Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / ic / mb86960.c
blob79089a0c1d660e8792ace795ff937b51a0675068
1 /* $NetBSD: mb86960.c,v 1.74 2009/09/12 19:55:29 tsutsui Exp $ */
3 /*
4 * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
6 * This software may be used, modified, copied, distributed, and sold, in
7 * both source and binary form provided that the above copyright, these
8 * terms and the following disclaimer are retained. The name of the author
9 * and/or the contributor may not be used to endorse or promote products
10 * derived from this software without specific prior written permission.
12 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
13 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
16 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
19 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22 * SUCH DAMAGE.
26 * Portions copyright (C) 1993, David Greenman. This software may be used,
27 * modified, copied, distributed, and sold, in both source and binary form
28 * provided that the above copyright and these terms are retained. Under no
29 * circumstances is the author responsible for the proper functioning of this
30 * software, nor does the author assume any responsibility for damages
31 * incurred with its use.
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: mb86960.c,v 1.74 2009/09/12 19:55:29 tsutsui Exp $");
38 * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
39 * Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
41 * This version is intended to be a generic template for various
42 * MB86960A/MB86965A based Ethernet cards. It currently supports
43 * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
44 * Telesis AT1700 series and RE2000 series. There are some
45 * unnecessary hooks embedded, which are primarily intended to support
46 * other types of Ethernet cards, but the author is not sure whether
47 * they are useful.
50 #include "opt_inet.h"
51 #include "bpfilter.h"
52 #include "rnd.h"
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/errno.h>
57 #include <sys/ioctl.h>
58 #include <sys/mbuf.h>
59 #include <sys/socket.h>
60 #include <sys/syslog.h>
61 #include <sys/device.h>
62 #if NRND > 0
63 #include <sys/rnd.h>
64 #endif
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_types.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/if_inarp.h>
78 #endif
81 #if NBPFILTER > 0
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #endif
86 #include <sys/bus.h>
88 #include <dev/ic/mb86960reg.h>
89 #include <dev/ic/mb86960var.h>
91 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
92 #define bus_space_write_stream_2 bus_space_write_2
93 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
94 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
95 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
97 /* Standard driver entry points. These can be static. */
98 void mb86960_init(struct mb86960_softc *);
99 int mb86960_ioctl(struct ifnet *, u_long, void *);
100 void mb86960_start(struct ifnet *);
101 void mb86960_reset(struct mb86960_softc *);
102 void mb86960_watchdog(struct ifnet *);
104 /* Local functions. Order of declaration is confused. FIXME. */
105 int mb86960_get_packet(struct mb86960_softc *, u_int);
106 void mb86960_stop(struct mb86960_softc *);
107 void mb86960_tint(struct mb86960_softc *, uint8_t);
108 void mb86960_rint(struct mb86960_softc *, uint8_t);
109 static inline
110 void mb86960_xmit(struct mb86960_softc *);
111 void mb86960_write_mbufs(struct mb86960_softc *, struct mbuf *);
112 static inline
113 void mb86960_droppacket(struct mb86960_softc *);
114 void mb86960_getmcaf(struct ethercom *, uint8_t *);
115 void mb86960_setmode(struct mb86960_softc *);
116 void mb86960_loadmar(struct mb86960_softc *);
118 int mb86960_mediachange(struct ifnet *);
119 void mb86960_mediastatus(struct ifnet *, struct ifmediareq *);
121 #if FE_DEBUG >= 1
122 void mb86960_dump(int, struct mb86960_softc *);
123 #endif
125 void
126 mb86960_attach(struct mb86960_softc *sc, uint8_t *myea)
128 bus_space_tag_t bst = sc->sc_bst;
129 bus_space_handle_t bsh = sc->sc_bsh;
131 /* Register values which depend on board design. */
132 sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
133 sc->proto_dlcr5 = 0;
134 sc->proto_dlcr7 = FE_D7_BYTSWP_LH;
135 if ((sc->sc_flags & FE_FLAGS_MB86960) != 0)
136 sc->proto_dlcr7 |= FE_D7_ED_TEST; /* XXX */
137 sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
140 * Program the 86960 as following defaults:
141 * SRAM: 32KB, 100ns, byte-wide access.
142 * Transmission buffer: 4KB x 2.
143 * System bus interface: 16 bits.
144 * These values except TXBSIZE should be modified as per
145 * sc_flags which is set in MD attachments, because they
146 * are hard-wired on the board. Modifying TXBSIZE will affect
147 * the driver performance.
149 sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB |
150 FE_D6_BBW_BYTE | FE_D6_SRAM_100ns;
151 if (sc->sc_flags & FE_FLAGS_SBW_BYTE)
152 sc->proto_dlcr6 |= FE_D6_SBW_BYTE;
153 if (sc->sc_flags & FE_FLAGS_SRAM_150ns)
154 sc->proto_dlcr6 &= ~FE_D6_SRAM_100ns;
157 * Minimum initialization of the hardware.
158 * We write into registers; hope I/O ports have no
159 * overlap with other boards.
162 /* Initialize 86960. */
163 bus_space_write_1(bst, bsh, FE_DLCR6,
164 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
165 delay(200);
167 #ifdef DIAGNOSTIC
168 if (myea == NULL) {
169 aprint_error_dev(sc->sc_dev,
170 "ethernet address shouldn't be NULL\n");
171 panic("NULL ethernet address");
173 #endif
174 memcpy(sc->sc_enaddr, myea, sizeof(sc->sc_enaddr));
176 /* Disable all interrupts. */
177 bus_space_write_1(bst, bsh, FE_DLCR2, 0);
178 bus_space_write_1(bst, bsh, FE_DLCR3, 0);
182 * Install interface into kernel networking data structures
184 void
185 mb86960_config(struct mb86960_softc *sc, int *media, int nmedia, int defmedia)
187 cfdata_t cf = device_cfdata(sc->sc_dev);
188 struct ifnet *ifp = &sc->sc_ec.ec_if;
189 int i;
191 /* Stop the 86960. */
192 mb86960_stop(sc);
194 /* Initialize ifnet structure. */
195 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
196 ifp->if_softc = sc;
197 ifp->if_start = mb86960_start;
198 ifp->if_ioctl = mb86960_ioctl;
199 ifp->if_watchdog = mb86960_watchdog;
200 ifp->if_flags =
201 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
202 IFQ_SET_READY(&ifp->if_snd);
204 #if FE_DEBUG >= 3
205 log(LOG_INFO, "%s: mb86960_config()\n", device_xname(sc->sc_dev));
206 mb86960_dump(LOG_INFO, sc);
207 #endif
209 #if FE_SINGLE_TRANSMISSION
210 /* Override txb config to allocate minimum. */
211 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
212 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
213 #endif
215 /* Modify hardware config if it is requested. */
216 if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
217 sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
219 /* Find TX buffer size, based on the hardware dependent proto. */
220 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
221 case FE_D6_TXBSIZ_2x2KB:
222 sc->txb_size = 2048;
223 break;
224 case FE_D6_TXBSIZ_2x4KB:
225 sc->txb_size = 4096;
226 break;
227 case FE_D6_TXBSIZ_2x8KB:
228 sc->txb_size = 8192;
229 break;
230 default:
231 /* Oops, we can't work with single buffer configuration. */
232 #if FE_DEBUG >= 2
233 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
234 device_xname(sc->sc_dev));
235 #endif
236 sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
237 sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB;
238 sc->txb_size = 2048;
239 break;
242 /* Initialize media goo. */
243 ifmedia_init(&sc->sc_media, 0, mb86960_mediachange,
244 mb86960_mediastatus);
245 if (media != NULL) {
246 for (i = 0; i < nmedia; i++)
247 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
248 ifmedia_set(&sc->sc_media, defmedia);
249 } else {
250 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
251 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
254 /* Attach the interface. */
255 if_attach(ifp);
256 ether_ifattach(ifp, sc->sc_enaddr);
258 #if NRND > 0
259 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
260 RND_TYPE_NET, 0);
261 #endif
262 /* Print additional info when attached. */
263 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
264 ether_sprintf(sc->sc_enaddr));
266 #if FE_DEBUG >= 3
268 int buf, txb, bbw, sbw, ram;
270 buf = txb = bbw = sbw = ram = -1;
271 switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
272 case FE_D6_BUFSIZ_8KB:
273 buf = 8;
274 break;
275 case FE_D6_BUFSIZ_16KB:
276 buf = 16;
277 break;
278 case FE_D6_BUFSIZ_32KB:
279 buf = 32;
280 break;
281 case FE_D6_BUFSIZ_64KB:
282 buf = 64;
283 break;
285 switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
286 case FE_D6_TXBSIZ_2x2KB:
287 txb = 2;
288 break;
289 case FE_D6_TXBSIZ_2x4KB:
290 txb = 4;
291 break;
292 case FE_D6_TXBSIZ_2x8KB:
293 txb = 8;
294 break;
296 switch (sc->proto_dlcr6 & FE_D6_BBW) {
297 case FE_D6_BBW_BYTE:
298 bbw = 8;
299 break;
300 case FE_D6_BBW_WORD:
301 bbw = 16;
302 break;
304 switch (sc->proto_dlcr6 & FE_D6_SBW) {
305 case FE_D6_SBW_BYTE:
306 sbw = 8;
307 break;
308 case FE_D6_SBW_WORD:
309 sbw = 16;
310 break;
312 switch (sc->proto_dlcr6 & FE_D6_SRAM) {
313 case FE_D6_SRAM_100ns:
314 ram = 100;
315 break;
316 case FE_D6_SRAM_150ns:
317 ram = 150;
318 break;
320 aprint_debug_dev(sc->sc_dev,
321 "SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
322 buf, bbw, ram, txb, sbw);
324 #endif
326 /* The attach is successful. */
327 sc->sc_stat |= FE_STAT_ATTACHED;
331 * Media change callback.
334 mb86960_mediachange(struct ifnet *ifp)
336 struct mb86960_softc *sc = ifp->if_softc;
338 if (sc->sc_mediachange)
339 return (*sc->sc_mediachange)(sc);
340 return 0;
344 * Media status callback.
346 void
347 mb86960_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
349 struct mb86960_softc *sc = ifp->if_softc;
351 if ((sc->sc_stat & FE_STAT_ENABLED) == 0) {
352 ifmr->ifm_active = IFM_ETHER | IFM_NONE;
353 ifmr->ifm_status = 0;
354 return;
357 if (sc->sc_mediastatus)
358 (*sc->sc_mediastatus)(sc, ifmr);
362 * Reset interface.
364 void
365 mb86960_reset(struct mb86960_softc *sc)
367 int s;
369 s = splnet();
370 mb86960_stop(sc);
371 mb86960_init(sc);
372 splx(s);
376 * Stop everything on the interface.
378 * All buffered packets, both transmitting and receiving,
379 * if any, will be lost by stopping the interface.
381 void
382 mb86960_stop(struct mb86960_softc *sc)
384 bus_space_tag_t bst = sc->sc_bst;
385 bus_space_handle_t bsh = sc->sc_bsh;
387 #if FE_DEBUG >= 3
388 log(LOG_INFO, "%s: top of mb86960_stop()\n", device_xname(sc->sc_dev));
389 mb86960_dump(LOG_INFO, sc);
390 #endif
392 /* Disable interrupts. */
393 bus_space_write_1(bst, bsh, FE_DLCR2, 0x00);
394 bus_space_write_1(bst, bsh, FE_DLCR3, 0x00);
396 /* Stop interface hardware. */
397 delay(200);
398 bus_space_write_1(bst, bsh, FE_DLCR6,
399 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
400 delay(200);
402 /* Clear all interrupt status. */
403 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF);
404 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF);
406 /* Put the chip in stand-by mode. */
407 delay(200);
408 bus_space_write_1(bst, bsh, FE_DLCR7,
409 sc->proto_dlcr7 | FE_D7_POWER_DOWN);
410 delay(200);
412 /* MAR loading can be delayed. */
413 sc->filter_change = 0;
415 /* Call a hook. */
416 if (sc->stop_card)
417 (*sc->stop_card)(sc);
419 #if FE_DEBUG >= 3
420 log(LOG_INFO, "%s: end of mb86960_stop()\n", device_xname(sc->sc_dev));
421 mb86960_dump(LOG_INFO, sc);
422 #endif
426 * Device timeout/watchdog routine. Entered if the device neglects to
427 * generate an interrupt after a transmit has been started on it.
429 void
430 mb86960_watchdog(struct ifnet *ifp)
432 struct mb86960_softc *sc = ifp->if_softc;
434 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
435 #if FE_DEBUG >= 3
436 mb86960_dump(LOG_INFO, sc);
437 #endif
439 /* Record how many packets are lost by this accident. */
440 sc->sc_ec.ec_if.if_oerrors += sc->txb_sched + sc->txb_count;
442 mb86960_reset(sc);
446 * Drop (skip) a packet from receive buffer in 86960 memory.
448 static inline void
449 mb86960_droppacket(struct mb86960_softc *sc)
451 bus_space_tag_t bst = sc->sc_bst;
452 bus_space_handle_t bsh = sc->sc_bsh;
454 bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
458 * Initialize device.
460 void
461 mb86960_init(struct mb86960_softc *sc)
463 bus_space_tag_t bst = sc->sc_bst;
464 bus_space_handle_t bsh = sc->sc_bsh;
465 struct ifnet *ifp = &sc->sc_ec.ec_if;
466 int i;
468 #if FE_DEBUG >= 3
469 log(LOG_INFO, "%s: top of mb86960_init()\n", device_xname(sc->sc_dev));
470 mb86960_dump(LOG_INFO, sc);
471 #endif
473 /* Reset transmitter flags. */
474 ifp->if_flags &= ~IFF_OACTIVE;
475 ifp->if_timer = 0;
477 sc->txb_free = sc->txb_size;
478 sc->txb_count = 0;
479 sc->txb_sched = 0;
481 /* Do any card-specific initialization, if applicable. */
482 if (sc->init_card)
483 (*sc->init_card)(sc);
485 #if FE_DEBUG >= 3
486 log(LOG_INFO, "%s: after init hook\n", device_xname(sc->sc_dev));
487 mb86960_dump(LOG_INFO, sc);
488 #endif
491 * Make sure to disable the chip, also.
492 * This may also help re-programming the chip after
493 * hot insertion of PCMCIAs.
495 bus_space_write_1(bst, bsh, FE_DLCR6,
496 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
497 delay(200);
499 /* Power up the chip and select register bank for DLCRs. */
500 bus_space_write_1(bst, bsh, FE_DLCR7,
501 sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
502 delay(200);
504 /* Feed the station address. */
505 bus_space_write_region_1(bst, bsh, FE_DLCR8,
506 sc->sc_enaddr, ETHER_ADDR_LEN);
508 /* Select the BMPR bank for runtime register access. */
509 bus_space_write_1(bst, bsh, FE_DLCR7,
510 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
512 /* Initialize registers. */
513 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */
514 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */
515 bus_space_write_1(bst, bsh, FE_DLCR2, 0x00);
516 bus_space_write_1(bst, bsh, FE_DLCR3, 0x00);
517 bus_space_write_1(bst, bsh, FE_DLCR4, sc->proto_dlcr4);
518 bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5);
519 bus_space_write_1(bst, bsh, FE_BMPR10, 0x00);
520 bus_space_write_1(bst, bsh, FE_BMPR11, FE_B11_CTRL_SKIP);
521 bus_space_write_1(bst, bsh, FE_BMPR12, 0x00);
522 bus_space_write_1(bst, bsh, FE_BMPR13, sc->proto_bmpr13);
523 bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER);
524 bus_space_write_1(bst, bsh, FE_BMPR15, 0x00);
526 #if FE_DEBUG >= 3
527 log(LOG_INFO, "%s: just before enabling DLC\n",
528 device_xname(sc->sc_dev));
529 mb86960_dump(LOG_INFO, sc);
530 #endif
532 /* Enable interrupts. */
533 bus_space_write_1(bst, bsh, FE_DLCR2, FE_TMASK);
534 bus_space_write_1(bst, bsh, FE_DLCR3, FE_RMASK);
536 /* Enable transmitter and receiver. */
537 delay(200);
538 bus_space_write_1(bst, bsh, FE_DLCR6,
539 sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
540 delay(200);
542 #if FE_DEBUG >= 3
543 log(LOG_INFO, "%s: just after enabling DLC\n",
544 device_xname(sc->sc_dev));
545 mb86960_dump(LOG_INFO, sc);
546 #endif
549 * Make sure to empty the receive buffer.
551 * This may be redundant, but *if* the receive buffer were full
552 * at this point, the driver would hang. I have experienced
553 * some strange hangups just after UP. I hope the following
554 * code solve the problem.
556 * I have changed the order of hardware initialization.
557 * I think the receive buffer cannot have any packets at this
558 * point in this version. The following code *must* be
559 * redundant now. FIXME.
561 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
562 if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP)
563 break;
564 mb86960_droppacket(sc);
566 #if FE_DEBUG >= 1
567 if (i >= FE_MAX_RECV_COUNT)
568 log(LOG_ERR, "%s: cannot empty receive buffer\n",
569 device_xname(sc->sc_dev));
570 #endif
571 #if FE_DEBUG >= 3
572 if (i < FE_MAX_RECV_COUNT)
573 log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
574 device_xname(sc->sc_dev), i);
575 #endif
577 #if FE_DEBUG >= 3
578 log(LOG_INFO, "%s: after ERB loop\n", device_xname(sc->sc_dev));
579 mb86960_dump(LOG_INFO, sc);
580 #endif
582 /* Do we need this here? */
583 bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */
584 bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */
586 #if FE_DEBUG >= 3
587 log(LOG_INFO, "%s: after FIXME\n", device_xname(sc->sc_dev));
588 mb86960_dump(LOG_INFO, sc);
589 #endif
591 /* Set 'running' flag. */
592 ifp->if_flags |= IFF_RUNNING;
595 * At this point, the interface is runnung properly,
596 * except that it receives *no* packets. we then call
597 * mb86960_setmode() to tell the chip what packets to be
598 * received, based on the if_flags and multicast group
599 * list. It completes the initialization process.
601 mb86960_setmode(sc);
603 #if FE_DEBUG >= 3
604 log(LOG_INFO, "%s: after setmode\n", device_xname(sc->sc_dev));
605 mb86960_dump(LOG_INFO, sc);
606 #endif
608 /* ...and attempt to start output. */
609 mb86960_start(ifp);
611 #if FE_DEBUG >= 3
612 log(LOG_INFO, "%s: end of mb86960_init()\n", device_xname(sc->sc_dev));
613 mb86960_dump(LOG_INFO, sc);
614 #endif
618 * This routine actually starts the transmission on the interface
620 static inline void
621 mb86960_xmit(struct mb86960_softc *sc)
623 bus_space_tag_t bst = sc->sc_bst;
624 bus_space_handle_t bsh = sc->sc_bsh;
627 * Set a timer just in case we never hear from the board again.
628 * We use longer timeout for multiple packet transmission.
629 * I'm not sure this timer value is appropriate. FIXME.
631 sc->sc_ec.ec_if.if_timer = 1 + sc->txb_count;
633 /* Update txb variables. */
634 sc->txb_sched = sc->txb_count;
635 sc->txb_count = 0;
636 sc->txb_free = sc->txb_size;
638 #if FE_DELAYED_PADDING
639 /* Omit the postponed padding process. */
640 sc->txb_padding = 0;
641 #endif
643 /* Start transmitter, passing packets in TX buffer. */
644 bus_space_write_1(bst, bsh, FE_BMPR10, sc->txb_sched | FE_B10_START);
648 * Start output on interface.
649 * We make two assumptions here:
650 * 1) that the current priority is set to splnet _before_ this code
651 * is called *and* is returned to the appropriate priority after
652 * return
653 * 2) that the IFF_OACTIVE flag is checked before this code is called
654 * (i.e. that the output part of the interface is idle)
656 void
657 mb86960_start(struct ifnet *ifp)
659 struct mb86960_softc *sc = ifp->if_softc;
660 struct mbuf *m;
662 #if FE_DEBUG >= 1
663 /* Just a sanity check. */
664 if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
666 * Txb_count and txb_free co-works to manage the
667 * transmission buffer. Txb_count keeps track of the
668 * used potion of the buffer, while txb_free does unused
669 * potion. So, as long as the driver runs properly,
670 * txb_count is zero if and only if txb_free is same
671 * as txb_size (which represents whole buffer.)
673 log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
674 device_xname(sc->sc_dev), sc->txb_count, sc->txb_free);
676 * So, what should I do, then?
678 * We now know txb_count and txb_free contradicts. We
679 * cannot, however, tell which is wrong. More
680 * over, we cannot peek 86960 transmission buffer or
681 * reset the transmission buffer. (In fact, we can
682 * reset the entire interface. I don't want to do it.)
684 * If txb_count is incorrect, leaving it as is will cause
685 * sending of gabages after next interrupt. We have to
686 * avoid it. Hence, we reset the txb_count here. If
687 * txb_free was incorrect, resetting txb_count just loose
688 * some packets. We can live with it.
690 sc->txb_count = 0;
692 #endif
694 #if FE_DEBUG >= 1
696 * First, see if there are buffered packets and an idle
697 * transmitter - should never happen at this point.
699 if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
700 log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
701 device_xname(sc->sc_dev), sc->txb_count);
702 mb86960_xmit(sc);
704 #endif
707 * Stop accepting more transmission packets temporarily, when
708 * a filter change request is delayed. Updating the MARs on
709 * 86960 flushes the transmisstion buffer, so it is delayed
710 * until all buffered transmission packets have been sent
711 * out.
713 if (sc->filter_change) {
715 * Filter change request is delayed only when the DLC is
716 * working. DLC soon raise an interrupt after finishing
717 * the work.
719 goto indicate_active;
722 for (;;) {
724 * See if there is room to put another packet in the buffer.
725 * We *could* do better job by peeking the send queue to
726 * know the length of the next packet. Current version just
727 * tests against the worst case (i.e., longest packet). FIXME.
729 * When adding the packet-peek feature, don't forget adding a
730 * test on txb_count against QUEUEING_MAX.
731 * There is a little chance the packet count exceeds
732 * the limit. Assume transmission buffer is 8KB (2x8KB
733 * configuration) and an application sends a bunch of small
734 * (i.e., minimum packet sized) packets rapidly. An 8KB
735 * buffer can hold 130 blocks of 62 bytes long...
737 if (sc->txb_free <
738 (ETHER_MAX_LEN - ETHER_CRC_LEN) + FE_TXLEN_SIZE) {
739 /* No room. */
740 goto indicate_active;
743 #if FE_SINGLE_TRANSMISSION
744 if (sc->txb_count > 0) {
745 /* Just one packet per a transmission buffer. */
746 goto indicate_active;
748 #endif
751 * Get the next mbuf chain for a packet to send.
753 IFQ_DEQUEUE(&ifp->if_snd, m);
754 if (m == 0) {
755 /* No more packets to send. */
756 goto indicate_inactive;
759 #if NBPFILTER > 0
760 /* Tap off here if there is a BPF listener. */
761 if (ifp->if_bpf)
762 bpf_mtap(ifp->if_bpf, m);
763 #endif
766 * Copy the mbuf chain into the transmission buffer.
767 * txb_* variables are updated as necessary.
769 mb86960_write_mbufs(sc, m);
771 m_freem(m);
773 /* Start transmitter if it's idle. */
774 if (sc->txb_sched == 0)
775 mb86960_xmit(sc);
778 indicate_inactive:
780 * We are using the !OACTIVE flag to indicate to
781 * the outside world that we can accept an
782 * additional packet rather than that the
783 * transmitter is _actually_ active. Indeed, the
784 * transmitter may be active, but if we haven't
785 * filled all the buffers with data then we still
786 * want to accept more.
788 ifp->if_flags &= ~IFF_OACTIVE;
789 return;
791 indicate_active:
793 * The transmitter is active, and there are no room for
794 * more outgoing packets in the transmission buffer.
796 ifp->if_flags |= IFF_OACTIVE;
797 return;
801 * Transmission interrupt handler
802 * The control flow of this function looks silly. FIXME.
804 void
805 mb86960_tint(struct mb86960_softc *sc, uint8_t tstat)
807 bus_space_tag_t bst = sc->sc_bst;
808 bus_space_handle_t bsh = sc->sc_bsh;
809 struct ifnet *ifp = &sc->sc_ec.ec_if;
810 int left;
811 int col;
814 * Handle "excessive collision" interrupt.
816 if (tstat & FE_D0_COLL16) {
818 * Find how many packets (including this collided one)
819 * are left unsent in transmission buffer.
821 left = bus_space_read_1(bst, bsh, FE_BMPR10);
823 #if FE_DEBUG >= 2
824 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
825 device_xname(sc->sc_dev), left, sc->txb_sched);
826 #endif
827 #if FE_DEBUG >= 3
828 mb86960_dump(LOG_INFO, sc);
829 #endif
832 * Update statistics.
834 ifp->if_collisions += 16;
835 ifp->if_oerrors++;
836 ifp->if_opackets += sc->txb_sched - left;
839 * Collision statistics has been updated.
840 * Clear the collision flag on 86960 now to avoid confusion.
842 bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID);
845 * Restart transmitter, skipping the
846 * collided packet.
848 * We *must* skip the packet to keep network running
849 * properly. Excessive collision error is an
850 * indication of the network overload. If we
851 * tried sending the same packet after excessive
852 * collision, the network would be filled with
853 * out-of-time packets. Packets belonging
854 * to reliable transport (such as TCP) are resent
855 * by some upper layer.
857 bus_space_write_1(bst, bsh, FE_BMPR11,
858 FE_B11_CTRL_SKIP | FE_B11_MODE1);
859 sc->txb_sched = left - 1;
863 * Handle "transmission complete" interrupt.
865 if (tstat & FE_D0_TXDONE) {
867 * Add in total number of collisions on last
868 * transmission. We also clear "collision occurred" flag
869 * here.
871 * 86960 has a design flow on collision count on multiple
872 * packet transmission. When we send two or more packets
873 * with one start command (that's what we do when the
874 * transmission queue is clauded), 86960 informs us number
875 * of collisions occurred on the last packet on the
876 * transmission only. Number of collisions on previous
877 * packets are lost. I have told that the fact is clearly
878 * stated in the Fujitsu document.
880 * I considered not to mind it seriously. Collision
881 * count is not so important, anyway. Any comments? FIXME.
884 if (bus_space_read_1(bst, bsh, FE_DLCR0) & FE_D0_COLLID) {
885 /* Clear collision flag. */
886 bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID);
888 /* Extract collision count from 86960. */
889 col = bus_space_read_1(bst, bsh, FE_DLCR4) & FE_D4_COL;
890 if (col == 0) {
892 * Status register indicates collisions,
893 * while the collision count is zero.
894 * This can happen after multiple packet
895 * transmission, indicating that one or more
896 * previous packet(s) had been collided.
898 * Since the accurate number of collisions
899 * has been lost, we just guess it as 1;
900 * Am I too optimistic? FIXME.
902 col = 1;
903 } else
904 col >>= FE_D4_COL_SHIFT;
905 ifp->if_collisions += col;
906 #if FE_DEBUG >= 4
907 log(LOG_WARNING, "%s: %d collision%s (%d)\n",
908 device_xname(sc->sc_dev), col, col == 1 ? "" : "s",
909 sc->txb_sched);
910 #endif
914 * Update total number of successfully
915 * transmitted packets.
917 ifp->if_opackets += sc->txb_sched;
918 sc->txb_sched = 0;
921 if (sc->txb_sched == 0) {
923 * The transmitter is no more active.
924 * Reset output active flag and watchdog timer.
926 ifp->if_flags &= ~IFF_OACTIVE;
927 ifp->if_timer = 0;
930 * If more data is ready to transmit in the buffer, start
931 * transmitting them. Otherwise keep transmitter idle,
932 * even if more data is queued. This gives receive
933 * process a slight priority.
935 if (sc->txb_count > 0)
936 mb86960_xmit(sc);
941 * Ethernet interface receiver interrupt.
943 void
944 mb86960_rint(struct mb86960_softc *sc, uint8_t rstat)
946 bus_space_tag_t bst = sc->sc_bst;
947 bus_space_handle_t bsh = sc->sc_bsh;
948 struct ifnet *ifp = &sc->sc_ec.ec_if;
949 u_int status, len;
950 int i;
953 * Update statistics if this interrupt is caused by an error.
955 if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR | FE_D1_ALGERR |
956 FE_D1_SRTPKT)) {
957 #if FE_DEBUG >= 3
958 char sbuf[sizeof(FE_D1_ERRBITS) + 64];
960 snprintb(sbuf, sizeof(sbuf), FE_D1_ERRBITS, rstat);
961 log(LOG_WARNING, "%s: receive error: %s\n",
962 device_xname(sc->sc_dev), sbuf);
963 #endif
964 ifp->if_ierrors++;
968 * MB86960 has a flag indicating "receive queue empty."
969 * We just loop checking the flag to pull out all received
970 * packets.
972 * We limit the number of iterrations to avoid infinite loop.
973 * It can be caused by a very slow CPU (some broken
974 * peripheral may insert incredible number of wait cycles)
975 * or, worse, by a broken MB86960 chip.
977 for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
978 /* Stop the iterration if 86960 indicates no packets. */
979 if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP)
980 break;
983 * Extract receive packet status from the receive
984 * packet header.
986 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
987 status = bus_space_read_1(bst, bsh, FE_BMPR8);
988 (void)bus_space_read_1(bst, bsh, FE_BMPR8);
989 } else
990 status = bus_space_read_2(bst, bsh, FE_BMPR8);
992 #if FE_DEBUG >= 4
993 log(LOG_INFO, "%s: receive status = %02x\n",
994 device_xname(sc->sc_dev), status);
995 #endif
998 * If there was an error, update statistics and drop
999 * the packet, unless the interface is in promiscuous
1000 * mode.
1002 if ((status & FE_RXSTAT_GOODPKT) == 0) {
1003 if ((ifp->if_flags & IFF_PROMISC) == 0) {
1004 ifp->if_ierrors++;
1005 mb86960_droppacket(sc);
1006 continue;
1011 * Extract the packet length from the receive packet header.
1012 * It is a sum of a header (14 bytes) and a payload.
1013 * CRC has been stripped off by the 86960.
1015 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1016 len = bus_space_read_1(bst, bsh, FE_BMPR8);
1017 len |= bus_space_read_1(bst, bsh, FE_BMPR8) << 8;
1018 } else
1019 len = bus_space_read_2(bst, bsh, FE_BMPR8);
1022 * MB86965 checks the packet length and drop big packet
1023 * before passing it to us. There are no chance we can
1024 * get [crufty] packets. Hence, if the length exceeds
1025 * the specified limit, it means some serious failure,
1026 * such as out-of-sync on receive buffer management.
1028 * Is this statement true? FIXME.
1030 if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN) ||
1031 len < ETHER_HDR_LEN) {
1032 #if FE_DEBUG >= 2
1033 log(LOG_WARNING,
1034 "%s: received a %s packet? (%u bytes)\n",
1035 device_xname(sc->sc_dev),
1036 len < ETHER_HDR_LEN ? "partial" : "big", len);
1037 #endif
1038 ifp->if_ierrors++;
1039 mb86960_droppacket(sc);
1040 continue;
1044 * Check for a short (RUNT) packet. We *do* check
1045 * but do nothing other than print a message.
1046 * Short packets are illegal, but does nothing bad
1047 * if it carries data for upper layer.
1049 #if FE_DEBUG >= 2
1050 if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN)) {
1051 log(LOG_WARNING,
1052 "%s: received a short packet? (%u bytes)\n",
1053 device_xname(sc->sc_dev), len);
1055 #endif
1058 * Go get a packet.
1060 if (mb86960_get_packet(sc, len) == 0) {
1061 /* Skip a packet, updating statistics. */
1062 #if FE_DEBUG >= 2
1063 log(LOG_WARNING,
1064 "%s: out of mbufs; dropping packet (%u bytes)\n",
1065 device_xname(sc->sc_dev), len);
1066 #endif
1067 ifp->if_ierrors++;
1068 mb86960_droppacket(sc);
1071 * We stop receiving packets, even if there are
1072 * more in the buffer. We hope we can get more
1073 * mbufs next time.
1075 return;
1078 /* Successfully received a packet. Update stat. */
1079 ifp->if_ipackets++;
1084 * Ethernet interface interrupt processor
1087 mb86960_intr(void *arg)
1089 struct mb86960_softc *sc = arg;
1090 bus_space_tag_t bst = sc->sc_bst;
1091 bus_space_handle_t bsh = sc->sc_bsh;
1092 struct ifnet *ifp = &sc->sc_ec.ec_if;
1093 uint8_t tstat, rstat;
1095 if ((sc->sc_stat & FE_STAT_ENABLED) == 0 ||
1096 !device_is_active(sc->sc_dev))
1097 return 0;
1099 #if FE_DEBUG >= 4
1100 log(LOG_INFO, "%s: mb86960_intr()\n", device_xname(sc->sc_dev));
1101 mb86960_dump(LOG_INFO, sc);
1102 #endif
1105 * Get interrupt conditions, masking unneeded flags.
1107 tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK;
1108 rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK;
1109 if (tstat == 0 && rstat == 0)
1110 return 0;
1113 * Loop until there are no more new interrupt conditions.
1115 for (;;) {
1117 * Reset the conditions we are acknowledging.
1119 bus_space_write_1(bst, bsh, FE_DLCR0, tstat);
1120 bus_space_write_1(bst, bsh, FE_DLCR1, rstat);
1123 * Handle transmitter interrupts. Handle these first because
1124 * the receiver will reset the board under some conditions.
1126 if (tstat != 0)
1127 mb86960_tint(sc, tstat);
1130 * Handle receiver interrupts.
1132 if (rstat != 0)
1133 mb86960_rint(sc, rstat);
1136 * Update the multicast address filter if it is
1137 * needed and possible. We do it now, because
1138 * we can make sure the transmission buffer is empty,
1139 * and there is a good chance that the receive queue
1140 * is empty. It will minimize the possibility of
1141 * packet lossage.
1143 if (sc->filter_change &&
1144 sc->txb_count == 0 && sc->txb_sched == 0) {
1145 mb86960_loadmar(sc);
1146 ifp->if_flags &= ~IFF_OACTIVE;
1150 * If it looks like the transmitter can take more data,
1151 * attempt to start output on the interface. This is done
1152 * after handling the receiver interrupt to give the
1153 * receive operation priority.
1155 if ((ifp->if_flags & IFF_OACTIVE) == 0)
1156 mb86960_start(ifp);
1158 #if NRND > 0
1159 if (rstat != 0 || tstat != 0)
1160 rnd_add_uint32(&sc->rnd_source, rstat + tstat);
1161 #endif
1164 * Get interrupt conditions, masking unneeded flags.
1166 tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK;
1167 rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK;
1168 if (tstat == 0 && rstat == 0)
1169 return 1;
1174 * Process an ioctl request. This code needs some work - it looks pretty ugly.
1177 mb86960_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1179 struct mb86960_softc *sc = ifp->if_softc;
1180 struct ifaddr *ifa = (struct ifaddr *)data;
1181 struct ifreq *ifr = (struct ifreq *)data;
1182 int s, error = 0;
1184 #if FE_DEBUG >= 3
1185 log(LOG_INFO, "%s: ioctl(%lx)\n", device_xname(sc->sc_dev), cmd);
1186 #endif
1188 s = splnet();
1190 switch (cmd) {
1191 case SIOCINITIFADDR:
1192 if ((error = mb86960_enable(sc)) != 0)
1193 break;
1194 ifp->if_flags |= IFF_UP;
1196 mb86960_init(sc);
1197 switch (ifa->ifa_addr->sa_family) {
1198 #ifdef INET
1199 case AF_INET:
1200 arp_ifinit(ifp, ifa);
1201 break;
1202 #endif
1203 default:
1204 break;
1206 break;
1208 case SIOCSIFFLAGS:
1209 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1210 break;
1211 /* XXX re-use ether_ioctl() */
1212 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1213 case IFF_RUNNING:
1215 * If interface is marked down and it is running, then
1216 * stop it.
1218 mb86960_stop(sc);
1219 ifp->if_flags &= ~IFF_RUNNING;
1220 mb86960_disable(sc);
1221 break;
1222 case IFF_UP:
1224 * If interface is marked up and it is stopped, then
1225 * start it.
1227 if ((error = mb86960_enable(sc)) != 0)
1228 break;
1229 mb86960_init(sc);
1230 break;
1231 case IFF_UP|IFF_RUNNING:
1233 * Reset the interface to pick up changes in any other
1234 * flags that affect hardware registers.
1236 mb86960_setmode(sc);
1237 break;
1238 case 0:
1239 break;
1241 #if FE_DEBUG >= 1
1242 /* "ifconfig fe0 debug" to print register dump. */
1243 if (ifp->if_flags & IFF_DEBUG) {
1244 log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n",
1245 device_xname(sc->sc_dev));
1246 mb86960_dump(LOG_DEBUG, sc);
1248 #endif
1249 break;
1251 case SIOCADDMULTI:
1252 case SIOCDELMULTI:
1253 if ((sc->sc_stat & FE_STAT_ENABLED) == 0) {
1254 error = EIO;
1255 break;
1258 /* Update our multicast list. */
1259 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1261 * Multicast list has changed; set the hardware filter
1262 * accordingly.
1264 if (ifp->if_flags & IFF_RUNNING)
1265 mb86960_setmode(sc);
1266 error = 0;
1268 break;
1270 case SIOCGIFMEDIA:
1271 case SIOCSIFMEDIA:
1272 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1273 break;
1275 default:
1276 error = ether_ioctl(ifp, cmd, data);
1277 break;
1280 splx(s);
1281 return error;
1285 * Retrieve packet from receive buffer and send to the next level up via
1286 * ether_input(). If there is a BPF listener, give a copy to BPF, too.
1287 * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
1290 mb86960_get_packet(struct mb86960_softc *sc, u_int len)
1292 bus_space_tag_t bst = sc->sc_bst;
1293 bus_space_handle_t bsh = sc->sc_bsh;
1294 struct ifnet *ifp = &sc->sc_ec.ec_if;
1295 struct mbuf *m;
1297 /* Allocate a header mbuf. */
1298 MGETHDR(m, M_DONTWAIT, MT_DATA);
1299 if (m == 0)
1300 return 0;
1301 m->m_pkthdr.rcvif = ifp;
1302 m->m_pkthdr.len = len;
1304 /* The following silliness is to make NFS happy. */
1305 #define EROUND ((sizeof(struct ether_header) + 3) & ~3)
1306 #define EOFF (EROUND - sizeof(struct ether_header))
1309 * Our strategy has one more problem. There is a policy on
1310 * mbuf cluster allocation. It says that we must have at
1311 * least MINCLSIZE (208 bytes) to allocate a cluster. For a
1312 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
1313 * our code violates the rule...
1314 * On the other hand, the current code is short, simple,
1315 * and fast, however. It does no harmful thing, just waists
1316 * some memory. Any comments? FIXME.
1319 /* Attach a cluster if this packet doesn't fit in a normal mbuf. */
1320 if (len > MHLEN - EOFF) {
1321 MCLGET(m, M_DONTWAIT);
1322 if ((m->m_flags & M_EXT) == 0) {
1323 m_freem(m);
1324 return 0;
1329 * The following assumes there is room for the ether header in the
1330 * header mbuf.
1332 m->m_data += EOFF;
1334 /* Set the length of this packet. */
1335 m->m_len = len;
1337 /* Get a packet. */
1338 if (sc->sc_flags & FE_FLAGS_SBW_BYTE)
1339 bus_space_read_multi_1(bst, bsh, FE_BMPR8,
1340 mtod(m, uint8_t *), len);
1341 else
1342 bus_space_read_multi_stream_2(bst, bsh, FE_BMPR8,
1343 mtod(m, uint16_t *), (len + 1) >> 1);
1345 #if NBPFILTER > 0
1347 * Check if there's a BPF listener on this interface. If so, hand off
1348 * the raw packet to bpf.
1350 if (ifp->if_bpf)
1351 bpf_mtap(ifp->if_bpf, m);
1352 #endif
1354 (*ifp->if_input)(ifp, m);
1355 return 1;
1359 * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
1360 * Returns number of bytes actually written, including length word.
1362 * If an mbuf chain is too long for an Ethernet frame, it is not sent.
1363 * Packets shorter than Ethernet minimum are legal, and we pad them
1364 * before sending out. An exception is "partial" packets which are
1365 * shorter than mandatory Ethernet header.
1367 * I wrote a code for an experimental "delayed padding" technique.
1368 * When employed, it postpones the padding process for short packets.
1369 * If xmit() occurred at the moment, the padding process is omitted, and
1370 * garbages are sent as pad data. If next packet is stored in the
1371 * transmission buffer before xmit(), write_mbuf() pads the previous
1372 * packet before transmitting new packet. This *may* gain the
1373 * system performance (slightly).
1375 void
1376 mb86960_write_mbufs(struct mb86960_softc *sc, struct mbuf *m)
1378 bus_space_tag_t bst = sc->sc_bst;
1379 bus_space_handle_t bsh = sc->sc_bsh;
1380 int totlen, len;
1381 #if FE_DEBUG >= 2
1382 struct mbuf *mp;
1383 #endif
1385 #if FE_DELAYED_PADDING
1386 /* Do the "delayed padding." */
1387 if (sc->txb_padding > 0) {
1388 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1389 for (len = sc->txb_padding; len > 0; len--)
1390 bus_space_write_1(bst, bsh, FE_BMPR8, 0);
1391 } else {
1392 for (len = sc->txb_padding >> 1; len > 0; len--)
1393 bus_space_write_2(bst, bsh, FE_BMPR8, 0);
1395 sc->txb_padding = 0;
1397 #endif
1399 /* We need to use m->m_pkthdr.len, so require the header */
1400 if ((m->m_flags & M_PKTHDR) == 0)
1401 panic("mb86960_write_mbufs: no header mbuf");
1403 #if FE_DEBUG >= 2
1404 /* First, count up the total number of bytes to copy. */
1405 for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
1406 totlen += mp->m_len;
1407 /* Check if this matches the one in the packet header. */
1408 if (totlen != m->m_pkthdr.len)
1409 log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
1410 device_xname(sc->sc_dev), totlen, m->m_pkthdr.len);
1411 #else
1412 /* Just use the length value in the packet header. */
1413 totlen = m->m_pkthdr.len;
1414 #endif
1416 #if FE_DEBUG >= 1
1418 * Should never send big packets. If such a packet is passed,
1419 * it should be a bug of upper layer. We just ignore it.
1420 * ... Partial (too short) packets, neither.
1422 if (totlen > (ETHER_MAX_LEN - ETHER_CRC_LEN) ||
1423 totlen < ETHER_HDR_LEN) {
1424 log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
1425 device_xname(sc->sc_dev),
1426 totlen < ETHER_HDR_LEN ? "partial" : "big", totlen);
1427 sc->sc_ec.ec_if.if_oerrors++;
1428 return;
1430 #endif
1433 * Put the length word for this frame.
1434 * Does 86960 accept odd length? -- Yes.
1435 * Do we need to pad the length to minimum size by ourselves?
1436 * -- Generally yes. But for (or will be) the last
1437 * packet in the transmission buffer, we can skip the
1438 * padding process. It may gain performance slightly. FIXME.
1440 len = max(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN));
1441 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1442 bus_space_write_1(bst, bsh, FE_BMPR8, len);
1443 bus_space_write_1(bst, bsh, FE_BMPR8, len >> 8);
1444 } else {
1445 bus_space_write_2(bst, bsh, FE_BMPR8, len);
1446 /* roundup packet length since we will use word access */
1447 totlen = (totlen + 1) & ~1;
1451 * Update buffer status now.
1452 * Truncate the length up to an even number
1453 * if the chip is set in SBW_WORD mode.
1455 sc->txb_free -= FE_TXLEN_SIZE +
1456 max(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN));
1457 sc->txb_count++;
1459 #if FE_DELAYED_PADDING
1460 /* Postpone the packet padding if necessary. */
1461 if (totlen < (ETHER_MIN_LEN - ETHER_CRC_LEN))
1462 sc->txb_padding = (ETHER_MIN_LEN - ETHER_CRC_LEN) - totlen;
1463 #endif
1466 * Transfer the data from mbuf chain to the transmission buffer.
1467 * If the MB86960 is configured in word mode, data needs to be
1468 * transferred as words, and only words.
1469 * So that we require some extra code to patch over odd-length
1470 * or unaligned mbufs.
1472 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1473 /* It's simple in byte mode. */
1474 for (; m != NULL; m = m->m_next) {
1475 if (m->m_len) {
1476 bus_space_write_multi_1(bst, bsh, FE_BMPR8,
1477 mtod(m, uint8_t *), m->m_len);
1480 } else {
1481 /* a bit trickier in word mode. */
1482 uint8_t *data, savebyte[2];
1483 int leftover;
1485 leftover = 0;
1486 savebyte[0] = savebyte[1] = 0;
1488 for (; m != NULL; m = m->m_next) {
1489 len = m->m_len;
1490 if (len == 0)
1491 continue;
1492 data = mtod(m, uint8_t *);
1493 while (len > 0) {
1494 if (leftover) {
1496 * Data left over (from mbuf or
1497 * realignment). Buffer the next
1498 * byte, and write it and the
1499 * leftover data out.
1501 savebyte[1] = *data++;
1502 len--;
1503 bus_space_write_stream_2(bst, bsh,
1504 FE_BMPR8, *(uint16_t *)savebyte);
1505 leftover = 0;
1506 } else if (BUS_SPACE_ALIGNED_POINTER(data,
1507 uint16_t) == 0) {
1509 * Unaligned data; buffer the next byte.
1511 savebyte[0] = *data++;
1512 len--;
1513 leftover = 1;
1514 } else {
1516 * Aligned data; output contiguous
1517 * words as much as we can, then
1518 * buffer the remaining byte, if any.
1520 leftover = len & 1;
1521 len &= ~1;
1522 bus_space_write_multi_stream_2(bst, bsh,
1523 FE_BMPR8, (uint16_t *)data,
1524 len >> 1);
1525 data += len;
1526 if (leftover)
1527 savebyte[0] = *data++;
1528 len = 0;
1531 if (len < 0)
1532 panic("mb86960_write_mbufs: negative len");
1534 if (leftover) {
1535 savebyte[1] = 0;
1536 bus_space_write_stream_2(bst, bsh, FE_BMPR8,
1537 *(uint16_t *)savebyte);
1540 #if FE_DELAYED_PADDING == 0
1542 * Pad the packet to the minimum length if necessary.
1544 len = (ETHER_MIN_LEN - ETHER_CRC_LEN) - totlen;
1545 if (len > 0) {
1546 if (sc->sc_flags & FE_FLAGS_SBW_BYTE) {
1547 while (len-- > 0)
1548 bus_space_write_1(bst, bsh, FE_BMPR8, 0);
1549 } else {
1550 len >>= 1;
1551 while (len-- > 0)
1552 bus_space_write_2(bst, bsh, FE_BMPR8, 0);
1555 #endif
1559 * Compute the multicast address filter from the
1560 * list of multicast addresses we need to listen to.
1562 void
1563 mb86960_getmcaf(struct ethercom *ec, uint8_t *af)
1565 struct ifnet *ifp = &ec->ec_if;
1566 struct ether_multi *enm;
1567 uint32_t crc;
1568 struct ether_multistep step;
1571 * Set up multicast address filter by passing all multicast addresses
1572 * through a crc generator, and then using the high order 6 bits as an
1573 * index into the 64 bit logical address filter. The high order bit
1574 * selects the word, while the rest of the bits select the bit within
1575 * the word.
1578 if ((ifp->if_flags & IFF_PROMISC) != 0)
1579 goto allmulti;
1581 memset(af, 0, FE_FILTER_LEN);
1582 ETHER_FIRST_MULTI(step, ec, enm);
1583 while (enm != NULL) {
1584 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1585 sizeof(enm->enm_addrlo)) != 0) {
1587 * We must listen to a range of multicast addresses.
1588 * For now, just accept all multicasts, rather than
1589 * trying to set only those filter bits needed to match
1590 * the range. (At this time, the only use of address
1591 * ranges is for IP multicast routing, for which the
1592 * range is big enough to require all bits set.)
1594 goto allmulti;
1597 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1599 /* Just want the 6 most significant bits. */
1600 crc >>= 26;
1602 /* Turn on the corresponding bit in the filter. */
1603 af[crc >> 3] |= 1 << (crc & 7);
1605 ETHER_NEXT_MULTI(step, enm);
1607 ifp->if_flags &= ~IFF_ALLMULTI;
1608 return;
1610 allmulti:
1611 ifp->if_flags |= IFF_ALLMULTI;
1612 memset(af, 0xff, FE_FILTER_LEN);
1616 * Calculate a new "multicast packet filter" and put the 86960
1617 * receiver in appropriate mode.
1619 void
1620 mb86960_setmode(struct mb86960_softc *sc)
1622 bus_space_tag_t bst = sc->sc_bst;
1623 bus_space_handle_t bsh = sc->sc_bsh;
1624 int flags = sc->sc_ec.ec_if.if_flags;
1627 * If the interface is not running, we postpone the update
1628 * process for receive modes and multicast address filter
1629 * until the interface is restarted. It reduces some
1630 * complicated job on maintaining chip states. (Earlier versions
1631 * of this driver had a bug on that point...)
1633 * To complete the trick, mb86960_init() calls mb86960_setmode() after
1634 * restarting the interface.
1636 if ((flags & IFF_RUNNING) == 0)
1637 return;
1640 * Promiscuous mode is handled separately.
1642 if ((flags & IFF_PROMISC) != 0) {
1644 * Program 86960 to receive all packets on the segment
1645 * including those directed to other stations.
1646 * Multicast filter stored in MARs are ignored
1647 * under this setting, so we don't need to update it.
1649 * Promiscuous mode is used solely by BPF, and BPF only
1650 * listens to valid (no error) packets. So, we ignore
1651 * errornous ones even in this mode.
1653 bus_space_write_1(bst, bsh, FE_DLCR5,
1654 sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
1655 sc->filter_change = 0;
1657 #if FE_DEBUG >= 3
1658 log(LOG_INFO, "%s: promiscuous mode\n",
1659 device_xname(sc->sc_dev));
1660 #endif
1661 return;
1665 * Turn the chip to the normal (non-promiscuous) mode.
1667 bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
1670 * Find the new multicast filter value.
1672 mb86960_getmcaf(&sc->sc_ec, sc->filter);
1673 sc->filter_change = 1;
1675 #if FE_DEBUG >= 3
1676 log(LOG_INFO,
1677 "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
1678 device_xname(sc->sc_dev),
1679 sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
1680 sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
1681 #endif
1684 * We have to update the multicast filter in the 86960, A.S.A.P.
1686 * Note that the DLC (Data Linc Control unit, i.e. transmitter
1687 * and receiver) must be stopped when feeding the filter, and
1688 * DLC trashes all packets in both transmission and receive
1689 * buffers when stopped.
1691 * ... Are the above sentenses correct? I have to check the
1692 * manual of the MB86960A. FIXME.
1694 * To reduce the packet lossage, we delay the filter update
1695 * process until buffers are empty.
1697 if (sc->txb_sched == 0 && sc->txb_count == 0 &&
1698 (bus_space_read_1(bst, bsh, FE_DLCR1) & FE_D1_PKTRDY) == 0) {
1700 * Buffers are (apparently) empty. Load
1701 * the new filter value into MARs now.
1703 mb86960_loadmar(sc);
1704 } else {
1706 * Buffers are not empty. Mark that we have to update
1707 * the MARs. The new filter will be loaded by mb86960_intr()
1708 * later.
1710 #if FE_DEBUG >= 4
1711 log(LOG_INFO, "%s: filter change delayed\n",
1712 device_xname(sc->sc_dev));
1713 #endif
1718 * Load a new multicast address filter into MARs.
1720 * The caller must have splnet'ed befor mb86960_loadmar.
1721 * This function starts the DLC upon return. So it can be called only
1722 * when the chip is working, i.e., from the driver's point of view, when
1723 * a device is RUNNING. (I mistook the point in previous versions.)
1725 void
1726 mb86960_loadmar(struct mb86960_softc *sc)
1728 bus_space_tag_t bst = sc->sc_bst;
1729 bus_space_handle_t bsh = sc->sc_bsh;
1731 /* Stop the DLC (transmitter and receiver). */
1732 bus_space_write_1(bst, bsh, FE_DLCR6,
1733 sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1735 /* Select register bank 1 for MARs. */
1736 bus_space_write_1(bst, bsh, FE_DLCR7,
1737 sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
1739 /* Copy filter value into the registers. */
1740 bus_space_write_region_1(bst, bsh, FE_MAR8, sc->filter, FE_FILTER_LEN);
1742 /* Restore the bank selection for BMPRs (i.e., runtime registers). */
1743 bus_space_write_1(bst, bsh, FE_DLCR7,
1744 sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1746 /* Restart the DLC. */
1747 bus_space_write_1(bst, bsh, FE_DLCR6,
1748 sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1750 /* We have just updated the filter. */
1751 sc->filter_change = 0;
1753 #if FE_DEBUG >= 3
1754 log(LOG_INFO, "%s: address filter changed\n", device_xname(sc->sc_dev));
1755 #endif
1759 * Enable power on the interface.
1762 mb86960_enable(struct mb86960_softc *sc)
1765 #if FE_DEBUG >= 3
1766 log(LOG_INFO, "%s: mb86960_enable()\n", device_xname(sc->sc_dev));
1767 #endif
1769 if ((sc->sc_stat & FE_STAT_ENABLED) == 0 && sc->sc_enable != NULL) {
1770 if ((*sc->sc_enable)(sc) != 0) {
1771 aprint_error_dev(sc->sc_dev, "device enable failed\n");
1772 return EIO;
1776 sc->sc_stat |= FE_STAT_ENABLED;
1777 return 0;
1781 * Disable power on the interface.
1783 void
1784 mb86960_disable(struct mb86960_softc *sc)
1787 #if FE_DEBUG >= 3
1788 log(LOG_INFO, "%s: mb86960_disable()\n", device_xname(sc->sc_dev));
1789 #endif
1791 if ((sc->sc_stat & FE_STAT_ENABLED) != 0 && sc->sc_disable != NULL) {
1792 (*sc->sc_disable)(sc);
1793 sc->sc_stat &= ~FE_STAT_ENABLED;
1798 * mbe_activate:
1800 * Handle device activation/deactivation requests.
1803 mb86960_activate(device_t self, enum devact act)
1805 struct mb86960_softc *sc = device_private(self);
1807 switch (act) {
1808 case DVACT_DEACTIVATE:
1809 if_deactivate(&sc->sc_ec.ec_if);
1810 return 0;
1811 default:
1812 return EOPNOTSUPP;
1817 * mb86960_detach:
1819 * Detach a MB86960 interface.
1822 mb86960_detach(struct mb86960_softc *sc)
1824 struct ifnet *ifp = &sc->sc_ec.ec_if;
1826 /* Succeed now if there's no work to do. */
1827 if ((sc->sc_stat & FE_STAT_ATTACHED) == 0)
1828 return 0;
1830 /* Delete all media. */
1831 ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY);
1833 #if NRND > 0
1834 /* Unhook the entropy source. */
1835 rnd_detach_source(&sc->rnd_source);
1836 #endif
1837 ether_ifdetach(ifp);
1838 if_detach(ifp);
1840 mb86960_disable(sc);
1841 return 0;
1845 * Routines to read all bytes from the config EEPROM (93C06) through MB86965A.
1847 void
1848 mb86965_read_eeprom(bus_space_tag_t iot, bus_space_handle_t ioh, uint8_t *data)
1850 int addr, op, bit;
1851 uint16_t val;
1853 /* Read bytes from EEPROM; two bytes per an iteration. */
1854 for (addr = 0; addr < FE_EEPROM_SIZE / 2; addr++) {
1855 /* Reset the EEPROM interface. */
1856 bus_space_write_1(iot, ioh, FE_BMPR16, 0x00);
1857 bus_space_write_1(iot, ioh, FE_BMPR17, 0x00);
1858 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1860 /* Send start bit. */
1861 bus_space_write_1(iot, ioh, FE_BMPR17, FE_B17_DATA);
1862 FE_EEPROM_DELAY();
1863 bus_space_write_1(iot, ioh,
1864 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1865 FE_EEPROM_DELAY();
1866 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1868 /* Send read command and read address. */
1869 op = 0x80 | addr; /* READ instruction */
1870 for (bit = 8; bit > 0; bit--) {
1871 bus_space_write_1(iot, ioh, FE_BMPR17,
1872 (op & (1 << (bit - 1))) ? FE_B17_DATA : 0);
1873 FE_EEPROM_DELAY();
1874 bus_space_write_1(iot, ioh,
1875 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1876 FE_EEPROM_DELAY();
1877 bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT);
1879 bus_space_write_1(iot, ioh, FE_BMPR17, 0x00);
1881 /* Read two bytes in each address */
1882 val = 0;
1883 for (bit = 16; bit > 0; bit--) {
1884 FE_EEPROM_DELAY();
1885 bus_space_write_1(iot, ioh,
1886 FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK);
1887 FE_EEPROM_DELAY();
1888 if (bus_space_read_1(iot, ioh, FE_BMPR17) &
1889 FE_B17_DATA)
1890 val |= 1 << (bit - 1);
1891 bus_space_write_1(iot, ioh,
1892 FE_BMPR16, FE_B16_SELECT);
1894 data[addr * 2] = val >> 8;
1895 data[addr * 2 + 1] = val & 0xff;
1898 /* Make sure the EEPROM is turned off. */
1899 bus_space_write_1(iot, ioh, FE_BMPR16, 0);
1900 bus_space_write_1(iot, ioh, FE_BMPR17, 0);
1902 #if FE_DEBUG >= 3
1903 /* Report what we got. */
1904 log(LOG_INFO, "mb86965_read_eeprom: "
1905 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1906 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1907 " %02x%02x%02x%02x %02x%02x%02x%02x -"
1908 " %02x%02x%02x%02x %02x%02x%02x%02x\n",
1909 data[ 0], data[ 1], data[ 2], data[ 3],
1910 data[ 4], data[ 5], data[ 6], data[ 7],
1911 data[ 8], data[ 9], data[10], data[11],
1912 data[12], data[13], data[14], data[15],
1913 data[16], data[17], data[18], data[19],
1914 data[20], data[21], data[22], data[23],
1915 data[24], data[25], data[26], data[27],
1916 data[28], data[29], data[30], data[31]);
1917 #endif
1920 #if FE_DEBUG >= 1
1921 void
1922 mb86960_dump(int level, struct mb86960_softc *sc)
1924 bus_space_tag_t bst = sc->sc_bst;
1925 bus_space_handle_t bsh = sc->sc_bsh;
1926 uint8_t save_dlcr7;
1928 save_dlcr7 = bus_space_read_1(bst, bsh, FE_DLCR7);
1930 log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x\n",
1931 bus_space_read_1(bst, bsh, FE_DLCR0),
1932 bus_space_read_1(bst, bsh, FE_DLCR1),
1933 bus_space_read_1(bst, bsh, FE_DLCR2),
1934 bus_space_read_1(bst, bsh, FE_DLCR3),
1935 bus_space_read_1(bst, bsh, FE_DLCR4),
1936 bus_space_read_1(bst, bsh, FE_DLCR5),
1937 bus_space_read_1(bst, bsh, FE_DLCR6),
1938 bus_space_read_1(bst, bsh, FE_DLCR7));
1940 bus_space_write_1(bst, bsh, FE_DLCR7,
1941 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
1942 log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x\n",
1943 bus_space_read_1(bst, bsh, FE_DLCR8),
1944 bus_space_read_1(bst, bsh, FE_DLCR9),
1945 bus_space_read_1(bst, bsh, FE_DLCR10),
1946 bus_space_read_1(bst, bsh, FE_DLCR11),
1947 bus_space_read_1(bst, bsh, FE_DLCR12),
1948 bus_space_read_1(bst, bsh, FE_DLCR13),
1949 bus_space_read_1(bst, bsh, FE_DLCR14),
1950 bus_space_read_1(bst, bsh, FE_DLCR15));
1952 bus_space_write_1(bst, bsh, FE_DLCR7,
1953 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
1954 log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x\n",
1955 bus_space_read_1(bst, bsh, FE_MAR8),
1956 bus_space_read_1(bst, bsh, FE_MAR9),
1957 bus_space_read_1(bst, bsh, FE_MAR10),
1958 bus_space_read_1(bst, bsh, FE_MAR11),
1959 bus_space_read_1(bst, bsh, FE_MAR12),
1960 bus_space_read_1(bst, bsh, FE_MAR13),
1961 bus_space_read_1(bst, bsh, FE_MAR14),
1962 bus_space_read_1(bst, bsh, FE_MAR15));
1964 bus_space_write_1(bst, bsh, FE_DLCR7,
1965 (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
1966 log(level,
1967 "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x\n",
1968 bus_space_read_1(bst, bsh, FE_BMPR10),
1969 bus_space_read_1(bst, bsh, FE_BMPR11),
1970 bus_space_read_1(bst, bsh, FE_BMPR12),
1971 bus_space_read_1(bst, bsh, FE_BMPR13),
1972 bus_space_read_1(bst, bsh, FE_BMPR14),
1973 bus_space_read_1(bst, bsh, FE_BMPR15),
1974 bus_space_read_1(bst, bsh, FE_BMPR16),
1975 bus_space_read_1(bst, bsh, FE_BMPR17),
1976 bus_space_read_1(bst, bsh, FE_BMPR19));
1978 bus_space_write_1(bst, bsh, FE_DLCR7, save_dlcr7);
1980 #endif