerrors +=
1018 bus_space_read_4(t, mac, HME_MACI_EXCNT) +
1019 bus_space_read_4(t, mac, HME_MACI_LTCNT);
1022 * then clear the hardware counters.
1024 bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
1025 bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
1026 bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
1027 bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
1029 /* Fetch current position in the transmit ring */
1030 ri = sc->sc_rb.rb_tdtail;
1032 for (;;) {
1033 if (sc->sc_rb.rb_td_nbusy <= 0)
1034 break;
1036 txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);
1038 if (txflags & HME_XD_OWN)
1039 break;
1041 ifp->if_flags &= ~IFF_OACTIVE;
1042 ifp->if_opackets++;
1044 if (++ri == sc->sc_rb.rb_ntbuf)
1045 ri = 0;
1047 --sc->sc_rb.rb_td_nbusy;
1050 /* Update ring */
1051 sc->sc_rb.rb_tdtail = ri;
1053 hme_start(ifp);
1055 if (sc->sc_rb.rb_td_nbusy == 0)
1056 ifp->if_timer = 0;
1058 return (1);
1062 * Receive interrupt.
1065 hme_rint(struct hme_softc *sc)
1067 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1068 bus_space_tag_t t = sc->sc_bustag;
1069 bus_space_handle_t mac = sc->sc_mac;
1070 void *xdr = sc->sc_rb.rb_rxd;
1071 unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
1072 unsigned int ri;
1073 uint32_t flags;
1075 ri = sc->sc_rb.rb_rdtail;
1078 * Process all buffers with valid data.
1080 for (;;) {
1081 flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
1082 if (flags & HME_XD_OWN)
1083 break;
1085 if (flags & HME_XD_OFL) {
1086 printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
1087 device_xname(sc->sc_dev), ri, flags);
1088 } else
1089 hme_read(sc, ri, flags);
1091 /* This buffer can be used by the hardware again */
1092 HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
1093 HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
1095 if (++ri == nrbuf)
1096 ri = 0;
1099 sc->sc_rb.rb_rdtail = ri;
1101 /* Read error counters ... */
1102 ifp->if_ierrors +=
1103 bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
1104 bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
1105 bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
1106 bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT);
1108 /* ... then clear the hardware counters. */
1109 bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
1110 bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
1111 bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
1112 bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
1113 return (1);
1117 hme_eint(struct hme_softc *sc, u_int status)
1119 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1120 char bits[128];
1122 if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
1123 bus_space_tag_t t = sc->sc_bustag;
1124 bus_space_handle_t mif = sc->sc_mif;
1125 uint32_t cf, st, sm;
1126 cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
1127 st = bus_space_read_4(t, mif, HME_MIFI_STAT);
1128 sm = bus_space_read_4(t, mif, HME_MIFI_SM);
1129 printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
1130 device_xname(sc->sc_dev), cf, st, sm);
1131 return (1);
1134 /* Receive error counters rolled over */
1135 if (status & HME_SEB_STAT_ACNTEXP)
1136 ifp->if_ierrors += 0xff;
1137 if (status & HME_SEB_STAT_CCNTEXP)
1138 ifp->if_ierrors += 0xff;
1139 if (status & HME_SEB_STAT_LCNTEXP)
1140 ifp->if_ierrors += 0xff;
1141 if (status & HME_SEB_STAT_CVCNTEXP)
1142 ifp->if_ierrors += 0xff;
1144 /* RXTERR locks up the interface, so do a reset */
1145 if (status & HME_SEB_STAT_RXTERR)
1146 hme_reset(sc);
1148 snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
1149 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1151 return (1);
1155 hme_intr(void *v)
1157 struct hme_softc *sc = v;
1158 bus_space_tag_t t = sc->sc_bustag;
1159 bus_space_handle_t seb = sc->sc_seb;
1160 uint32_t status;
1161 int r = 0;
1163 status = bus_space_read_4(t, seb, HME_SEBI_STAT);
1165 if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
1166 r |= hme_eint(sc, status);
1168 if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
1169 r |= hme_tint(sc);
1171 if ((status & HME_SEB_STAT_RXTOHOST) != 0)
1172 r |= hme_rint(sc);
1174 #if NRND > 0
1175 rnd_add_uint32(&sc->rnd_source, status);
1176 #endif
1178 return (r);
1182 void
1183 hme_watchdog(struct ifnet *ifp)
1185 struct hme_softc *sc = ifp->if_softc;
1187 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1188 ++ifp->if_oerrors;
1190 hme_reset(sc);
1194 * Initialize the MII Management Interface
1196 void
1197 hme_mifinit(struct hme_softc *sc)
1199 bus_space_tag_t t = sc->sc_bustag;
1200 bus_space_handle_t mif = sc->sc_mif;
1201 bus_space_handle_t mac = sc->sc_mac;
1202 int instance, phy;
1203 uint32_t v;
1205 if (sc->sc_mii.mii_media.ifm_cur != NULL) {
1206 instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1207 phy = sc->sc_phys[instance];
1208 } else
1209 /* No media set yet, pick phy arbitrarily.. */
1210 phy = HME_PHYAD_EXTERNAL;
1212 /* Configure the MIF in frame mode, no poll, current phy select */
1213 v = 0;
1214 if (phy == HME_PHYAD_EXTERNAL)
1215 v |= HME_MIF_CFG_PHY;
1216 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1218 /* If an external transceiver is selected, enable its MII drivers */
1219 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1220 v &= ~HME_MAC_XIF_MIIENABLE;
1221 if (phy == HME_PHYAD_EXTERNAL)
1222 v |= HME_MAC_XIF_MIIENABLE;
1223 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1227 * MII interface
1229 static int
1230 hme_mii_readreg(device_t self, int phy, int reg)
1232 struct hme_softc *sc = device_private(self);
1233 bus_space_tag_t t = sc->sc_bustag;
1234 bus_space_handle_t mif = sc->sc_mif;
1235 bus_space_handle_t mac = sc->sc_mac;
1236 uint32_t v, xif_cfg, mifi_cfg;
1237 int n;
1239 /* We can at most have two PHYs */
1240 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1241 return (0);
1243 /* Select the desired PHY in the MIF configuration register */
1244 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1245 v &= ~HME_MIF_CFG_PHY;
1246 if (phy == HME_PHYAD_EXTERNAL)
1247 v |= HME_MIF_CFG_PHY;
1248 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1250 /* Enable MII drivers on external transceiver */
1251 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1252 if (phy == HME_PHYAD_EXTERNAL)
1253 v |= HME_MAC_XIF_MIIENABLE;
1254 else
1255 v &= ~HME_MAC_XIF_MIIENABLE;
1256 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1258 #if 0
1259 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1261 * Check whether a transceiver is connected by testing
1262 * the MIF configuration register's MDI_X bits. Note that
1263 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1265 mif_mdi_bit = 1 << (8 + (1 - phy));
1266 delay(100);
1267 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1268 if ((v & mif_mdi_bit) == 0)
1269 return (0);
1270 #endif
1272 /* Construct the frame command */
1273 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1274 HME_MIF_FO_TAMSB |
1275 (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
1276 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1277 (reg << HME_MIF_FO_REGAD_SHIFT);
1279 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1280 for (n = 0; n < 100; n++) {
1281 DELAY(1);
1282 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1283 if (v & HME_MIF_FO_TALSB) {
1284 v &= HME_MIF_FO_DATA;
1285 goto out;
1289 v = 0;
1290 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1292 out:
1293 /* Restore MIFI_CFG register */
1294 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1295 /* Restore XIF register */
1296 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1297 return (v);
1300 static void
1301 hme_mii_writereg(device_t self, int phy, int reg, int val)
1303 struct hme_softc *sc = device_private(self);
1304 bus_space_tag_t t = sc->sc_bustag;
1305 bus_space_handle_t mif = sc->sc_mif;
1306 bus_space_handle_t mac = sc->sc_mac;
1307 uint32_t v, xif_cfg, mifi_cfg;
1308 int n;
1310 /* We can at most have two PHYs */
1311 if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
1312 return;
1314 /* Select the desired PHY in the MIF configuration register */
1315 v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
1316 v &= ~HME_MIF_CFG_PHY;
1317 if (phy == HME_PHYAD_EXTERNAL)
1318 v |= HME_MIF_CFG_PHY;
1319 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1321 /* Enable MII drivers on external transceiver */
1322 v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
1323 if (phy == HME_PHYAD_EXTERNAL)
1324 v |= HME_MAC_XIF_MIIENABLE;
1325 else
1326 v &= ~HME_MAC_XIF_MIIENABLE;
1327 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1329 #if 0
1330 /* This doesn't work reliably; the MDIO_1 bit is off most of the time */
1332 * Check whether a transceiver is connected by testing
1333 * the MIF configuration register's MDI_X bits. Note that
1334 * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
1336 mif_mdi_bit = 1 << (8 + (1 - phy));
1337 delay(100);
1338 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1339 if ((v & mif_mdi_bit) == 0)
1340 return;
1341 #endif
1343 /* Construct the frame command */
1344 v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
1345 HME_MIF_FO_TAMSB |
1346 (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
1347 (phy << HME_MIF_FO_PHYAD_SHIFT) |
1348 (reg << HME_MIF_FO_REGAD_SHIFT) |
1349 (val & HME_MIF_FO_DATA);
1351 bus_space_write_4(t, mif, HME_MIFI_FO, v);
1352 for (n = 0; n < 100; n++) {
1353 DELAY(1);
1354 v = bus_space_read_4(t, mif, HME_MIFI_FO);
1355 if (v & HME_MIF_FO_TALSB)
1356 goto out;
1359 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1360 out:
1361 /* Restore MIFI_CFG register */
1362 bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
1363 /* Restore XIF register */
1364 bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
1367 static void
1368 hme_mii_statchg(device_t dev)
1370 struct hme_softc *sc = device_private(dev);
1371 bus_space_tag_t t = sc->sc_bustag;
1372 bus_space_handle_t mac = sc->sc_mac;
1373 uint32_t v;
1375 #ifdef HMEDEBUG
1376 if (sc->sc_debug)
1377 printf("hme_mii_statchg: status change\n");
1378 #endif
1380 /* Set the MAC Full Duplex bit appropriately */
1381 /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
1382 but not otherwise. */
1383 v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
1384 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1385 v |= HME_MAC_TXCFG_FULLDPLX;
1386 sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
1387 } else {
1388 v &= ~HME_MAC_TXCFG_FULLDPLX;
1389 sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
1391 sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
1392 bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
1396 hme_mediachange(struct ifnet *ifp)
1398 struct hme_softc *sc = ifp->if_softc;
1399 bus_space_tag_t t = sc->sc_bustag;
1400 bus_space_handle_t mif = sc->sc_mif;
1401 bus_space_handle_t mac = sc->sc_mac;
1402 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
1403 int phy = sc->sc_phys[instance];
1404 int rc;
1405 uint32_t v;
1407 #ifdef HMEDEBUG
1408 if (sc->sc_debug)
1409 printf("hme_mediachange: phy = %d\n", phy);
1410 #endif
1412 /* Select the current PHY in the MIF configuration register */
1413 v = bus_space_read_4(t, mif, HME_MIFI_CFG);
1414 v &= ~HME_MIF_CFG_PHY;
1415 if (phy == HME_PHYAD_EXTERNAL)
1416 v |= HME_MIF_CFG_PHY;
1417 bus_space_write_4(t, mif, HME_MIFI_CFG, v);
1419 /* If an external transceiver is selected, enable its MII drivers */
1420 v = bus_space_read_4(t, mac, HME_MACI_XIF);
1421 v &= ~HME_MAC_XIF_MIIENABLE;
1422 if (phy == HME_PHYAD_EXTERNAL)
1423 v |= HME_MAC_XIF_MIIENABLE;
1424 bus_space_write_4(t, mac, HME_MACI_XIF, v);
1426 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
1427 return 0;
1428 return rc;
1432 * Process an ioctl request.
1435 hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1437 struct hme_softc *sc = ifp->if_softc;
1438 struct ifaddr *ifa = (struct ifaddr *)data;
1439 int s, error = 0;
1441 s = splnet();
1443 switch (cmd) {
1445 case SIOCINITIFADDR:
1446 switch (ifa->ifa_addr->sa_family) {
1447 #ifdef INET
1448 case AF_INET:
1449 if (ifp->if_flags & IFF_UP)
1450 hme_setladrf(sc);
1451 else {
1452 ifp->if_flags |= IFF_UP;
1453 error = hme_init(ifp);
1455 arp_ifinit(ifp, ifa);
1456 break;
1457 #endif
1458 default:
1459 ifp->if_flags |= IFF_UP;
1460 error = hme_init(ifp);
1461 break;
1463 break;
1465 case SIOCSIFFLAGS:
1466 #ifdef HMEDEBUG
1468 struct ifreq *ifr = data;
1469 sc->sc_debug =
1470 (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
1472 #endif
1473 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1474 break;
1476 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1477 case IFF_RUNNING:
1479 * If interface is marked down and it is running, then
1480 * stop it.
1482 hme_stop(ifp, 0);
1483 ifp->if_flags &= ~IFF_RUNNING;
1484 break;
1485 case IFF_UP:
1487 * If interface is marked up and it is stopped, then
1488 * start it.
1490 error = hme_init(ifp);
1491 break;
1492 case IFF_UP|IFF_RUNNING:
1494 * If setting debug or promiscuous mode, do not reset
1495 * the chip; for everything else, call hme_init()
1496 * which will trigger a reset.
1498 #define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
1499 if (ifp->if_flags != sc->sc_if_flags) {
1500 if ((ifp->if_flags & (~RESETIGN))
1501 == (sc->sc_if_flags & (~RESETIGN)))
1502 hme_setladrf(sc);
1503 else
1504 error = hme_init(ifp);
1506 #undef RESETIGN
1507 break;
1508 case 0:
1509 break;
1512 if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
1513 error = hme_init(ifp);
1515 break;
1517 default:
1518 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1519 break;
1521 error = 0;
1523 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1525 else if (ifp->if_flags & IFF_RUNNING) {
1527 * Multicast list has changed; set the hardware filter
1528 * accordingly.
1530 hme_setladrf(sc);
1532 break;
1535 sc->sc_if_flags = ifp->if_flags;
1536 splx(s);
1537 return (error);
1540 bool
1541 hme_shutdown(device_t self, int howto)
1543 struct hme_softc *sc;
1544 struct ifnet *ifp;
1546 sc = device_private(self);
1547 ifp = &sc->sc_ethercom.ec_if;
1548 hme_stop(ifp, 1);
1550 return true;
1554 * Set up the logical address filter.
1556 void
1557 hme_setladrf(struct hme_softc *sc)
1559 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1560 struct ether_multi *enm;
1561 struct ether_multistep step;
1562 struct ethercom *ec = &sc->sc_ethercom;
1563 bus_space_tag_t t = sc->sc_bustag;
1564 bus_space_handle_t mac = sc->sc_mac;
1565 uint32_t v;
1566 uint32_t crc;
1567 uint32_t hash[4];
1569 /* Clear hash table */
1570 hash[3] = hash[2] = hash[1] = hash[0] = 0;
1572 /* Get current RX configuration */
1573 v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
1575 if ((ifp->if_flags & IFF_PROMISC) != 0) {
1576 /* Turn on promiscuous mode; turn off the hash filter */
1577 v |= HME_MAC_RXCFG_PMISC;
1578 v &= ~HME_MAC_RXCFG_HENABLE;
1579 ifp->if_flags |= IFF_ALLMULTI;
1580 goto chipit;
1583 /* Turn off promiscuous mode; turn on the hash filter */
1584 v &= ~HME_MAC_RXCFG_PMISC;
1585 v |= HME_MAC_RXCFG_HENABLE;
1588 * Set up multicast address filter by passing all multicast addresses
1589 * through a crc generator, and then using the high order 6 bits as an
1590 * index into the 64 bit logical address filter. The high order bit
1591 * selects the word, while the rest of the bits select the bit within
1592 * the word.
1595 ETHER_FIRST_MULTI(step, ec, enm);
1596 while (enm != NULL) {
1597 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1599 * We must listen to a range of multicast addresses.
1600 * For now, just accept all multicasts, rather than
1601 * trying to set only those filter bits needed to match
1602 * the range. (At this time, the only use of address
1603 * ranges is for IP multicast routing, for which the
1604 * range is big enough to require all bits set.)
1606 hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
1607 ifp->if_flags |= IFF_ALLMULTI;
1608 goto chipit;
1611 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1613 /* Just want the 6 most significant bits. */
1614 crc >>= 26;
1616 /* Set the corresponding bit in the filter. */
1617 hash[crc >> 4] |= 1 << (crc & 0xf);
1619 ETHER_NEXT_MULTI(step, enm);
1622 ifp->if_flags &= ~IFF_ALLMULTI;
1624 chipit:
1625 /* Now load the hash table into the chip */
1626 bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
1627 bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
1628 bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
1629 bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
1630 bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
1634 * Routines for accessing the transmit and receive buffers.
1635 * The various CPU and adapter configurations supported by this
1636 * driver require three different access methods for buffers
1637 * and descriptors:
1638 * (1) contig (contiguous data; no padding),
1639 * (2) gap2 (two bytes of data followed by two bytes of padding),
1640 * (3) gap16 (16 bytes of data followed by 16 bytes of padding).
1643 #if 0
1645 * contig: contiguous data with no padding.
1647 * Buffers may have any alignment.
1650 void
1651 hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
1653 volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);
1656 * Just call memcpy() to do the work.
1658 memcpy(buf, from, len);
1661 void
1662 hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
1664 volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);
1667 * Just call memcpy() to do the work.
1669 memcpy(to, buf, len);
1671 #endif