2 /* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */
3 /* -----------------------------------------------------------------------
5 * umac.c -- C Implementation UMAC Message Authentication
7 * Version 0.93b of rfc4418.txt -- 2006 July 18
9 * For a full description of UMAC message authentication see the UMAC
10 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
11 * Please report bugs and suggestions to the UMAC webpage.
13 * Copyright (c) 1999-2006 Ted Krovetz
15 * Permission to use, copy, modify, and distribute this software and
16 * its documentation for any purpose and with or without fee, is hereby
17 * granted provided that the above copyright notice appears in all copies
18 * and in supporting documentation, and that the name of the copyright
19 * holder not be used in advertising or publicity pertaining to
20 * distribution of the software without specific, written prior permission.
22 * Comments should be directed to Ted Krovetz (tdk@acm.org)
24 * ---------------------------------------------------------------------- */
26 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
28 * 1) This version does not work properly on messages larger than 16MB
30 * 2) If you set the switch to use SSE2, then all data must be 16-byte
33 * 3) When calling the function umac(), it is assumed that msg is in
34 * a writable buffer of length divisible by 32 bytes. The message itself
35 * does not have to fill the entire buffer, but bytes beyond msg may be
38 * 4) Three free AES implementations are supported by this implementation of
39 * UMAC. Paulo Barreto's version is in the public domain and can be found
40 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
41 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
42 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
43 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
44 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
47 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
48 * produced under gcc with optimizations set -O3 or higher. Dunno why.
50 /////////////////////////////////////////////////////////////////////// */
52 /* ---------------------------------------------------------------------- */
53 /* --- User Switches ---------------------------------------------------- */
54 /* ---------------------------------------------------------------------- */
56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
57 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
58 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
59 /* #define SSE2 0 Is SSE2 is available? */
60 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
61 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
63 /* ---------------------------------------------------------------------- */
64 /* -- Global Includes --------------------------------------------------- */
65 /* ---------------------------------------------------------------------- */
68 __RCSID("$NetBSD: umac.c,v 1.6 2009/02/16 20:53:55 christos Exp $");
69 #include <sys/types.h>
70 #include <sys/endian.h>
78 /* ---------------------------------------------------------------------- */
79 /* --- Primitive Data Types --- */
80 /* ---------------------------------------------------------------------- */
82 /* The following assumptions may need change on your system */
83 typedef u_int8_t UINT8
; /* 1 byte */
84 typedef u_int16_t UINT16
; /* 2 byte */
85 typedef u_int32_t UINT32
; /* 4 byte */
86 typedef u_int64_t UINT64
; /* 8 bytes */
87 typedef unsigned int UWORD
; /* Register */
89 /* ---------------------------------------------------------------------- */
90 /* --- Constants -------------------------------------------------------- */
91 /* ---------------------------------------------------------------------- */
93 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
95 /* Message "words" are read from memory in an endian-specific manner. */
96 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
97 /* be set true if the host computer is little-endian. */
99 #if BYTE_ORDER == LITTLE_ENDIAN
100 #define __LITTLE_ENDIAN__ 1
102 #define __LITTLE_ENDIAN__ 0
105 /* ---------------------------------------------------------------------- */
106 /* ---------------------------------------------------------------------- */
107 /* ----- Architecture Specific ------------------------------------------ */
108 /* ---------------------------------------------------------------------- */
109 /* ---------------------------------------------------------------------- */
112 /* ---------------------------------------------------------------------- */
113 /* ---------------------------------------------------------------------- */
114 /* ----- Primitive Routines --------------------------------------------- */
115 /* ---------------------------------------------------------------------- */
116 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
121 /* ---------------------------------------------------------------------- */
123 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
125 #if defined(__NetBSD__)
126 #include <sys/endian.h>
127 #define LOAD_UINT32_LITTLE(ptr) le32toh(*ptr)
128 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = htobe32(x))
129 #define LOAD_UINT32_REVERSED(p) (bswap32(*(UINT32 *)(p)))
130 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = bswap32(v))
133 /* ---------------------------------------------------------------------- */
134 /* --- Endian Conversion --- Forcing assembly on some platforms */
136 /* ---------------------------------------------------------------------- */
137 /* --- Endian Conversion --- Forcing assembly on some platforms */
138 /* ---------------------------------------------------------------------- */
140 #if !defined(__OpenBSD__)
141 static UINT32
LOAD_UINT32_REVERSED(void *ptr
)
143 UINT32 temp
= *(UINT32
*)ptr
;
144 temp
= (temp
>> 24) | ((temp
& 0x00FF0000) >> 8 )
145 | ((temp
& 0x0000FF00) << 8 ) | (temp
<< 24);
149 static void STORE_UINT32_REVERSED(void *ptr
, UINT32 x
)
151 UINT32 i
= (UINT32
)x
;
152 *(UINT32
*)ptr
= (i
>> 24) | ((i
& 0x00FF0000) >> 8 )
153 | ((i
& 0x0000FF00) << 8 ) | (i
<< 24);
158 /* The following definitions use the above reversal-primitives to do the right
159 * thing on endian specific load and stores.
162 #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
163 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
166 #if (__LITTLE_ENDIAN__)
167 #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
168 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
170 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
171 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
177 /* ---------------------------------------------------------------------- */
178 /* ---------------------------------------------------------------------- */
179 /* ----- Begin KDF & PDF Section ---------------------------------------- */
180 /* ---------------------------------------------------------------------- */
181 /* ---------------------------------------------------------------------- */
183 /* UMAC uses AES with 16 byte block and key lengths */
184 #define AES_BLOCK_LEN 16
187 #include <openssl/aes.h>
188 typedef AES_KEY aes_int_key
[1];
189 #define aes_encryption(in,out,int_key) \
190 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
191 #define aes_key_setup(key,int_key) \
192 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
194 /* The user-supplied UMAC key is stretched using AES in a counter
195 * mode to supply all random bits needed by UMAC. The kdf function takes
196 * an AES internal key representation 'key' and writes a stream of
197 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
198 * 'ndx' causes a distinct byte stream.
200 static void kdf(void *buffer_ptr
, aes_int_key key
, UINT8 ndx
, int nbytes
)
202 UINT8 in_buf
[AES_BLOCK_LEN
] = {0};
203 UINT8 out_buf
[AES_BLOCK_LEN
];
204 UINT8
*dst_buf
= (UINT8
*)buffer_ptr
;
207 /* Setup the initial value */
208 in_buf
[AES_BLOCK_LEN
-9] = ndx
;
209 in_buf
[AES_BLOCK_LEN
-1] = i
= 1;
211 while (nbytes
>= AES_BLOCK_LEN
) {
212 aes_encryption(in_buf
, out_buf
, key
);
213 memcpy(dst_buf
,out_buf
,AES_BLOCK_LEN
);
214 in_buf
[AES_BLOCK_LEN
-1] = ++i
;
215 nbytes
-= AES_BLOCK_LEN
;
216 dst_buf
+= AES_BLOCK_LEN
;
219 aes_encryption(in_buf
, out_buf
, key
);
220 memcpy(dst_buf
,out_buf
,nbytes
);
224 /* The final UHASH result is XOR'd with the output of a pseudorandom
225 * function. Here, we use AES to generate random output and
226 * xor the appropriate bytes depending on the last bits of nonce.
227 * This scheme is optimized for sequential, increasing big-endian nonces.
231 UINT8 cache
[AES_BLOCK_LEN
]; /* Previous AES output is saved */
232 UINT8 nonce
[AES_BLOCK_LEN
]; /* The AES input making above cache */
233 aes_int_key prf_key
; /* Expanded AES key for PDF */
236 static void pdf_init(pdf_ctx
*pc
, aes_int_key prf_key
)
238 UINT8 buf
[UMAC_KEY_LEN
];
240 kdf(buf
, prf_key
, 0, UMAC_KEY_LEN
);
241 aes_key_setup(buf
, pc
->prf_key
);
243 /* Initialize pdf and cache */
244 memset(pc
->nonce
, 0, sizeof(pc
->nonce
));
245 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
248 static void pdf_gen_xor(pdf_ctx
*pc
, UINT8 nonce
[8], UINT8 buf
[8])
250 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
251 * of the AES output. If last time around we returned the ndx-1st
252 * element, then we may have the result in the cache already.
255 #if (UMAC_OUTPUT_LEN == 4)
256 #define LOW_BIT_MASK 3
257 #elif (UMAC_OUTPUT_LEN == 8)
258 #define LOW_BIT_MASK 1
259 #elif (UMAC_OUTPUT_LEN > 8)
260 #define LOW_BIT_MASK 0
263 UINT8 tmp_nonce_lo
[4];
264 #if LOW_BIT_MASK != 0
265 int ndx
= nonce
[7] & LOW_BIT_MASK
;
267 *(UINT32
*)tmp_nonce_lo
= ((UINT32
*)nonce
)[1];
268 tmp_nonce_lo
[3] &= ~LOW_BIT_MASK
; /* zero last bit */
270 if ( (((UINT32
*)tmp_nonce_lo
)[0] != ((UINT32
*)pc
->nonce
)[1]) ||
271 (((UINT32
*)nonce
)[0] != ((UINT32
*)pc
->nonce
)[0]) )
273 ((UINT32
*)pc
->nonce
)[0] = ((UINT32
*)nonce
)[0];
274 ((UINT32
*)pc
->nonce
)[1] = ((UINT32
*)tmp_nonce_lo
)[0];
275 aes_encryption(pc
->nonce
, pc
->cache
, pc
->prf_key
);
278 #if (UMAC_OUTPUT_LEN == 4)
279 *((UINT32
*)buf
) ^= ((UINT32
*)pc
->cache
)[ndx
];
280 #elif (UMAC_OUTPUT_LEN == 8)
281 *((UINT64
*)buf
) ^= ((UINT64
*)pc
->cache
)[ndx
];
282 #elif (UMAC_OUTPUT_LEN == 12)
283 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
284 ((UINT32
*)buf
)[2] ^= ((UINT32
*)pc
->cache
)[2];
285 #elif (UMAC_OUTPUT_LEN == 16)
286 ((UINT64
*)buf
)[0] ^= ((UINT64
*)pc
->cache
)[0];
287 ((UINT64
*)buf
)[1] ^= ((UINT64
*)pc
->cache
)[1];
291 /* ---------------------------------------------------------------------- */
292 /* ---------------------------------------------------------------------- */
293 /* ----- Begin NH Hash Section ------------------------------------------ */
294 /* ---------------------------------------------------------------------- */
295 /* ---------------------------------------------------------------------- */
297 /* The NH-based hash functions used in UMAC are described in the UMAC paper
298 * and specification, both of which can be found at the UMAC website.
299 * The interface to this implementation has two
300 * versions, one expects the entire message being hashed to be passed
301 * in a single buffer and returns the hash result immediately. The second
302 * allows the message to be passed in a sequence of buffers. In the
303 * muliple-buffer interface, the client calls the routine nh_update() as
304 * many times as necessary. When there is no more data to be fed to the
305 * hash, the client calls nh_final() which calculates the hash output.
306 * Before beginning another hash calculation the nh_reset() routine
307 * must be called. The single-buffer routine, nh(), is equivalent to
308 * the sequence of calls nh_update() and nh_final(); however it is
309 * optimized and should be prefered whenever the multiple-buffer interface
310 * is not necessary. When using either interface, it is the client's
311 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
313 * The routine nh_init() initializes the nh_ctx data structure and
314 * must be called once, before any other PDF routine.
317 /* The "nh_aux" routines do the actual NH hashing work. They
318 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
319 * produce output for all STREAMS NH iterations in one call,
320 * allowing the parallel implementation of the streams.
323 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
324 #define L1_KEY_LEN 1024 /* Internal key bytes */
325 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
326 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
327 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
328 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
331 UINT8 nh_key
[L1_KEY_LEN
+ L1_KEY_SHIFT
* (STREAMS
- 1)]; /* NH Key */
332 UINT8 data
[HASH_BUF_BYTES
]; /* Incomming data buffer */
333 int next_data_empty
; /* Bookeeping variable for data buffer. */
334 int bytes_hashed
; /* Bytes (out of L1_KEY_LEN) incorperated. */
335 UINT64 state
[STREAMS
]; /* on-line state */
339 #if (UMAC_OUTPUT_LEN == 4)
341 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
342 /* NH hashing primitive. Previous (partial) hash result is loaded and
343 * then stored via hp pointer. The length of the data pointed at by "dp",
344 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
345 * is expected to be endian compensated in memory at key setup.
350 UINT32
*k
= (UINT32
*)kp
;
351 UINT32
*d
= (UINT32
*)dp
;
352 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
353 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
;
357 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
358 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
359 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
360 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
361 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
362 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
363 h
+= MUL64((k0
+ d0
), (k4
+ d4
));
364 h
+= MUL64((k1
+ d1
), (k5
+ d5
));
365 h
+= MUL64((k2
+ d2
), (k6
+ d6
));
366 h
+= MUL64((k3
+ d3
), (k7
+ d7
));
374 #elif (UMAC_OUTPUT_LEN == 8)
376 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
377 /* Same as previous nh_aux, but two streams are handled in one pass,
378 * reading and writing 16 bytes of hash-state per call.
383 UINT32
*k
= (UINT32
*)kp
;
384 UINT32
*d
= (UINT32
*)dp
;
385 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
386 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
389 h1
= *((UINT64
*)hp
);
390 h2
= *((UINT64
*)hp
+ 1);
391 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
393 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
394 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
395 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
396 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
397 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
398 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
400 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
401 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
403 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
404 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
406 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
407 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
409 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
410 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
412 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
417 ((UINT64
*)hp
)[0] = h1
;
418 ((UINT64
*)hp
)[1] = h2
;
421 #elif (UMAC_OUTPUT_LEN == 12)
423 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
424 /* Same as previous nh_aux, but two streams are handled in one pass,
425 * reading and writing 24 bytes of hash-state per call.
430 UINT32
*k
= (UINT32
*)kp
;
431 UINT32
*d
= (UINT32
*)dp
;
432 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
433 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
434 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
;
436 h1
= *((UINT64
*)hp
);
437 h2
= *((UINT64
*)hp
+ 1);
438 h3
= *((UINT64
*)hp
+ 2);
439 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
440 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
442 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
443 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
444 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
445 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
446 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
447 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
449 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
450 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
451 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
453 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
454 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
455 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
457 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
458 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
459 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
461 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
462 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
463 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
465 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
466 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
471 ((UINT64
*)hp
)[0] = h1
;
472 ((UINT64
*)hp
)[1] = h2
;
473 ((UINT64
*)hp
)[2] = h3
;
476 #elif (UMAC_OUTPUT_LEN == 16)
478 static void nh_aux(void *kp
, void *dp
, void *hp
, UINT32 dlen
)
479 /* Same as previous nh_aux, but two streams are handled in one pass,
480 * reading and writing 24 bytes of hash-state per call.
485 UINT32
*k
= (UINT32
*)kp
;
486 UINT32
*d
= (UINT32
*)dp
;
487 UINT32 d0
,d1
,d2
,d3
,d4
,d5
,d6
,d7
;
488 UINT32 k0
,k1
,k2
,k3
,k4
,k5
,k6
,k7
,
489 k8
,k9
,k10
,k11
,k12
,k13
,k14
,k15
,
492 h1
= *((UINT64
*)hp
);
493 h2
= *((UINT64
*)hp
+ 1);
494 h3
= *((UINT64
*)hp
+ 2);
495 h4
= *((UINT64
*)hp
+ 3);
496 k0
= *(k
+0); k1
= *(k
+1); k2
= *(k
+2); k3
= *(k
+3);
497 k4
= *(k
+4); k5
= *(k
+5); k6
= *(k
+6); k7
= *(k
+7);
499 d0
= LOAD_UINT32_LITTLE(d
+0); d1
= LOAD_UINT32_LITTLE(d
+1);
500 d2
= LOAD_UINT32_LITTLE(d
+2); d3
= LOAD_UINT32_LITTLE(d
+3);
501 d4
= LOAD_UINT32_LITTLE(d
+4); d5
= LOAD_UINT32_LITTLE(d
+5);
502 d6
= LOAD_UINT32_LITTLE(d
+6); d7
= LOAD_UINT32_LITTLE(d
+7);
503 k8
= *(k
+8); k9
= *(k
+9); k10
= *(k
+10); k11
= *(k
+11);
504 k12
= *(k
+12); k13
= *(k
+13); k14
= *(k
+14); k15
= *(k
+15);
505 k16
= *(k
+16); k17
= *(k
+17); k18
= *(k
+18); k19
= *(k
+19);
507 h1
+= MUL64((k0
+ d0
), (k4
+ d4
));
508 h2
+= MUL64((k4
+ d0
), (k8
+ d4
));
509 h3
+= MUL64((k8
+ d0
), (k12
+ d4
));
510 h4
+= MUL64((k12
+ d0
), (k16
+ d4
));
512 h1
+= MUL64((k1
+ d1
), (k5
+ d5
));
513 h2
+= MUL64((k5
+ d1
), (k9
+ d5
));
514 h3
+= MUL64((k9
+ d1
), (k13
+ d5
));
515 h4
+= MUL64((k13
+ d1
), (k17
+ d5
));
517 h1
+= MUL64((k2
+ d2
), (k6
+ d6
));
518 h2
+= MUL64((k6
+ d2
), (k10
+ d6
));
519 h3
+= MUL64((k10
+ d2
), (k14
+ d6
));
520 h4
+= MUL64((k14
+ d2
), (k18
+ d6
));
522 h1
+= MUL64((k3
+ d3
), (k7
+ d7
));
523 h2
+= MUL64((k7
+ d3
), (k11
+ d7
));
524 h3
+= MUL64((k11
+ d3
), (k15
+ d7
));
525 h4
+= MUL64((k15
+ d3
), (k19
+ d7
));
527 k0
= k8
; k1
= k9
; k2
= k10
; k3
= k11
;
528 k4
= k12
; k5
= k13
; k6
= k14
; k7
= k15
;
529 k8
= k16
; k9
= k17
; k10
= k18
; k11
= k19
;
534 ((UINT64
*)hp
)[0] = h1
;
535 ((UINT64
*)hp
)[1] = h2
;
536 ((UINT64
*)hp
)[2] = h3
;
537 ((UINT64
*)hp
)[3] = h4
;
540 /* ---------------------------------------------------------------------- */
541 #endif /* UMAC_OUTPUT_LENGTH */
542 /* ---------------------------------------------------------------------- */
545 /* ---------------------------------------------------------------------- */
547 static void nh_transform(nh_ctx
*hc
, UINT8
*buf
, UINT32 nbytes
)
548 /* This function is a wrapper for the primitive NH hash functions. It takes
549 * as argument "hc" the current hash context and a buffer which must be a
550 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
551 * appropriately according to how much message has been hashed already.
556 key
= hc
->nh_key
+ hc
->bytes_hashed
;
557 nh_aux(key
, buf
, hc
->state
, nbytes
);
560 /* ---------------------------------------------------------------------- */
562 #if (__LITTLE_ENDIAN__)
563 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
564 static void endian_convert(void *buf
, UWORD bpw
, UINT32 num_bytes
)
565 /* We endian convert the keys on little-endian computers to */
566 /* compensate for the lack of big-endian memory reads during hashing. */
568 UWORD iters
= num_bytes
/ bpw
;
570 UINT32
*p
= (UINT32
*)buf
;
572 *p
= LOAD_UINT32_REVERSED(p
);
575 } else if (bpw
== 8) {
576 UINT32
*p
= (UINT32
*)buf
;
579 t
= LOAD_UINT32_REVERSED(p
+1);
580 p
[1] = LOAD_UINT32_REVERSED(p
);
586 #if (__LITTLE_ENDIAN__)
587 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
589 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
592 /* ---------------------------------------------------------------------- */
594 static void nh_reset(nh_ctx
*hc
)
595 /* Reset nh_ctx to ready for hashing of new data */
597 hc
->bytes_hashed
= 0;
598 hc
->next_data_empty
= 0;
600 #if (UMAC_OUTPUT_LEN >= 8)
603 #if (UMAC_OUTPUT_LEN >= 12)
606 #if (UMAC_OUTPUT_LEN == 16)
612 /* ---------------------------------------------------------------------- */
614 static void nh_init(nh_ctx
*hc
, aes_int_key prf_key
)
615 /* Generate nh_key, endian convert and reset to be ready for hashing. */
617 kdf(hc
->nh_key
, prf_key
, 1, sizeof(hc
->nh_key
));
618 endian_convert_if_le(hc
->nh_key
, 4, sizeof(hc
->nh_key
));
622 /* ---------------------------------------------------------------------- */
624 static void nh_update(nh_ctx
*hc
, UINT8
*buf
, UINT32 nbytes
)
625 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
626 /* even multiple of HASH_BUF_BYTES. */
630 j
= hc
->next_data_empty
;
631 if ((j
+ nbytes
) >= HASH_BUF_BYTES
) {
633 i
= HASH_BUF_BYTES
- j
;
634 memcpy(hc
->data
+j
, buf
, i
);
635 nh_transform(hc
,hc
->data
,HASH_BUF_BYTES
);
638 hc
->bytes_hashed
+= HASH_BUF_BYTES
;
640 if (nbytes
>= HASH_BUF_BYTES
) {
641 i
= nbytes
& ~(HASH_BUF_BYTES
- 1);
642 nh_transform(hc
, buf
, i
);
645 hc
->bytes_hashed
+= i
;
649 memcpy(hc
->data
+ j
, buf
, nbytes
);
650 hc
->next_data_empty
= j
+ nbytes
;
653 /* ---------------------------------------------------------------------- */
655 static void zero_pad(UINT8
*p
, int nbytes
)
657 /* Write "nbytes" of zeroes, beginning at "p" */
658 if (nbytes
>= (int)sizeof(UWORD
)) {
659 while ((ptrdiff_t)p
% sizeof(UWORD
)) {
664 while (nbytes
>= (int)sizeof(UWORD
)) {
666 nbytes
-= sizeof(UWORD
);
677 /* ---------------------------------------------------------------------- */
679 static void nh_final(nh_ctx
*hc
, UINT8
*result
)
680 /* After passing some number of data buffers to nh_update() for integration
681 * into an NH context, nh_final is called to produce a hash result. If any
682 * bytes are in the buffer hc->data, incorporate them into the
683 * NH context. Finally, add into the NH accumulation "state" the total number
684 * of bits hashed. The resulting numbers are written to the buffer "result".
685 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
690 if (hc
->next_data_empty
!= 0) {
691 nh_len
= ((hc
->next_data_empty
+ (L1_PAD_BOUNDARY
- 1)) &
692 ~(L1_PAD_BOUNDARY
- 1));
693 zero_pad(hc
->data
+ hc
->next_data_empty
,
694 nh_len
- hc
->next_data_empty
);
695 nh_transform(hc
, hc
->data
, nh_len
);
696 hc
->bytes_hashed
+= hc
->next_data_empty
;
697 } else if (hc
->bytes_hashed
== 0) {
698 nh_len
= L1_PAD_BOUNDARY
;
699 zero_pad(hc
->data
, L1_PAD_BOUNDARY
);
700 nh_transform(hc
, hc
->data
, nh_len
);
703 nbits
= (hc
->bytes_hashed
<< 3);
704 ((UINT64
*)result
)[0] = ((UINT64
*)hc
->state
)[0] + nbits
;
705 #if (UMAC_OUTPUT_LEN >= 8)
706 ((UINT64
*)result
)[1] = ((UINT64
*)hc
->state
)[1] + nbits
;
708 #if (UMAC_OUTPUT_LEN >= 12)
709 ((UINT64
*)result
)[2] = ((UINT64
*)hc
->state
)[2] + nbits
;
711 #if (UMAC_OUTPUT_LEN == 16)
712 ((UINT64
*)result
)[3] = ((UINT64
*)hc
->state
)[3] + nbits
;
717 /* ---------------------------------------------------------------------- */
719 static void nh(nh_ctx
*hc
, UINT8
*buf
, UINT32 padded_len
,
720 UINT32 unpadded_len
, UINT8
*result
)
721 /* All-in-one nh_update() and nh_final() equivalent.
722 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
728 /* Initialize the hash state */
729 nbits
= (unpadded_len
<< 3);
731 ((UINT64
*)result
)[0] = nbits
;
732 #if (UMAC_OUTPUT_LEN >= 8)
733 ((UINT64
*)result
)[1] = nbits
;
735 #if (UMAC_OUTPUT_LEN >= 12)
736 ((UINT64
*)result
)[2] = nbits
;
738 #if (UMAC_OUTPUT_LEN == 16)
739 ((UINT64
*)result
)[3] = nbits
;
742 nh_aux(hc
->nh_key
, buf
, result
, padded_len
);
745 /* ---------------------------------------------------------------------- */
746 /* ---------------------------------------------------------------------- */
747 /* ----- Begin UHASH Section -------------------------------------------- */
748 /* ---------------------------------------------------------------------- */
749 /* ---------------------------------------------------------------------- */
751 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
752 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
753 * unless the initial data to be hashed is short. After the polynomial-
754 * layer, an inner-product hash is used to produce the final UHASH output.
756 * UHASH provides two interfaces, one all-at-once and another where data
757 * buffers are presented sequentially. In the sequential interface, the
758 * UHASH client calls the routine uhash_update() as many times as necessary.
759 * When there is no more data to be fed to UHASH, the client calls
760 * uhash_final() which
761 * calculates the UHASH output. Before beginning another UHASH calculation
762 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
763 * uhash(), is equivalent to the sequence of calls uhash_update() and
764 * uhash_final(); however it is optimized and should be
765 * used whenever the sequential interface is not necessary.
767 * The routine uhash_init() initializes the uhash_ctx data structure and
768 * must be called once, before any other UHASH routine.
771 /* ---------------------------------------------------------------------- */
772 /* ----- Constants and uhash_ctx ---------------------------------------- */
773 /* ---------------------------------------------------------------------- */
775 /* ---------------------------------------------------------------------- */
776 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
777 /* ---------------------------------------------------------------------- */
779 /* Primes and masks */
780 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
781 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
782 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
785 /* ---------------------------------------------------------------------- */
787 typedef struct uhash_ctx
{
788 nh_ctx hash
; /* Hash context for L1 NH hash */
789 UINT64 poly_key_8
[STREAMS
]; /* p64 poly keys */
790 UINT64 poly_accum
[STREAMS
]; /* poly hash result */
791 UINT64 ip_keys
[STREAMS
*4]; /* Inner-product keys */
792 UINT32 ip_trans
[STREAMS
]; /* Inner-product translation */
793 UINT32 msg_len
; /* Total length of data passed */
796 typedef struct uhash_ctx
*uhash_ctx_t
;
798 /* ---------------------------------------------------------------------- */
801 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
802 * word at a time. As described in the specification, poly32 and poly64
803 * require keys from special domains. The following implementations exploit
804 * the special domains to avoid overflow. The results are not guaranteed to
805 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
806 * patches any errant values.
809 static UINT64
poly64(UINT64 cur
, UINT64 key
, UINT64 data
)
811 UINT32 key_hi
= (UINT32
)(key
>> 32),
812 key_lo
= (UINT32
)key
,
813 cur_hi
= (UINT32
)(cur
>> 32),
814 cur_lo
= (UINT32
)cur
,
819 X
= MUL64(key_hi
, cur_lo
) + MUL64(cur_hi
, key_lo
);
821 x_hi
= (UINT32
)(X
>> 32);
823 res
= (MUL64(key_hi
, cur_hi
) + x_hi
) * 59 + MUL64(key_lo
, cur_lo
);
825 T
= ((UINT64
)x_lo
<< 32);
838 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
839 * implementation does not handle all ramp levels. Because we don't handle
840 * the ramp up to p128 modulus in this implementation, we are limited to
841 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
842 * bytes input to UMAC per tag, ie. 16MB).
844 static void poly_hash(uhash_ctx_t hc
, UINT32 data_in
[])
847 UINT64
*data
=(UINT64
*)data_in
;
849 for (i
= 0; i
< STREAMS
; i
++) {
850 if ((UINT32
)(data
[i
] >> 32) == 0xfffffffful
) {
851 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
852 hc
->poly_key_8
[i
], p64
- 1);
853 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
854 hc
->poly_key_8
[i
], (data
[i
] - 59));
856 hc
->poly_accum
[i
] = poly64(hc
->poly_accum
[i
],
857 hc
->poly_key_8
[i
], data
[i
]);
863 /* ---------------------------------------------------------------------- */
866 /* The final step in UHASH is an inner-product hash. The poly hash
867 * produces a result not neccesarily WORD_LEN bytes long. The inner-
868 * product hash breaks the polyhash output into 16-bit chunks and
869 * multiplies each with a 36 bit key.
872 static UINT64
ip_aux(UINT64 t
, UINT64
*ipkp
, UINT64 data
)
874 t
= t
+ ipkp
[0] * (UINT64
)(UINT16
)(data
>> 48);
875 t
= t
+ ipkp
[1] * (UINT64
)(UINT16
)(data
>> 32);
876 t
= t
+ ipkp
[2] * (UINT64
)(UINT16
)(data
>> 16);
877 t
= t
+ ipkp
[3] * (UINT64
)(UINT16
)(data
);
882 static UINT32
ip_reduce_p36(UINT64 t
)
884 /* Divisionless modular reduction */
887 ret
= (t
& m36
) + 5 * (t
>> 36);
891 /* return least significant 32 bits */
892 return (UINT32
)(ret
);
896 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
897 * the polyhash stage is skipped and ip_short is applied directly to the
900 static void ip_short(uhash_ctx_t ahc
, UINT8
*nh_res
, u_char
*res
)
903 UINT64
*nhp
= (UINT64
*)nh_res
;
905 t
= ip_aux(0,ahc
->ip_keys
, nhp
[0]);
906 STORE_UINT32_BIG((UINT32
*)res
+0, ip_reduce_p36(t
) ^ ahc
->ip_trans
[0]);
907 #if (UMAC_OUTPUT_LEN >= 8)
908 t
= ip_aux(0,ahc
->ip_keys
+4, nhp
[1]);
909 STORE_UINT32_BIG((UINT32
*)res
+1, ip_reduce_p36(t
) ^ ahc
->ip_trans
[1]);
911 #if (UMAC_OUTPUT_LEN >= 12)
912 t
= ip_aux(0,ahc
->ip_keys
+8, nhp
[2]);
913 STORE_UINT32_BIG((UINT32
*)res
+2, ip_reduce_p36(t
) ^ ahc
->ip_trans
[2]);
915 #if (UMAC_OUTPUT_LEN == 16)
916 t
= ip_aux(0,ahc
->ip_keys
+12, nhp
[3]);
917 STORE_UINT32_BIG((UINT32
*)res
+3, ip_reduce_p36(t
) ^ ahc
->ip_trans
[3]);
921 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
922 * the polyhash stage is not skipped and ip_long is applied to the
925 static void ip_long(uhash_ctx_t ahc
, u_char
*res
)
930 for (i
= 0; i
< STREAMS
; i
++) {
931 /* fix polyhash output not in Z_p64 */
932 if (ahc
->poly_accum
[i
] >= p64
)
933 ahc
->poly_accum
[i
] -= p64
;
934 t
= ip_aux(0,ahc
->ip_keys
+(i
*4), ahc
->poly_accum
[i
]);
935 STORE_UINT32_BIG((UINT32
*)res
+i
,
936 ip_reduce_p36(t
) ^ ahc
->ip_trans
[i
]);
941 /* ---------------------------------------------------------------------- */
943 /* ---------------------------------------------------------------------- */
945 /* Reset uhash context for next hash session */
946 static int uhash_reset(uhash_ctx_t pc
)
950 pc
->poly_accum
[0] = 1;
951 #if (UMAC_OUTPUT_LEN >= 8)
952 pc
->poly_accum
[1] = 1;
954 #if (UMAC_OUTPUT_LEN >= 12)
955 pc
->poly_accum
[2] = 1;
957 #if (UMAC_OUTPUT_LEN == 16)
958 pc
->poly_accum
[3] = 1;
963 /* ---------------------------------------------------------------------- */
965 /* Given a pointer to the internal key needed by kdf() and a uhash context,
966 * initialize the NH context and generate keys needed for poly and inner-
967 * product hashing. All keys are endian adjusted in memory so that native
968 * loads cause correct keys to be in registers during calculation.
970 static void uhash_init(uhash_ctx_t ahc
, aes_int_key prf_key
)
973 UINT8 buf
[(8*STREAMS
+4)*sizeof(UINT64
)];
975 /* Zero the entire uhash context */
976 memset(ahc
, 0, sizeof(uhash_ctx
));
978 /* Initialize the L1 hash */
979 nh_init(&ahc
->hash
, prf_key
);
981 /* Setup L2 hash variables */
982 kdf(buf
, prf_key
, 2, sizeof(buf
)); /* Fill buffer with index 1 key */
983 for (i
= 0; i
< STREAMS
; i
++) {
984 /* Fill keys from the buffer, skipping bytes in the buffer not
985 * used by this implementation. Endian reverse the keys if on a
986 * little-endian computer.
988 memcpy(ahc
->poly_key_8
+i
, buf
+24*i
, 8);
989 endian_convert_if_le(ahc
->poly_key_8
+i
, 8, 8);
990 /* Mask the 64-bit keys to their special domain */
991 ahc
->poly_key_8
[i
] &= ((UINT64
)0x01ffffffu
<< 32) + 0x01ffffffu
;
992 ahc
->poly_accum
[i
] = 1; /* Our polyhash prepends a non-zero word */
995 /* Setup L3-1 hash variables */
996 kdf(buf
, prf_key
, 3, sizeof(buf
)); /* Fill buffer with index 2 key */
997 for (i
= 0; i
< STREAMS
; i
++)
998 memcpy(ahc
->ip_keys
+4*i
, buf
+(8*i
+4)*sizeof(UINT64
),
1000 endian_convert_if_le(ahc
->ip_keys
, sizeof(UINT64
),
1001 sizeof(ahc
->ip_keys
));
1002 for (i
= 0; i
< STREAMS
*4; i
++)
1003 ahc
->ip_keys
[i
] %= p36
; /* Bring into Z_p36 */
1005 /* Setup L3-2 hash variables */
1006 /* Fill buffer with index 4 key */
1007 kdf(ahc
->ip_trans
, prf_key
, 4, STREAMS
* sizeof(UINT32
));
1008 endian_convert_if_le(ahc
->ip_trans
, sizeof(UINT32
),
1009 STREAMS
* sizeof(UINT32
));
1012 /* ---------------------------------------------------------------------- */
1015 static uhash_ctx_t
uhash_alloc(u_char key
[])
1017 /* Allocate memory and force to a 16-byte boundary. */
1019 u_char bytes_to_add
;
1020 aes_int_key prf_key
;
1022 ctx
= (uhash_ctx_t
)malloc(sizeof(uhash_ctx
)+ALLOC_BOUNDARY
);
1024 if (ALLOC_BOUNDARY
) {
1025 bytes_to_add
= ALLOC_BOUNDARY
-
1026 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
-1));
1027 ctx
= (uhash_ctx_t
)((u_char
*)ctx
+ bytes_to_add
);
1028 *((u_char
*)ctx
- 1) = bytes_to_add
;
1030 aes_key_setup(key
,prf_key
);
1031 uhash_init(ctx
, prf_key
);
1037 /* ---------------------------------------------------------------------- */
1040 static int uhash_free(uhash_ctx_t ctx
)
1042 /* Free memory allocated by uhash_alloc */
1043 u_char bytes_to_sub
;
1046 if (ALLOC_BOUNDARY
) {
1047 bytes_to_sub
= *((u_char
*)ctx
- 1);
1048 ctx
= (uhash_ctx_t
)((u_char
*)ctx
- bytes_to_sub
);
1055 /* ---------------------------------------------------------------------- */
1057 static int uhash_update(uhash_ctx_t ctx
, u_char
*input
, long len
)
1058 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1059 * hash each one with NH, calling the polyhash on each NH output.
1062 UWORD bytes_hashed
, bytes_remaining
;
1063 UINT64 result_buf
[STREAMS
];
1064 UINT8
*nh_result
= (UINT8
*)&result_buf
;
1066 if (ctx
->msg_len
+ len
<= L1_KEY_LEN
) {
1067 nh_update(&ctx
->hash
, (UINT8
*)input
, len
);
1068 ctx
->msg_len
+= len
;
1071 bytes_hashed
= ctx
->msg_len
% L1_KEY_LEN
;
1072 if (ctx
->msg_len
== L1_KEY_LEN
)
1073 bytes_hashed
= L1_KEY_LEN
;
1075 if (bytes_hashed
+ len
>= L1_KEY_LEN
) {
1077 /* If some bytes have been passed to the hash function */
1078 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1079 /* bytes to complete the current nh_block. */
1081 bytes_remaining
= (L1_KEY_LEN
- bytes_hashed
);
1082 nh_update(&ctx
->hash
, (UINT8
*)input
, bytes_remaining
);
1083 nh_final(&ctx
->hash
, nh_result
);
1084 ctx
->msg_len
+= bytes_remaining
;
1085 poly_hash(ctx
,(UINT32
*)nh_result
);
1086 len
-= bytes_remaining
;
1087 input
+= bytes_remaining
;
1090 /* Hash directly from input stream if enough bytes */
1091 while (len
>= L1_KEY_LEN
) {
1092 nh(&ctx
->hash
, (UINT8
*)input
, L1_KEY_LEN
,
1093 L1_KEY_LEN
, nh_result
);
1094 ctx
->msg_len
+= L1_KEY_LEN
;
1096 input
+= L1_KEY_LEN
;
1097 poly_hash(ctx
,(UINT32
*)nh_result
);
1101 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1103 nh_update(&ctx
->hash
, (UINT8
*)input
, len
);
1104 ctx
->msg_len
+= len
;
1111 /* ---------------------------------------------------------------------- */
1113 static int uhash_final(uhash_ctx_t ctx
, u_char
*res
)
1114 /* Incorporate any pending data, pad, and generate tag */
1116 UINT64 result_buf
[STREAMS
];
1117 UINT8
*nh_result
= (UINT8
*)&result_buf
;
1119 if (ctx
->msg_len
> L1_KEY_LEN
) {
1120 if (ctx
->msg_len
% L1_KEY_LEN
) {
1121 nh_final(&ctx
->hash
, nh_result
);
1122 poly_hash(ctx
,(UINT32
*)nh_result
);
1126 nh_final(&ctx
->hash
, nh_result
);
1127 ip_short(ctx
,nh_result
, res
);
1133 /* ---------------------------------------------------------------------- */
1136 static int uhash(uhash_ctx_t ahc
, u_char
*msg
, long len
, u_char
*res
)
1137 /* assumes that msg is in a writable buffer of length divisible by */
1138 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1140 UINT8 nh_result
[STREAMS
*sizeof(UINT64
)];
1142 int extra_zeroes_needed
;
1144 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1147 if (len
<= L1_KEY_LEN
) {
1148 if (len
== 0) /* If zero length messages will not */
1149 nh_len
= L1_PAD_BOUNDARY
; /* be seen, comment out this case */
1151 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1152 extra_zeroes_needed
= nh_len
- len
;
1153 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1154 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1155 ip_short(ahc
,nh_result
, res
);
1157 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1158 * output to poly_hash().
1161 nh(&ahc
->hash
, (UINT8
*)msg
, L1_KEY_LEN
, L1_KEY_LEN
, nh_result
);
1162 poly_hash(ahc
,(UINT32
*)nh_result
);
1165 } while (len
>= L1_KEY_LEN
);
1167 nh_len
= ((len
+ (L1_PAD_BOUNDARY
- 1)) & ~(L1_PAD_BOUNDARY
- 1));
1168 extra_zeroes_needed
= nh_len
- len
;
1169 zero_pad((UINT8
*)msg
+ len
, extra_zeroes_needed
);
1170 nh(&ahc
->hash
, (UINT8
*)msg
, nh_len
, len
, nh_result
);
1171 poly_hash(ahc
,(UINT32
*)nh_result
);
1182 /* ---------------------------------------------------------------------- */
1183 /* ---------------------------------------------------------------------- */
1184 /* ----- Begin UMAC Section --------------------------------------------- */
1185 /* ---------------------------------------------------------------------- */
1186 /* ---------------------------------------------------------------------- */
1188 /* The UMAC interface has two interfaces, an all-at-once interface where
1189 * the entire message to be authenticated is passed to UMAC in one buffer,
1190 * and a sequential interface where the message is presented a little at a
1191 * time. The all-at-once is more optimaized than the sequential version and
1192 * should be preferred when the sequential interface is not required.
1195 uhash_ctx hash
; /* Hash function for message compression */
1196 pdf_ctx pdf
; /* PDF for hashed output */
1197 void *free_ptr
; /* Address to free this struct via */
1200 /* ---------------------------------------------------------------------- */
1203 int umac_reset(struct umac_ctx
*ctx
)
1204 /* Reset the hash function to begin a new authentication. */
1206 uhash_reset(&ctx
->hash
);
1211 /* ---------------------------------------------------------------------- */
1213 int umac_delete(struct umac_ctx
*ctx
)
1214 /* Deallocate the ctx structure */
1218 ctx
= (struct umac_ctx
*)ctx
->free_ptr
;
1224 /* ---------------------------------------------------------------------- */
1226 struct umac_ctx
*umac_new(u_char key
[])
1227 /* Dynamically allocate a umac_ctx struct, initialize variables,
1228 * generate subkeys from key. Align to 16-byte boundary.
1231 struct umac_ctx
*ctx
, *octx
;
1232 size_t bytes_to_add
;
1233 aes_int_key prf_key
;
1235 octx
= ctx
= xmalloc(sizeof(*ctx
) + ALLOC_BOUNDARY
);
1237 if (ALLOC_BOUNDARY
) {
1238 bytes_to_add
= ALLOC_BOUNDARY
-
1239 ((ptrdiff_t)ctx
& (ALLOC_BOUNDARY
- 1));
1240 ctx
= (struct umac_ctx
*)((u_char
*)ctx
+ bytes_to_add
);
1242 ctx
->free_ptr
= octx
;
1243 aes_key_setup(key
,prf_key
);
1244 pdf_init(&ctx
->pdf
, prf_key
);
1245 uhash_init(&ctx
->hash
, prf_key
);
1251 /* ---------------------------------------------------------------------- */
1253 int umac_final(struct umac_ctx
*ctx
, u_char tag
[], u_char nonce
[8])
1254 /* Incorporate any pending data, pad, and generate tag */
1256 uhash_final(&ctx
->hash
, (u_char
*)tag
);
1257 pdf_gen_xor(&ctx
->pdf
, (UINT8
*)nonce
, (UINT8
*)tag
);
1262 /* ---------------------------------------------------------------------- */
1264 int umac_update(struct umac_ctx
*ctx
, u_char
*input
, long len
)
1265 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1266 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1267 /* output buffer is full. */
1269 uhash_update(&ctx
->hash
, input
, len
);
1273 /* ---------------------------------------------------------------------- */
1276 int umac(struct umac_ctx
*ctx
, u_char
*input
,
1277 long len
, u_char tag
[],
1279 /* All-in-one version simply calls umac_update() and umac_final(). */
1281 uhash(&ctx
->hash
, input
, len
, (u_char
*)tag
);
1282 pdf_gen_xor(&ctx
->pdf
, (UINT8
*)nonce
, (UINT8
*)tag
);
1288 /* ---------------------------------------------------------------------- */
1289 /* ---------------------------------------------------------------------- */
1290 /* ----- End UMAC Section ----------------------------------------------- */
1291 /* ---------------------------------------------------------------------- */
1292 /* ---------------------------------------------------------------------- */